
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

5-23-2016 

Monarch: A Reimagined Browser for the Modern Web Monarch: A Reimagined Browser for the Modern Web 

Daniel R. Whitcomb 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Whitcomb, Daniel R., "Monarch: A Reimagined Browser for the Modern Web" (2016). Dartmouth College 
Undergraduate Theses. 107. 
https://digitalcommons.dartmouth.edu/senior_theses/107 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/107?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


DARTMOUTH COLLEGE

UNDERGRADUATE SENIOR THESIS

Monarch: A Reimagined Browser for the Modern
Web

Daniel Whitcomb ‘16

supervised by
Dr. Charles PALMER

May 23, 2016

DARTMOUTH COMPUTER SCIENCE TECHNICAL REPORT TR2016-799



1

Abstract—Web browsers have become fast and flexible enough to allow web applications to be viable competition to
native applications. Now that the web as a platform has become formidable, it has changed the types of web
applications being produced, and the ways in which native applications are being built. This observation leads me to
propose the concept of the App Web - a category of the world wide web which increases productivity - and its place in
the current application experience. Monarch is a system designed to merge the advantages of native and web
applications, improving experiences for both the developer and the user.

F

1 INTRODUCTION

THE world wide web is one of the most
pervasive technologies in the modern day.

A large portion of the software being developed
today is based on web services. It is now the
standard to produce a mobile, web, and desk-
top version for every internet-based applica-
tion. This can be a costly endeavor for many
companies, and due to the recent advances in
the speed and abilities of web technologies,
it is common to forgo a desktop application
as the web browser can serve as a sufficient
platform. It is difficult to argue, however, that
the web browser offers a more productive and
integrated user experience than a native appli-
cation. By focusing on web applications, ven-
dors are sacrificing the substantially superior
desktop environment: a separated application
icon, menu system, and access to native APIs.
This is most important for vendors which are
producing site web applications - a type of web
site that enable its users to be more productive
on a certain task. Web applications represent a
specific subset of website, which we call the
App Web. This new category requires the us-
ability of a native application, but by nature, is
usually delivered via a web browser.

We will discuss the specifics of App Web
sites, and their place within a user’s workflow.
Then we will review the differences between
native and web applications, and propose goals

• Daniel Whitcomb is an undergraduate student at Dartmouth
College in the Computer Science Department. This work is the
final product of his undergraduate thesis.

• The author was advised by Charles C. Palmer.

for an ideal platform which would have the
advantages of both systems. Finally, we intro-
duce Monarch, an web application browser and
launching platform. Monarch aims to meet the
proposed goals of the ideal platform and bring
together web and native applications.

2 THE APP WEB

A mix of new W3C APIs and a boom in
JavaScript-centric web page development in the
last 7 years lead to a shift in how web sites are
designed, and allowed the web application to
be an increasingly serious paradigm. The App
Web is the category of web sites that can be
defined as a web application.

Technically, web application refers to a site
which uses logic to provide dynamic func-
tionality. This logic may be executed on the
server, client, or both. These applications can
also sometimes save user’s data, handle interac-
tions between different users, and process data,
etc. Under this definition, almost all modern
web sites could technically be considered web
applications.

In this work, we will use a narrower defini-
tion because the traditional characteristics of a
web application, and the technologies that run
most sites have become practically ubitquitous
across the web. Rather than a technically-
driven definition, we will utilize a content-
driven defintion. A web application is a site
which is function-driven; the site is associated
with verbs like send, create, play, and manage.
Without the web application, the user would



2

lose some amount of productivity, or the utli-
tization of some function. Examples under this
definition include: Google Photos [1], Trello [2],
or WolframAlpha [3]. These differ from content-
driven sites which have the goal of providing
content to the user. Users generally don’t visit
these sites with the goal of a function, but
rather to experience some kind of content. Sites
like Buzzfeed [4], The New York Times [5], or
Facebook [6] fall under this definition.

To be fair, there are sites with features that
allow them to fall under both definitions. For
our purposes, though, a strict definition is not
required. In later sections, this definition will
serve as a guide on how to approach the place
these applications have in a user’s workflow.
The App Web is functionally different from
the content-based web, and the purpose of this
work is to argue and show that the differences
should be accounted for by the methods with
which they are accessed. The goal of the App
Web should be to become so tightly integrated
with the native operating system that users will
see no discernable difference between native
applications and web-based applications.

3 NATIVE VS WEB

The web browser, and its accompanying ren-
dering technologies, has become an increas-
ingly powerful platform. This allows vendors
to create increasingly versatile and useful prod-
ucts. The abilities of web technologies have
narrowed the gap between itself and the native
platform, making soley web-based applications
a viable option for vendors. Companies cre-
ating products which fit into the App Web
must weigh the differences between the two
platforms, as their products might fit well with
both.

For the remainder of the paper, we will use
term native when refering to an application that
is running within the user’s operating system -
and uses the operating system’s local APIs for
graphics, network, etc. The terms web technolo-
gies or web-based will refer to applications run
by classical browser technologies like HTML,
CSS, and JavaScript.

Native and web applications, while their
differences are shrinking, still have their own
advantages and disadvantages. These differ-
ences continue to determine the types of ap-
plications that are developed, and which users
choose to use. The type of application we
are considering will by default have a server-
side system accompanying it. The differences
between back-end systems will not be dis-
cussed here because they generally don’t affect
whether a native or web application is built.

3.1 Development
The major advantage of web technologies is
they provide a system agnostic medium for
building and running applications. The prob-
lems with porting between platforms and op-
erating systems are delegated to browser engi-
neers, while the web is a standardized platform
and developers can trust - to a high degree -
that their applications will run the same regard-
less of operating system or browser. This makes
it easy to see why developers would continue to
choose to build web-based applications, rather
than native applications. Web-based apps can
have a unified codebase. This avoids updating
and porting issues, which can more easily occur
across multiple codebases, and keeps interface
and experience consistent across all users.

Development speed is also a key difference
between the two platforms. The web devel-
opment community has produced many types
of libraries that allow teams to increase de-
velopment speed. JavaScript frameworks like
AngularJS [7] or React [8] pushed the pref-
ered development model toward a Model-
View-Controller pattern. These libraries gener-
ally automate much of the boilerplate code for
developers, allowing them to focus on inter-
action and business logic. Other web libraries
similarly streamline page styling, networking,
and document manipulation each making a
web developer’s job significantly easier.

Native application development speed can
be dependent on which platforms are being
supported. Development speed will decrease
as the number of supported platforms increase
because each will generally require different
systems for building user interfaces.



3

3.2 Features

Web technologies have a significant advantage
over native apps in ease of development and
depolyment, but their abilities are highly lim-
ited in comparison to native applications. Na-
tive applications generally have access to every
feature and control the operating system has to
offer.

Web processes are highly cordoned off from
the operating system. There are many APIs
the browser implements that allow web pages
secure native access, but support is severly
limited compared to that of native applications.
This limits the capabilities of web applications
when interacting with the user’s system, like
accessing the file system or taking advantage
of OS user interface components. The reduction
of native features limits the capabilities a web-
based application. W3C has been working to
increase the access web developers have to na-
tive systems; recent APIs like fullscreen access
[9], messaging between pages [10], and socket
networking [11] show that there is a commit-
ment to increasing web features, but many
major browsers have not yet implemented the
numerous API specifications. Until an API has
majority support, it will often go unused in pro-
duction codebases due to browser compatibility
issues.

3.3 Performance

Although still lacking in feature richness, web
technologies - which once had serious speed
disadvantages over native apps - have seen re-
cent improvements in JavaScript speeds as well
as improved web APIs to support more inten-
sive work. Substantial photo and video editing,
CAD modeling, or game rendering were once
too intensive for client-side processing, but new
standards like WebGL [12], which provides ac-
cess a high-performance graphics library, have
allowed for applications of web technologies
to be realized. JavaScript performance has also
been greatly improved by new engines like
Chrome V8 [13] produced Google. These ad-
vances have removed speed as an inhibitor to
the developer and user.

3.4 User Experience
Based on this, the primary advantage of build-
ing a native application over a web-based one
is feature richness and a stronger coupling with
the host operating system. These advantages
lead to a significant increase in the quality of
user experience. Native applications can take
direct control over system menus, contextual
menus, and notifications. They have a perma-
nent presence on the user’s screen and have
an icon either in the Window’s task bar, or OS
X’s dock. They can act as their own entities,
without having to rely on a a separate medium -
i.e. a web browser. Native applications also gen-
erally don’t have to make network requests for
new interface content, allowing them to have
a tighter and more responsive feel. This can
be taken into account in web-based systems by
building single-page applications, which load
all of their interface upon loading.

3.5 Security and Privacy
Security on the web is an incredibly impor-
tant aspect of the platform. Many of the W3C
standards are designed to user data from being
intercepted, and browser architecture reflects
each vendor’s committment to security. In any
situation where data is being transferred over a
network, it substantially increases the security
risks both in reality and in the mind of the
user. Strong practical reasons as well as a mas-
sive user demand for security have required
browsers to meet an incredible level of security.
In Google Chrome [14], the rendering system is
separated from the browser process and sand-
boxed. From just the browser point of view, it
is a relatively secure application given proper
implemenation.

The majority of web security problems stem
from poor development practices. In 2014, the
most common web vulnerabilities stemmed
from errors in application code [15]. These vul-
nerabilities include: cross-site scripting attacks,
SQL injection, sensitive data leakage, and cross-
site request forgery. If native applications are
moving data across a network, then they can
similarly be affected by network-related secu-
rity flaws like SQL injection or man-in-the-



4

middle attacks. Exploring vulernabilities on a
per-application basis would not provide a valid
picture of the actual security of the platform,
but would rather reveal deficits in develop-
ment practices. The only comparison we can
make ia between the operating systems and
the browser, the advantages and disadvantages
of which are also implemenation specific. Each
platform and its implementations have their
own security flaws, known or unknown.

3.6 Summary

Each platform has significant advantages and
disadvantages. Web applications are best in
terms of development speed, code simplicity,
and near universal operating system compati-
bility. They do not require installation or up-
dating from the user, and are easily accessed on
any computer with a browser.

Native applications lead in terms of oper-
ating system integration, allowing for a more
fluid user experience and workflow than web
browser tabs can provide. This advantage along
with reduced loading times can be a significant
enough reason to choose a native implementa-
tion over a web one. The success of a product
ultimately depends on people wanting to use it,
making user experience paramount.

In 2011, Mokkonen and Taivalsaari de-
scribed the race between native and web appli-
cations as the “battle of the decade”[16]. They
discussed the potential outcomes of each win-
ning said battle. While the battle is not yet over,
the question we ask is why there needs to be a
battle?

4 PLATFORM GOALS

We have discussed that the differences between
web and native applications have become min-
imal. A platform which combined the ease,
speed, and portabily enjoyed by web-based
apps, with the integration of a native applica-
tion, would resolve the primary disadvantages
of the two types. In this section we propose
such a system.

An App Web site would benefit the most
from a combined native-experience web-based

system. These sites would be able to produce an
improved native-like interface, while keeping
their web delivery scheme.

4.1 Requirements

The advantages and disadvantages of both ap-
plication schemes have been discussed. The
proposed platform would have the following
features and abilities:

• The platform would support applications
written in web-based technologies like
HTML, CSS, and JavaScript to be universally
compatible across opereating systems.

• The platform would provide secure ac-
cess to operating system features like the
taskbar/dock, menu control, and OS inter-
face components.

• Applications on the platform would never
need to be installed or updated, merely nav-
igated to.

4.2 Design

The applications will support web technologies,
so it follows from a infrastructue perspective
that they continued to be served as such and
viewable from within a web browser as well as
this new platform. Therefore, web browsers - a
platform already optimized for processing the
web - would be the most appropriate to meet
these requirements, especially because they are
already such a heavily used class of application.
The web browser would be able to adapt its
presentation of a page based on whether it is
a web app or is content focused. Web applica-
tions would be opened as fully-featured native
applications - rendered by the browser - while
content-based sites could retain their current
tab-bar model.

The web launcher - a combination browser
and application launcher - would make the
web the source of all content and applications.
Rather than treating all web content equally, the
web launcher would allow the user to access all
content in the best possible manner.



5

5 EXISTING SYSTEMS

5.1 Adaptable Browsing

Henricksen and Indulska [17] discussed the
idea of adapting the browser to contextual
changes. They advocated for browsers to be
able to adapt their interfaces to the sites they
display. By using data like a user’s browsing
history, experience level, language setting and
display size, it would produce a customized
experience for the user. They focused primarily
on the browser adapting to system data rather
than page content. In 2003, Tenenbaum and
Caballero [18] filed a patent for a “Contextually
Adaptive Web Browser”. The opening of the
patent’s abstract reads:

A web browser’s layout, available features
and tools are adapted to the instanta-
neous environment, without the use of
downloadable, up-loadable or resident pro-
grams, plug-ins or agents.

The patent describes adding buttons and other
interface elements based on the contents of the
page, and gives examples on how this might
be done on Internet Explorer or Netscape. The
patent is cited by 114 other patents pertaining
to browser interfaces, but the patent’s scope is
too narrow and outdated for its owner to take
effective action in today’s courts.

The concept of an adaptable browser has
been in circulation for much of the web’s exist-
nece. Unfortunately, most of the major browsers
have largely not built this type of functionality
into their products. One example of a minor
addition of adaptability is in the Android ver-
sion of Google Chrome. Developers can add an
HTML tag to their site that sets the color of the
toolbar [19].

Browsers do not tend to have a built-in con-
tent adapatation systems. Vendors have gener-
ally chosen to focus on making their products
fast and secure. For example, many browsers
have built-in systems fo phishing and malware
detection [20] [21] [22], which notify the user if
they are potentially navigating to a potentially
malicious site. Most adaptive browsing features
browsers have built in are generally not meant
to increase the quality of the experience.

5.2 Native-like Interfaces

While adaptive features have not been a topic of
interest for browser vendors and web develop-
ers, creating a native-like experience has been a
major goal of both parties. Mozilla was an early
investigator into this user-experience concept.
They developed a language called XUL (XML
User Interface Language) [23], which is a simple
way of defining relationships between interface
elements, especially toolbars, menus, and navi-
gation buttons. At one point, many of Mozilla’s
products were built with XUL. Mozilla also
included a feature within Firefox that allowed
sites to remotely load XUL documents [24],
allowing developers to quickly build naviga-
tional systems for their sites that matched the
interface of the host operating system. Remote
XUL was eventually disabled in Gecko 2.0 due
to major security concerns.

Two projects out of Mozilla Labs also
pushed the concept forward. Prism [25] was a
Firefox extension which allowed web sites to
be split out of the browser and be rendered in a
separate window. The site would accompanied
by a desktop icon in the taskbar/dock as well.
The basis of the extension was XULRunner [26]
- a program that compiles and renders XUL.
Prism supported customized context menus,
and a printing feature as well. Prism’s major
disadvantage is that developers also had the
option to provide additional app features by
creating app bundles. These bundles had to be
downloaded and installed separately from the
site, and the site could then load the bundle
with a custom HTML tag. Prism never reached
a 1.0 release, the project was renamed WebRun-
ner [27], and Mozilla subsequently shutdown
the project.

Google produced a concept similar to Prism:
Chrome Apps [28]. Chrome Apps are a type of
extension that install a small app bundle on the
user’s machine, and are built using web tech-
nologies. The bundles are either held locally or
can be hosted by the publisher. Local installa-
tion allows the apps to be used in offline-mode,
and they are also able to autoupdate. Hosted
applications still require the installation of a
small file that provides details about the app.



6

Chrome has expanded their reach by pro-
ducing the Chromium Embedded Framework
(CEF) [29]. The package modularizes the ren-
dering systems of Chromium Project - the open-
source project which Chrome originates from -
and allows it be injected into other applications
to render and display web pages. CEF makes
it much simple for developers to integrate web
technologies into native applications. Data can
be ferried between the CEF data structures and
native code. CEF allows a project with an al-
ready existing web application to quickly build
a native app and reuse much of their existing
code. Companies like Evernote [30] and Spotify
[31] each have substantial web applications, but
also publish native applications which use CEF.

The CEF API allows for extensive fine-
grained control over the rendering system,
making it, by nature, more difficult to work
into products quickly. Electron [32] is a product
built by GitHub which abstracts much of the
complexity out of CEF, allowing development
speed to be greatly increased.

Another Mozilla Labs project called
Chromeless [27] was a combination of XUL
and Prism. Chromeless is a platform that
allowed native applications to be built out
of web technologies, with the intial concept
being to use web technologies to build a native
browser application. The system is very similar
to CEF and Electron, but never gained traction
the other two did. The source for Chromeless
is available on GitHub, but is listed as an
archive project on the Mozilla Wiki. A project
similar to Chromeless was developed by Sun
Microsystems in 2008 called Lively Kernel [33].
It is a JavaScript framework that gave pages a
desktop-like environment for interaction. The
environment had all the features of a desktop,
as well as development capabilities. Rather
than make the web seem native, Lively Kernel
made a native environment within the web.

5.3 Extending Web Features

Web technoliges have generally been limited
in their access to the operating system primar-
ily for security reasons. Remote JavaScript is
the source of major security concerns [34] and

much of the HTML5 standard defines rules for
browsers which aim to restrict the privleges of
untrusted code [35]. A hestitancy has existed in
regards to extending the privleges of JavaScript
because of the massive security risk it would
entail. Even so, W3C has been pushing forward
in defining new web APIs to provide secure
access to low level functionality. Google and
Mozilla also experiment with custom web APIs
that are not meant for production use, but are
intended as proofs-of-concept.

In order to allow for JavaScript to be given
lower level control over the operating system,
the most important task is to mitigate poten-
tial security risks. There is a history of pro-
posed methods to do this. A group at Microsoft
proposed a device-local service [36] for mobile
phones. A reported 52% of developers [37] in
2013 were using HTML5 technology within mo-
bile applications. Site JavaScript can use Web-
Sockets [11] to communicate with the device-
local service in order to access the native layer
of the mobile device with a platform agnos-
tic protocol. While they proposed the method
specifically for mobile devices, there is no rea-
son this could not also be implemented on a
desktop. This system allows native-level APIs
to be quickly developed and maintained from a
standardized location. The authors did call the
security of the system into question. Though
they implemented a handshake-like protocol
for the WebSockets they do concede that us-
ing sockets in this manner is still poking a
hole through the render process’s sandbox. It is
worth mentioning then that Chrome and other
browsers already use similar platform-based
systems to implement the existing web APIs
that involves using IPC to communicate with
render processes, also degrading the sandbox.

Another Microsoft research group proposed
a system called Embassies [38], which is meant
to remedy the problem of puncturing holes in
the render process by completely removing the
render process from the local platform. They
propose a pico-datacenter: a native container
system that can only communicate with the
outside world via IP. It allows any stack to be
run on the user’s machine, while maintaining
strong isolation thanks to its container model.



7

This is a huge advantage for developer free-
dom, and singular code-bases, but requi In this
case, developers would have to send the tech
stack along with their application, which can
include a rendering platform for their product.
Embassies also allows access to native view
tools, allowing applications to use the operating
system’s interface elements.

6 MONARCH

Monarch - for the butterfly - is a prototype
web launcher, and a novel solution to the
native v. web “battle”. Monarch is a hybrid
web browser and application launcher built for
Apple’s OS X operating system, which allows
users to seemlessly open web sites as native
applications. Users do not move through an
installation workflow, and apps open as soon
as they are navigated to. Monarch also contains
a simple HTML API that allows developers to
define menu structue and execution actions for
OS X’s menu bar.

6.1 Design

Monarch is meant to bring the App Web closer
to a native experience, without sacrificing the
accessiblity and speed the web enjoys. Monarch
is a fork of the Chromium web browser [14], the
open-source project that is the primary source
of Google’s Chrome web browser. It is backed
by the rendering engine Blink [39], as well as
Google’s JavaScript engine, Chrome V8 [13].
The rendering engine is responsible for loading
web pages, parsing their HTML, and calculat-
ing how their appearance on the screen. The
JavaScript engine interprets a site’s JavaScript
code and works with the rendering engine to
enact changes to the Document Object Model
(DOM), a data structure that manages the state
of the page. Monarch’s feature set was built on
top of the Chromium and Blink source.

Chromium was chosen as the base project
beacuse it is a well known open-source project
with extensive documentation. Chromium also
has an OS X desktop app extension system [28]
that provides much of the basic infrastructure
that Monarch is built upon.

Monarch is a browser and an application
launcher. It contains all the normal features
of Chromium - a typical browser - but also
the advanced features of Monarch. By adding
the native application features to an existing
browser, it makes the browser the central lo-
cation for all their applications.

Monarch uses two pieces of consistent vo-
cabulary. The first is app mode: a page in app
mode is opened as a native application, and dif-
ferentiated from the UI of the regular browser.
The second is Monarch Dynamic Application or
MDA. An MDA is the name of the system
which opens, controls, updates, and closes a
web page in app mode. Each individual site is
considered its own MDA.

6.1.1 Navigation

There are two primary methods of opening an
MDA. The user may want to either open a URL
in an MDA directly, or open an existing tab in
an MDA. In order to open an MDA directly
from a URL, a user simply types the desired
URL into Monarch’s omnibox (search/address
bar) and an option in the suggestions drop-
down menu will allow the URL to be opened
directly as an MDA. By selecting the menu
item, the MDA is opened immediately.

The second method concerns already
opened web sites. There are three actions pos-
sible that will convert an existing site into an
MDA. Monarch’s View menu in the menu bar
always has a Enter App Mode item. Selecting
this item will close the current tab and open its
URL in an MDA. Users can also select a similar
option by opening the context menu by right-
clicking on the page. The hotkey for this action
is Cmd + Shift + A. When opening an MDA
from an existing tab, the state of the page is
not conserved, though this is a goal of a future
implemenation.

6.1.2 Native App

The native application is designed to seem like
a standalone application bundle. The main app
window is a regular rendering of the web page,
with the normal OS X window bar at the top.
No browser interface items are present, and the



8

window gives no indication it has a relation to
the browser.

The window is accompanied by an icon
appearing on the OS X dock. If Monarch has
a cached favicon for the MDA’s URL, then the
favicon will be resized and used as the dock
icon. If Monarch does not have a cached icon
for the application, a full resolution custom icon
made specifcally for MDAs is used.

Finally, the developer has the option to de-
fine the MDA’s menu bar structure. The app
window has a customized menu as well, with
four default menus - File, Edit, View, and Win-
dow - as well as a menu for the title of the MDA
with its customary About and Quit options. De-
velopers can also define as many custom items
as they want. The HTML API allows developers
to connect JavaScript expressions to these menu
items, which allows users to interact with the
page via an operating system interface.

MDAs allow developers to produce an al-
most perfect native-like experience without
requiring a different codebase or packaging.
MDAs are able to recreate the experience of an
application made with Electron without requir-
ing any download or installation.

6.2 API
Monarch’s additional HTML API is its major
advantage over existing systems. It gives devel-
opers the ability to keep their web application’s
existing codebase, allowing their application to
be Monarch compatible in minutes.

The prototype API currently allows devel-
opers to create menu structures for their ap-
plications which get injected into OS X’s menu
bar when the MDA is in focus. Menu structures
are simply trees, which is perfect for encoding
into HTML. Two HTML elements are currently
in the API: mdamenu and mdamenuitem. A
mdamenu element can contain other mdamenu
elements or mdamenuitem elements, though
mdamenuitem children will be ignored. A
mdamenuitem represents a leaf of the menu
tree, and is a selectable action, while a nested
mdamenu represents a child menu that contains
a subset of menu items.

Each element has a set of attributes that
help define their appearance in the menu bar. A

mdamenu has two useful attributes that can be
assigned. The first is the title which defines
what will be displayed as the menu name. The
root menu does not need a title and it will not
be displayed. The second attribute is to denote
which menu at depth 1 of the tree corresponds
to the MDA’s name. On all OS X menu bars,
the application’s name is the title of the first
menu. An MDA menu does not require this
menu to be defined in the tree structure, but
if the developer does want to define it, they can
add the app attribute to a mdamenu to set the
application’s title.

There are three attributes for mdamenuitem
elements. Menu items also have a title at-
tribute, which is the displayed name of the
menu option. Most importantly, they support
an action attribute, which can be set to any
valid JavaScript expression within the context
of the site’s main page. From these actions,
developers can access functions defined within
the JavaScript environment of the MDA in or-
der to react to the menu item being selected.
The third attribute allows the item to be dis-
abled to prevent user interaction depending on
state. By adding the disabled attribute to a
menu item, it will gray out the menu item.

See the Resources section for information
about complete documentation.

6.3 Implementation

Monarch’s source is forked from Chromium,
so it inherits Chromium’s stability and reli-
abilty. Chromium includes the Chrome Apps
feature, which allows vendors to create spe-
cialized application packages and users can
download from the Chrome Web Store to run
as faux-native applications through Chromium.
Chromium installs a small app-shim bundle
which is configured as a valid OS X application
bundle. These bundles are very small and act
as a way of notifying Chromium that the user
is trying to open the application it corresponds
to. The app-shim bundle then cedes control
back to Chromium, which is the process run-
ning the application. Chromium opens a new
window and renders the web page inside of it.
Chromium then replaces it’s normal menu bar



9

with the app’s menu bar. Doing this gives the
illussion that the application is a separate entity.

The major problem with Chrome Apps is
the user must find the desired application -
if the vendor has decided to release it - and
download it themselves. Many of these apps
simply link back to the vendor’s already re-
sponsively designed web application, making
it just another step for users.

Monarch injects web page information into
a template Chrome App, which it progamat-
ically installs when the user wants to open
an MDA. During the application’s lifetime, the
bundle is installed as an internal extension
which remains invisible to the user. When the
user closes the application, Monarch uninstalls
the app bundle and cleans up the files. A user
may have open as many app bundles as they
want, even duplicate source sites.

If the web page has defined a MDA menu
structure for itself, the renderer will notify the
browser when the menu structure is wholly
parsed and the corresponding app’s menu is
updated dynamically. This also means that any
changes to the menu elements in the DOM will
also be propogated to the app’s menu bar.

7 DISCUSSION

Monarch is meant to be a step forward in
merging the native and web experiences both
in the context of the user, and the context of the
developer. Monarch allows developers to use
the flexible web technology ecosystem to easily
build an application that is easily deployed on
the web which, with Monarch, also serves as a
native application.

7.1 User Interface

An MDA’s interface is nearly identical to one
which could be produced with Electron. Each
app has its own window, dock icon, and menu
bar. By separating web applications from the
browser experience, it allows users to easily
locate and more efficiently move between their
pivotal apps. It also increases the user’s sense
of the app’s permanence, making it feel more
important than just another browser tab. A user

with Monarch essentiallly eliminates the need
for any Electron-run application, thus reducing
the number of installed applications on the
user’s machine.

Monarch allows the user interfaces of web
applications to become more standardized by
adopting OS X’s use patterns. The user is able
to better predict where menu items may be,
allowing them to learn how to use the web ap-
plication quicker. This can be especially useful
for inexperienced users like children or eldery.

7.2 Security
Security is always the most important aspect of
any web-based platform. Browsers have been
snuffed out of existence by public reactions to
security flaws, and almost all new web APIs
make security a top priority. Since Monarch
is based on Chromium, it carries Chromium’s
security background with it.

The changes to the render process supports
two additional HTML elements, which includes
bindings to the JavaScript engine as well. These
elements are defined and follow the same pat-
terns as other existing HTML elements. When
the renderer recognizes these elements have
changed, it sends a message to the browser pro-
cess to update the corresponding MDA’s menu,
and passes the menu structure with it. The ren-
derer builds simple string and boolean structs
based on the HTML structure, and passes it
over IPC. There are multiple other instances
where similar processing takes place, and poses
no additional security risk.

The menu data that is sent to the browser
process gets converted into Objective-C objects
to be displayed in the menu bar. This system is
also just as secure as Chromium. The menu ac-
tion’s send a string - sent to the browser process
by the renderer - back to the renderer to be run
as JavaScript, but this poses no more security
risk than a user opening the development tools
and using the JavaScript console.

7.3 Current Deficits
The shortfalls of the current implementation of
Monarch are few and can be easily addressed
in future releases. MDA’s dock icons are the



REFERENCES 10

opened site’s enlarged favicons, given that it
is available in the browser’s cache. This means
that MDA app icons are either the default icon,
or a horribly pixelated version of the favicon.
This could be solved by extending the HTML
API to include the desired dock icon as a
resource, then dynamically updating the icon
after the page is parsed.

Currently, the full extent of the OS X menu
API is not supported within Monarch’s HTML
API. Some things that are not implemented in-
clude right-justified keyboard shortcuts, menu
separators, and the Help search bar. These fea-
tures were not considered vital for the initial
prototype, but could easily be added future
releases.

Finally, when using OS X’s Exposé feature.
Exposé allows users to view windows grouped
by application and quickly switch between
them. Since MDA windows are being created
and rendered by the Monarch process, Exposé
groups all MDAs with the Monarch windows.
This could be fixed by moving the window
creation system to the app-shim process, and
connecting to the renderer process to access its
view. MDAs would then be separated from one
another within Exposé, allowing faster appli-
cation switching. This feature would mean a
substantial refactoring of many pre-existing ser-
vices in Monarch and was not possible within
the scope of this project, but with proper re-
sources could be done in the future.

7.4 Future Work

There are some features that do not warrant
an explicit platform deficit, but would still be
useful in a production version. One is an addi-
tion to the HTML API which would allow the
browser to detect that the site should be opened
as an MDA if available, and define specific
settings for how to open it. This would allow
Monarch to be more aware of the type of page
it is displaying and more appropriately tailor
the experience.

The inclusion of OS specific interface com-
ponents within the MDA’s window or menu
bar would also be advantageous in making
integrated experiences. The HTML API could

be extended to allow the render window’s ini-
tial dimensions to be designated by the de-
veloper. The window’s title bar could also be
customized by allowing developers to change
the window title, or hide the bar all together.

8 CONCLUSION

We presented and discussed the idea of the
App Web - a category of web sites which are
meant to allow users to perform some type of
action or make a task easier - and contrasted
it with the content web. The app web ties into
the debate over whether to build native or web
applications. Monarch is presented as a solution
to this debate, and a compromise between the
best of both platforms. Monarch allows for a
native-like experience, while allowing for the
spontaneity and ease of the web application.

Monarch’s simple HTML API allows web
applications to easily support use in as an
MDA. While it is an addition to the already
bloated web API, it is the most straight forward
path to support currently built applications.
The API has the possibility for many simple
additions that would greatly increase the ability
of the developer to control their site’s MDA, as
well as their site’s presence as an application,
rather than a page.

Monarch is a meant to be a proof-of-concept
for a grander vision. The use and content of
the web has fundamentally changed in its short
life. The next question then is how best to
adapt to this change. Monarch is meant to be
a glimpse at what the web could become: not
just a series of sites and pages, but a complete,
and immediately accesible application suite.

9 RESOURCES

• Monarch is available for download at http:
//halfbyte.io/projects.

• The source code can be accessed at https:
//github.com/danrwhitcomb/Monarch.

• Documentation is available at
https://github.com/danrwhitcomb/
Monarch/wiki/Menu-API



REFERENCES 11

REFERENCES

[1] Google. (2016). Google photos, [Online].
Available: https : / / photos . google . com
(visited on 04/22/2016).

[2] Trello. (2016). Trello, [Online]. Avail-
able: https : / / trello . com (visited on
04/22/2016).

[3] Wolfram. (2016). Wolframalpha, [Online].
Available: https : / / wolframalpha . com
(visited on 04/22/2016).

[4] Buzzfeed. (2016). Buzzfeed, [Online].
Available: https://buzzfeed.com (visited
on 04/22/2016).

[5] T. N. Y. T. Company. (2016). The new
york times, [Online]. Available: https://
nytimes.com (visited on 04/22/2016).

[6] Facebook. (2016). Facebook, [Online].
Available: https://facebook.com (visited
on 04/22/2016).

[7] Google. (2016). Angularjs, [Online].
Available: https : / / angularjs . org/
(visited on 04/22/2016).

[8] Facebook. (2016). Reactjs, [Online]. Avail-
able: https://facebook.github.io/react/
(visited on 04/22/2016).

[9] A. van Kesteren and T. Çelik, Eds.,
Fullscreen api, Apr. 18, 2014.

[10] I. Hickson, Ed., Html5 web messaging,
Nov. 18, 2010.

[11] I. Hickson, Ed., The websocket api, Apr. 19,
2011.

[12] K. Group, Webgl specification, ed. by D.
Jackson, The Khronos Group, Oct. 27,
2014.

[13] Google. (2016). Chrome v8, [Online].
Available: https : / / developers . google .
com/v8/ (visited on 04/22/2016).

[14] (2016). Chromium, [Online]. Available:
https : / / www . chromium . org / Home
(visited on 04/22/2016).

[15] Cenzic, “Application vulnerability trends
report: 2014”, Tech. Rep., 2014.

[16] T. Mikkonen and A. Taivalsaari, “Apps
vs. open web: The battle of the decade”,
in Proceedings of the 2nd Workshop on Soft-
ware Engineering for Mobile Application De-
velopment, 2011, pp. 22–26.

[17] K. Henricksen and J. Indulska, “Adapt-
ing the web interface: An adaptive web
browser”, in Australian Computer Science
Communications, IEEE Computer Society,
vol. 23, 2001, pp. 21–28.

[18] S. Tenenbaum and M. Caballero. (May
2003). Contextually adaptive web
browser. US Patent App. 10/116,763,
[Online]. Available: https : / / www .
google.com/patents/US20030080995.

[19] Google. (Nov. 2014). Support for theme-
color in chrome 39 for android, [Online].
Available: https : / / developers . google .
com/web/updates/2014/11/Support-
for - theme - color - in - Chrome - 39 - for -
Android?hl=en (visited on 04/22/2016).

[20] I. Fette. (Nov. 14, 2008). Understand-
ing phishing and malware protection in
google chrome, [Online]. Available: http:
/ / blog . chromium . org / 2008 / 11 /
understanding - phishing - and - malware .
html (visited on 04/24/2016).

[21] Mozilla. (2016). How does built-in phish-
ing and malware protection work?, [On-
line]. Available: https://support.mozilla.
org/en-US/kb/how-does-phishing-and-
malware-protection-work.

[22] M. E. Team. (May 11, 2015). Microsoft
edge: Building a safer browser, [Online].
Available: https://blogs.windows.com/
msedgedev / 2015 / 05 / 11 / microsoft -
edge-building-a-safer-browser/.

[23] (Apr. 14, 2014). Xul, [Online]. Available:
https://developer.mozilla.org/en-US/
docs / Mozilla / Tech / XUL (visited on
04/22/2016).

[24] Mozilla. (Nov. 21, 2013). Using re-
mote xul, [Online]. Available: https :
/ / developer . mozilla . org / en -
US / docs / Mozilla / Tech / XUL /
Using%5C Remove%5C XUL (visited on
04/24/2016).

[25] (Apr. 14, 2014). Prism, [Online]. Avail-
able: https : / / developer . mozilla . org /
en - US / docs / Archive / Mozilla / Prism
(visited on 04/21/2016).

[26] ——, (Nov. 24, 2015). Xulrunner, [Online].
Available: https : / / developer . mozilla .



12

org / en - US / docs / Archive / Mozilla /
XULRunner.

[27] (May 26, 2014). Chromeless, [Online].
Available: https : / / developer . mozilla .
org / en - US / docs / Archive / Mozilla /
Chromeless (visited on 04/21/2016).

[28] M. Mahemoff. (Sep. 2010). Extensions
and apps in the chrome web store -
google chrome, [Online]. Available: https:
/ / developer . chrome . com / webstore /
apps%5C vs%5C extensions (visited on
04/21/2016).

[29] (Apr. 18, 2016). Chromium embedded
framework, [Online]. Available: https://
bitbucket .org/chromiumembedded/cef
(visited on 04/21/2016).

[30] Evernote. (2016). Evernote: Evernote: The
note-taking space for your life’s work,
[Online]. Available: https : / / evernote .
com.

[31] Spotify. (2016). Spotify: Music for every-
one, [Online]. Available: https://spotify.
com.

[32] (2016). Electron, [Online]. Available: http:
/ / electron . atom . io/ (visited on
04/21/2016).

[33] A. Taivalsaari, T. Mikkonen, D. Ingalls,
and K. Palacz, “Web browser as an appli-
cation platform: The lively kernel expe-
rience”, Mountain View, CA, USA, Tech.
Rep., 2008.

[34] N. Bielova, “Survey on javascript secu-
rity policies and their enforcement mech-
anisms in a web browser”, The Journal of
Logic and Algebraic Programming, vol. 82,
no. 8, pp. 243–262, 2013, Automated Spec-
ification and Verification of Web Systems,
ISSN: 1567-8326.

[35] W. W. W. Consortium, Html5, ed. by H. et
al., Oct. 28, 2014.

[36] A. Puder, N. Tillmann, and M. Moskal,
“Exposing native device apis to web
apps”, in Proceedings of the 1st Interna-
tional Conference on Mobile Software En-
gineering and Systems, ser. MOBILESoft
2014, Hyderabad, India: ACM, 2014,
pp. 18–26, ISBN: 978-1-4503-2878-4.

[37] (Jul. 2013). Developer economics q3 2013:
State of the developer nation, [Online].

Available: http : / / www. visionmobile .
com/product/developer-economics-q3-
2013-state-of-the-developer-nation/.

[38] J. Howell, B. Parno, and J. R. Douceur,
“Embassies: Radically refactoring the
web”, in Proceedings of the USENIX
Symposium on Networked Systems Design
and Implementation (NSDI), USENIX, Apr.
2013.

[39] (2016). Blink, [Online]. Available: http://
www. chromium . org / blink (visited on
04/22/2016).


	Monarch: A Reimagined Browser for the Modern Web
	Recommended Citation

	tmp.1596484807.pdf.4eQse

