
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2016

Devising a Framework for Efficient and Accurate Matchmaking Devising a Framework for Efficient and Accurate Matchmaking

and Real-time Web Communication and Real-time Web Communication

Charles Li
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Charles, "Devising a Framework for Efficient and Accurate Matchmaking and Real-time Web
Communication" (2016). Dartmouth College Undergraduate Theses. 106.
https://digitalcommons.dartmouth.edu/senior_theses/106

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/106?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Devising a framework for efficient and accurate
matchmaking and real-time web communication

Charles Li
Department of Computer Science

Dartmouth College
Hanover, NH

charles.li.16@dartmouth.edu

Abstract—Many modern applications have a great need for
matchmaking and real-time web communication. This paper first
explores and details the specifics of original algorithms for
effective matchmaking, and then proceeds to dive into
implementations of real-time communication between different
clients across the web. Finally, it discusses how to apply the
techniques discussed in the paper in practice, and provides
samples based on the framework.

Keywords—matchmaking; real-time; web

I. INTRODUCTION (MOTIVATIONS)
A large number of modern applications (“apps”) share a

common theme: inter-user interaction. There are two large
categories of apps in particular that require such multi-user
capabilities. The first is social networking apps. This
comprises both apps designed for online dating, and also apps
designed to cultivate non-romantic relationships, such as
friendships or professional relationships. Popular examples
include Facebook, LinkedIn, and Tinder.

Matchmaking is a key component in such social apps,
given their essential need to “connect” individuals with others.
What might make an individual compatible with another
includes a variety of factors. This might include interests and
mutual friends. Real-time communication is another key
component of social apps. After making a match, individuals
have the option of initiating contact with one another. Being
able to communicate with minimal latency and traffic across
the web is essential.

The second is gaming apps. Matchmaking is a core
component of forming both teammates and opponents. Poor
matchmaking will lead to player frustration, especially if one is
repeatedly outclassed by opponents, or one’s teammates are
consistently less skilled than the player. Moreover, real-time
communication is involved in the ability of a game to support
communication between players. When a player issues a
command inside a game that results in an updated state, other
players need to be able to view this updated state as soon as
possible to ensure a seamless experience.

The purpose of this paper is to give not only an overview of
matchmaking and real-time web communication, but also to

propose and evaluate original matchmaking algorithms, and
also discuss and evaluate implementations of real-time
communication using existing web protocols.

II. PRIOR WORK AND RELEVANT TECHNOLOGIES

A. Matchmaking: No Stable Matching Exists
Consider a pool of users. What does matchmaking entail? It

could be the task of finding, for each user, the best compatriot
or opponent in the pool to match with, given the user’s set of
preferences. The best match for a single individual would be
the one that he or she most prefers. However, the definition for
the best match across a group of individuals is less clear. What
happens if two individuals prefer the same candidate the most?

The stable marriage problem is a well-known “matching”
problem that explores this challenge. The assumption in this
problem is that that there are two sets of candidates, and these
two sets of candidates are disjoint. Each candidate has a
preference ordering that only involves candidates in the “other
set”; in other words, candidates not in the same set as he or she.

An important idea to touch on is that this problem is solved,
and there is an optimal solution. That is, there is an algorithm
that produces a stable matching between candidates. In order
to understand what entails a stable matching, let us first define
what an unstable match is. Let x and y be two users in a
matchmaking pool. A pair (x, y) is an unstable match if x
prefers another individual y’ over y, and y prefers another
individual x’ over x. Then, a stable matching is defined as
follows: a matching is stable if there is no such pair (x, y)
for which the match is unstable.

Gale and Shapley (1962) proved that in the stable marriage
problem, a matching always exists. However, there is an issue
when applying this problem to real-world matching problems.
The underpinning assumption that there are two disjoint sets
does not necessarily hold in general. This recognition gave rise
to a variation that attempts to find a stable matching in the
general case, known as the stable roommates problem. In
other words, the stable roommates problem does not make the
assumption of two disjoint sets.

It can be shown that a stable matching is not guaranteed to
exist in the roommate variation. The following is a simple
example of this fact. Consider a pool of four candidates {A, B,
C, D}. Each candidate has ranked all the other candidates such
that there is an ordered list of three candidates. Consider the
following example. Letters appearing earlier are preferred (that
is, A prefers B over C).

• A: (B, C, D)

• B: (C, A, D)

• C: (A, B, D)

• D: (A, B, C)

 Consider then, all the possible matches that can be made
given the pool. The possibilities are:

• (A-B), (C-D). Alternate (B-C) makes it unstable. That
is, B prefers C over A, and C prefers B over D.

• (A-C), (B-D). Alternate (A-B) makes it unstable.

• (A-D), (B-C). Alternate (A-C) makes it unstable.

 Note that for every possible combination of pairs, it is
shown to the right an alternate pairing that indicates the
matching is not stable [1].

Thus, in general matchmaking algorithms are faced with
this particularly tricky challenge: a stable matching may not
exist. The paper will discuss solutions to this challenge in depth
in Section III.

B. Real-time Web Communication: Supporting Protocols
Only in recent years has real-time communication across

the web become a relevant topic. This was largely due to the
vast improvements and technological advancements made by
modern browser and web technology. In the past, most
websites did not have need for any real-time support. Most
content was static, and dynamic content was served over other
channels (such as Flash).

 Nowadays, websites are increasingly demanding support
for dynamic content, and the recent deprecation of Flash
combined with many improvements to the Javascript language
specification has led Javascript to become the desired language
for animating content.

The popular HTTP protocol is used for allowing
communication between a client and server across the web.
HTTP is unidirectional, in that only the client can initiate a
connection with the server via HTTP request. The server then
provides an HTTP response. However, the server cannot in
turn initiate an HTTP request to the client.

 Then came the release of the WebSocket standard in 2011,
which aimed to provide “full-duplex communication” across a
TCP connection (RFC 6455) furthered this goal. This new
WebSocket technology would allow a continuous connection
for communication between a client and a server, with both
parties able to initiate a message to one another on demand.

With two standards to choose from, this paper explores the
relative speed (latency) between these two standards, and also
the tradeoff in complexity of implementation in Section IV.

III. MATCHMAKING ALGORITHMS: ASSUMPTIONS AND
OBJECTIVES

It was demonstrated in Section II that there does not
necessarily exist a stable matching in any given pool of
candidates for matchmaking. It follows then, that there is no
such algorithm that can return a “correct answer” to the
matchmaking problem.

One solution is to not use “stable matching” as a
correctness criteria. Rather, we define a different matchmaking
quality measure, and then design algorithms to maximize that
measure of quality.

The natural question that arises then, is what shall be the
quality measure for matchmaking? In order to answer this
question, we begin with a simplification by making a strong
assumption.

One fundamental assumption that will apply for the
remainder of this paper is that each match is made in a vacuum.
That is, when attempting to match a specific candidate, we do
not consider how a previous candidate was matched or how
future candidates will be matched as a result of our decision.
There are two justifications for this assumption:

• There is no guaranteed solution for the stable matching
problem. Thus, attempting to optimize for the entire
pool of candidates is not guaranteed to produce the
global maximum. Moreover, this is an important
assumption to make because it makes it possible to
evaluate the algorithms described later against a
“correct answer”. We evaluate each match individually,
as opposed to the matching of the pool as a whole.

• The pool of matches is constantly in flux. Whenever a
new player joins, all the other previous matches need to
be re-evaluated when optimizing over the entire pool of
candidates.

This leads to the addressing of three related questions. First,
what constitutes a “good match”? The author of this paper
claims that the best matches, in the context of social
networking, are ones that reflect compatibility. That is, the
users enjoy interacting with one another. The justification rests
on the assumption that users who engage in social networking
want to enjoy interacting with others, whether that is in a
friendly, professional, or romantic context.

The best matches in the context of a competitive game are
ones that reflect equal skill. That is, the users are as close in
skill level as possible. The justification rests on the assumption
that players have more fun when they are equally matched in
skill. A player who is greatly outclassed by his or her opponent
will not enjoy playing the game. Similarly, the opposite
situation – that the player is much more skilled than the
opponent – is assumed to produce less enjoyment.

Second, we consider how many metrics to use when
forming a matchmaking quality measure. That is, will the

quality measure depend on a single factor or a number of
factors? This is effectively determining the dimensionality of
the inputs to the quality measure.

A. Single-variable case
This is the simpler case in which the quality measure

depends on only a single factor. For example, this factor might
be a measure of skill for each player. Then the solution is to
simply minimize the difference in win-loss ratios to find the
best match.

B. Multi-variable case
When considering more than a single factor or feature (a

feature being a metric affecting the matchmaking quality),
devising an algorithm for finding the best match becomes
significantly more complex. This section will proceed to
discuss two ways of handling such a situation: 1. Using a
heuristic algorithm to minimize across multiple features, and 2.
Implementing a quality measure function that maps a vector
input into a scalar output of quality.

Third, arises the question of what are valid features to the
matchmaking algorithm? This depends on the application of
the algorithms, and tailoring of inputs to use cases and
audiences. Indeed, the evaluation of matchmaking quality from
tailored inputs vs. matchmaking quality of default inputs is
encouraged. However, for the purposes of this paper, the author
will assume that the factors affecting matchmaking quality are
given (in a real-world context, this might be an analytics
department). The algorithms presented are tasked with learning
the relative importance of these weightings between features.

With these goals, assumptions, and considerations in mind,
the author presents the proposed algorithms in the following
section.

IV. MATCHMAKING ALGORITHMS: VARATIONS
This section characterizes matchmaking algorithms in the

specific context of games, though it can be easily generalized
to other fields. First, we should consider metrics for comparing
two players. One obvious metric is skill levels – how can we
evaluate skill between two players? A common metric is ELO,
which is most famously known for being used in chess. ELO is
a weighted win loss ratio, where the player gains or loses ELO
rating based on the difference between the player’s current
ELO and the opponent’s current ELO.

The details of the rating system are largely left open to
implementation depending on the use case. ELO is only used
as one example of a potential rating system to measure the
“skill level” between two players. Some games may find other
metrics more useful for evaluating skill. As long as every
player is evaluated by the same metric, the rating system has
fulfilled its purpose – its main use is as a metric is to
differentiate between players. What follows is a simple
algorithm that evaluates along this single metric (we consider
later more complex modeling using multiple metrics, or
“features” as we will call them).

A. Algorithm 1a: Exhaustive Search with respect to a Single
Variable

 The algorithm is a simple procedure that assumes a
dimensionality of the input is one (that is, the input for the
quality measure is a single variable), and finds the best match
based on it.

Consider the following description of the algorithm:

For each candidate, find in the remaining pool of candidates
the opposing candidate with the lowest difference in ELO.
Match these two candidates. Remove both candidates from the
pool.

Time: O(n2)

 Note that this algorithm comes with it a set of problems.
First, because it runs in O(n2) time, the problem is not
particularly efficient. Popular modern applications can often
have over a million players “online” at any given time, and as a
result, given a pool of a million players, this algorithm would
run for (106)*(106) = 1012 iterations!

Second, the matchmaking pool is changing with time. Thus,
during an exhaustive search, a new player might join the
existing pool. Thus, the best match at the start of the iteration
might not be the best match at the end of a single iteration.

B. Algorithm 1b: Heuristic Search with Threshold with
respect to a Single Variable
The two problems of Algorithm 1a (exhaustive search) can

be easily accounted with a heuristic modification. The issue
that the algorithm does not scale can be fixed by having an
ELO difference threshold. Instead of searching for the best
ELO difference, we simply take the first one that meets a
threshold. If the spread between ELOs inside the current pool
is large, we can apply a scheme where we increase the
threshold every d players searched, where d is a constant. We
can further specify that after a certain number of players
searched (for example 100). Then, our runtime is reduced to
O(cn) = O(n), where c is a constant.

This heuristic also resolves the second issue with
exhaustive search: the matchmaking pool is constantly
changing. Specifically, because the pool is changing, and there
is no guarantee of a stable matching, it follows that a heuristic
approach with faster runtime would not result in significant
losses.

C. Algorithm 2a: Heuristic Search with respect to a Vector
This is a simple, naïve algorithm for finding the best match

with respect to multiple variables. It begins by ranking the
features from most important to least important. This can be
done either randomly (if there is no information on relative
importance of features) or based on prior knowledge.

Then, if there are k features, this algorithm will first find
the k best candidates along the most important features. It
proceeds to use each of the remaining features to prune. For
example, it examines all k candidates by the 2nd feature.

Logically, this algorithm removes the worst of a certain
feature in the entire candidate pool first. Among these worst for

a certain feature, there may be candidates that are the best for
another feature. Thus, by ranking the relative importance of the
features, we are trying to find as optimal an order as possible
for determining the opponent.

Some features we may want to maximize, other features we
may want to minimize. Overall, our algorithm becomes a series
of maximizations and minimizations along each feature. There
is no guarantee of correctness from this algorithm, but the
premise is that it works well for the right examples (we will
demonstrate later in comparisons with other algorithms where
this algorithm does not work well).

This algorithm takes O(n + k) = O(n) if k << n (the number
of features much smaller than pool of candidates, which is
generally the case).

What now follows is a discussion of the interpretation of
finding a “best quality measure”, given a feature vector of
inputs. Concretely, how can we translate a vector of features
into a scalar-valued quality measure?

The realm of machine learning provides potential aid in this
area. Essentially, the goal is to learn a function that maps a
vector-valued input into a scalar output, where the scalar output
is the measure of quality.

Recall earlier the two assumptions that the best match in
social networking is when there is compatibility, and the best
match in games is when there is equal skill between opposing
players. It follows directly, then, that the measure of match
quality can be framed in the lens of maximizing the probability
of compatibility, or maximizing the probability of equal skill.

D. Algorithm 2b: Logistic Regression for Binary
Classification
The logistic regression algorithm in the binary case learns a

function f that takes as input a vector of dimensionality n, and
maps it to a label 1 or 0. It does this by calculating the
probability of 1 (or 0), and then makes a decision based on
which probability is more likely (the probabilities sum to 1).
The mapping process works as follows: after determining a
weighting for each feature (forming a weight vector), the
algorithm proceeds to take the dot product of the weight
vector and feature vector. To ensure that the output falls
between 0 and 1, the dot product is then passed through a
sigmoid function.

As Figure 1 illustrates, the larger the value of the dot
product (the “more positive” it is), the more certain the
algorithm becomes that this is a good match. On the contrary,
the lower the value of the dot product (the “more negative” it

is), the more certain the algorithm becomes that this is a bad
match. Dot product values close to 0 indicate general
uncertainty (where exactly indicates exactly 0.5 probability
either way).

 Why is this important for matchmaking? In other
applications our focus may not be on the probabilities, but
rather the predicted value. Why should we distinguish between
0.6 probability of a good match vs. 0.8 probability of a good
match? These probabilities are useful for matchmaking because
it allows us to evaluate candidate opponents relative to one
another. Even if the regression algorithm predicts a good match
for both candidates, one may be predicted with more
confidence than the other. Naturally, the matchmaking
algorithm picks the pairing of higher confidence.

Procedure: Train the logistic regression function on data
from the user’s history of “compatible” peers, and learn a
function that calculates the probability of compatibility, given a
new, unseen peer.

The function learned takes as input the feature vector of this
new, “potential match”, and outputs the probability of
compatibility. Thus, given a pool of candidates, we can run
each candidate through this learned function, and pick the
candidate that maximizes the probability of compatibility.

Note that logistic regression requires a “training set” of
data. A training set can be obtained from recording historical
matches between players: for each match, store in a database
the differences along the measured metrics between players,
and also whether it was a successful match.

For example, Player A and Player engage in a game, where
their ELO difference is 100 and their latency difference is 50.
The match turns out to be a satisfactory pairing, and it is now
stored in the database with these properties (100, 50, 1), where
the final entry of “1” indicates this was a satisfactory pairing.

Figure 2 illustrates the process of training a logistic
regression model based on a training set of data. In this case,
logistic regression models the successful pairings as blue dots,
and unsuccessful pairings as red dots. The algorithm essentially
learns a “decision boundary” on which to classify a pairing as
successful or not. Furthermore, the algorithm classifies points
with different confidence. Clearly, when the algorithm is told
to classify a point close to the line it is less certain in its
prediction (center of picture), then when it is told to classify a
point far away from the line (bottom-left or upper-right).

Logistic regression communicates this certainty, or

Figure 2: Training logistic regression
(Source: Stack Exchange)

Figure 1: Sigmoid function.
(Source: Wikimedia Commons)

“confidence” through a probability value. Specifically, it
estimates the probability (0 <= p <= 1) that a point is classified
as a 1. This is very useful in context of matchmaking, because
we can use the probability value to distinguish between
pairings that are “somewhat likely” to produce a good match
and pairings that are “very likely” to produce a good match.
For a more thorough treatment of logistic regression, please
refer to [2].

In Section V we compare the quality of matches made via
Logistic regression against the quality of matches made via
Multi-variable Heuristic Search.

V. RESULTS OF MATCHMAKING EXPERIMENTS AND
DISCUSSION

A. Acquiring a data set
One key challenge was the lack of available, real-world

matchmaking data. The most popular applications that conduct
matchmaking often use proprietary algorithms, and their
gathered data is proprietary.

Given this challenge, the author of this paper generated a
dataset for the purposes of running experiments using the
following procedure:

• Specify a true weighting of various features with
regards to the match quality.

• Generate a dataset using these true weightings, and then
purposely mislabel a certain percentage of the dataset to
imitate noise in the real world.

• Once the data is purposely mislabeled, use this
generated dataset to train the prediction-based
algorithms. Note that the heuristic and exhaustive
algorithms do not require historical data.

• Create a test set, and assign the “correct” match based
on the true weightings of the features. Essentially the
true weightings can provide the best match for any
example. Then run each algorithm on it, and measure
the error rate.

B. Evaluating Algorithms
 The subsequent procedure is then performed to evaluate
each algorithm relative to one another:

• Assume: Recall the fundamental assumption made
earlier that matches are evaluated based on each
individual match, as opposed to the entire pool of
matches. Then, all algorithms pick a match
independently of future matches. In other words, Person
B is matched to Person A without consideration for the
future matchmaking pool.

• Run each algorithm, and compare each algorithm’s
determination of the best match with the “true” best
match.

• The observed dataset was generated via hidden
weightings, thus there is a “correct answer” to evaluate
against.

 In this examples there are two features: ELO difference
and latency difference. As before, the implementation details
of these metrics are left largely open. Specifically, they depend
on the application of the matchmaking, and are tailored to the
use-case. A social networking app, for example, might use
objective measures such as “number of mutual friends” and
“percentage of similar interests” as features instead.

 For the sake of completeness, however, here is an
interpretation of the intuition behind these two metrics in the
current example. Given ELO measures skill, a lower ELO
difference indicates that two players are closer in skill level.
Similarly, the latency difference conveys the relative delay
between the two players: players who are able to communicate
more quickly with the server have an obvious advantage. Thus,
we want to minimize across both features.

C. Results (Comparison with Heuristic)

 Figure 3 demonstrates the results obtained from running
logistic regression (yellow) and running the multivariable
heuristic algorithm (bold). Note that the “correct answer” is
also in bold. The heuristic algorithm selected the correct
answer of (40, -26).

 Here is a high-level rundown of how the algorithms arrived
at their results:

• Logistic regression, based on the weightings it learned
from the training set, evaluated the “correct match”
with 0.84 probability, and thus picked another match
with higher probability (0.90) over it.

• Multivariable heuristic search first finds the best k
examples along the first feature. In this case k = 2,
given there are two features, and ELO difference is
the more important feature (assume this is given).
Thus it finds the two candidates with the lowest ELO
difference. Then, (40, -26) and (10, -65) remain. It
optimizes again, this time minimizing across the
second feature: latency difference. -26 is less than -65,
thus it picks (40, -26) as the best match.

 Clearly, the heuristic algorithm matched correctly with the
right candidate, whereas the logistic regression did not. In this
particular use case, multivariable heuristic search is the winner.
However all is not loss for the more complex logistic

Figure 3: Matches (logistic regression vs. heuristic)

regression model. It is easy to demonstrate cases where
heuristic search might fail.

• Again using ELO difference and latency difference,
consider a new set of candidates: (1, 10000), (30, 30),
(10, 1000).

• Suppose the weightings are approximately 70%
importance to ELO and 30% to latency. Logistic
regression obviously picks (30, 30).

• Multivariable heuristic search optimizes across first k
= 2 examples. It picks (1, 10000) and (10, 1000). It
then picks the lower latency difference in the two
remaining examples, which is (10, 1000). Considering
we want to minimize across both features, clearly the
heuristic algorithm was the wrong choice.

Admittedly, the above example is contrived. Nonetheless, it
is indicative of a flawed design with the multivariable heuristic
algorithm. The problem is that the heuristic algorithm
optimizes each feature independently of all the others,
whereas logistic regression optimizes across all features at
the same time. Logistic regression also has the added benefit
of learning the exact weightings for each parameter. For
example, how important is the ELO difference relative to
latency difference? The heuristic algorithm ranks them by
importance, but only encodes that one is better than the other
(without describing how much better).

D. Results (Confidence of Correct Answer)
The following table presents the results of running logistic

regression matchmaking run on a dataset of ten different users
during a live running of the app. It presents both the correct
answer, based on underlying true weightings during
generation of the data, and also the weighted guess.

Table 1: Real-time “live” matches made via logistic
regression, and measure of correctness (“gap”)

Logistic match “Correct” match Gap
(770, 101) ó (970, 203)
(620, 270) ó (920, 200)
(850, 230) ó (850, 218)
(920, 200) ó (810, 119)
(540, 249) ó (710, 106)

(770, 101) ó (810, 119)
(620, 270) ó (550, 257)
(850, 230) ó (850, 218)
(920, 200) ó (970, 203)
(540, 249) ó (710, 106)

0.165
0.234
0.000
0.063
0.000

ó denotes match

The “Gap” column is the probability gap between the
logistic match and correct match. Essentially, the logistic
regression algorithm evaluated the probability of both potential
pairs, and the gap is how much “better” the logistic algorithm
found the actual match (the match it chose to make) than the
correct match (according to the true weightings). It is a useful
indicator of how much logistic regression leaned towards
making a certain match over the correct match.

Specifically in the first example logistic regression had a
probability gap of 0.165. This means that logistic regression
was approximately 16.5% more certain of the “logistic match”
than the “correct match”.

What leads to these errors? One important fact to consider
is that one wrong mismatch can lead to propagating
mismatches. Because two candidates are taken out of the pool,
future matches are certainly affected.

Recall the earlier assumption that matches are made in a
vacuum, given there is no guarantee of a stable matching. If our
algorithm was given the true weightings, we could match
perfectly. However, because logistic regression guesses the
true weightings, and makes matches based on the best guess.
The algorithm is imperfect.

How can we interpret these errors meaningfully? We can
observe that the confidence gaps are significantly less than that
of random guessing. First, note that 2 out of 5 matches were
made correctly (the gap is 0). Second, the matches that were
wrong had relatively low gaps. The highest was 0.234. In a
random matching scenario, we would expect gaps consistently
around 0.25 (given that 0.5 is the probability score of complete
uncertainty).

E. Tradeoffs Between Heuristic and Learning Approach
What then are the tradeoffs of using the logistic regression

model? The first is the historical data prerequisite. Logistic
regression requires a training set with a reasonably large
number of examples to train and construct a model. If such data
is not available, then this is not an option.

The second is overconfident predictions. An interesting
anomaly that arose during the evaluation of algorithms was
astoundingly high confidence of predictions by the logistic
regression algorithm.

Consider the training set Figure 4, generated by the author.
There is a clear line separating the positive and negative
training examples (the dots that predict a good match and the
dots that predict a bad match). Thus, the trained model,
represented as the decision boundary (the formal term for the
separating line), can predict every single dot in the dataset
correctly.

Figure 4: Training on noiseless dataset

This leads to overconfident predictions on the test set.
Specifically, almost all predictions were made with probability
extremely close to 1 for good matches, and probability close to
0 for bad matches. Figure 5 graphs the predicted values.
Observe again the boundary line that perfectly separates the
two classes of examples.

The source of this anomaly lies in how the weightings are
calculated (or “trained”). Specifically, the weight vector
norm tends towards infinity in the separable case. In other
words, the weightings for each feature will be set to
enormously high values. This problem occurs because of the
method through which the logistic regression algorithm is
trained. The weight vectors are optimized via an iterative
gradient ascent algorithm. The objective is to maximize the
likelihood of the “parameters” (that is, the weights), given the
observed data. In the separable case, no examples are
misclassified, so there are no penalties for higher weight
values. As a result, the algorithm will arbitrarily scale the
weight values to increase the likelihood, and they will tend
towards infinity.

A key insight from this anomaly was that the initial
generated dataset contained a problem. Specifically, the initial
dataset generated by the author did not contain noise
(misclassified examples). Thus, it is relatively easy to see why
the data was linearly separable, and resulted in this problem. In
real-world datasets containing random noise, a linear
separation line that classifies every example correctly is less
likely. As a brief digression, when there is a dataset that
exhibits linear separability, it can be resolved by introducing
regularization [3].

Realizing the flaw, the author of this paper introduced
random noise to the dataset, which arguably increased the
likeness of the synthetic data to real data. The results presented
earlier Section C were from training on synthetic data with
noise.

Figure 6 graphically depicts the generated dataset, with
added noise (purposely misclassified examples). Note the lack
of a separating line – specifically no linear decision boundary
can be drawn that perfectly separates all examples.

VI. ALTERNATIVE LEARNING ALGORITHMS
Logistic regression certainly is not the only algorithm for

learning weightings given a set of inputs. Logistic regression
generally assumes a real-valued feature vector as input (though
it is possible to supply discrete-valued inputs). However, there
are algorithms better suited for the discrete case. Specifically,
Naïve Bayes is an algorithm that takes in a vector of discrete-
valued inputs (every value in the vector is drawn from a finite
set of classes (e.g. {0, 1}), which might apply better in certain
use cases. For example, consider a matchmaking algorithm for
determining compatibility between love interests. Pairing two
people might be based on a set of answers to yes or no
questions, e.g. “Are you a smoker? Do you enjoy swimming?”
The answers to these questions can be encoded as a discrete-
valued (binary, in this case) feature vector, rather than real-
valued.

Naïve Bayes, similar to logistic regression, outputs the
probability that there will be compatibility given these binary
vectors. The means through which it calculates this probability
is quite different however.

Moreover, there are other algorithms that take as input a
feature vector of real-values and output a classification label (0
or 1 in the binary case). These algorithms might involve
techniques to force the separability of two classes (e.g. the blue
and red points) by mapping to a higher dimensional space, or
by drawing a nonlinear decision boundary (a curved line
separating the two colors of dots). The literature on learning
algorithms is extensive, and the field is constantly expanding.

VII. REAL-TIME WEB COMMUNICATION: MINIMIZING LATENCY
AND TRAFFIC

This paper will now shift and discuss the other topic: real-
time web communication. The main goal of this section is to
discuss how to minimize latency between clients that wish to
speak with one another across the web. Specifically, it will
discuss two ways to implement real-time web communication,
and their tradeoffs.

This paper does not explore data integrity across a
communication channel. In fact, the implementations presented

Figure 6: Dataset with noise Figure 5: Testset predictions

by this paper are based on existing protocols, in which data
reliability is abstracted.

A. Polling with HTTP
The key limitation of HTTP is that the client must be the

one to initiate the request-response cycle with the server. The
server cannot send a request to the client. Thus, for one client
to receive updates about another client’s action, it needs to first
make a request for that data from the server.

The first implementation of real-time between two clients
uses polling. Specifically, it uses the HTTP protocol to
simulate communication between two clients by polling a
server. The following description of the implementation
assumes that two clients are playing a game together, but it can
be easily generalized to other applications that use real-time
(such as chat). The scheme works as follows:

• Client A and Client B are matched into a game.

• Client A makes a move by sending an HTTP request to
the Server.

• The Server receives the request, and generates an HTTP
response. If Client A’s move was valid, the Server
responds with an updated move to Client A.

• The Server expects an update request from Client B.
However, it cannot tell Client B directly, because the
interaction must begin client-to-server.

• Thus, Client B polls in a loop, so that every x seconds,
it makes an updated request from the server. Client B
can also ask for an update request before every move –
that is, if it wants to make a move, it first makes sure it
has the most updated state of the game before moving.

B. Bidirectional Communication with WebSocket
The WebSocket protocol, unlike HTTP, allows initiation of

communication between both the Client and Server. Moreover,
the connection is maintained as open, whereas in HTTP there is
the overhead of starting a connection on each request.

The following implements the same game described earlier
using WebSocket:

• Client A and Client B are matched into a game.

• Client A makes a move by sending a message via
WebSocket to the Server.

• The Server receives the request, and then emits an event
to all players in a game. In other words, it initiates a
message to Client B to let it know that Client A made a
move.

• Client B then can respond appropriately to the Server,
on receiving this update.

Client B no longer needs to poll in a loop to get an update
on A’s latest move (nor vice versa). Instead, it receives updates
directly from the server, and gets the new data as soon as it’s
available.

VIII. RESULTS OF REAL-TIME COMMUNICATION EXPERIMENTS
AND DISCUSSION

A. Methodology for Comparing HTTP and WebSocket
HTTP and WebSocket were compared by evaluating the

length of time it would take for a message to reach the server
from the client. In HTTP, this was done by making a POST
request, in which the message was stored in the body of the
request. In WebSocket, this was done by emitting a socket
event that directly sent a message to the server via an open
connection.

• In order to measure the elapsed time from the client’s
sending and server’s receipt, the only data stored
inside the body would be the current time. In
Javascript, this can accessed through Date.now(),
which gets the current epoch time in milliseconds.

• Then the server, upon received the message, would
call Date.now() and subtract from it the time value
stored in the body of the message. The resulting value
is the difference in milliseconds between the send and
receipt of the message. Measuring across three trials,
the values are then presented as the measured latency.

B. Results from Comparison
It seems relatively intuitive that the WebSocket data would

present better results for a real-time use case. Yet the results
from Figure 7 above demonstrate that this was not the case. As
the table below clearly demonstrates, the latency of both
WebSocket and HTTP were approximately the same.

C. Tradeoff: WebSocket vs HTTP
Though Figure 7 illustrates that the results between

WebSocket and HTTP are similar, WebSocket is still superior
a number of ways. First, there is benefit in allowing the server
to initiate connections with the client. To quantify this, the
number of messages can be used as a measure of load. For
example, a game state update using the HTTP scheme requires
two messages: one from client to server, and one from server to
client. On the other hand, a game state update using the
WebSocket scheme only requires one message: server to client.

Based on the first trial, a one-way connection takes 50
milliseconds in the HTTP case, and 61 ms in the WebSocket
case. However, because a single update on the status of other
clients might require multiple messages in the HTTP case, but
only a single round of communicate in the WebSocket case,
WebSocket has the advantage with respect to total latency.

Figure 7: Latency measures in HTTP vs Websocket

Figure 8 emphasizes this with a diagram that shows where
the advantage of WebSocket over HTTP lies [4].

IX. FORMING A FRAMEWORK

A. Framework and Sample Apps
Specific implementations of the matchmaking algorithms,

and the real-time web application are provided on GitHub.

A developer using the framework has the option of tailoring
matchmaking algorithms to their own preference. For example,
if developers do not have historical data to train a logistic
regression model, they should configure the framework to use
the heuristic algorithm.

Finally there are samples provided by the author, and
furthermore, an empty “framework”, that developers can clone
and proceed to fill in with their code that has the core of
matchmaking algorithms built in (which the developer can
tailor for the specific app they envision).

Figure 9 and 10 are two illustrations of a sample tic-tac-toe
app in action.

X. SUPPORTING TECHNOLOGIES AND IMPLEMENTATION IN
PRACTICE

This paper has so far discussed both matchmaking
algorithms and real-time communication, and demonstrated the
performance and tradeoffs of various implementations of each.
These pieces effectively form a framework for building a
modern web application with accurate and efficient
matchmaking and real-time web communication. As a final
point of discussion, it is worth mentioning the technological
toolkits that enable this framework to work.

A. Implementing Matchmaking in Practice
Algorithms 1 and 2 (exhaustive and heuristic algorithms)

are relatively easy to implement. Indeed, it amounts to finding
the minimum, or checking if a value falls below a certain
threshold.

The learning algorithms can be implemented using a
standard machine learning library. Specifically, the author used
scikit-learn (Python machine learning library) to implement a
logistic regression based classifier that also outputs the
confidence (probability) of predictions.

B. Implementing Real-time in Practice
HTTP web applications are quite popular, and there are a

large number of web frameworks written across many
programming languages for implementing a web server.
Particularly popular is Node.js, which is a framework that
processes client requests asynchronously [5].

In addition, the growing popularity of real-time applications
has led to utilities that specifically implement WebSocket.
Specifically, there is socket.io and Django Channels as two
utilities for implementing WebSocket, written in Javascript and
Python respectively [6].

Figure 8: HTTP vs Websocket Diagram

Figure 10: After a successful match in a client app Figure 9: Matchmaking in progress in a sample app built with
the framework

C. Client-side Technology Conducive to Real-Time
Web applications with real-time communication support

most likely demand rapid updates to webpages, and fast
processing of animations. The standard model of editing the
DOM is slow and expensive for browser processing.

Modern client-side frameworks can alleviate the issue. In
particular, a new rendering engine known as React, provided
by Facebook, is specifically designed to allow for fast updates
to webpages.

XI. ACKNOWLEDGEMENTS
I would like to thank Sean Smith and Lorie Loeb for being

a part of my thesis committee and offering feedback on my
thesis.

Moreover, I would like to thank my advisor Xia Zhou for
providing guidance throughout these past two terms. This has
been a tough and challenging, but fulfilling project.

REFERENCES

[1] Irving, Robert. “An Efficient Algorithm for the Stable Roommates
Problem.” Journal of Algorithms, 6: 577-595.

[2] Bishop, Christopher. Pattern Recognition and Machine Learning. New
York: Springer, 2006. Section 4.3.2.

[3] Bishop, Pattern Recognition and Machine Learning. Section 3.1.4.
[4] Chen, Eric. “Load Balancing WebSockets.” Technical Article: F5

Networks.
[5] Node.js Foundation. https://nodejs.org/en/.
[6] Socket.IO. http://socket.io/.

	Devising a Framework for Efficient and Accurate Matchmaking and Real-time Web Communication
	Recommended Citation

	Microsoft Word - thesis_final.doc

