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Abstract—Many modern applications have a great need for 
matchmaking and real-time web communication. This paper first 
explores and details the specifics of original algorithms for 
effective matchmaking, and then proceeds to dive into 
implementations of real-time communication between different 
clients across the web. Finally, it discusses how to apply the 
techniques discussed in the paper in practice, and provides 
samples based on the framework. 
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I.  INTRODUCTION (MOTIVATIONS) 
A large number of modern applications (“apps”) share a 

common theme: inter-user interaction. There are two large 
categories of apps in particular that require such multi-user 
capabilities. The first is social networking apps. This 
comprises both apps designed for online dating, and also apps 
designed to cultivate non-romantic relationships, such as 
friendships or professional relationships. Popular examples 
include Facebook, LinkedIn, and Tinder. 

Matchmaking is a key component in such social apps, 
given their essential need to “connect” individuals with others. 
What might make an individual compatible with another 
includes a variety of factors. This might include interests and 
mutual friends. Real-time communication is another key 
component of social apps. After making a match, individuals 
have the option of initiating contact with one another. Being 
able to communicate with minimal latency and traffic across 
the web is essential.  

The second is gaming apps. Matchmaking is a core 
component of forming both teammates and opponents. Poor 
matchmaking will lead to player frustration, especially if one is 
repeatedly outclassed by opponents, or one’s teammates are 
consistently less skilled than the player. Moreover, real-time 
communication is involved in the ability of a game to support 
communication between players. When a player issues a 
command inside a game that results in an updated state, other 
players need to be able to view this updated state as soon as 
possible to ensure a seamless experience. 

The purpose of this paper is to give not only an overview of 
matchmaking and real-time web communication, but also to 

propose and evaluate original matchmaking algorithms, and 
also discuss and evaluate implementations of real-time 
communication using existing web protocols.  

II. PRIOR WORK AND RELEVANT TECHNOLOGIES 

A. Matchmaking: No Stable Matching Exists 
Consider a pool of users. What does matchmaking entail? It 

could be the task of finding, for each user, the best compatriot 
or opponent in the pool to match with, given the user’s set of 
preferences. The best match for a single individual would be 
the one that he or she most prefers. However, the definition for 
the best match across a group of individuals is less clear. What 
happens if two individuals prefer the same candidate the most?  

The stable marriage problem is a well-known “matching” 
problem that explores this challenge. The assumption in this 
problem is that that there are two sets of candidates, and these 
two sets of candidates are disjoint. Each candidate has a 
preference ordering that only involves candidates in the “other 
set”; in other words, candidates not in the same set as he or she. 

An important idea to touch on is that this problem is solved, 
and there is an optimal solution. That is, there is an algorithm 
that produces a stable matching between candidates. In order 
to understand what entails a stable matching, let us first define 
what an unstable match is. Let x and y be two users in a 
matchmaking pool. A pair (x, y) is an unstable match if x 
prefers another individual y’ over y, and y prefers another 
individual x’ over x. Then, a stable matching is defined as 
follows: a matching is stable if there is no such pair (x, y) 
for which the match is unstable.  

Gale and Shapley (1962) proved that in the stable marriage 
problem, a matching always exists. However, there is an issue 
when applying this problem to real-world matching problems. 
The underpinning assumption that there are two disjoint sets 
does not necessarily hold in general. This recognition gave rise 
to a variation that attempts to find a stable matching in the 
general case, known as the stable roommates problem. In 
other words, the stable roommates problem does not make the 
assumption of two disjoint sets. 



It can be shown that a stable matching is not guaranteed to 
exist in the roommate variation. The following is a simple 
example of this fact. Consider a pool of four candidates {A, B, 
C, D}. Each candidate has ranked all the other candidates such 
that there is an ordered list of three candidates. Consider the 
following example. Letters appearing earlier are preferred (that 
is, A prefers B over C). 

• A: (B, C, D) 

• B: (C, A, D) 

• C: (A, B, D) 

• D: (A, B, C) 

 Consider then, all the possible matches that can be made 
given the pool. The possibilities are: 

• (A-B), (C-D). Alternate (B-C) makes it unstable. That 
is, B prefers C over A, and C prefers B over D. 

• (A-C), (B-D). Alternate (A-B) makes it unstable. 

• (A-D), (B-C). Alternate (A-C) makes it unstable. 

 Note that for every possible combination of pairs, it is 
shown to the right an alternate pairing that indicates the 
matching is not stable [1]. 

Thus, in general matchmaking algorithms are faced with 
this particularly tricky challenge: a stable matching may not 
exist. The paper will discuss solutions to this challenge in depth 
in Section III. 

B. Real-time Web Communication: Supporting Protocols  
Only in recent years has real-time communication across 

the web become a relevant topic. This was largely due to the 
vast improvements and technological advancements made by 
modern browser and web technology. In the past, most 
websites did not have need for any real-time support. Most 
content was static, and dynamic content was served over other 
channels (such as Flash). 

 Nowadays, websites are increasingly demanding support 
for dynamic content, and the recent deprecation of Flash 
combined with many improvements to the Javascript language 
specification has led Javascript to become the desired language 
for animating content. 

The popular HTTP protocol is used for allowing 
communication between a client and server across the web. 
HTTP is unidirectional, in that only the client can initiate a 
connection with the server via HTTP request. The server then 
provides an HTTP response. However, the server cannot in 
turn initiate an HTTP request to the client.  

 Then came the release of the WebSocket standard in 2011, 
which aimed to provide “full-duplex communication” across a 
TCP connection (RFC 6455) furthered this goal. This new 
WebSocket technology would allow a continuous connection 
for communication between a client and a server, with both 
parties able to initiate a message to one another on demand.  

With two standards to choose from, this paper explores the 
relative speed (latency) between these two standards, and also 
the tradeoff in complexity of implementation in Section IV. 

III. MATCHMAKING ALGORITHMS: ASSUMPTIONS AND 
OBJECTIVES 

It was demonstrated in Section II that there does not 
necessarily exist a stable matching in any given pool of 
candidates for matchmaking. It follows then, that there is no 
such algorithm that can return a “correct answer” to the 
matchmaking problem. 

One solution is to not use “stable matching” as a 
correctness criteria. Rather, we define a different matchmaking 
quality measure, and then design algorithms to maximize that 
measure of quality. 

The natural question that arises then, is what shall be the 
quality measure for matchmaking? In order to answer this 
question, we begin with a simplification by making a strong 
assumption. 

One fundamental assumption that will apply for the 
remainder of this paper is that each match is made in a vacuum. 
That is, when attempting to match a specific candidate, we do 
not consider how a previous candidate was matched or how 
future candidates will be matched as a result of our decision. 
There are two justifications for this assumption: 

• There is no guaranteed solution for the stable matching 
problem. Thus, attempting to optimize for the entire 
pool of candidates is not guaranteed to produce the 
global maximum. Moreover, this is an important 
assumption to make because it makes it possible to 
evaluate the algorithms described later against a 
“correct answer”. We evaluate each match individually, 
as opposed to the matching of the pool as a whole. 

• The pool of matches is constantly in flux. Whenever a 
new player joins, all the other previous matches need to 
be re-evaluated when optimizing over the entire pool of 
candidates. 

This leads to the addressing of three related questions. First, 
what constitutes a “good match”? The author of this paper 
claims that the best matches, in the context of social 
networking, are ones that reflect compatibility. That is, the 
users enjoy interacting with one another. The justification rests 
on the assumption that users who engage in social networking 
want to enjoy interacting with others, whether that is in a 
friendly, professional, or romantic context.  

The best matches in the context of a competitive game are 
ones that reflect equal skill. That is, the users are as close in 
skill level as possible.  The justification rests on the assumption 
that players have more fun when they are equally matched in 
skill. A player who is greatly outclassed by his or her opponent 
will not enjoy playing the game. Similarly, the opposite 
situation – that the player is much more skilled than the 
opponent – is assumed to produce less enjoyment.  

Second, we consider how many metrics to use when 
forming a matchmaking quality measure. That is, will the 



quality measure depend on a single factor or a number of 
factors? This is effectively determining the dimensionality of 
the inputs to the quality measure. 

A. Single-variable case 
This is the simpler case in which the quality measure 

depends on only a single factor. For example, this factor might 
be a measure of skill for each player. Then the solution is to 
simply minimize the difference in win-loss ratios to find the 
best match. 

B. Multi-variable case  
When considering more than a single factor or feature (a 

feature being a metric affecting the matchmaking quality), 
devising an algorithm for finding the best match becomes 
significantly more complex. This section will proceed to 
discuss two ways of handling such a situation: 1. Using a 
heuristic algorithm to minimize across multiple features, and 2. 
Implementing a quality measure function that maps a vector 
input into a scalar output of quality. 

Third, arises the question of what are valid features to the 
matchmaking algorithm? This depends on the application of 
the algorithms, and tailoring of inputs to use cases and 
audiences. Indeed, the evaluation of matchmaking quality from 
tailored inputs vs. matchmaking quality of default inputs is 
encouraged. However, for the purposes of this paper, the author 
will assume that the factors affecting matchmaking quality are 
given (in a real-world context, this might be an analytics 
department). The algorithms presented are tasked with learning 
the relative importance of these weightings between features.  

With these goals, assumptions, and considerations in mind, 
the author presents the proposed algorithms in the following 
section. 

IV. MATCHMAKING ALGORITHMS: VARATIONS 
This section characterizes matchmaking algorithms in the 

specific context of games, though it can be easily generalized 
to other fields. First, we should consider metrics for comparing 
two players. One obvious metric is skill levels – how can we 
evaluate skill between two players? A common metric is ELO, 
which is most famously known for being used in chess. ELO is 
a weighted win loss ratio, where the player gains or loses ELO 
rating based on the difference between the player’s current 
ELO and the opponent’s current ELO. 

The details of the rating system are largely left open to  
implementation depending on the use case. ELO is only used 
as one example of a potential rating system to measure the 
“skill level” between two players. Some games may find other 
metrics more useful for evaluating skill. As long as every 
player is evaluated by the same metric, the rating system has 
fulfilled its purpose – its main use is as a metric is to 
differentiate between players. What follows is a simple 
algorithm that evaluates along this single metric (we consider 
later more complex modeling using multiple metrics, or 
“features” as we will call them). 

A. Algorithm 1a: Exhaustive Search with respect to a Single 
Variable 

 The algorithm is a simple procedure that assumes a 
dimensionality of the input is one (that is, the input for the 
quality measure is a single variable), and finds the best match 
based on it. 

Consider the following description of the algorithm: 

For each candidate, find in the remaining pool of candidates 
the opposing candidate with the lowest difference in ELO. 
Match these two candidates. Remove both candidates from the 
pool. 

Time: O(n2) 

 Note that this algorithm comes with it a set of problems. 
First, because it runs in O(n2) time, the problem is not 
particularly efficient. Popular modern applications can often 
have over a million players “online” at any given time, and as a 
result, given a pool of a million players, this algorithm would 
run for (106)*(106) = 1012 iterations!  

Second, the matchmaking pool is changing with time. Thus, 
during an exhaustive search, a new player might join the 
existing pool. Thus, the best match at the start of the iteration 
might not be the best match at the end of a single iteration. 

B. Algorithm 1b: Heuristic Search with Threshold with 
respect to a Single Variable 
The two problems of Algorithm 1a (exhaustive search) can 

be easily accounted with a heuristic modification. The issue 
that the algorithm does not scale can be fixed by having an 
ELO difference threshold. Instead of searching for the best 
ELO difference, we simply take the first one that meets a 
threshold. If the spread between ELOs inside the current pool 
is large, we can apply a scheme where we increase the 
threshold every d players searched, where d is a constant. We 
can further specify that after a certain number of players 
searched (for example 100). Then, our runtime is reduced to 
O(cn) = O(n), where c is a constant. 

This heuristic also resolves the second issue with 
exhaustive search: the matchmaking pool is constantly 
changing. Specifically, because the pool is changing, and there 
is no guarantee of a stable matching, it follows that a heuristic 
approach with faster runtime would not result in significant 
losses. 

C. Algorithm 2a: Heuristic Search with respect to a Vector 
This is a simple, naïve algorithm for finding the best match 

with respect to multiple variables. It begins by ranking the 
features from most important to least important. This can be 
done either randomly (if there is no information on relative 
importance of features) or based on prior knowledge. 

Then, if there are k features, this algorithm will first find 
the k best candidates along the most important features. It 
proceeds to use each of the remaining features to prune. For 
example, it examines all k candidates by the 2nd feature. 

Logically, this algorithm removes the worst of a certain 
feature in the entire candidate pool first. Among these worst for 



a certain feature, there may be candidates that are the best for 
another feature. Thus, by ranking the relative importance of the 
features, we are trying to find as optimal an order as possible 
for determining the opponent.  

Some features we may want to maximize, other features we 
may want to minimize. Overall, our algorithm becomes a series 
of maximizations and minimizations along each feature. There 
is no guarantee of correctness from this algorithm, but the 
premise is that it works well for the right examples (we will 
demonstrate later in comparisons with other algorithms where 
this algorithm does not work well). 

This algorithm takes O(n + k) = O(n) if k << n (the number 
of features much smaller than pool of candidates, which is 
generally the case). 

What now follows is a discussion of the interpretation of 
finding a “best quality measure”, given a feature vector of 
inputs. Concretely, how can we translate a vector of features 
into a scalar-valued quality measure? 

The realm of machine learning provides potential aid in this 
area. Essentially, the goal is to learn a function that maps a 
vector-valued input into a scalar output, where the scalar output 
is the measure of quality. 

Recall earlier the two assumptions that the best match in 
social networking is when there is compatibility, and the best 
match in games is when there is equal skill between opposing 
players. It follows directly, then, that the measure of match 
quality can be framed in the lens of maximizing the probability 
of compatibility, or maximizing the probability of equal skill.  

D. Algorithm 2b: Logistic Regression for Binary 
Classification 
The logistic regression algorithm in the binary case learns a 

function f that takes as input a vector of dimensionality n, and 
maps it to a label 1 or 0. It does this by calculating the 
probability of 1 (or 0), and then makes a decision based on 
which probability is more likely (the probabilities sum to 1). 
The mapping process works as follows: after determining a 
weighting for each feature (forming a weight vector), the 
algorithm proceeds to take the dot product of the weight 
vector and feature vector. To ensure that the output falls 
between 0 and 1, the dot product is then passed through a 
sigmoid function.  

As Figure 1 illustrates, the larger the value of the dot 
product (the “more positive” it is), the more certain the 
algorithm becomes that this is a good match. On the contrary, 
the lower the value of the dot product (the “more negative” it 

is), the more certain the algorithm becomes that this is a bad 
match. Dot product values close to 0 indicate general 
uncertainty (where exactly indicates exactly 0.5 probability 
either way).  

 Why is this important for matchmaking? In other 
applications our focus may not be on the probabilities, but 
rather the predicted value. Why should we distinguish between 
0.6 probability of a good match vs. 0.8 probability of a good 
match? These probabilities are useful for matchmaking because 
it allows us to evaluate candidate opponents relative to one 
another. Even if the regression algorithm predicts a good match 
for both candidates, one may be predicted with more 
confidence than the other. Naturally, the matchmaking 
algorithm picks the pairing of higher confidence. 

Procedure: Train the logistic regression function on data 
from the user’s history of “compatible” peers, and learn a 
function that calculates the probability of compatibility, given a 
new, unseen peer. 

The function learned takes as input the feature vector of this 
new, “potential match”, and outputs the probability of 
compatibility. Thus, given a pool of candidates, we can run 
each candidate through this learned function, and pick the 
candidate that maximizes the probability of compatibility. 

Note that logistic regression requires a “training set” of 
data. A training set can be obtained from recording historical 
matches between players: for each match, store in a database 
the differences along the measured metrics between players, 
and also whether it was a successful match. 

For example, Player A and Player engage in a game, where 
their ELO difference is 100 and their latency difference is 50. 
The match turns out to be a satisfactory pairing, and it is now 
stored in the database with these properties (100, 50, 1), where 
the final entry of “1” indicates this was a satisfactory pairing. 

Figure 2 illustrates the process of training a logistic 
regression model based on a training set of data. In this case, 
logistic regression models the successful pairings as blue dots, 
and unsuccessful pairings as red dots. The algorithm essentially 
learns a “decision boundary” on which to classify a pairing as 
successful or not. Furthermore, the algorithm classifies points 
with different confidence. Clearly, when the algorithm is told 
to classify a point close to the line it is less certain in its 
prediction (center of picture), then when it is told to classify a 
point far away from the line (bottom-left or upper-right). 

Logistic regression communicates this certainty, or 

Figure 2: Training logistic regression 
(Source: Stack Exchange)  

 

Figure 1: Sigmoid function. 
(Source: Wikimedia Commons)  



“confidence” through a probability value. Specifically, it 
estimates the probability (0 <= p <= 1) that a point is classified 
as a 1. This is very useful in context of matchmaking, because 
we can use the probability value to distinguish between 
pairings that are “somewhat likely” to produce a good match 
and pairings that are “very likely” to produce a good match. 
For a more thorough treatment of logistic regression, please 
refer to [2]. 

In Section V we compare the quality of matches made via 
Logistic regression against the quality of matches made via 
Multi-variable Heuristic Search.  

V. RESULTS OF MATCHMAKING EXPERIMENTS AND 
DISCUSSION 

A. Acquiring a data set 
One key challenge was the lack of available, real-world 

matchmaking data. The most popular applications that conduct 
matchmaking often use proprietary algorithms, and their 
gathered data is proprietary. 

Given this challenge, the author of this paper generated a 
dataset for the purposes of running experiments using the 
following procedure: 

• Specify a true weighting of various features with 
regards to the match quality. 

• Generate a dataset using these true weightings, and then 
purposely mislabel a certain percentage of the dataset to 
imitate noise in the real world. 

• Once the data is purposely mislabeled, use this 
generated dataset to train the prediction-based 
algorithms. Note that the heuristic and exhaustive 
algorithms do not require historical data. 

• Create a test set, and assign the “correct” match based 
on the true weightings of the features. Essentially the 
true weightings can provide the best match for any 
example. Then run each algorithm on it, and measure 
the error rate. 

B. Evaluating Algorithms 
 The subsequent procedure is then performed to evaluate 
each algorithm relative to one another:  

• Assume: Recall the fundamental assumption made 
earlier that matches are evaluated based on each 
individual match, as opposed to the entire pool of 
matches. Then, all algorithms pick a match 
independently of future matches. In other words, Person 
B is matched to Person A without consideration for the 
future matchmaking pool. 

• Run each algorithm, and compare each algorithm’s  
determination of the best match with the “true” best 
match. 

• The observed dataset was generated via hidden 
weightings, thus there is a “correct answer” to evaluate 
against. 

 In this examples there are two features: ELO difference 
and latency difference. As before, the implementation details 
of these metrics are left largely open. Specifically, they depend 
on the application of the matchmaking, and are tailored to the 
use-case. A social networking app, for example, might use 
objective measures such as “number of mutual friends” and 
“percentage of similar interests” as features instead. 

 For the sake of completeness, however, here is an 
interpretation of the intuition behind these two metrics in the 
current example. Given ELO measures skill, a lower ELO 
difference indicates that two players are closer in skill level. 
Similarly, the latency difference conveys the relative delay 
between the two players: players who are able to communicate 
more quickly with the server have an obvious advantage. Thus, 
we want to minimize across both features.  

C. Results (Comparison with Heuristic) 

 

 Figure 3 demonstrates the results obtained from running 
logistic regression (yellow) and running the multivariable 
heuristic algorithm (bold). Note that the “correct answer” is 
also in bold. The heuristic algorithm selected the correct 
answer of (40, -26). 

 Here is a high-level rundown of how the algorithms arrived 
at their results: 

• Logistic regression, based on the weightings it learned 
from the training set, evaluated the “correct match” 
with 0.84 probability, and thus picked another match 
with higher probability (0.90) over it. 

• Multivariable heuristic search first finds the best k 
examples along the first feature. In this case k = 2, 
given there are two features, and ELO difference is 
the more important feature (assume this is given). 
Thus it finds the two candidates with the lowest ELO 
difference. Then, (40, -26) and (10, -65) remain. It 
optimizes again, this time minimizing across the 
second feature: latency difference. -26 is less than -65, 
thus it picks (40, -26) as the best match. 

 Clearly, the heuristic algorithm matched correctly with the 
right candidate, whereas the logistic regression did not. In this 
particular use case, multivariable heuristic search is the winner. 
However all is not loss for the more complex logistic 

Figure 3: Matches (logistic regression vs. heuristic) 



regression model. It is easy to demonstrate cases where 
heuristic search might fail. 

• Again using ELO difference and latency difference, 
consider a new set of candidates: (1, 10000), (30, 30), 
(10, 1000). 

• Suppose the weightings are approximately 70% 
importance to ELO and 30% to latency.  Logistic 
regression obviously picks (30, 30). 

• Multivariable heuristic search optimizes across first k 
= 2 examples. It picks (1, 10000) and (10, 1000). It 
then picks the lower latency difference in the two 
remaining examples, which is (10, 1000). Considering 
we want to minimize across both features, clearly the 
heuristic algorithm was the wrong choice.  

Admittedly, the above example is contrived. Nonetheless, it 
is indicative of a flawed design with the multivariable heuristic 
algorithm. The problem is that the heuristic algorithm 
optimizes each feature independently of all the others, 
whereas logistic regression optimizes across all features at 
the same time. Logistic regression also has the added benefit 
of learning the exact weightings for each parameter. For 
example, how important is the ELO difference relative to 
latency difference? The heuristic algorithm ranks them by 
importance, but only encodes that one is better than the other 
(without describing how much better). 

D. Results (Confidence of Correct Answer) 
The following table presents the results of running logistic 

regression matchmaking run on a dataset of ten different users 
during a live running of the app. It presents both the correct 
answer, based on underlying true weightings during 
generation of the data, and also the weighted guess. 
  

Table 1: Real-time “live” matches made via logistic 
regression, and measure of correctness (“gap”) 

 
Logistic match “Correct” match Gap 
(770, 101) ó (970, 203) 
(620, 270) ó (920, 200) 
(850, 230) ó (850, 218) 
(920, 200) ó (810, 119) 
(540, 249) ó (710, 106) 

(770, 101) ó (810, 119) 
(620, 270) ó (550, 257) 
(850, 230) ó (850, 218) 
(920, 200) ó (970, 203) 
(540, 249) ó (710, 106) 

0.165 
0.234 
0.000 
0.063 
0.000 

ó denotes match 
 

The “Gap” column is the probability gap between the 
logistic match and correct match. Essentially, the logistic 
regression algorithm evaluated the probability of both potential 
pairs, and the gap is how much “better” the logistic algorithm 
found the actual match (the match it chose to make) than the 
correct match (according to the true weightings). It is a useful 
indicator of how much logistic regression leaned towards 
making a certain match over the correct match. 

Specifically in the first example logistic regression had a 
probability gap of 0.165. This means that logistic regression 
was approximately 16.5% more certain of the “logistic match” 
than the “correct match”. 

What leads to these errors? One important fact to consider 
is that one wrong mismatch can lead to propagating 
mismatches. Because two candidates are taken out of the pool, 
future matches are certainly affected. 

Recall the earlier assumption that matches are made in a 
vacuum, given there is no guarantee of a stable matching. If our 
algorithm was given the true weightings, we could match 
perfectly. However, because logistic regression guesses the 
true weightings, and makes matches based on the best guess. 
The algorithm is imperfect. 

How can we interpret these errors meaningfully? We can 
observe that the confidence gaps are significantly less than that 
of random guessing. First, note that 2 out of 5 matches were 
made correctly (the gap is 0). Second, the matches that were 
wrong had relatively low gaps. The highest was 0.234. In a 
random matching scenario, we would expect gaps consistently 
around 0.25 (given that 0.5 is the probability score of complete 
uncertainty). 

 

E. Tradeoffs Between Heuristic and Learning Approach 
What then are the tradeoffs of using the logistic regression 

model? The first is the historical data prerequisite. Logistic 
regression requires a training set with a reasonably large 
number of examples to train and construct a model. If such data 
is not available, then this is not an option. 

The second is overconfident predictions. An interesting 
anomaly that arose during the evaluation of algorithms was 
astoundingly high confidence of predictions by the logistic 
regression algorithm. 

Consider the training set Figure 4, generated by the author. 
There is a clear line separating the positive and negative 
training examples (the dots that predict a good match and the 
dots that predict a bad match). Thus, the trained model, 
represented as the decision boundary (the formal term for the 
separating line), can predict every single dot in the dataset 
correctly. 

Figure 4: Training on noiseless dataset 



This leads to overconfident predictions on the test set. 
Specifically, almost all predictions were made with probability 
extremely close to 1 for good matches, and probability close to 
0 for bad matches. Figure 5 graphs the predicted values. 
Observe again the boundary line that perfectly separates the 
two classes of examples. 

The source of this anomaly lies in how the weightings are 
calculated (or “trained”). Specifically, the weight vector 
norm tends towards infinity in the separable case. In other 
words, the weightings for each feature will be set to 
enormously high values. This problem occurs because of the 
method through which the logistic regression algorithm is 
trained. The weight vectors are optimized via an iterative 
gradient ascent algorithm. The objective is to maximize the 
likelihood of the “parameters” (that is, the weights), given the 
observed data. In the separable case, no examples are 
misclassified, so there are no penalties for higher weight 
values. As a result, the algorithm will arbitrarily scale the 
weight values to increase the likelihood, and they will tend 
towards infinity.  

A key insight from this anomaly was that the initial 
generated dataset contained a problem. Specifically, the initial 
dataset generated by the author did not contain noise 
(misclassified examples). Thus, it is relatively easy to see why 
the data was linearly separable, and resulted in this problem. In 
real-world datasets containing random noise, a linear 
separation line that classifies every example correctly is less 
likely. As a brief digression, when there is a dataset that 
exhibits linear separability, it can be resolved by introducing 
regularization [3]. 

Realizing the flaw, the author of this paper introduced 
random noise to the dataset, which arguably increased the 
likeness of the synthetic data to real data. The results presented 
earlier Section C were from training on synthetic data with 
noise. 

Figure 6 graphically depicts the generated dataset, with 
added noise (purposely misclassified examples). Note the lack 
of a separating line – specifically no linear decision boundary 
can be drawn that perfectly separates all examples. 

VI. ALTERNATIVE LEARNING ALGORITHMS 
Logistic regression certainly is not the only algorithm for 

learning weightings given a set of inputs. Logistic regression 
generally assumes a real-valued feature vector as input (though 
it is possible to supply discrete-valued inputs). However, there 
are algorithms better suited for the discrete case. Specifically, 
Naïve Bayes is an algorithm that takes in a vector of discrete-
valued inputs (every value in the vector is drawn from a finite 
set of classes (e.g. {0, 1}), which might apply better in certain 
use cases. For example, consider a matchmaking algorithm for 
determining compatibility between love interests. Pairing two 
people might be based on a set of answers to yes or no 
questions, e.g. “Are you a smoker? Do you enjoy swimming?” 
The answers to these questions can be encoded as a discrete-
valued (binary, in this case) feature vector, rather than real-
valued. 

Naïve Bayes, similar to logistic regression, outputs the 
probability that there will be compatibility given these binary 
vectors. The means through which it calculates this probability 
is quite different however. 

Moreover, there are other algorithms that take as input a 
feature vector of real-values and output a classification label (0 
or 1 in the binary case). These algorithms might involve 
techniques to force the separability of two classes (e.g. the blue 
and red points) by mapping to a higher dimensional space, or 
by drawing a nonlinear decision boundary (a curved line 
separating the two colors of dots). The literature on learning 
algorithms is extensive, and the field is constantly expanding. 

VII. REAL-TIME WEB COMMUNICATION: MINIMIZING LATENCY 
AND TRAFFIC 

This paper will now shift and discuss the other topic: real-
time web communication. The main goal of this section is to 
discuss how to minimize latency between clients that wish to 
speak with one another across the web. Specifically, it will 
discuss two ways to implement real-time web communication, 
and their tradeoffs. 

This paper does not explore data integrity across a 
communication channel. In fact, the implementations presented 

Figure 6: Dataset with noise Figure 5: Testset predictions 



by this paper are based on existing protocols, in which data 
reliability is abstracted. 

A. Polling with HTTP 
The key limitation of HTTP is that the client must be the 

one to initiate the request-response cycle with the server. The 
server cannot send a request to the client. Thus, for one client 
to receive updates about another client’s action, it needs to first 
make a request for that data from the server.  

The first implementation of real-time between two clients 
uses polling. Specifically, it uses the HTTP protocol to 
simulate communication between two clients by polling a 
server. The following description of the implementation 
assumes that two clients are playing a game together, but it can 
be easily generalized to other applications that use real-time 
(such as chat). The scheme works as follows: 

• Client A and Client B are matched into a game. 

• Client A makes a move by sending an HTTP request to 
the Server. 

• The Server receives the request, and generates an HTTP 
response. If Client A’s move was valid, the Server 
responds with an updated move to Client A. 

• The Server expects an update request from Client B. 
However, it cannot tell Client B directly, because the 
interaction must begin client-to-server. 

• Thus, Client B polls in a loop, so that every x seconds, 
it makes an updated request from the server. Client B 
can also ask for an update request before every move – 
that is, if it wants to make a move, it first makes sure it 
has the most updated state of the game before moving. 

B. Bidirectional Communication with WebSocket 
The WebSocket protocol, unlike HTTP, allows initiation of 

communication between both the Client and Server. Moreover, 
the connection is maintained as open, whereas in HTTP there is 
the overhead of starting a connection on each request. 

The following implements the same game described earlier 
using WebSocket: 

• Client A and Client B are matched into a game. 

• Client A makes a move by sending a message via 
WebSocket to the Server. 

• The Server receives the request, and then emits an event 
to all players in a game. In other words, it initiates a 
message to Client B to let it know that Client A made a 
move. 

• Client B then can respond appropriately to the Server, 
on receiving this update. 

Client B no longer needs to poll in a loop to get an update 
on A’s latest move (nor vice versa). Instead, it receives updates 
directly from the server, and gets the new data as soon as it’s 
available. 

VIII.  RESULTS OF REAL-TIME COMMUNICATION EXPERIMENTS 
AND DISCUSSION 

A. Methodology for Comparing HTTP and WebSocket 
HTTP and WebSocket were compared by evaluating the 

length of time it would take for a message to reach the server 
from the client. In HTTP, this was done by making a POST 
request, in which the message was stored in the body of the 
request. In WebSocket, this was done by emitting a socket 
event that directly sent a message to the server via an open 
connection. 

• In order to measure the elapsed time from the client’s 
sending and server’s receipt, the only data stored 
inside the body would be the current time. In 
Javascript, this can accessed through Date.now(), 
which gets the current epoch time in milliseconds. 

• Then the server, upon received the message, would 
call Date.now() and subtract from it the time value 
stored in the body of the message. The resulting value 
is the difference in milliseconds between the send and 
receipt of the message. Measuring across three trials, 
the values are then presented as the measured latency. 

B. Results from Comparison 
It seems relatively intuitive that the WebSocket data would 

present better results for a real-time use case. Yet the results 
from Figure 7 above demonstrate that this was not the case. As 
the table below clearly demonstrates, the latency of both 
WebSocket and HTTP were approximately the same. 

 

C. Tradeoff: WebSocket vs HTTP 
Though Figure 7 illustrates that the results between 

WebSocket and HTTP are similar, WebSocket is still superior 
a number of ways. First, there is benefit in allowing the server 
to initiate connections with the client. To quantify this, the 
number of messages can be used as a measure of load. For 
example, a game state update using the HTTP scheme requires 
two messages: one from client to server, and one from server to 
client. On the other hand, a game state update using the 
WebSocket scheme only requires one message: server to client. 

Based on the first trial, a one-way connection takes 50 
milliseconds in the HTTP case, and 61 ms in the WebSocket 
case. However, because a single update on the status of other 
clients might require multiple messages in the HTTP case, but 
only a single round of communicate in the WebSocket case, 
WebSocket has the advantage with respect to total latency. 

Figure 7: Latency measures in HTTP vs Websocket 



Figure 8 emphasizes this with a diagram that shows where 
the advantage of WebSocket over HTTP lies [4]. 

 

IX. FORMING A  FRAMEWORK 

A. Framework and Sample Apps 
Specific implementations of the matchmaking algorithms, 

and the real-time web application are provided on GitHub.  

A developer using the framework has the option of tailoring 
matchmaking algorithms to their own preference. For example, 
if developers do not have historical data to train a logistic 
regression model, they should configure the framework to use 
the heuristic algorithm. 

Finally there are samples provided by the author, and 
furthermore, an empty “framework”, that developers can clone 
and proceed to fill in with their code that has the core of 
matchmaking algorithms built in (which the developer can 
tailor for the specific app they envision). 

Figure 9 and 10 are two illustrations of a sample tic-tac-toe 
app in action. 

 

X.  SUPPORTING TECHNOLOGIES AND IMPLEMENTATION IN 
PRACTICE 

This paper has so far discussed both matchmaking 
algorithms and real-time communication, and demonstrated the 
performance and tradeoffs of various implementations of each. 
These pieces effectively form a framework for building a 
modern web application with accurate and efficient 
matchmaking and real-time web communication. As a final 
point of discussion, it is worth mentioning the technological 
toolkits that enable this framework to work. 

A. Implementing Matchmaking in Practice 
Algorithms 1 and 2 (exhaustive and heuristic algorithms) 

are relatively easy to implement. Indeed, it amounts to finding 
the minimum, or checking if a value falls below a certain 
threshold.  

The learning algorithms can be implemented using a 
standard machine learning library. Specifically, the author used 
scikit-learn (Python machine learning library) to implement a 
logistic regression based classifier that also outputs the 
confidence (probability) of predictions. 

B. Implementing Real-time in Practice 
HTTP web applications are quite popular, and there are a 

large number of web frameworks written across many 
programming languages for implementing a web server. 
Particularly popular is Node.js, which is a framework that 
processes client requests asynchronously [5]. 

In addition, the growing popularity of real-time applications 
has led to utilities that specifically implement WebSocket. 
Specifically, there is socket.io and Django Channels as two 
utilities for implementing WebSocket, written in Javascript and 
Python respectively [6]. 

 

 

 

Figure 8: HTTP vs Websocket Diagram 

Figure 10: After a successful match in a client app Figure 9: Matchmaking in progress in a sample app built with 
the framework 



C. Client-side Technology Conducive to Real-Time 
Web applications with real-time communication support 

most likely demand rapid updates to webpages, and fast 
processing of animations. The standard model of editing the 
DOM is slow and expensive for browser processing. 

Modern client-side frameworks can alleviate the issue. In 
particular, a new rendering engine known as React, provided 
by Facebook, is specifically designed to allow for fast updates 
to webpages. 
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