
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-31-2016

Reusing Ambient Light to Recognize Hand Gestures Reusing Ambient Light to Recognize Hand Gestures

Mahina-Diana A. Kaholokula
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kaholokula, Mahina-Diana A., "Reusing Ambient Light to Recognize Hand Gestures" (2016). Dartmouth
College Undergraduate Theses. 105.
https://digitalcommons.dartmouth.edu/senior_theses/105

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/105?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Reusing Ambient Light to Recognize

Hand Gestures

Prepared by
Mahina-Diana Kaholokula

Abstract

In this paper, we explore the feasibility of reusing ambient light to rec-
ognize human gestures. We present GestureLite, a system that provides
hand gesture detection and classification using the pre-existing light in a
room. We observe that in an environment with a reasonably consistent
lighting scheme, a given gesture will block some light rays and leave oth-
ers unobstructed, resulting in the user casting a unique shadow pattern
for that movement. GestureLite captures these unique shadow patterns
using a small array of light sensors. Using standard machine learning tech-
niques, GestureLite can learn these patterns and recognize new instances
of specific gestures when the user performs them. We tested GestureLite
using a 10-gesture dictionary in several real-world environments and found
it achieves, on average, a gesture recognition accuracy of 98%.

Dartmouth Computer Science Technical Report TR2016-797
Submitted on: May 31, 2016

1 Introduction

Motivation. Recent years have witnessed a huge expan-
sion in technological innovation and development. Trends
like ubiquitous computing and the Internet of Things favor
mobile devices and devices that can be embedded seam-
lessly and inconspicuously into their environments. In
particular, this means that devices are getting smaller [16].
Smaller devices force the elimination of extraneous hard-
ware (like keyboards and mouses) and simultaneously
lead to smaller screen displays, if any at all. Today,
we can see this in products like smart watches, portable
tablets, and in a growing number of connected home ap-
pliances [4, 12, 19, 41]. As the field continues to change,
we realize the need for alternative ways for the user to
interact with these devices.

Gesture recognition, concerning the ability of a com-
puter to recognize the body language of a user, is one pos-
sible solution to this problem. One of the key factors of a
good user interface is familiarity, or intuitiveness [39, 5].
Since people already communicate at least in part with
one another via gestures, gesture recognition is a natu-
ral choice for human-computer interaction as well. Ges-
ture recognition also allows for a richer and more diverse
language with which to communicate with our devices.
Lastly, gesture languages provide comfort and freedom to
the user due to the fact that they are often hands-free and
can be used at a distance, as well.

There are already many applications for gesture recog-
nition technology. Imagine living in a smart home where a
swipe of the hand could turn on the lights, change the TV
channel, or raise the temperature of the room. In an office
space, the flick of a wrist could answer a phone call, scroll
down webpages, draw a graph, or flick through a presenta-
tion. Environmentally, gesture recognition can help con-
serve energy in cases where manually unplugging unused
electronics is difficult or too much of a hassle. In gaming,
it can allow for greater user immersion through more de-
tailed and varied interactions and has huge potential when
we consider virtual reality games.

Research is already being conducted in this field with
many promising results. Some of these explorations are
using tools that are already widespread in daily life, like
WiFi or audio-based systems [13, 20, 44, 57]. In this pa-
per, we discuss the potential of using ambient light, an-
other already-prevalent source, in gesture detection and
recognition.

Existing Methods. Many researchers are already de-
veloping preliminary gesture recognition interfaces. The
most common method is to use cameras to gather data
that can be fed through image processing algorithms [10,

24, 35, 55]. For example, the Kinect sensor and the Leap
Motion, which have been lauded for their precision, both
use infrared cameras to detect hand movements and posi-
tions [47, 53]. However, camera-based approaches often
cause privacy concerns for their users. Gupta et al. devel-
oped Soundwave, an example of an audio-based tracker
which recognizes five gestures with 85-100% accuracy,
but has difficulties filtering out ambient noise and finding
pitches to generate and measure that won’t bother chil-
dren or pets [13]. Other devices, like the CyberGlove or
the Wii remote, are created as wearables or hand-helds.
These can generate lots of data from multiple sensors, like
tilt sensors and accelerometers [21], but they can be cum-
bersome or inconvenient to wear. A more novel idea uses
radio frequency (RF) signals to enable whole-home sens-
ing. Wisee provides a proof-of-concept prototype that can
detect nine gestures throughout a two-story home using
two modified WiFi routers [44]. Although it’s currently
difficult to achieve a high granularity of gesture identifica-
tion with RF signals, this field shows a lot of promise as a
pratical and pervasive gesture recognition system. Lastly,
light-based approaches to sensing have also been consid-
ered. LiSense, which uses shadows to reconstruct full 3D
skeletons, is one such example [31]. However, LiSense re-
quires an active control of the lighting framework, and the
necessary modifications are not easily achieved in most
environments. A more in depth discussion of these ges-
ture recognition techniques takes place in Section 11.

Proposed Method. We propose GestureLite, a proto-
type system that performs gesture detection and recogni-
tion using ambient light. The sensing platform comprises
of a 3x3 array of photodiodes, each hooked up to a single
Arduino that captures all the sensor data and sends it to a
standard laptop to be analyzed (see Figure 2).

GestureLite is based on the observation that, in an il-
luminated area, the hand will reflect and block light in
a predetermined way, resulting in changing light inten-
sities throughout the room. If the lighting in the room
is fairly consistent, then each gesture corresponds to a
unique change in the light intensities throughout the room.
When a gesture is performed within the viewing field of
the photodiode array, GestureLite will be able to record
the new light intensities that result from the gesture and,
using machine learning techniques, will classify the ges-
ture in real-time.

First, GestureLite will need to collect roughly 10 train-
ing samples from every gesture that the user may want to
use. Next, GestureLite fits the training data to a k-nearest
neighbors model, where k = 9. Then, the product is
ready for real-time use. GestureLite can automatically de-
tect when a gesture has occurred and once the gesture has

2

(a) Right (b) Up (c) Rise (d) Flick Open

(e) Left (f) Down (g) Lower (h) Flick Open Twice

(i) Clockwise (j) Counterclockwise

Figure 1: Gesture dictionary. Each gesture photo is accompanied by a graph depicting the shadow patterns created
by that hand movement. The three lines correspond to three representative photodiodes from the nine-sensor array.
All other line graphs in this paper also conform to this depiction.

finished, GestureLite immediately classifies it. We have
implemented and tested GestureLite in multiple environ-
ments and our results reveal GestureLite correctly classi-
fies about 98% of gestures. The 10 gestures that we use in
this implementation are shown in Figure 1.

There are several advantages of using GestureLite as
compared to other gesture recognition technologies. Most
immediately, there are none of privacy concerns that a
camera-based system might entail. It is essentially im-
possible to form anything more detailed than a silhou-
ette from the photodiode information. The advantage of
GestureLite over a wearable technology is that Gesture-
Lite is completely hands free, leading to more comfort
for the user and less inconvenience over remembering to
carry a device. Because GestureLite relies on ambient
light, it is much easier and cheaper to install than a sys-
tem like LiSense that needs full control over its environ-
ment. Lastly, GestureLite can be easily embedded in and
adapted specifically to different environments. Gestures
are thus able to have different meanings in different envi-
ronments, unlike WiSee.

Challenges and Solutions. There were several chal-
lenges we had to resolve in order to make GestureLite
performance-ready. The first challenge we came across
when building GestureLite was how to deal with the abun-

dance of sensor data that the system records. For a typical
gesture, we can record up to 14,000 data points across the
nine sensors. One of our earlier approaches to the prob-
lem was to use Dynamic Time Warping (DTW) to clas-
sify the gestures. This was promising because DTW can
account for the variations within a gesture (challenge 2)
without pre-processing the data. However, with such a
large amount of data, this algorithm could take up to five
seconds to classify a single gesture, which is not desirable
for a system that is meant to be used in real-time. Instead,
we decided to use KNN, a much quicker algorithm, as our
classification technique. However, using the raw datasets
in such a high dimensional space leads to other problems
within KNN, so we also apply Linear Discriminant Anal-
ysis (LDA) to the data as a dimensionality reduction tech-
nique. This allows us to map the data from this huge di-
mensional space to a 10 dimensional space, which is much
more efficient and appropriate to work with.

The second challenge was figuring out how to account
for the small variations that occur within the same gesture.
When the same gesture is performed twice, even by the
same person, each instance will differ slightly in some as-
pect - perhaps speed or distance above the system the hand
was held, for example (see Figure 4). These differences
result in small changes in the light intensity that each pho-

3

todiode registers, which affects our classifier’s accuracy.
There are also environmental variations to consider. As
the sun moves throughout the day, the light contributed
from any windows will change. These changes in light
intensity result in slightly different shadow patterns for
the same gesture, as well (see Figure 8b). To handle these
variations, GestureLite performs a pre-processing step to
normalize and standardize the data before applying the
classifier. Environmental changes also make it difficult to
properly detect the start and end of a gesture throughout
the day, and this is accounted for with a periodic recali-
bration of the system.

A third challenge was dealing with a lack of knowledge
about the position of the light source. A simple approach
to this problem would be to create a ”hit” order of how
the shadows should hit the photodiodes when a specific
movement is performed. However, because GestureLite
is meant to work with ambient light, we could not rely
on knowing which direction the light was coming from
and without this knowledge, this geometric approach got
very messy very quickly. The solution to this problem was
to use machine learning techniques to capture the hidden
patterns lying in the data.

Key Results. Final evaluation of the GestureLite sys-
tem gives us the following key results:

• We prove the potential of ambient light-based hand
gesture recognition. GestureLite classifies, on aver-
age, 97% and 99% of gestures correctly in the two
tested environments, classroom and dorm room, re-
spectively.

• We show that correct training samples representing
multiple ambient lighting possibilities are important
to our classifier’s accuracy. By training data only
collected at night and testing on data collected dur-
ing the day, we see GestureLite’s worst performance
with an overall gesture recognition accuracy of 74%
in the dorm room.

Contribution. With GestureLite, we make the follow-
ing contributions:

• We propose the idea of using ambient visible light
to affordably detect and recognize human hand ges-
tures.

• We design a strategy to capture changing light inten-
sities in the room and analyze them in real-time using
machine learning techniques in order to classify each
according to an established gesture dictionary.

• We build a proof-of-concept system using an array
of nine photodiodes, an Arduino, and a laptop to per-
form the computations described above.

• We test our prototype in several indoor environments
using a 10-gesture dictionary and evaluate the accu-
racy of our system.

Our work is one of the first to examine the feasibility of
using ambient visible light for hand gesture recognition.
We believe that because light is already pervasive in every
indoor environment, it can be an easy and affordable so-
lution to apply to HCI problems. We hope our work will
inspire further explorations of how to re-use ambient light
in other situations and applications.

Figure 2: GestureLite Platform

2 GestureLite Platform
The GestureLite platform is built with nine photodiodes,
three full-sized breadboards, and a single Arduino DUE.
See Figure 2 for the sensing platform.

Photodiodes. Photodiodes are generally used to mea-
sure light intensity. Photons that get absorbed by the pho-
todiode generate a current that can be measured; a larger
current corresponds to a brighter illumination. While
more precise technologies exist to measure the minute
changes in the produced current, these products are much
more expensive than the simple photodiode and Arduino
combination that we use. Because GestureLite focuses on
the overall pattern of a shadow and does not rely on exact
values, a more precise measurement should not be neces-
sary. We use Honeywell SD3421 Silicon PIN photodiodes
with a 90◦ viewing angle in our system.

Affordable. The photodiodes we use in GestureLite are
very low-cost (<$2 wholesale). The three breadboards,
resistors, and wiring are also commercially available at
low prices (<$10 total). The Arduino DUE itself is about

4

$50. In total, the system is fairly inexpensive to build and
thus is reasonable for a commercial setting.

Arrangement. We connect three breadboards together
to form the prototype surface. The photodiodes are ar-
ranged on the breadboards in a 3x3 array spanning 5-
inches by 5-inches in total. I place two resistors (10MΩ)
in series with each photodiode and connect the photodiode
to power (5V) and the resistors to ground (0V). Each sen-
sor is also connected to the analog input of the Arudino,
which captures the currents produced by any light that hits
the photodiodes. The Arduino itself is connected to a stan-
dard laptop that performs all the computations necessary
for gesture recognition.

Capabilities. The photodiodes provide a wide field of
view (90◦) so that at any given moment during a gesture,
at least one sensor should be under shadow. This is impor-
tant in determining when a gesture has started and ended.
The Arduino currently captures values from each sensor
roughly every two milliseconds, which is enough for our
prototype, but may need to be increased if the user plans
on using extremely fast gestures. Lastly, the current array
of sensors provides enough information for moving ges-
tures, but fine-grained gestures (static gestures involving
specific finger positions, for example) will require a more
dense array of photodiodes.

3 Preliminary Shadow Analysis

In this section, we note some observations regarding the
shadows patterns that the hand gestures cast. We do this
by studying the time-series graphs (the data from one
sensor taken over the length of a gesture) that show the
changes in light intensity caused by hand movements.
First, we note that every gesture has a uniquely shaped
shadow pattern graph compared to other gestures. This
makes sense, as each gesture should “hit” each photodi-
ode in a different order and for a different length of time
depending on the speed, direction, and starting/ending
point of the movement. Figure 1 shows the variations in
light intensity for each gesture.

We also observe that shadow patterns change through-
out the day. This occurs when ambient sunlight can filter
through a window and brighten areas that were once in
shadow and cast other photodiodes into deeper shadow
relatively. An example of this is shown in Figure 3, where
the up gesture is shown under sunlight in the bottom graph
and shown with no ambient sunlight in the top graph.
These clearly show that the same photodiodes detect dif-
ferent light intensities based on the time of day that the

(a) Dorm (b) Classroom

Figure 3: Comparison of shadow patterns at night
(top) and midday (bottom)

Figure 4: Right gesture performed twice

gestures were captured. Differences in shape, voltage, and
magnitude are particularly evident.

Figure 4 shows one user performing the same gesture
twice. This shows that even for a single user, each perfor-
mance of a gesture will have some small variations, per-
haps in speed, magnitude, or other properties. These dis-
tinctions can become more pronounced with the changes
in ambient light discussed above. Thus, we realize we
cannot use the raw data immediately for our KNN classi-
fication, which requires that all datasets of a given gesture
be as similar as possible. To counteract these variations,
pre-processing of the dataset is required before moving to
the classification phase.

4 Assumptions
There are a couple assumptions and limitations that must
be stated for this model.

Light Intensity. For one, the photodiodes will only
capture current in a limited range of light intensity. In
very bright areas (in direct sunlight, for example) the pho-
todiode becomes saturated and the voltages recorded no
longer reflect the light intensities accurately. Similarly, in
very low light conditions, the differences in the light in-

5

tensity due to a hand gesture become much smaller and
so any patterns due to these changes will not be captured
very well. These issues may be reduced by using differ-
ent resistors in series with the photodiodes or using more
powerful photodiodes.

Light Direction. It is obvious that the GestureLite plat-
form and the lighting system should be fixed; GestureLite
relies on creating shadow patterns due to a hand move-
ment cutting off specific light rays from the lighting sys-
tem to the photodiodes. If the system itself or the light
source changes, we won’t have the same shadow patterns
being cast and recorded by the photodiode array. How-
ever, this does not mean that every light ray must be con-
trolled; GestureLite is a fairly robust system and can han-
dle small, natural variations within an environment, like
that of changing sunlight streaming through a window.

Continuous Light Variation. GestureLite cannot deal
with continuous changes in illumination (like the sun
breaking in and out from behind clouds, for example).
GestureLite needs to know the “standing” illumination of
an environment (the light intensity when there are no user
shadows) in order to correctly detect when a gesture has
started and ended. Slow changes can be accounted for
with a periodic recalibration, but continually changing in-
tensities may move too fast for GestureLite to fully adjust.

Hand Placement. GestureLite only recognizes ges-
tures that are performed above it (11above” referring to
the space that directly blocks the photodiodes). Because
the photodiodes have a limited viewing angle and preci-
sion, gestures that are performed far away and to the side
of the system will not be registered. The impact of this
issue could be lessened by using a larger array of photo-
diodes or using photodiodes with a larger field of view.
However, this may also be a useful feature of the product
if, for example, the user only wants to have gestures rec-
ognized for an activity performed in a specific location (at
her desk in front of her computer, for example).

Gesture Speed. The user cannot move her hand too
fast; a gesture ought to take at least a fifth of a second.
This is a limitation from recording sensor values once ev-
ery two milliseconds and also of the fact that we must
standardize the time scale in order to apply our dimension-
ality reduction technique. Naturally, if we recorded more
voltages per millisecond, we could accommodate faster
gestures.

5 Procedure Overview
In this section, we cover the three stages of gesture
recognition in GestureLite: gesture detection, data pre-
processing, and gesture classification.

Gesture Detection. First, the system must recognize
when a user is performing a gesture. There is a one-time
calibration step to measure the typical voltage of a stand-
ing (unshadowed) system. A gesture is considered un-
derway if any of the nine sensors return a voltage that is
significantly under the average. The gesture is only pro-
cessed if it occurred for longer than a fifth of a second; this
is a necessary requirement for the dimensionality reduc-
tion step later on. It also helps eliminate any anomalies
that crop up from random, extreme sensor readings. Ges-
tureLite also performs periodic recalibration to adapt to
changes in the ambient light intensity.

Pre-processing. Gesture analysis occurs after the ges-
ture has completed. The data collected from the sensors
must go through pre-processing before recognition meth-
ods can be applied. First the data is normalized and scaled
in both axes (magnitude and time), and then Linear Dis-
criminant Analysis, a dimensionality reduction algorithm,
is applied.

Classification. Classification of the gesture occurs last
using machine learning techniques. Training data must
be collected first (one time only) in the chosen location
and throughout the time frame of planned use. To recog-
nize gestures in real time, we use the k-Nearest Neighbors
(KNN) technique, with k = 9. Extra measures are taken
to try to ensure that non-gestures are not recognized as
one of the 10 real gestures in the dictionary.

6 Gesture Detection
In this section, we discuss how GestureLite detects when
a gesture is being performed. It is obvious that when a
gesture is being performed at least one of the photodiodes
should indicate a shadow passing over it. However, be-
cause there is inherent noise in the physical system hard-
ware, it can be difficult to tell which dips in voltage are
because a gesture is underway and which are only due to
noise. For each sensor, GestureLite measures the typical
variability of the data from a sensor in light, and when a
voltage is recorded that lies outside this normal range of
variation, we can assume that it is due to a real user ges-
ture.

Calibration. A one-time calibration step must be per-
formed when the system first turns on. The user must not

6

cast any shadow over the system during this time, but oth-
erwise does not need to interact with the system. Roughly
five seconds of sensor data is collected from the unob-
structed system. Then, for each sensor, the median abso-
lute deviation (MAD) is calculated. The MAD is defined
as the median of the absolute deviations from the data’s
median:

MAD = Mi(|xi −Mj(xj)|)

where xj is the original data and Mi is the median of the
series [30]. The MAD is a more robust measure of vari-
ability than using the standard deviation from the mean,
especially with regards to outliers. This is crucial because
we often observed that at least one photodiode reported
an extreme voltage (> 1000) during the calibration step,
and this heavily skewed the mean and thus the standard
deviations of the time-series, resulting in poor gesture de-
tection. The cutoff value of whether a low voltage reading
is due to noise or a legitimate user shadow is at the me-
dian minus two absolute deviations. Figure 5 shows the
cutoff values (dashed) for three representative sensors in
GestureLite. From only this calibration step, GestureLite
does not respond well to large changes in the brightness
of the ambient lighting. The reason is that the cutoff val-
ues will no longer accurately describe the outliers in the
current readings (ie. the values that must be from a human
shadow). In this case, recalibration is necessary. Recali-
bration is discussed next.

Figure 5: Cutoff values for gesture detection

Recalibration. Unless the user is in a completely static
lighting environment (no windows, for example), the am-
bient light intensity will change over time. As the sun ad-
vances through the sky or moves slowly in and out of the
clouds, the light intensities grow and wane. This makes
it difficult to rely solely on the one-time calculated cutoff
values for any long period of time. A brightening ambient
light will result in gestures being detected late or possibly
not at all. A darkening ambient light will be accidentally

detected as the start of a gesture that never ends (unless
the ambient light brightens again).

To solve this, GestureLite attempts to recalibrate the
system periodically, if necessary. To check if the ambient
light has dimmed, we check if a gesture has started but
not ended. If so, we look at the median absolute deviation
of the light intensities within this gesture data. Because
our system is set to recognize dynamic gestures, any real
gesture should show large variations for at least one sen-
sor. In contrast, a “gesture” that is triggered by dimming
light will not see these large variations. Thus, if Ges-
tureLite detects that the light variation is continuously un-
der a given threshold for about 1.5 seconds, the system is
treated as requiring recalibration. To handle a brightening
atmosphere, GestureLite also calculates an upper cutoff
value during the calibration step, defined at four absolute
deviations above the median. If any of the sensors con-
sistently register values above their respective high cut-
off values, the system is treated as requiring recalibration.
Both of these recalibration checks are performed roughly
four times a second. GestureLite stores about five seconds
of previous sensor data at all times; recalibration uses this
historical data to compute new cutoff values in the same
way as described above.

Start and End of Gesture. Every two milliseconds,
GestureLite registers new voltages reflecting the light in-
tensities seen by each photodiode in the sensor array. If
any of the sensors have dipped below their cutoff points
determined by the calibration step, GestureLite begins
collecting the time-series data into arrays. Once all of
the sensors report intensities that are back above their
respective cutoff values, the gesture is determined to be
over. Because the sensors have a wide field of view, there
should never be a point in time where the hand is some-
where over the system without any sensors dipping be-
low the cutoff. Lastly, any gesture that is shorter than a
fifth of a second long is thrown out. Usually these very
fast “gestures” are actually due to anomaly sensor read-
ings that trigger past the cutoff points for a couple of mil-
liseconds. The main reason for this elimination, however,
is that in the pre-processing phase we average out sec-
tions of the data to arrive at 100 data points that represent
the time-series. (It takes about 1/5 seconds to record 100
values per sensor.) Finally, when all the data associated
with a gesture is accumulated, it is passed on to the pre-
processing phase.

7

Figure 6: Time-series data before and after pre-
processing

7 Pre-processing
We mentioned that the basis of GestureLite is recogniz-
ing a gesture from the particular pattern of shadows that it
casts on the nine light sensors. However, every time a user
performs a gesture, the time-series data from the photodi-
odes will be slightly different. There are multiple factors
that could contribute to these small variations: 1) differ-
ences in human performance, like performing a gesture at
a different speed or holding the hand at a slightly different
angle; 2) slight differences in the light intensity, perhaps
due to time of day or whether it’s cloudy or sunny; or 3)
variation due to inherent noise produced in the system.
Each of these factors mean that we cannot apply classi-
fication techniques directly on the raw data. Instead, we
must first pre-process the raw data to extract the core fea-
tures that are better representations of the unique gesture
pattern as a whole. Figure 6 shows the effect that pre-
processing has on three representative sensor time-series.
The top figure is the data without processing and the bot-
tom figure shows the data after. Classification can then be
applied to the post-processing dataset instead.

7.1 Normalization
We would like a gesture to be defined primarily by the
direction of the hand movement. Direction is determined
by the shapes of the graphs that each time-series creates.
In order for the time-series to be comparable across ges-
tures and to emphasize only the shape, the datasets must
be adjusted so all values conform to the same scale.

Magnitude Scaling. The magnitudes of the currents
will likely be variable within a gesture due to a variety
of human and environmental factors, including how high
the user gestures above the system and the general inten-
sity of the ambient light. However, our classifier measures
likenesses based on the exact voltages, which means that

the absolute values of the data points matter. To fix this
issue, GestureLite normalizes the magnitudes of all the
gestures so that the greatest magnitude in a time-series is
1 and the lowest is 0. This is done by subtracting the min-
imum sensor value from all values in the time-series and
then dividing by the max value remaining in the modified
time-series. That is, for all xi, with x being a time-series,
we convert:

xi = x̃i/MAX(x̃)

where

x̃i = xi − xMIN

Note that this does not change the shape of the time-series
graph.

Time Scaling. The speed of a gesture can provide use-
ful information. For example, an application may want
to handle the same gesture slightly differently depending
on the speed at which it’s performed. However, varying
hand speeds interfere with the ability of our classification
method to process the data. This happens for two reasons:

1. We want to classify gestures based on how similar
two gestures are at any given time in the gesture,
where time is taken to be relative to the entire ges-
ture, not an absolute value. This is equivalent to com-
paring the shapes of the shadow graphs- it matters
that the minimum values from each sensor are occur-
ring in the same order relative to each other, but it
doesn’t necessarily matter what the exact times are
that the minimums occur at.

2. Our KNN implementation uses Euclidean distance to
measure similarity, which means that every dataset
associated with a gesture must be transformed into a
single-dimensional vector in the same n-dimensional
feature space.

Because it is physically impossible for a user to control
the exact speed of any gesture, GestureLite must first scale
and condense the time-axis of each time-series into the
same single-vector n-dimensional space before continu-
ing the rest of the classification process.

Creating a vector representation of the gesture data is
easily addressed by flattening the nine time-series into one
vector by joining them end-to-end. Now each element in
the vector corresponds to a single sensor value at a single
point of time. Before this, however, we want to standard-
ize the length of each individual time-series so that our
KNN implementation computes the distance between cor-
responding points in the shadow graphs (by relative, not

8

absolute time). We observed that most gestures take at
least 0.20 seconds long, equivalent to approximately 100
readings from each sensor. Based on this, we estimate that
gesture patterns should be distinct and identifiable based
on only about 100 readings. This is the length that we
standardize each individual time series to. For each time-
series, then, we divide the dataset into 100 equal chunks
based on time. The values in each chunk are then averaged
so that the resulting time-series is of length 100. This also
has the effect of smoothing out the graphs, minimizing
the effect of noise while still representing the same rough
shape of its original shadow pattern graph. Only after this
standardization do we join the nine time-series together to
create a single vector associated with the gesture.

7.2 Dimensionality Reduction

In general, a gesture can take up to two seconds long,
which corresponds to approximately 1,500 light readings
from each photodiode. If we transform the nine sensor
time-series into a single vector straight away, the resulting
vector will live in an 14,000-dimensional feature space.
With the time standardization process above, this can be
reduced to a 900-dimensional vector. However, apply-
ing KNN within a 900-dimensional feature space is still
a concern. There are two main problems with working in
high dimensions: 1) it’s inefficient and 2) our algorithm
falls victim to the curse of dimensionality. Our KNN im-
plementation uses Euclidean distance to determine sim-
ilarity; obviously finding Euclidean distance in a high-
dimensional space will be more complicated and less ef-
ficient than the same computation in a low-dimensional
space. This is especially true because in high dimen-
sions certain performance-improving measures cannot be
taken [38]. These costs are amplified by the fact that the
distance between the unknown gesture and each training
sample must be found for KNN to work. However, the
primary issue here is that in a high dimensional space, Eu-
clidean distance becomes less meaningful. This is called
the curse of dimensionality. Essentially this means that
the differences in distance from the query point to any
of the training samples gets smaller and smaller as the
dimensionality of the feature space grows, rendering the
concept of “nearest neighbor” meaningless [7].

Linear Discriminant Analysis. The solution to these
problems is to reduce the dimensionality of the dataset
even further using Linear Discriminant Analysis (LDA).
LDA is a linear transformation technique that will project
our 900-dimensional feature space onto a considerably
smaller subspace while maximizing class-separability. In
brief, the principle behind LDA is to minimize within-

Figure 7: Example of LDA and KNN. LDA projects
samples from six gestures onto a 2d space that maxi-
mizes distance between classes. When a new hand move-
ment is detected, it is transformed into the same 2d space,
and then classified by its nearest nine neighbors (colored
here).

class scatter (Sw, the variance within a given class) and
to maximize the between-class scatter (Sb, the variance
between classes, roughly computed by using the mean
vectors of each class). The transformation that will max-
imize the ratio of between-class scatter to within-class
scatter is computed by finding the eigenvectors that cor-
respond to the dominant eigenvalues in the matrix given
by S−1

w Sb [6].
GestureLite uses LDA as following: 1) the training data

is used to create the transformation matrix, T , that max-
imizes class separability; 2) T is applied to the training
data, reducing each sample’s dimensionality from 900 to
10; 3) our KNN model trains on these transformed sam-
ples; 4) as new gestures are captured, T is applied to the
new dataset and the resulting 10-dimensional vector is
classified according to its nearest neighbors in the model
(see Figure 7).

8 K-Nearest Neighbors

As we have mentioned, GestureLite uses k-Nearest
Neighbors to classify gestures. KNN employs lazy learn-
ing, which means that the model does not generalize be-
yond the training data until a query is made. GestureLite
builds the KNN model using pre-processed training sam-
ples that have been recorded by the user. The user should
record about 10 samples of each gesture in the various
possible lighting scenes that could occur. Additionally,
10 samples of the standing scene (the system under unob-
structed light) should be obtained as well. This is one way
to try and handle false gestures, in this case the small fluc-

9

tuations in light intensity that may occur naturally in the
environment or any movements that the user may make
mistakenly in partial view of the system.

Classification. KNN is one of the simplest machine
learning algorithms. Anytime a new gesture is captured,
the dataset goes through the pre-processing steps detailed
in the previous section and then is classified according to
the majority class of its k nearest neighbors, 11nearness”
being determined by the Euclidean distance between the
samples [37]. GestureLite sets k to be 9. We find that
KNN works extremely well despite being so simple; this
is in part due to the large amount of pre-processing that
the time-series go through first (especially the LDA which
separates the classes further), and also because as a largely
single-user system, there is less likely to be strong varia-
tion within a gesture class. Thus we expect that any ges-
ture the user makes will be “close” to other instances of
the same gesture and farther from all the others.

While GestureLite shows a strong accuracy regarding
the classification of “correct” gestures (ie. belonging to
a class in the gesture dictionary), it struggles to point out
gestures that are of an unknown (untrained) class. One
method we use to weed out false gestures, mentioned
above, is to train a none gesture to recognize a mostly
open system. This protects against GestureLite attempting
to classify shadows that mistakenly hit a part of the system
or light shadows from background/ far away movement.
Because KNN only knows how to assign a new sample
to its most similar class, there isn’t much opportunity to
check whether the new gesture might not belong to any
class at all.

9 Evaluation

To evaluate the performance of GestureLite, we collected
roughly 140 and 160 samples of each of the ten gestures in
two locations, respectively. The first is a dorm room with
a single overhead light and next to a large window, and
the second is a classroom with multiple overhead lights
and small windows along a sidewall. All samples were
taken by one user. The test user did not collect more than
10 samples in one sitting to better simulate the small vari-
ations that are likely (even for a single user) within any
given gesture. The samples were collected over 4-5 days
during different times of the day to capture the changes
in ambient light that occur throughout the day. In total,
we have 1,547 dorm room samples and 1,753 classroom
samples that range from being taken at night (no ambient
sunlight) to high noon (maximum ambient light filtering
in through windows).

9.1 Overall Performance
We evaluate the overall accuracy of GestureLite using a
16-fold stratified cross validation on all the samples col-
lected in a each location. This corresponds to randomly
partitioning all the data from each location into 16 equal-
sized sections. Of the 16 sections, one section is used for
training and the rest are used for validation testing; this
is repeated 16 times using each of the of the sections as
the training data once. A 16-fold stratified cross valida-
tion allows for roughly 10 samples from each class per
partition. During this time, we use a k-value of 9 in our
K-Nearest Neighbors classifier. These decisions are ex-
plained in Section 9.4.

Figure 8a shows the fraction of times that each gesture
was correctly classified in the 16-fold cross validation.
The blue bars display the results from data collected in
the dorm room and the red is from data collected in the
classroom. In the dorm room, we observe that the overall
accuracy for recognizing gestures in the established dic-
tionary is 99%, with the lowest being 97% for two ges-
tures, flick open and flick open twice. In the classroom,
we observe that the overall accuracy for gesture recogni-
tion is 97%, with the lowest being 94% for the up gesture
and the highest at 99% for the down gesture.

9.2 Ambient Light
We evaluate the effect that changing light intensity has on
recognition accuracy. Light intensity changes due to ex-
tra light that may be filtered through the windows. (See
Figure 3 for a visual aid of how shadow patterns change
throughout the day.) This evaluation consists of training
solely with data collected at night and then testing on data
collected during midday. The reverse is also tested. We
do a k-folds evaluation again, separating the training data
into samples of size 10. For each training sample, we
validate using all the test data available for that group.
Data collected during low-light periods (sunrise and sun-
set) was removed for this evaluation in order to maxi-
mally demonstrate the effect that changing ambient light
can have on gesture recognition. Evaluation was done on
dorm room data where ambient light from the window had
a bigger effect.

Figure 8b shows the results of this evaluation. Each
gesture has four bars associated with it. The dark blue
bars show the accuracy of recognition when training on
night data and testing on midday data. The green bars
show accuracy when both training and testing is done with
night samples. The red and yellow bars are the reverse of
these tests (with regards to midday and night data), re-
spectively. The results show that changing ambient light

10

(a) Overall Accuracy (b) Time of Day Comparison (c) Recognition Latency (d) Classifier Parameters

Figure 8: Testing

can have a serious effect on the ability of the classifier to
identify the gestures. Training and testing data within the
same light intensity resulted in an average recognition ac-
curacy of 99% and 100% and lows of 97% and 98% for
the nighttime and midday groups, respectively. We see
these numbers drop quite a bit when mixing up the train-
ing and testing samples. Training on midday samples and
testing on night still allows for a reasonable accuracy of
recognition at 95%, although the low drops down to 80%
for the gesture flick open. Training on night samples and
testing on midday, for some gestures, make the system un-
usable. The average accuracy across all gestures is 74%,
with up and left having the lowest individual accuracies of
30% and 53%, respectively.

9.3 Recognition Latency

One of our main goals with GestureLite was to create a
system that could be used in real time. We evaluate the
average (mean) length of time it takes to process and clas-
sify a gesture, starting from the moment the gesture ends.
We used over 100 gesture samples in the dorm room en-
vironment. This was done using 10 training samples per
gesture and k = 9.

Averaging amongst all gestures, GestureLite takes
roughly 0.08 seconds to classify. Figure 8c shows the av-
erage number of seconds it takes to identify each individ-
ual gesture, with seven gestures taking under a tenth of
a second to classify, and the maximum (belonging to the
flick open gesture) taking just under a fifth of a second, on
average.

9.4 Classifier Parameters

As for most machine learning algorithms, there are clas-
sifier parameters to establish. In our case, we have two:
1) the size of the training dataset and 2) the k-value of our
KNN classifier. In this section, we evaluate how the size
of the training dataset (number of samples per gesture) af-

fects the recognition accuracy and how the k-value affects
recognition accuracy. Because these two are related (a
bigger training sample likely requires a bigger k-value to
avoid overfitting), we evaluate them together. For each k-
value between 1 and 30 and for each sample size between
2 and 30 we perform k-fold cross validation on the entire
dataset to compute an overall gesture recognition accu-
racy for our established dictionary. It makes little sense to
have a k-value that is larger than the training sample size,
so we do not analyze the performance of these value pairs.

Figure 8d shows the results of these tests. (These
are results from the dorm room data, but the classroom
data shows similar results.) The x-axis shows possible k-
values and the y-axis shows the training set sizes. In this
map, the colors reflect the overall accuracy of the clas-
sifier, with darker colors corresponding to higher accu-
racies. In general, we see that the optimal sample sizes
are between 8-11 when used with k-values between 7-10.
Accuracy in this area is around 98%. Small sample sizes
(<5) and big sample sizes (>25) see lower performance,
classifying about 90% of testing samples correctly. Based
on these results, we perform our tests using a sample size
of 10 and a k-value of 9.

10 Future Work
While GestureLite works well with a 98% recognition ac-
curacy in the environments laid out above, there is still a
great deal of room for more research in this area.

Range of Vision. GestureLite has a fairly limited field
of vision and the hand must be inside this area for gestures
to be detected. A larger array of photodiodes or using
photodiodes with a wider field of vision could increase
the area of detection.

Light Saturation. GestureLite does not work under
very bright lights or in the dark. In bright lights the pho-
todiodes become saturated, while in darkness, shadows
are not well defined for the sensors to pick up. These may

11

be, to a certain extent, unavoidable problems when relying
solely on ambient light.

Shadow Interference. Extra shadows in the environ-
ment, due to the user’s body or other people, interfere
with GestureLite’s performance. Also, as previously men-
tioned, GestureLite cannot function under consistently
shifting light intensities. These are all areas for improve-
ment if GestureLite is to become a more stable, user-
friendly product.

User Generalization. Currently, GestureLite has been
tested as a single-user system. In the future, we would like
GestureLite to recognize gestures from any user. This will
require more research into how similarly different people
perform the same gestures. It would also be interesting to
try and allow multiple users to perform gestures simulta-
neously.

Gesture Granularity. GestureLite currently works for
a pre-established dictionary of dynamic hand gestures.
We would like GestureLite to recognize finer-grained ges-
tures (using the fingers), which will likely require a denser
array of photodiodes. We would also like to recognize
static hand positions, which would require a new method
of detecting when a gesture starts and ends.

Hand Tracking. GestureLite currently only performs
gesture classification. The disadvantage of classification
over full hand reconstruction is that the language the de-
vice recognizes is limited to the pre-defined dictionary.
Furthermore, there is a learning curve to conquer before
interaction between user and machine is smooth. Expand-
ing GestureLite to be able to track hands and fingers in
real time using ambient light would be a huge advance-
ment in hand reconstruction. Perhaps a first step in this
direction is allowing GestureLite to recognize when mul-
tiple gestures are performed consecutively, which will re-
quire a new method of recognizing when a gesture starts
and ends.

Photodiode Arrangement. We set up the 3x3 arrange-
ment of photodiodes to record the largest range of data rel-
evant to the hand movements. This does not mean that this
arrangement or array size is optimal. Figure 9 shows the
overall accuracy of GestureLite (computed with a cross-
validation test as in Section 9.1) when we only use the data
from a couple of the sensors. These figures prove that all
nine sensors are not necessary for accurate recognition.
It would be useful to know what arrangement of sensors
and what size array is required for an ambient light-based
recognition system to work.

Figure 9: Gesture recognition accuracy based on dif-
ferent photodiode arrangements. The red circles depict
the sensors whose data was actually used for the accuracy
evaluation.

11 Related Work

In this section, we discuss related research on gesture
recognition technology. There are two basic strategies to
approaching hand gesture classification. One is a geomet-
ric approach, which reconstructs the hand based on certain
movement and position constraints of the hand [28, 33].
This approach requires no training and is easily extend-
able to any number of gestures. However, it can be com-
putationally expensive to fit the hand model (which has
27 degrees of freedom), and, depending on how the data
on the hand is collected, this approach may result in low
accuracy recognition. The second is a machine learning
approach, where the computer is taught what each gesture
should look like [10, 35, 47, 55]. This approach, while
requiring possibly many training samples , can also be
faster to run and much easier to implement. Because ma-
chine learning is based on training samples, this approach
is less generalizable to an entire population of users. A
discussion on current tested approaches of gathering data
on the hand follows.

Vision-based. The camera-based approach is perhaps
the most common approach to gesture recognition. The
simplest technique uses a 2d image or video stream in-
put of the hand [10, 24, 35, 55]. Image processing, of-
ten through skin color analysis, motion analysis, and edge
detection, is used to identify and separate the hand region
in photo. However, image processing often leads to con-
straints on the surrounding environment, as skin color in-
formation may be distorted by poor lighting or hard to
distinguish against a similar color background. Further-
more, there are problems of occlusion that always occur
when mapping a 3d shape down to two dimensions; essen-
tially every 3d hand position will become a 2d silhouette.
Lastly, using a camera to gather data is not a pervasive so-

12

lution; the hand must be in the field of view of the camera
for detection to take place.

To try to retain more 3d information about the hand’s
position, it’s possible to splice together information from
multiple 2d cameras [48] or use stereo cameras for a
depth image [17, 18]. However, these usually require
a much larger and more expensive setup; Sridhar and
Sowmya needed four machines and 12 cameras for their
system [48]. Limitations for these systems have to do with
algorithm efficiency. Multiple cameras will use more pro-
cessing time and reliable real-time stereo algorithms are
not easily obtained or implemented [35].

Infrared cameras are also being used in gesture recog-
nition systems, now [2, 8, 47]. Breuer’s infrared time-of-
flight cameras produce a low frequency light field which
is reflected off the environment and sensed by the camera.
Distances between the camera and the objects in the envi-
ronment can be computed by measuring the time the light
takes be reflected back to the camera sensor [8]. Using
infrared light thus solves two of the problems facing the
normal 2d cameras: 1) infrared cameras do not rely on
skin color analysis and so are more robust against light-
ing changes in the environment and 2) infrared cameras
can measure distances which means they can work better
with occluded objects. In the case of hand recognition,
this means that gestures with fingers or hands placed one
in front of the other can still be recognized. The Microsoft
Kinect [40] and the Leap Motion [26] are both examples
of systems that can perform precise hand detection and
recognition [15, 23, 47, 53]. One downside to IR cam-
eras is that they require special equipment (IR emitters
and sensors), unlike the 2d cameras that are already found
on almost any laptop or desktop computer today. Finally,
any camera-based approach will trigger privacy concerns,
especially those that require storing images of possibly
hundreds of training samples made by the user.

Audio-based. Although a more sparsely researched
area, Gupta et al. have shown that a sonic-based ges-
ture recognition system can exist and perform well. Their
system, Soundwave, leverages a device’s speakers and
microphones and uses the Doppler effect to detect mo-
tion around the device. This detected motion can provide
enough data to perform gesture recognition around the de-
vice. An audio-based system like Soundwave is particu-
larly promising because it can detect gestures without a
line-of-sight. However, work on Soundwave is still re-
quired to find a pitch that isn’t audible to us (children or
pets are particularly sensitive to high pitches). Finally,
because the Doppler effect depends on movement, this
method only works for dynamic, not static, gestures [13].

Wearables and Hand-helds. The rise of the smart-

watch is a testament to the potential that wearable tech-
nology has in todays world. Wearables are so well liked
by researchers because they offer a platform for many dif-
ferent types of sensors to occupy simultaneously. The
CyberGlove III, for example, has over 20 sensors that
can capture minute hand and finger movements [11, 21].
These sensors provide intimate details that can lead to ac-
curate gesture recognition systems. Lu et al. developed
an armband that can recognize 19 gestures with 95% ac-
curacy using electromyography (muscle) sensors and an
accelerometer [36]. Xu et al. created a classifier using
a smartwatch equipped with an accelerometer and gyro-
scope that identifies finger writing and 37 distinct gestures
with 95% and 97% accuracy, respectively [54]. Wearables
also have fewer location constraints; they are portable and
users don’t need to be concerned with blocking sensor
signals (versus camera-based systems, which must have
a straight line of sight between camera and hand). For ex-
ample, Nijron et al. developed a ring for users to wear
that allows them to type on an imaginary keyboard any-
where with a flat surface [43]. However, wearables have
a number of disadvantages, too. Their primary drawback
is that users do not have free, unimpeded immersion with
their device. Instead, they must remember to put on and
take off this second device that may also be cumbersome
or uncomfortable to wear. Also, because they are physical
items, wearable technology is more likely to get damaged
than the fully hands-free approaches.

Similar to wearables, there are also separate hand-held
controllers that are supposed to act as extensions of the
arm and can also be used for gesture recognition and
pointing. The Wii remote [45, 42] is an example of this
and it has the same advantages and limitations as those
above, although it is perhaps even more cumbersome to
use since it must be actively held at all times.

RF Signal-based. A very promising new modality for
human gesture recognition involves using radio frequency
(RF) signals. These signals are already pervasive in mo-
bile phones, televisions and other wireless devices, allow-
ing this method to be easily assimilated into our every-
day use. Most research in this field is based around the
idea that RF signals become distorted in the presence of
hand movements, and these amplitude variations are dis-
tinct enough to identify different gestures. AllSee [20]
and SideSwipe [57] are two examples based on this the-
ory, using TV/ RFID transmissions and GSM signals from
mobile phones, respectively. Another advantage of using
RF signals for hand gesture recognition is that a line-of-
sight is not required. WiSee, created at the University of
Washington, uses standard WiFi to perform full-body ges-
ture recognition with 94% accuracy throughout the home

13

and through walls [44]. So far, there has been little re-
search on more granular gesture recognition and single
point tracking. However, Sun et al.’s WiDraw demon-
strate that hand motion tracking can be done based on the
power of WiFi signals [51].

Light-based. Visible light is a powerful tool for any ap-
plication because it is so prevalent in our daily lives. For
the most part, visible light communications (VLC) stud-
ies have been focused on wireless communication through
modulating LED light intensities [34, 46]. Less research
has been done on using light as a basis for gesture recog-
nition, and any that has performs poorly in the presence of
changing ambient light. Okuli, a prototype system made
by Zhang et al., is one system that uses light to perform
finger tracking. It uses a low-power LED and two pho-
todiodes to locate the finger based on how the light is re-
flected off the finger. While a promising step in the right
direction, Okuli can become unstable due to interference
from ambient lighting or other reflective surfaces in the
environment [56]. LiSense, a work very similar to ours,
reconstructs the full 3d human skeleton of a user based
on an analysis of the shadows they cast. The LiSense
testbed is made of a large array of photodiodes on the floor
and a similar array of LEDs on the ceiling [31]. Because
LiSense is created for large-scale skeleton reconstruction,
it does not have the ability to accurately recognize hand
and finger gestures. Furthermore, LiSense requires full
control of the lighting environment to function properly,
which is not a feasible option for most commercial build-
ings.

12 Applications
There is a wealth of opportunity in the practical applica-
tions of human gesture recognition. In this section, we
discuss a few possible applications and the research cur-
rently being done in these fields.

Man-machine Interfaces. Gesture recognition inter-
faces could support, if not completely replace, the current
physical hardware that is necessary for user-machine in-
teractions. Gestures are already a part of daily human-
to-human communication; they would be a natural choice
for replacing the keyboard and mouse of a desktop com-
puter [35]. As devices become more portable in an age
of ubiquitous computing, they inevitably become smaller.
A product like the TypingRing [43] allows users to eas-
ily type on an imaginary full-sized keyboard rather than
squint at the miniature keyboard on a mobile phone. In
fact, Apple has recently filed a patent which details the use
of photodiodes and LEDs to create hover-sensing displays

that augment the traditional keyboard and trackpad [9].
As the IoT continues to amass interest, smart homes, filled
with smart devices, will become popular. Being able to
control smart home systems and devices from anywhere
in the home, hands-free, is possible with gesture recogni-
tion [29, 44].

Graphic Editors and Visualization. Graphic editors
could benefit from hand gesture recognition or tracking
systems. Drawings and animations, especially in 3d, are
much more intuitive to create with the hands than with a
standard mouse. KinectPaint [25] and WiDraw [51] are
a couple examples of how hand and finger movements
can be tracked and used to create drawings on a com-
puter. Gesture recognition can also be applied to visu-
alization technologies, allowing for easy manipulation of
viewpoints and zoom functions of 2d or 3d images. This is
relevant to any number of jobs, from architecture to fash-
ion design to video special effects editors to medicine.

Computer Games and Virtual Reality. Using ges-
tures in computer games and virtual reality (VR) creates a
more immersive experience. Hong et al. have developed
a system to play a Chinese chess game based on hand ges-
tures [27]. Ghyme et al. have built a 2d computer game
where an avatar is controlled (through movements and in-
teractions) via hand gestures. One particularly exciting
application is based on a study that shows that playing
video games can help stroke victims regain motor con-
trol and range of motion [3]. Gesture-based video games
can makes these games both more fun and also can take
an active role in helping rehabilitate people with physical
injuries. The most important aspect in virtual reality, per-
haps, is immersion. Gesture recognition and tracking use
in VR can help move toward a completely immersive ex-
perience. A user can point in the direction they want to
move or use gestures to interact with objects in the virtual
world [50].

Robotics Control. Other research has been focused
on how gestures can be used to operate robots remotely.
There are multiple studies concerning having a robot arm
replicate the motions of a user, including the ability to
pick up and put down objects [1, 22]. Waldherr et al. has
developed a robot that picks up trash at the specific loca-
tions pointed to by a human user [52]. Robotics control
has various applications in areas like surgery, construc-
tion, and research projects in extreme environments, to
name a few.

Sign Language. A popular goal of gesture recogni-
tion research is to accurately and wholly recognize sign
language [14, 49]. Sign language is the common mode

14

of communication for speech and hearing impaired peo-
ple. However, the majority of people do not understand
it. Thus, a sign language gesture-to-speech interpreter
could be a huge aide in crossing this language barrier. A
sign language recognition system could also help other-
wise untrained people learn the language easier. Promis-
ing advancements in the field have been made, with a
system made by Liang and Ouhyoung recognizing sen-
tences made from a 250-word vocabulary with an accu-
racy around 80% [32].

13 Conclusion
In this paper, we designed, implemented and tested Ges-
tureLite, a system that provides hand gesture detection
and classification using ambient light. We observe that
every hand movement casts a unique shadow pattern over
the GestureLite platform. GestureLite processes the light
intensity data gathered from the physical platform and ex-
tracts the core features of these patterns to apply them
to a KNN algorithm for classification. Our evaluations
show that, with proper training samples taken through-
out the day, GestureLite can accurately classify 98% of
user gestures. GestureLite is a low-cost product that is
adaptable to any indoor environment, making it a strong
option for commercial use. Already, the applications for
gesture recognition systems like GestureLite are endless.
GestureLite can be used in homes to interact with smart
appliances, or manufacturers can embed photodiodes into
tablets and phones to augment their touch screen capabil-
ities. We hope that our work will inspire more research
and innovation in both the gesture recognition field and in
the possibilities of re-using ambient light as a medium for
obtaining and communicating user information.

References
[1] L. Aggarwal, V. Gaur, and P. Verma. Design and im-

plementation of a wireless gesture controlled robotic
arm with vision. International Journal of Computer
Applications, 79(13), Oct 2013.

[2] Y.-K. Ahn, K.-S. Choi, Y.-C. Park, and K.-M.
Jung. Infrared camera-based hand gesture space
touch system implementation of smart device envi-
ronment. International Journal of Computer, Elec-
trical, Automation, Control and Information Engi-
neering, 7(10):1318 – 1322, 2013.

[3] G. Alankus, R. Proffitt, C. Kelleher, and J. Engsberg.
Stroke therapy through motion-based games: A case
study. In Proceedings of the 12th International ACM

SIGACCESS Conference on Computers and Acces-
sibility, ASSETS ’10, pages 219–226. ACM, 2010.

[4] Apple Inc. Apple ipad. Available at http://www.
apple.com/ipad/.

[5] Argon Design. 5 aspects of a good
user interface, 2014. http://www.
argondesign.com/news/2014/feb/5/
5-aspects-good-user-interface/.

[6] S. Balakrishnama, A. Ganapathiraju, and J. Picone.
Linear discriminant analysis for signal processing
problems. In Southeastcon ’99. Proceedings. IEEE,
pages 78–81, 1999.

[7] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is ”nearest neighbor” meaningful?
In Proceedings of the 7th International Conference
on Database Theory, pages 217–235, 1999.

[8] P. Breuer, C. Eckes, and S. Müller. Hand gesture
recognition with a novel ir time-of-flight range cam-
era: A pilot study. In Proceedings of the 3rd Inter-
national Conference on Computer Vision/Computer
Graphics Collaboration Techniques, MIRAGE’07,
pages 247–260. Springer-Verlag, 2007.

[9] M. Campbell. Apple patents hover-
sensing multitouch display, Feb
2016. http://appleinsider.
com/articles/16/02/02/
apple-patents-hover-sensing-multitouch-display-.

[10] F.-S. Chen, C.-M. Fu, and C.-L. Huang. Hand ges-
ture recognition using a real-time tracking method
and hidden markov models. Image and Vision Com-
puting, 21(8):745 – 758, 2003.

[11] CyberGlove Systems. Cyberglove iii. Available
at http://www.cyberglovesystems.com/
cyberglove-iii/.

[12] Fitbit Inc. Fitbit. Available at https://www.
fitbit.com/.

[13] S. Gupta, D. Morris, S. Patel, and D. Tan. Sound-
wave: Using the doppler effect to sense gestures. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2012.

[14] Z. Halim and G. Abbas. A kinect-based sign lan-
guage hand gesture recognition system for hearing-
and speech-impaired: A pilot study of pakistani sign
language. Assistive Technology, 27(1):34–43, 2015.

[15] J. Han, L. Shao, D. Xu, and J. Shotton. En-
hanced computer vision with microsoft kinect sen-
sor: A review. IEEE Transactions on Cybernetics,
43(5):1318–1334, Oct 2013.

[16] R. Harper, T. Rodden, Y. Rogers, and A. Sellen. Be-
ing Human: Human Computer Interaction in 2020.
Microsoft Research Ltd, April 2008.

15

[17] P.-K. Huang, T.-Y. Lin, H.-T. Lin, C.-H. Wu, C.-
C. Hsiao, C.-K. Liao, and P. Lemmens. Real-time
stereo matching for 3d hand gesture recognition.
In SoC Design Conference (ISOCC), 2012 Interna-
tional, pages 29–32, Nov 2012.

[18] R. R. Igorevich, P. Park, J. Choi, and D. Min. Two
hand gesture recognition using stereo camera. Inter-
national Journal of Computer and Electrical Engi-
neering, 5(1), Feb 2013.

[19] June Life Inc. June oven. Available at https://
juneoven.com/.

[20] B. Kellogg, V. Talla, and S. Gollakota. Bringing
gesture recognition to all devices. In Proceedings
of the 11th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’14, pages
303–316. USENIX Association, 2014.

[21] G. D. Kessler, L. F. Hodges, and N. Walker. Evalua-
tion of the cyberglove as a whole-hand input device.
ACM Trans. Comput.-Hum. Interact., 2(4):263–283,
Dec 1995.

[22] S. A. Khajone, P. D. S. W. Mohod, and P. V. M.
Harne. Implementation of a wireless gesture con-
trolled robotic arm. International Journal of Ad-
vanced Research in Electronics and Communication
Engineering (IJARECE), 4(5), May 2015.

[23] K. Khoshelham and S. O. Elberink. Accuracy and
resolution of kinect depth data for indoor mapping
applications. Sensors, 12(2), Feb 2012.

[24] K. K. Kim, K. C. Kwak, and S. Y. Ch. Gesture
analysis for human-robot interaction. In 2006 8th
International Conference Advanced Communication
Technology, volume 3, pages 4 pp.–1827, Feb 2006.

[25] KinectEDucation. Kinect paint. Available at
http://www.kinecteducation.com/
blog/tag/drawing-with-kinect/.

[26] Leap Motion. Available at https://www.
leapmotion.com/.

[27] D.-H. Lee and K.-S. Hong. Game interface using
hand gesture recognition. In Computer Sciences and
Convergence Information Technology (ICCIT), 2010
5th International Conference on, pages 1092–1097,
Nov 2010.

[28] J. Lee and T. L. Kunii. Model-based analysis of
hand posture. IEEE Computer Graphics and Appli-
cations, 15(5):77–86, Sep 1995.

[29] S. H. Lee, M. K. Sohn, D. J. Kim, B. Kim, and
H. Kim. Smart tv interaction system using face and
hand gesture recognition. In 2013 IEEE Interna-
tional Conference on Consumer Electronics (ICCE),
pages 173–174, Jan 2013.

[30] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata.

Detecting outliers: Do not use standard deviation
around the mean, use absolute deviation around the
median. Journal of Experimental Social Psychology,
49:764 – 766, 2013.

[31] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou.
Human sensing using visible light communication.
In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking,
2015.

[32] R.-H. Liang and M. Ouhyoung. A real-time contin-
uous gesture recognition system for sign language.
In Automatic Face and Gesture Recognition, 1998.
Proceedings. Third IEEE International Conference
on, pages 558–567, Apr 1998.

[33] J. Lin, Y. Wu, and T. S. Huang. Modeling the con-
straints of human hand motion. In Human Motion,
2000. Proceedings. Workshop on, pages 121–126,
2000.

[34] T. D. C. Little, P. Dib, K. Shah, N. Barraford, and
B. Gallagher. Using led lighting for ubiquitous in-
door wireless networking. In 2008 IEEE Interna-
tional Conference on Wireless and Mobile Comput-
ing, Networking and Communications, pages 373–
378, Oct 2008.

[35] R. Lockton. Hand gesture recognition using com-
puter vision. Technical report, Balliol College Ox-
ford University, 2002.

[36] Z. Lu, X. Chen, Q. Li, X. Zhang, and P. Zhou. A
hand gesture recognition framework and wearable
gesture-based interaction prototype for mobile de-
vices. IEEE Transactions on Human-Machine Sys-
tems, 44(2):293–299, April 2014.

[37] C. D. Manning, H. Schtze, and P. Raghavan. k
nearest neighbor. In Introduction to Information
Retrieval, chapter 14.3, pages 297–301. Cambridge
University Press, July 2008.

[38] R. B. Marimont and M. B. Shapiro. Nearest
neighbour searches and the curse of dimensionality.
IMA Journal of Applied Mathematics, pages 59–70,
1979.

[39] Microsoft Corp. User interface princi-
ples. https://msdn.microsoft.com/
en-us/library/windows/desktop/
ff728831(v=vs.85).aspx.

[40] Microsoft Corp. Xbox. Kinect. Available at http:
//www.xbox.com/en-US/xbox-one/
accessories/kinect-for-xbox-one.

[41] Nest Labs. Nest thermostat. Available
at https://nest.com/thermostat/
meet-nest-thermostat/.

[42] Nintendo. Wii remote. Available at https:

16

//store.nintendo.com/ng3/browse/
productDetailColorSizePicker.jsp?
productId=prod150198#.

[43] S. Nirjon, J. Gummeson, D. Gelb, and K.-H. Kim.
Typingring: A wearable ring platform for text in-
put. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’15, pages 227–239. ACM, 2015.

[44] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-
home gesture recognition using wireless signals. In
Proceedings of the 19th Annual International Con-
ference on Mobile Computing & Networking, 2013.

[45] T. Schlomer, B. Poppinga, N. Henze, and S. Boll.
Gesture recognition with a wii controller. In Pro-
ceedings of the Second International Conference on
Tangible and Embedded Interaction, pages 11–14.
ACM, 2008.

[46] S. Schmid, G. Corbellini, S. Mangold, and T. R.
Gross. Led-to-led visible light communication net-
works. In Proceedings of the Fourteenth ACM Inter-
national Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc ’13, pages 1–10. ACM,
2013.

[47] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon,
M. Finocchio, A. Blake, M. Cook, and R. Moore.
Real-time human pose recognition in parts from sin-
gle depth images. Commun. ACM, 56(1):116–124,
Jan 2013.

[48] A. Sridhar and A. Sowmya. Advances in Visual
Computing: 4th International Symposium, ISVC
2008, Las Vegas, NV, USA, December 1-3, 2008.
Proceedings, Part I, chapter Multiple Camera, Mul-
tiple Person Tracking with Pointing Gesture Recog-
nition in Immersive Environments, pages 508–519.
Springer Berlin Heidelberg, 2008.

[49] T. Starner and A. Pentland. Real-time american
sign language recognition from video using hidden
markov models. In Computer Vision, 1995. Proceed-
ings., International Symposium on, pages 265–270,
Nov 1995.

[50] D. J. Sturman, D. Zeltzer, and S. Pieper. Hands-
on interaction with virtual environments. In Pro-
ceedings of the 2Nd Annual ACM SIGGRAPH Sym-
posium on User Interface Software and Technology,
UIST ’89, pages 19–24. ACM, 1989.

[51] L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim.
Widraw: Enabling hands-free drawing in the air on
commodity wifi devices. In Proceedings of the 21st
Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’15, pages 77–
89. ACM, 2015.

[52] S. Waldherr, R. Romero, and S. Thrun. A gesture
based interface for human-robot interaction. Auton.
Robots, 9(2):151–173, Sep 2000.

[53] F. Weichert, D. Bachmann, B. Rudak, and D. Fis-
seler. Analysis of the accuracy and robustness of the
leap motion controller. Sensors, 13(5), May 2013.

[54] C. Xu, P. H. Pathak, and P. Mohapatra. Finger-
writing with smartwatch: A case for finger and hand
gesture recognition using smartwatch. In Proceed-
ings of the 16th International Workshop on Mobile
Computing Systems and Applications, HotMobile
’15, pages 9–14. ACM, 2015.

[55] H.-S. Yoon, J. Soh, Y. J. Bae, and H. S. Yang. Hand
gesture recognition using combined features of lo-
cation, angle and velocity. Pattern Recognition,
34(7):1491 – 1501, 2001.

[56] C. Zhang, J. Tabor, J. Zhang, and X. Zhang. Ex-
tending mobile interaction through near-field visible
light sensing. In Proceedings of the 21st Annual In-
ternational Conference on Mobile Computing and
Networking, MobiCom ’15, pages 345–357. ACM,
2015.

[57] C. Zhao, K.-Y. Chen, M. T. I. Aumi, S. Patel, and
M. S. Reynolds. Sideswipe: Detecting in-air ges-
tures around mobile devices using actual gsm signal.
In Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology, UIST
’14, pages 527–534. ACM, 2014.

17

	Reusing Ambient Light to Recognize Hand Gestures
	Recommended Citation

	tmp.1596484807.pdf.rAgBG

