
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-30-2015

Cell Representations of the Configuration Space for Planning Cell Representations of the Configuration Space for Planning

Optimal Paths Optimal Paths

Ajay Kannan
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kannan, Ajay, "Cell Representations of the Configuration Space for Planning Optimal Paths" (2015).
Dartmouth College Undergraduate Theses. 97.
https://digitalcommons.dartmouth.edu/senior_theses/97

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/97?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Cell Representations of the Configuration Space for
Planning Optimal Paths

Ajay Kannan
Advisor: Devin Balkcom

May 30, 2015

Abstract

This paper proposes sampling techniques to approximate the configuration space
for optimal motion planning. We sample valid configurations in the workspace and
construct path subconvex cells in the free configuration space. The radius of each cell
is calculated using lower bounds on the robot’s minimum time to collision. Using the-
orems about path convexity, the shortest paths found between any two points in the
decomposed space are guaranteed to be safe. Experimental results are provided for a
planar arm.

Dartmouth Computer Science Technical Report TR2015-776

1

Contents

1 Introduction 3
1.1 Related Work . 3
1.2 Main Contribution . 4

2 Path Subconvexity and Coverage Guarantees 4
2.1 Path convex and subconvex sets . 5
2.2 Optimal Path Guarantees with Cε Coverage 6
2.3 Requirements to Guarantee Cε Coverage . 6

3 Constructing Path Subconvex Balls 6
3.1 Case Study: Robotic Arm . 7

4 Cε Coverage Algorithms 8
4.1 Cell Decomposition . 8
4.2 Experimental Results . 8

5 Algorithm Adaptations 9
5.1 Techniques to Increase Cell Size . 9
5.2 Distributing Work . 14

6 Conclusions 15

7 Acknowledgments 16

2

1 Introduction

This paper proposes an algorithm for configuration space decomposition that is useful for
planning optimal paths. Each cell in the decomposition is path subconvex (defined by
Balkcom et al. [1]) to the free space. This property guarantees a collision-free shortest
path between any two points in the same connected component of the decomposition. The
outcome of this algorithm is a set of cells that can be queried for lowest-cost paths. These
lowest-cost paths are optimal over all possible paths that do not venture closer than the
tolerable error ε to obstacles in the configuration space.

With an approximation of the free configuration space in hand, previously difficult motion
planning problems become tractable. Optimal motion plans can be found by (1) creating
a connectivity graph of points within and along cell boundaries and then (2) pathfinding
with a graph algorithm. The decomposition can also be leveraged for other tasks, such as
obtaining diverse sets of paths around obstacles, creating motion plans with varying margins
for error, and determining free space connectedness. While some of these tasks are achievable
using different flavors of point-sampling planners, it is often unclear when to stop sampling
to achieve a desired level of accuracy.

1.1 Related Work

Approximate cell decomposition (ACD), hybrid motion planning, and optimal motion plan-
ning algorithms are relevant to the work presented here. ACD algorithms divide the config-
uration space into cells and label them as free, collision, or mixed (for example, see [7]). A
similarity between ACD and the algorithm developed in this paper is that both construct
approximations of the free space using cells. However, ACD algorithms are tangential in
focus to the algorithm presented here. Most importantly, generic ACDs are not concerned
with path convexity. Thus, generic decompositions do not provide enough information to
guarantee path safety for some robots. Path convexity and provably safe optimal trajectories,
however, are the crux of this paper.

Some have sought hybrid approaches to combine the benefits of decomposition and
sampling-based motion planning. Zhang, Kim, and Manocha’s PRM-augmenting decom-
position and Saltzman, Hemmer, Raveh, and Halperin’s manifold sampling are two such
examples. Zhang et al. place free point samples in mixed cells, as determined by a hierar-
chical ACD. Because sampling only occurs in mixed cells, the roadmap is far denser near
boundaries than in a regular PRM [6]. Furthermore, they avoid generating large numbers
of cells by decomposing a mixed cell only when a path cannot be found via the roadmap of
samples [6]. Their algorithm provides information about path feasibility and is more time
and memory efficient than the one presented here. However, PRM-augmented decomposi-
tion does not provide an optimal path guarantee that is stronger than a PRM’s asymptotic
guarantee.

Saltzman et al. suggest planning paths using manifold sampling [4]. Their algorithm
consists of using simple, overlapping manifold samples to create a connectivity graph for
similar purposes as a PRM, but with fewer samples. Like the algorithm in this paper, each
sample captures space information rather than just a single point. Their paper does not seek
to provide guarantees for optimal motion planning.

3

There are also approaches such as PRM* that provide optimal motion planning without
cell decomposition. PRM* provides asymptotic optimality by specifying the distance for
which roadmap connections must be checked as a function of the number of samples [3].
Finally, there has been work on optimal steering methods for some specific systems, such
as variants of wheeled vehicles (as mentioned in Balkcom et al. [1]). This paper carves
out a niche in that it is a decomposition approach that provides optimality guarantees for
generalized robotic systems with a finite amount of sampling.

1.2 Main Contribution

We propose sampling configurations in the workspace and constructing metric cells com-
pletely contained within the free space. These cells can be used for path planning with
optimality guarantees with a degree of error set as a parameter.

We construct a free cell by calculating a lower bound on the minimum time to collision
from a valid sampled configuration. The time to collision is given by dividing the minimum
distance between the robot and an obstacle in the work space by an upper bound on the
maximum speed of the robot. Using bounds on time to collision and maximum speed is a
practically-driven choice. It is often not feasible to precisely calculate these values for robots.

Given a configuration space C, the skeleton of the algorithm we propose is as follows:

1. Sample a point q ∈ C.

2. If q ∈ Cfree, compute a lower bound on the minimum time to collision tcol. Optionally,
if q ∈ Cobs, compute a lower bound on the minimum time to escape collision tescape.

3. Let R denote the set of reachable configurations within tcol (or tescape). Choose a set
S ⊆ R which is path subconvex with respect to R.

4. Create an L∞ cell within S.

There are many computational costs to be mindful of in this approach. Naturally, we
wish to maximize the size of free space cells. With larger cells, the hierarchical sampling
process can terminate earlier to acquire the same coverage of the configuration space. This
also leads to less data processing costs when using cells for motion planning problems. The
size of the cells depends on the quality of the lower bound on time to collision. However,
computing high quality lower bounds on time to collision may increase computation time.
Thus, a balancing act between quality of the bound and time cost arises.

Though time and memory costs can be improved to some extent, the number of cells
will still be large for the vast majority of complex robots with many obstacles. Because
this decomposition is a one-time task for a particular robot and set of static obstacles, we
envision scenarios where it may be reasonable to invest a lot of computing power towards
this task. Hence, parallelization results are provided and discussed.

2 Path Subconvexity and Coverage Guarantees

This section provides crucial theoretical background necessary for this algorithm’s safety and
optimality guarantees. This groundwork yields two important outcomes:

4

1. Let S be a set of cells path subconvex to the free configuration space covering Cε,
the free configuration space more than ε workspace distance from obstacles. Then S
contains optimal motion plans between any two points in Cε that venture no closer
than ε to obstacles.

2. We can narrow the search for optimal paths contained within Cε given set S.

The definitions and theorems provided in this section were originally described in Balkcom
et al. [1].

2.1 Path convex and subconvex sets

To define path convexity, we must first formalize the definition of a steering method. A
steering method S is a set of continuous curves in Cfree such that ∀x, y ∈ Cfree, there exists
a curve in S from x to y (provided such a curve is possible). S is optimal under metric d if
each curve from x to y is minimum cost over all possible curves from x to y, according to d.

Now we define path convexity over closed sets of the configuration space. Let S be an
optimal steering method on a metric space C. Then a set X ∈ C is path convex under S if
all curves in S lie entirely within X [1]. To illustrate simple cases in which path convexity
does and does not hold, consider the solid hemisphere example given by [1], shown in Figure
1.

Figure 1: Consider the points on the curved surface of a solid hemisphere. With Euclidean
distance as the metric, shortest paths between points close to the equator leave the curved
region, taking shortcuts via the flat base. Hence, the curved region is not path convex. Now
consider a smaller set of the curved region of the hemisphere: all points within 15 degrees of
the pole. This set is path convex because using the bottom half of the hemisphere does not
provide a viable shortcut.

Non-path convex regions occur for enough robots that it makes sense to define a softer
convexity requirement. Hence, path subconvexity is defined as follows: let S be an optimal
steering method on a metric space C. Then a set X ∈ C is subconvex to Y ∈ C if all curves
in S lie within Y . In the scenario provided above, the curved region of the solid hemisphere
is path subconvex to the entire surface of the hemisphere, including the flat base.

Consider a metric ball with radius r centered at x ∈ C according to some metric d,
notated as Bd

r [x]. The following theorem, stated and proved by Balkcom et al., states that
a ball subconvex to Bd

r [x] can always be found.

5

Theorem: Let S be an optimal steering method under metric d on metric space C.
Furthermore let x ∈ C. Then Bd

r/2[x] is subconvex to Bd
r [x].

These metric balls are central to the decomposition algorithm.

2.2 Optimal Path Guarantees with Cε Coverage

Suppose we cover Cε with cells that are path subconvex to the free space. Further suppose
that the cells overlap only at their boundaries. Then Balkcom et al. provide a method to
find an optimal path that lies within that set of cells. Formally, the statement is as follows:

Theorem: Let Cε be covered with cells that are path subconvex to the free space. Assume
the local metric is continuous at the boundaries of the metric cells. Furthermore, choose
any two points that lie within the space covered by union of the metric balls, pstart and
pend. Then there exists an optimal path described by a non-repeating sequence of cells
c1, c2, ..., cn and one point within each cell p1, p2, ..., pn (except for the first and last cell
which additionally contains the starting and ending points). This optimal trajectory is given
by pstart, p1, p2, p3, ..., pn, pend.

Suppose we densely sample points within cells and on cell boundaries to create a roadmap.
Then this theorem allows us to prune the optimal path search.

2.3 Requirements to Guarantee Cε Coverage

The previous sections yield a method for finding optimal motion plans over Cε. However,
algorithms for obtaining a tiling of Cε are not immediately obvious. The following theorem
proves ACD algorithms can obtain Cε coverage with finite sampling.

Theorem: Let e(q) be the minimum Euclidean distance between a robot in configuration
q and a workspace obstacle. Let vmax be the maximum speed of any point on the robot
over all configurations of the robot. Furthermore let the function h(e(q)) yield a radius for
a hypercube subconvex to Bd

e(q)/vmax
[q]. For any ε > 0 and hypercube cell H with center q

and radius s, H contains no points within Cε if e(q) < ε/2 and s < h(ε/2).
In an approximate cell decomposition approach, this theorem tells us mixed cells that

satisfy the two conditions do not need to be further decomposed to provide Cε coverage.

3 Constructing Path Subconvex Balls

Here we present an algorithm to compute cells that are path subconvex to the free space.
In short, workspace information is used to compute a lower bound on minimum time to col-
lision given a particular configuration. Minimum time to collision then yields conservative
estimates of maximum allowable deviations of configuration space parameters given maxi-
mum parameter speeds. Applying the theorem from Section 2.1, we divide the radius of this
reachable set by two and place a hypercube within this path subconvex region. Note that
a conservative radius for the metric balls is calculated so that no ball intersects with the
collision space.

Time to collision for a particular configuration q can be lower bounded with two pieces
of information: e(q) and vmax (defined in Section 2.3). A lower bound on minimum time to

6

collision is tcol = e(q)/vmax. As Balkcom et al. [1] note, finding a constant vmax upper bound
requires that the robot obeys Lipschitz continuity. In short, this means that the maximum
workspace velocity of all points constituting the robot over all configurations is bounded by
a constant and the rate of change in any path in the configuration space (parameterized by
the chosen metric) is bounded by a constant.

3.1 Case Study: Robotic Arm

A planar robot arm example is provided to demonstrate the algorithms in this paper and
also give experimental results.

θ2

θ1

l1

l2

Figure 2: Two joint robot arm with two rectangular obstacles in a two-dimensional world.
Note: this diagram only shows notation. The actual scenarios tested are shown in Figure 6.

Consider a polygonal chain robot arm with n segments and some number of obstacles in
the workspace. Denote the length of each segment i with li, and let each joint ji on the robot
correspond to the far endpoint of the ith segment. Furthermore, let the angle of the ith joint
(with respect to the previous joint’s angle) be denoted as θi, with each joint’s maximum
angular velocity denoted by ωi. Then the position of the ith joint

(xji , yji) = (
i∑

k=1

[lkcos(θsi)],
i∑

k=1

[lksin(θsi)])

where θsi =
∑k

m=1 θm.
Fixing a robot arm’s dimensions, the configuration of the arm is captured by 〈θ1, θ2, θ3, ..., θn〉.

Because the range of motion of this arm within a specific time interval is expensive to
compute deterministically, the e(q)/vmax naive bound is a starting point for ball construction.
In this scenario, vmax can be computed by assuming the arm is maximally extended with all
joints rotating in the same direction. We then have that

vmax ≤
n∑
i=1

[li

i∑
m=1

ωm]

The lower bound on time to collision is e(q)/vmax.

7

4 Cε Coverage Algorithms

4.1 Cell Decomposition

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3: An example of using a hierarchical decomposition approach for a two chain planar
arm robot. The black represents obstacle space, scanned using brute force techniques. The
white boxes outlined in red are free space cells. The gray, present in the small gap between
the collision space and the free cells, represents mixed cells in which decomposition halted.

As given by Section 2.3, only cells with center q such that e(q) > ε/2 or radius s > h(ε/2)
must be considered to achieve Cε coverage. Like many naive cell decomposition approaches,
we could simply tile the space with hypercubes of side length h(ε/2). However, a hierarchical
decomposition approach would use fewer cells by placing larger cells in safer areas of the
configuration space (shown in Figure 4). Hence, a hierarchical decomposition algorithm is
given in Algorithm 1. This hierarchical algorithm leads to decompositions like in Figure 3.

Hierarchical cell decomposition was selected to cover the space instead of non-ACD algo-
rithms for two main reasons. First, other sampling techniques tested (grid, uniform random,
and medial axis sampling) tend to create cells that overlap in regions far from obstacles.
These other sampling methods also struggle to cover areas close to obstacles. These phe-
nomena can be seen in Figure 5. Hierarchical sampling allows for large, non-overlapping cells
in regions far from obstacles and also ensures coverage of areas with smaller boxes. Secondly,
the boundaries of cells align in hierarchical decomposition, allowing us to use the main result
from Section 2.2. We can run a pruned pathfinding algorithm with a roadmap consisting of
samples on and inside cell boundaries.

4.2 Experimental Results

The scenarios tested are shown in Figure 6. As shown in Table 1, the number of cells
and time required for the hierarchical decomposition to complete increases rapidly with

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Configuration space for a two joint arm in the θ1θ2 space. Cells (displayed in
white) placed closer to obstacles (in black) tend to be smaller than those far away from
configuration space obstacles.

dimension. Decreasing ε also increases time and memory costs. Notice that for two different
values of ε in the 3-joint arm, the decomposition is the same. This is because ε = 0.3 and
ε = 0.4 require descending to the same level in the decomposition tree. Figure 7 shows the
graph algorithm and resulting path for the 2-joint arm example.

5 Algorithm Adaptations

5.1 Techniques to Increase Cell Size

Sometimes it may be beneficial to invest additional computing power to increase the radius
of the metric balls. The simplest idea is to merge neighboring cells if all are free. Another
idea is to increase the size of the safe cells. The safe radius computed in Section 3 is very
conservative, and in many cases, the balls can be made significantly bigger. While this safe
radius can be adapted on a robot-by-robot basis, the following is an iterative approach to
expanding cells in the general case.

The crux of the algorithm is performing a binary search for the maximal lower bound
on time to collision, given the the e(q)/vmax bound construction (see Algorithm 2). The
lower limit of the search range is the naive e(q)/vmax value, and the upper limit can be any
reasonable value. For example, in a planar robot, the upper limit of the range could be set
to the time it takes the slowest joint to make a full revolution. At each step in the binary
search, the current tcol is used to recompute v′max, the fastest moving point on the robot

9

Algorithm 1: Hierarchical Decomposition Algorithm

input : configuration space C with dimension n, error tolerance ε
output: hierarchical decomposition tree
root← tree node representing C;
toDecompose← queue(root);
while toDecompose is not empty do

currentNode← toDecompose.dequeue();
q ← center of currentNode;
if currentNode ⊆ Bd

r/2[q] then

Mark currentNode as free;
else if e(q) < ε/2 and currentNode radius s < h(ε/2) then

Mark as mixed, do not decompose
else

children← 2n children tree nodes of currentNode;
toDecompose.enqueue(children);

return root;

Joints Epsilon Tree Nodes Cells Time (s)
2 0.01 1.0 ×106 17,412 2
2 0.05 < 1× 106 4,230 .2
2 0.1 < 1× 106 2,076 .2
3 0.1 2.8 ×108 3.9 ×106 489
3 0.2 4.1 ×107 9.2 ×105 93
3 0.3 6.0 ×106 2.2 ×105 26
3 0.4 6.0 ×106 2.2 ×105 26
4 0.2 1.1 ×109 9.5 ×107 1871
4 0.4 1.1 ×108 1.3 ×107 365

Table 1: Decompositions for the 2, 3, and 4-joint arms at various error tolerances.

over all configurations reachable in tcol. Using the current value of e(q)/v′max, we determine
if the robot is definitely safe or there could be a collision. In the former case, the time to
collision estimate is increased. In the latter, the time to collision is decreased. The algorithm
continues until some threshold in search range is met.

The reason this algorithm works is that maximum velocity can be better bounded given
a configuration and a maximum amount of time to move. For example, in a robot arm,
suppose that the arm is folded in on itself (see Figure 8). Then if the time to collision is
estimated to be small, the arm cannot fully extend. Instead of using the maximum velocity
of the end effector when outstretched, which is the maximum velocity of the robot arm over
all configurations, we instead only have to compute the maximum velocity of the maximum
extent of the arm given some small amount of time.

Another framework for increasing ball size is to leverage robot motion constraints. In the
binary search algorithm, vmax is an upper bound on the maximum velocity over all points
on the robot over all configurations reachable in the time allotted. Using system-specific

10

Figure 5: Grid sampling tends to oversample very safe areas of the configuration space and
undersample areas closer to obstacles. Free space boxes are shown in white and collision
boxes are shown in black. Uncovered areas are shown in grey.

robot movement constraints, the time to collision bound can be further improved. The best
time to collision estimate using the e(q)/vmax formulation is calculating time to collision for
each point on the robot with information about the maximum velocity vectors and obstacle
collision distances in all directions. Though this is not computationally feasible in most
cases, it may be feasible to group sets of points together to calculate this information for a
tighter minimum time to collision bound. For example, splitting the planar arm into small
sections and calculating the minimum time to collision for each piece of the arm can yield
bigger boxes.

Both strategies were undertaken to improve the minimum time to collision lower bound
for the robot arm. Calculating the maximum extent of an arbitrary length arm given a
current configuration and a set of constraints is not an analytically solvable problem, as
mentioned in [2]. However, the following approach was used to obtain an upper bound on
maximal extent given a time to collision estimate (see experimental results in Table 2):

1. Calculate the maximum length of each consecutive pair of segments given a time to
collision estimate. Let n be the number of segments in the robot. Consider the robot
as a collection of ceil(n/2) segments where each segment in the new arm is the length
of the maximum extent of the pair of segments it represents.

2. Using the new arm segment lengths from Step 1, calculate e(q) and vmax for the first
segment, then the union of the first and second segment, then the union of the first
through third segments, and so on. In effect, we consider the arm robot as a collection
of arm robots with different numbers of segments. This provides a coarse method of
localizing maximum velocity and closest collision to gain a better time to collision lower
bound.

3. If any subsection of the arm’s e(q) and vmax values result in possible collision, reduce
the time to collision. If all arm subsections are safe, then increase the time to collision.

11

(a) 2R Arm

(b) 3R Arm

(c) 3R Arm

Figure 6: These diagrams depict the arm scenarios tested. The starting configuration is
given in dark blue. The end goal configuration is given in red. The arm is anchored on the
left side. The gray polygons are obstacles. The path is shown by the light blue lines. The
amount of change between each blue line is proportional to the sidelength of the box.

12

Figure 7: The configuration space and path for the 2-joint arm scenario given in Figure 6.
The boxes outlined in green depict cells that were searched during A* to find the path shown
in blue.

Initial (naive) tcol lower bound Increase tcol,calculate new max reach andv'max.
Decrease tcol,calculate new max reach andv'max.

Max Reaches:

Figure 8: A diagram for the binary search algorithm on tcol. The red point demarcates the
configuration with the highest v′max upper bound. The closed curved region is the actual
reachable set of configurations with the given estimate for tcol. The black rectangle is a
configuration space obstacle. The square outlined in black represents the cell sample we
construct. We increase and decrease tcol by decreasing amounts until some threshold is met.
We move to the third state if e(q)/v′max < tcol and move to the second state otherwise.

13

Algorithm 2: Binary search method for time to collision computation

input : configuration space C, q, tol (error tolerance in binary search)
output: improved lower bound for time to collision
lower ← e(q)/vmax;
upper ← maximum time to collision;
while upper − lower > tol do

m← lower+upper
2

;
v′max ← upper bound of vmax in Bd

m[q];
if v′max ×m > e(q) then

upper ← m
else

lower ← m

return lower;

Joints Epsilon Iterative? Cells Time (s)
2 0.01 No 30,899 2
2 0.01 Yes 30,180 2
2 0.05 No 8,283 0.2
2 0.05 Yes 7,578 0.2
2 0.1 No 4,466 0.2
2 0.1 Yes 3,774 0.2
3 0.2 No 4,947,292 94
3 0.2 Yes 4,841,676 93
3 0.4 No 1,459,932 27
3 0.4 Yes 1,386,996 26

Table 2: Relative performance of decomposition with and without iterative widening using
the methods mentioned in Section 5.1. Note: merging cells has been disabled.

Experimentation suggests that this iterative approach provides some gains, as seen in
Table 2 and Figure 9).

5.2 Distributing Work

Decomposition must only occur once for a particular robot and a set of static obstacles. Thus,
it is sometimes reasonable to expend a large amount of computing power for decomposition.
Hierarchical decomposition is an embarrassingly parallel task, but collecting the information
back for optimal path searches is more challenging.

In this paper, we examine using MPI for distributing work. Let there be one master node
and n worker nodes. The master node begins splitting the configuration space until there
are at least n mixed cells to be further decomposed by the n worker nodes. The master node
then sends cells that need to be further decomposed to the worker nodes. The worker nodes
take over this decomposition until completion. The results from this model are shown in
Table 3. In cases where configuration space complexity is not uniform, some nodes terminate

14

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a) No widening applied

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b) Iterative widening applied

Figure 9: A side by side comparison of the boxes yielded from iterative widening. Because
of the tree approach, many cells stay the same size, but there are improvements in the upper
quadrants after widening.

Joints Epsilon MPI? Decomposition Time (s) Total Time (s)
2 0.002 Yes 70 161
2 0.002 No 159 159
2 0.003 Yes 17 18
2 0.003 No 33 33
2 0.005 Yes 5 5
2 0.005 No 8 8

Table 3: Experimental results using MPI without work stealing. The total time includes
both decomposition time and the time for the master to collect all nodes.

quickly and a few others work for much longer periods of time. In these cases, work stealing
may be beneficial.

Because shared memory is limited when using multiple cores, it is not a viable option
for large decomposition tasks. Communicating large volumes of fully decomposed cells from
workers to the master node sometimes makes sense. However, in cases with large numbers
of workers each with large numbers of cells to transmit to the master node, the master node
may take long periods of time to collect all information. In these scenarios, it makes sense
to send back summarized information or distribute pathfinding.

6 Conclusions

This paper detailed an algorithm to decompose the configuration space into cells that are
path subconvex to the free space. Configuration space cells are constructed via a time to
collision lower bound obtained using workspace information. Theoretical results proven by
Balkcom et al. [1] show that because these cells are path subconvex to the free space, motion

15

plans over this space are guaranteed to be safe.
This framework for optimal motion planning is easily customizable to a variety of sce-

narios. There are many generalized and robot-specific algorithmic choices left to the user’s
discretion, as highlighted in the arm robot case study. Iterative approaches to expanding
cells may be useful, especially when the lower bounds computed are very conservative. In
addition, leveraging system-specific vmax and locality of maximum velocity increases cell
sizes.

Though decomposition is time and memory intensive, it is only required once per a pairing
of robot and a set of static workspace obstacles. However, it is untested as to how feasible
these decomposition methods can be made in robots with over four degrees of freedom.

Current work seeks to improve time and memory costs of this approach. Path subcon-
vexity approximation could largely reduce the number of cells necessary to tile the space.
In this approach, we identify regions of the space well approximated by the local planner
instead of guaranteeing subconvexity in these regions. The regions can be obtained via
sampling points within an undecomposed cell, connecting them with the local planner, and
then estimating whether the lowest cost paths within the cell are close to the local planner
distance estimates, with some degree of error tolerance.

A second potential time improvement comes from creating a better A* search algorithm.
Roadmap nodes are placed on the boundaries of cells. However, since the number of bound-
aries increases rapidly as the number of dimensions increases, the search uses many samples,
and thus a lot of time and memory. A possible improvement is to search for paths over a
constant (small) number of samples per boundary, then iteratively shorten. The shortening
procedure may impose the constraint that edges used in the original path must be used in
the final path. In this scenario, additional samples can be placed along used boundaries, and
the Viterbi algorithm can be used to get a shorter path along the chosen cell boundaries.

In addition, one of the most time-intensive pieces of the algorithm is calculating minimum
distances to obstacles from the robot. For each ball, at least one distance calculation has
to be performed. For the binary search for cell radius size, additional distance calculations
must be carried out. Improving collision detection time using precomputation or other
clever tricks could dramatically speed up decomposition. In addition, more work should
focus on improving the construction of the time to collision bound, since this impacts both
the computation costs and memory costs of the decomposition and path planning algorithms.

Finally, work in obtaining diverse sets of paths around obstacles and paths with margin
would follow naturally from the configuration space information collected by this decompo-
sition algorithm. It would be an interesting experiment to incorporate obstacle growth as in
[5] to handle path planning with moving obstacles.

7 Acknowledgments

First, I would like to thank Professor Balkcom. His support and guidance were invaluable,
and his ideas for path subconvexity made this paper possible. Professor Balkcom and Weifu
Wang proved the three theorems in Section 2. I would also like to thank Yu-Han Lyu
and Yinan Zhang for their contributions. Yu-Han increased the speed of the decomposition
algorithm, and Yinan coded the A* search and the graphics framework for Figure 6.

16

References

[1] Balkcom, Devin, Ajay Kannan, Yu-Han Lyu, Weifu Wang, Yinan Zhang. “Metric cells:
towards complete search for optimal trajectories.”

[2] Borcea, Ciprian, and Ileana Streinu. “Extremal Reaches in Polynomial Time.” Proceed-
ings of the 27th Annual Symposium on Computational Geometry (2011).

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, June 2011.

[4] Salzman, Oren, Michael Hemmer, Barak Raveh, and Dan Halperin. “Motion Planning
via Manifold Samples.” Algorithmica 67.4 (2013).

[5] Jur van den Berg, Sachin Patil, Ron Alterovitz. Motion planning under uncertainty
using iterative local optimization in belief space. Int. Journal of Robotics Research, vol.
31(11), pp. 1263-1278, 2012.

[6] Zhang, Liangjun, Young Kim, and Dinesh Manocha. “A Hybrid Approach for Complete
Motion Planning.” Intelligent Robots and Systems (2007).

[7] D. Zhu and J. Latombe. “Constraint reformulation in a hierarchical path planner.”
Proceedings of International Conference on Robotics and Automation, pp. 1918–1923,
1990.

17

	Cell Representations of the Configuration Space for Planning Optimal Paths
	Recommended Citation

	tmp.1596484807.pdf.uQzrq

