
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

5-28-2014 

Chain Match: An Algorithm for Finding a Perfect Matching of a Chain Match: An Algorithm for Finding a Perfect Matching of a 

Regular Bipartite Multigraph Regular Bipartite Multigraph 

Stefanie L. Ostrowski 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ostrowski, Stefanie L., "Chain Match: An Algorithm for Finding a Perfect Matching of a Regular Bipartite 
Multigraph" (2014). Dartmouth College Undergraduate Theses. 89. 
https://digitalcommons.dartmouth.edu/senior_theses/89 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/89?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Dartmouth Computer Science Technical

Report TR2014-753

Chain Match: An Algorithm for Finding a

Perfect Matching of a Regular Bipartite

Multigraph

Stefanie Ostrowski

May 28, 2014

Abstract

We consider the problem of performing an edge coloring of a d-
regular bipartite multigraph G = (V,E). While an edge coloring can
be found by repeatedly performing Euler partitions on G, doing so
requires that the degree of G be a power of 2. One way to allow
the Euler partitioning method to continue in cases where d is not
a power of 2 is to remove a perfect matching from the graph after
any partition that results in a graph with an odd degree. If this
perfect matching can be identified in O(E) time, we can maintain the
best case runtime for this coloring of O(E lg d). This paper presents
Chain Match, an algorithm that finds a perfect matching in a d-regular
bipartite multigraph. While we have proven that Chain Match will
always terminate with a perfect matching, we have not been able to
implement it within our goal runtime of O(E).

1 Introduction

A graph G = (V,E) is bipartite if V can be divided into two disjoint sub-
sets VL and VR such that vertices in VL have edges to only vertices in VR

1



and vice versa. A graph is d-regular if each vertex has exactly d incident
edges. This graph is a multigraph if we allow multiple occurences of an
edge (u, v) in E. A perfect matching of a bipartite graph G = (V,E) is a set
of edges E ′ ⊆ E such that each vertex in V is an endpoint of exactly one
edge in E ′.

An edge coloring of a graphG = (V,E) assigns a color to each edge (u, v) ∈
E such that no vertex has more than one incident edge of a given color.
Hall’s Theorem implies that you can find d disjoint perfect matchings in any
d-regular bipartite graph [Hal35]. Therefore, an edge coloring of a d-regular
bipartite multigraphG can be found by finding these d disjoint perfect match-
ings and coloring the edges in each matching the same color. This solution
is the optimum solution for the edge-coloring problem of G; that is, it finds
the edge coloring of G that uses the minimum number of colors. Therefore,
we can reduce the problem of edge coloring a d-regular bipartite multigraph
to the problem of finding d disjoint perfect matchings.

If the degree of G is a power of 2, we can find these disjoint perfect
matchings by performing lg d Euler partitions of G. An Euler partition,
which can be performed on a d-regular graph in which all vertices have even
degree, traces out disjoint cycles in G such that every edge is contained in
a exactly one cycle. It then partitions these edges into two subgraphs by
placing all the edges traversed from a vertex in VL to a vertex in VR in one
subgraph and all the remaining edges (those traversed from a vertex in VR to
a vertex in VL) in the other subgraph. Since a cycle, by definition, starts and
ends on the same vertex, it contains the same number of left-to-right edges
as right-to-left edges, and thus the subgraphs will contain an equal number
of edges. Moreover, each of the subgraphs will have a new degree equal to
d/2. Since the degree of G is a power of 2, we can continue performing Euler
partitions on these subgraphs until we arrive at a set of subgraphs that each
has d = 1, that is, a set of d disjoint perfect matchings.

When the degree is not a power of 2, however, we will necessarily arrive
at a situation in which the degree of a subgraph is odd and an Euler partition
cannot be performed. In such a case, removing a perfect matching from the
subgraph would reduce the degree of each vertex by one, creating a subgraph
with an even degree and allowing the Euler partioning method to continue.
This paper presents Chain Match, an algorithm that finds a single perfect
matching in a bipartite graph.

Chain Match begins by forming a set of chains C such that each chain
c ∈ C is a sequence of adjacent vertices in V . We build these chains by

2



performing a depth-first search (DFS) through G, adding each visited vertex
to the current chain. Whenever the DFS would have created a branch in
the DFS tree (upon reaching a vertex all of whose adjacent vertices have
already been visited), we mark the current chain as complete and create a
new chain, starting at the next vertex to be visited by DFS. When all the
vertices have been visited we terminate our DFS. At this point, all vertices
will be contained in exactly one chain. Each chain will either have an even
or odd number of vertices. If all the chains have even length, we can find a
perfect matching by pairing each vertex with its neighbor, i.e., pairing the
first vertex with the second, the third with the fourth, etc., and putting the
edges between these pairs into the matching. If the chains are not all even,
we can recombine vertices by using other edges contained in E (those not
represented by the connections implicit in current chains) until we have a set
of only even chains, at which point we can form a perfect matching using the
pairing method. In the rest of this paper, we will discuss how to rearrange
vertices to form these even chains.

Before moving on to a more in-depth discussion of this algorithm, let us
walk through an example. Consider the bipartite multigraph presented in
Figure 1. After performing a DFS of the form described previously, we have
four chains of odd length (7, 9, 17, and 18) and one chain of even length
(0 − 13 − 1 − 10 − 5 − 11 − 6 − 12 − 3 − 19 − 2 − 16 − 4 − 14 − 8 − 15).
We can recombine these chains to form all even-length chains in two steps.
First, as Figure 2 shows, we use the edges (7, 19) and (17, 0) to eliminate two
odd-length chains by breaking our even chain after vertex 19, connecting 19
to 7, and connecting 17 to 0. As Figure 3 shows, this recombination leaves us
with the even-length chains 7−19−3−12−6−11−5−10−1−13−0−17 and
2−16−4−14−8−15 and the odd-length chains 9 and 18. Next, we can take
advantage of the edges (9, 14), (18, 8), and (4, 15) to eliminate our final two
odd-length chains; we break the chain 2−16−4−14−8−15 after vertex 16
and again after 14. We then connect 9 to 14, 4 to 15, and 8 to 18, forming
the even-length chain 9− 14− 4− 15− 8− 18. At this point, we have three
even-length chains (7−19−3−12−6−11−5−10−1−13−0−17, 2−16,
and 9 − 14 − 4 − 15 − 8 − 18) and no odd-length chains. To form a perfect
matching, we pair every other vertex with the vertex after it, resulting in the
perfect matching shown in Figure 4.

3



0 : 13, 17, 18
1 : 10, 13, 15
2 : 16, 17, 19
3 : 12, 13, 19
4 : 14, 15, 16
5 : 10, 11, 18
6 : 11, 12, 17
7 : 11, 12, 19
8 : 14, 15, 18
9 : 10, 14, 16

Figure 1: A bipartite multigraph with N = 10 and d = 3.

Figure 2: Step 1 of the algorithm. We use the edges (7, 19) and (17, 0) to eliminate

odd chains 7 and 17.

2-16-4-14-8-15

7-19-3-12-6-11-5-10-1-13-0-17

9 18

Figure 3: Step 2 of the algorithm. We use the edges (9, 14), (18, 8), and (4, 15)

to eliminate the remaining odd chains, 9 and 18.

4



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 4: The perfect matching found using Chain Match.

2 Notation and Definitions

In order to analyze Chain Match, let us lay out the notation and terms we
will use throughout our discussion.

A left vertex is a vertex from the left side VL of a bipartite graph and
a right vertex is a vertex from the right side VR. Recall that a chain is a
sequence of adjacent vertices of a bipartite graph. A chain containing an odd
number of vertices is an odd chain, and a chain containing an even number
of vertices is an even chain. An odd chain both begins and ends with either
a left vertex or a right vertex; we will call the former an l-chain and the
latter an r-chain. The connections between an l-chain L and some other
chain B refer only to the set of edges between left vertices in L and right
vertices in B. Similarly, the connections between an r-chain R and some
other chain B refer only to the set of edges between right vertices in R and
left vertices in B.

We use l and r to denote generic left and right vertices, respectively. We
use L to denote an even chain of length 0 or greater beginning on an l and
ending on an r. Similarly, we use R to denote an even chain of length 0 or
greater beginning on an r and ending on an l. Subscripts denote specific
instances of vertices and chains. The same subscript on an L and R denotes
that they are reversals of each other; for example, L1 and R1 refer to the
same chain but with the vertices in reversed order.

5



L1 l2 R3 R4 r5 L6

Figure 5: An odd connection. An edge connects left vertex l2 in the l-chain to

right vertex r5 in the r-chain.

L1 l2 R3 R4 r5 L6

L7 l8 L11r10R9

Figure 6: A crossed connection. An edge connects left vertex l2 in the l-chain to

right vertex r10 in the even chain. Another edge connects right vertex r5 in the

r-chain to left vertex l8 in the even chain. This connection is crossed because, as

this figure makes clear, the edge between the l-chain and the even chain crosses

the edge between the r-chain and the even chain (when the even chain is oriented

such that it begins on an l).

3 Proof of Possibility of Progress

As discussed previously, the success of Chain Match hinges on the ability to
always arrive at a set of only even chains. In what follows, we will prove
that, if there are any odd chains, then regardless of how many there are, it is
always possible to perform a sequence of operations that will eliminate two
odd chains (an l-chain and an r-chain) by taking advantage of the additional
edges in G not contained in the chains at that moment. Thus, regardless of
the initial arrangement of chains, it is always possible to arrive at a set of
only even chains.

There are six ways in which an l-chain can stand in relation to an r-chain.
We will refer to these relations as connections.

Case 1 As Figure 5 shows, an odd connection refers to a direct connection
between an l-chain and an r-chain.

Case 2 A shared even refers to an even chain that is connected to both an
l-chain and an r-chain. If an l-chain does not have an odd connection,
it is either connected to a shared-even or it is not. As Figure 6 shows, a
crossed connection refers to a situation in which an l-chain is connected
to a shared even, such that the r in the even chain connected to the

6



L1 R3 R4 r5 L6

L7 l8 L11R9 l12 L15r14R13

l2

r10

Figure 7: A shared bridge connection. An edge connects left vertex l2 in the

l-chain to right vertex r10 in the even chain. Another edge connects right vertex

r5 in the r-chain to left vertex l12 in the same even chain. There is a bridge that

connects left vertex l8 in the even chain to right vertex r14, also in the even chain.

Since the two spanned connections connect to the same even chain, this is a shared

bridge connection.

l-chain occurs after the l in the even chain connected to the r-chain
when the even chain is oriented such that it starts on an l.

Case 3 A bridge is an edge that connects a vertex to the left of a connection
between an even chain and an l-chain to a vertex to the right of a
connection between an even chain and r-chain when the even chain(s)
is oriented such that it begins on an l. This bridge can be internal
to a single even chain (i.e., the chain is connected to both an l-chain
and r-chain) or it can connect two even chains (i.e., one even chain
is connected to an l-chain and the other is connected to an r-chain).
Figure 7 demonstrates a shared bridge connection, which is when the
two connections being spanned connect to the same even chain.

Case 4 If an l-chain is not connected to an r-chain or a shared even it must
be connected to an unshared even: an even-chain whose connections
to odd-chains are either all l-chains or r-chains. Figure 8 shows an
unshared bridge connection, which is when an l-chain is connected to an
unshared even that has a bridge to another even chain that is connected
to an r-chain.

Case 5 Figure 9 illustrates a shared no-bridge connection which occurs when
none of the cases 1–4 apply and an l-chain is connected to a shared-
even. This connection is like a shared bridge connection, but without
a bridge.

Case 6 Figure 10 illustrates an unshared no-bridge connection, which occurs

7



L1 R3 R4 r5 L6

L7 l8 L11R9 L12 r15R14l13

l2

r10 L16

Figure 8: An unshared bridge connection. An edge connects left vertex l2 in the

l-chain to right vertex r10 in one of the even chains. Another edge connects right

vertex r5 in the r-chain to left vertex l13 in the other even chain. There is an edge

from left vertex l8 in one of the even chains to right vertex r15 in the other. This

edge is considered a bridge because, when both even chains are oriented such that

they begin with an l and the even chain connected to the l-chain is drawn to the

left of the even chain connected to the r-chain, the bridge spans the other two

connections.

L1 R3 R4 r5 L6

L7 l8 l11r9 r12 L13

l2

L10

Figure 9: A shared no-bridge connection. An edge connects left vertex l2 in the

l-chain to right vertex r9 in the even chain. Another edge connects right vertex

r5 in the r-chain to left vertex l11 in the even chain. There is no edge that spans

these two connections, i.e., there is no edge from a left vertex in L7l8 to a right

vertex in r12L13.

if none of cases 1–5 apply. This connection is like an unshared bridge
connection, but without a bridge.

Because this list is exhaustive, we know that an l-chain always stands
in one of the above six relations to an r-chain. Since we know that one of
these cases will always apply, if we can prove that it is possible to reduce
the number of odd chains in each situation, we will have shown that we can
always reduce the number of odd chains and thus can ultimately arrive at a
situation in which we have only even chains.

Lemma 3.1. If an odd connection exists, the number of odd chains can be
reduced by two.

8



L1 R3 R4 r5 L6

L7 l8 r9

l2

L10 L11l12r13 L14

Figure 10: An unshared no-bridge connection. An edge connects left vertex l2

in the l-chain to right vertex r9 in one of the even chains. Another edge connects

right vertex r5 in the r-chain to left vertex l12 in the other even chain. There is no

edge that spans these two connections, i.e., there is no edge from a left vertex in

L7l8 to a right vertex in r13L14.

L1 l2 R3 R4 r5 L6

L1 l2 R4R3L6r5

A B

Figure 11: Processing an odd connection. The edge connecting the left vertex l2

in A to the right vertex r5 in B is an odd connection between chains A and B.

By breaking A after l2, breaking B before r5, and connecting L1l2 to r5L6 via this

edge, we have successfully taken two odd chains and produced three even chains,

reducing the number of odd chains by two.

Proof. Suppose that, as in Figure 11, we have the l-chain A = L1l2R3 and
the r-chain B = R4r5L6. Assume that there is an edge (l2, r5). By breaking
chain A after l2 and chain B before r5, we can form the chains L1l2r5L6, R3,
and R4, all of which are even.

Lemma 3.2. If a crossed connection exists, the number of odd chains can
be reduced by two.

Proof. Suppose that, as in Figure 12, we have the l-chain A = L1l2R3, the
r-chain B = R4r5L6, and the shared-even chain C = L7l8R9r10L11. Assume
that the edges (l2, r10) and (r5, l8) exist. By breaking A after l2, B before r5,
and C before l8 and after r10, and by reversing the subchain l8R9r10 to form
the chain r10L8l8, we can form the chains L1l2r10L9l8r5L6, R3, R4, L7, and
L11, all of which are even.

9



L1 l2 R3 R4 r5 L6

L7 l8 L11r10R9

L1 l2

R3 R4

r5 L6

L7

l8

L11

r10 L9

A B

C

Figure 12: Processing a crossed connection. The edge connecting l2 in A to r10 in

C and the edge connecting r5 in B to l8 in C forms a crossed connection. We begin

by breaking A after l2, breaking B before r5, and breaking C before l8 and after

r10. We then reverse l8R9r10 to form r10L9l8, which we connect to L1l2 through

the (l2, r10) edge, forming the chain L1l2r10L9l8. This chain is then connected to

r5L6 through the (r5, l8) edge, forming the even chain L1l2r10L9l8r5L6. We now

have five even chains in the place of two odd chains, and have thus reduced the

number of odd chains by two.

Lemma 3.3. If a shared bridge connection exists, the number of odd chains
can be reduced by two.

Proof. Suppose that, as in Figure 13, we have the l-chain A = L1l2R3, the
r-chainB = R4r5L6, and the shared-even chain C = L7l8R9r10L11l12R13r14L15.
Assume that the edges (l2, r10) and (r5, l12) exist, as does the bridge (l8, r14).
By breaking A after l2, B before r5, and C before l8, after r10, before l12, and
after r14, and by reversing the subchains l8L9r10 and l12R13r14, we can form
the chains L1l2r10L9l8r14L13l12r5L6, R3, R4, L7, L11, and L15, all of which
are even.

Lemma 3.4. If an unshared bridge connection exists, the number of odd
chains can be reduced by two.

Proof. Suppose that, as in Figure 14, we have the l-chain A = L1l2R3, the
r-chain B = R4r5L6, the unshared-even chain C = L7l8R9r10L11, and the
unshared-even chain D = L12l13R14r15L16. Assume that the edges (l2, r10)
and (r5, l13) exist, as does the bridge (l8, r15). By breaking A after l2,
B before r5, C before l8 and after r10, and D before l13 and after r15,

10



L1 R3 R4 r5 L6

L7 l8 L11R9

L1 l2

R3 R4

r5 L6

L7

l8

L11

r10 L9

l12 L15r14R13

l2

r10

l12r14 L13

L15

A B

C

Figure 13: Processing a shared bridge connection. The edges connecting l2 in A

to r10 in C and connecting r5 in B to l12 in C, together with the bridge from l8 to

r14 that spans these connections, form a shared bridge connection. To process this

connection, we break A after l2, B before r5, and C before l8, after r10, before l12,

and after r14. We then reverse l8R9r10 to form r10L9l8 and connect L1l2 to r10L9l8

through the edge (l2, r10), forming L1l2r10L9l8. Next, we reverse l12R13r14 to form

r14L13l12 and connect L1l2r10L9l8 to l12R13r14 through the bridge (l8, r14), forming

the chain L1l2r10L9l8r14L13l12. Finally, we connect this chain to r5L6 through the

edge (r5, l12), forming L1l2r10L9l8r14L13l12r5L6. We are left with a set of only

even chains instead of the original set which contained two odd chains, thereby

reducing the number of odd chains by two.

and by reversing subchains l8R9r10 and l13R14r15, we can form the chains
L1l2r10L9l8r15L14l13r5L6, R3, L7, L11, L12, L16, and R4, all of which are
even.

In order to prove that progress can be made when encountering a shared,
no-bridge connection or an unshared, no-bridge connection, some additional
lemmas will be useful.

Lemma 3.5. If we partition the chains formed from a connected component
of a d-regular bipartite multigraph into two sets α and β, where α contains
at least one l-chain, no r-chains, and zero or more even chains and β contains
at least one r-chain, no l-chains, and zero or more even chains, then there
must be an edge from an l in α to an r in β.

Proof. Suppose there are αE even chains and αL l-chains in α. Let us define
the total number of l and r vertices in α as αl and αr, respectively. We know

11



L1 R3 R4 r5 L6

L7 l8 L11R9

L1 l2

R3 R4

r5 L6

L7

l8

L11

r10 L9

L12 r15R14l13

l2

r10

L14 l13

L16

L16

r15

L12

A B

C D

Figure 14: Processing an unshared bridge connection. The edges connecting l2

in A to r10 in C and connecting r5 in B to l13 in D, together with the bridge

from l8 in C to r15 in D, form an unshared bridge connection. To process this

connection, we break A after l2, B before r5, C before l8 and after r10, and

D before l13 and after r15. We then reverse l8R9r10 and l13R14r15 and con-

nect L1l2 to r10L9l8 through the edge (l2, r10). Next, we connect the resulting

chain, L1l2r10L9l8, to r15L14l13 through the bridge (l8, r15), forming the chain

L1l2r10L9l8r15L14l13. Finally, we connect this chain to r5L6 through the edge

(r5, l13), forming L1l2r10L9l8r15L14l13r5L6. We are left with a set of only even

chains instead of the original set which contained two odd chains, thereby reduc-

ing the number of odd chains by two.

that an even chain has the same number of l and r vertices and an l-chain
has one more l vertex than r vertex. From this, we know that

αl = αr + αL . (1)

Since the graph is d-regular, there must be αld edges connected to ls in α
or, by equation (1), there must be (αr + αL)d edges connected to ls in α.
Similarly, there must be αrd edges connected to rs in α. Let us call the
edges that do not leave α (i.e., edges for which both the l and r endpoints
are contained in chains in α) internal edges, and the edges that do leave α
external edges. Consider the case with the minimum number of external edges
(the case where as few edges leave α as possible). This scenario would arise
if the bipartite graph were such that every r in α was connected to an l also
in α. This case is possible since there are fewer r vertices in α than l vertices.
These edges account for dαr of the d(αr + αL) edges connected to ls in α.
Thus, in the case with the minimum number of external edges, there must

12



be dαL external edges connected to ls in α. Therefore, when we partition
the chains of a connected component of a d-regular bipartite multigraph into
two sets as described, there must be an edge from an l in one set to an r in
the other.

The concept of elongating a chain will also help with the proofs for the
remaining two concepts. Consider the l-chain A = L1l2R3 and the even
chain C = L4l5r6L7. If there are no connections between A and C, there
is nothing to be done. If there are one or more edges between an l in A
and an r in C, however, the edge (l2, r6) must exist such that there are no
connections from ls in A to rs in L7. To elongate A by C, we would break A
after l2, break C after r6, reverse the subchain L4l5r6 (resulting in r6l5R4) and
connect this chain to l2. We are now left with the odd chain A′ = L1l2r6l5R4

and the even chains R3 and C ′ = L7. At this point, we have successfully
elongated A by C. To fully elongate A by C, we would repeat this process,
now with A′ and C ′, until change no longer occurs. A full elongation of A
by C results in the chains Ã and C̃. For purposes of clarity in the upcoming
proof, we will refer to the subchains of the initial odd chain that are broken
off during the elongation process as the tails of A, such as R3 in this case.
Note that these tails will all be of even length and will not have any ls
connected to rs in C. Elongating an r-chain by an even chain is an analogous
process. In this case, we begin with the r-chain B = R1r2L3 and the even
chain C = L4l5r6L7. Again, if there are no connections between B and C, we
are done. If there are connections, we elongate using the edge (r2, l5), such
that there are no connections between rs in B and ls in L4, giving us the
chains B′ = R1r2l5r6L7, C

′ = L4, and the tail L3. To fully elongate B by C,
we repeat this process until changes no longer occur. Once again, the tails
of B, the subchains broken off of B at each step of elongation, will all be of
even length and there will not be any edges from rs in these tails to ls in C.

Lemma 3.6. After elongating A by B, there are no connections between Ã
and B̃.

Proof. Without loss of generality, let us assume that A is an l-chain. Then
we have A = L1l2R3. Let B be the even chain L4l5r6L7. Assume that there
exists the connection (l2, r6) such that r6 is the rightmost connection within B
to A, that is, there are no connections between A and L7. The first step in
the elongation of A by B results in the chains A′ = L1l2r6l5R4, B

′ = L7, and
R3. Since there were no connections between an l in A and an r in L7, the

13



only connections between ls in A′ and rs in B′ can be between l5R4 and B′. If
there are no connections between these chains, elongation is done. Otherwise,
repeat the process of elongation while changes occur. When changes no longer
occur, there will be no connections between Ã and B̃. Since elongation always
decreases the length of B, this process necessarily terminates. Thus, after
elongating A by B, there will be no connections between Ã and B̃.

Lemma 3.7. If a shared, no-bridge connection exists, the number of odd
chains can be reduced by two.

Proof. Suppose that, as in Figure 15, we have the l-chain A = L1l2R3, the
r-chain B = R4r5L6, and the shared even chain C = L7l8r9L10l11r12L13.
Assume that the edges (l2, r9) and (r5, l11) exist. Also assume that there
is no bridge in C spanning these edges, that is, there is no edge from an l
in L7l8 to an r in r12L13. Let D be the set of remaining even chains in this
connected component of the graph. Assume that A and B are not connected
by an odd connection, a shared even connection, a shared bridge connection,
or an unshared bridge connection, that is, there is no chain in D that would
create such a connection. Additionally, assume that there are no edges from ls
in A to rs in L10 or from rs in B to ls in L10. Let us perform the step shown
in Figure 15, breaking A after l2, B before r5, and C before and after L10.
Using the edges (l2, r9) and (r5, l11), we are left with l-chain A′ = L1l2r9l8R7,
r-chain B′ = R6r5l11r12L13, and even chains R3, L10, R4, as well as the set of
even chains D.

From our assumptions, we know that there are no edges from ls in the set
{L1, l2, R3, L7, l8} to rs in the set {R4, r5, L6, r12, L13}. Therefore, there are
no connections between ls in R3 and rs in B′, between rs in R4 and ls in A′,
or between ls in A′ and rs in B′. There could, however, be edges between A′

and L10 or between B′ and L10. To deal with this complication, let us fully
elongate A′ by L10 and place the tails of A′ (the subchains broken off of A′

during the elongation process) into a set F . As was discussed previously, after
elongating A′ by L10, there will not be any connections between Ã′ and L̃10.
Similarly, to deal with potential connections between B′ and L̃10, let us
elongate B′ by the updated L̃10 and place any tails of B′ into a setH . Since A′

and B′ are modified through the elongation process, it is possible that after
these elongations, there will be an odd connection between Ã′ and B̃′. If this
occurs, we can process this connection as described in Lemma 3.1, and are
thus finished.

14



L1 R3 R4 r5 L6

L7 l8 l11r9

R3

R7

L10

r12 L13

l2

L10

r12 L13

A B

C

D

L1 r9 R6 r5l2A′ l8 l11

R4 D

B′

Figure 15: The first step in processing a shared, no-bridge connection. We break

chain A after l2, B before r5, and C before and after L10. We then reverse the

subchain L7l8r9 and connect it to L1l2, forming A′, L1l2r9l8R7. We also connect

r5L6 to l11r12L13 forming B′, R6r5l11r12L13.

If such a connection does not exist, we can divide our chains into two sets
α = {Ã′, R3, F} and β = {B̃′, L̃10, R4, D,H}, such that α contains all of our
l-chains with some even chains and β contains all of the r-chains as well as
the rest of the even chains.

By Lemma 3.5, we know that there must be an l in α connected to an r
in β. As we have previously seen, there are no connections between ls in α
and rs in B̃′, L̃10, R4, or H . Thus, there must be a connection between
some lα in α and some rD in D (and hence, D cannot be the empty set).
If lα is a vertex in the chain Ã′, then Ã′ is directly connected to a chain in D.
Alternatively, if lα is in R3 or a chain in F , we can elongate Ã′ by R3 or the
relevant chain in F (or both) until Ã′ contains lα, directly connecting Ã′ to a
chain in D and effectively undoing some of the elongation steps we performed
earlier. Such a rearranging is possible because of the edge between l2 and R3

and the fact that F contains the tails of A′.
Let us now move the set of even chains D from β to α, so that we now

have the partitions α′ = α ∪ {D} and β ′ = β − {D}. Since B̃′, L̃10, R4, and
H are not connected to Ã′, F , or R3, using the same logic as the previous
partition shows us that there must be an edge from B′ to some chain in D
(perhaps after elongating B̃′ by R4 or H).

Since we showed that D is not the empty set, we know that D either
contains one chain or more than one chain.

15



• If D contains only one chain, we know that this chain must be con-
nected to both Ã′ and B̃′. Let us call this chain d1. This connection is
analogous to the case we had at the beginning of this proof; A has now
been replaced by Ã′, B has been replaced by B̃′, C has been replaced
by d1, and the set of remaining even chains is now empty. However, we
previously established that it is impossible to have a shared, no-bridge
connection where the set of remaining even chains is empty. Thus, this
situation is impossible, and the connection between A′, B′, and d1 must
either be a crossed connection or a shared, bridge connection, both of
which can be processed.

• If D contains more than one chain, we know that Ã′ and B̃′ must ei-
ther connect to the same chain in D or different chains in D. If this
connection is a crossed connection, shared bridge connection, unshared
bridge connection, or unshared, no-bridge connection we can proceed
by processing the connection as outlined in previous or upcoming lem-
mas to reduce the number of odd chains by two, and are thus done.
If, however, this connection is a shared, no-bridge connection, we once
again have a situation analogous to how we started this proof: A has
now been replaced by Ã′, B has been replaced by B̃′, C has been re-
placed by the chain in D that Ã′ and B̃′ are connected to (let us call it
d1), and the size of the set containing any remaining chains has been
reduced by one (since we have removed d1). Since we know it is impos-
sible to have an unshared, no-bridge connection or shared, no-bridge
connection where D = ∅, repeating this process will eventually lead
to an odd connection, crossed connection, shared bridge connection,
or unshared bridge connection, allowing us to decrease the number of
odd chains by two by following the relevent steps outlined in previous
lemmas.

Therefore, if a shared, no-bridge connection exists, we can decrease the
number of odd chains by two.

Lemma 3.8. If an unshared, no-bridge connection exists, the number of odd
chains can be reduced by two.

Proof. Suppose that, as in Figure 16, we have the l-chain A = L1l2R3,
the r-chain B = R4r5L6, and the even chains C = L7l8r9L10 and D =
L11l12r13L14. Assume that the edges (l2, r9) and (r5, l12) exist. Also assume

16



L1 R3 R4 r5 L6

L7 l8 r9

R3

R7

L10

l2

L10

r13 L14

A B

C

L1 r9 R6 r5l2

A′ B′

l8 l12

R4 F

L11l12r13 L14

D
F

L11

Figure 16: The first step in processing an unshared, no-bridge connection. We

break chain A after l2, B before r5, C after r9, and D before l12. We then reverse

subchain L7l8r9 and connect it to L1l2, forming A′ = L1l2r9l8R7. Additionally, we

reverse subchain r5L6 and connect it to l12r13L14, forming B′ = R6r5l12r13L14.

that there is no bridge spanning these edges, that is, there is no edge from an l
in L7l8 to an r in r13L14. Let F be the set of remaining even chains. Assume
that A and B are not connected by an odd connection, a shared even con-
nection, a shared bridge connection, or an unshared bridge connection, that
is, there is no chain in F that would create such a connection. Additionally,
assume that there are no edges from ls in A to rs in L10 or from rs in B to ls
in L11. Let us perform the step shown in Figure 16, breaking A after l2, B
before r5, C after r9, and D before l12. Using the edges (l2, r9) and (r5, l12),
we are left with l-chain A′ = L1l2r9l8R7, r-chain B′ = R6r5l12r13L14, and
even chains R3, L10, R4, L11 as well as the set of even chains F .

If there exists an l in L10 that is connected to an r in L11, we can use
this edge to connect C and D, thus creating a shared, no-bridge connection
which we can process, reducing the number of odd chains by two.

Otherwise, we have an almost identical situation to that of Lemma 3.7,
but with a few slight differences. Once again, we know from our assumptions
that there are no connections between ls in R3 and rs in B′, between rs in R4

and ls in A′, or between ls in A′ and rs in B′. There could, however, be edges
between ls in A′ and rs in L11 or between rs in B′ and ls in L10. To handle
this complication, let us fully elongate A′ by L11 and B′ by L10, putting the

17



tails in sets H and I, respectively. Once again, we can partition these chains
into two sets, where α = {Ã′, R3, L10, H} and β = {B̃′, R4, L11, I}. Using
identical logic to the proof of Lemma 3.7, we can show that, after potentially

performing a few elongations of Ã′ or B̃′, the chains
˜̃
A′ and

˜̃
B′ are either

connected to the same chain in F or different chains in F . Let us call these
chains f1 and f2, noting that f1 and f2 may refer to the same chain. If the
connection between Ã′, B̃′, f1, and f2 is a crossed connection, shared bridge
connection, unshared bridge connection, or shared, no-bridge connection, we
can process it by the procedures described in previous lemmas, and are thus
done. If it is an unshared, no-bridge connection, we can process it using
the method described in this lemma. This process will necessarily terminate
because, as was demonstrated in Lemma 3.7, the set containing the remaining
even chains from a given shared, no-bridge or unshared, no-bridge connection
cannot be empty, and decreases in size with each iteration of this processing.
Therefore, if an unshared, no-bridge connection exists, we can decrease the
number of odd chains by two.

4 Discussion of Runtime

Chain Match can naturally be broken into two parts: (1) building the initial
chains with DFS and (2) rearranging the chains to arrive at a set of only even
chains. For some regular, bipartite multigraph G = (V,E) with N vertices
on each side and a degree of d, we can build the initial chains in our goal
runtime of O(E), because we never consider an edge more than once in our
DFS. Processing these chains, however, is significantly more difficult. The
number of odd chains that we could have after the initial chain formation is
O(N). Therefore, in order to get rid of all the odd chains within our goal
runtime of O(E), we must both detect and process each of these connections
in either a direct or amortized runtime of O(d).

For now, let us imagine that we can detect connections in constant time.
Connections of cases 1–4 can each be processed in a constant number of steps
as was shown in our proof of progress. Case 5 and case 6 connections, which
we will refer to as no-bridge connections, pose more of a problem. As our
proofs demonstrated, processing no-bridge connections involves repeatedly
recombining chains until we arrive at an odd, crossed, shared bridge, or
unshared bridge connection. In between our initial no-bridge connection and

18



our end goal of forming a case 1–4 connection, we may form different no-
bridge connections. Figure 17 shows the average number of consecutive no-
bridge connections found when processing no-bridge connections for graphs
with d = 3. For example, if we encounter a case 5 connection and then,
in its processing, recombine it to form a case 6 connection, then a case 5
connection, and finally a case 2 connection, this would contribute three to
the consective no-bridge connection count. As is demonstrated in Figure 17,
while the number of consecutive no-bridge connections is very low compared
with N , it does not appear to be bound by a constant number. Moreover,
we cannot think of any theoretical reason why such a constant bound would
exist. This means that, as long as some of our odd chains are connected
in either of these ways, we cannot assume that the number of connections
we will need to process is O(N). Hence, even if we have a way to process
connection types 1–4 in constant time, it does not seem as though we can
achieve an overall runtime of O(E).

Furthermore, we currently do not have a constant-time implementation
of the processing steps for odd, crossed, shared bridge, or unshared bridge
connections. While the actual breaking and recombining of chains can be
done in constant time using linked lists, we have not found a way to up-
date the information that is necessary for detecting future connections, such
as which chain contains a certain vertex and whether a given chain is an
l-chain, r-chain, or even chain. For example, after finding and processing
the initial connection, we have no way to efficiently update the information
about affected vertices in order to allow for the detection of future connec-
tions. These updates would not be a problem if vertices switched chains a
constant number of times; however, this does not seem to be the case. Fig-
ure 18 shows the maximum number of times, MEO, a vertex goes from an
even chain to an odd chain over 50 trials at each N for a graph of varying
N with d = 3. Once again, while the number of times this happens is very
low when compared with N , it does not appear to be constant, nor do we
have a theoretical justification for why it would be so. Thus, we would have
to update the information pertaining to whether a vertex is in an even chain
or odd chain more than a constant number of times, which appears to make
our goal runtime unlikely for this algorithm.

19



Figure 17: The average number of consecutive no-bridge connections for graphs of

increasing N . While this count is small when compared with N , it does not appear

to be bounded by a constant number, nor do we have a theoretical justification for

why it would be.

20



0 2000 4000 6000 8000 10000 12000 14000
1

2

3

4

5

N

M
E

O

Figure 18: The maximum number of times a vertex goes from an even chain to

an odd chain over 50 trials for a given N . While vertices move from even chains to

odd chains a small number of times compared to N , this amount does not appear

to be bounded by a constant number, nor do we have a theoretical justification for

why it would be.

21



5 Conclusion

In this paper we presented Chain Match, an algorithm for finding a perfect
matching of a d-regular bipartite multigraph, and proved that this algorithm
always terminates with a perfect matching. However, we have not been able
to implement this algorithm in such a way that would allow it to compete
with other known perfect matching algorithms, nor does it seem as though
such an implementation is possible.

6 Acknowledgments

Finally, I would like to thank Andrew Hannigan, Ellie Levey, Patricia Neck-
owicz, and Lauren Tran for their ideas and inspiration on this problem. Most
importantly, I would like to thank Professor Tom Cormen, without whom this
paper would not have been possible, for his unwavering support, guidance,
and optimism throughout the past four years.

References

[Hal35] P. Hall. On representatives of subsets. Journal of the London Math-

ematical Society, 10(1):26–30, 1935.

22


	Chain Match: An Algorithm for Finding a Perfect Matching of a Regular Bipartite Multigraph
	Recommended Citation

	april7.dvi

