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NeuroPhone: Brain-Mobile Phone Interface
using a Wireless EEG Headset

Matthew K. Mukerjee
Dartmouth College, Hanover, NH, USA

Dartmouth Computer Science Technical Report TR2010-666

ABSTRACT
Neural signals are everywhere just like mobile phones. We
propose to use neural signals to control mobile phones for
hands-free, silent and effortless human-mobile interaction.
Until recently, devices for detecting neural signals have been
costly, bulky and fragile. We present the design, implemen-
tation and evaluation of the NeuroPhone system, which al-
lows neural signals to drive mobile phone applications on the
iPhone using cheap off-the-shelf wireless electroencephalo-
graphy (EEG) headsets. We demonstrate a mind-controlled
address book dialing app, which works on similar princi-
ples to P300-speller brain-computer interfaces: the phone
flashes a sequence of photos of contacts from the address
book and a P300 brain potential is elicited when the flashed
photo matches the person whom the user wishes to dial.
EEG signals from the headset are transmitted wirelessly to
an iPhone, which natively runs a lightweight classifier to dis-
criminate P300 signals from noise. When a person’s contact-
photo triggers a P300, his/her phone number is automati-
cally dialed. NeuroPhone breaks new ground as a brain-
mobile phone interface for ubiquitous pervasive computing.
We discuss the challenges in making our initial prototype
more practical, robust, and reliable as part of our on-going
research.

1. INTRODUCTION
Like mobile phones, neural signals are ever present

in our everyday lives. Given the recent availability of
low-cost wireless electroencephalography (EEG) head-
sets [3,12,13] and programmable mobile phones capable
of running sophisticated machine learning algorithms,
we can now interface neural signals to phones to deliver
new mobile computing paradigms—users on-the-go can
simply “think” their way through all of their mobile
applications.

In this paper, we present the design, implementation
and evaluation of the NeuroPhone system (see video
demo [2]), a brain-mobile phone interface based on the
wireless Emotiv EPOC EEG headset [3] and the iPhone.
We demonstrate a mind-controlled address-book dial-
ing app, which works on similar principles to a P300-
speller [8] brain-computer interface: the phone flashes

a sequence of photos of contacts from the address book
and a P300 brain potential is elicited when the flashed
photo matches the person whom the user wishes to dial.
We also demonstrate a version of the same app which
detects the much larger and more easily detectable EEG
signals triggered by the user winking their eyes when
the target photo appears. This “wink”-triggered di-
aling works robustly in noisy conditions. The P300,
or “think”-triggered, dialer is very promising but at
present less reliable. One could argue that other “hands
off” types of actuation such as voice recognition is more
suitable an interface to mobile applications. However,
our goal is to best understand how firing neurons can
drive mobile applications and what the current limita-
tions in the state of the art are when using off-the-shelf
wireless EEG headsets and phones.

In this paper, we discuss our broader vision of a
brain-mobile phone interface and then present the ini-
tial design, implementation, and evaluation of the Neu-
roPhone system. Our initial results look promising show-
ing that the iPhone is capable of processing raw neu-
rosignals and classifying the P300 using a cheap, noisy
commercial EEG headset. However, a number of chal-
lenges remain in developing a practical and robust brain-
mobile phone interface not only capable of working in
controlled laboratory settings but also out in the wild.
Addressing these challenges is part of our on-going re-
search.

2. BRAIN-MOBILE PHONE INTERFACE
We envision that many mobile applications can be

reinvented; for example, instead of hand dialing your
friend Tim while driving you can simply wink or think
of him while your phone displays your contacts. We
also imagine new many-to-one mobile applications; for
example, a teacher of a foreign language is interested
in seeing exactly how many students actually under-
stood the last question she asked. The students are all
wearing EEG headsets and their data is being streamed
in real-time to the teacher’s mobile phone. She simply
takes out her mobile phone and it gives her up to the
second statistics on each of her students. She quickly
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glances at the aggregate class statistics and realizing
that the students really did understand her difficult
question, proceeds with her lecture. Other scenarios
may soon be possible; for example, a person enters a
room (e.g., bar, club, meeting, classroom) and instantly
has a sense of the overall emotional state of the space
(i.e., happy, tension, frustration, sad, bored, hostile).
There is prior work classifying EEG signals into differ-
ent bands of frequencies corresponding to different emo-
tions such as meditation and activity [10]. In addition,
the Emotiv headset [3], which is designed primarily for
gaming purposes, is also capable of detecting certain
facial expressions (e.g., smile, laugh, shock – eyebrows
raised, anger – eyebrows furrowed) and non-conscious
emotions. If one could read the emotional state of peo-
ple moving through a building then the notion of mood
music would take on a literal sense.

Many practical challenges remain to make this vision
a reality. For example, research-grade EEG headsets [5]
are expensive (e.g., tens of thousands of dollars) but of-
fer a much more robust signal than the cheaper (e.g.,
$200-$500) headsets. As a result there is a significant
amount of noise in the data of the cheaper headsets,
requiring more sophisticated signal processing and ma-
chine learning techniques to classify neural events (e.g.,
P300). However, the cheaper headsets provide an en-
crypted wireless interface between the headset and com-
puter allowing for mobility but complicating the design
of a clean brain-mobile phone interface. Mobile phones
are not designed to support continuous neural sensing
applications. The energy cost of continuously stream-
ing raw neural signals over the air interface and running
classifiers on the phone is challenging. We imagine that
brain-mobile phone interfaces will be used when and
where the user is: walking in a busy street, in a car, on a
bicycle, while shopping, sitting quietly in a library, etc.
We show that many of these use cases present signifi-
cant noise artifacts in the data complicating the design
of a practical brain-mobile interface today. Filtering out
components of the signal associated with artifacts (e.g.,
neural signals associated with walking or unintentional
facial expressions) is needed to advance this vision.

We envision that wireless EEG headsets will become
cheaper and more robust and that machine learning
techniques developed for high end research-grade wired
EEG headsets [5] can be effectively exploited by re-
source limited phones. As this vision gathers speed
and noise issues are solved, EEG will be integrated into
wearable fabric (e.g., baseball caps, woolen hats, bi-
cycle helmets) or become the new wireless “earphones
plus” (i.e., earphones plus a limited set of electrodes).
This raises a number of interesting issues. For example,
the NeuroPhone system relay (discussed later) trans-
mits raw unencrypted neural signals over-the-air to the
iPhone in IP packets. This leads to the notion of in-

secure “neural packets everywhere,” opening up impor-
tant privacy challenges that need to be addressed.

Figure 1: NeuroPhone in use

3. NEUROPHONE DESIGN
We create the NeuroPhone as a means of taking a

first step towards this vision. The NeuroPhone system
uses the iPhone to display pictures of contacts in the
user’s address book. The pictures are displayed and
individually flashed in a random order. The user con-
centrates on the picture of a person s/he wishes to call
in the case of the think mode of our application, called
“Dial Tim”. Utilizing the P300 neural signal, Neuro-
Phone recognizes which person the user is focused on
and calls them. The wink mode is similar to the think
mode where the user simply winks with the left or right
eye to make the intended call. The wink mode relies on
the much more clearly defined muscle movement signals
in the raw EEG data, than the much more subtle neural
signals [14]. Figure 1 shows a user with the headset and
phone, and Figure 2 shows the application running. In
what follows, we present an overview of the P300 signal
and the wireless Emotiv EPOC EEG headset used by
our Dial Tim application. We also discuss a number
of design considerations that directed our initial imple-
mentation discussed in Section 4.

3.1 P300
When somebody concentrates on a task-specific stim-

ulus (e.g., a highlighted image in Dial Tim) among a
pool of stimuli (e.g., non highlighted images), the task-
related stimulus will elicit a positive peak with a la-
tency of about 300ms from the stimulus onset in sub-
ject’s EEG signal. This positive peak is known as the
P300 signal in neuroscience literature [8]. P300 is em-
anated in the central-parietal region of the brain and
can be found more or less throughout the EEG on a
number of channels. Figure 3 illustrates such a P300
signal captured using our headset, where the signal is
bandpass filtered and averaged over multiple trials. A
classic example experiment driven by P300 signals is the
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Figure 2: The Dial Tim application works on similar principles to P300-speller brain-computer interfaces: the phone
flashes a sequence of photos of contacts from the address book and a P300 neural signal is elicited when the flashed
photo matches the person whom the user wishes to dial. EEG signals from the headset are transmitted wirelessly
to an iPhone, which natively runs a simple classifier to discriminate P300 signals from noise. When a person’s
contact-photo triggers a P300, their phone number is automatically dialled. In this case, the user wants to dial Tim,
thus when his picture is flashed, Tim is automatically dialled.

P300 speller [4]. A grid of 6×6 alphanumeric charac-
ters is presented to a subject. The subject focuses on a
specific character, while the rows and columns are ran-
domly flashed. Whenever a row or column containing
that specific character flashes, a P300 signal is elicited
in the subject’s EEG. The speller then predicts the spe-
cific character that the subject intends to select by de-
termining the row and column that correspond to P300
signals in subject’s EEG and takes the letter at the in-
tersection point. While we focus on the P300 neural
signal as a driver of the Dial Tim application we plan
to study the suitability of other neural signals as part
of on-going work.

3.2 Wireless EEG Headset
We use the Emotiv EPOC headset [3] which has 14

data-collecting electrodes and 2 reference electrodes (see
Figures 5, 6, and 1). The electrodes are placed in
roughly the international 10-20 system and are labeled
as such [10]. The headset transmits encrypted data
wirelessly to a Windows-based machine; the wireless
chip is proprietary and operates in the same frequency
range as 802.11 (2.4Ghz). The software that comes
with the Emotiv headset provides the following detec-
tion functionalities: various facial expressions (referred
to as “Expressiv” by Emotiv); levels of engagement,
frustration, meditation, and excitement (“Affectiv”);
subject-specific training and detection of certain cog-
nitive neuro-activities such as “push”, “pull”, “rotate”,
and “lift” (“Cognitiv”) [3]. Also built in the headset
is a gyroscope that detects the change of orientation of
subject’s head. However, the headset is not meant to
be an extremely reliable device, thus it is challenging to
extract finer P300 signals from the EEGs this headset
produces. But, as we stated in our vision, this headset

can be easily deployed at large scale because of its low
price, and can be extremely handy if we can extract
useful signals (e.g., P300) from it through smart signal
processing and classification algorithms running on the
phone.
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Figure 6: Raw data from the headset

3.3 Design Considerations
In what follows, we discuss a number of design con-

siderations that relate to building a reliable and robust
NeuroPhone system.

Signal to Noise Ratio (SNR): Since the Emotiv
headset is not intended towards finer signal detection,
there is more noise than usual on every electrode of
the EEG. To compound this issue, EEG’s are relatively
noisy to begin with [9]. Assuming that this noise is rel-
atively random, it has the potential to completely in-
validate the data that we use to detect winks and P300
signals in the first place. We study various solutions to
increase the SNR, such as bandpass filtering [10] and
independent component analysis (ICA) [15]. A sen-
sible approach to increase the SNR is to average the
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on the headset [3]

data over many trials, which is also a commonly used
technique in neuroscience [11]. Naturally, this intro-
duces delay in the acquisition of a reliable P300 signal,
because we need to average several trials before actu-
ally start detecting the P300. However, in wink mode
we can avoid averaging because wink signals (Figure 4)
are much more easily detectable in raw EEG data than
P300 signals (Figure 3).

Signal Processing: Although we are averaging data
for a better SNR, we can still improve the EEG signals
for better P300 detection. We use a bandpass filter to
get rid of any noise that are not in the P300 frequency
range [15]. Again this signal processing is unnecessary
for wink mode because of the same reason why we do
not need averaging.

Phone Classifiers: Typically, realtime EEG signal
processing and classification algorithms are designed for
powerful machines, not resource limited mobile phones.
For example, Lotte et al. [9] use a weighted combina-
tion of various classifiers for EEG classification. These
classification algorithms are not practical to run on the
mobile phone because of power efficiency and resource
issues. To address this challenge, we combine two ap-
proaches for efficient classification on the phone: i) we
do not supply all channels from the headset to the phone
for classification, rather, only the relevant subset of
EEG channels; and ii) we implement lightweight classi-
fiers, more specifically, a multivariate equal-prior Bayesian
classifier is used for wink mode and a simple decision
stump is used for the think mode.

4. IMPLEMENTATION
In this section, we discuss the implementation details

of the wink mode and the think mode for the Dial Tim
application. Due to the fact that headset only trans-
mits encrypted data wirelessly and this data can be
decrypted solely by Emotiv’s closed-source SDK on a
Windows machine, we use a laptop to relay the raw

EEG Headset

Decryption

Forward

Preprocessing

Classification

Application

Laptop Relay Mobile Phone

Figure 7: NeuroPhone system architecture

EEG data to the phone through WiFi. Upon receiv-
ing the EEG data, the phone carries out all the rel-
evant signal processing and classification. The head-
set samples all channels at 128 samples/second, each of
which is a 4-byte floating-point number corresponding
to the voltage of a single electrode. The data rate of
the EEG data streamed from the relay laptop to the
mobile phone is 4kbps per channel. For each applica-
tion mode, only relevant channels are streamed. Figure
7 shows the current system architecture. The phone
uses simple machine learning techniques to determine
user input (wink/non-wink or P300/non-P300). For the
wink mode, we reverse mount the headset and only use
the channels which are directly above the subject’s eyes
i.e., O1 and O2. We develop a data collection program
where the subject can easily label each wink. A multi-
variate Bayesian classifier is then trained and used for
classification. We set equal prior such that it will not
bias toward either wink or non wink classes. In the
preprocessing step, we calculate variances over a 90%
overlapping sliding window of the two channels. The
variances are used as features and are fed to the classi-
fier in the classification stage. During the offline train-
ing phase, 2D Gaussian distributions are estimated for
both the wink and non-wink class, as illustrated in Fig-
ure 8. The two Gaussians are mostly separated, which
results in good online classification performance.

For the think mode of the application, which utilizes

4



3000
2000

1000
0    

1000 
2000 

3000 1000
0    

1000 
2000 

3000 
4000 

5000 
6000 

0

1

2

3

4

5

x 10 6

 

Non wink Gaussian

Wink Gaussian

Figure 8: Gaussians for winks and non-winks

the P300 signal, we attempt to use similar 2D Gaus-
sians. However, the distributions of the classes prove
to be too overlapped for reasonable classification. As
discussed in the design consideration section, to cancel
out unnecessary noise we preprocess the data by filter-
ing it with a 0-9Hz bandpass filter and averaging the
signal over multiple trials. We do this preprocessing
separately for all 6 stimuli corresponding to the six im-
ages of the Dial Tim application. Following this we
only crop the signal segment that corresponds to the
highest peak value at around 300ms after the stimu-
lus onset. For classification, we use a decision stump
whose threshold is set to the maximum value among
the cropped signal segments for all 6 images.

5. EVALUATION
To evaluate our system, we test the wink and think

modes in a variety of scenarios (e.g., sitting, walking)
using two different Emotiv headsets and three different
subjects. In what follows, we discuss our initial results.

For the wink mode, we collect multiple sessions of
data from all subjects while they sit relaxed or walk,
then train an equal-prior Bayesian classifier using a set
of five sessions of data from a single subject sitting re-
laxed. This classifier is then applied to the rest of the
data to test whether it can generalize to unseen data by
calculating the classification precision (i.e., percentage
of classified “winks” that are actually real winks), recall
(i.e., percentage of real winks that are actually classified
as winks) and accuracy (i.e., percentage of all events
that are correctly classified). The experiment results
are shown in Table 1. As can be seen from the table,
the classifier performs well on data collected for sitting-
relaxed scenarios but walking results in a decline in per-
formance. The decline of recall suggests that while the
subjects are walking, a small amount of blinks are con-
taminated such that the classifier fails to pick them up;
thus, representing false negatives. There is a larger de-
cline in precision, which suggests that in additional to
the increase in false negatives reflected by the recall,

there is also a increase in false positives; noisy peaks in
EEG data caused by walking are erroneously picked up
by the classifier as blinks. Despite the performance de-
cline of the wink classifier when applied to more noisy
data, we can, however, still observe that it is robust in
reasonably noisy scenarios.

Sitting Relaxed Walking
Precision 92.35% 86.15%
Recall 99.39% 96.70%
Accuracy 95.58% 92.58%

Table 1: Wink classification results

For think mode, we test on the same set of subjects.
We carry out the P300 experiments with the subjects
using the Dial Tim application while sitting still, sitting
with loud background music and standing up. We av-
erage the data over a set time interval. The experiment
results are shown in Table 2. First, the accuracy in-
creases as the data accumulation time increases, which
coincides with the intuition that averaging over more
data improves the SNR for the expected P300 signals,
leading to higher accuracy. Second, P300 signals are
quite susceptible to external noises, illustrated by the
fact that when subjects are sitting still, we have the
best accuracies, whereas accuracy decrease when con-
siderable auditory noise is introduced. Accuracy fur-
ther declines when the subjects stand up, which poten-
tially adds more noises due to subjects’ muscle controls
and physical movements. Third, even though different
experiment settings result in different P300 detection
accuracies, more data accumulation and averaging gen-
erally yields better detection accuracies.

Time Sitting Music (Sitting) Standing
20s 77.78% 44.44% 33.33%
50s 77.82% 66.67% 66.67%
100s 88.89% 88.89% 66.67%

Table 2: Think classification accuracies. Times in
the first column indicate the different time durations
of data accumulation for averaging. Contact pictures
are flashed once every half a second in random order;
each of the 6 pictures has a 1/6 chance for each flash.
Accuracy measures the proportion of correctly classified
sessions. Note that chance level classification accuracy
would be 1/6 ≈ 16.67%.

While our initial results are promising for a limited
set of scenarios many challenges remain. Currently, to
get usable P300 signals from the user, we need to av-
erage their data over a large number of trials. This
is typically how neural signals are handled. However,
this general “unresponsiveness” of the system proves
to be rather frustrating for the end user. There has
been recent works on single-trial classification of EEG
data [6,11]. We are currently investigating how to reli-
ably carry out classification using such single-trial data
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approaches. We also carry out P300 experiments while
subjects are walking and driving which yields low ac-
curacies due to noise. We plan to study the applica-
tion of different processing and classification algorithms
capable of dealing with large induced noise from such
activities. The CPU usage for our application on the
iPhone is 3.3%, and the total memory usage is 9.40MB,
of which 9.14MB are for GUI elements, meaning that
the actual preprocessing and classification components
of our application are quite lightweight, using minimal
amounts of memory. However, continuous use of Neuro-
Phone streaming raw EEG channels to the phone using
WiFi and running processing and classification pipelines
would lead to battery drain. We plan to study duty cy-
cling the phone to solve this problem.

6. RELATED WORK
There is a limited amount of related work in this area.

A number of groups [4, 6, 15] use research/professional
quality EEG devices that offer higher quality signals but
are expensive and based on wired headsets not wireless.
In contrast, consumer-oriented EEG headsets [3,12,13]
are considerably cheaper and noisier but at the same
time are more geared toward gaming applications rather
than the types of classification we have used them for.
Typically, these headsets are wireless, enabling mobile
uses. [7,12] are more closely related to NeuroPhone. [7]
develops a wireless EEG headband prototype with 4
electrodes targeting forehead non-hairy skin area, which
is not suitable for P300. [12] is a commercially available
headset with a single electrode not powerful enough for
the types of applications we have in mind such as Dial
Tim. These projects discuss connecting neural signals
to mobile phones just to display visualization and sim-
ple frequency-domain analysis of the signal, not to drive
mobile applications themselves. In essence, the phone
is used as a mobile display and not as a phone.

7. CONCLUSION
We have presented the evaluation of an initial pro-

totype that brings together neural signals and phones
to drive mobile applications in new ways. One could
argue that connecting the wireless Emotiv EPOC EEG
headset and iPhone is just a simple engineering exer-
cise. We believe the NeuroPhone system is an impor-
tant development precisely because it is simple to en-
gineer using cheap but noisy commercial components.
NeuroPhone opens up new opportunities and challenges
in ubiquitous sensing and pervasive computing. For ex-
ample, sniffing packets could take on a very new mean-
ing if brain-mobile phone interfaces become widely used.
Anyone could simply sniff the packets out of the air and
potentially reconstruct “thoughts” of the user. Spying
on a user and detecting something as simple as them
thinking yes or no could have profound effects. Thus,

securing brain signals over the air is an important chal-
lenge.
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