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Chapter 1

Introduction

1.1 Communication Complexity

In a communication complexity problem, multiple parties compute a function on private
inputs by communicating. Variations on this framework are numerous, but most share the
same core features. The only resource of concern is the amount of communication between
the parties. Individual parties are allowed infinite processing power and infinite memory.
The parties generate a single answer to the problem. This answer may be known only to a
single party. The number of parties involved is often two. In this case, it is common to refer
to the players as Alice and Bob. This is the framework introduced by Yao in 1979, and is
examined in considerable depth in the definitive textbook [5]. Though the communication
complexity problem framework may appear narrow, communication complexity results have
proven useful in various areas such as data stream algorithms, boolean circuits, and data
structures [1], [5].

A communication scheme employed by Alice and Bob to solve the problem is called a pro-
tocol. An individual conversation between Alice and Bob is called a transcript. The cost
of a protocol is the length of the longest transcript it produces. The communication com-
plexity of a problem is the minimum cost of a protocol that adequately solves the problem.
Researchers seek to devise protocols with small cost, as well as construct proofs that lower
bound communication complexity.

The two forms of the communication complexity problem framework are the deterministic
model and the randomized model. In the deterministic case, the communication between the
parties is entirely dependent upon the inputs, and will always be the same for a given input
pair. In the randomized case, the protocol may take into account random events. These
random events are known as coin tosses, and may be either private or public. Public coin
tosses are known to all parties. Private coin tosses, however, are visible to a single party. In
this paper, unless otherwise noted, we focus upon private-coin randomized protocols. The
randomized model allows Alice and Bob to make errors. The error of a randomized protocol
is the maximum error of the protocol on any input distribution. Normally, deterministic
protocols are not allowed to err. Occasionally, however, it is useful to reason about the cost
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of a deterministic protocol which is allowed some error on a given input distribution.

When studying the communication complexity of a function, it is helpful to visualize the
function’s truth table. Generally, the rows of the truth table represent Bob’s inputs, and
the columns represent Alice’s inputs. Each entry in the table indicates the function’s value
on a specific input pair. Recall that in the deterministic case, the transcript chosen by the
protocol on a given input pair is fixed. We assert the following useful claim: The set of
inputs that yield a particular transcript form a combinatorial rectangle in the truth table.
We refer the reader to [5] for a proof. In the randomized setting, the transcript produced by
the protocol is a result of player inputs as well as random coin tosses. These transcripts form
combinatorial rectangles in the larger table whose rows and columns represent input/private-
coin-toss combinations. Proving deterministic communication complexity lower bounds is
substantially easier than proving randomized communication complexity lower bounds. This
is because it is usually a simple task to lower bound the minimum number of monochromatic
rectangles required to partition the truth table of a function.

The following is a naturally arising communication complexity problem: How much addi-
tional communication does it require to solve multiple instances of a function at the same
time? We require that protocols solving multiple instances of a problem provide answers
that are simultaneously correct with high probability. Since the techniques used within this
paper to prove a lower bound on the communication complexity of the inner product func-
tion also produce a lower bound on the communication complexity of the direct sum of inner
product function problems, we include this proof as well.

1.2 Communication Complexity Problems

For illustrative purposes, we examine three two-party communication complexity problems.
Alice and Bob both receive n bits of input in each of these problems.

• GT, the greater than function. Alice and Bob are given numbers x, y ∈ [2n], and must
output 1 if x > y, and 0 otherwise.

• DISJ, the disjointedness function. Alice and Bob are given sets A, B ⊆ [n] and they
must output 0 if A ∩B = ∅, and 1 otherwise.

• IP, the inner product function. Alice is given binary string x = x1x2...xn, Bob is given
binary string y = y1y2..yn, and they must output

∑n
i=1 xiyi (mod 2)

If Alice sends her entire input to Bob, Bob may perform the calculation and output the
correct answer. Thus communication complexity cannot be greater than the length of the
inputs. In the deterministic setting, none of the problems above can be solved with fewer
than n bits of communication. However, under the randomized private-coin model, the
communication complexity of GT is reduced to Ω(log(n)) [KN].

.
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The inner product function is very hard even in the randomized model. We use Rδ(IP) to
indicate the randomized communication complexity of the inner product function with δ
error. The two following bounds are known:

• Rδ(IP) ≥ n−O(log(1/δ)) [5]

• Rδ(IP) ≥ n
4 (1− 2

√
δ) [1]

The former bound is proven using a concept called discrepancy, which requires showing that
all nearly-monochromatic rectangles in the truth table are small. This strategy involves hefty
linear algebra. The second bound, though not proven explicitly in [1], can be derived from
the proof of the disjointedness function lower bound. This proof uses subtle information
complexity techniques on a distribution over inputs which are disjoint. Alice’s and Bob’s n
bit strings represent disjoint sets if for every index i, the i-th bits of the players’ strings are
not both one. Inputs from this distribution have the decomposing property that if the bits
at any index become ones, the solution to the disjointedness function changes. On this input
distribution, the inner product function behaves similarly. The inner product is always zero,
and if the bits of both strings at any index become ones, the function’s value changes. In
this paper, we present a lower bound for the randomized communication complexity of the
inner product function using information complexity techniques on the uniform distribution.
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Chapter 2

Preliminaries

2.1 Probabilistic Inequalities

Markov’s Inequality

Let X be any random variable. For positive values of a:

Pr[|X| ≥ a] ≤ E[|X|]
a

Hoeffding’s Inequality

Suppose that X1, X2, ..., Xn is a set of mutually independent random variables, such that
each Xi takes values in the range [ai, bi], and S =

∑n
i=1 Xi. Then for positive values of t:

Pr[E[S]− S ≥ nt] ≤ exp

(
−2n2t2∑n

i=1(bi − ai)2

)

2.2 Communication Complexity

The random variable π(X, Y ) represents the transcript chosen by protocol π when the play-
ers’ inputs are decided by random variables X and Y . The random variable π(x, y) represents
the transcript chosen by protocol π on the inputs x, y. If the transcript τ occurs, τout denotes
the output submitted by Alice and Bob. The event that τout doesn’t match f(x, y) will be
denoted by ε(x, y, τ). That is:

ε(x, y, τ) =

{
0, if τout = f(x, y)

1, otherwise

The random variable ε(X, Y, π(X, Y )) indicates if π’s choice of transcript results in an error
when the players’ inputs are decided by random variables X and Y . Accordingly, the random
variable ε(x, y, π(x, y)) indicates if π’s choice of transcript for the input pair x, y results in an
error. We say that a protocol has error δ on distribution (X, Y ) ∼ µ if E[ε(X, Y, π(X, Y ))] ≤
δ. A protocol is said to a δ-error protocol if it has error δ on all input distributions.

Definition 1. The cost of a protocol π is the maximum length of a transcript chosen by π.
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Definition 2. Dµ
δ (f) is the minimum cost of a deterministic protocol which has error less

than δ when computing f on inputs from the distribution µ.

Definition 3. Rδ(f), the randomized communication complexity of f , is the minimum cost
of a δ-error protocol which computes f .

Definition 4. If f is a function and % is an integer, f " is defined to be:

f "((x1, x2, ..., x"), (y1, y2, ..., y")) = (f(x1, y1), f(x2, y2), ..., f(x", y"))

Definition 5. Dµ!

δ (f ") is the minimum cost of a deterministic protocol which computes all
% copies of f on inputs each from the distribution µ with probability at least 1− δ that all
outputs are simultaneously correct.

Definition 6. Rδ(f ") is the minimum cost of a randomized protocol which solves all % copies
of f with probability at least 1− δ that all outputs are simultaneously correct.

Yao’s Min-Max Principle

For any function f , Rpub
δ (f) = maxµ Dµ

δ (f), where Rpub
δ (f) is the public-coin randomized

communication complexity of f . Since Rpub
δ (f) ≤ Rδ(f), as any public-coin protocol may be

simulated by a private-coin protocol, we have:

Rδ(f) ≥ max
µ

Dµ
δ (f)

2.3 Information Theory

Information theory, a field established in 1948 by Claude Shannon, examines the quantifica-
tion of information. Of central importance to information theory is the notion of entropy.
The entropy of a random variable is a quantification of the random variable’s uncertainty.
Mathematically, we define entropy as:

H(X) = −
∑

x∈X

Pr[x = X] · log (Pr[x = X])

The conditional entropy of Y conditioned on X can be thought of as uncertainty of Y after
X has been revealed. It is defined to be:

H(X | Y ) = H(X, Y )− H(Y )

Two properties of entropy are the subadditivity of entropy and the subadditivity of condi-
tional entropy.

H(X, Y ) ≤ H(X) + H(Y )

H(X, Y | Z) ≤ H(X | Z) + H(Y | Z)

From this subadditivity property and the definition of conditional entropy, it is evident that
H(X | Y ) ≤ H(X). Another useful information theoretic concept is mutual information.
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The mutual information between two random variables is the amount of uncertainty that
they share. Formally,

I(X : Y ) = H(X)− H(X | Y )

The conditional mutual information between X and Y conditioned upon Z is defined to be:

I(X : Y | Z) =
∑

z∈Z

Pr[Z = z] · I(X : Y | Z = z)

By the definition of mutual information and the entropy subaddivity property:

H(X) ≥ I(X : Y )

H(X | Z) ≥ I(X : Y | Z)

2.4 Information Complexity

At the intersection of communication complexity and information theory lies information
complexity. The information complexity of a function is the amount of information the
players solving the function must reveal about their inputs. This concept was introduced
in [3]. The measure of information complexity of a protocol used in this paper is called
information content and is similar to the measure used in [2].

Definition 7. Suppose X and Y are random variables distributed according to µ, the
information content of π with respect to µ, denoted ICµ(π), is defined to be:

ICµ(π) = Max{I(X : π(X, Y ) | Y ), I(Y : π(X, Y ) | X)}

7



Chapter 3

Inner Product Information
Complexity

3.1 Information Content Derived Bounds

The following two theorems relate information content lower bounds to communication com-
plexity lower bounds.

Theorem 1. Suppose that any protocol π computing f on inputs from distribution µ makes
error less than δ and has the property that ICµ(π) ≥ c. Then Rδ(f) ≥ c.

Proof. Let π be the δ-error protocol for f with the least communication, let X, Y be input
random variables distributed according to µ, and let |π| denote the length of the longest
transcript of π. There are at most 2|π| possible transcripts generated by π, thus |π| ≥
H(π(X, Y )). Using this and the entropy properties described above:

Rδ(f) = |π| ≥ H(π(X, Y ))

≥ H(π(X, Y ) | Y )

≥ I(X : π(X, Y ) | Y )

The same holds for the opposite use of X and Y , showing Rδ(f) ≥ I(Y : π(X, Y ) | X). It
follows that Rδ(f) ≥ Max{I(X : π(X, Y ) | Y ), I(Y : π(X, Y ) | X)} ≥ c.

Theorem 2. Suppose that any protocol π computing f on inputs from distribution µ makes
error less than δ and has the property that ICµ(π) ≥ c. Then Rδ(f ") ≥ c·"

2 .

Proof. This is a direct application of results from [2]. We state Theorem 1.9 from [2] here
explicitly: For every µ, f, δ, there exists a protocol π computing f on inputs drawn from

(X, Y ) ∼ µ with probability of error at most δ and communication at most Dµ!

δ (f ") such
that

I(X : π(X, Y ) | Y ) + I(Y : π(X, Y ) | X) ≤ 2Dµ!

δ (f ")

%

Since ICµ(π) ≤ I(X : π(X, Y ) | Y ) + I(Y : π(X, Y ) | X) it follows that:

c · %
2
≤ Dµ!

δ (f ")
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By Yao’s principle:

Rδ(f
") ≥ c · %

2

3.2 Inner Product Information Content

Let µ be the uniform distribution over {0, 1}n×{0, 1}n. If a protocol π computes IP making
δ < 3

640 error on distribution µ, then:

ICµ(π) >
n

32

By Theorem 1 we have:

Rδ(IP) >
n

32
By Theorem 2 we have:

Rδ(IP
") >

n · %
64

This is a consequence of the following more delicate statement. Let (X, Y ) ∼ µ be the
uniform distribution over {0, 1}n × {0, 1}n. If a protocol π computes IP, k2 > 3

4 , and:

E [ε(X, Y, π(X, Y ))] ≤ k1

I(X : π(X, Y ) | Y ) ≤ 1

4
(1− k2)n

I(Y : π(X, Y ) | X) ≤ 1

4
(1− k2)n

Then:

k1 >

(
k2 −

3

4

)2

· 3

10

Proof

The strategy used here is heavily derived from that used in [5].

First we identify a transcript, which when conditioned upon, the protocol errs infrequently
and the entropies of both X and Y are great. Using the high entropy of X and the low error,
we prove the existence of many X values on which the transcript makes little error. From
these X values we chose a subset with the following property: The transcript’s error on one
value is independent of the transcript’s error on the other values. Using a uniform distri-
bution on these particular X values and the nature of the inner product function, we prove
the transcript makes considerable error on most Y inputs and thus makes considerable error.

We proceed by proving the existence of a transcript with the desired properties.
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Since E[ε(X, Y, π(X, Y ))] ≤ k1, an application of Markov’s Inequality reveals:

Pr
τ

[E[ε(X, Y, τ) | π(X, Y ) = τ ] ≥ 4k1] ≤
1

4

Using the property that I(A, B) = H(A)−H(A | B) and that H(X) = n (as X is uniformly
distributed over 2n strings), we may show:

1

4
(1− k2)n ≥ I(X : π(X, Y ) | Y ) = H(X | Y )− H(X | π(X, Y ), Y )

= n− H(X | π(X, Y ), Y )

= n− H(X | π(X, Y )) by rectangle property

Another application of Markov’s Inequality shows:

Pr
τ

[n− H(X | π(X, Y ) = τ) ≥ (1− k2)n] ≤ 1

4

Performing the same manipulation with I(Y : π(X, Y )) reveals:

Pr
τ

[n− H(Y | π(X, Y ) = τ) ≥ (1− k2)n] ≤ 1

4

Together, these three inequalities show:

Pr
τ




H(X | π(X, Y ) = τ) ≥ k2n ∧
H(Y | π(X, Y ) = τ) ≥ k2n ∧

E[ε(X, Y, τ) | π(X, Y ) = τ ] ≤ 4k1



 ≥ 1− 1

4
− 1

4
− 1

4

Thus there exists a transcript τ̂ such that the following conditions hold.

E[ε(X, Y, τ̂) | π(X, Y ) = τ̂ ] ≤ 4k1 (3.1)

H(X | π(X, Y ) = τ̂) ≥ k2n (3.2)

H(Y | π(X, Y ) = τ̂) ≥ k2n (3.3)

To simplify notation, let X ′ be X conditioned upon π(X, Y ) = τ̂ , and let Y ′ be Y conditioned
upon π(X, Y ) = τ̂ . Since H(X ′) is close to H(X), the probability that X ′ takes a value which
occurs infrequently must be high.

Definition 8. X∗ = {x ∈ X ′ | Pr[X ′ = x] ≤ 1

2
3
4 n

}

Claim 1. Pr[X ′ ∈ X∗] ≥ 4(k2 − 3
4)

Proof. We use the property that for an event E and a random variable X:

H[X] = Pr[E] · H(X | E) + Pr[Ē] · H(X | Ē) + HB(Pr[E])

Using X ′ as the random variable and X ′ ∈ X∗ as the event we have:

H(X ′) = Pr[X ′ ∈ X∗] · H(X ′ | X ′ ∈ X∗) + Pr[X ′ /∈ X∗] · H(X ′ | X ′ /∈ X∗) + HB(Pr[X ′ ∈ X∗])
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Trivially, HB(Pr[X ′ ∈ X∗]) ≤ 1 and H(X ′ | X ′ /∈ X∗) ≤ n. Since all values of X ′ /∈ X∗

occur with probability at least 1
2(3/4)n , there are at most 2(3/4)n distinct values in X ′ /∈ X∗.

Thus H(X ′ | X ′ /∈ X∗) ≤ (3/4)n. Therefore:

H(X ′) ≤ Pr[X ′ ∈ X∗] · n + Pr[X ′ /∈ X∗] · 3

4
n + 1

H(X ′) ≤
(

1

4
Pr[X ′ ∈ X∗] +

3

4

)
· n + 1

If Pr[X ′ ∈ X∗] < 4(k2 − 3
4) then for sufficiently large n, H(X ′) < k2n, which contradicts

(2).

Definition 9. X̂ =
[
x ∈ X∗ | E[ε(x, Y ′, τ̂)] ≤ 2k1

k2− 3
4

]

Claim 2. |X̂| ≥ (k2 − 3
4)2

3
4n+1

Proof.

E[ε(X ′, Y ′, τ̂)] = Pr[X ′ ∈ X∗] · E[ε(X ′, Y ′, τ̂) | X ′ ∈ X∗] +

Pr[X ′ /∈ X∗] · E[ε(X ′, Y ′, τ̂) | X ′ /∈ X∗]

E[ε(X ′, Y ′, τ̂)] ≥Pr[X ′ ∈ X∗] · E[ε(X ′, Y ′, τ̂) | X ′ ∈ X∗]

4k1 ≥Pr[X ′ ∈ X∗] · E[ε(X ′, Y ′, τ̂) | X ′ ∈ X∗] by (3.1)

4k1

Pr[X ′ ∈ X∗]
≥E[ε(X ′, Y ′, τ̂) | X ′ ∈ X∗]

k1

k2 − 3
4

≥E[ε(X ′, Y ′, τ̂) | X ′ ∈ X∗] by Claim 1

Now by an application of Markov’s Inequality:

Pr
x∈X′|X′∈X∗

[
E[ε(x, Y ′, τ̂)] ≤ 2k1

k2 − 3
4

]
≥ 1

2
(3.4)

Pr
[
X ′ ∈ X̂

]
≥ Pr[X ′ ∈ X∗] · Pr[X ′ ∈ X̂ | X ′ ∈ X∗]

≥ 4(k2 −
3

4
) · 1

2
= 2(k2 −

3

4
) by (3.4) and Claim 1

Since individual values in X̂ occur with probability at most 1

2
3
4 n

(because X̂ ⊆ X∗), the

number of distinct values in X̂ is at least:

2(k2 − 3
4)

1

2
3
4 n

= (k2 −
3

4
)2

3
4n+1 (3.5)

11



Claim 3. There exists a subset of M ⊆ X̂, with the following properties: {ε(x, Y, τ̂) | x ∈ M}
is a set of mutually independent random variables, and |M | ≥ log2(|X̂|).

In order to prove Claim 3, we will make use of two lemmas:

Lemma 1. Suppose F is a field and X ⊆ Fn then ∃M ⊆ X s.t. |M | ≥ log|F|(|X|) and M is
a linearly independent set.

Proof. Suppose that M is a linearly independent subset of X and |M | = m. The span of M
has size |F|m. Therefore, if m < log|F|(|X|) then |Span(M)| < |X|. This implies that there
exists x ∈ X which is linearly independent of the vectors in M .

Lemma 2. Suppose M is a linearly independent subset of Fn. If Y is a random variable
uniformly distributed over Fn then {Y · x | x ∈ M} is a set of mutually independent random
variables.

Proof. For any x ∈ M , f ∈ F, x -= 0, Pr[Y · x = f ] = 1
|F| , as 0 /∈ M . Accordingly, to prove

that {Y ·x | x ∈ M} is a set of mutually independent random variables it it suffices to show
that for any {x1, x2, ..., xk} ⊆ M , f1, f2, ..., fk ∈ F, Pr[Y ·x1 = f1 ∧Y ·x2 = f2 ∧ ...∧Y ·xk =
fk] = 1

|F|k . Select some such {x1, x2, ..., xk} ⊆ M , f1, f2, ..., fk ∈ F. now consider the linear

map T : Fn → Fk

T (y) = y · x1, y · x2, ..., y · xk

We note now that T (y) = Ay, where A is the matrix whose rows are x1, x2, ..., xk. Since
x1, x2, ..., xk are linearly independent, the row rank of A is k, and thus the dimension of the
image of T is k. Therefore T is a linear map onto Fk. It follows that for any f ∈ Fk

|T−1(f)| =
|Fn|
|Fk|

Since Y is a random variable uniformly distributed over Fn,

Pr[Y · x1 = f1 ∧ Y · x2 = f2 ∧ ... ∧ Y · xk = fk] = Pr[T (Y ) = f1, f2, ..., fk]

= Pr[Y ∈ T−1(f1, f2, ..., fk)]

=
Fn

Fk
· 1

Fn
=

1

Fk

Proof of Claim 3. Since X̂ ⊆ Fn
2 , by Lemma 1, there exists M ⊆ X̂ s.t. |M | ≥ log2(|X̂|)

and M is a linearly independent set. By Lemma 2, {x · Y | x ∈ M} is a set of mutually
independent random variables. If τ̂out = 0, ε(x, Y, τ̂) = x · Y . Otherwise τ̂out = 1 and
ε(x, Y, τ̂) = 1 − x · Y . Thus if {x · Y | x ∈ M} is a set of mutually independent random
variables, {ε(x, Y, τ̂) | x ∈ M} is a set of mutually independent random variables.

By (3.5), |X̂| ≥ (k2 − 3
4)2

3
4n+1. By Claim 3, we know there exists M ⊆ X̂ where |M | ≥

3
4n + log(2(k2 − 3

4)) and {ε(x, Y, τ̂) | x ∈ M} is a set of mutually independent random

12



variables. Pick some small δ > 0 and let X ′′ be a uniform distribution on (3
4 − δ)n values of

M . Since M ⊆ X̂ and ∀ x ∈ X̂ E[ε(x, Y ′, τ̂)] ≤ 2k1

k2− 3
4

, we have:

E[ε(X ′′, Y ′, τ̂)] ≤ 2k1

k2 − 3
4

(3.6)

Definition 10. g(y) = E[ε(X ′′, y, τ̂)]

The function g is of interest as the error of τ̂ on the distribution X ′′×Y ′ is equal to E[g(Y ′)].
In order to bound E[g(Y ′)], we instead calculate E[g(Y )], and then show g(Y ) is concentrated
around E[g(Y )]. It follows that E[g(Y ′)] is close to E[g(Y )], because H(Y ′) is large.

E[ε(x, Y, τ̂)] = 1
2 ∀ x ∈ X. Accordingly:

E[g(Y )] = E[ε(X ′′, Y, τ̂)] = E
x∈X′′

[E[ε(x, Y, τ̂)]] =
1

2

Also note that:

g(y) = E[ε(X ′′, y, τ̂)] =
∑

x∈X

Pr[X ′′ = x] · ε(x, y, τ̂) =
∑

x∈X′′

ε(x, y, τ̂)(
3
4 − δ

)
n

g(Y ) =
∑

x∈X

Pr[X ′′ = x] · ε(x, Y, τ̂) =
∑

x∈X′′

ε(x, Y, τ̂)(
3
4 − δ

)
n

Since g(Y ) is the sum of a set of mutually independent random variables, each of which is
bounded, we may use Hoeffding’s Inequality to bound the probability that g(Y ) is signifi-
cantly less than its expectation.

Pr [E[g(Y )]− g(Y ) ≥ c] ≤ exp




−2c2

(3
4 − δ)n

(
1

( 3
4−δ)n

)2





Pr

[
g(Y ) ≤ 1

2
− c

]
≤ exp

(
−2c2

(
3

4
− δ

)
n

)

Let c =
1√

8
(

3
4 − δ

)
log(e)

Pr

[
g(Y ) ≤ 3

20

]
≤ exp

(
−n

4 · log(e)

)
(3.7)

Claim 4. Pr[g(Y ′) > 3
20 ] ≥ 4(k2 − 3

4)

Proof. Y is a uniform distribution over 2n values, and therefore by (3.7) the number of Y
values such that g(Y ) ≤ 3

20 is at most:

2n

e(
n

4·log(e))

13



Since the number of such values is small, the probability Y ′ takes such a value must be small,
as otherwise the entropy of Y ′ would also be small. To show this, we decompose H(Y ′) using
the event g(Y ′) ≤ 3

20 .

H(Y ′) = Pr

[
g(Y ′) ≤ 3

20

]
· H

(
Y ′ | g(Y ′) ≤ 3

20

)
+

Pr

[
g(Y ′) >

3

20

]
· H

(
Y ′ | g(Y ′) >

3

20

)
+ HB

(
Pr[g(Y ′) ≤ 3

20
]

)

Trivially, HB

(
Pr[g(Y ′) ≤ 3

20 ]
)
≤ 1 and H

(
Y ′ | g(Y ′) > 3

20

)
≤ n. Additionally:

H

(
Y ′ | g(Y ′) ≤ 3

20

)
≤ log

(
2n

e(
n

4·log(e))

)
=

3

4
· n

Altogether, this implies:

H(Y ′) ≤ Pr

[
g(Y ′) ≤ 3

20

]
· 3

4
n + Pr

[
g(Y ′) >

3

20

]
· n + 1

H(Y ′) ≤
(

1

4
Pr

[
g(Y ′) >

3

20

]
+

3

4

)
· n + 1

If Pr[g(Y ′) > 3
20 ] < 4(k2 − 3

4) then for sufficiently large n we have H(Y ′) < k2n, which
contradicts (3.3).

Now let us reason about E [ε(X ′′, Y ′, τ̂)]. By Claim 4 we have that:

E [ε(X ′′, Y ′, τ̂)] = E[g(Y ′)] > Pr

[
g(Y ′) >

3

20

]
· 3

20
≥ 4 ·

(
k2 −

3

4

)
· 3

20

By equation (3.6) we have that:

E[ε(X ′′, Y ′, τ̂)] ≤ 2k1

k2 − 3
4

Putting these together:

2k1

k2 − 3
4

≥ E [ε(X ′′, Y ′, τ̂)] > 4 ·
(

k2 −
3

4

)
· 3

20

Thus:

k1 >

(
k2 −

3

4

)2

· 3

10
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Chapter 4

Conclusion

4.1 Conclusions and Open Problems

The randomized communication complexity lower bound for the inner product function
proved here is not the strongest known bound, nor even the strongest bound proven using
information complexity techniques. Nonetheless, it is still of interest. The proof’s informa-
tion complexity approach provides bounds on the direct sum of problem instances, which is
not possible for discrepancy based methods. This proof differs from the information complex-
ity proof implicit in [1] in its use of the natural uniform distribution, and notably different
inner product function properties. We contend that our proof is the most straightforward of
the three.

The immediate question is how this proof can be improved. Since it was finished very
recently and particular constants were chosen for the sake of simplicity, an extended review
may reveal substantial simplifications and improvements. Hopefully this technique may be
applied to other problems for which previous methods are ineffective.
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