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Automated Tracking of Dividing Nuclei in Microscopy Videos

of Living Cells

Evan Tice
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Dartmouth Computer Science Technical Report TR2009-645

June 3, 2009

Abstract

Many cell biologists perform analysis of multinucleated cell data in order to better under-
stand the mechanisms that regulate cell division. Sbalzarini, et al., have developed methods
for automatically tracking nuclei in cell data in order to aid in this time-consuming analysis.
In this paper, we present an implementation of the Sbalzarini tracking algorithm, introduce a
new algorithm we developed which is able to identify mitosis events, and present other software
tools we have developed to aid in the automated detection of nucleus data.

1 Introduction

Biologists would like to better understand the mechanisms leading to variability in the cell division
cycle. Proper regulation of cell division is required for normal cell development and homeostasis.
Poorly regulated cell division is a hallmark of cancer cells and other cells of interest to the research
community. It is not known how much variability in the division cycle arises from stochastic (non-
deterministic) differences in the population, as opposed to systematic differences.[1, 549] Many labs,
such as the Gladfelter lab at Dartmouth College, use a multinucleate fungus as a model system to
understand sources of variability in the cell division cycle. In the cells, nuclei have highly variable
division cycles and divide asynchronously despite their close proximity in the same cell. Since
nuclei in multi-nucleated cells share the same genetic content and reside within the same cytosol,
one would expect these nuclei to exhibit similar behavior. By gathering large scale quantitative
data about the division timing of nuclei in multi-nucleated cells, the labs hope to build predictive
mathematical models that can explain the sources of variability in the cell cycle.

To follow nuclei in living cells, one can express a protein that localizes to the DNA, Histone,
linked to the Green Fluorescent Protein (GFP). One can then visualize nuclei under fluorescence
microscopy. Motorized and automated fluorescence microscopes can capture time-series cross sec-
tional images or ‘movies’ of the nuclei over several hours or days. Biologists then interpret the data
to better understand cell behavior.

Imaging and tracking specific cell components poses several problems. Biologist must strike
a delicate balance between obtaining good images and killing the cells they wish to observe. To
preserve cell viability, one must take care to limit light exposure from the microscope and balance
the effects of phototoxicity against various image quality problems: Without sufficient temporal
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resolution in the data, nuclei can exchange places between frames. Without cross-sectional data,
nuclei can appear to collide in two dimensions. Photo-bleaching and diminished cell health can also
contribute to poor image quality. Of course, nuclei also move between frames, and into and out of
the frame of view. Due to these issues, it can be difficult to track nuclei between frames.

It is difficult and time-consuming for humans to manually analyze time-lapse fluorescence mi-
croscopy data. However, this is the current standard practice. A typical data set consists of images
from hundreds of time points, with up to ten images for each individual moment in time. Thus,
a typical data set can consist of over one-thousand images. Manually tagging nuclei by hand and
extracting movement and mitosis (cell division) information is an arduous process prone to errors
and human bias.

Simple single-image processing strategies such as “peak-picking” allow a user to automatically
identify nuclei in a series of images. In addition, tracking methods developed by Sbalzarini, et al.[2]
have been developed for tracking nuclei over time. However, the Sbalzarini tracking strategies is
insufficient for dealing with mitosis events where a single particle “splits” into two; these are events
of interests to biologists.

We have expanded on the work of Sbalzarini and others to develop an algorithm that is mi-
tosis aware. That is, our algorithm not only identifies mitosis events, but uses information about
identified events to determine whether mitosis is likely. We have developed a mitosis cost function
which takes into account the age of particles at the time of mitosis. Our approach uses this cost
function in a “simulated annealing” process to identify likely mitosis events. Simulated annealing
is a statistical algorithm to search for optimal configurations in a high-dimensional space, in our
case, interpretations of mitosis and movement events.

Our contributions are as follows:

• Analyzing mitosis via annealing

• Implementing a linking heuristic for the Sbalzarini algorithm

• We have developed a user-friendly software environment for performing cell analysis

In section 2 we outline the image processing pipeline they are used in. Section 3 introduces the
notation we use to describe particle associations, as well as the cost functions we use in our tracking
algorithms to model the likelihood of various associations. Sections4 and 5 describe our implemen-
tations of the Sbalzarini tracking algorithm and our mitosis tracking algorithm, respectively.

2 Our Software and the Processing Pipeline

In this section, we describe the software we have built and how it is used in the process of acquiring,
processing, and interpreting fluorescence microscopy data. Figure 1 outlines the processing pipeline.

2.1 Image Filters

Our software takes as input images collected from the fluorescence microscope. We provide a number
of image processing tools, “filters” that the allow the user to manipulate the images in order to
remove background noise. We use the term “filter” loosely since certain operations, e.g., cropping,
are not, strictly speaking, image filters. The user uses the tools provided to adjust the image so that
the nuclei of interest appear “bright” and the rest of the image appears “dark”; the peak picking
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Figure 1: Processing Pipeline

algorithm described in section 2.2 assumes that the operator has processed the image in this way.
The peak picking strategy works well when the operator is able to the nuclei from background noise,
and when the pixels in the centers of the nuclei are brighter than the surrounding pixels. Image
filters like thresholding and convolution help the operator process images with these characteristics.
Some “filters” serve other purposes, e.g., the ability to crop image allows the operator to remove
irrelevant pixels from the input images so system resources can be put to better use analyzing
relevant portions of the input images.

Our software implements the following filters (among others):

• Cropping - Discards unnecessary pixels.

• Grayscale Filter - Convert any or all of the R,G,or B, color channels to grayscale.

• Negative Image Filter - Inverts the intensities of all pixels.

• Thresholding - Discards pixels whose intensities in the gray or, alternatively, in any or all of
the R, G, or B color channels fall below a user-specified threshold.

• Binary Filter - Sets pixels to either the minimum or maximum intensity based on whether or
not the pixel intensity is below or above a user-specified threshold, respectively.

• Convolution - Applies a user specified convolution kernel to the image. To convolve an image,
we compute the weighted sum of pixel intensities of each pixel with respect to its neighbors
and an overlay “kernel” matrix which specifies the weight of each neighbor. The UI allows the
user to specify the convolution kernel matrix at runtime. In the kernel input UI, the columns
of the convolution kernel are delimited by spaces the rows by newline characters. In order
to obtain images where nucleus centers appear particular “bright”, we often using a simple
blurring convolution kernel such as that shown in Equation 1.

 1 1 1
1 1 1
1 1 1

 (1)

2.2 Nucleus Identification

We apply a “peak-picking” strategy to identify nuclei in the images. A simple algorithm analyzes
each two-dimensional image and identifies pixels whose intensities are local maxima. The algorithm
performs a constant amount of work for each pixel (determined by the number of neighbors consid-
ered; a user specified constant), and thus runs in time proportional to the total number of pixels
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to process. The user specifies the minimum distance allowed between detected nuclei as well as a
threshold intensity. We construct lists (ArrayLists) of detected nuclei coordinates for each frame.
Figure 2.2 shows an example of an unprocessed image as well as the corresponding processed image.

The peak-picking algorithm only obtains parameter estimates for the position (x, y) of detected
nuclei. In order to obtain size, intensity (brightness), and z-coordinate estimates, one must run an
additional parameter refinement algorithm (see section 2.3).

(a) Unprocessed image (b) Processed image, ready for peak picking

Figure 2: Example image cell data, before and after image processing. The peak picking strategy
works well when the operator is able to the nuclei from background noise, and when the pixels in
the centers of the nuclei are brighter than the surrounding pixels.

Our nucleus identification algorithm operates on two dimensional images. In cases where mul-
tiple cross-sectional images exist for a given time-frame, the software (automatically) builds a
two-dimensional composite of the the cross-section images and runs the peak-picking algorithm on
this composite. In practice, this strategy tends to work fairly well with three-dimensional data,
even in cases where nuclei overlap slightly. However, this heuristic does not work perfectly; our
algorithm fails to detect overlapping nuclei from time to time. In section (6) we outline possible
solutions to this shortcoming.

2.3 Parameter Refinement

The user may choose to apply an algorithm which refines the location estimates obtained upon
the location estimates obtained by the peak-picking algorithm. This refinement algorithm can
estimate size and intensity (brightness) parameters of detected nuclei. In addition, it solves for the
z coordinate value when three-dimensional data are available.

The intitial parameter estimates for detected nuclei are fairly inaccurate: the location parameter
is chosen according to the location detected in the two-dimensional nucleus detection algorithm.
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All nuclei are initially assumed to be the same size and we assume they have the same intensities.
The refinement algorithm works by building a theoretical image model of the microscopy imaging
in and out of focal plane, based on the (x, y, z) coordinates, size, and intensity parameters for each
nucleus.

We use a method for mode-based parameter fitting first applied to cell data by Alex Barnett
[3]. We use a gaussian bump to model particle intensity in and out of the focal plane as shown in
figure 3.

z

w(z)

Figure 3: Gaussian bump model of focal plane. We use cross sectional data to solve for z, the
particle width, and other parameters. w(z) = sqrt(w2

0 + s2(z − z0)2), where s is an f-stop (speed)
factor particular to microscope setup

We use the gaussian model to produce images for each frame and cross sectional depth using
our parameter estimates. We compare the model images against the actual images pixel by pixel.
The error for a particular set of parameter estimates is the sum of squared differences between the
pixels in our actual input images and the the pixels in our theoretical model images given by our
parameter estimates.

We apply a non-linear optimization algorithm1 to iteratively optimize our parameter estimates
for each nucleus in order to minimize the error. We optimize the parameter estimates for a single
nucleus while holding constant the estimates for all other nuclei. We can iteratively re-apply the
entire optimization process several times, since we can obtain more accurate parameter estimates
for each nucleus as the estimates for overlapping nuclei become more accurate.

In minimizing the error in our model, we necessarily solve for the position (in x, y, and z), size,
and intensity of each nucleus.

2.4 Tracking

Tracking enables us to preserve the identity and lineage of nuclei across frames. In the tracking
steps described throughout the remainder of this paper, we describe how we attempt to match the
detected particles in each frame with the related particles in the neighboring frames. We make

1We use a Nelder-Mead Simplex method implementation from a math library[4].
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two types of particle associations: first, we link particles which we believe correspond to the same
nuclei in different frames, and second, in the case of mitosis, we link “parent” particles to their
“children.”. We introduce cost functions to model the likelihood of various associations. Sections
4 and 5 describe our implementation of the Sbalzarini tracking algorithm and our mitosis tracking
algorithm, respectively.

3 Notation and Cost Functions

In this section, we introduce the notation we use to describe the relationships between nuclei and
the cost functions we use to model the likelihood of various interpretations of the data.

3.1 Nucleus Associations

x

t

t=0

t=1

(a) Simple link

x

t

t=1

t=2

t=0

nucleus not detected

(b) Simple link, skipped frame

x

t

t=0

t=1

(c) Mitosis link

Figure 4: Space-time diagrams denoting relationships between nuclei across frames. The y-axis
represents time and each horizontal line represents a different time point. The x-axis abbreviates
the (x, y) image plane on (x, y, z) in cases where three dimensional data are available.
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The space-time diagrams in Figure 4 show relationships between nuclei across frames. Each
light gray horizontal horizontal line in the figure represents a particular time. We depict nuclei as
circles; the x position of the nuclei for a given moment in time lies at the intersection of the circle
and the horizontal line for the time period. In our nucleus diagrams, a solid black line between
particles in frame t and t + r + 1 denotes either a “simple link” (in cases involving exactly two
particles) or a “mitosis” association (in cases involving exactly three particles). Cases where r > 0
allow us to handle nuclei which disappear for consecutive frames. The Sbalzarini implementation
currently allows r > 0 whereas our current simulated annealing implementation does not2.

A particle a in frame t is linked (via a “simple link”) to a particle b in frame t + r + 1 if (and
only if), in the decision produced by our software, particles a and b correspond to the same physical
nucleus. A “mitosis link” between particles a in frame t and particles b, c in frames t+ r+ 1 exists
if (and only if), in the decision produced by our, the physical nucleus corresponding to a divided
to produce physical nuclei corresponding to b and c.

We use the notation a  b to denote a link between particles a and b. Similarly, we use the
notation a b, c to denote a mitosis event involving parent particle a in frame t and child particles
b and c in frame t+ r + 1.

3.1.1 “Dummy particle” (δ) associations

The Sbalzarini tracking algorithm assumes imperfection in the nucleus identification process. To
account for particles which appear to appear or appear to disappear, Sbalzarini uses the notion of
a “dummy” or “null” particle, denoted δ. We allow links between the dummy particle and detected
particles in order to account for missed or mistakenly identified nuclei. We say that the dummy
particle links to nuclei which have no predecessor in the preceding frame. The dummy particle links
to all nuclei in the first frame (t = 0), and may link to various “appearing particles” in subsequent
frames. For the purposes of this paper and our software, we do not allow mitosis associations to
ever include a dummy particle.

3.2 Simple cost functions

Cost functions provide a unified framework to compare associations. We assign a cost function
to each type of association. The cost functions values vary with the likelihood of various associa-
tions; they produce “low” values for likely associations and “high” values for unlikely associations.
The Sbalzarini and annealing algorithms rely on cost functions to search for an optimal set of
associations, the set of associations that produces the lowest total cost.

We expresses the distance between two particles a and b in terms of their coordinates (xa, xb,
ya, and yb) thus: d(a, b) =

√
(xa − xb)2 + (ya − yb)2.

We consider associations between particles in frame t and frames t+ r + 1 where 0 ≤ r < rmax,
where rmax is a user specified parameter. The user specifies the maximum allowable distance, dmax,0

between particles in subsequent frames (i.e., when r = 0). In processing sample data from the lab,
we find that dmax,0 = 12 pixels usually produces reasonable results. The maximum distance dmax,r

varies by r as shown in Equation 2.
We express the cost of making an association a→ b in terms of the distance function and dmax,r

functions as shown in equation 3.
2Our annealing implementation could be extended to consider associations that allow skipped frames
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dmax,r = dmax,0 · (r + 1), r > 0 (2)

φ(a, b, dmax,r) =

 dmax,r if a = δ or b = δ
∞ if d(a, b) > dmax,r

d(a, b) otherwise
(3)

The Sbalzarini algorithm described below relies exclusively on cost function equation 3. Section
5.1 introduces defines the mitosis cost function used in the simulated annealing algorithm.

4 Sbalzarini Tracking Algorithm

The algorithm by Sbalzarini, et al., starts with a set of particle associations and iteratively optimizes
this state until the resulting associations have a minimal (optimal) total cost. Our implementation,
like that described by Sbalzarini, uses one adjacency matrix to store the current associations between
particles in a given frame t and subsequent frame t+ r+ 1. For each frame, there are at most rmax

association matrices. Each adjacency matrix contains one column for each particle in frame t and
one row for each row in frame t+ r + 1. An additional column and an additional row exist for the
dummy particle. Each entry ij in the adjacency matrices contains a boolean value which indicates
whether or not a link exists between the ith in frame t and particle jth in frame t+ r + 1.

At all times, the set of associations represented by a given association matrix respects the
following topology rules: “[each non-dummy row and non-dummy column in the adjacency matrix
contain exactly one True entry and all other entries are False. The dummy rows and columns
may contain more than one True entry. ”[2, p186]. These topology rules have the following
implications:

1. Each non-dummy particle can link to only one particle in subsequent frames.

2. No two particles, dummy or otherwise, can link to the same particle.

3. Multiple particles can link to the dummy particle, the dummy particle can link to to multiple
particles

The initial set of associations may be chosen arbitrarily, so long as they respect the topology
rules. Our implementation uses a nearest-neighbor heuristic to create an initial set of associations.
Algorithm 1 contains the pseudocode for the iterative optimizations we perform the Sbalzarini
tracking algorithm. The optimization step repeatedly considers swapping the particles involved in
various associations as shown in figure 5, and performs the swaps when doing so results in a lower
total cost. The algorithm terminates when the optimal set of associates, with respect to the cost
function, is achieved.

We had difficult interpreting the strategy used by Sbalzarini to extract the set of optimal links
from the adjacency matrices. We extract a set of association from the adjaceny matrices using a
linking heuristic that we developed. The linking heuristic is coded in two parts: Algorithm 2 defines
a ‘linking loop’ which calls an inner recursive step, Algorithm 3, repeatedly.
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Algorithm 1 Tracking overview
repeat

for all time frames t = 0...T − 1 do
for all adjacency matrices r = 0...min(R, T − t− 1) do

Step 1 - Direct swaps: Consider the cost of alternative links but ignore links to/from
dummy particles.
for all nuclei i in frame t do

for all nuclei j in frame (t+ r + 1) not linked to i with φ(i, j, (r + 1)d) <∞ do
if k → j and i→ l, where j, k, i, l are all non-dummy particles. then

Compute zij = φ(i, j, (r+ 1)d)−φ(i, l, (r+ 1)d)−φ(k, j, (r+ 1)d) +φ(k, l, (r+ 1)d)
if zij < 0 then

Break associations i→ l, k → j
Make associations i→ j, k → l

end if
end if

end for
end for
Step 2 - Appearing particles: As with Loop 1 above, but consider the cost of the alternative
when k → j and i→ l, where j, k, i are all non-dummy particles but l is a dummy particle.
for all nuclei j in frame (t+ r + 1) do

if k → j with j, k non-dummy then
Compute zδj = φ(δ, j, (r+ 1)d)− φ(k, j, (r+ 1)d)− φ(k, δ, (r+ 1)d) + φ(k, l, (r+ 1)d)
if zδj < 0 then

Break associations k → j
Make associations δ → j, k → δ

end if
end if

end for
Loop 3 - Disapppearing particles: As with Loop 1 above, but consider the cost of the
alternative when k → j and i → l, where j, i, l are all non-dummy particles but k is a
dummy particle.
for all nuclei i in frame t do

if i→ l with i, l non-dummy then
Compute ziδ = φ(i, δ, (r + 1)d)− φ(i, l, (r + 1)d)− φ(δ, l, (r + 1)d) + φ(k, l, (r + 1)d)
if ziδ < 0 then

Break associations i→ l
Make associations i→ δ, δ → l

end if
end if

end for
end for

end for
pass = pass + 1

until pass = maxNumPasses
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(a) Associations with high total cost due to
great distance between linked particles

x

t

(b) Optimal associations (low total cost)
due to short distance between linked

Figure 5: Swaps considered by the Sbalzarini algorithm. The optimal associations are those with
the lowest total cost.

Algorithm 2 Main linking loop linkAll

set visited[a] = FALSE ∀a
set links[a] = NIL ∀a
for all frames t from 0 to tMax− 1 do

for all nuclei n in frame t do
if NOT visited[n] then
recursivelyLink(n)

end if
end for

end for

Algorithm 3 Recursive step recursivelyLink(a)
Let t(a) denote the frame in which particle a exists.
set visited[a] = TRUE
set next = NIL
for all r from 0 to rMax s.t. (t(a) + r + 1) < the total number of frames. do

if next = NIL then
if there exists a link between a and someb in frame (t(a) + r+ 1) such that b 6= δ and NOT
visited[b] then

let next = b
end if

end if
end for
if next 6= NIL then
links[a] = next
recursivelyLink(next)

end if
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4.1 Test results of Sbalzarini tracking algorithm with real data sets

In this section, we outline the results of the Sbalzarini tracking algorithm on several real data sets.
We attempted to interpret and follow by eye the particles identified by the nucleus identification
algorithm across frames, and compared our own links with those links chosen by the algorithm.

Figure 6 shows two frames of cell data with information overlays from our software. Note that
pixel intensities have been inverted for visual clarity. The overlays indicate the position of detected
nuclei. Our software assigns each particle a unique identifier. However, the label for each particle
shown in these figures is the unique identifier assigned to the nucleus when the software believes it
first appears; particles which are labeled the same in different frames are thought to be the same
nucleus.

Figure 6: Tracking results produced by our software. A dot in the center of each detected nucleus
shows the location of the nucleus identified by the peak picking algorithm. We particles by number
in each frame; particles with the same number in different frames are thought to be the same
nucleus.

4.1.1 Tracking Example 1

All data sets are from images acquired from live Ashbya gossypii cells. This filamentous fungus
is expressing a histone protein, which associates with DNA, that is fused to the green fluorescent
protein (GFP). The fluorescence signal is a visual reporter of the nucleus in live cells. Images were
acquired on a Zeiss AxioImager-M1 upright light microscope equipped with the following Zeiss
oil immersion objective Plan-Apochromat 63x/1.4NA. For visualization of GFP, Chroma filter set
41025 and Zeiss filter set 38HE were used. An Exfo X-Cite 120 lamp was employed as the fluorescent
light source. Images were acquired with a Hamamatsu Orca-AG (C4742-80-12AG) CCD camera
driven by either OpenLab 5 (Improvision). Z-stacks were acquired at 0.5µm slice sizes over a total
of 6 microns depth at one minute intervals and processed by “fast” deconvolution using calculated
point spread functions in Volocity 4 (Improvision). All still images were linearly contrast enhanced
in Volocity 4. All images and movies presented are maximum projections of 3-dimensional volumes.

Figure 7 shows the output of the tracking algorithm for a seven frame data set. The images
shows a cell with four hyphae. The top and bottom hyphae are out of the focal plane resulting in
poor nucleus detection for nuclei in these hyphae. We only nuclei in focus, namely, the detected
ones, as indicated on the figures by a green polygon3. We thus consider 120 of the 159 detected

3the green polygon denoting the figures that are in focus was added by a human interpreter, not by our software
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(a) Frame 0 (b) Frame 1 (c) Frame 2

(d) Frame 3 (e) Frame 4 (f) Frame 5

(g) Frame 6

Figure 7: Sbalzarini tracking results for sample data set
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nuclei. It is worth noting that the peak picking strategy failed to identify nuclei several times when
nuclei were in close proximity to one another. We do not not account for these nuclei in this section
since they were not considered by the tracking algorithm.

A comparison of the human and algorithm linking results for a seven frame data set follows:

1. 14 nuclei linked successfully all 7 times (i.e., 73.7% of nuclei linked correctly throughout all
frames). The nuclei labeled 0, 1, 2, 3, 4, 7, 9, 10, 12, 13, 15, 16, 18, 19 were tracked between
frame 0 and frame 6 without ambiguity.

2. 1 nucleus mis-linked once, linked successfully 3 times. Nucleus 8 begins in frame 0, disappears
in frames 3 and 4, and apparently reappears in frame 5, incorrectly tagged as nucleus 117. It
is correctly tracked (as nucleus 117) into frame 6.

3. 1 nucleus linked successfully 5 times. Nucleus 37 appeared in frame 1 and is tracked without
ambiguity success through frame 6.

4. 1 nucleus linked successfully 3 times. Nucleus 51 appeared in frame 2. It appears to disappear
in frame 3 (it was not picked up by the peak-picking algorithm), but reappears in frame 4
and is successfully tracked through frame 6.

5. 1 nucleus linked successfully 4 times. Nucleus 54 appears in frame 2 and is tracked without
ambiguity through frame 6.

6. 1 nucleus mis-linked once. A mitosis child of nucleus 15 appearing in frame 6 is incorrectly
tagged as nucleus 21. The correct nucleus 21 disappears (from outside the area of focus) after
frame 1.

Of 19 nuclei, 14 (or 73.7%) were linked correctly throughout all frames. In total, we have
14 · 7 + 3 + 5 + 3 + 4 = 113 successful links, and 2 incorrect links. 98.26% of the links were made
correctly by the Sbalzarini algorithm.

The Sbalzarini algorithm does not consider mitosis events at all. As far as the algorithm is
concerned, particles which “appear” due to mitosis are no different from particles which “appear”
for other reasons. In the case of the example above, four likely mitosis events were ignored by the
software,

4.1.2 Summary of Sbalzarini results for all data sets

Table 1 lists the success/failure rate for the Sbalzarini algorithm against a human tracker

4.2 Analysis of Sbalzarini Tracking Algorithm

As our results show, the Sbalzarini Algorithm works well for simple tracking purposes. Sbalzarini,
et al. present a detailed runtime analysis in [2, p187]. The algorithm is quite efficient since the
cost function φ(a, b, dmax,r) does not depend upon the state of associations [2, p186]. However,
this property limits the information that we can consider in the cost function. These limitations
prove problematic when we wish to consider mitosis associations; in order to aid the biologists,
our software needs to track division and retain lineage identity. The following section describes a
tracking algorithm capable of identifying mitosis events.
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Table 1: Summary of Sbalzarini results for all data sets
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Sample 1 7 113 (98.26%) 2 (1.74%) n/a n/a n/a
Sample 2 12 130 (100%) 0 (0%) n/a n/a n/a
Sample 3 21 190 (99.48%) 1 (0.52%) n/a n/a n/a

5 New Mitosis-Aware Simulated Annealing Algorithm

Simulated annealing is an optimization heuristic for solving minimization problems in high dimen-
sional parameter space[5]. Unlike Sbalzarini, annealing is a probablistic algorithm. It tries various
associations according to their cost function, and a “temperature” function, which allows high cost
associations in early iterations but “cools” to favor lower cost associations over time. Due to the
random element of the algorithm, associations can be made which temporarily result in high total
cost, but in subsequent iterations, allow for other associations to be made or changed which result in
lower total cost, as shown in figure 8. Algorithm 4 gives pseudocode for a basic annealing algorithm.
In section 5.2 we present a more specific version of the algorithm tailored to mitosis detection.

Certain rules of biology provide clues as to whether or not a mitosis event logically explains a
newly appearing particle. For example, nuclei are not capable of dividing immediately after their
birth because they must replicate their DNA before they can undergo mitosis again. If mitosis
occurs for a particular particle in a given frame, it is highly unlikely that the same particle will
divide soon thereafter. Simulated annealing allows us to implement a tracking algorithm capable
of accounting for properties like “time since last mitosis” when searching for an optimal set of
associations. Figure 9 shows a case where a mitosis algorithm that relied only upon distance could
make an incorrect decision about which nucleus gave birth to a newly appearing particle. Similarly,
as shown in 10, a mitosis-aware algorithm could revisit linking decisions made by the Sbalzarini
algorithm. Simple links that appear optimal with respect to the Sbalzarini cost function may be
sub-optimal when considering mitosis events involving the same nuclei in past and future frames.

Our present implementation of the simulated annealing algorithm solves for the case shown in
figure 9, and while it could be extended to solve for the case shown in figure 10, it does not presently
do so.
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Figure 8: A “temperature” function allows high cost associations in early iterations but “cools” to
favor lower cost associations over time. Due to the random element of the algorithm, associations
can be made which temporarily result in high total cost, but in subsequent iterations, allow for
other associations to be made or changed which result in lower total cost.

Algorithm 4 Generic Simulated Annealing Algorithm
Let A = State Variable
Let k = 0
repeat

Let A′ = A with a small state change
Compute change in cost ∆φ between A and A′

if ∆φ < 0 or Random() ≤ e−∆φ/Temp(k) then
Set A = A′

end if
k = k + 1

until k ≥ kmax

We have developed a mitosis cost function which takes into account the age of particles at
the time of mitosis. We implement a mitosis-aware algorithm which uses this cost function in a
“simulated annealing” process to identify likely mitosis events and correct decisions made by the
Sbalzarini algorithm that are suboptimal when considering mitosis events in past and future frames.
Our algorithm takes the associations identified by Sbalzarini as input and considers introducing
various mitosis associations or swaps that better explain the data.

5.1 Mitosis Cost Function

In this section, we introduce a cost function which will allow us to make mitosis associations. We
begin with a cost function that is not mitosis-age aware, and build upon this to construct a cost
function that is aware of mitosis age.

Consider particle a in frame t and particles b and c in frame t + 1 where a  b and δ  c in
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Figure 9: Making mitosis-aware decisions: Newly appearing particle in 2nd frame likely came from
the parent on the right that has not given birth recently (even though this parent may not be the
closest match in terms of distance)

16



x

t

(a) Correct interpretation

x

t

(b) Incorrect interpretation

Figure 10: Resolving ambiguous “swaps”: Simple links that appear optimal with respect to the
Sbalzarini cost function may be sub-optimal when considering mitosis events involving the same
nuclei in past and future frames
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the current state.
where k1 and k2 are user specified mitosis cost constants expressing the fixed cost of mitosis

and the distance multiplier cost of mitosis, respectively.
Let φmax = k1 + k2 · dmax,0. We shall use φmax to allow us to weight the contributions of the

distance and mitosis age components of our cost function relative to one another.
We define a mitosis age function age(a) that returns the age of particle a with respect to all

associations in the current state. The user provides an estimate, age0, of the age of the particles in
the first frame. In addition, the user provides a minimum age of mitosis, agemin. The cost function
includes an age penalty only when a particle younger than agemin divides.

Equation 4 gives the complete mitosis cost function:

φm(a, b, c) = k1 + k2 · φ(a, b, dmax,0) + k2 · φ(a, c, dmax,0) + max(0, φmax · (1− age(a)/agemin) (4)

where k1 and k2 are user specified mitosis cost constants as specified above, and where k3 is a
user specified mitosis cost age multiplier constant.

5.2 Our mitosis detection annealing algorithm

In this section, we present the pseudocode for the annealing algorithm. We first define a function
Random(), which returns a random double on [0, 1). We also define our temperature function,
Temperature() = φmax · (1 − (k/kmax)) Finally, we define a function ComputeTotalCost(A)
which takes a state variable A representing a collection of associations and sums the cost of all
associations in the state:

ComputeTotalCost(A) =∑
frames t

(( ∑
a∈ frame t, b∈ t + 1, a  b

φ(a, b, dmax,0)

)
+

( ∑
a∈ frame t, b,c ∈ t + 1, a  b, c

φm(a, b, c)

))
(5)

5.3 Annealing Results

In this section we present the results of the simulated annealing tracking algorithm for three data
sets. As in the previous section, we attempted to link the particles identified by the nucleus
identification algorithm across frames by eye, and compared our own links with those links chosen
by the algorithm. In addition, we identified likely mitosis events, and compare our mitosis findings
with those identified by the algorithm. Table 2 lists the success and failure rates for the annealing
algorithm with respect to the decisions made by a human tracker.

Our results suggest that our annealing implementation is slightly less effective than the Sbalzarini
tracking implementation in terms of tracking nuclei due to the fact that it does not presently ac-
count for disappearing particles4. However, the annealing algorithm successfully identifies many
mitosis events whereas the Sbalzarini algorithm identifies none. The annealing approach we im-
plemented can easily be expanded to incorporate more elaborate scenarios and even more effective
cost functions. In addition, improvements in nucleus identification techniques would help mitigate
errors in annealing results; often times, nuclei divide, but the divided particles are identified as a
single particle for several frames. Section 6 outlines considerations for future work in these and
other areas.

4We plan to improve our annealing implementation to account for disappearing particles in future versions
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Algorithm 5 Mitosis Detection via Simulated Annealing
Let A = call Tracking()
Set A = call Linking(A)
Let φ = ComputeTotalCost(A)
Let k = 0
repeat

for all time frames t in [0 : T − 1] taken in random order do
// Consider introducing new mitosis events
for all nuclei a in frame t taken in random order, and nuclei b, c in frame t+ 1 where a b
and δ  c do

Let A′ = A with a b, c.
Let ∆φ = ComputeTotalCost(A’) −φ
if ∆φ < 0 or Random() ≤ e−∆φ/Temp(k) then
A = A′

Set φ = φ+ ∆φ
end if

end for
// Consider swapping mitosis particles
for all nuclei a, d in frame t and nuclei b, c, e in frame t+ 1 where a b, c and d e do

Let A′ = A when we swap a b, c, d e for a b, d e, c.
Let ∆φ = ComputeTotalCost(A’) −φ
if ∆φ < 0 or Random() ≤ e−∆φ/Temp(k) then

Set A = A′

Set φ = φ+ ∆φ
end if

end for
// Consider breaking existing mitosis events
for all nuclei a in frame t and nuclei b, c in frame t+ 1 where a b, c do

Let A′ = A when we break association a b, c and introduce a b and δ  c
Let ∆φ = ComputeTotalCost(A’) −φ
if ∆φ < 0 or Random() ≤ e−∆φ/Temp(k) then

Set A = A′

Set φ = φ+ ∆φ
end if

end for
end for
k = k + 1

until k ≥ kmax

19



Table 2: Annealing Results
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Sample 1 7 112 (98.25%) 1 (0.88%) 3 (75.00%) 1 (25.00%) 1 (0.88%)
Sample 2 12 128 (98.46%) 2 (1.54%) 2 (100.00%) 0 (0.00%) 0 (0.00%)
Sample 3 21 189 (98.95%) 2 (1.05%) 2 (66.67%) 1 (33.33%) 0 (0.00%)

6 Conclusion and Future Work

Most of the errors in the results obtained by both the Sbalzarini and annealing algorithms arise
out of ambiguity due to problems in nucleus identification. We speculate that additional work in
three-dimensional parameter refinement (see section 2.3) could help identify nuclei which overlap
in two dimensions. A simple “trial-by-error” heuristic could suffice to identify collided nuclei; the
software need only postulate that multiple particles exist at each detected particle location, insert
a particle to test, and then perform parameter refinement to determine whether or not inserted
particles better explain the model.

Both our Sbalzarini and mitosis cost functions do not take into account all of the parameters
that we solve for in particle refinement. We could trivially expand our cost functions to incorporate
z (depth) coordinate information. In addition, we could incorporate differences in size and intensity
of nuclei into the cost functions.

In spite of these limitations, our results demonstrate that annealing is an effective approach for
identifying mitosis events in multi-nucleated cell data. Thus, our software will be a valuable asset to
biologists hoping to nucleus lineage data in order to better understand the mechanisms regulating
cell division.
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