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Abstract

In large organizations with tens of thousands of employees, managing individual people’s
permissions is tedious and error prone, and thus a possible source of security risks. Role-
Based Access Control addresses this problem by grouping users into roles, which reflect job
functions in the corporation. Permissions are assigned to roles instead of directly to users,
which means that all users assigned to a role have the same set of permissions with respect to
that role. However, adoption of RBAC in organizations such as investment banks is hindered
by two main factors: first, it is costly and time-consuming to define roles. Second, there
are certain job functions (such as “consultant”) that cannot be expressed as RBAC roles,
because their users need to have different permission sets.

The topic of this thesis is to investigate whether roles can be applied to domains that exhibit
the peculiarities of the investment bank example. We introduce a new framework for roles
that allows us to separately represent what the role means as a job function and what
permissions its individual users have. That way we maintain the key property of RBAC –
that the number of roles is small, while allowing for variations among users. We have also
investigated machine learning approaches in order to figure out whether roles are concepts
that can be learned or approximated by a function. We present our findings that certain
learning schemes, such as Probably Approximately Correct (PAC) earning and Instance-
based learning are not applicable to roles, while others – such as decision-tree learning,
might be useful.
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1 Introduction

1.1 Overview of RBAC

Before we proceed to tell the story behind the cryptic acronym RBAC, we need to take a
step back and briefly explain the need for corporate access control. In any given corporation,
employees have permissions to certain resources, i.e. a set of allowed operations they can
perform on these resources. Permissions are needed because the corporation would like to
protect its assets (including data) from malicious use, such as leaking sensitive information,
embezzling money, modifying crucial data, etc. This, together with separation of duty
concerns, and the well-known security principle of least privilege, leads to the conclusion
that employees should only have access to the resources they need to perform their duties
in the company. However, large corporations can have tens of thousands of employees or
more, and manually specifying the permissions for each of them would be extremely tedious
and time-taking. That’s why permissions are frequently “copied over”, e.g. if Bob takes
Alice’s place in the company (or even a similar job position), he gets Alice’s permissions.
This, however, poses a security risk, because the permissions Alice had reflect her access
needs over the period of time she held the position, and may as well be a superset of what
a beginner like Bob needs. This also illustrates another problem, common in the real world
— Alice may have permissions she no longer needs, but which were never removed from her
permission set. In summary, management of individual employees’ permissions is onerous
and therefore promotes uncareful practices, which may lead to over- or under-entitlement.

Role-based Access Control, or RBAC, has gained a lot of traction since it was first introduced
in the early 90s [4]. It is an access control model which aims to reduce the managerial effort
of assigning privileges to users in large organizations. Under RBAC, users are grouped into
roles, where a role is essentially a set of permissions and reflects the function of its respective
users in the organization. Thus, permissions are no longer assigned directly to users, but
to roles instead. Under this representation, people having the same role have an identical
set of permissions, a simplifying assumption we will later need to revisit. Finally, a user
may have (and indeed frequently has) more than one role. Another advantage of RBAC is
that it is policy-neutral, i.e. it can be configured to enforce both mandatory (MAC) and
discretionary (DAC) access control policies [5, 16]. For a more comprehensive treatment of
MAC and DAC policies and how they are enforced via RBAC, the reader is encouraged to
read the paper by Sandhu et al. [16].

However, traditional RBAC roles are too “static” for corporations where job assignments or
the available human and physical resources are highly dynamic entities, i.e. they frequently
change. In the former case, that might be due to the fluid nature of one’s duties within
the company (i.e. he or she might perform different tasks at different times). In the latter
case, it might be due to mergers and acquisitions. Investment banks are a good example
of such dynamic, fast-changing corporate environments (DFCEs), and one that we will use
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throughout the text. The purpose of this thesis is, then, to come up with a framework for
enhancing RBAC with an alternative definition of a role, so that it can be more successfully
applied to DFCEs. We recognize that our framework does not provide a complete solution
to the problem, as such a solution would require a lot of continual research effort, but it is
rather a starting point for future research in “expanding” the role concept.

To demonstrate the benefit of using RBAC, I will use the discussion in the recent book
on RBAC by Ferraiolo et al. [5, pages 19-20]. The authors note that there is usually a
direct relationship between administration costs and the number of associations (e.g. user-
permission) that are needed to describe and maintain a certain access control policy. If we
let U be the set of users in one particular job position and P be the set of permissions
required by this job position, then the direct mapping between users and permissions would
have | U | · | P | associations, one for each user-permission pair. On the other hand, since a
role is a set of permissions, we can view P as a role, and in that case we need | U | user-role
associations, and | P | role-permission associations, or a total of | U | + | P | associations.
Therefore, RBAC provides an administrative advantage whenever | U | + | P |<| U | · | P |,
which is true for | U |, | P |> 2, or at least two individuals per role and two permissions per
role. This, the authors argue, accounts for the majority of roles in large organizations.

There has been significant research attention to RBAC, and efforts to standardize it, as later
chapters will show. The first such effort is the seminal paper by Ferraiolo et al. in 1992
[4], which aimed to address the deficiencies of the existing commercial security solutions
at the time. In 1996 Sandhu et al. [21] presented an overview of four RBAC varieties
— core RBAC [4], RBAC with constraints, RBAC with role hierarchies and finally RBAC
with both constraints and role hierarchies. In 2000, Ferraiolo et al. [20, 6] proposed a NIST
standard for RBAC, which in 2004 was approved as ANSI/INCITS Standard 359-2004 by the
InterNational Committee for Information Technology Standards [5, page 15]. Throughout
this work, I will refer to these standards as “traditional” RBAC.

RBAC has successfully been applied to several domains — health care, government and mil-
itary applications, and banking to name a few. A rich database of case studies is maintained
by the NIST RBAC Group and is available on their website [15].

1.2 Formal Definition of the RBAC Model

Another advantage of the RBAC model, and a factor that enables its subsequent extensions,
is its formal algebraic definition. The basic building blocks of core RBAC are the sets of users,
subjects (i.e. a process or a collection of processes acting on the user’s behalf), operations,
objects and roles, and the relations between them. I have taken the following definitions of
the essential RBAC components directly from Ferraiolo et al. [5, page 66]:

• USERS ,ROLES ,OPS , and OBS (users, roles, operations and objects, respectively).
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• UA ⊆ USERS × ROLES , a many-to-many mapping between users and roles.

• assigned users : (r : ROLES )→ 2USERS , the mapping of role r onto a set of users.

• PRMS = 2OPS×OBS , the set of permissions.

• PA ⊆ PRMS × ROLES , a many-to-many mapping between permissions and roles.

• assigned permissions(r : ROLES ) → 2PRMS , the mapping of role r onto a set of
permissions.

• SUBJECTS , the set of subjects.

• subject user(s : SUBJECTS )→ USERS , the mapping of a subject s onto the subject’s
associated user.

• subject roles(s : SUBJECTS ) → 2ROLES , the mapping of a subject s onto a set of
roles.

1.3 Challenges of Deploying RBAC

Despite its promise and apparent applicability, traditional RBAC faces challenges that make
its wide adoption in the corporate world difficult. We already alluded to some of them in
Section 1.1. In addition, the fundamental task of defining the roles in an RBAC deployment,
a process known as role engineering, turns out to be quite tricky; furthermore, many com-
panies realize they need finer-grained control on permissions than what the model provides,
and finally — in certain domains, such as highly dynamic organizations (e.g. investment
banks), the very concept of a role as a set of permissions seems to be inadequate. I will
proceed to elucidate these three problematic areas.

1.3.1 Role Engineering

There are two main approaches to role engineering — a top-down and a bottom-up one. The
scenario-driven model, proposed by Mark Strembeck and Gustaf Neumann [14], is a widely
used top-down approach. The idea is that a given work profile (analogous to a job position
in an organization) is decomposed into a set of tasks, each of which describes a particular
activity within the work profile. Since the same task could be carried out in different ways
under different circumstances, tasks are further decomposed into scenarios. A scenario could
be viewed as a sequence of steps in order to accomplish a certain task, such as the example
the authors provide about withdrawing cash from an ATM. This representation of scenarios
makes it easy to infer the needed permissions for any given scenario by listing the permissions
needed at each step. Then, through tasks, permissions for a scenario can be related back to
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the work profile. The top-down decomposition process outline above is meant to be iterative
— the substeps are repeated until a complete and accurate model has been created.

However, the scenario-driven role engineering process can be quite time-consuming and te-
dious, because it requires the time and effort of a lot of people to identify work profiles,
tasks and scenarios, and refine them until the result is perceived as “complete”. This would
be impractical in some DFCEs such as investment banks. There, it is first of all logistically
hard to get managerial staff together to sit and think about what the different work profiles
should be and how they are further decomposed into scenarios and tasks. Secondly, it is not
even clear whether managers know all the specifics of their employees’ duties to come up
with a correct and complete decomposition. Thirdly, every second lost to secondary tasks
(such as deriving a complete and correct role model for the bank) is viewed as a decline to
productivity, and it is hard to convince working specialists to devote time to the process.
Apart from its being onerous, the scenario-driven process ignores the fact that the company
where RBAC is to be deployed has already been running for a while, and the permissions
employees have more or less accurately describe what they actually need.

The two main challenges to top-down approaches identified above have been discussed in
the literature, especially where an alternative, bottom-up approach is presented [25, 12, 27].
The motivation behind bottom-up approaches is that, as discussed, existing permissions are
a good indicator of what employees need to do their job. Bottom-up approaches use data-
mining techniques such as clustering to infer roles (viewed as clusters of permissions) and
to decide which users should be grouped in the same role. One advantage of using such
techniques is that the need for human intervention is decreased in comparison with top-
down methods, since the process is meant to be automated. One major drawback is that the
resulting roles are not very meaningful and do not map well to the organizational structure
of the company [27, 22]. There exist bottom-up approaches that do not rely on data mining,
such as Graph Optimization [27], which uses matrix decomposition of the user-permission
assignment matrix to come up with an optimal role hierarchy, where roles are encoded in
the form of user-role and role-permission matrices. In fact, there is an interesting theoretical
result, which shows that the Role Mining Problem, or RMP, is NP-complete if defined as
the optimal matrix decomposition of the user-permission matrix into a user-role and a role-
permission matrix, where the measure of optimality is the smallest number of resulting roles
[24]. Finally, a common problem with all bottom-up approaches is that the resulting roles
become out-of-date very fast in DFCEs due to the rapid evolution and changing nature of
corporate duties.

In light of the above, many researchers agree that a hybrid approach is needed — one that
borrows ideas from top-down and bottom-up approaches [10, 27, 5].
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1.3.2 Finer-Grained Control on Permissions

Another challenge to core RBAC is meeting the needs of companies for additional levels of
fine-grained access control. For example, it is common in many organizations that employees
have a certain function or position only for a specified period of time and at a certain interval,
say a part-time worker who can only do his job in certain days and between certain hours [7].
Furthermore, the core model assumes that all users of a role have identical permissions for
that role. This is a problem if one wants to, for example [1], define the role Account Holder
to represent an account holder in a bank — clearly, we want each user to be able to only
see and modify their own account information. Core RBAC can solve this by introduce
a lot of account-specific roles, but that undermines the usefulness of RBAC as a tool to
simplify management of people and resources. Lastly, certain domains and applications
require that arbitrary constraints can be put on permissions based on context attributes
[23]. Even though core RBAC supports permission constraints, they are mostly separation-
of-duty (SoD) constraints.

This is not at all an exhaustive list, but it comes to show that there has been significant
interest in enhancing RBAC with features needed by real-world organizations. In Chapter 2
we will discuss some RBAC extensions that have a bearing on the current research, and show
the evolution of RBAC over time.

1.3.3 Issues With the Traditional Role Concept

The previous two sections identified directions for improvement of RBAC, but they did not
question the formulation of its central concert — the role. We turn our attention to it now,
in view of the concerns raised at the very beginning of the chapter.

Despite the numerous extensions of RBAC, it still does not address certain scenarios in the
real world. For example, the hypothetical RBAC role of Analyst in an investment bank
is in fact a cover term for a range of very different activities, as there are many types of
analysts. Moreover, a typical employee in an investment bank may have multiple changing
functions within the bank that depend on a series of factors — the current project(s) the
employee is working on, the fact that the employee is acting as a backup for someone else,
etc. All of this has an influence on the current set of permissions, and respectively roles,
that an employee holds. Viewing a role as a “static” set of permissions does not seem to suit
such employees too well, because it does not capture the dynamism of their function in the
company. Contrast this with the role Bank Teller in a commercial bank – the duties of a
bank teller don’t change significantly over time, so it can, in fact, be conveniently described
in core RBAC terms.

This brings us to the focus of the current research – revisiting the concept of a “role” and
making it more flexible and malleable, so it can hopefully account for the unique circum-
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stances of highly dynamic organizations. Chapter 2 will focus on prior work on extending
core RBAC, and Chapter 3 will explore in more detail some tricky scenarios that are not
addressed by these extensions. Chapter 4 will introduce the concept of a permission type,
which is an attempt to glean information about the internal structure of a role, and a step
toward providing a middle ground between top-down and bottom-up role engineering ap-
proaches. Chapter 5 will introduce a new view on roles as learnable concepts, and investigate
the applicability of several machine learning algorithms to this domain. In Chapter 6 we
present some experiments and measurements of the usefulness of the previously described
new approaches, and Chapter 7 concludes the thesis with insights we have gained and ideas
for future research.

2 Related Work

In this chapter we are going to look at several extensions of RBAC, which address some of
the challenges to its commercial deployment.

2.1 RBAC in the Enterprise

First off, it is important to note that traditional roles contain permissions that are targeted
for a particular hardware and/or software platform, such as an operating system (OS),
a database management system (DBMS), and a mainframe or a server. However, large
organizations such as investment banks usually have a varied mix of IT platforms, and a
user’s job may require permissions on multiple systems. Therefore, roles may span multiple
heterogeneous systems. One way to address this issue is to encapsulate the permissions on
the different systems in different roles. This would, however, be tedious, and we would end
up with a lot of additional roles, which undermines the purpose of RBAC to simplify and
expedite the management of users and permissions within an organization.

An alternative approach would be to make roles more platform-independent so that they
could accommodate for permissions across multiple systems. This approach has been realized
as an extension of RBAC, which is called Enterprise Role-Based Access Control (ERBAC)
[5, 11, 9, 12, 10]. The elements of ERBAC are mostly the same as in traditional RBAC –
we have users, roles and permissions, as well as the usual relations between them. However,
one difference is that ERBAC does not support sessions, which are described in the NIST
RBAC standard [20]. Sessions are used, among other things, to determine which of the roles
assigned to a user should be enabled during the current dialog of the user with the system.
This is why dynamic separation of duty (SoD), which is possible with traditional RBAC, is
not supported directly by ERBAC.

In their treatment of the matter, Ferraiolo et al. [5] introduce the concepts of a generalized
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data resource and a generalized operation. These concepts make it possible to abstract away
the platform-specific assumptions we would be making if we were to specify privileges for
a particular type of resource. Thus, we end up with generalized permissions of the form
<generalized-op, generalized-res>, which is a theme we will return to when we introduce
the concept of permission types. Finally, Ferraiolo et al. present a way to express the
ERBAC components and access control data using an XML schema language.

In a different work [9], ERBAC is augmented with a type of role parameterization as a result
of practical experience with deploying the access control model in large corporations. Both
RBAC and ERBAC allow for the specification of role hierarchies, so that roles can better
reflect the organizational structure. Child roles “inherit” all the permissions of their parent
roles, which removes some redundancy from role permission sets and thus results in increased
ease of management. However, role hierarchies can be defined in terms of multiple factors
– job position, location, company branch, etc. Taking all these factors into consideration
would result in a very large number of roles, one for each possible combination. In contrast,
the authors propose a scheme where the role hierarchy is defined based on one factor and
the remaining ones are used as parameters to the resultant roles. This is achieved by using
attributes and rules. Attributes are used to specify any additional information that may be
relevant to the decision whether to grant access, such as branch location, user name and
job position, etc. They can be applied to users, roles, user-role assignments, permission-
role assignments and role-to-role assignments. Rules determine what should be done when
attribute values or assignments change, and can therefore be used to dynamically recompute
the roles a particular user holds at any given time. The idea of using rules to overcome the
static nature of traditional RBAC roles has led to the introduction of Rule-Based RBAC, or
RB-RBAC [11].

2.2 Role Parameterization

The idea of role parameterization has been developed into a formal model by Ali Abdallah
and Etienne Khayat [1]. It is not rule-based, and gives a precise definition to parameters
and how they are used. As mentioned before, under traditional RBAC two users sharing a
role have an identical set of permissions with respect to that role. However, as the authors
note, this is not always good, because users exercise their permissions differently based on
what their specific duties are. The motivating example used to illustrate this issue is in the
online banking domain, where the subjects are account holders and the objects are the bank
accounts. If we try to model the interactions between subjects and objects in this scenario
with a traditional RBAC role – Account Holder – we run into a problem: since each user
should only be able to view and modify their own account, no two users of the Account Holder
role should have identical permissions! The solution is to use parameters, in this case the
account number, to come up with parameterized roles (or permissions, objects, etc.). In our
banking example, the role Account Holder would be replaced by the instantiations of the
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role Account Holder(m), where m is drawn from the set of account numbers. Below is a
summary of some important facts about role parameterization:

• it can be done iteratively, i.e. we may have an arbitrary-depth nesting of parameters
until access control is sufficiently fine-grained for the organization’s needs. (However,
using many parameters results in a higher number of instances of the parameterized
role, so is it suggested that this feature be used sparingly.)

• parameter values can be drawn from any set of abstract labels; however it is advisable
that parameters are meaningful with respect to the domain, such as account number,
bank branch, etc. for the banking domain.

• as an immediate corollary of parameterization, users assigned to different instantiations
of the same parameterized role may have different permissions.

However, parameterized RBAC is not a panacea – even with parameterized roles, we have
the same “types” of permissions for each “incarnation” of the role (e.g. all Account Holders
can view their current balance, and withdraw or deposit money to their account). In the
Analyst example quoted earlier, different analysts may do entirely different things as opposed
to constrained varieties of the same set of tasks.

2.3 Temporal and Other Context Constraints

A conceptually similar, but implementationally quite different extension to RBAC is the
ability to engineer arbitrary context constraints, presented in a paper by Mark Strembeck
and Gustaf Neumann [23]. They start off by defining a categorization for constraints relevant
to an RBAC model, identifying the following dimensions:

• static vs. dynamic constraints, whereby the former are evaluated at administration
time (e.g static SoD), and the latter – at runtime (e.g. dynamic SoD).

• endogenous vs. exogenous constraints, i.e. constraints intrinsic to the RBAC model
vs. ones that take external information into consideration (e.g. temporal constraints).

• authorization vs. assignment constraints – the former place additional restrictions
with a bearing on the access control decision (e.g. Chinese Wall policies), while the
latter control the way in which users are assigned to roles, or permissions to roles.

Based on the above, a context constraint is a dynamic exogenous authorization constraint.
There are several components to a context constraint – a context attribute is an attribute
of the environment whose value may dynamically change (e.g. date, time), or whose value
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is drawn from a set of possible options (e.g. location). We need a context function to
obtain the current value of the context attribute (e.g. date()). Tests on attribute values are
performed in context conditions, which are predicates with an operator and two or more
operands, the first of which is always a context attribute. Finally, a context constraint
is a clause containing one or more context conditions, and a permission associated with one
or more context constraints is called a conditional permission. The authors also discuss the
xoRBAC software component, which exemplifies the administration of RBAC with context
constraints.

Temporal constraints, briefly mentioned above, receive their own formal treatment whose
result is Temporal RBAC, or TRBAC, due to Elisa Bertino et al. [5, 7]. TRBAC is appro-
priate for domains where temporal semantics is needed, such as workflow-based systems [7].
Other examples include cases where a certain role should only be enabled at a particular
time and for a particular duration, such as a part-time job or a routine maintenance task, or
acting as a back-up for someone else. Under TRBAC, for a user to have the permissions of
a certain role, it not only has to be enabled (the user is authorized to activate the role), but
it also has to be active at the time the user request a permission from that role. TRBAC
also introduces the notion of role triggers, which are a mechanism to enforce temporal rela-
tionships between roles, so that one can say “Enable role X when role Y is enabled”. One
example in [7] is that the role NightNurse should be enabled when the role NightDoctor is
enabled.

Despite the maturity of the RBAC model and the numerous proposed extensions to it (a
sample of which has been discussed above), there are still fundamental challenges to its
wide-scale adoption. We look more closely at some tricky scenarios in the next chapter.

3 Current Challenges

The following discussion is based on anecdotal evidence collected by Dartmouth College
security researchers. In their dialogs with representatives of different companies, they have
identified several scenarios that pose problems for the deployment of traditional RBAC.
While this is by no means an exhaustive list of tricky scenarios, it should give the reader an
idea of the current challenges faced by RBAC.

3.1 Dynamic Task Reassignment

Some employees in, say, an investment bank, are frequently being totally reassigned. For
example, someone who works as a consultant might spend a few weeks working on account
A, then a few more weeks working on account B, then a week working half-time between
both accounts A and C. A conventional RBAC Consultant role, therefore, could not be
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defined because the pattern shown above does not have to be the same for all consultants
in the company. This precludes one possible solution to the problem – simply update the
permissions associated with the Consultant role. However, that could give consultants work-
ing on entirely different projects access to resources they should not be able to touch, which
creates a risk of an insider attack.

We could try to rephrase the problem and instead of coming up with one Consultant role
we might have several varieties of it, so that a reassignment of responsibilities is accompa-
nied by a reassignment of roles. The formulation of the above scenario suggests that we
could, much in the spirit of the Account Holder example, parameterize the Consultant role
by account number. Therefore the consultant whose assignment pattern we presented will
have the following role assignment pattern: Consultant(A), Consultant(B), and finally Con-
sultant(A) and Consultant(C). However, that does not remove the need for frequent manual
reassignment of roles (in this case different parameterizations of the same role), which has
to be done for any consultant.

In this scenario, having multiple instantiations of the Consultant(m) role is offset by having
one parameterized role in the RBAC model. However, the example is simplistic, because
the consultant’s reassignment of tasks is accompanied by changes of permissions related
to only one type of resource, and the same type of resource throughout the reassignment
pattern – e.g. bank accounts. In general, the types of resources an employee needs between
reassignments may change, and the number of relevant resource types may be more than
one. Parameterized RBAC allows for an arbitrary number of role parameters, so in theory it
could address this problem, but we would end up with many parameterized roles, and an even
more overwhelming number of actual instantiations of these roles. Moreover, we cannot have
all the needed parameterized Consultant roles at the time of the RBAC model definition,
because that implies we know, indefinitely into the future, what projects a consultant may
be given. Thus, even with parameterized RBAC, the dynamic task reassignment problem
does not reduce to simple role reassignment.

The same challenge of not knowing a priori what set of roles can describe the changing nature
of an employee’s task assignment exists for TRBAC and RBAC with context constraints.
TRBAC would push the complexity to defining temporal roles that capture the property that
each reassignment lasts for a particular amount of time, and reassignments form a temporal
sequence. However, this sequence is not necessarily periodic – each new assignment can last
an arbitrary amount of time, and assignments can recur at irregular intervals (e.g. account
A that appears twice in the example above). TRBAC was designed to handle scenarios
where periodicity and duration are more uniform. RBAC with arbitrary context constraints
would, in turn, push the complexity to defining elaborate context constraints for the different
Consultant roles. The constraints would check for the values of as many context attributes
as needed to describe the reassignment, which means that the role engineering stage would
be dominated by defining various context constraints on a possibly large set of attributes4.

4Note that context constraints are defined during the top-down role engineering stage [23]
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3.2 Dynamic Resource Pool

Another challenge to traditional RBAC comes from the fact that the set of resources to
which access is being controlled might change. Some examples include: purchasing new
software to replace the old, getting a new client (and thus new accounts or database entries),
and more notably – mergers and acquisitions. The latter is an especially problematic case,
because we have a new organizational substructure with a whole new set of resources. This
has implications both for the role hierarchy of the RBAC model, since the newly acquired
company would have to be integrated into the acquiring company’s existing organizational
hierarchy, and for the set of supported roles, objects and permissions (we get new offices,
physical resources such as servers, other resources such as accounts, etc.).

In terms of an RBAC deployment, a merger or acquisition amounts to a large-scale role
re-engineering project. It might be the case that existing corporate roles change, because
their associated users have new responsibilities and require access to new resources, so they
have to be re-engineered in order to preserve the accuracy of the RBAC model. However, as
discussed in Section 1.3.1, the existing role engineering approaches have serious shortcomings
– they are either too time-consuming (top-down approaches), or produce roles that may not
be meaningful (bottom-up approaches). Since the extended RBAC models discussed in
Chapter 2 still rely on one or the other, they cannot address the problem.

The above discussion is important for two reasons – firstly, since the challenge presented
is due to fundamental properties of deploying RBAC, i.e. having a complicated role en-
gineering stage, we are left with the question if RBAC is even applicable to corporations
which experience frequent acquisitions or mergers, such as an investment bank. Secondly, it
precisely identifies the bottleneck – it is existing role engineering approaches that limit the
usefulness of RBAC for fast-changing domains. This also gives us a clue as to what the solu-
tion to the problem would be – coming up with a role engineering procedure that relies less
on human intervention and more on automation, without a sacrifice to the meaningfulness
of the resultant roles. This is also contingent upon the definition of a role, since both the
top-down and the bottom-up approaches are justified, for different reasons, by viewing roles
as sets of permissions. This thesis is a step toward coming up with a new definition of what
a role should be, with the hope that this would facilitate the role engineering stage and thus
make a modified RBAC model applicable to a wider variety of domains.
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4 Permission Types

In this chapter we define our concept of permission types (PTs), and discuss its usefulness
for role engineering as well as for revisiting the concept of a “role”. Section 4.1 presents
our motivation for developing permission types, Section 4.2 provides the actual definition of
permission types, and Section 4.3 introduces our concepts of object and operation taxonomy,
which are prerequisites for defining permission types in an organization. However, as we
point out in Section 4.4, there needs to be a mapping from the quite general permission
types to the actual permissions a user should have in a given role, and we achieve that by
introducing our concept of permission type constraints. Finally, in Section 4.5 we propose a
role model which utilizes permission types and permission type constraints in order to meet
the challenges of DFCEs.

4.1 Background and Motivation

In this section we provide the motivation for developing the concept of permission types.
We believe that this background information is useful in order for the reader to understand
the actual definition or permission types. Furthermore, some of the questions we pose here
are key for the discussions in subsequent chapters.

4.1.1 Roles as Functions

We already indicated in previous chapters that the RBAC definition of a role as a set of
permissions, despite its usefulness, does not always serve well the purposes of dynamic, fast-
changing corporate environments (DFCEs). In Chapter 3 we identified specific scenarios
which are hard, if not impossible, to address with conventional roles. Therefore, we set out
in this research to develop an alternative definition of a role – one that would allow us to
account for the changing nature over time of users’ permissions within roles in our domain
of interest.

As a starting assumption, we hypothesized that roles had an underlying internal structure
as opposed to being “flat” sets of permissions. This structure, we posited, accounted for
the fact that despite the difficulties of expressing certain corporate roles such as analyst
in RBAC terms, we still have a mental model for what an analyst is and does. However,
it is not easy to map our intuition about roles onto their digital representation. Indeed,
as supported by research of the Dartmouth College PKI Laboratory conducted at various
companies, possibly no one really knows what this internal structure might be like.

Therefore, we decided to pose role structure discovery as a machine learning problem: if we
view roles as functions, can they be approximated by an appropriate learning algorithm?
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The answer to this question depends on the kind of functions by which we represent roles,
and the choice of learning algorithms applicable to such functions. As we are going to see in
Chapter 5, representing roles as functions is a difficult problem by itself, and there is more
than one way to do it. However, since permission types were developed to help us learn role
functions that take access requests and return a yes or no answer, we provide an outline of
these functions here before the in-depth discussion in the next chapter5.

Conceptually, a role function could be thought of as a Boolean function that takes as its
input an access request – described by the operation that a subject wants to perform on
an object – and returns 1 (or true) if the request should be granted and 0 (or false) if it
should be denied. Therefore, a näıve definition of a role function, using the RBAC entities
described in Chapter 1, could be:

role : SUBJECTS ×OPS ×OBS → {0, 1}.

However, we still want to use a role as a means of managing the permissions of a specific set
of users. Therefore, any role function as defined above should be restricted only to subjects
that correspond to users having that role.

It is important to note that role functions take arguments drawn from finite sets of discrete
values – the sets of subjects, operations and objects. The process of learning such functions is
called classification, as opposed to learning functions on continuous-valued arguments, which
is called regression [19]. Therefore, naturally, the approximating function we are going to
learn for a role is called a classifier.

One important algorithm for learning classifiers is decision-tree learning [26, 19, 13]. It is a
variety of inductive learning, where we provide the algorithm with a training set of correctly
classified examples, or instances of the learning problem, and the algorithm produces an
approximation that best fits the training data, called the hypothesis. In our case, an instance
would consist of specific values for the subject, operation and object, as well as the Boolean
output of the hypothetical role function, for example:

< jsmith, update, db 5, 0 > .

This should be interpreted as: the user whose username is jsmith (or a process acting on
their behalf), should be denied access when they try to perform an update operation on
the database db 5. To repeat this in machine learning terms, each instance is specified by
the values of its attributes (in our case the attributes are subject, operation, object and
grant access).

Now, decision-tree learning outputs its hypothesis in the form of a decision tree. Figure 1
is a simple example of a decision tree, which classifies days on whether Steve will study

5Importantly, we are going to see that permission types remain a useful and expressive concept even for
other kinds of role functions
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Figure 1: An example decision tree that learns the concept WillStudy

or not. Decision trees work as follows: we are given an instance to classify, so we pick an
attribute to start with, and based on its value we make a decision of which branch of the
tree to follow. At the new node, we test the value of another attribute and branch off again.
This step is repeated until we reach a leaf, e.g. a classification (in our case a 1 or a 0).
Each path along the tree is, then, a sequence of tests on the attribute values in an instance,
which produces a classification of that instance. The important question is, therefore, how
to pick the attribute to test next. As mentioned above, the learning algorithm is given a
training set of classified instances, and it processes them in order. In decision-tree learning,
we pick the attribute whose value would best split the remaining instances into sets, such
that the members of each set would be predominantly classified as either negative or positive
(in the case of a binary classifier). So if, for example, the values of the subject attribute split
the remaining access requests into sets where most were either granted (grant access = 1)
or denied (grant access = 0), then it would be a good candidate to be picked next by the
learning algorithm.

A problem arises when an attribute has too many values. Consider the problem of classifying
employees in a company as efficient or inefficient. If we allow the employee ID number to
be an attribute (say employee id), then the decision-tree learning algorithm would pick it
first, because it splits the instances into disjoint singleton sets, one for each employee, which
can be uniquely classified as either efficient or inefficient. Therefore, the other attributes
will not even matter. However, it is very unlikely that employee efficiency depends solely on
employee ID – there may be other factors such as the presence of noise, the average number
of interruptions per hour, etc. This is an extreme example, but it shows that decision-tree
algorithms are biased towards attributes with a high branching factor, and sometimes that
may produce a tree that is not meaningful.

That leads us to a major problem the above näıve definition of the role function has – its
input arguments draw their values from very large sets: even though, as noted above, we
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consider only a small subset of the tens of thousands of users in a large corporation (the
ones that have the role in question), we still have a huge number of objects (anything that
is considered a “resource” in the corporation), and a fairly big variety of operations that can
be performed on these objects. This means that the instances of the role learning problem
will have attributes with a very high branching factor, which is undesirable for decision-tree
learning. Permission types address the high branching factor for objects and operations. A
permission type is an ordered pair (optype, obtype), where:

• optype refers to an operation type, e.g. a generalization for several semantically similar
operations;

• obtype refers to an object type, e.g. a collective term for a set of resources (objects)
that differ only by their particular configuration or other contextual information –
for example PCs, Macs and Linux boxes are all representatives of the object type
computer.

The usefulness of permission types comes from the observation that the sets of operation
and object types are smaller than the sets of actual operations and objects, respectively.
Thus, under the decision-tree learning view, it would be easier and less error-prone to learn
object and operation types. Also, we can view permission types as a layer of abstraction
above actual permissions.

4.2 Permission Types in Depth

The previous section presented the notion of a permission type intuitively. In this section,
we provide a formal definition of PTs and make a comparison with related concepts in the
RBAC literature. We also introduce several auxiliary notions that PTs build upon, and
show how PTs relate to roles (or role functions).

4.2.1 Formal Definitions

We mentioned object and operation types as the building blocks of a PT. We provide the
following definitions:

• Let OPTYPES be the set of operation types.

• Let OBTYPES be the set of object types.

• Let PERMTYPES be the set of permission types. Then

PERMTYPES ⊆ OPTYPES ×OBTYPES .

19



• In addition, since each permission type maps to a non-empty set of actual permissions,
we can define this mapping algebraically:

P : PERMTYPES → 2PRMS ,

where for ∀pt ∈ PERMTYPES ,P(pt) 6= ∅.

In addition to these basic definitions, we also want to have a convenient notation for speaking
about the type of an object and the type of a permission. We accomplish this by introducing
the type-of() function, with its two varieties:

type-of : OBS → OBTYPES

and type-of : OPS → OPTYPES .

4.2.2 Related Work

As mentioned in Section 2.1 where we discussed Enterprise RBAC (ERBAC), we would
like to be able to define permissions in a corporation without making assumptions about
the platform on which the resources controlled by these permissions will exist. Therefore,
Ferraiolo et al. [5, Chapter 11] define the concepts of a generalized data resource and a
generalized operation, which together yield generalized permissions, and the latter are then
assigned to ERBAC roles. Both generalized data resources and operations reflect the busi-
ness perspective on resources and operations, respectively. For example [5, p. 249], deposit
accounts (e.g. savings and checking accounts) and loan accounts in a bank would be gen-
eralized data resources, whereas open, credit (withdraw) and debit (deposit) would be the
generalized operations on, say, a deposit account.

These two concept seem similar to object and operation types, in that they try to generalize
away from the raw, system-specific privileges that employees have in the company. However,
object and operation types (and hence permission types) are a further step of abstraction,
because they are not concerned with any given business perspective, and instead try to group
things that are conceptually the same. For instance, using the above example, both deposit
accounts and loan accounts, which are different generalized resources, would belong to the
same object type bank account, as a way to set them apart from other things that could be
“accounts”, like a computer account. We could, although not necessarily, group the debit
and credit operations into the change balance operation type, if for example having the
(debit, deposit account) permission implies having the (credit, deposit account) permission.
To use an analogy, permission types are to actual permissions as primitive data types are to
actual data in a computer program – an integer (say in Java) could be odd, even, positive,
negative, prime or composite, but it is still an integer.
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4.3 Object and Operation Taxonomies

In this section, we describe the concept of object and operation taxonomies as a way to
uniformly define permission types in a corporation.

4.3.1 Motivation

In our discussion of object and operation types, we have not yet mentioned how they are
obtained from raw permissions, and in a similar vein – how the type-of() function might
work. We provide some background here.

In Chapter 1, we talked about the two main approaches to role engineering – top-down
role decomposition (the scenario-driven model) and bottom-up role discovery. It was also
noted that researchers agree that a hybrid approach should be sought, one that borrows
ideas from both techniques. We share that conviction, and recognized that it would be a
good idea to collect information about a role from real-life practitioners of that role. In fact,
such information could theoretically be useful to bottom-up approaches, by giving “blind”
clustering algorithms hints about the structure of the roles they are trying to discover. We
shall henceforth refer to practitioners knowledgeable about a certain corporate function (role)
as domain experts.

The main reason for using domain experts’ knowledge is helping us infer role structure,
which is a central problem to this thesis. We envisioned asking domain experts about the
kinds of permissions (as opposed to the actual individual permissions) they need to do their
job, in order to get a very high-level overview of what having that job entails. Example
domain expert input would be “I need to make deposits to certain corporate accounts” and
“I need to be able to update certain databases”, etc. By eliciting role information in this
way, we could, in fact, infer the permission types associated with the role, and then map
the actual permissions of the domain expert to their respective type. For example, using
the above hypothetical human input, we might conclude that two of the relevant permission
types (PTs) for the job are < deposit, corporate−account > and < update, database >, and
we would proceed to mapping the actual permissions on the actual accounts and databases
to these PTs. Note that this is a hybrid approach: the data collection part is top-down,
because we ask the domain expert to identify their permission needs, which differ based on
the tasks involved in the job. The subsequent mapping of actual permissions is a bottom-up
process, because we organize them into sets based on their belonging to a particular PT.

The reader might ask: how is this better than the scenario-driven role engineering process?
The answer is that in the latter, we need to identify all tasks associated with the job, and for
each task – all scenarios that are associated with it, and for each scenario – all the steps for
performing the task in that scenario, and the relevant permissions for each step. However,
this is too time- and labor-consuming for a DFCE, and besides, by the time top-down role
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engineering is done, things in the company will already have changed and some roles will
be out of date. In our approach, the domain expert does not have to think at such a level
of detail, and he or she is given the freedom to describe his or her permission needs very
generally, which is easier and also saves time. For these two reasons, it also has the potential
of being more complete while requiring fewer domain specialists from the same field (job),
because it is more likely for one person to be able to list all types of permissions they need,
as opposed to all individual permissions their corporate function necessitates. The latter
may require several iterations and the help of several domain specialists.

One problem of collecting information from domain experts is that they may have very
different ways to express their permission needs, and very different mental models of what
these needs are. Therefore, we wanted to aid the process by providing all domain experts
with “standard catalogs” of operation types and object types, which they can then use to
provide their expertise in a consistent format. We call these catalogs the object taxonomy
and the operation taxonomy.

4.3.2 Representation of the Taxonomies

We gained a lot of insights about operation and object taxonomies by trying to formally
define the type-of() function which, given an object would return the type of that object,
and in its other form – given an operation it would return the type of that operation.

Object Taxonomy Our original idea about the object taxonomy is that it would be a
tree structure that allows arbitrary depth of each subtree. For example, much in the style
of an XML document, we would have Resource as the root of the taxonomy, and then a
branch for, say, Computer and another one for Printer, where the Computer subtree is of
depth, say, n and the Printer subtree is of depth k. Figure 2 shows the resulting taxonomy.
As the reader can see, along the Computer branch we have the following hierarchy of depth
n = 3: Computer → Lab Computer →Windows PC → Sudi003-moose.

However, what should the return value of type-of() be? Should it be Lab Computer?
Should it be Resource? Instinctively we would like it to return Computer, but it is not clear
how the function would deal with arbitrary nesting depths (the n and k values above). The
problem can be ameliorated a bit by postulating that tree depth should be fixed for the
subtrees describing separate resource types, such as Computer and Printer. One way to
do this is illustrated by Figure 3. We designate by Level 2 the level of the hierarchy that
corresponds to a type of resource, e.g. Computer, by Level 1 the level that corresponds
to any subtypes of that type, e.g. Lab Computer or Mac, etc., and by Level 0 the actual
resources. Since there can be arbitrary semantic groupings of resources based on some
grouping factor, then the taxonomy structure from level 2 to level 0 is not a tree, but
actually a directed acyclic graph (DAG).
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Figure 2: An object hierarchy tree with random-depth subtrees for different object types. In this
example, n 6= k.

Figure 3: DAG Taxonomy Structure for Levels 2 to 0. Level 2 concepts correspond to object types,
Level 1 concepts – to object subtypes, and Level 0 – to actual objects. Note that computers C1
and C4 are classified as both lab computers and Windows PCs, which shows the usefulness of the
DAG idea for classifying objects in various meaningful ways.
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Figure 4: Final Object Taxonomy Representation – “Forest” of DAGs. Each object type has its
own DAG.

The problem is not solved though because there is a number of levels between Resource and
the nodes Computer and Printer, e.g. the node Digital Equipment that branches off into
the aforementioned two nodes, so it is not clear how to “instruct” type-of(Sudi003-moose)
to stop at Computer and not return Digital Equipment or Resource.

These considerations lead us to the final representation scheme for the object taxonomy,
illustrated in Figure 4. We have a DAG for every resource type, e.g. Computer, which has
the three levels discussed above, and no further grouping into super-types. Therefore we end
up with a “forest” of DAGs.

A simple algorithm for type-of() would then look something like Algorithm 1.

Algorithm 1 type-of(X: TaxonomyItem)

1: if is-resource(X) then
2: Y ← parents[X].f irst
3: return parents[Y ].f irst.description
4: else if parents[X] = ∅ then
5: return X.description
6: else
7: return parents[X].f irst.description
8: end if

The algorithm is meant to work on each item in the hierarchy which, for any DAG, amounts
to the object type, the actual objects, and all intermediate groupings (subtypes) that are of
interest. Therefore, by definition, if type-of() is evoked on an actual object, it should return
a pointer to the object’s “grandparent” in the DAG – that is, the object type. If it is evoked
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on a subtype, it should return a pointer to the subtype’s parent, because all subtypes have
the object type as their only parent. Finally, if type-of() is evoked on an object type, it just
needs to return the input. Note that we specifically include subtypes both in the algorithm
and in the definition of the taxonomy structure, even though ultimately they are not needed
by permission types. This is done to facilitate the task of the domain expert – if they think
of their permission needs in terms of access to a particular variety of a resource, we should
provide them with varieties to choose from, but still keep track of what overarching type
these varieties belong to.

Operation Taxonomy The intuition behind having an operation taxonomy and operation
types, respectively, is that the same kind of abstract operation might apply to multiple types
of resources. For example, the Open operation could be applied to bank accounts, with the
semantics of creating a bank account; in Unix, to open a file for writing for the first time
is the same as creating the file. Therefore, an operation type indeed maps to an abstract
mental model of an operation, such as the human concept of “opening” as a way to create a
new instance of something. Another motivation for operation types would be the presence of
semantically very similar, but different in spelling, operations. For example we may have the
permission < create, bank account id > on one system and < open, bank account id > on
another, or even create-account and open-account as alternate names of the above operations.
Since they all try to achieve the same thing, i.e. open a new account with the specified
account number (ID), it makes sense to group them under the same type of operation.

For the operation taxonomy, we chose a forest-of-trees representation, i.e. each object type
is the root of a separate tree, and the leaves of that tree are the operations that belong to
the type. Just as with the operation taxonomy, we have a many-to-one mapping between
operations and operation types. The choice of depth-one tree versus DAG for the object
taxonomy was dictated by two reasons – first of all, since grouping operations semantically
is a cognitive task that requires human intervention, it is by default time-consuming and
error-prone, and we do not want the extra level of complexity that subgrouping of operations
would add. Second, there is no apparent need for such subgrouping, as all we want to say
is that a set of operations are synonyms of each other and can be referred to by a generic
name.

4.3.3 Building the Taxonomies

In the previous sections we explained how object and operation taxonomies make it possible
to use domain expert knowledge to define company-wide permission types. Having all domain
experts refer to the same taxonomies makes it more likely that the information they provide
about their permission needs has a consistent representation. However, we still need to
answer the question of how these taxonomies are built. While this thesis does not provide a
definitive answer and a complete procedure for building a taxonomy, we identify two possible
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approaches to solving the problem.

Distributed Approach One way to view taxonomy creation is as a distributed task,
where many people (domain experts) build different parts of the taxonomy. Thus, it is a
joint effort where everyone updates a centralized resource (i.e. the taxonomies) and can
make use of the portions of it that have already been created. This is good, because certain
basic tasks, such as withdrawing from or depositing to bank accounts, are common across
many roles, and once represented in the taxonomy they would then be available to all other
contributors and would obviate the need for them to redo the representation work. A good
idea for the distributed approach, therefore, would be to have an easy and fast way to browse
existing object and operation types (or object subtypes) in order to save domain experts time
and avoid duplicated taxonomy items.

Below is a sample procedure for building a resource taxonomy. Even though it implies
specific implementation techniques, it is included here more as a guide to our intuition
about the taxonomy building process, rather than as a complete and correct algorithm. For
any uncatalogued resource (object) X:

• Have an alphabetical list of known resource types. Provide user with an expressive
search facility so that the user can quickly identify the resource type that X should
belong to. If, indeed, a suitable resource type has been found, say RT :

– Have the same search facility described above, but for subtypes. While a suitable
subtype is found, say STi , add STi to parents[X].

– If no appropriate subtype is found, prompt user to create a new subtype NT .
Add NT to parents[X] and RT to parents[NT ].

• If no appropriate resource type has been found, prompt the user to create a new
resource type and subtype and update the parent pointers accordingly.

Note that this procedure allows the user to classify a new resource under as many subtypes
of a type as semantically possible under the current representation. This makes sense since
subtypes can refer to overlapping sets of resources, e.g. Lab Computer and Mac.

A problem with this procedure is that is has to be carried out for every resource in the
corporation. The problem is party offset by the fact that different people would be working
on different parts of the taxonomy, and can be further offset by implementation decisions
such as using what we referred to as an expressive search facility, such as having an auto-
complete search feature for types and subtypes, which gives the user a list of the possible
options as they are typing, or allowing the simultaneous addition of multiple similar re-
sources (e.g. adding all bank accounts with account numbers in a certain range R or set S
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by just specifying that range/set, and then the type bank-account and the subtype, say,
checking-account), etc.

The previous paragraph is a motivating example for a more general discussion on the draw-
backs of the distributed approach:

• It can potentially be quite time-consuming. This is an issue, because time was also the
main argument against the prevailing top-down role engineering methods, so it seems
as if we have just moved time complexity from role creation to taxonomy creation.

• It reintroduces the problem of different mental models. The motivation for using
operation and object taxonomies was that we wanted permission types to be defined
regardless of the differing mental pictures domain specialists may have about their
permission needs. However, it seems possible that, especially since certain tasks are
shared by many people, we might end up with duplicating taxonomy data because
people view these tasks differently. This problem would exist even with a search
facility, since the exact way a user formulates things in their mind may quite possibly
not be represented yet by the taxonomies, so the search will not return what they are
looking for.

However, the approach has some important benefits:

• The fact that many people are contributing to the taxonomies at the same time,
ignoring for a moment the problem of representational differences, means that the
amount of work per contributor is decreased, and that the number of resources to
catalog per contributor is also smaller. In addition, intuitively, the taxonomy building
task should become less time-consuming as the taxonomies become more complete by
virtue of the combined input from domain experts, so a time bottleneck would exist
only at the earliest stages of the process.

• The fact that humans are engaged in the taxonomy building process is a strong in-
dicator that the eventual taxonomies would be semantically sound. That is, even
with differing mental models, we end up with human-generated classifications, which
are more likely to reflect the intended meaning of the taxonomy than if they were
generated by a purely automated method.

Standardization Approach Now we turn our attention to a different taxonomy creation
approach. Instead of building taxonomies in a concurrent distributed way, which introduces
the problem of dealing with different conceptual model, we may assign most of the taxonomy
definition work to a select group of people. This “work group” would define, organization-
wide, the resource types and subtypes and the operation types, and then each employee could
use the resulting “standard” to classify the resources they individually have. This approach
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has two main benefits – first, we have conceptual integrity of object and operation types,
because they are the product of collaboration between members of a small group. Second,
the drudgery of mapping actual resources to these types is distributed among a huge number
of people, and they have a unified reference to inform their choice, so the amount of time
spent per employee should be quite acceptable.

This approach is akin to role name standardization – the problem of assigning names to
RBAC roles consistently across an organization. Efforts have been made to come up with
standard catalogs of role names, notably in the healthcare domain [3]. Our standardization
approach is an extension to that idea, but applied to object and operation type names.

Although the standardization approach seems promising and can use the insights of related
research (role naming), it still requires a group of people to find the time to sit together and
do all the type definition work. It is not necessarily clear who these people should be, how
much time the process would take, and most importantly – whether they would be available
to do it.

4.4 Permission Type Constraints

Section 4.3 described two important preliminaries to permission types (PTs) – namely, the
object and operation taxonomy. Here we introduce the concept of permission type constraints
(PTCs) which are, in a way, the complementary inverse of PTs.

4.4.1 Motivation

While PTs are useful for gleaning information about role structure, they are very general.
We need a way to make the translation between a PT in a role and the specific permissions
of that PT that are relevant to the role. Furthermore, as we noted in Chapter 3, DFCEs are
characterized by dynamic reassignments of duties within a role, and on a more general level
– different users in the same role may exercise their permissions differently. We would like
PTCs to offer some of this flexibility. Below is a summary for what PTCs need to take into
consideration, and it motivates the formal definitions that follow:

• A permission type (PT) can map to permissions across different roles. For example,
(deposit, bank-account) is a PT that stands for all permissions to deposit money
to any type of bank account. Therefore, consultants, payroll officers, accountants, and
possibly other roles will utilize different subsets of these permissions. Consequently,
PTCs need to be defined for a particular role.

• Trivially, the PTC needs to consider the PT for which it is defined, and finally:
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• A PTC needs to consider the individual users in a role, in order to account for the
dynamic nature of DFCE roles as summarized above.

• To summarize, if a user U is assigned to role R, and U ’s permissions for R contain
a subset S that belongs to permission type T , then the corresponding PTC will be a
mapping from U , T and R to S.

4.4.2 Formal Definition

Let us first define PTCONSTRAINTS to be the set of all permission type constraints.
Therefore, for ∀ptc ∈ PTCONSTRAINTS , we have the following:

ptc : USERS × PERMTYPES × ROLES → 2PRMS.

Using the P-notation we introduced in Section 4.2.1, if u ∈ USERS , pt ∈ PERMTYPES
and r ∈ ROLES , then:

1. ptc(u, pt, r) ⊆ P(p), or the PTC maps to a subset of the permissions in p;

2. ptc(u, pt, r) ⊆ assigned permissions(r), or the permissions to which the PTC maps
are assigned to the role r, and

3. u ∈ assigned users(r), or the user u is assigned to role r.

4.5 Putting it All Together

So far, we have introduced the concepts of permission types (along with the prerequisites to
their definition) and permission type constraints. Now we are going to show how they can
be used together to produce a new definition of a “role”. This definition strives to account
for complex role structure and the dynamic nature of users’ permissions. Finally, we discuss
the usefulness of our role model in terms of its constituent entities – PTs and PTCs.

4.5.1 Application to Roles

Figure 5 shows our view of role structure, complete with PTCs. We say that a role
r contains a permission type p if for each user u ∈ assigned users(r), ∃ptc(u, p, r) ∈
PTCONSTRAINTS . In other words, each user assigned to the role has some subset of
the permissions of p. Note that we are not saying that the role has a subset of the permis-
sions of p – precisely because we are trying to avoid the role-as-set semantics, and because
we want to give roles the flexibility needed by DFCEs. Essentially, we are allowing users to
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Figure 5: A simple example of a role that contains three permission types and has two users
assigned to it. Each user has a PTC for each PT of the role, which allows users to differ in
permissions within the same role, and it also allows for certain reassignments of tasks without
switching roles or changing the role.

vary along any given permission type that a role contains, while still making the claim that
the role does contain that permission type. In the Consultant example from Chapter 3, the
fact that consultants work on bank accounts means that the consultant role would contain,
in our model, relevant permission types for dealing with bank accounts, such as (deposit,

bank-account) and (view-balance, bank-account). When a consultant C is reassigned
to work on a new account, we only need to change his/her permission type constraints on
the relevant permission types (e.g. ptc(C, (deposit, bank − account), Consultant now maps
to the newly assigned bank account(s)). We do not have to change anything about the
consultant role in order to reflect the reassignment. Thus, in a way, the PTs contained in
a role are a kind of a very high-level overview of that role, and they reflect our intuition,
stated earlier, that there is some internal structure to roles.

Also, we can now distinguish between the user view and the role view of permission assign-
ment. As Figure 5 shows, for any given role that a user is assigned to, the user has a PTC
for each PT contained in the role. Thus, two users assigned to the same role no longer have
to have the exact same permissions as in traditional RBAC, because they may have different
PTCs for the PTs of the role.

From the role’s perspective, there is a fixed set of PTs that it contains, and they are applicable
to all users assigned to the role. Therefore, a role is no longer a set of permissions, but could
be viewed as a set of permission types. Permission type constraints then provide the actual
mappings to permissions, in a way that gives these mappings flexibility and makes them
more user-specific, while keeping the relation to a concrete role. From now on, we shall refer
to the set of PTs contained in a role as the core of that role.
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The last definition is necessary and useful, because it could be the case that an employee in a
certain role, say a consultant or an analyst, needs access to a resource or set of resources that
are not represented via PTs in the core of the role. In other words, the needed permissions
are not of a permission type that is common to all consultants. There are many ways this
situation could arise – one that we have already discussed in Chapter 3 is task reassignment
within a role. After a task reassignment, an employee may need access to a type of a resource
that is specific to their project only, and not needed by other employees having the same
role. From the role’s perspective, nothing changes – the core has not changed, and should
not change, because we do not want to overprivilege users. Here, having a separate user
perspective helps, because we are already keeping track of the PTCs for each user for each
role. Therefore, we could add a PTC (or several PTCs) to the particular user’s PTC set to
encapsulate the new permissions they have gained, and that are specific only to them.

4.5.2 Usefulness and Tradeoffs of the Model

Here, we provide a discussion of some of the tradeoffs inherent in using PTs and PTCs, and
analyze their usefulness as role expression concepts.

The conceptual model of roles presented in the previous section is subject to a robustness
concern. We are dealing with DFCEs where a single corporate role may be a cover term for
many different activities, and we are allowing users to have permissions that are not part
of the role core. Won’t this model then degrade to each user essentially having their “own
role,” as defined by their unique mix of core and non-core permission types? The answer
to this question depends on which and now many PTs form the core of the role, and how
expressive each PT is. A PT is as expressive as the breadth of permissions that it maps to,
and so the more general a PT is the more variation it can account for on the role level.

Now we define a metric for the generality of PTs, by focusing on their constituent parts – the
object and operation types. Let the compression factor of the taxonomy system be defined
by the ordered pair (κ1, κ2), where

κ1 =
| OBS |

| OBTYPES |
and κ2 =

| OPS |
| OPTYPES |

.

Obviously, κ1 and κ2 are useful only when they are reasonably big: a small κ1 would be an
indicator that most resources in the organization are extremely heterogeneous and do not
fall well into groups, and a small κ2 would mean that operations on objects do not fall into
semantic groups too well, maybe because permissions are highly dependent on applications
or objects.

In the context of an investment bank, κ1 should not be too small, because a lot of the
company assets fall into groups such as computers, databases, bank accounts, etc., each of
which contains a lot of individual objects. However, κ2 may be small because it is a known
problem that permissions vary greatly across applications [22].

31



However, we shall use the simplifying assumption, based on emerging corporate practices
(as represented in field studies by Dartmouth College researchers), that in the future the
definition of application permissions will follow certain guidelines, so that it is easier to group
the operation part of the operation-object permission pair. Thus, in theory, the compression
factor for an investment bank should be reasonably good. In the Methodology chapter we
shall make some empirical measurements to see if actual data corroborate our expectations.

Finally, we need to consider the fact that PTCs provide a lot of flexibility but they also pose
some challenges – after all, we have several of them per user, which may be problematic
in a big corporation. The next chapter will present our research on using machine learning
techniques to automate the management of PTs and PTCs.

5 Application of Learning Approaches

In this chapter we are going to explore the applicability of several machine learning algo-
rithms to the problem of understanding role structure. Section 5.1 discusses some challenges
of defining the problem in a rigorous way, and identifies several related learning problems.
Section 5.2 presents our thoughts on why certain learning paradigms might not be applicable
to the problem space, and Section 5.3 focuses on some promising learning algorithms.

5.1 Roles as a Learning Problem

Here we discuss the difference between learning a role when viewed as an access control
function, and learning the structure of a role.

5.1.1 The Role as an Access Control Function

In Section 4.1 we presented the following näıve definition of a role function:

role : SUBJECTS ×OPSOBS → {0, 1},

and discussed that the cardinality of the sets of operations and objects, respectively, makes
it hard for certain learning algorithms, such as decision-tree induction, to learn such a
function. However, there are more substantial problems with this definition. Remember the
Consultant example from Chapter 3. It was meant to show that there are real-life situations
when employees in the same role may need different permissions, and moreover that their
permission needs may change quickly over time. In our example, a consultant may work
on account A for a few weeks, then on account B for a few more weeks, and so on. Let’s
assume that our accountant is called John Smith, and that a subject acting on his behalf
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when accessing accounts is called jsmith1 (remember the definition of subject vs. user in
Chapter 1). Then, for a few weeks, it will be the case that

Consultant(jsmith1, deposit, bank account A) = 1,

but in the next few weeks we will have the situation

Consultant(jsmith1, deposit, bank account B) = 1 (1)

Consultant(jsmith1, deposit, bank account A) = 0 (2)

The real problem here is the value of the function in (2): it changed between task reas-
signments for the user John Smith, so in fact we cannot treat it as a function in the strict
mathematical sense. If we were to salvage this form of the role function, we would need to
add a time argument, but it is not clear how such a function can be even approximated. One
reason is that task reassignments don’t have to follow a regular, cyclical pattern over time
– i.e. the time intervals t1, t2, · · · , tn that characterize the duration of John Smith’s first n
assignments could well be, from the point of view of a mathematical series, totally random6.
Additionally, old permissions can reappear in subsequent assignments, e.g. 5 months from
now John Smith may need to work on account A again, so there is hardly a way to predict
the permission structure of future assignments. In light of this, the “enhanced” role function
looks more like an arbitrary mapping that is updated over time, and not so much like a
learnable concept.

In Section 4.1 we talked about object and operation types (and consequently permission
types) as a way to make the hypothetical role function amenable to decision-tree (or other)
learning algorithms. Looking at the above example, we notice that John Smith’s permis-
sions revolve around operations on bank accounts, and of them we focused on the deposit
operation. The set of permissions of the form (deposit, bank account X) can be captured
by the permission type (deposit, bank account). If we recast our initial definition of the role
function in terms of object and operation types, we get

role : SUBJECTS ×OPTYPES ×OBTYPES → {0, 1}.

Note that using this definition, it is true that across reassignments for John Smith,

Consultant(jsmith1, deposit, bank account) = 1.

Conceptually, this maps to our intended meaning of “John Smith works on bank accounts”,
and it goes back to the idea that permission types capture the essence of a role; they are
the “scaffolding” of a role, on which different flavors of the role can be constructed for its
different users. However, despite the fact that this definition of the role function behaves
like an actual function, it no longer answers the question whether access should be granted
or not – it simply confirms that the role contains a certain permission type.

6However, one could argue that this sequence is not random, but a product of the dynamics of the
organization
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Another candidate function that relates to access control is a permission type constraint.
Recall that we defined it as:

ptc : USERS × PERMTYPES × ROLES → 2PRMS .

That is, if a user U of a role R has a set of permissions S that belong to the permission
type T , then ptc(U, T,R) = S. Upon closer scrutiny, however, we realize that this function
suffers from the same predicament as the näıve role function. Using once again the Consultant
example above, we notice that for the first few weeks when John Smith is working on account
A, we have:

ptc(jsmith1, (deposit, bank account),Consultant) = {(deposit, bank account A)},

but in the next few weeks Mr. Smith is working on his new assignment, where

ptc(jsmith1, (deposit, bank account),Consultant) = {(deposit, bank account B)}.

Thus, in this form, a PTC is in reality not a function, and adding a time parameter would
lead to the same concerns that we raised for the role function.

5.1.2 Learning Role Structure

Putting aside for a moment the problem of defining role semantics in terms of an access
control function, we turn our attention instead to role structure. As we have already pointed
out, a role contains a set of permission types, and this containment is “static” in the sense
that it does not change for different users and at different times. The only time when
we would change a permission type in a role is when the role itself has changed, i.e. the
functional meaning of that role in the corporation has drifted.

On that note, so far we have touched upon, but not covered in detail how permission types
get assigned to roles. Perhaps this assignment is a good area for applying learning techniques.
Recall that we talked about using domain experts’ input to infer the permission types for
a role. However, as in the consultant or analyst examples, one domain expert may not
necessarily represent the permission needs of the others. This might not seem like a problem,
because roles contain permission types, and permission types are fairly general – even though
different consultants may be working on different bank accounts at any given time, the
“work on bank accounts” idea can be expressed by a few PTs, that are then applicable to
all consultants. However, remember that we made the distinction between the core of a role,
e.g. the permission types that apply to everyone, and PTCs that may apply to individual
users because of the specifics of their task assignments. For example, all consultants work
on bank accounts, but Julia needs access to some web server because of a special project she
was assigned by her boss. Thus, if no other consultants need access to web servers, we are
not justified in putting the relevant permission types in the Consultant role.
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Therefore, we may envision using a learning algorithm to determine which permission types
form the core of a role, so that we can separate that from “special” permission types indi-
vidual users might need. More precisely, we can train our algorithm on some subset of users
from a given role (or job position), whose permissions indicate the permission types they
need, and use that to predict, for the remaining users, which of their permissions are “core”
and which are “special”. With decision-tree learning, we could do that for many roles at the
same time. Here are some steps we might need to take:

• Observe that in our discussion of roles in DFCEs we use examples such as Analyst
and Consultant, which are closer to job titles than to traditional RBAC roles. As we
discussed in Chapters 2 and 3, these DFCE roles would have to be expressed by a
large number of traditional RBAC roles in order to capture the diversity within the
job position. In contrast, our approach strives to minimize the number of roles, which
is consistent with RBAC pioneers’ intention to use the model as a tool for simplifying
user and permission management.

• In view of the above, we can use information in the HR database (and possibly other
databases), and information from ACLs or other permission management schemes, to
come up with training data of the format:

job title, user, operation, object

This is, in fact, the format of data we will be using to make some empirical measure-
ments of the efficiency and expressiveness of the permission type model in Chapter 6.
For example, we might have:

consultant, jsmith1, deposit, bank account A.

• Using the object and operation hierarchies, and treating job titles as roles, each data
sample of the above form can be converted into:

role, permission type, 1,

where a 1 indicates that this permission type is relevant to the role, by virtue of a user
in that role having a permission (object-operation pair) that belongs to the permission
type. For extra clarity, note that we have done the substitutions:

role = job position
permission type = (type-of (operation), type-of (object))

• Thus, a natural choice for the role structure function is the following:

struct : ROLES × PERMTYPES → {0, 1}.
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Algorithm 2 Assign-PTCs

1: for r ∈ ROLES do
2: for u ∈ assigned users(r) do
3: for p ∈ assigned perms(u, r) do
4: pt = type-of (p)
5: Add ptc(u, pt, r) to user u’s PTC set
6: end for
7: end for
8: end for

If we can learn this function, then we can also automatically obtain, for each user, the permis-
sion type constraints for core (or other) PTs in any role the user might have (Algorithm 2).

Note that the learning algorithm takes time proportional to | PRMS |, because it is run for
every permission that every user in every role has. Note also these notational details:

• We use assigned perms(u, r) to refer to the set of permissions that the user u has
within the role r. This is different from the traditional RBAC relation
assigned permissions(r), which returns the set of permissions that all users in the
role share. As we already pointed out, it is not always the case that people in the same
role have the same permissions, so we need to take individual users into account when
figuring out how the role is reflected in each user’s permission needs.

• We use the shortcut type-of (p : PRMS) to refer to the permission type pt for a
permission p. This is equivalent to calling type-of () on the permission’s operation and
object, and using the resulting operation and object type to create a permission type.

5.1.3 The Challenge

The role model that we described in Chapter 4 turned out to make it hard to express roles as
access control functions. However, a more serious criticism is that it seems to reintroduce the
problem of per-user permission management – each user has several PTCs per role that need
to be created and updated over time. Therefore, we need to investigate ways to automate the
assignment of PTCs to users, regardless of whether that involves using learning techniques.
Chapter 7, Future Research, discusses several promising ideas about how to achieve this
automation.

From a more philosophical point of view, note that it may be fundamentally impossible to
have dynamic roles without using some mechanism to map the role “template” to the per-
missions individual users should have. PTCs are one such mechanism, and the number of
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PTCs we need to maintain is proportional to the number of users, or Θ(n) for n =| USERS |.
Maybe there are more economical ways to achieve the functionality of PTCs, which would
require O(σ(n)) elements for σ(n) << n. If we define the complexity of a dynamic role to be
the number of concepts that we need to have in order to map the role to the different per-
missions of different users, it would be very useful to come up with a rigorous mathematical
model for this complexity, and find its lower bounds (if they exist).

5.2 Learning Approaches That Might Not Work

Here we present our reflections on certain machine learning models and techniques, which
we found difficult to apply to our problem space.

5.2.1 Computational Machine Learning Theory

As the field of machine learning was growing, researchers started asking themselves funda-
mental questions about learning algorithms – what sort of concepts can we hope to be able
to learn? What claims can we make about the accuracy of learning algorithms (error rate)
and the probability that they perform well on test data? All these questions lead to the
development of the computational machine learning theory (COLT) subfield, which tried to
come up with a formal model that would allow us to answer the above questions.

A prominent learning paradigm within COLT is Probably Approximately Correct Learning
(PAC learning) [8, 13]. In PAC learning, we are trying to inductively learn an unknown target
function, and after seeing a number of training examples we come up with a hypothesis drawn
from a specific hypothesis space H. Without going into too much detail about the technical
particulars of the PAC model, we point out several of its characteristic traits below:

• We are trying to learn a concept c, drawn from a concept class C, which is defined
over a set of instances X. For example, the set instances could be all people, and a
concept could be “people of medium build” [8].

• The learning algorithm L has to produce a hypothesis h which, with high probability,
has a small error of classifying new examples, i.e. is approximately correct. The no-
tation ε is used for the error rate and δ – for the probability of failure to produce an
approximately correct hypothesis, where 0 < ε, δ < 1/2.

• The algorithm L has to output a hypothesis with the properties described above in
time that is polynomial in 1/ε, 1/δ and a couple of other parameters, including the
size of the target concept c (defined by the representation of the concept class). These
quantities can also be used to determine the number of training examples that we
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would need to be sure that L will output a hypothesis which, with probability (1− δ),
will have an error rate of ε.

Despite the nice theoretical results that are obtained by the PAC learning model, such as
an estimate of the number of training examples for PAC-learnable concepts, and proofs that
certain classes of functions are PAC-learnable, it has two major drawbacks with respect to
our problem space. First, it implies that we know the concept class from which our target
function is drawn. In the case of roles, we don’t even know for sure if they are functions,
let alone learnable ones, so it would be very hard to a priori make any assumptions about
them. Second, the definition above assumes that there exists a hypothesis in H that can be
made arbitrarily close to the target function (or else that function is not PAC-learnable). In
our case, there is no intuition or formal evidence to support that belief.

Moreover, PAC-learning is usually illustrated in the context of Boolean and numeric con-
cepts, such as learning rectangles of certain dimensions [8], Boolean conjunctions [8, 13], etc.
An extension of the rectangle example is used to learn the concept of “people of medium
build” mentioned above, where the height and weight of a person are numeric quantities
and can be used akin to the X and Y axes for the original example. PAC-learning, however,
does not seem applicable to complex symbolic data. For instance, objects, operations and
their associated types do not have an obvious numeric representation, so there is no clear
way to define the “axes” of our instance space. Chapter 7 presents our thoughts on how this
problem might be overcome.

5.2.2 Instance-Based Learning

An alternative to inductive learning techniques (such as decision-tree learning, PAC-learning,
etc.) is instance-based learning [13, 19, 26]. It is conceptually simple – you just store the
training examples, and then a test example is evaluated for similarity with the stored exam-
ples. The benefit of that approach is that we do not commit to a particular approximation to
the target function until we have to classify a new instance. This allows for learning possibly
very complex functions, which makes this learning approach appealing for our problem.

One family of instance-based learning algorithms is nearest-neighbor algorithms, which rep-
resent instances as points in an n-dimensional Euclidean space [13]. In k-nearest-neighbor
learning, we classify a new instance based on the majority classification of the k stored in-
stances closest to it (by taking the Euclidean distance). A major problem for this algorithm
in our domain of interest is that, as we discussed in the context of PAC-learning, it is not clear
how we can numerically represent the instance attributes relevant to the role function (be it
operations and objects or their types, or some extra information). Therefore, we cannot rep-
resent instances as points in n-dimensional space. Another method within instance-based
learning that relies on the same representation for instances and would therefore not be
applicable to our problem space is locally weighted regression [13].
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Finally, case-based reasoning [13] is an instance-based method that shares the useful prop-
erties of the other two, but it lifts the requirement that instances need to be represented as
points in a plane. Instead, it allows us to use complex symbolic concepts, which is closer to
the nature of roles and role functions. Case-based reasoning has been applied to areas such as
designing mechanical devices based on stored previous designs, adjudicating new legal cases
based on previous rulings, and complex scheduling problems [13]. The distance metric here
is more complicated than mere Euclidean distance, and highly dependent on domain-specific
knowledge – for example, if we represent stored problems as graphs of subproblems, our
similarity measure could be graph isomorphism. However, case-based reasoning and PAC-
learning share a similar problem in relation to role functions. A running theme in the above
examples where case-based reasoning has been applied is that we know something about the
structure of the stored instances, and that is why we look for structural or sub-structural
similarities when classifying new instances. But as we pointed out in the discussion of PAC-
learning, we don’t know anything about the target role function, so we cannot provide its
“structure” as part of the training data. In essence, the problem with both approaches is
that they assume we know certain properties of the target concept, when in reality we do
not.

5.3 Learning Approaches That Might Work

In the current research, we have not investigated the applicability of all popular learning
methods – for example, we have not looked into using artificial neural networks or genetic
algorithms. We have, however, researched decision-tree learning, and we believe it might
be applicable to our problem space. Some key advantages of decision-tree learning are as
follows:

• It makes no assumptions that the target function is drawn from a particular class. This
is good, because as we saw, requiring us to make such assumptions when we really don’t
have a solid justification for it resulted in several learning algorithms being unsuitable
for our needs.

• It handles noise in the data well, because the resulting trees use the most relevant
instance attributes, and noisy attribute values do not have a significant weight. We
haven’t addressed the issue of noise much in the context of roles and permissions,
but we mentioned at the very beginning of the thesis that companies often copy over
permissions when a new employee is hired to take the place of an old one, and other
practices exist which may result in over-privileging some users. It is exactly these
superfluous permissions that constitute “noise” in the data, as they should, ideally,
not be present in the user’s permission set. Traditional PAC-learning, in contrast,
expects that there is no noise in the data [13, 8].

• Most of the computation takes place when the decision tree is being constructed, and
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classifying new instances is fast, because it consists of a small number of attribute tests.
In contrast, most of the computation in instance-based learning occurs at classification
time, which is also the reason for its nice features. However, since we would ideally
want to use role functions for access control, and that means classifying access requests,
this would be a severe bottleneck, as access requests are many and frequent in a DFCE.

6 Methodology and Experimentation

In this chapter we present the measurements we made using sample data about the permis-
sions of users in several job positions. The data was generated by Sara Sinclair, a researcher
in the Dartmouth College PKI Lab, based on her experience with actual permissions in
investment banks.

6.1 Sample Data

Here we are going to discuss what our sample data means, and how it is represented in the
data file that appears in Appendix A.

6.1.1 Explanation of the Data

Our data is taken from the investment banking domain. We have five basic job positions –
Firm Vice President of Funds, Strategic Positioner (Investment Manager), Operations Man-
ager (Tech + HR), Compliance/Legal Division Manager, and each of these has an Adminis-
trative Assistant. The data file entries consist of permissions belonging to users assigned to
one of these five job positions. The permissions are related to one of the following activities
– reading/sending email, logging in to computers, or modifying electronic calendars. The
following rules apply:

• All people can send and read their own email, reflected by the permissions sendEmail
and readEmail on their personal accounts (or, for short, we say that a user has
readEmail for their own email account).

• Administrative assistants can read their charge’s email, so they have readEmail for
their charge’s account.

• All people have adminLogin for their own machines.

• Administrative assistants have userLogin for their charges’ desktop machine.
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• All people have modifyCalendar for their own calendar.

• Administrative assistants have modifyCalendar for their charges.

6.1.2 Format of the Data

The data entries follow the format:

jobTitle, user, operation, object,

where jobTitle can be one of vp for vice president, asst for administrative assistant,
compleg for a compliance/legal division manager, sp[-domestic, -mixed, -foreign] for
a strategic positioner, and oper for operations manager. Object names are identical to user
names when the operation is sendEmail, readEmail or modifyCalendar – in the former two
cases we interpret the object name as the email account name, and in the latter case: as the
calendar account name. When the object name is of the form desk-username it refers to
the desktop machine of the user, and when it is of the form lap-username, it refers to the
user’s laptop. Finally, there are 70 data samples in the data file.

6.2 Permission Type Metrics

We created and used a simple software component7 to process the data. The software compo-
nent allowed for quickly building the object and operation taxonomies, and once taxonomy
creation was completed, statistics were generated about the number and distribution of per-
mission types, as well as the compression factors for the taxonomies. Table 1 summarizes
the input data before any processing:

Job Positions 5
Users 12
Operations 5
Objects 48

Table 1: Summary of Input Data

The new information here is that we have 12 users and 48 objects. Note that the 70 per-
missions are defined on only 48 unique objects, and that the number of actual permissions
is only about 29% of all operation-object pairs (240).

7Available as a RAR archive at http://www.cs.dartmouth.edu/ ruslan/FancyRBAC.rar
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Table 2 presents the statistics we obtained from the software component, which can also be
found in Appendix B.

Object Taxonomy Compression Factor 16.0
Operation Taxonomy Compression Factor 1.25
Created Object Types 3
Created Operation Types 4
Created Permission Types 4
Permission Type/Taxonomy Size Ratio 0.33
Permission Type/Role Ratio 0.8
Users per Role 2.4

Table 2: Collected Statistics from Sample Data

It should be noted that the Permission Type/Taxonomy Size Ratio refers to

| PERMTYPES |
| OPTYPES | · | OBTYPES |

,

and that the Permission Type/Role Ratio refers to |PERMTYPES |
|ROLES | . Having this data, we

can make the following observations:

• As we were hoping, the compression factor for the object taxonomy is high – we have
managed to reduce 48 objects to three generic types. Appendix B shows the object
taxonomy we constructed: it recognizes the types computer (computer), email account
(email-acct) and calendar account (cal-acct). The two account types are broken
down into subtypes according to who can use them, and the computer type is broken
down into the subtypes laptop and desktop. Here, we see the usefulness of the DAG
structure for the object taxonomy – a single email account, for example, can be used
both by a manager and his/her administrative assistant, so it would get classified under
both the vp subtype and the asst subtype.

• On the other hand, the compression factor for the operation taxonomy is low – there
are four operation types for only 6 operations. This is mostly due to the structure
of our sample data – we consider a very small set of operations, and they act on
heterogeneous resources. However, it might indicate a trend in a larger data sample –
we were still able to obtain a high compression factor for objects, and this makes sense
because the same operation (say sendMail) can be applied to many objects (all the
email accounts).

• The Permission Type/Role Ratio as defined above confirms our observation that per-
mission types may span role – the value of 0.8 indicates that, overall, there are fewer
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permission types than roles. In fact, our sample data is an extreme example in that
all permission types are shared by all roles. As a consequence, the average number of
permission types that a role contains is 4.

• The Permission Type/Taxonomy Size Ratio as defined above is similar to the ratio
between actual permissions and possible operation-object pairs: 33% and 29%, re-
spectively. One way to interpret this is that, despite being more general than actual
permissions, permission types do not introduce meaningless combinations – i.e., we
would not get a permission type for a “bogus” permission like (modifyCalendar, desk-
vpino01) which makes no sense. On the other hand, permission types may imply
permissions that don’t yet exist, but would make sense – if the vice president pur-
chases a new laptop, his/her login permissions will have been covered by the (login,

computer) permission type.

Finally, because in our data each user’s permission set is very small, we see that each
permission type constraint would map to one or two permissions, and this is most probably
not indicative of what a larger sample might reveal. However, the usefulness of our role
structure model is still apparent here – even if all administrative assistants were reassigned
to a different manager out of the ones we have seen, the assistant role will remain unchanged,
because the permission types are still relevant to the new reassignment – only the PTCs would
change (e.g. now, Alice needs the permission to read Bob’s email and not Charlie’s email).
Traditional RBAC would have handled that by having several administrative assistant roles
(or one parameterized administrative assistant role with several possible instantiations),
and reassigning users to a different administrative assistant role (or instantiation thereof).
Even though some role reassignments can be automated by integrating traditional RBAC
with rules [11], the problem is the need to define several very similar roles for the same
job function – something that would decrease the advantage of RBAC as a management
simplification tool on the large scale. Chapter 7 will look at some possible ways to automate
PTC reassignment, which would have the advantage of achieving the results of automatic
role reassignment (i.e. you get the new permissions), but without actually performing a role
reassignment or creating several related roles.

6.3 Learning Role Structure

Chapter 5 introduced the role structure function, which returned true if a role contains a
permission type, and false otherwise. As mentioned in that chapter, we could convert our
sample data into a format suitable for learning this function:

jobTitle, permission type, 1 (or 0).
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We used our software to do exactly this, and a part of the result is provided in Appendix C.
Unfortunately, we cannot use this data for obtaining a decision tree, because in fact all
roles contain the exact same set of permission types, and we have no negative examples
(e.g. a permission that a user should not have, and respectively its permission type which
might not be appropriate for inclusion in the role). However, we still wanted to see whether
decision tree learning would cope with noise in the data. To that end, we did the following
experiment:

• We split the 70 converted samples into a training set of 36 samples and a test set of
34 samples. The split was done approximately half-in-half, i.e. we added, randomly,
half of the converted samples for each role to the test set and to the training set.

• We decided to use the See5 decision-tree classifier for Windows, based on the C4.5 al-
gorithm by Ross Quinlan, the original inventor of decision-tree learning algorithms [17,
18]. We then formatted the training and test data for use by See5.

• We introduced approximately 10% of noise in both the training and test examples, by
flipping the value of the hasPT attribute from 1 (the default) to 0. We were essentially
trying to trick the algorithm that a certain role should not “have” (e.g. contain) a
particular PT.

• The result, shown in Appendix D, confirms that the decision tree algorithm does well
on the test data, misclassifying only 8.8% of the test samples. The example is a little
artificial since the decision tree essentially consists of a test on the hasPT attribute,
and the error rate corresponds to the noise we introduced. However, it is still a valid
classifier, and it still allows for noise in the data.

6.4 Conclusions

Obviously, there is much more experimentation to be done before we can say conclusively
whether the role structure model we introduced in Chapter 4 is indeed viable. However, we
have seen some early signs of its usefulness, such as a high compression factor for objects,
a small set of permission types that serves the purposes of many roles, and the possibility
to reassign users without changing their roles. This is an indicator that our approach of
separating the role “template” from the mechanisms that instantiate it for each user has
practical value, and it brings us closer to a definition of roles that would allow RBAC to be
deployed in DFCEs.

Furthermore, the permission type concept made it possible to experiment with decision-tree
learning – without it we would have had an “object” instance attribute with a branching
factor of 48, which is much higher than either then number of users or operations (the other
relevant attributes). We also showed that decision-tree learning deals well with certain levels

44



of noise in the training data, which makes it a promising candidate for future research into
learning roles.

What we really need to do in the future is obtain metrics for datasets with multiple users,
which have different responsibilities that involve permissions for a diverse set of objects.
That would shed light on several important questions, such as: how useful are permission
type constraints? How similar do roles become as a consequence of being expressed via
permission types and not actual permissions? As we mentioned, in our sample data all roles
looked essentially the same, because they all contained the same permission types. Is that
the case in general?

7 Future Research

In this concluding chapter of the thesis we talk about some promising areas of research,
which might provide answers to fundamental questions we have touched on. For example,
can roles be learned and easily maintained in the real world? Do roles have an underlying
structure and if so, can we discover it? How can we account for the dynamism of roles in
DFCEs without incurring the overhead of managing individual users’ permissions? What
are some tradeoffs between role expressiveness and ease of management? The answers to
these questions are important for several reasons:

• They would show whether it is fundamentally possible to use RBAC, and roles in
particular, in the context of the challenges presented by DFCEs. This would be a very
satisfactory result, because RBAC has been successful in significantly simplifying the
management of permissions in the domains to which it has been already applied [15].
Besides, it has a sizable body of researchers, which would ensure a continuous flow of
innovation and improvements.

• However, it may also turn out that the role concept is not expressive enough to meet
the demands of DFCEs. This realization would possibly lead to the research and
development of new access control models.

The chapter is organized as follows: Section 7.1 will address some issues with using PTs and
PTCs as defined in Chapter 4, and Section 7.2 will look at some alternative definitions of
the role function (and other auxiliary ones) and give some suggestions about how to adapt
role functions for PAC-learning and instance-based learning.
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7.1 Role Housekeeping

The role organization model we proposed in Chapter 4 is an attempt to come up with
a framework for roles, which would enable us to use the very concept of a role in DFCEs.
Thus, we focus on the role-based dimension of RBAC, and Section 7.1.1 will elaborate on the
role idea. In Sections 7.1.2 and 7.1.3, we turn our attention to the access control dimension
of RBAC, in an attempt to reconcile the role model we developed with real-world access
control concerns.

7.1.1 Role Classes

In Chapter 4 we talked about the user perspective and the role perspective of permissions.
The user perspective was defined as a set of permission type constraints, which partitioned
the user’s permission set (within a role) into subsets based on their belonging to a permission
type. So far the user perspective seems very mechanistic – it is merely a set of mappings from
abstract constructs (PTs) to actual entities (permissions). However, we suspect that there
is more meaning behind these mappings. As supported by evidence collected by researchers
at the Dartmouth College PKI Lab, employees may need certain permissions only in specific
circumstances. For instance, an employee may be acting as a back-up for someone else for
some duration of time (e.g. two weeks). As a further example , a doctor in a hospital may
need access to a patient’s medical record in case of an emergency, even if the patient is not
theirs, but a critical intervention is needed to save the patient’s life.

The first example illustrates an important point: some permissions may be only rarely
needed, and it would be nice to have a way of incorporating that information in our role
model. The model currently does not give us the ability to say things like “user X needs
permission p, but only occasionally,” because permission type constraints do not make any
distinctions between their constituent permissions. In the second example, we see another
real-life concern – even if an employee does not have a certain permission, there are extreme
circumstances when the employee might have to use that permission. A common example
is doctors in hospitals who might need to act fast in order to save someone’s life, or even
employees in an investment bank who might need to temporarily assume someone else’s
duties in their absence, so that money or other assets are not lost. The difference between
the two examples is that in the first one we have rarely used permissions, and in the second
one we have permissions that have not been assigned to the user (or user’s role), but might
be needed sometimes. But both cases suggest we might need to define different classes of
roles, in order to capture different modes of using permissions. Some classes of roles that we
have considered are:

• Basic Roles – roles that capture the basic duties of employees in an organization.

• Temporary Roles – roles that an employee may be assigned to only sometimes, such
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as back-ups.

• Break-Glass Roles – roles that an employee should be able to have in case of an
emergency, for a suitable definition of an emergency. This relates to the doctor example.

The reader might recall from Chapter 2 that the purpose of Temporal RBAC is exactly to
capture the time dimension of users’ assignments to roles, i.e. the idea that a user should be
assigned to a role only at certain times. However, TRBAC achieves that by using periodic
expressions, i.e. things like “every Friday from 9am to 3pm”. In the back-up example,
unless the need for a back-up is known to be periodic, we cannot directly use this feature of
TRBAC. Another concept in TRBAC is that of role triggers, for example:

enable, R0 → disable, R1,

which means that whenever role R0 is enabled, role R1 is disabled, i.e. even users assigned
to that role cannot activate it in their current session. Thus, we might try to recast the
back-up problem as having two roles: X and backup-X, for which the following role triggers
exist:

disable, X → enable, backup-X
enable, X → disable, backup-X

However, this assumes that in addition to defining the traditional RBAC roles (which we
know is time-consuming), we need to define back-up roles too, because back-ups may need
only a subset of the permissions of the regular role. Moreover, we need to manually enable
and disable the regular role each time a back-up is needed, which might be quite tedious.

Notice, however, that TRBAC may be relevant to the doctor example – TRBAC supports
run-time requests, i.e. directives of the kind enable, R or disable, R regardless of the
current role triggers and the state of the system. The seminal paper on TRBAC by Bertino
et al. [2] provides an example with the emergency-doctor role, which is activated via a
run-time request, which matches our intuition that emergencies have to be acted upon im-
mediately. It would be worthwhile to investigate the overhead of defining emergency (or, in
our nomenclature, break-glass) roles versus their usefulness in the domain of DFCEs. On one
hand, we would not want uncontrollable use of break-glass roles, on the other hand, we want
to ensure than an employee needing a break-glass role does not have to wait for the help desk
officers for too long. This implies the existence of a sound auditing system. We believe that
it would be a good idea to have devoted personnel for assigning and de-assigning break-glass
roles, because that way we can offload the effort from the help desk, while providing tracking
capabilities for who requested what break-glass role.

Going back to our discussion of the user perspective of permissions and the core of a role,
it would be interesting to find out whether certain permission types for a role map to one

47



Figure 6: Hybrid Role Discovery – the object and operation taxonomies make it possible to map
the user’s permissions to permission types, and then the knowledge we have obtained about role
structure from the role structure function can be used to map permission types to roles. Finally,
knowing the relationship between PTs and role classes can tell us what kind of roles the PTs form.

of the role classes we talked about (treating permission types as something of a “sub-role”).
For example, the role structure function introduced in Chapter 5 tries to discover which
PTs constitute the core of a role. The learned PTs may well correspond to the basic duties
of the users assigned to that role, so they may be referred to collectively as a basic role.
Then we are left with permission types specific for individual users, which may correspond
to temporary roles – either a special assignment, or an activity that the user does not really
need to perform often. Discovering mappings between permission types and role classes
may make it possible to infer the roles of a user just by looking at the user’s permission set
(assuming object and operation taxonomies in place), which traditionally is the domain of
bottom-up role-clustering approaches. However, unlike blind clustering, we would be using
important information about what the permission groupings mean. Schematically, this is
represented in Figure 6.

7.1.2 Rules and Context Constraints

Chapter 5 left the question open of how we manage efficiently the numerous permission type
constraints per user. Answering this question is crucial, because otherwise it is not clear
how our model is role-based any more, since permission management is now done per user.
One place to start research on this issue is Rule-Based RBAC (RB-RBAC) [11]. RB-RBAC
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automates the assignment of roles per users, by utilizing the HR and other relevant databases.
Therefore, when a user’s entry in the database changes, the user’s roles are automatically
recomputed with the help of rules. Rules have a left-hand side, which specify conditions on
HR database attribute values (for example If Job-Title = Accountant), and a right-hand
side which specifies which role the user should be assigned to.

It would be very useful to see if this rule-based approach can be extended to permission
type constraints. In particular, we are curious whether we could devise rules that, instead of
taking attribute values from the HR database, use the values of context attributes as defined
in Chapter 2 where we discussed context constraints. This makes sense, because the times
when we need to change the PTCs for a user are the times when this user is reassigned to a
new task, for example, and that is accompanied by a change of the “context” in which the
user exercises their permissions. Therefore, the left-hand side of our rules would test certain
context attributes, and the right-hand side would assign an appropriate PTC to the user.
Rules should also take into account the user for whom the PTC is to be calculated. Below
are several observations we can make about these rules:

• Rules seem to only make sense for the core PTs of a role, since we cannot predict
what special assignments individual users might be given within the role. Therefore,
the number of rules for a role is proportional to the number of users and the number
of core PTs. Note that even though rules are defined for users and not roles, which
raises the concerns we pointed out at the beginning of this section, once defined they
subsequently should take care of updating the user’s PTCs. Thus, the initial effort
would pay in the long run.

• Rules are different from context constraints, because the latter are used to limit the use
of one permission, while the former are used to assign permissions. In fact, rules would
be used in conjunction with context constraints: rules will produce the relevant per-
missions per user, and context constraints will control the access to these permissions
(as is their intended use).

If rules like the above can indeed be defined, then a generic algorithm for a role function
would be Algorithm 3.

The check context constraints() function is taken from [23]. Note that this algorithm as-
sumes that at the time the function is called, the rules have already computed the PTCs for
the user. By definition, a user has a permission for a certain role if that permission appears
in a PTC the user has for the role, and this is exactly what the algorithm is looking for.
Once the PTC for the permission has been found, we know that the user should have this
permission, so the next step is to check whether any context constraints apply. If they do,
and are satisfied, then the access request should be granted. In all other cases it should be
rejected.
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Algorithm 3 role(s : SUBJECTS , op : OPS, ob : OBS) returns true/false

1: user = subject user(s)
2: PT = Make PT(op, ob)
3: PTC = Make PTC(user, PT, role)
4: if PTC ∈ Assigned PTCs(user, PT, role) then
5: if check context constraints(s, op, ob) then
6: return true
7: end if
8: end if
9: return false

7.2 Role Functions and Learning

In Chapter 5 we tried to define a learnable role function. However, as we saw, this is a
challenging task. Section 7.2.1 elaborates on the issue of adding time as a parameter to
the role function, and Section 7.2.2 returns to the topic of expressing instances of the role
learning problem as numeric quantities.

7.2.1 Time as a Parameter

One major difference between traditional RBAC roles and DFCE roles is the concept of
change over time. All the definitions of RBAC entities assume that change over time is
gradual. That is why the set-of-permissions view of roles works – the underlying permission
set does not change often. In fact, it is recommended that the whole role engineering process
for RBAC be completely redone once the amount of change has passed a certain threshold [5,
Ch. 10]. This is a big reason for not adopting RBAC in DFCEs – mergers and acquisitions
are frequent, and with them come changes in tasks and the overall resource pool (Chapter 3),
so all the role engineering work would have to be repeated every time. The general problem
with DFCEs, as pointed out throughout this thesis, is that change, either through task
reassignments or other processes, is very rapid. Thus, time becomes an essential argument
of any function we would like to define over roles (except the mapping from roles to PTs).
Let us consider, for example, how the assigned permissions relation of traditional RBAC
needs to “evolve” to reflect the realities we are dealing with:

1. In RBAC, this is defined as assigned permissions : ROLES → 2PRMS . Since users
are assigned to roles, by virtue of this relation we require all users of a given role to
have the same exact permissions. We have already discussed why that does not work,
so we need to include users into consideration. This yields:

2. assigned permissions : USERS × ROLES → 2PRMS , where the first argument is
restricted to assigned users(r : ROLES), and r is the second argument. Now users
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are allowed to have different permissions within the same role, which works for roles
like Consultant as we have seen. But we also know that employees are frequently
reassigned to new tasks, so the output of this function would only be valid for the
duration of one such reassignment. Therefore, we need to take into account when we
are asking the question, or:

3. assigned permissions : USERS ×ROLES ×TIME → 2PRMS . Now we are closer to
reality, but we have ended up with a pretty complicated function.

A possible line of research using time-aware role-related functions would be extracting usage
patterns for individual users. We cannot say for sure that task reassignments are random –
they depend on the corporation’s dynamics, and could be affected by many factors such as
season (and therefore volume of work), stagnation in the financial markets, etc. It could be
even simpler – a history of previous permission usage for a user may prove to predict future
permission needs well. By seeing which permission types are encountered consistently over
time in a user’s access history, we may glean information about the structure of a particular
role the user has, and compare that with, say, the output of the role structure function.

7.2.2 Numerical Representations

As we saw in Chapter 5, PAC-learning and instance-based learning techniques are hard to
apply to roles and role functions, because the latter are complex symbolic data, and the
learning algorithms work on numeric or Boolean data. It would be worthwhile to explore
whether we can translate between the symbolic representation of our data and a numeric
representation.

One idea is to use utility functions [19] for, say, object and operation types, in order to obtain
a numerical score for them. This would allow us to represent the space of permission types as
2-dimensional Euclidean space, which would make learning problems defined on permission
types tractable for nearest-neighbor learning algorithms, as well as PAC-learning. Utility
functions can take into account many attributes of the concepts they are applied to, which
allows for complicated representation schemes for the utility value of object and operation
types.

We have not had an opportunity to conduct research in this area, but one general idea we
had is that the utility of both object and operation types is inversely proportional to the
risk of misusing the underlying objects and operations. What this means is that, say for
object types, the utility of the object type decreases as the risk of using an object from
that type increases. Thus, the type Printer would have greater utility than Bank-Account.
For operations, a read-like operation would have higher utility than a write-like operation,
because the latter can be used to modify or destroy important data.
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A Sample Data

vp,vpino01,sendEmail,vpino01

vp,vpino01,readEmail,vpino01

vp,vpino01,adminLogin,desk-vpino01

vp,vpino01,adminLogin,lap-vpino01

vp,vpino01,modifyCalendar,vpino01

sp-domestic,sdoe003,sendEmail,sdoe003

sp-domestic,sdoe003,readEmail,sdoe003

sp-domestic,sdoe003,adminLogin,desk-sdoe003

sp-domestic,sdoe003,adminLogin,lap-sdoe003

sp-domestic,sdoe003,modifyCalendar,sdoe003

sp-mixed,smonroe005,sendEmail,smonroe005

sp-mixed,smonroe005,readEmail,smonroe005

sp-mixed,smonroe005,adminLogin,desk-smonroe005

sp-mixed,smonroe005,adminLogin,lap-smonroe005

sp-mixed,smonroe005,modifyCalendar,smonroe005

sp-foreign,sfolk007,sendEmail,sfolk007

sp-foreign,sfolk007,readEmail,sfolk007

sp-foreign,sfolk007,adminLogin,desk-sfolk007

sp-foreign,sfolk007,adminLogin,lap-sfolk007

sp-foreign,sfolk007,modifyCalendar,sfolk007

sp-foreign,sfolk007,sendEmail,sfolk007

sp-foreign,sfolk007,readEmail,sfolk007

sp-foreign,sfolk007,adminLogin,desk-sfolk007

sp-foreign,sfolk007,adminLogin,lap-sfolk007

sp-foreign,sfolk007,modifyCalendar,sfolk007

compleg,clego009,sendEmail,clego009

compleg,clego009,readEmail,clego009

compleg,clego009,adminLogin,desk-clego009

compleg,clego009,adminLogin,lap-clego009

compleg,clego009,modifyCalendar,clego009

oper,oopenhew011,sendEmail,oopenhew011

oper,oopenhew011,readEmail,oopenhew011

oper,oopenhew011,adminLogin,desk-oopenhew011

oper,oopenhew011,adminLogin,lap-oopenhew011

oper,oopenhew011,modifyCalendar,oopenhew011

asst,aardo02,modifyCalendar,aardo02

asst,aardo02,readEmail,aardo02

asst,aardo02,readEmail,vpino01

asst,aardo02,userLogin,desk-vpino01

asst,aardo02,modifyCalendar,vpino01
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asst,aada004,modifyCalendar,aada004

asst,aada004,sendEmail,aada004

asst,aada004,readEmail,aada004

asst,aada004,readEmail,sdoe003

asst,aada004,userLogin,desk-sdoe003

asst,aada004,modifyCalendar,sdoe003

asst,aarnold006,modifyCalendar,aarnold006

asst,aarnold006,sendEmail,aarnold006

asst,aarnold006,readEmail,aarnold006

asst,aarnold006,readEmail,smonroe005

asst,aarnold006,userLogin,desk-smonroe005

asst,aarnold006,modifyCalendar,smonroe005

asst,aark008,modifyCalendar,aark008

asst,aark008,sendEmail,aark008

asst,aark008,readEmail,aark008

asst,aark008,readEmail,sfolk007

asst,aark008,userLogin,desk-sfolk007

asst,aark008,modifyCalendar,sfolk007

asst,aaquis010,modifyCalendar,aaquis010

asst,aaquis010,sendEmail,aaquis010

asst,aaquis010,readEmail,aaquis010

asst,aaquis010,readEmail,clego009

asst,aaquis010,userLogin,desk-clego009

asst,aaquis010,modifyCalendar,clego009

asst,aargent012,modifyCalendar,aargent012

asst,aargent012,sendEmail,aargent012

asst,aargent012,readEmail,aargent012

asst,aargent012,readEmail,oopenhew011

asst,aargent012,userLogin,desk-oopenhew011

asst,aargent012,modifyCalendar,oopenhew011
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B Collected Statistics

-------------------------------------

Collected statistics on: 1212130742475

-------------------------------------

Analysed:

Job positions: 5

Users : 12

Operations : 5

Objects : 48

Stats:

Object taxonomy compression factor: 16.0

Operation taxonomy compression factor: 1.25

Object types : 3

Operation Types : 4

Permission Types : 4

Permission type/taxonomy ratio: 0.3333333333333333

Permission types per role: 0.8

Users per role: 2.4

Operation taxonomy

-----------------------

send:

sendEmail

modify:

modifyCalendar

login:

adminLogin

userLogin

read:

readEmail

Object taxonomy

-----------------------

cal-acct(2)

asst(1)

aada004(0)

aaquis010(0)
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aardo02(0)

aargent012(0)

aark008(0)

aarnold006(0)

clego009(0)

oopenhew011(0)

sdoe003(0)

sfolk007(0)

smonroe005(0)

vpino01(0)

compleg(1)

clego009(0)

oper(1)

oopenhew011(0)

sp(1)

sdoe003(0)

sfolk007(0)

smonroe005(0)

vp(1)

vpino01(0)

computer(2)

desktop(1)

desk-clego009(0)

desk-oopenhew011(0)

desk-sdoe003(0)

desk-sfolk007(0)

desk-smonroe005(0)

desk-vpino01(0)

laptop(1)

lap-clego009(0)

lap-oopenhew011(0)

lap-sdoe003(0)

lap-sfolk007(0)

lap-smonroe005(0)

lap-vpino01(0)

email-acct(2)

asst(1)

aada004(0)

aaquis010(0)

aardo02(0)

aargent012(0)
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aark008(0)

aarnold006(0)

clego009(0)

oopenhew011(0)

sdoe003(0)

sfolk007(0)

smonroe005(0)

vpino01(0)

compleg(1)

clego009(0)

oper(1)

oopenhew011(0)

sp(1)

sdoe003(0)

sfolk007(0)

smonroe005(0)

vp(1)

vpino01(0)

Permission types

-----------------------

[<send : email-acct>,

<read : email-acct>,

<login : computer>,

<modify : cal-acct>]
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C Role Structure Function Data

vp,send:email-acct,1

vp,read:email-acct,1

vp,login:computer,1

vp,login:computer,1

vp,modify:cal-acct,1

sp-domestic,send:email-acct,1

sp-domestic,read:email-acct,1

sp-domestic,login:computer,1

sp-domestic,login:computer,1

sp-domestic,modify:cal-acct,1

sp-mixed,send:email-acct,1

sp-mixed,read:email-acct,1

sp-mixed,login:computer,1

sp-mixed,login:computer,1

sp-mixed,modify:cal-acct,1

sp-foreign,send:email-acct,1

sp-foreign,read:email-acct,1

sp-foreign,login:computer,1

sp-foreign,login:computer,1

sp-foreign,modify:cal-acct,1

sp-foreign,send:email-acct,1

sp-foreign,read:email-acct,1

sp-foreign,login:computer,1

sp-foreign,login:computer,1

sp-foreign,modify:cal-acct,1

compleg,send:email-acct,1

compleg,read:email-acct,1

compleg,login:computer,1

compleg,login:computer,1

compleg,modify:cal-acct,1

oper,send:email-acct,1

oper,read:email-acct,1

oper,login:computer,1

oper,login:computer,1

oper,modify:cal-acct,1

asst,modify:cal-acct,1

asst,read:email-acct,1

asst,read:email-acct,1

asst,login:computer,1

asst,modify:cal-acct,1
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D See5 Output

See5 [Release 2.05] Fri May 30 10:26:43 2008

-------------------

Class specified by attribute ‘hasPT’

Read 36 cases (3 attributes) from rolestruct.data

Decision tree:

1 (36/4)

Evaluation on training data (36 cases):

Decision Tree

----------------

Size Errors

1 4(11.1%) <<

(a) (b) <-classified as

---- ----

4 (a): class 0

32 (b): class 1

Evaluation on test data (34 cases):

Decision Tree

----------------

Size Errors

1 3( 8.8%) <<

(a) (b) <-classified as

---- ----

3 (a): class 0

31 (b): class 1
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