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Abstract

The snapshot problem was first proposed over a decade ago [1, 2] and has since been well-studied
in the distributed algorithms community [4, 5, 6, 7, 8, 9, 12, 13, 14, 17, 18]. The challenge is to
design a data structure consisting of m components, shared by upto n concurrent processes, that
supports two operations. The first, Update(i, v), atomically writes v to the ith component. The
second, Scan(), returns an atomic snapshot of all m components. We consider two termination
properties: wait-freedom, which requires a process to always terminate in a bounded number
of its own steps, and the weaker obstruction-freedom, which requires such termination only for
processes that eventually execute uninterrupted [10].

First, we present a simple, time and space optimal, obstruction-free solution to the single-
writer, multi-scanner version of the snapshot problem (wherein concurrent Updates never occur
on the same component). Second, we assume hardware support for compare&swap (CAS) to
give a time-optimal, wait-free solution to the multi-writer, single-scanner snapshot problem
(wherein concurrent Scans never occur). This algorithm uses only O(mn) space and has optimal
CAS, write and remote-reference complexities. Additionally, it can be augmented to implement
a general snapshot object with the same time and space bounds, thus improving the space
complexity of O(mn2) of the only previously known time-optimal solution [14].



Snapshot algorithm Primitive used Update time Scan time Space
This paper CAS or LL/SC O(1) O(m) O(mn)
Afek et al. [1] read/write O(mn) O(mn) O(mn + n2)
Anderson [2] read/write O(2mn) O(2mn) O(m3n4 log n)
Haldar and Vidyasankar [9] read/write O(mn) O(mn) O(mn2)
Jayanti [13] CAS or LL/SC O(m) O(m) O(mn2)
Jayanti [14] CAS or LL/SC O(1) O(m) O(mn2)

Table 1: Comparison of multi-writer snapshot algorithms.

Snapshot algorithm Primitive used Update time Scan time Space
Afek et al. [1] read/write O(n2) O(n2) O(n2)
Anderson [2] read/write O(2n) O(2n) O(n3 log n)
Aspnes and Herlihy [4] read/write O(n2) O(n2) O(n3)
Attiya et al. [5] test&set O(n) O(n) ∞
Attiya and Rachman [6], read/write O(n log n) O(n log n) ∞
uses unbounded registers
Chandra and Dwork [7] CAS or LL/SC O(n) O(n) ∞
Dwork et al. [8], weak snapshot read/write O(n) O(n) O(n2)
Haldar and Vidyasankar [9] read/write O(n2) O(n2) O(n3)
Israeli et al. [12] read/write O(n) O(n log n) O(n2)
Kirousis et al. [17], single-scanner read/write O(1) O(n) O(n)
Riany et al. [18] CAS or LL/SC, O(1) O(n) O(n2)

and fetch&inc

Table 2: Comparison of single-writer snapshot algorithms.

1 Introduction

The snapshot problem was first proposed independently by Anderson [2] and Afek et al. [1] in
1990, and has since enjoyed a considerable amount of attention and research in the distributed
algorithms community [4, 5, 6, 7, 8, 9, 12, 13, 14, 17, 18]. Previous results are summarized in
Figures 1 and 2, which are largely lifted from Tables 1 and 2 in [14].

The motivation lies in the need to obtain an instantaneous global view of a large portion of
active memory, without disturbing the underlying computation. That is, a process may want to
simultaneously read multiple words of shared memory in a system that only supports single-word
operations, even as each word is being concurrently modified. Such need arises in a multitude
of applications, including checkpointing a computation, backing up a disk or memory currently
in use, debugging parallel programs, and obtaining a consistent reading of multiple sensors in a
sensor network.

1.1 Background and definitions

Formally, the problem is to design a data structure called the snapshot object consisting of m
components, shared by n processes, that supports two operations. The first, Update(i, v),
writes v to the ith component. The second, Scan(), returns a snapshot of all m components.
These operations must be implemented from hardware-supported primitives: most commonly,
read/write, and in many multiprocess systems, various read-modify-write primitives such as
compare&swap (CAS) and limited forms of load-linked/store-conditional/validate (LL/SC/VL).

As a sidebar, we quickly remind the reader of the specifications of these atomic operations,
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which we will make use of in some of our algorithms. If X is a shared variable, CAS(X, old, new)
sets X to new if X = old, returning true, or returns false if X 6= old. LL(X) returns the value
of X. A subsequent SC(X, new) sets X to new if X has not been modified since the last
LL(X), returning true, and returns false otherwise. Lastly, V L(X) returns true if X has not
been modified since the last LL(X), and false otherwise.

A restricted version of the snapshot problem, known as single-writer snapshot, assumes that
concurrent Updates never occur on the same component. Similarly, another version, known as
single-scanner snapshot, assumes that concurrent Scans never occur. The most general version
where arbitrary concurrency is allowed is known as multi-writer, multi-scanner snapshot. In this
paper we consider all combinations of these restrictions.

A conceivable “solution” to the snapshot problem is to simply read one component at a time
to obtain the composite. However, even under the single-writer, single-scanner assumption,
this would result in an inconsistent view (i.e., not a “snapshot”) since each component may be
concurrently written to. We therefore require implementations to be atomic (or linearizable),
that is, an operation must appear to take effect instantaneously at some point during the interval
of its execution. See [11] for a more detailed discussion of linearizability.

It is also natural to require some progress guarantees. Research in distributed algorithms has
focused on the following three lock-free conditions: an algorithm is (1) wait-free if every operation
completes in a bounded number of its own steps, (2) non-blocking if some operation always
completes in a bounded number of system steps, and (3) obstruction-free if every operation
always completes in a bounded number of steps provided no other process takes any steps. It is
easy to see that any wait-free algorithm is non-blocking, and that any non-blocking algorithm
is obstruction-free. Of course, wait-freedom is the ideal, but it often comes at the cost of high
conceptual as well as computational complexity. On the other hand, recent research suggests
that obstruction-freedom is often sufficent in many practical systems, and is much easier to
achieve [10]. In this paper, we consider both wait-free and obstruction-free implementations of
the snapshot object.

Finally, in analyzing the efficiency of an algorithm, we consider a number of complexity
measures. Most important of these, of course, are time and space. In addition, on a multiprocess
system that supports concurrent read, write and/or compare&swap (CAS), it is often the case
that a write or CAS operation takes considerably more time than a read operation. We would
therefore like to minimize write and CAS complexities as well. Lastly, in many architectures,
each processor is able to access a piece of shared memory without causing traffic on the global
interconnection bus. Two such architectures that we consider here are the distributed shared-
memory (DSM) and cache-coherent (CC) models [3]. On a DSM machine, each process simply
has its own local block of shared memory. On a CC machine, each process has a local cache of all
of shared memory, and some hardware protocol enforces consistency via the global bus whenever
shared memory is modified. In both models, we would like to minimize the remote-reference
complexity (i.e., the number of hub accesses) of each operation.

1.2 Our results

In Section 2, we present a conceptually simple, obstruction-free solution to the single-writer,
multi-scanner snapshot problem, using only read/write primitives. We do so by first giving
a wait-free, single-writer, single-scanner algorithm, then introducing a simple modification to
augment it to the obstruction-free, multi-scanner algorithm. The latter in fact gives a stronger
termination guarantee than just obstruction-freedom: Updates are wait-free and Scans can
only be scuttled by other Scans. In particular, it is wait-free in the single-scanner scenario.

The time complexity of the algorithm is O(1) and O(m) for Updates and Scans, respec-
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tively, and its space complexity is O(m). Hence, it is trivially optimal in both time and space.
A Scan carries out O(1) write operations, so it is write optimal as well. On a DSM machine, a
Scan by process p makes zero remote-references, and on a CC machine, it makes O(k) remote-
references, where k is the number of components touched by an Update since the start of the
last Scan by p. An Update of course has O(1) remote-reference complexity in both models.

In Section 3, we assume support for LL/SC to give a wait-free algorithm for multi-writer,
single-scanner snapshot. As for the previous algorithm, we introduce a wait-free, single-writer,
single-scanner algorithm, and augment it to produce the multi-writer algorithm. The result has
optimal time, O(mn) space and constant CAS complexities, with write and remote-reference
complexities as above. We also show how this algorithm can be modified to solve multi-writer,
multi-scanner snapshot in the same time and space bounds, thus reducing the space requirement
of Jayanti’s previous time-optimal solution [14] from O(mn2) down to O(mn).

Finally, in Section 4 we show a lowerbound that proves that on a DSM machine, any wait-free
single-writer, single-scanner snapshot algorithm must have non-zero remote-reference complexity
for Updates. A consequence of this, which we will explain in more detail, is that all our single-
scanner algorithms are indeed optimal in DSM remote-reference complexity.

Our algorithms are inspired by ideas from Jayanti’s algorithms [14], but introduce novel
techniques and constructions to achieve the mentioned improvements.

2 Toward obstruction-freedom

In this section, we first present a simple and efficient algorithm that implements a single-writer,
single-scanner snapshot object that guarantees wait-freedom. We then give an easy modification
to transform this into a (single-writer) multi-scanner snapshot object, but which guarantees the
slightly weaker condition of obstruction-freedom. Both algorithms only require hardware support
for read/write, and have optimal time, space and write complexities.

2.1 Wait-free, single-writer, single-scanner snapshot

The basic idea behind the algorithm is motivated by the single-writer, single-scanner algorithm
in [14]. We keep a core array A on which Updates and Scans occur, and a second array B where
Updates concurrent with a Scan forward their values in case they were missed in A. In [14], a
Scan writes ⊥ to each component of B to ensure that if it later finds a non-⊥ value there, it must
be current. To reduce the write-complexity of Scans, we instead introduce a scheme of bounded
sequence numbers. Specifically, a Scan announces a unique sequence number, and Updates
that want to forward for it write that sequence number to the corresponding component of a
third array C to let the Scan know that a forwarding has occurred. The precise algorithm is
given in Figure 1.

To discuss correctness of this algorithm, we adopt the line reference notation of [14]. That
is, if OP is either a Scan or an Update, then OP [`] denotes Line ` in OP ’s algorithm. If
Line ` involves more than one atomic operation, than OP [`i] denotes the ith one. Here, we also
introduce some natural terminology which will be useful later.

Definition 2.1. Let U be an i-Update and S be a Scan. The period of S during which
X = true is called its sip-section (where sip stands for scan-in-progress). We say S returns U
(for component i) via B if the test at S[81] succeeds and U is the last Update to write to B[i]
before S reads B[i] (S[82]), or via A if the test fails and U is the last Update to write to A[i]
before S reads A[i] (S[5i]). Finally, S picks up U (for component i) if S returns either U or a
later Update.
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Shared variables:
A[1..m]: array of machine words, initialized to initial value of snapshot object
B[1..m]: array of machine words, initialized arbitrarily
C[1..m]: array of sequence numbers from {1, . . . ,m + 1}, initialized arbitrarily
X: boolean variable, initialized to false
S: variable, with sequence number in {1, . . . ,m + 1}, initialized arbitrarily

Update(i, v)

A[i]← v1

x← X2

if x then3

s← S4

B[i]← v5

C[i]← s6

Scan()

X← true1

for i = 1 to m do c[i]← C[i]2

choose s ∈ {1, . . . ,m + 1} : s /∈ c3

S← s4

for i = 1 to m do a[i]← A[i]5

X← false6

for i = 1 to m do7

if C[i] = s then v[i]← B[i]8

else v[i]← a[i]9

return v10

Figure 1: A wait-free, single-writer, single-scanner snapshot algorithm.

Armed with this notation, we can now define the linearization points of our operations.

Definition 2.2 (Linearization Points). Let S be a Scan and U be an Update. Define the
linearization point of S to be LP (S) = S[6], and that of U to be as follows.

(1) If U straddles LP (S′) for some Scan S′ that does not pick it up, then LP (U) is immedi-
ately after LP (S′).

(2) Otherwise, LP (U) = U [1].

The following three lemmas form the core of our proof of correctness.

Lemma 2.3. Let U be an i-Update and S be a Scan. If U [1] < S, then S picks up U .

Proof. Let U ′ < U be any earlier i-Update. We need to show that S does not return U ′. But
S certainly does not return U ′ via A since U overwrites A[i] before S even starts. On the other
hand, if S returns U ′ via B, then some U ′′ > U ′ must write the matching sequence number s to
C[i] after S[2i] and before S[81]. But then U ′′ overwrites B[i] before S[82] as well, so S cannot
possibly return U ′ via B.

Lemma 2.4. Let U and S be as above. If U < LP (S), then S picks up U .

Proof. Again, let U ′ < U be any earlier i-Update. Suppose S returns U ′ via A. Then U ′[1] <
S[5i] < U [1], otherwise U would overwrite U ′ in A[i] before S reads it. Therefore, U lies entirely
during the sip-section of S and hence must forward. Any subsequent Update during S cannot
write a different sequence number to C[i], so S must in fact return via B.

Alternatively, suppose S returns U ′ via B. Then U must not forward, otherwise it would
overwrite U ′ in B[i]; that is, U [2] < S[1]. But then by Lemma 2.3, S picks up U , so in particular
does not return U ′.

Lemma 2.5. Let U and S be as above. If U > LP (S), then S does not pick up U .
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Proof. It suffices to show that S does not return U , since any later Update would also satisfy
the hypothesis of the lemma. Now, S cannot return U via A, since U has not even started yet
when S reads A[i]. On the other hand, U always sees X = false during the lifetime of S, so it
cannot forward before S terminates. Hence S cannot return U via B either.

An immediate corollary is

Lemma 2.6. If an Update U is picked up by a Scan S, then U is also picked up by every
subsequent Scan.

Proof. If S picks up U , then by Lemma 2.5, U starts before S[6], hence before the start of any
subsequent Scan. By Lemma 2.3, any such Scan would pick up U .

Finally, to prove our algorithm correct, we need to show (1) that linearization points are
validly defined and (2) that Scans behave as they would if every operation were shrunk to
their respective linearization points (note that Updates do not return a value so always behave
correctly). These conditions are formalized in the following two lemmas.

Lemma 2.7 (LP Validity). If OP is either a Scan or an Update, then LP (OP ) is well-
defined and lies within the execution interval of OP .

Proof. The lemma clearly holds for Scans. For an Update U , it similarly holds if U falls under
the second case. Suppose U falls under the first case and let S′ be as in Definition 2.2. Then
by Lemma 2.3, S′[1] < U [1], so that U [1] must occur between S′[1] and S′[6]. Since Scans are
disjoint, no other Scan can satisfy this condition, so LP (U) is well-defined. Finally, LP (U) lies
within the interval of U since U is assumed to straddle LP (S′).

Lemma 2.8 (Correctness of Scan). If U is an Update and S is a Scan such that S
returns U for component i, then (1) LP (U) < LP (S) and (2) no other i-Update U ′ satisfies
LP (U) < LP (U ′) < LP (S).

Proof. Assume S returns U for component i. If U straddles LP (S′) for some Scan S′ which
does not pick it up, then S′ must precede S by Lemma 2.6, so that LP (U), which just follows
LP (S′), precedes LP (S). If no such S′ exists, then since S returns U , LP (U) = U [1] < LP (S)
by Lemma 2.5. This proves (1).

To prove (2), suppose to the contrary that such a U ′ exists. Since S does not pick up U ′,
by Lemma 2.4, LP (S) < U ′[last]. But U ′[1] < LP (U ′) < LP (S), so U ′ in fact straddles LP (S).
By Definition 2.2, LP (U ′) must then be immediately after LP (S) — a contradiction.

We sum up the algorithm in the following theorem. Note that the zero remote reference
complexity of a Scan on a DSM machine is achieved by simply making every shared variable
local to the scanner.

Theorem 2.9. The algorithm in Figure 1 implements an atomic single-writer, single-scanner
snapshot object that guarantees wait-freedom. Updates and Scans complete in O(1) and O(m)
time, respectively, where a Scan performs only three write operations on shared memory. The
space complexity is O(m). A Scan by process p has zero and O(k) remote-reference complexity
in the DSM and CC models, respectively, where k is the number of components modified by an
Update since the start of the last Scan by p.
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Shared variables:
A[1..m]: array of snapshot component values, initialized to initial value of snapshot object
B[1..m]: array of snapshot component values, initialized arbitrarily
C[1..m]: array of sequence numbers from {1, . . . ,m + 1}, initialized arbitrarily
X: variable, with fields X.proc (a PID) and X.sip ∈ {true, false}, initialized to [∗, false]
S: variable, with fields S.proc (a PID) and S.seq ∈ {1, . . . ,m + 1}, initialized arbitrarily

Update(i, v)

A[i]← v1

x← X2

if x.sip then3

s← S4

if s.proc = x.proc then5

B[i]← v6

C[i]← s.seq7

Scan(p)

X← [p, true]1

for i = 1 to m do c[i]← C[i]2

choose s ∈ {1, . . . ,m + 1} : s /∈ c3

S← [p, s]4

for i = 1 to m do a[i]← A[i]5

if X.proc = p then6

X← [p, false]7

for i = 1 to m do8

if C[i] = s then v[i]← B[i]9

else v[i]← a[i]10

if S.proc = p then return v11

return ⊥12

Figure 2: An obstruction-free, single-writer, multi-scanner snapshot algorithm.

2.2 Obstruction-free, single-writer, multi-scanner snapshot

We now improve the previous algorithm to a single-writer, multi-scanner algorithm that guar-
antees obstruction-freedom. More precisely, it guarantees that Updates are wait-free and that
Scans can only be scuttled by other Scans. Because Scans only write to X and S, any inter-
ference they cause each other must be through these two variables. This fact greatly simplifies
the task of interference-detection: we simply augment X and S with a PID field, which a Scan
uses to announce its activity. The new algorithm is given in Figure 2. Note that Scans re-
turn ⊥ when it detects interference by another Scan, so to give the termination guarantee of
obstruction-freedom, we simply repeat Scans until a non-⊥ value is returned.

Correctness of this algorithm depends only on Updates and those Scans which return non-
⊥ values, so we need only define linearization points for these operations. To this end, we
generalize Definition 2.2 as follows.

Definition 2.10 (Linearization Points). Let S be a Scan which returns a non-⊥ value, and
U be an Update. Define the linearization point LP (S) of S to be the first point after S[6] at
which X does not contain [p, true], where p is the process executing S. Define the linearization
point LP (U) of U as follows.

(1) If U straddles LP (S′) for some Scan S′ that does not pick it up, then LP (U) is immedi-
ately after LP (S′).

(2) Otherwise, LP (U) = U [1].

The correctness conditions are as before, but applied only to the restricted class of operations
for which we defined linearization points. Adapting terminology from Definition 2.1 in the
natural way, we will prove our three main structural lemmas in this context, where Scans in
the statements of the lemmas refer to ones returning valid snapshots.
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We begin by observing that in any (valid) Scan S, the tests at S[6] and S[11] must succeed.
It follows that X remains untouched from S[1] to S[6] and S remains untouched from S[4] to
S[11]. With these guarantees in mind, it is easy to see that the proofs of Lemmas 2.3, 2.4 and 2.5
for the single-scanner algorithm can be directly lifted to apply to the new algorithm. The proofs
of LP Validity (Lemma 2.7) and Correctness of Scan (Lemma 2.8), as before, are consequences
of the three structural lemmas, giving us the main result of this section in the following theorem.

Theorem 2.11. The algorithm in Figure 2 implements an atomic single-writer, multi-scanner
snapshot object that guarantees that Updates are wait-free and a Scan returns a valid snapshot
if no other Scans execute concurrently with it. Updates and Scans complete in O(1) and O(m)
time, respectively, where a Scan performs only three write operations to shared memory. The
space complexity is O(m). A Scan by process p has zero and O(k) remote-reference complexity
in the DSM and CC models, respectively, where k is the number of components modified by an
Update since the start of the last Scan by p.

3 Toward wait-freedom

In this section, we build toward a multi-writer, single-scanner snapshot object that guarantees
wait-freedom. We derive some ideas from [14], but introduce a number of novel “tricks” to
give a substantially different and improved algorithm. Specifically, our algorithm has the same
complexities as the obstruction-free algorithm in Theorem 2.11, except for space, which is now
O(mn). Moreover, it can be extended to solve multi-scanner snapshot in the same time and
space, thus improving the space bound on [14].

3.1 Modified wait-free, single-writer, single-scanner snapshot

We present the first step in the construction: the single-writer, single-scanner algorithm. It
works in a similar fashion to the single-writer, single-scanner algorithm of the previous section,
but to facilitate future transformations, we roll what had been two separate variables X and S into
just one, namely, X with fields sip and seq, respectively. However, doing this involves changing
the algorithm nontrivially, so we need some modifications to maintain correctness. In particular,
we augment each component of C with a single vld bit indicating whether the sequence number
stored there should be considered a completed forward, and Updates attempting to forward
first write its sequence number to C[i] with vld = 0, then repeat with vld = 1.

Intuitively, the reason for this double writing to C[i] is to ensure that if an Update is poised
to write [1, s] to C[i], thereby indicating a completed forwarding for any Scan using s as its
sequence number, it must already have announced that sequence number in C[i] as [0, s] so that
later Scans can avoid s. We therefore ensure that a stale Update does not incorrectly inform
a Scan that a recent forwarding has just occurred. The precise algorithm is given in Figure 3.

We can define linearization points almost identically to Definition 2.2 as follows.

Definition 3.1 (Linearization Points). Let S be a Scan and U be an Update. Define the
linearization point of S to be LP (S) = S[5], and that of U to be as follows.

(1) If U straddles LP (S′) for some Scan S′ that does not pick it up, then LP (U) is immedi-
ately after LP (S′).

(2) Otherwise, LP (U) = U [1].

Recall the three structural lemmas of the previous section, which we will use here as well to
form the core of our proof. Note that the terminology in the lemmas is the natural adaptation of
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Shared variables:
A[1..m]: array of machine words, initialized to initial value of snapshot object
B[1..m]: array of machine words, initialized arbitrarily
C[1..m]: array, with fields C[i].vld ∈ {0, 1} and C[i].seq ∈ {1, . . . ,m + 1}, initialized arbitrarily
X: variable, with fields X.sip ∈ {true, false} and X.seq ∈ {1, . . . ,m + 1}, initialized to [false, ∗]

Update(i, v)

A[i]← v1

x← X2

if x.sip then3

B[i]← v4

if C[i] 6= [1, x.seq] then5

C[i]← [0, x.seq]6

if X = x then C[i]← [1, x.seq]7

Scan()

for i = 1 to m do c[i]← C[i]1

choose s ∈ {1, . . . ,m + 1} : [∗, s] /∈ c2

X← [true, s]3

for i = 1 to m do a[i]← A[i]4

X← [false, s]5

for i = 1 to m do6

if C[i] = [1, s] then v[i]← B[i]7

else v[i]← a[i]8

return v9

Figure 3: A modified single-writer, single-scanner snapshot algorithm.

Definition 2.1 to the current algorithm, which has a very similar basic structure. The proofs of
Lemmas 2.3 and 2.5 from the previous section lift directly to apply here, but Lemma 2.4 needs
a new proof, since the old one depended on the fact that the first operation by a Scan sets X
to true. We give his new proof below.

Proof of Lemma 2.4. Consider any prior i-Update U ′. As before, we need to show that S does
not return U ′. Suppose S returns U ′ via A. Then U ′[1] < S[4i] < U [1], otherwise U would
overwrite U ′ in A[i] before S reads it. But U completes before S[5], so it lies entirely within
the sip-section of S and must therefore forward. Moreover, any subsequent U ′′ attempting to
forward during S would fail the test at U ′′[5], so would not modify C[i]. This ensures that S
returns via B, contradicting our hypothesis.

Now, suppose S returns U ′ via B. Then U must complete without writing to B[i], otherwise
it would overwrite U ′; that is, U [2] < S[3]. Let U ′′ be the Update which last sets C[i] to
[1, s] before S[71]. Note that U ′′ ≤ U ′, otherwise it would overwrite U ′ in B[i], so in particular,
U ′′ < S[3]. It follows that U ′′ “validates” X (U ′′[71]) during the sip-section of an earlier Scan, at
which point C[i] contains [0, s]. Since there are no concurrent i-Updates, this remains so until
U ′′ writes [1, s] there, implying that at the moment S reads C[i] (S[1i]), C[i] holds either [0, s] (if
U ′′ has not yet written there the second time) or [1, s] (if it has). In either case, this contradicts
the choice of the sequence number s by S.

Once again, LP Validity and Correctness of Scan follows from these three lemmas, resulting
in the following theorem.

Theorem 3.2. The algorithm in Figure 3 implements an atomic single-writer, single-scanner
snapshot object that guarantees wait-freedom. Updates and Scans complete in O(1) and O(m)
time, respectively, where a Scan performs only three write operations on shared memory. The
space complexity is O(m). A Scan by process p has zero and O(k) remote-reference complexity
in the DSM and CC models, respectively, where k is the number of components modified by an
Update since the start of the last Scan by p.
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Shared variables:
A[1..m]: array of machine words, initialized to initial value of snapshot object
B[1..m]: array of machine words, initialized arbitrarily
C[1..m]: array, with fields C[i].vld ∈ {0, 1} and C[i].seq ∈ {1, . . . ,m + 1}, initialized arbitrarily
X: variable, with fields X.sip ∈ {true, false} and X.seq ∈ {1, . . . ,m + 1}, initialized to [false, ∗]

Update(i, v)

A[i]← v1

x← LL(X)2

if x.sip then3

ForwardB(i)4

ForwardB(i)4’

AnnounceC(i, x.seq)5

AnnounceC(i, x.seq)5’

ForwardC(i, x.seq)6

ForwardB(i)

LL(B[i])b1

a← A[i]b2

if V L(X) thenb3

SC(B[i], a)b4

AnnounceC(i, s)

c← LL(C[i])a1

if V L(X) ∧ c.seq 6= s thena2

SC(C[i], [0, s])a3

ForwardC(i, s)

c← LL(C[i])c1

if V L(X) ∧ c = [0, s] thenc2

SC(C[i], [1, s])c3

Scan()

for i = 1 to m do c[i]← C[i]1

choose s ∈ {1, . . . ,m + 1} : [∗, s] /∈ c2

X← [true, s]3

for i = 1 to m do a[i]← A[i]4

X← [false, s]5

for i = 1 to m do6

if C[i] = [1, s] then v[i]← B[i]7

else v[i]← a[i]8

return v9

Figure 4: A multi-writer, single-scanner snapshot algorithm.

3.2 Wait-free, multi-writer, single-scanner snapshot

The transformation of the single-writer algorithm above to a multi-writer one requires a sub-
stantial amount of modification to the Update procedure. We need to resort to LL/SC/VL
operations on the B and C arrays to help coordinate forwarding by concurrent Updates. The
validation of X that used to be carried out by a simple read must now also be implemented via
an LL/SC/VL variable. An Update itself tries to carry out the same steps as it did before,
but forwarding must now be highly coordinated. In particular, an i-Update carries out two
ForwardBs to ensure that a current value is written to B[i], whether by itself or a concurrent
Update; then it carries out two AnnounceCs and one ForwardB to push C[i] through the
values [0, s] and then [1, s], much like it would have attempted to do in the single-writer algo-
rithm. The multiplicity (or lack thereof) of these operations, which may seem bizarre at first
glance, will become clear in the proof. The algorithm is given in Figure 4.

We can generalize most of the terminology in Definition 2.1 to apply here, except for the
concept of picking up, which requires an ordering on Updates. For this purpose, we will order
Updates according to when they write to A, i.e., their first action.

Using this ordering, we define linearization points as follows.

Definition 3.3 (Linearization Points). Let S be a Scan and U be an Update. Define the
linearization point of S to be LP (S) = S[5], and that of U to be as follows.

(1) If U straddles LP (S′) for some Scan S′ that does not pick it up, then LP (U) is im-
mediately after LP (S′) and LP (U ′) for any earlier i-Update U ′ that satisfies the same
relationship with S′.
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(2) Otherwise, LP (U) = U [1].

The ordering also makes our three structural lemmas from the previous section well-defined,
and we will again use them to prove our algorithm correct. However, we will need to give
completely new proofs for all three lemmas, as the algorithm has changed significantly. We
begin by proving a technical lemma that makes use of the seemingly strange multiplicities of
the forwarding steps in an Update.

Lemma 3.4. If U is an i-Update, S is a Scan, and U [2..c2] occurs entirely during the sip-
section of S, then the following are true.

(1) During the ForwardBs, some A[i]-value at least as recent as the start of the ForwardBs
is written to B[i].

(2) During the AnnounceCs, C[i] must at some point contain either [0, s] or [1, s], where s
is the sequence number used by U . Moreover, this must have been written after S[1i].

(3) During the ForwardC, C[i] must at some point contain [1, s]. Moreover, this must have
been written after S[1i].

Proof of (1). If at least one of the ForwardBs succeed, then we are done, so suppose they both
fail. The validations of X (U [b3]) certainly succeed, so both failures must be due to interrupted
LL/SC pairs. This implies that during the first ForwardB, B[i] is written to, so that the
ForwardB F which causes the second failure must LL after this writing, and hence after the
start of U [4]. But then it also reads A[i] after the start of U [4], so the value it writes to B[i]
satisfies the recentness condition in the lemma.

Proof of (2). Similarly, if at least one of the AnnounceCs succeed, then we are done, so suppose
they both fail. We know X validates both times, so each failure is due to either a failed c.seq 6=
s test or an interrupted LL/SC pair. If the test fails in either AnnounceC, then clearly
C[i] must contain either [0, s] or [1, s] during the corresponding LL. Moreover, C[i] contains a
different sequence number at S[1i], so this value must be written there after S[1i], satisfying the
lemma. Finally, if both failures are caused by interrupted LL/SC pairs, then as above some
successful AnnounceC or ForwardC must occur entirely during the execution of the failed
AnnounceCs, which also satisfies the lemma.

Proof of (3). If the single ForwardC succeeds, then we are done. If it fails, this can be owing
to either a failed c = [0, s] test or an interrupted LL/SC pair. By part (2), we know that
at some point before the ForwardC starts (but during S), either [0, s] or [1, s] is written to
C[i]. Observe that once C[i] contains [0, s], the only thing that can be subsequently written to it
during S is [1, s]. Likewise, once it contains [1, s], nothing can be written to it again during S.
The first observation tells us that if the LL/SC pair is interrupted, this can only be by a writing
of [1, s], and the two observations together tell us that a failed c = [0, s] test guarantees that the
ForwardC must in fact see [1, s] in C[i] and that this value remains through its execution. In
either case, the lemma is satisfied.

We can now prove our three main lemmas as follows.

Proof of Lemma 2.3. Let U ′ be an earlier i-Update. Then U overwrites U ′ in A[i] before S reads
A[i], so the only way for S to return U ′ is via B[i]. Suppose this is the case, and let U ′′ be the
Update that last writes to C[i] before S reads it to find [1, s], where s is the matching sequence
number (S[71]). Note that for U ′′ to successfully ForwardC, it must successfully validate X at
U ′′[c2]. This forces the whole segment U ′′[2..c2] to occur within a single sip-section, satisfying
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the hypothesis of Lemma 3.4. We then need to consider two cases: (1) where this sip-section
belongs to S and (2) where it belongs to an earlier Scan S′.

In (1), Lemma 3.4(1) tells us that during the sip-section of S, an A[i]-value at least as recent
as that of U (in particular, not that of U ′) is written to B[i]. But any subsequent value written
to B[i] can only be more recent, so when S reads B[i] (after its sip-section) it must see a strictly
newer value than that of U ′, contradicting the assumption that S returns U ′ via B.

In (2), Lemma 3.4(2) tells us that at some point after S′[1i] but during S′, either [0, s] or
[1, s] must be written to C[i]. Furthermore, during the successful ForwardC by U ′′, C[i] cannot
be touched except by U ′′ itself, and any AnnounceC or ForwardC that occurs in between
these two write operations to C[i] lies entirely during S′ and so must write the same sequence
number s as well. It follows that when S reads C[i] to select its sequence number (S[1i]), it sees
[∗, s], contradicting our assumption that it chooses s.

Proof of Lemma 2.4. If U starts before S does, then by Lemma 2.3 U is picked up, so let us
assume that U [1] > S[11]. Let U ′ be any prior i-Update.

Suppose S returns U ′ via A. Then U ′[1] < S[4i] < U [1], otherwise U ′ would be overwritten
in A[i] before S reads it. But U completes before S[5], so U must in fact occur entirely between
S[4i] and S[5]; in particular, during the sip-section of S, satisfying the hypothesis of Lemma 3.4.
Then by Lemma 3.4(3), [1, s] is written to C[i] some time during S before S[5]. Any subsequent
AnnounceC or ForwardC that occurs during S would not write to C[i] again (it would fail
the V L(X), c.seq 6= s or c = [0, s] test), so this value must remain in C[i] until S reads it in S[71].
This contradicts the assumption that S returns via A for component i.

Alternatively, suppose that S returns U ′ via B. Let U ′′ be as in the previous proof, and
consider two cases: (1) where U [1] < S[3] and (2) where U [1] > S[3]. In (1), applying Lemma
3.4(1) to U ′′ tells us that an A[i]-value at least recent as that of U is written to B[i] before S[72]
(note that the value in B[i] never gets “older” since successful ForwardBs are disjoint). In (2),
applying the lemma to U leads to the same conclusion, so in either case, we have a contradiction
of the assumption that S returns U ′ via B.

Proof of Lemma 2.5. As in the previous section, it suffices to show that S does not return U ,
since every subsequent Update would also satisfy the hypothesis of the lemma. S certainly
does not return U via A[i] because by the time S reads A[i] U has not even started yet. On
the other hand, for S to return U via B, some ForwardB F must read A[i] (F [b2]) after U [1]
and subsequently validate X (F [b3]) during the sip-section of S — clearly not possible since the
sip-section precedes U [1].

Correctness of the algorithm, as usual, is a consequence of these three lemmas. The space
complexity of implementing the LL/SC/VL arrays B and C, as well as the variable X, is O(mn)
by the algorithm of [15], and the time complexity of each such operation is O(1). Moreover, only
SC requires CAS in this implementation, so CAS complexity is equivalent to SC complexity in
our algorithm. We sum up the result in the following theorem.

Theorem 3.5. The algorithm in Figure 4 implements an atomic multi-writer, single-scanner
snapshot object that guarantees wait-freedom. Updates and Scans complete in O(1) and O(m)
time, respectively, where a Scan performs O(1) CAS and write operations. The space complexity
is O(mn). A Scan by process p has zero and O(k) remote-reference complexity in the DSM and
CC models, respectively, where k is the number of components modified by an Update since the
start of the last Scan by p.

We remark here without proof that the construction of Jayanti [14] can be used to extend
this algorithm to support multiple scanners, with time and space complexities remaining the
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same. Note that in [14], this final augmentation increased space by a factor of n. This is due to
Scans having to write to Θ(m) locations, thus having much more conflict amongst themselves.
The trick used to resolve these conflicts there, having copies of entire shared arrays for each
process, is the cause of the space increase. In our case, however, Scans only write to a single
shared variable, so this trick is unnecessary. The resulting algorithm is given in Figure 5, and
its guarantees are summarized in the following theorem.

Theorem 3.6. The algorithm in Figure 5 implements an atomic multi-writer, multi-scanner
snapshot object that guarantees wait-freedom. Updates and Scans complete in O(1) and O(m)
time, respectively, where a Scan has O(1) CAS complexity. The space complexity is O(mn).

4 Remote-reference complexity lowerbound

In this section, we prove that our algorithms of Theorems 2.9, 3.2 and 3.5 are optimal in
their remote-reference complexity under the DMS model. In all these cases, we achieve O(1)
and zero remote-reference complexities for Updates and Scans, respectively, by making all of
shared memory local to the scanner. The following theorem states that the O(1) complexity for
Updates cannot be reduced to zero.

Theorem 4.1. In any wait-free snapshot algorithm, Updates cannot have zero remote-reference
complexity on a DSM machine.

Proof. Assume that each process is equipped with an unbounded block of local memory, and is
capable of atomic read-modify-write on its own or any other process’ block. Let P be any proto-
col that, given this power, implements a two-component, single-writer, single-scanner snapshot
object, wherein Updates have zero remote reference complexity. We will prove that P must
fail either linearizability or wait-freedom.

We will present two infinite executions, α and β, involving three processes: p1 repeatedly
increments the first component, p2 repeatedly increments the second component, and q executes
a single Scan. Observe that each Update by p1 or p2 completes in a single atomic action, and
q’s Scan consists of a sequence of alternating actions on the local memory blocks of p1, denoted
M1, and p2, denoted M2 (q’s own local memory is not shared by any other process, so can be
considered internal). Thus, we will denote an increment by p1 or p2 as U1 or U2, respectively,
and an action by q on M1 or M2 as S1 or S2, respectively.

We define α and β inductively by their respective ith prefixes as follows.

αi =
{

ε if i = 0
αi−1 · S1 · U1 · U2 · S2 if i ≥ 1

βi =
{

U2 if i = 0
βi−1 · S1 · S2 · U2 · U1 if i ≥ 1.

It is easy to see that at every point in α after α0, at least as many increments to the first
component has occurred as to the second, while at every point in β after β0, strictly fewer
increments to the first component has occurred than to the second. Moreover, q initiates its
Scan after α0 and β0 in the two respective executions, so any linearizable snapshot returned by
q during α must differ from one returned during β. We will prove in the following lemma that q
cannot distinguish between α and β, making this impossible. Thus, q’s Scan can never return
a linearizable snapshot in a wait-free manner, proving the theorem.

Lemma 4.2. For every i ≥ 0, during αi and βi, q has identical histories.
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Proof. We use induction on i, with the following (stronger) inductive hypothesis.

(1i) q has identical histories in αi and βi,

(2i) p1 has identical histories in αi and βi, and

(3i) p2 has identical histories in αi · S1 · U1 · U2 and βi.

Before proceeding further, we make the key observation that a process’ (atomic) action on a
given memory block is completely determined by that process’ previous history and that block’s
current state. We will use this fact extensively and without explicit mention in the rest of the
proof.

For i = 0, (10) and (20) hold trivially, since neither q nor p1 takes any steps in α0 and β0.
To see that (30) holds as well, observe that the U2 in α0 · S1 ·U1 ·U2 and that in β0 are the first
action by any process on M2, as well as the first by p2, so they must in fact be identical actions.

For our inductive case, consider i ≥ 1 and assume (1i−1), (2i−1) and (3i−1). If i = 1, then
αi−1 and βi−1 contain no actions on M1. If i > 1, then by (2i−1), the last U1 in αi−1 and
βi−1 (which are also the last actions on M1) are identical. In either case, the state of M1 is
identical at the end of αi−1 and βi−1. It follows, via (1i−1), that the subsequent S1 in αi and βi

must also be identical. Similarly, by (3i−1), the state of M2 is identical immediately before the
corresponding S2s, so these are identical as well. This proves (1i).

We just argued that the last S1 in αi and in βi are identical, so the state of M1 after these
actions is also identical. Since the next action on M1 is the ith U1 in both executions (and all
previous U1s already match by (2i−1)), they must be identical, proving (2i).

In similar fashion, (1i) implies that M2 is in the same state at the end of αi and βi−1 ·S1 ·S2.
But since no other process acts on M2 before p2 performs its next U2, this together with (3i−1)
implies that these corresponding U2s are identical, proving (3i) and the lemma.

Remark. It is easy to see that we can allow our increments to wrap around modular 4 and
still maintain disjointness between the two sets of legal snapshots. As a result, P must fail even
if it only has to implement 2-bit components.

5 Conclusion

We considered versions of the snapshot problem with and without the assumptions of single-
writer and single-scanner, under the termination requirements of wait-freedom and obstruction-
freedom. First, we gave an obstruction-free, time and space optimal algorithm for single-writer,
multi-scanner snapshot that requires only read/write and has optimal write complexity. Second,
we gave a wait-free, time-optimal algorithm for multi-writer, single-scanner snapshot that uses
O(mn) space and requires CAS. It has optimal CAS and write complexities, and optimal remote-
reference complexity in the DMS model. Moreover, it can be extended to a time-optimal, O(mn)-
space algorithm for multi-writer, multi-scanner snapshot, thus improving the space bound on
the only known time-optimal algorithm [14], which uses O(mn2) space. Finally, we prove a
lowerbound which implies the above claimed optimality of remote-reference complexity in the
DMS model.
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Shared variables:
A[1..m]: array of machine words, initialized to initial value of snapshot object
Ap[1..m]: (for each process p) array of machine words, initialized arbitrarily
B[1..m]: array of snapshot component values, initialized arbitrarily
C[1..m]: array, with fields C[i].vld ∈ {0, 1} and C[i].seq ∈ {1, . . . ,m + 1}, initialized arbitrarily
X: variable, with fields X.toggle ∈ {0, 1}, X.phase ∈ {1, 2, 3}, X.seq ∈ {1, . . . ,m + 1} and

X.proc (a PID), initialized to [0, 1, ∗, ∗]
SS: variable, with fields SS.toggle ∈ {0, 1} and SS.ss (m-word array), initialized to [1, ∗]

Update(i, v)

A[i]← v1

x← LL(X)2

if x.phase = 2 then3

ForwardB(i)4

ForwardB(i)4’

AnnounceC(i, x.seq)5

AnnounceC(i, x.seq)5’

ForwardC(i, x.seq)6

ForwardB(i)

LL(B[i])b1

a← A[i]b2

if V L(X) thenb3

SC(B[i], a)b4

AnnounceC(i, s)

c← LL(C[i])a1

if V L(X) ∧ c.seq 6= s thena2

SC(C[i], [0, s])a3

ForwardC(i, s)

c← LL(C[i])c1

if V L(X) ∧ c = [0, s] thenc2

SC(C[i], [1, s])c3

Scan(p)

PushLS(p)1

PushLS(p)2

[toggle, v]← LL(SS)3

return v4

PushLS(p)
/* Phase 1: choose sequence number */
x← LL(X)1

if x.phase = 1 then2

for i = 1 to m do c[i]← C[i]3

choose s ∈ {1, . . . ,m + 1} : [∗, s] /∈ c4

x.phase← 2; x.seq ← s5

SC(X, x)6

/* Phase 2: read A */
x← LL(X)7

if x.phase = 2 then8

for i = 1 to m do Ap[i]← A[i]9

x.phase← 3; x.proc← p10

SC(X, x)11

/* Phase 3: read C, B, compile snapshot */
x← LL(X)12

if x.phase = 3 then13

p← x.proc14

for i = 1 to m do15

if C[i] = [1, s] then v[i]← B[i]16

else v[i]← Ap[i]17

[toggle, ss]← LL(SS)18

if toggle 6= x.toggle ∧ V L(X) then19

SC(SS, [toggle, v])20

x.phase← 1; x.toggle← x.toggle21

SC(X, x)22

Figure 5: A multi-writer, multi-scanner snapshot algorithm.
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