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Abstract

Delegation is the process wherein an entity Alice designates an entity Bob to speak on her

behalf. In password-based security systems, delegation is easy: Alice gives Bob her password.

This is a useful feature, and is used often in the real world.

But it’s also problematic. When Alice shares her password, she must delegate all her

permissions, but she may wish to delegate a limited set. Also, as we move towards PKI-

based systems, secret-sharing becomes impractical. This thesis explores one solution to these

problems. We use proxy certificates in a non-standard way so that user Alice can delegate a

subset of her privileges to user Bob in a secure, decentralized way for web applications.

We identify how delegation changes the semantics of access control, then build a system

to demonstrate these possibilities in action. An extension on top of Mozilla’s Firefox web

browser allows a user to create and use proxy certificates for delegation, and a module on

top of the Apache web server accepts multiple chains of these certificates. This is done in a

modified SSL session that should not break current SSL implementations.
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Chapter 1

Introduction

Delegation is the process of passing my rights onto you. Or more rigorously, delegation is

when an entity Alice authorizes an entity Bob to act on behalf of her, but with only a subset

of her privileges. We may also say that Bob is acting as a proxy for Alice. The ultimate

goal of this research is to provide an easy-to-use and generalizable framework that extends

web-based access control to handle this delegation.

This document is divided into chapters by area of interest. Chapter 1 discusses delegation

at the theoretical level. It contains an overview of how delegation is used today, how this

thesis applies delegation in pursuit of a more practical Public Key Infrastructure (PKI), and

how this application of delegation introduces new ways to think about how we make trust

judgments. Chapter 2 presents a high-level specification of a system that implements web-

based authorization based on delegated credentials, and a strategy for how such a system

could be deployed. Chapter 3 discusses the particular tools chosen for our implementation.

Chapter 4 is titled “Trials and Tribulations” for a reason—it describes the process of building

such a system. It will summarize the changes to a modern web browser and web server that

were required by this system1. Chapter 5 talks about the relation of this work to other

research, and explores possible future research projects. Chapter 6 summarizes the major

accomplishments of this research.

Lastly, never forget the story of Alice and Bob, or their respective roles as delegator and

delegatee. Throughout this paper, whenever we wish to discuss the delegation relationship,

1This chapter will be of particular interest to anyone who wishes to modify the Mozilla and Apache

software projects. In particular, it delves deeply into Mozilla Firefox, and comes out with some advanced

ways to modify it via its extensions system. I hope to post a tutorial-based explanation of these methods in

a more public space.
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we will often use Alice and Bob as the names for these two roles. This is a convention in

traditional security literature. Alice and Bob are very popular.

1.1 A Brief History of Delegation

For most computer applications, the delegation of privileges is surprisingly easy. Most se-

curity systems implicitly tie a set of privileges to a password. If a user wants to use her

computer—or read her e-mail, or sign onto her favorite chat account—she types in her pass-

word. If she wants to let her friend check her e-mail for her, she gives him her password.

Users are accustomed to this paradigm. And, by God, it’s simple.

This is a form of “delegation.” But it’s not really delegation as security experts like to

use the term, simply because this method is not really secure at all.

In a world with a public key infrastructure (PKI), Alice can delegate privileges to Bob

by cryptographically signing a statement that asserts

Bob has subset S of my rights.

Love, Alice.

As you can see, the process is easy to understand in the abstract. Such a statement can be

encoded in a PKI certificate, which is then signed by Alice.

But the process proved difficult to implement when researchers tried to shoehorn a format

for delegation statements into current standards and protocols for certificates. The ruling

certificate standard, X.509, is rigidly hierarchical and does not allow the average user to

issue certificates. In X.509, there are certificate authorities (CAs), and there are end entities

(normal users like Alice). CAs can issue certificates, but only to entities that are “subordi-

nate” to the CA. End entities do not have the authority to issue any certificates—the reason

that they are called “end entities” is because their certificates can only appear at the end of

a certificate chain [HPFS02]. To delegate her privileges to Bob in the X.509 system, Alice

would need to find a CA that she and Bob had in common, and ask this CA to sign her

privileges over to Bob.

Such a common trusted CA might not even exist. And even if Alice does find a common

CA, delegation may be difficult. CAs are the bureaucrats of the X.509 world—it can be
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cumbersome (and often financially expensive) to get their approval.

The Globus Toolkit (http://www.globus.org/) ran into this problem while building

a secure framework for distributed computing. The purpose of the Globus Toolkit is best

described by its web site:

The open source Globus Toolkit is a fundamental enabling technology for the

‘Grid,’ letting people share computing power, databases, and other tools securely

online across corporate, institutional, and geographic boundaries without sacri-

ficing local autonomy. [glo06]

In short, it empowers people to organize large-scale distributed computations by recruit-

ing a community of peers across the Internet. But, as stated above, part of its goal is to

share “securely,” and “without sacrificing local autonomy.” A process sitting on a remote,

autonomous machine may need access to restricted resources, so it needs mechanism to au-

thorize this access dynamically. The CA approval process was unsatisfactory, for the exact

reasons noted above. CAs were too cumbersome to be practical for authorizing short-lived

processes[WFK+04].

Thus, the Globus Toolkit developers invented proxy certificates for delegation. This is

probably the most widespread use of PKI-based delegation in real-world applications today.

After some evolution, proxy certificates were standardized for X.509 in RFC 3820.

Proxy certificates are an extension to the X.509 certificate standard that allow end entities

to sign certificate statements that delegate their own privileges to other entities. By the

standard, an end entity generates temporary private and public keys, signs a short-lived

proxy certificate that passes on some of her privileges to the temporary keypair, then gives

those credentials to a third party entity. The identity of the proxy certificate is derived from

the identity of the end entity. Because a proxy certificate can also testify to another proxy

certificate, the identity of a chain of proxy certificates is the last non-proxy certificate in the

chain (the end entity certificate).

Notice that when we say that these credentials are “temporary,” this is merely a conven-

tion. There is no rigorous definition of how long a “temporary” period of time is [TWE+04].

This flexibility is intentional, because simplicity is of the essence. On the Grid, these proxy

certificates can be issued to dynamically created processes without requiring the approval of

a CA.

Delegation has also been explored as a clever strategy to enhance mobility and conve-
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nience without sacrificing security, as in John Marchesini’s SHEMP work. Suppose we have

a locked-down key-store that’s difficult to access but very secure, and also a promiscuous

key-store that’s easier to access but more likely to contain vulnerabilities. Imagine the “se-

cure” key-store is on a remote server located in Fort Knox, and the “insecure” key-store is

on a portable Palm Pilot. The remote server can use its credentials to delegate privileges

for a very short period of time to a temporary key on the portable device. If the portable

device is stolen, or otherwise compromised, the short expiration on the certificate ensures

that the damage done by an attack is minimized. This use of delegation enhances security,

and reduces the overhead of certificate revocation mechanisms [MS05].

These projects demonstrate how security experts are thinking about delegation. First,

much of the current research operates on the premise that users should not have to worry

about managing their credentials. This is not an implicit assumption, but a conscious de-

cision. It is much more secure to store credentials in a central repository. The user can

then sign into the repository, and let the repository figure out which credentials he needs to

access a given resource. This is the approach encouraged in the Grid and SHEMP. Second,

the primary concern is with the “vertical” displacement of trust—how privileges propagate

from an authority to the user of the privilege. The goal of this thesis is to investigate the

opposing sides of these two premises.

1.2 Delegation from A to B

Suppose Alice wants to grant a subset of her privileges to another user, Bob, to act on her

behalf. We call this user-to-user delegation. It’s a less sophisticated case than user-to-process

delegation, or user-to-promiscuous-keystore delegation. Yet this case has not been analyzed

as often as these other modes, perhaps because common wisdom suggests that it doesn’t

happen as often.

However, I submit that it does happen very often. The best illustration is by example.

I once spoke with an IT administrator at a hospital. He loved the “delegation” feature

of the Microsoft Exchange Server, an application that primarily handled their e-mail. This

feature allows one user to “delegate” another to read and write e-mail on her behalf. The

feature is activated through the Exchange Server, and both users must have accounts.

Notice that this isn’t fully delegation in the sense that we’re talking about it here, in

the context of PKI. For us, delegation is a decentralized way for Bob to securely act on
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behalf Alice in a limited capacity. For the Microsoft Exchange Server, they toss out the

“decentralized” qualifier on that definition. The server manages all permissions, and provides

an application-centric interface for users to delegate privileges to other users, in a centralized

way.

However, this certainly demonstrates what delegation can offer to the end-user experience.

For example, executives can delegate access to their e-mail to their secretaries. When an

employee goes on vacation, he can delegate temporary access to his resources for his co-

workers—for the benefit of the co-workers, and of the employee who doesn’t want to be

bothered while on vacation! One can think of many relationships in a corporate, medical,

legal, and even military environment where carefully-restricted access to another individual’s

e-mail could be a powerful and desirable tool.

Consider a second example. Here at Dartmouth, I contributed a little to the Greenpass

project, which touted a delegation-based solution to wireless networking. In the problem

statement addressed by Greenpass, there is a wireless network that we would like to restrict

to only allow people that we know on the network. That’s easy enough if the network is in a

private home because the scale is small; but what do we do in the case of a large institution,

like a university, where many guests are coming and going on a regular basis? Greenpass

solved this problem by using delegation to propagate network-access privileges. The wire-

less network provided a service that allowed regular users to sign temporary SDSI/SPKI

delegation certificates that granted network access to guests. This allowed the network to

support the dynamic propagation of access—without the hassle or scaling problems of a

central authority [GKS+04]. (It also frees up the sysadmins to deal with more important

matters!)

However, it’s important to point out that the Greenpass project is also using the word

“delegation” in a way that’s a special case of how we mean it here. In the Greenpass

solution, one entity is not acting on behalf of another entity. Because there are two indivisible

privileges involved in the delegation process (network access, and the ability to delegate

further), it doesn’t even make sense to talk about one user acting on behalf of another.

When the Greenpass people talk about “delegation,” they are primarily interested in its

advantages as decentralization: when any regular user in the system can grant privileges to

a guest.

Notice that between these two examples—the hospital, and Greenpass—we can see that

delegation has two core qualities: decentralization, and limited access to the resources of

another user. Both of these qualities are useful even when taken by themselves. If we can
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provide a framework for generalized delegation, we take advantage of both.

But delegation is not only helpful. It’s necessary for secure systems. Consider a final

example of a security system that does not explicitly offer delegation. At Dartmouth College,

as well as many other colleges, administrative tasks are moving on-line. Students update

their paper mail address, register for classes, and renew library books via a web portal. But

students are people too, and sometimes people run into difficulties. The Internet connection

at their home goes down, or they are sick in the hospital, or on the road, or their Internet

Service Provider has a firewall that prevents them from accessing this particular web portal.

In short, shit happens.

As an undergraduate, several friends have willingly given me passwords so that I could

take care of business on their behalf. In each case, the student knew in advance that they

would be unable to act on their own behalf due to extraneous circumstances. They would

be fined if they took no action, and it was too cumbersome to deal with the administrative

bureaucracy. Thus, they forced their own form of delegation into the system—by sharing

their secrets, they delegated unrestricted access to their student accounts to me.

All of them hesitated before they shared their passwords. All would have preferred to

delegate a small subset of privileges for a short period of time, just enough to accomplish the

task. But they shared their passwords because it was the easiest way to get work done. At

Dartmouth, it’s common knowledge that students share their passwords for just this reason.

At the end of the day, users will circumvent security if there is no simple path to do what

they need to do.

1.3 The Main Idea

Security systems appear to be moving away from password-based authentication. When

computers become faster, a password must be longer to be “strong,” but the average user’s

patience for memorizing long sequences of characters will not grow indefinitely.

Security experts are looking at PKI-based systems as a possible replacement for pass-

words. But if PKI does not offer a way for users to delegate permissions, users will again

force their own form of delegation into the system. PKI advocates may shudder to imagine

one user lending another her private key, but unless there’s an easy-to-understand way to

delegate rights, that might be her only option.
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With this in mind, a usable PKI system should admit a means of delegation that is secure

and generalizable. This delegation mechanism should be decentralized, to avoid the cost and

hassle of a central authority with a central database that needs to keep track of every user.

It should empower Alice to unambiguously specify a limited subset of her privileges to pass

to Bob, so that he can take care of business on her behalf.

This thesis develops a system—web-based delegated authentication via proxy certificates—

that meets these criteria. We equip web browsers with the ability to issue proxy certificates

carrying security policies, and the ability to pass proxy certificates to a web server via client-

side SSL. The credentials encoded in these proxy certificates can be passed to server-side

scripts, which can then make their own security decisions.

Pushing the delegation process below the application layer makes this solution generaliz-

able. If Alice wants to delegate privileges to Bob, she does not have to visit each one of her

web applications and explicitly delegate to Bob. She can issue one proxy certificate encoded

with the policies for all these applications. Also, developers can build secure web appli-

cations on top of this web server, and take advantage of delegated authentication without

implementing it themselves.

That last point is essential, because implementing delegation is not simply a matter of

modifying some certificate verification code and calling it a day. Delegation also changes

how we think about how permissions are propagated, which is explored in the next section.

1.4 Horizontal Considerations of Delegation

In traditional applications, one user has one identity. Delegation allows us to drop that

paradigm. Instead of considering how one user can delegate to several others, we consider

how several users can delegate to one. This is what I refer to as “horizontal” displacement

of delegation. Imagine three real-world scenarios:

1. Five friends and I are hungry for hamburgers. Actually, I usually prefer pizza, but for

the purposes of discussing delegation, hamburgers are better. There’s no sense in all

of us going out to get them, so each friend gives me some cash. I go to the nearest

fast-food place to order the hamburgers.

At most fast-food restaurants, the cashier would get very frustrated very quickly if I

insisted on making six distinct orders, packaged in six distinct bags, with six distinct
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piles of change. Instead, I will have to sort out for myself who gets which burger and

how much change each person gets. And she’ll expect me to act as one user engaging

in one transaction on behalf of six people. One user has a collective identity.

2. To get a room on-campus at Dartmouth College, we have a protocol called “Room

Draw.” This involves 1,000 students who gather in a gym at once. Each is assigned a

unique number. These numbers are called over a loudspeaker with all of the eloquence

of a greased-pig relay. When your number is called, you and any roommates you

wish to live with approach one of a dozen desks, identify yourselves, and choose an

unoccupied room.

Earlier, I lamented a Dartmouth web application that forced users to share their pass-

words to delegate access. But in this case, the authorities did provide a mechanism for

delegation. A student can sign a statement with her semi-secret student ID that dele-

gates a friend to draw a room on her behalf, and the friend can present this statement

at the desk.

Two friends once asked me to pick a double room for the two of them. So both

delegated room draw rights to me. And I had to assert my own identity as well. In

this case, I gained the role of one user acting as three users simultaneously. One user

has multiple identities.

The differences between the first and the second examples are subtle, and not entirely

exclusive. In both models, multiple users grant capabilities to a single target. In the collective

identity case, those capabilities are interpreted independent of who granted them, but in the

multiple identity case, those capabilities are explicitly tied to an identity.

Perhaps examples will help to clarify. In the first case, the cashier only cares about the

“amount” of rights (i.e., money) I had. This idea is also seen in democracies. Consider a

Republican delegate sent to the United States Electoral College. Or consider a stock broker

who buys stocks on-line on behalf of a group of investors. There’s an implicit understanding

that even though there’s only one entity involved in the transaction, that individual acts

on behalf of a large constituency. Separately delegated identities are collected into a single

privilege.

In the second case, the two students have two distinct sets of rights. Consider a lawyer

who speaks on behalf of multiple clients, as a representative of each client. Unlike the

first case, the number of identities is irrelevant. One person is asserting multiple exclusive

identities. Separately delegated identities maintain their individuality, and are held simul-

taneously.
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There’s also a third case:

3. Suppose Alice and Bob, who are both traveling abroad, each give me power of attorney.

While away, Alice calls me on the phone and asks me to sue Bob on her behalf. There’s

clearly a conflict of interest. I should definitely not show up in Court representing both

the defendant and the plaintiff—I may be able to represent one, or the other, but not

both.

This scenario can be characterized as an instance of the ever-popular “Chinese Wall”

model (see Chapter 15, [KPS02]). This is the exclusive identity scenario. Multiple

identities should never be asserted at once, contrary to the first two examples.

These three situations could not come up in traditional authentication schemes, where one

user maps to one identity. Delegation changes our assumptions about roles and identities, and

introduces new possibilities that have practical applications, both in the analog world and

in the digital one. Any implementation of delegated authentication should take advantage

of these possibilities.

1.5 Limitations

Before we move from an abstract discussion of delegation to an actual implementation, we

should clarify what problems this thesis is not trying to solve.

There are some tricky semantics involved in how applications should deal with a user

with multiple identities. We recognize that these semantics are difficult. And different

applications will have different ways of handling such users. But the scope of this thesis

does not extend beyond the lowest level of multiple-identity authentication. We will simply

provide a framework for application developers to deal with multiple identities.

The goal of this thesis is not to explore how we can specify delegation in policy statements.

There are many standardized languages, such as XACML, that allow security professionals to

precisely specify authentication and access control rules. They are a useful tool for security

administrators. But we assume that most users will not care for such a fine level of access

control when they are determining which privileges to delegate in a proxy certificate. We

need a simple mechanism for users to describe this delegation. This simplicity should be

reflected in the server-side directives as well. A set of rudimentary directives—based loosely

on the directives defined for access control in Apache—will be enough to demonstrate the
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possibilities of delegation. For the purposes of this thesis, that’s what we care for. There

will be an opportunity for policy languages to contribute to this system, but they will be

discussed much later and only in the abstract.

Although there will be some discussion of user interface, we are not particularly concerned

with user interface design. That’s not to say user interface is unimportant—an intuitive

interface is a user-trusted interface, and thus crucial to this system. But I plan to steer away

from some of the more tricky interface problems (like “How does Bob give Alice his public

key?”, “How does a web application re-organize its layout for a multiple-identity user?”,

etc.). I believe that time and feedback yield the best insights into interface design, yet I

have neither the time nor the manpower to conduct this sort of survey research. The reader

should expect some hand waving in that direction.

The objective of this thesis is primarily to demonstrate that this security feature—

delegated authentication in the web server–web browser interaction—is a feasible add-on

to current systems.

1.6 One Last Admission

There is a non-technical motive behind our strategy for delegation, and that motive should

be explicit as well. An implicit motivation in any security system is politics. For example,

many browsers base their certificate trust decisions on the oligarchy model, meaning that

the vendor designates a group of trusted authorities that ships with the browser (Chapter

15, [KPS02]). Look at the list of trusted CA certificates in Mozilla Firefox, or in Microsoft

Internet Explorer. Why are those root certificates trusted? Who decides what the trusted

root certificates are? They are trusted by the vendors, not by the users.

“[S]uch are the evils of oligarchy; and there may be many other evils... Then

oligarchy, or the form of government in which the rulers are elected for their

wealth, may now be dismissed”

—Book VIII, The Republic [Pla00].

There is a lot of political theory behind the design of X.509 and how it propagates

authority. Engineers have politics too. Indeed, certificate theory raises questions about

authority and trust that have been wrestled with since the Greeks. We have no hope of

setting those issues to rest here. But the reader should be aware that one motivation behind
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this thesis is the political ideal that Alice and Bob should have the authority to delegate

their own privileges. This thesis seeks to empower them with that authority.
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Chapter 2

The Strategy

This chapter presents a high-level “human-computer” protocol specification for limited del-

egation with web applications.

2.1 Deployment

Suppose an institution (a university, government, or corporation) wishes to deploy such a

system for delegated authentication. In such a system, there are three types of entities

involved.

There is an authority which controls the CA. There are end-users (like Alice and Bob).

There are also two types of end-users: end-users within the system, who have a certificate

signed by the CA, and end-users outside the system, who may be strangers to the CA. And

finally, there are service providers—web sites that Alice visits. Alice has privileges on these

web sites, and may wish to delegate these privileges to Bob.

Notice that these parties may or may not be exclusive. The institution may control the

CA, or the service provider, or both, or neither.

To introduce delegated authentication into this system, we require two pieces of software.

• End-users will need a web browser plug-in to issue and manage delegation certificates.

• Service providers will need a module to verify proxy certificates during client-side SSL,

and interpret the proxy policy.
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The web browser plug-in is easily distributed. Most modern browsers have a system

for installing such a plug-in automatically by clicking a link, and users are accustomed to

installing such add-ons. Mozilla Firefox, for example, has “extensions,” and a similar plug-in

could be written for Internet Explorer.

The module for the service provider will be more cumbersome to install, and will vary

depending on the particular web server software. Apache servers provide support for config-

urable modules that are dynamically loaded on start-up. The SSL-handling code is one such

Apache module. So a service provider with Apache would have to replace the SSL-handling

module with one equipped to handle proxy certificates, and restart Apache.

2.2 From the Point of View of Alice & Bob

The following list is a step-by-step tour of Alice and Bob’s role in the protocol, though it

does not exhaustively explore all the possible features of delegation discussed in the previous

chapter.

1. Alice asks Bob to check her web-based e-mail account while she’s out of the country.

He agrees.

2. Bob e-mails Alice his public key certificate.

3. Alice inspects this certificate, then uses it as the basis for a new certificate for Bob: a

proxy certificate signed by Alice’s secret key. The proxy certificate contains Bob’s

name and public key, and explicitly authorizes Bob to log into Alice’s e-mail account

and read e-mail. It contains no statement that authorizes him to send e-mail.

4. Alice e-mails the proxy certificate to Bob, along with the trusted certificate chain

attesting to her own public key certificate.

5. Bob installs this certificate in his web browser. When he logs in to the web-based

e-mail account via an SSL session, he presents the proxy certificate issued by Alice.

6. The web server logs the fact that Bob logged in with Alice’s identity. The server’s

environment variables indicate to the web application that Bob has permission to read

but not send Alice’s e-mail. If it is a well-designed application, it will check these

permissions and act accordingly.
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2.3 Notes on the Protocol

There are a few parts of this protocol that we have deliberately left vague. They evoke broad

questions in authentication and delegation. Future technologies may be able to answer these

questions better than current technologies can. Here, we explore our solutions, as well as

other possible solutions.

2.3.1 Proxy Certificates

This use of proxy certificates is non-standard. Recall from section 1.1 that according to the

standard, a temporary keypair must be generated at the same time as the proxy certificate,

and the certificate must testify to the public key [TWE+04]. In our method, proxy certificates

will always testify to a public key previously generated. There are many advantages to this

strategy, and the system sketched out in this chapter would likely be infeasible without this

departure from the standard.

For one, this strategy for generating proxy certificates does not require Alice to send a

new temporary private key to Bob. In fact, no secret information is exchanged between

them. Only their public key certificates are transmitted. As long as Alice can verify Bob’s

certificate, this will be secure.

Secondly, in a world with proxy certificates, the arguments for lots of keypairs will not be

appealing for users. If Bob has two keypairs with different sets of privileges, then he could

make things easier for himself by delegating all his private keys onto one, and just keep that

one. In a human-usable delegation system, simplicity should be a major goal, and a single

keypair for each keystore is much more simple.

Lastly, notice that we can repeat the delegation process with other users each delegating

their own privileges to Bob’s public key. This allows Bob to obtain a grab bag of certificates,

all with the same name and public key, but corresponding to different delegated identi-

ties. This is intentional, and the design decision will become obvious when we must handle

multiple certificate chains in the same session to validate multiple identities.
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2.3.2 Distributing Certificates

In the example above, Alice issues a certificate to Bob, and sends that certificate to Bob via

e-mail. This means that she has to export the certificate to a file and attach it to an e-mail.

Then Bob has to download the e-mail, and import the certificate into his browser.

Alice and Bob could transmit certificates to each other more easily if we had some

additional infrastructure. Alice could retrieve Bob’s certificate from some public X.500-style

or LDAP-style directory system. Or she could post Bob’s new proxy certificate to a third-

party server, for him to pick up later. Or, if Alice and Bob wanted to keep it secret that she

had delegated access to him, we might want to define some protocol for Alice and Bob to

share certificates without a third party.

An institution may define its own certificate distribution mechanism, but we will leave

these mechanisms for others to design and implement. E-mail is good enough for our pur-

poses.

2.3.3 The Rejection of Authority

In our protocol, Alice issues the certificate herself. She then transmits her certificate to Bob

on her own, or via a disinterested third party like a public certificate database.

But this isn’t the only way to solve the same problem. The delegation of privileges could

also be handled through the CA, or through the service provider. The CA could provide a

web-based service wherein Alice can submit signed delegation requests, and the CA would be

the one that actually issued the certificate. Or, alternatively, Alice could log into the service

provider’s web application, and tell that application explicitly that Bob has permission to

speak on her behalf. This second method bypasses certificates completely.

These solutions have disadvantages.

First, they both put a burden on a central server. As we discussed in Section 1.2,

decentralization is a boon to all parties—the process is less complicated for Alice, and it

relieves the responsibility of the server. Consider banks that charge ridiculously large “service

fees” for printing an on-line bank statements, in the hopes that customers will just print the

bank statement out at home. They want users to take care of business on their own.

Second, there may or may not be privacy concerns. Suppose that Alice delegates access to
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Bob for emergencies—she may not want anyone to know about this delegation until he steps

forward. Direct correspondence between Alice and Bob allows them to keep this (relatively)

secret.

Lastly, there may be scalability issues. For example, there may be multiple service

providers (web applications). It would be inefficient for each service provider to keep its own

list of who Alice has delegated her privileges. And in the approach where the CA issued the

delegation certificate, the CA delegation service would have to change to accommodate every

new service provider. But if Alice and Bob issue their certificates to each other directly, then

the scalability issues aren’t so bad—Alice only has to keep track of which delegation-enabled

service-providers she has visited.

These other solutions might also be problematic for political reasons. For example, the

CA delegation-signing service may try to charge users a fee. Our solution empowers Alice

to keep control of her own identity, and encourages good security practices by end users.

21



Chapter 3

The Tools

After the high-level overview in Chapter 2, some implementation questions tumble out. How

does Alice encode a limited set of privileges in the proxy certificate, for multiple applications

that may not be aware of one another? Furthermore, how does the web application define

the privileges that it may require, and tell Alice about them? And if Bob has multiple

delegated identities, how does he send multiple certificate chains to the server?

These questions will be gradually answered as we discuss the necessary collection of

software tools, and precisely what these tools need to accomplish.

1. Alice needs a way to issue proxy certificates.

2. The web application needs a way to tell Alice what permissions she can delegate, so

that Alice can select which of these permissions to encode in her proxy certificate.

3. Bob’s web browser needs to be able to send multiple chains of proxy certificates in an

SSL session.

4. Bob must be able to choose which identities he would like to assert. (In this example,

he has a choice between his own identity “Bob” and his delegated identity “Alice.”)

5. The web server must understand proxy certificates, and be equipped to deal with

multiple chains of them.

This chapter outlines a blueprint for building these tools into a standard suite of web

applications and web standards—namely Mozilla Firefox and the Apache web server—by

leveraging X.509 proxy certificates and the SSL/TLS protocol.
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3.1 Proxy Certificates

X.509 is the reigning certificate standard. And better yet, the X.509 proxy certificate is

standardized well.

Some may ask why I didn’t choose a different certificate format, like SDSI/SPKI (dis-

cussed in Section 5.1.1) or X.509 attribute certificates.

The X.509 proxy certificate has some minor structural advantages. Because it contains

so much auxiliary information, this makes for more comprehensive server logs on who Bob

is and which identities he’s assuming. It’s also explicitly intended for delegation, as opposed

to attribute certificates, which can handle more general attributes.

But most importantly, there is moderate support for X.509 proxy certificates. The

OpenSSL libraries can issue and verify them by simply making the right API calls[Lev05].

The same support is not behind X.509 attribute certificates. And it certainly cannot be said

for SDSI/SPKI, for which there is little support in major applications, with the exception

of some closed environments. X.509 proxy certificates piggy-back off standard X.509 certifi-

cates. The major difference is that proxy certificates can be signed by end entities, and a

proxy certificate must define a critical ProxyCertInfo extension [TWE+04].

3.1.1 X.509 Certificates and Revocation

Because proxy certificates are usually short-lived, researchers often wave their hands at

the problem of revocation, as the potential for damage is reduced greatly by the certifi-

cate’s expiration date. In some projects, delegation is used to make the revocation process

obsolete—the proxy certificates expire more quickly than a certificate revocation list (CRL)

could be issued.

But even though it’s infeasible for every end entity to issue its own CRL, CRL-based

revocation is possible. We could give the CAs the responsibility to build CRLs for both

CA-signed certificates, and proxy certificates signed by children of the CA. If Alice created

a proxy certificate for Bob, then needed it revoked, she could tell her CA about the bad

certificate. The CA would revoke it on her behalf on its next CRL. Also, the CA will not

know about the proxy certificate until Alice tells her about it, so the CA’s power to revoke

its children’s proxy certificates is unlikely to be abused.

This revocation scheme consolidates all the CRLs with the CAs. The certificate verifier
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would have to retrieve the CA’s CRL to verify Alice’s certificate anyway, so this would not

require any modifications to the CRL distribution process. For this to work, Alice needs to

keep a copy of every delegation certificate she signs until it expires, so that she can tell the

CA to revoke it if needed.

In this implementation, I do not handle revocation. But Alice does keep a delegation

history of all certificates she issues, so that the software could be modified to implement this

feature in the future.

3.1.2 X.509 Certificates and Access Control Attributes

In order to give a user the ability to pick and choose which applications the delegate can

use on their behalf, we allow them to define attributes in terms of a service (the URL of a

service provider) and an ability (an arbitrary string expression).

This will become clearer with an example. Suppose Alice wants to delegate to Bob the

ability to read her mail from her web-based “www.mail.gov” account, and to edit and post

on her blog “www.aliceblog.com.” So she gives him the following attributes:

www.mail.gov: read

www.aliceblog.com: edit post

In other words, the attributes will consist of a list of permissions, and each list will be

tied to a service provider. Proxy certificates have a space allotted to specify such a list of

permissions as a policy OCTET-STRING in the ProxyCertInfo extension [TWE+04].

This list of attributes constitutes a list of what Bob can access. Alice must explicitly

name each service provider that Bob can interact with on her behalf. This allows each service

provider to define its own set of privileges at any granularity.

This scheme is devised to avoid the security hole that would arise if two service providers

use the same privilege name. For example, this prevents Alice from confusing “edit” priv-

ileges on “mail.gov” with “edit” privileges on “aliceblog.com.” Because the privileges are

tied to the URL of the service provider, they remain unique. Observe that we are solving the

name collision problem by leveraging somebody else’s infrastructure that has already solved

the problem. A URL address is unambiguous, so we can use it to name the service provider

and bind that name to the privilege set it uses.
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At least, that’s how we’ll think about the situation. URL addresses are not unambiguous.

First, some web pages use server farms, with one address mapping to multiple servers.

Secondly, an adversary can spoof a URL. But for our purposes, these nuances are irrelevant.

When we use the URL in this context, we are not assuming a trusted relationship with the

service provider at that address. The URL simply allows us to differentiate between different

service providers and the privilege sets that they offer. As long as all the servers in a farm

interpret the same set of privileges, it doesn’t matter that the URL points to more than one

machine. And an adversary gains no advantage by impersonating the server. So we can say

that the URL is unambiguous—and understand that the exceptions to this statement are

inconsequential.

There is one question that I have still not addressed. How do service providers notify

Alice of their set of privilege names? I answer this when I discuss the modifications to the

web server (see Section 3.4).

3.1.3 Exclusive Identity

It would also be useful to define a policy statement that obligates Bob to assert Alice’s

identity singularly. This would cover the “exclusive identity” model. Alice would specify in

the certificate that as long as Bob is using this proxy certificate, he cannot attempt to take

on multiple identities. Since web servers, by default, expect the user to assert only a single

identity, this “normal behavior” should not be difficult to enforce. For this application, we

do not implement it.

3.2 The Mozilla Framework

The Mozilla Framework is an open source software development framework. The most

famous application to come out of it is the Firefox web browser. It strives to be cross-

platform, programming-language-independent, and locality-independent. Mozilla has useful

properties that make it easier to modify—most notably the availability of the source code. I

will explain its high-level code architecture here so that when I need to discuss the mechanics

of the implementation, it will be easier for the reader to understand how the pieces fit

together. Readers who are already familiar with the Mozilla Framework and component

object models may skip this section.
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Mozilla’s view of the world consists of two core ideas that make it easy to modify: XP-

COM (the Cross-Platform Component Object Model) and the XUL GUI1.

In XUL, the web page is part of the GUI—or maybe the GUI is a part of the web page.

Either way, both the GUI and the web page are expressed as one large XML-based document.

The entire GUI is parsed as an XML tree of nodes that can be manipulated by the standard

functions of the document object model. Javascript code can be included in the document

to respond to user events. All in all, the GUI is essentially a dynamic HTML page that’s

interpreted into native GUI calls. Developers can dynamically add elements to this GUI in

the same way that they would add such elements to an HTML page—with Javascript that

adds nodes to the XML tree at runtime [Dea06].

XPCOM is the system for organizing all of the software libraries underlying Mozilla. In

XPCOM, a central component manager keeps track of a number of exclusive, encapsulated

components that each implement a well-modularized set of functions. These components

can be written in any language for which XPCOM language bindings are defined, includ-

ing Python and Java—but are typically written in C++ or Javascript. The methods and

attributes of an XPCOM component can only be accessed by defining a public interface

through a second language called XPIDL (long-wise, that’s the Cross-Platform Interface

Description Language). This interface then allows the component to be used as an object

in any XPCOM-supported language. You can define an interface in XPIDL, then imple-

ment it with several different components (possibly in different programming languages),

that satisfy the interface in different ways. For example, the nsISocketProvider interface

is implemented by one component that handles SSL sockets, and another component that

handles TLS sockets. See Chapter 8 of [BKO+02] for more information.

The components are managed by a component manager, which keeps a hash table with

entries for each component. The entries of the hash table are indexed by human-readable

URIs called contract IDs. Each entry also contains a universally unique identifier (UUID) as

a sequence of integers, and the memory location of a constructor for this component. When

one component wants to use another, it gives the component manager the URI, and the

component manager gives it back an object.

So why do we care? If we could overwrite an entry in the hash table, we could replace

any native Firefox component with our own component. As long as the custom compo-

nent implements all the XPIDL-defined functions, the rest of the Mozilla Framework will

1The acronym XUL isn’t long-wise significant; what’s important is that it’s pronounced “Zool” and is an

homage to Ghostbusters.
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treat it exactly like the native component. If this thesis were a novel, we would call this

foreshadowing.

3.2.1 The Extensions

The Mozilla Framework provides a simple mechanism for installing “extensions” from over

a network. The modification for proxy certificates should be packaged as such an extension.

After all, few users would be willing to download a custom browser with modified source

code to use delegated authentication. Modifying the source of the Mozilla Framework is not

an option.

We create new XPCOM components that handle proxy certificates. We can then develop

a GUI for this application as simply an (XUL) web page that the browser visits locally. The

Javascript in this web page is trusted because it is loaded locally, so it can interact with the

local XPCOM components, and by extension, the proxy certificate library.

For this project, our extension can be divided into three pieces:

An interface to allow Alice to issue proxy certificates.

At first glance, there’s no reason for this to be built into the browser—it could easily be

a stand-alone application. The reason it’s in the web browser is not for Alice’s benefit,

but for the service provider’s benefit. As we will soon see (Section 3.4), each service

provider will propagate the set of privilege names that it defines by talking to this

extension. Then the user interface can show Alice a list of delegation-enabled service

providers she’s visited, as well as the privileges she can delegate for them.

A back-end database to manage proxy certificates issued to Bob.

Network Security Services (NSS), the cryptographic library underlying the Mozilla

Framework, does not behave properly around proxy certificates. At best, it’s schizophrenic.

NSS will often accept them at first—but as soon as it realizes that the proxy certifi-

cates have been signed by an end entity, it may immediately trash them. We simply

need a database that can handle proxy certificates properly, and will safely store them

outside of NSS.

A way for Bob to use his proxy certificate(s) in client-side SSL authentication.

This part of the extension will be responsible for getting the proxy certificates to the

server during an SSL session. This is more difficult than it sounds, because this will
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require slight changes to the SSL protocol.

3.3 SSL/TLS

SSL/TLS is the ubiquitous protocol for secure communication on the Internet2. It consists

of three essential pieces:

1. The “Hello” phase, wherein the client and server initiate communication.

2. The “Handshake” phase, wherein the server and client exchange information using a

chosen asymmetric-key algorithm, with the goal of establishing a session secret. This

information may optionally include a certificate exchange, and the server and client

may optionally verify each other’s certificates before they agree to connect.

3. The “Application” phase, wherein we can now send data across the network encrypted

and MAC’d with the session secret via your favorite symmetric-key algorithm [DA99].

To allow delegation into this protocol, we only need change a narrow segment of the

client behavior during the Handshake phase. We can leave the rest of the protocol alone.

The Handshake phase changes because SSL/TLS expects the client to transmit no more

than one chain of certificates. In this chain, each certificate testifies to the public key of

the keypair that signed the certificate that came before it [DA99]. But for delegation, the

client might need to transmit several certificate chains, with one chain corresponding to each

delegated identity. To make it work, we transmit the certificate chains for each delegated

identity in serial, and assert that the first proxy certificate in each chain must testify to the

same public key. Figures 3.1 and 3.2 demonstrate the change in the protocol when we add

multiple certificate chains. We do not permit Bob to use two different keypairs in the same

session.

The “one public key” rule gives us an easy way to distinguish between certificate chains—

when the validator sees a certificate in the chain that contains the same public key as the

first certificate, this is the beginning of a new chain. As an additional bonus, this ensures

that legacy certificate-validation code (applications that don’t know about multiple-identity

2SSL/TLS is a suite of several different standardized protocols. All these protocols are just variations on

the same high-level ideas, though. For our purposes, they’re interchangeable.
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Figure 3.1: Passing client certificates to the server by the TLS 1.0 standard. Notice that Bob’s

public key certificate is sent first, while the CA certificate that testifies to it comes afterwards. (The

self-signed CA certificate is optional. We include it here to enhance the illustration.)

Figure 3.2: Passing multiple certificate chains to the server. As before, each certificate in the same

chain testifies to the one sent before it. The gray arrow represents the point where a traditional

TLS server would register an error, because Bob did not sign the CA’s public key certificate.

delegation) will reject any user that tries to assert multiple delegated identities. A certificate

chain, after all, should not have a cycle.

From a theory standpoint, the idea that “public key” is a unique identifier of the user

is also a cleaner way to think about PKI. The SDSI/SPKI certificate model makes this

observation elegantly. The security of public-key crypto-systems implicitly depends on the

assumption that public keys are unique. If two users had the same public key, then their

cryptographic operations would be indistinguishable [EFL+99].

Bob may assert multiple delegated identities in a single SSL/TLS session, but only one

keypair. This isn’t as restrictive as it seems. Because Bob can issue proxy certificates on the

fly, and one proxy certificate can be used to issue another, he can delegate all his identities

to the same keypair3.

3The ProxyCertInfo extension has a path length constraint which may interfere with this solution by

restricting the length of the certificate chain. If Bob had multiple private keys, he may not be able to

delegate all his privileges to one because it would break path length constraints. We wave our hands at this
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3.4 The Apache Web Server

I won’t repeat the advantages of open source software, especially because in the case of

Apache, we will just modify the source code and recompile. Fortunately, we only have to

modify mod ssl, which can hook into the Apache server from a dynamically loaded library.

We can easily distribute this library to server administrators to enable delegation.

There are exactly two additions we need to make. First, we need to modify the certificate

validation code to accept proxy certificates and to be able to recognize when the client is

sending multiple chains of proxy certificates.

Recognizing the proxy certificates is simple—that functionality comes standard with

OpenSSL, and OpenSSL is the cryptographic library underlying Apache. The validation of

multiple chains of certificates is not so easy to implement, because it requires changes to

both Apache and OpenSSL. It has also some tricky semantics. What happens if the client

sends two certificate chains, and only one of them is valid? On one hand, the SSL protocols

imply that if the server sees an invalid client certificate, it should notify the client by sending

an error message, and should cut short the SSL session. But it seems more natural for the

server to accept the valid chain, and quietly fail to grant the privileges specified in the invalid

chain. In this implementation, the tie goes to the specification—if one certificate chain is

invalid, the whole authentication should fail. This will make it clearer from a user interface

perspective that something has gone wrong.

3.4.1 Access Control Directives

We also define some additional directives in the Apache configuration files. These directives

will tell Apache how to respond to proxy certificates.

A legacy server will only accept a single certificate chain. So the modified server will, by

default, only accept a single identity. It will consider multiple identities only when it sees

special directives in the configuration files.

These new directives are as follows:

• SSLCollectiveIdentity:

problem—if it happens, then we blame it on Bob for using his keys incorrectly.
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This directive tells the server to use the collective identity model. The server will

accept multiple certificate chains, one for each identity. Privileges will be counted and

totaled.

To ensure the same privilege is not counted twice, we ensure that if there are multiple

certificate chains, no two chains derive authority from the same end entity4.

• SSLMultipleIdentities:

This directive tells the server to use the multiple identity model. Again, the server will

accept multiple certificate chains. The server will additionally keep track of who has

delegated which of their privileges.

Notice that this directive simply records more information than SSLCollectiveIdentity.

This information may be necessary for user-level scripts to make security decisions.

• SSLExclusiveIdentity:

This directive tells the server to accept only the first identity. In truth, it is the default

case. But because these directives are interpreted on a per-directory basis, this direc-

tive is useful for overriding the SSLMultipleIdentities or SSLCollectiveIdentity

directives in a parent directory.

A server connection environment variable will be set.

SERVER[ ‘‘SSL DELEGATED IDENTITIES’’ ] := STRING

STRING is an ASCII character string encoded as a Lisp s-expression. It will contain the

common name of each certificate in an identity asserted by Bob. Obviously, this encoding

doesn’t work if common names have parentheses. So if the server sees a common name with

a parenthesis, it simply refuses to grant this identity.

( ( name1 ) ( name2 ) ( name3 ) )

Application-level scripts can read this environment variable, and thus find out easily what

identities Bob has.

4How do we ensure that Alice doesn’t have two keypairs, with two different names, and use them to both

to assert two identities, thus giving her two votes? We can alleviate the problem by checking both the public

key and distinguished name fields of each identity for duplication. This is not nearly an adequate solution,

and is a potential security leak if not taken into account. Hopefully, for most applications, this issue will not

be a problem.
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We will also have directives for interpreting the policy field of the ProxyCertInfo ex-

tension.

• SSLRequirePrivilege name ‘‘Description ’’:

The name must be an alphabetic character string (with no white space), and must

not conflict with any other privilege names. It will specifying the name of a privilege

as it appears in the proxy certificate policy. If this directive is used, then Bob will

be allowed access in the current directory subtree iff he has this privilege. If either

SSLMultipleIdentities or SSLCollectiveIdentity is given as well, Bob will need

to have this privilege for every identity that he tries to assert, or he will be rejected.

The Description portion of the directive will be used for the propagation of the privilege

set, which I will discuss shortly.

• SSLRequestPrivilege name ‘‘Description ’’:

This directive is similar to the SSLRequirePrivilege directive. But in this case, Bob

can access the directory whether or not he has the described privilege. The directive

is used to specify privileges that are not used to restrict access at the server level, but

are exposed via the environment variables anyway. (An application-level script might

use this privilege as part of an XACML-based decision request.)

Notice that with the last two directives, every server can define a set of privileges. After

the server verifies Bob’s proxy certificate chain(s), it will check the policy field of each

ProxyCertInfo extension in the chain, and grant Bob the privileges encoded in it. It will

then set a connection environment variable like so:

SERVER[ ‘‘SSL DELEGATED PRIVILEGES’’ ] := STRING

Again, STRING will be a Lisp s-expression. For every privilege that Bob is granted, it will

add that privilege to this list. How this list is formatted will depend on how the server is

configured to deal with multiple identities.

In the default case, suppose Bob is granted privileges priv1, priv2, and priv3. Then

the list will look like:

( priv1 priv2 priv3 )
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If SSLCollectiveIdentity is enabled, it will look like:

( ( priv1 num1 ) ( priv2 num2 ) ( priv3 num3 ) )

where numX is the number of identities that granted Bob privilege privX.

If SSLMultipleIdentities is enabled, each sub-list will start with the identity name,

followed by the privileges granted by that end entity.

( ( ( name1 ) priv1 priv2 ) ( ( name2 ) priv3 ) )

3.5 Privileges in the Grand Scheme

To determine its set of privileges, the server parses all of its access files for the SSLRequire-

Privilege and SSLRequestPrivilege directives described above, then builds a set of

( name , description ) ordered pairs of privileges. They are keyed by the name, so if the

same name appears twice, one pair is rejected. All servers implicitly define the reserved pair

( all , ‘‘All privileges’’ ). When Alice visits the server, the server gives her a cookie

containing the privileges defined as Lisp s-expressions. The Firefox extension can then read

these cookies, and add them to its list of ( service provider, privilege ) pairs. When Alice

wants to sign a proxy certificate for Bob, the user interface will provide her with a list of all

the servers that she’s ever visited that support this form of delegation.

When Bob wishes to assert the privileges granted by Alice, he authenticates with this

certificate in a client-side SSL session. He will pass the server the entire certificate chain,

so that the server will see both Alice’s end-entity certificate, and the proxy certificate she

signed for Bob. The server then interprets the policy in the proxy certificate, and records in

an environment variable that Alice granted Bob those privileges.

The reader should take note that this still leaves the web application with a lot of respon-

sibility to make authorization decisions. Our system simply records what Alice has granted

in the proxy certificate policy—it makes no claim that Alice had the authority to grant Bob

this privilege. An application simply uses the identity and privilege information to make

authorization decisions; our directives are part of a server-level system that make it a easier

to process and manage this information.
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The reader should also be aware that although we’ve rigorously defined a privilege-

propagation system, this system is a sideshow to the main attraction. We are primarily

interested in access control with limited delegation. This privilege system is intentionally

bare-boned. It is not designed to stand on its own. It is designed with just enough function-

ality to exercise the power of limited delegation.
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Chapter 4

Trials and Tribulations

This chapter could be alternatively be titled “Mis-Adventures in Software Engineering.”

Here, I describe the implementation of the delegation system.

Any description of software implementation has to be especially careful, because it must

negotiate two competing interests. It must be thorough enough that the reader could recreate

the system, but it must be fleeting enough that the same reader does not feel the slog of

months of software design.

This chapter tries to walk that tightrope.

4.1 The Proxy Certificate Firefox Extension

Nicholas Santos has hired Detective Sam Spade to represent him. He would like to sign a

proxy certificate for Spade that will delegate all his permissions to Spade for a period of

5 days. (He’s trying to get back a jeweled falcon that dates back from the Crusades, you

see, and he’s asked Spade to reclaim it.) The next five figures illustrate the process he goes

through to do this. In between figures, there will be a discussion of how to manipulate and

issue proxy certificates with NSS, the Mozilla Framework’s cryptography library.

The text does not follow the figures; the figures should be self-explanatory.
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Figure 4.1: The Delegation Wizard (part 1): Choosing a user certificate (any certificate for which

we have the private key) and a target certificate to which its identity is delegated. Perceptive readers

may notice that this screenshot does not look quite like Firefox—it is a build of Bon Echo, the alpha

version of Firefox 2.0.

4.1.1 Making Room for Proxy Certificates

The ProxyCertInfo X.509 extension must be attached to all proxy certificates and marked

critical [TWE+04]. By specification, cryptographic libraries must trash any certificate with

unrecognized critical extensions [HPFS02]. So before we load any components that handle

proxy certificates, the Object Identifier (OID) for the ProxyCertInfo extension must be

dynamically registered with NSS. RFC 3820 additionally lists a number of OIDs for proxy

policy languages that must be understood by any proxy certificate implementation. Those

OIDs must be registered as well.

The ProxyCertInfo extension contains three fields. The optional pCPathLenConstraint

describes the depth of the cert chain below this one. The required policyLanguage is an

OID for a policy language. The optional policy is, as noted earlier, the designated place

for issuers to record policy info on what permissions they’re delegating.
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Figure 4.2: The Delegation Wizard (part 2): Choosing permissions to delegate. Each tree organizes

the permissions by service provider. The tree on the left is a list of all available permissions; the

tree on the right is a list of the permissions that will be delegated. The tree of available permissions

is built by iterating through the cookies, and parsing them for the permissions. A routine parser

will do.

NSS allows developers to write templates—arrays of constants—that tell the ASN.1 en-

coder how to encode and decode types. A few wrapper functions and a ProxyCertInfo

template are required to encode and decode that extension. The Mozilla Framework also

has a separate ASN.1 handler that pretty prints ASN.1 sequences for GUIs. A few more

functions on top of that object will make the ProxyCertInfo extension readable from a

dialog box, as shown in figure 4.5.

The reader should be aware that in order to handle proxy certificates adequately, an

application needs a lot more infrastructure than this. It needs wrapper objects for the

certificates, for their validity periods, and for some certificate-based GUI objects. But these

needs can be satisfied by simply copying the existing certificate-handling code, modifying it

slightly for proxy certificates (and for publicly exported APIs), and re-compiling it into the

extension. It’s not academically interesting, and we will say no more of it.
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Figure 4.3: The Delegation Wizard (part 3): The constraints page, which allows setting a path

length constraint and a validity period.

4.1.2 Issuing Proxy Certificates

To issue a proxy certificate, we need an issuer and a target. The issuer testifies to the private

key that will sign the new certificate. The target testifies to the name and public key that will

be the subject of the new certificate (see figure 4.1). This information is used to construct

a certificate request internally. We call an NSS function to transform this certificate request

into an unsigned certificate, at the same time adding an issuer and a validity period.

When creating any certificate—not just proxy certificates—there are standards and there

are styles. The first is mandated in writing, the second is mandated by strong social pressure

and convention. For standards, it’s best to work straight from the source, RFCs 3280 and

3820. For style, I recommend Peter Gutmann’s “X.509 Style Guide.” A full listing of both

these sources is in the bibliography.

For every proxy certificate we issue, we copy the name and public key directly from the

target certificate. Per Gutmann’s recommendation, we use the time in seconds since the
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Figure 4.4: The Delegation Wizard (part 4): Saving the certificate to a file, so it can be e-mailed

to Detective Spade.

UNIX epoch as the serial number, to ensure unique serial numbers1.

We additionally attach three or four extensions.

• We have already covered the ProxyCertInfo extension, we will say no more of it.

• A BasicConstraints extension that indicates that this certificate may not be a CA.

We include it on the advice of OpenSSL’s proxy certificate guide [Lev05].

• A SubjectKeyIdentifier extension that contains a SHA-1 hash of the target certifi-

cate’s DER-encoded public key data.

• The AuthorityKeyIdentifier is attached if and only if the issuer certificate has the

SubjectKeyIdentifier extension. If it does, the key identifier from the issuer is

simply copied into the key identifier field of this AuthorityKeyIdentifier.

1A malicious user could certainly issue multiple certificates with the same serial number by changing the

system clock, but this would do no actual damage. It would merely spite the standard.
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Figure 4.5: The Delegation Wizard (part 5): The ASN.1 structure of the new proxy certificate.

The SubjectKeyIdentifier and AuthorityKeyIdentifier extensions are not really

necessary, and may just be another example of redundancy in the X.509 standard. However,

they do reinforce the idea that the public key identifier is a better indicator of identity than

a X.500 distinguished name, because an identity is only as unique as its keypair. We mainly

include this extension for ideological reasons. But we should mention that these extensions

made the certificate validation code easier to debug, because the crypto library code that

compared two key identifiers was usually much simpler than the crypto library code that

compared X.500 names.

NSS did not encode the AuthorityKeyIdentifier correctly, so the encoding code was

copied, fixed with only minor modification, and recompiled into our library.

Once the extensions are added, the certificate is ready to be signed. A Mozilla XPCOM

component provides functionality to log into any PKCS #11 interfaces (cryptographic to-

kens), asking the user for a password if we need one. Other publicly-exposed NSS functions

allow us to get a handle on the private key, and use it to sign the data in a DER encoding.
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To my knowledge, this is the first implementation of a proxy certificate issuer with NSS.

4.1.3 Storing Proxy Certificates

Once we have a DER encoding of the proxy certificate we need a place to store it. NSS is

no good, for numerous reasons. It is not aware that end-entities can sign certificates. Fur-

thermore, this Firefox extension may be uninstalled, and if it is, it shouldn’t be abandoning

proxy certificates in the regular NSS database.

The key insight to storing proxy certificates is that the storage medium does not need to

store any secrets, like private keys. It can leave the private keys in the NSS secure storage,

and only needs to remember where those private keys are located. The only disadvantage

of this method is that the user could delete his private key from the NSS database, thus

rendering his proxy certificates useless. Our implementation does not protect against this

case; it just blames the user for the problem.

Because proxy certificates do not need to be stored securely, it would have sufficed to

keep them in any non-volatile storage mechanism. In our extension, they are simply stored

in an SQLite database2. The key for each proxy certificate in the database is derived from

the serial number and the issuer name. Because issuers should issue certificates with unique

serial numbers, this key should be unique. Each entry in the database also contains a

DER encoding of the certificate, as well as keys to access the issuer certificate, “delegator”

certificate, and private key in the regular database. The “delegator” certificate is the last end-

entity certificate in the chain ending in this proxy certificate. It names the end entity from

which this proxy certificate derives its identity. (In chains with only one proxy certificate,

the issuer is the delegator.)

The database can be described in two sections: delegated certificates and the user’s proxy

certificates. The sections must not be assumed to be mutually exclusive, although they likely

will be for most users. The portion for delegated certificates is merely a log file. It tells Alice

which proxy certificates she has issued, and allows her to re-export them if she needs to send

them again (figure 4.6). The other section of the database holds certificates delegated to the

user, certificates for which the user has the private key (figure 4.7). These are the identities

that can be used in an SSL session.

2SQLite is a open source file-based database engine with a C API that accepts and executes queries in a

subset of the SQL language. More information can be found at http://www.sqlite.org/.
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Figure 4.6: Viewing the certificates in the database that have been issued by this user.

4.1.4 Using Proxy Certificates

The code to inject proxy certificates into an SSL session performs an interesting acrobatic

stunt.

Recall from the original discussion of the Cross-Platform Component Object Model

(XPCOM) that the Mozilla Framework keeps all its components in a hash table, hashed by

a human-readable contract ID. If we ask the component registrar to load a component with

the same contract ID, the registrar will, by default, simply overwrite that entry of the hash

table. From reading the source code, this feature seems to be intentional, although it is not

documented. But this also means that there is no documentation assuring us that this is a

safe mechanism for extension development. We use it cautiously.

This feature allows us to play man-in-the-middle with Firefox’s SSL/TLS handling code.

First, the XPCOM objects that handle SSL and TLS sessions are registered at a second

contract ID. Then, custom SSL/TLS handlers are registered at the first contract IDs, over-

writing the entries there. These custom handlers intercept method calls intended for the

original handlers, change the passed arguments, and then pass the altered arguments along

to the traditional handlers by looking them up at the second contract ID. The same man-

in-the-middle game can be played with return values. Thus, we can change the method

arguments and return values at will to produce the desired effect. That’s the theory—but

it’s not so simple in practice.
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Figure 4.7: Viewing the certificates in the database that have been issued to this user. Observe

that only fools delegate their privileges to this particular user.

4.1.5 Using Proxy Certificates, The Long Version

The actual implementation is far more complicated and involves several levels of indirection.

The flow can be confusing.

There are custom SSL/TLS handlers that intercept calls to the traditional SSL/TLS

handlers in XPCOM. But those handlers turn around and use the pure C NSS libraries to

handle the SSL handshake. Our method only allows us to intercept method calls between

the object-oriented XPCOM components. Pure C method calls cannot be intercepted by

the same trick. So we need to use a different trick.

There is a certain method call to the SSL/TLS handler objects, and an argument of that

call contains a function pointer. (More correctly, it provides the first in a long path of pointers

that eventually leads to a function pointer deep in the NSS code.) This function pointer

refers to a callback function whose responsibility is to retrieve the client certificate for the SSL

handshake. (In the NSS documentation, this callback is known as the ClientAuthDataHook

[NSS05].) We can apply a second man-in-the-middle strategy to this function, by changing

the function pointer to point to a function of our choosing. NSS calls the custom function

when it needs a certificate.

Unfortunately, that’s not the end of it. The custom certificate-retrieval callback only

returns a single certificate—NSS builds the rest of the chain. Fortunately, there is a way

to fool NSS into building an arbitrary chain. NSS stores its certificates in data structures
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with a lot of redundant information. These data structures contain a DER encoding of the

certificate, as well as pre-computed fields so that it doesn’t have to decode and re-encode

the certificate repeatedly. But there’s the rub: it constructs chains based on the values of

the pre-computed fields, but the data actually sent across the network is the DER encoding.

And it assumes these fields are in-sync. By feeding it out-of-sync data, we can fool NSS to

build a certificate chain based on the mock-up certificate fields, and NSS will end up sending

arbitrary DER data across the SSL session. This DER data will, by more than coincidence,

be the proxy certificates that we intend to transmit.

And that’s how an extension can add limited delegation with proxy certificates to Firefox

without modifying any existing code.

Figure 4.8: Registering two proxy certificates to use in an SSL session. The chains for both will

be sent in client-side SSL/TLS authentication.

4.2 Apache with Delegation

The Apache codebase is much smaller than the Mozilla codebase, and our application allows

its source code to be modified. The changes made to Apache are thus much more lightweight.
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Figure 4.9: This test page shows the values of environment variables SSL DELEGATED IDENTITIES

and SSL DELEGATED PRIVILEGES.

4.2.1 New Directives

The Apache build system leans heavily on an automated parser generator. A single macro

can add a new configuration directive, and define the callback function that will process

the arguments to that directive. The new proxy certificate-handling directives defined in

section 3.4.1 were designed to take advantage of this existing infrastructure. Adding them is

not complicated. The SSLMultipleIdentities and SSLCollectiveIdentity directives are

processed by changing global context variables. The two privilege directives are processed

by adding them to a global privilege table, sorted by unique privilege name. For each

directory-specific SSLRequirePrivilege directive, we take the corresponding directory con-

text structure and give it a pointer to the required entry in the global privilege table.

4.2.2 Privilege Propagation

Apache comes packaged with a module, mod usertrack, that enables tracking cookies. This

module supplies the basis for the code needed to pass the supported privilege set to the
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client via a cookie. We register a hook function with the main Apache module to get called

every time a client connects. When this function gets called, we can iterate through the

permission table, encode it in a cookie, and add that cookie to the HTTP reply headers.

(Actually, since the same cookie is transmitted each time, and no permissions can be added

after the server starts, we just compute this cookie once.)

4.2.3 Certificate Verification

Because there may be multiple chains of proxy certificates in an SSL session, OpenSSL needs

to be modified to accept a) proxy certificates, and accept b) multiple chains of them.

Proxy certificate support in OpenSSL is contingent upon the state of a particular en-

vironment variable. But the Windows code for reading this environment variable did not

appear to be working correctly, so OpenSSL was modified to accept proxy certificates all the

time.

Apache lets OpenSSL take care of the standard certificate verification, but sets a callback

function to go through the certificates after OpenSSL has verified them, and do any custom

verification. The OpenSSL verification function normally stops immediately as soon as it

can’t find the issuer for a certificate in the chain, then looks in the local store for a trusted

chain of issuers. The verification succeeds iff it finds such a chain. If there are multiple

chains, OpenSSL accepts the first chain and says that it is satisfied. This appears to be

non-standard. We modify the OpenSSL verify function so that after it verifies the first

chain, it looks at the first certificate in this chain and the first certificate in the chain of the

“unverified” certs. If these two certs match, and the global flag for multiple chains is set, it

calls itself recursively on the “unverified” cert chain to verify the other chains.

When the Apache callback function receives the verified certificate chains, it iterates

through them again. For each chain, it looks for the end-entity (the first non-proxy certifi-

cate) in each chain, and pushes it onto an identity list. It also interprets the ProxyCertInfo

extension’s policy field, and determines which privileges are delegated all the way down the

chain. The implementation of this part should be self-evident.
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Chapter 5

Related Work & Future Work

No thesis is an island. The first part of this chapter will present other work that has

influenced this research, and discuss how this research is different. Some of these projects

have been mentioned in previous chapters. The second part of this chapter will discuss

tangential research topics that we would like to see explored.

5.1 Related Work

5.1.1 SDSI/SPKI and Project Geronimo

SDSI/SPKI is an alternative certificate standard that stresses simplicity over the complica-

tion of X.509. It’s most relevant to this research because it provides a much more straight-

forward and simple syntax for the delegation of credentials [EFL+99].

The SDSI/SPKI group at MIT also developed an Apache module and Netscape Commu-

nicator plug-in that allowed users to authenticate with the server using SDSI/SPKI certifi-

cates. (Project Geronimo was the name of the Apache module.) To accomplish this goal,

they developed an entire new protocol on top of HTTP that performed this authentication.

In their system, the server notified the client of the permissions it supported by sending

an access control list (ACL) to the client during the authentication handshake. (Thus, the

protocol handshake was used for authorization as well as authentication.) The client could

then use this ACL to determine which certificates to send back [May00]. This ACL solved

the problem that we addressed by sending the permissions in cookies.
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Our system differs in that it is also concerned with providing the user with an interface

to delegate their credentials. We also depend more on the existing protocols and standards

(X.509 and SSL/TLS) when we can, rather than creating new ones.

5.1.2 Greenpass

We discussed the Greenpass project in Section 1.2. In that problem, system administrators

could maintain a secure wireless network without the hassle of verifying the identity of

temporary guests. Regular users could delegate access to the network to their guests. This

made the network more manageable and usable from both the administrative and end-user

standpoints.

In order to sign these delegation certificates, both the regular user and her guest would

visit a web site on a virtual private network. This site provided an interface wherein the

regular user could verify the guest and create the certificate, and the guest could import the

new certificate into her browser. Neither had to install new software; they only needed to

run a trusted Java applet [GKS+04].

Notice that the Greenpass project and our project ran into a similar problem: how does

Alice transmit a delegation certificate to Bob? We could circumnavigate this problem by

using public e-mail. Because the guests in Greenpass did not have access to the network,

they accomplished the same task with the assistance of an internal web server.

5.1.3 Distributed Systems

As discussed in Section 1.2, delegation offers a decentralized way to propagate privileges.

It can also be used to delegate a limited set of privileges for a very limited time to a less

trustworthy key. For these reasons, people working in distributed systems love delegation.

They use it as a lightweight mechanism for granting privileges to temporary processes. It’s

lightweight because it doesn’t require a central authority, and no new identities need to be

created.

The Grid created proxy certificates to take advantage of these features of delegation [WFK+04].

And here at Dartmouth, Jon Howell specifically extended Lampson’s access control cal-

culus to include delegation, so that he could use formal semantics to analyze distributed

systems that lacked a central authority [HK99].
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We mention this work because it has driven a lot of the standards and formal models

behind delegation, even though it applies delegation to different problems.

5.2 Future Work

5.2.1 A Delegated Server

In this research, we assumed that only clients could hold proxy certificates. But what about

service providers?

There are plenty of applications where this could be useful. The most obvious example is

that of web server farms. Each server in the farm can have its own identity and public/private

keypair, and additionally hold a proxy certificate delegated from a chief server. Thus, they

can all assert the same identity. These proxy certificates could even grant different privileges

to different servers in the farm, depending on the abilities of the server, and the physical

security of its location. This is similar to what the Grid currently does [WFK+04].

Delegation with multiple identities may offer advantages to servers as well. For example,

suppose the financial aid office at Faber College decides that they would like to make the

lives of students easier by creating a web application where students can take care of all

their financial aid paperwork at once. They might even out-source this web application to a

third-party web server.

Clearly, such a web site would require students to submit sensitive information. The

students would like to be assured that the web server speaks on behalf of Faber College. But

this server should also speak on behalf of the Federal Department of Education because it

processes federal financial aid forms. There is no CA that can speak on behalf of both insti-

tutions, but if the server can transmit two chains of certificates rooted at both institutions’

CAs, then the problem is solved.

5.2.2 Proxy Policy Languages

The language for encoding privileges in the policy field of the ProxyCertInfo extension

was admittedly a hack of a language. As mentioned many times before, it was designed only

to exercise the potential of our proxy certificates. But there’s still the open problem of what
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should be in the proxy policy field.

Ideally, the Apache server should not interpret the proxy certificate policy at all. It should

grab all the certificates—multiple chains of them if that’s what Bob sent—and whisk them

off to a centralized security server. This central server would be responsible for the security

decision, and it would send a response to the Apache server that told it what privileges to

grant Bob.

That seems to be the popular idea among security professionals. But there’s still the

client side. How does Alice’s web browser encode the proxy policy? Should Alice’s browser

be responsible for encoding that policy in the cutting-edge policy language, or should she

send it off to a central policy-encoder? How does a web server notify its clients of the privilege

set it supports? Is there a better solution than our mis-use of cookies?

Scout Sinclair brought up the point that we can keep the information encoded in the

proxy policy private, by encrypting it server-specific parts of it with the service provider’s

public key. So Alice doesn’t have to disclose to Bob (or anyone else) exactly which privileges

she gave him.

5.2.3 Deployment

In a password-based system, it is difficult to gauge how often people share passwords to

delegate access. We would like to see a social experiment where our system of proxy certifi-

cates is actually deployed in a closed environment, to see how often people actually delegate

access. It would be easy to monitor whether the system was being used, by having each

service provider count how many times it authenticated a user who held a proxy certificate.
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Chapter 6

Conclusions

Users are already accustomed to the idea of delegation. We are accustomed to speaking on

behalf of others, and appointing others to speak on our behalf. On an everyday basis, we

act on behalf of our organizations, and on behalf of our employers. We create living wills to

delegate others to act on our behalf when we are unable to do so, and we delegate lawyers

to speak for us in a legal setting.

Thus, Alice expects to be able to use delegation in her on-line interactions. Delegation

will help Alice to do the work that she needs to do, in the way that she expects to do it.

In this way, delegation promotes stronger security, better security practices, and enhanced

usability.

This thesis has explored the rigorous particulars of how this delegation is used, and how

this delegation could feasibly be implemented using current technologies, without breaking

current protocols. My hope is that this implementation will serve as a model for future

developers who wish to build delegation into browser and web server interaction, and will

help to bring PKI-based delegation into mainstream security practices.

51



Bibliography

[BKO+02] David Boswell, Brian King, Ian Oeschger, Pete Collins, and Eric Murphy. Creat-

ing Applications with Mozilla. O’Reilly, September 2002. Retrieved on-line from

http://books.mozdev.org/index.html.

[DA99] T. Dierks and C. Allen. TLS protocol version 1.0. January 1999. RFC2246.

[Dea06] Neil Deakin. XUL tutorial. February 2006. Retrieved on March 11, 2006 from

http://xulplanet.com/tutorials/xultu/.

[EFL+99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI

certificate theory. September 1999. RFC 2693.

[GKS+04] Nicholas C. Goffee, Sung Hoon Kim, Sean Smith, Punch Taylor, Meiyuan Zhao,

and John Marchesini. Greenpass: Decentralized, pki-based authorization for

wireless lans. 3rd Annual PKI Research and Development Workshop Proceedings,

pages 26–41, 2004. Retrieved from http://www.cs.dartmouth.edu/∼sws/pubs/

greenpass04.pdf.

[glo06] About the globus toolkit. 2006. Retrieved from http://www.globus.org/

toolkit/about.html.

[HK99] Jon Howell and David Kotz. An access control calculus for spanning adminis-

trative domains. 1999. Technical Report PCS-TR99-361. Retrieved on-line from

ftp://ftp.cs.dartmouth.edu/TR/TR99-361.pdf.

[HPFS02] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key In-

frastructure certificate and certificate revocation list (CRL) profile. April 2002.

RFC 3280.

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security: PRI-

VATE Communication in a PUBLIC World. Prentice Hall PTR, second edition,

2002.

52



[Lev05] Richard Levitte. HOWTO Proxy Certificates, May 2005. Retrieved on March 11,

2006 from http://www.openssl.org/docs/HOWTO/proxy certificates.txt.

[May00] Andrew J. Maywah. An implementation of a secure web client using spki/sdsi

certificates. May 2000. Retrieved on-line from http://theory.lcs.mit.edu/

∼cis/theses/maywah-masters.ps.

[MS05] J. Marchesini and S. W. Smith. Shemp: Secure hardware enhanced myproxy.

Proceedings of Third Annual Conference on Privacy, Security and Trust, October

2005. Retrieved from http://www.cs.dartmouth.edu/∼sws/pubs/ms05b.pdf.

[NSS05] Network Security Services (NSS), May 2005. Retrieved on March 11, 2006 from

http://www.mozilla.org/projects/security/pki/nss/.

[Pla00] Plato. The Republic. The Internet Classics Archive, 2000. Translated

by Benjamin Jowett. Retrieved on-line at http://classics.mit.edu/Plato/

republic.html.

[TWE+04] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509

Public Key Infrastructure (PKI) proxy certificate profile. June 2004. RFC 3820.

[WFK+04] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven

Tuecke, Jarek Gawor, Sam Meder, and Frank Siebenlist. X.509 proxy certifi-

cates for dynamic delegation. In 3rd Annual PKI Research and Development

Workshop, 2004.

53


	Limited Delegation (Without Sharing Secrets) in Web Applications
	Recommended Citation

	thesis.dvi

