
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-31-2005

A toy rock climbing robot A toy rock climbing robot

Matthew P. Bell
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bell, Matthew P., "A toy rock climbing robot" (2005). Dartmouth College Undergraduate Theses. 45.
https://digitalcommons.dartmouth.edu/senior_theses/45

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/45?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

A toy rock climbing robot

Honors Thesis

Matt Bell

May 31, 2005

Dartmouth College Computer Science Technical Report
TR2005-542

Abstract

The goal of this thesis was to build a simple toy rock climbing robot, and to explore problems
related to grasping, path planning, and robot control. The robot is capable of climbing a wall of
pegs either under manual control through a host system and an infrared interface, or on the basis of
a set of pre-recorded keyframes. In addition, the robot can climb certain peg configurations using a
cyclic gait. The robot climbs in an open-loop mode without sensor feedback. All communications
are sent through the IR connection, and the tether to the robot consists only of two power wires.

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Applications . 2
1.3 Research Contributions . 2

2 Robot Design and Construction 3
2.1 Physical Description . 3
2.2 Design Decisions . 4

3 Path Planning Problem 5
3.1 Alternate Climbing Methods . 8

4 Mathematical Analysis 9
4.1 Forward Kinematics . 9
4.2 Inverse Kinematics . 10
4.3 Stability . 11

4.3.1 Reuleaux’s Method . 11
4.3.2 Algebraic Method . 12

5 Robot Control 14
5.1 Embedded System Code . 14

5.1.1 Tx Board . 14
5.1.2 Rx Board . 14

5.2 Host System Code . 15

6 Results and Conclusions 15

7 Acknowledgments 18

i

List of Figures

1 Photograph of the robot . 2
2 Servos that make up the robot’s body . 4
3 Method of attaching servos to inner arms (the inner arm is on the left) 4
4 Climbing wall configuration . 5
5 Example of curve used for low-level path planning 6
8 Example of robot shifting body while maintaining handholds 6
6 Sequence of robot positions leading to an unstable configuration 7
7 Sequence of robot positions with good forward-looking stability 7
9 Position used to recenter the robot during a gait cycle 8
10 Variables used in the forward kinematics calculation 9
11 Inverse Kinematics Geometry . 10
12 Reuleaux’s method applied to one contact point. 11
13 Reuleaux’s method applied to 3 contact points. 11
14 Reuleaux’s method applied to the robot. 12
15 The robot is stable with only 3 handholds. 12
16 Stability Geometry . 12
17 Block diagram of overall system . 14
18 Sequence of robot configurations during a single cycle of a gait 17

ii

1 Introduction

The goal of the climbing robot project is to de-
velop a simple toy robot capable of climbing a
wall of pegs. A major focus of this project is to
keep the robot as simple as possible in order to
make it feasible for the general public to buy an
inexpensive kit for building the robot. There are
three climbing modes:

1. Manual remote control

2. Autonomous, with pre-recorded keyframes

3. Autonomous, using a simple cyclic gait

The robot is capable of climbing under man-
ual control through a Java interface and au-
tonomously on the basis of a set of pre-recorded
keyframe positions. For appropriate wall con-
figurations, a set of cyclic keyframes exists that
will make the robot climb the wall with a cyclic
gait. When executing a pre-recorded sequence
of keyframes, the robot climbs open-loop, with
no sensor feedback. The robot receives all of
its control communications through an infrared
(IR) receiver, and as a result, the robot’s tether
consists only of two wires for power.

In addition to building a simple toy robot, this
thesis explores problems related to grasping un-
der uncertain conditions. Most robot grasping
problems involve grasping a small object with a
large industrial manipulator; our robot can be
thought of as a small manipulator grasping the
entire climbing wall. Due to the lack of sensor
feedback, the robot is unable to correct its posi-
tion if it gets off course; it is necessary to plan
motions in a way that provides significant stabil-
ity and repeatability.

Knowledge of grasping under the more con-
strained conditions of the climbing wall can be
extended to more complex problems, including
the addition of a third dimension. To simplify
analyses of the climbing robot, it is considered
to be operating in only two dimensions. Adding
a third dimension to this system would require
additional servos on the robot to enable it to
navigate in this dimension, which would greatly
increase the complexity of the analyses. How-
ever, a robot capable of 3-dimensional climbing

should be capable of climbing any surface with
protrusions that can be gripped. Such a robot
might also be capable of rotating its arms down-
ward and walking on them, making it suitable
for a general purpose mobile robot capable of
operating in difficult terrain, such as rubble.

Section 1 discusses related climbing robot
projects, and examines possible applications
along with the research contributions of the toy
climing robot project. Section 2 details the phys-
ical construction of the robot, along with design
decisions that were made during the robot’s de-
velopment. Section 3 explores the problem of
planning a path up the climbing wall on both a
high and low level, and also looks at alternate
methods for climbing the wall. Section 4 dis-
cusses the mathematics of the climbing robot,
including the forward and inverse kinematics and
stability calculations. Section 5 describes the
software that is used to control the robot, in-
cluding host software and embedded software on
the robot. Finally, Section 6 details the ways in
which the robot was able to climb.

1.1 Related Work

Our toy robot is not the first climbing robot; it
is, however, the simplest, one of the lightest, and
the only one capable of climbing without sensor
input or significant computation. In this section,
we review three other climbing robot projects.

A group at Dartmouth under the supervision
of Stephen Linder is currently working on Tenz-
ing [5], a climbing robot initially developed dur-
ing the CS88/188 course in Spring 2004. Ten-
zing is considerably more complex and heavier
than the toy robot, and it employs several sens-
ing methods to assist in motion planning. It in-
terprets a live video feed to determine where the
robot is in relation to the handholds, and it has
force feedback sensors in its feet to determine if
it has a good grip or not. The general shape of
Tenzing is similar to the toy robot, although it is
larger. In addition, Tenzing has feet at the end of
the outer arm sections that rotate freely and are
used to actually stand on handholds. This dif-
ference allows Tenzing to stand with its arms at
any angle with respect to the handhold, whereas

1

the toy robot must place its arms directly on the
handholds at an angle that prevents it from los-
ing its grip. However, this enables us to explore
whole-body manipulation. Although the robot
as a whole is prehensile, the arms themselves are
non-prehensile.

Timothy Bretl of Stanford has developed a
path planning algorithm for JPL’s LEMUR II
robot [1]. This robot is capable of climbing walls
with arbitrarily shaped and angled handholds,
utilizing movements similar to those that a hu-
man climber would use. The design of this robot
is such that there is no definite “up” orientation
of the robot body. This allows the robot to ma-
neuver much more freely on the wall, as the body
can rotate around without affecting the range of
motion of the arms. The LEMUR II is similar
to Tenzing in that its arms can be at any angle
with respect to the handholds, as the end effec-
tor on its arms is a small peg wrapped in high-
friction rubber. The LEMUR II is a fairly heavy
robot, with a mass of 7 kg. It also has some ca-
pability of moving in 3-dimensions, as the outer
arm joints can pitch away from the climbing wall.
This gives the robot some freedom to move over
handholds with at least the outer sections of its
arms, rather than having to move around them.

Finally, Michigan State University has a pair
of climbing robots that use suction to climb on
smooth walls and ceilings [8]. The two robots,
Flipper and Crawler, use different principles for
their movement. Flipper has its suction cups
at the ends of a V-shaped pair of arms. As its
name implies, it flips end over end as it moves
across a surface. The robot’s motion is very sim-
ilar to brachiation (swinging from handhold to
handhold). However, the robot does not need
to search for a specific handhold; instead, all it
needs to do is to contact the surface with the
suction cup on the end of the arm. Crawler has
a straight frame that is capable of extending to
provide forward motion. Crawler is designed to
be very small and lightweight, weighing only 450
grams. The general motion of Crawler is similar
to a caterpillar’s motion, except for the fact that
Crawler does not lift its body to move forward.
Both Flipper and Crawler are more complex due
to their use of suction to maintain handholds,

Figure 1: Photograph of the robot

and are only capable of climbing on smooth sur-
faces.

1.2 Applications

The toy climbing robot will be of use to both
the general public and to the robotics commu-
nity. As outlined earlier, the public will bene-
fit by being able to play with a simple robot,
which should increase public interest in robotics.
There are no plans to market this particular
robot at this time, but the simple design al-
lows for such a possibility in the future. One
such possibility is to work with Acroname (http:
//www.acroname.com) to develop and market a
kit. Acroname has previously worked with MIT
and CMU, and has marketed CMU’s Palm Pilot
Robot Kit.

1.3 Research Contributions

The mimimalist design of the robot poses a num-
ber of interesting challenges:

1. Whole-body manipulation

2. Regrasping

3. Open-loop grasping

4. Cyclic gaits

5. Mobile manipulation

2

As the climbing robot does not have any spe-
cific end effector for gripping handholds, it uses
whole-body manipulation to grasp the climbing
wall. Any part of the robot can be used for grip-
ping a handhold. For example, there are situa-
tions where it is advantageous to contact a hand-
hold with an elbow servo or even with the inner
arm. Although it can be more difficult to plan
for a system utilizing whole-body manipulation,
it makes the system much more flexible.

The problem of regrasping can occur in any
sort of industrial system in which a part needs
to be regrasped from a different orientation. The
climbing robot extends the idea of regrapsing
more steps into the future than most typical ap-
plications. The robot regrasps the wall every
time it moves an arm to a new handhold. Thus,
over the course of an entire climb, the robot may
regrasp the wall more than 30 times.

Open-loop grasping is a significant challenge,
which again comes up in many industrial sys-
tems. Many solutions such as vibratory posi-
tioning systems and special fixtures exist to ori-
ent parts without the need for sensing. In all
of these cases, the key is to execute a series of
motions to place the object to be grasped in a
known configuration relative to the manipulator.
For a simple example, consider trying to grasp a
book from an arbitrary configuration. A method
for doing so involves dropping the book into a bin
and tilting the bin so that the book always ends
up in the same corner of the bin. The climbing
robot makes use of a similarly simple method to
attain a known configuration when it is using a
cyclic gait to climb.

Cyclic gaits are related to open-loop grasping.
As just mentioned, it is necessary to force the
robot into a known configuration to make it pos-
sible to repeat the cycle correctly. If the robot
does not have a recentering move, it may pro-
gressively move off course, which will eventually
lead to the robot falling. One recentering strat-
egy that was developed for the climbing robot in-
volves hooking the elbow joints over handholds.

As the climbing robot can be thought of as
both a mobile robot and as a manipulator grasp-
ing the wall, it is essentially a mobile manipula-
tor. As such, it explores the fact that mobility

and manipulation can be achieved by the same
set of controls.

2 Robot Design and Construc-
tion

The initial construction of the robot was done
by Devin Balkcom, my thesis advisor, over the
course of the Christmas break. This initial de-
sign was refined by the author during the course
of the thesis project. This section reviews the
physical components of the robot, and some of
the design decisions that were made.

2.1 Physical Description

Parts List

• Climbing Wall:

– Optical Bench Plate (2x2 ft)

– 1/4-20 screws

• Robot

– 8 1x8 flat LEGO pieces

– 1/2” pieces of additional 1x8 flat
LEGO pieces

– 8 micro servos

– Glue

– 1/4”, No. 0 screws

– Pontech SV203C (controller and IR re-
ceiver board)

– Velcro

– Cable ties

• Control System

– Host system with Java version 1.5

– Serial cable

– Pontech SV203C (controller and IR
transmitter board)

The robot body was formed from 4 micro ser-
vos that are glued together (Figure 2). The

3

Figure 2: Servos that make up the robot’s body

use of the servos as the robot’s body made it
unnecessary to build any sort of frame for the
robot, which simplified the design and reduces
the robot’s overall weight. The arms are 1x8
flat LEGO pieces, and were attached to the ser-
vos with screws and glue. The outer arms are
controlled by 4 additional servos attached to the
ends of the inner arms. Using a direct drive sys-
tem, with the elbow servos placed on the arms,
resulted in a simpler design as compared to a
pulley and belt system, with the servos mounted
on the robot’s body. The servo wiring was bun-
dled together with standard cable ties. Figure 1
is a photograph of the robot.

The servos are controlled by a Pontech
SV203C board, which is attached to the robot
with Velcro strips. The SV203C can be pro-
grammed using a subset of BASIC known as
SVBASIC. This board provides control for 8
servos, and is powered by a 6V power supply;
power regulation is built in to the SV203C. A
daughter board consisting of an IR transmitter
and receiver provides IR functionality. The IR
board on the robot only utilizes the IR receiver.
The host computer communicates with a second
SV203C through a serial connection; this second
board also has an attached IR board, of which
only the transmitter is utilized.

An optical bench plate and 1/4-20 screws were
used to create a climbing wall with handholds for
the robot. The optical bench plate was used for
the wall because it can be easiy reconfigured by

Figure 3: Method of attaching servos to inner
arms (the inner arm is on the left)

rearranging the screws. Also, because all of the
holes are threaded, the screws are very stable,
which is advantageous for improving the repeata-
bility of motions. A pegboard of the variety that
is used in a toolshed is a possibility for a cheaper,
lighter climbing wall, as is a bulletin board with
pushpins.

2.2 Design Decisions

Two main changes were made to the basic design
of the robot, involving the servo attachment and
the communication method. The servos at the
elbow joints were initially only attached to the
inner arms by one screw, which allowed the el-
bow joint to rotate slightly. Additional screws
and LEGO pieces were used to attach the elbow
servos to the inner arms at two points (Figure 3).

Communication with the robot was initially
accomplished through a standard serial connec-
tion. The serial connector on the robot end of
the cable created some difficulties due to its size
and weight. In particular, the robot tended to
tilt away from the wall, and the connector was
in the way of one of the elbow servos. The se-
rial communication method was replaced with
IR communication to remedy this problem.

The robot does not receive any feedback on
its progress on the wall because it does not uti-
lize any sensors. Sensors are an additional ex-
pense, and would have required additional wiring
and might have required a different type of con-
troller board, depending on the number of sen-

4

Figure 4: Climbing wall configuration

sors. However, sensors might make it easier to
climb the wall. Some possibile sensor configura-
tions are discussed in Section 3.1.

The climbing wall was configured by placing
the screws in a ladder-like configuration (Fig-
ure 4). This was done in part because of lim-
itations of the robot. The body of the robot
is in the same plane as the arms, and as a re-
sult, the robot cannot get past any obstacles that
the body might run into. For the gait, an even
more regular screw configuration was used. It
consisted of two vertical lines of evenly spaced
screws. Future work includes exploring other
wall configurations and climbing methods, such
as doing a traverse (sideways motion) across the
wall.

3 Path Planning Problem

The basic goal of the path planning algorithm
is to get the robot to the top of the wall. Along
the way, the robot must avoid obstacles (in other
words, it should not run into a peg with the body

or with the wrong side of an arm), and it must be
in a stable configuration throughout the climb.

The path planning task can be split into high-
level and a low-level tasks. The high-level plan
determines what overall sequence of handholds
should be used to climb the wall. The low-level
plan determines joint movements on a handhold-
to-handhold basis. The high-level plan may need
to at least use approximations of the low-level
plan in order to successfully compute a route;
however, this may not be necessary for all wall
configurations.

For the ladder-like configuration of the wall,
a relatively simple high-level plan can be used.
Specifically, the robot will move its lower two
arms to higher handholds. Next, the robot will
shift its body upwards while leaving the arms at
the current handholds. Finally, the robot will
move its upper two arms to higher handholds,
and possibly shift the body again if necessary.
This cycle will repeat until the robot reaches the
top of the wall.

Due to the fact that the two sides of the ladder
may not be perfectly vertical series of handholds,
it is necessary to perform low-level path plan-
ning for each movement of the robot. There are
two main subtasks associated with the low-level
planning. First, the planner needs to determine
a sequence of joint movements that will move an
arm from the current handhold to a new hand-
hold without colliding with any other handholds
on the way. This is accomplished through the
use of inverse kinematics calculations, which are
detailed in Section 4.2. Basically, inverse kine-
matics maps a desired (x, y) location for a speci-
fied point on the arm to the joint angles that will
cause the arm to be at the specified location. Us-
ing inverse kinematics, it is possible to calculate
the joint angles that will result in the arm resting
on the new handhold. To get from the current
handhold to the new handhold, the end of the
arm should follow a curve that keeps the arm
from colliding with the handhold (Figure 5). In-
verse kinematics can map this (x(t), y(t)) curve
to a (θ1(t), θ2(t)) curve to determine exactly how
to control the arm.

The second subtask of the low-level planner in-
volves calculating the stability of a given grasp of

5

Figure 5: Example of curve used for low-level
path planning

the wall. Methods for computing stability will be
discussed in Section 4.3. It is not enough for the
robot to be stable in a given grasp. The low-level
planner must also take into account portions of
the high-level plan. There are several questions
that the planner must take into consideration:

1. Is the current configuration (with all 4 arms
contacting handholds) stable?

2. When the robot begins to move one of its
arms (arm A) to a new handhold (only 3
arms are contacting handholds), will it still
be stable?

3. When arm A arrives at the new handhold
(all 4 arms are again contacting handholds),
is it in a stable configuration?

4. Is the positioning of arm A on this new
handhold capable of keeping the robot sta-
ble once the next arm (arm B) begins to
move?

5. Is the positioning of arm A on the new
handhold capable of keeping the robot sta-
ble (given arm B’s new position) when arm
C begins to move?

6. Etc.

Conditions 1 and 3 are actually redundant. If
condition 2 is true, conditions 1 and 3 must auto-
matically be true. This chaining of stability con-
ditions for each new arm movement ends when

Figure 8: Example of robot shifting body while
maintaining handholds

arm A moves to another new handhold. Figure 6
demonstrates this chaining through an example
of poor low-level planning. Figure 6(a) shows
the initial position of the robot. This is a sta-
ble configuration, although it is not a very good
configuration due to the positioning of arm D.
In Figure 6(b), arm B has moved to a new po-
sition. In Figure 6(c), arm A has also moved to
a new position. Although this configuration is
still stable, it is visibly precarious since arms A,
B, and D are all at the same angle. As soon as
arm C moves away from its handhold, the robot
will no longer be stable, and will slide down and
to the left. A better selection of movements is
diagrammed in Figure 7.

The complete stability planning problem in-
volves looking all the way ahead to the goal.
Searching for a feasible path to the goal may
involve standard searching algorithms, such as
depth or breadth first searches of a tree of moves
extending back from the goal position. To im-
prove the speed of the searching algorithm, a
greedy method might be developed that only
looks one step ahead.

If it is not possible to place arms into positions
that will result in stability during further moves,
it may be necessary for the low-level planner to
shift the robot body while maintaining the ex-
isting handholds in a way that will ensure future
stabilty (Figure 8).

6

A

B

C
D

(a) Initial position

A

B

C
D

(b) Arm B moved

A

B

C
D

(c) Arm A moved; moving C re-
sults in unstable position

Figure 6: Sequence of robot positions leading to an unstable configuration

A

B

C
D

(a) Initial position

A

B

C
D

(b) Arm B moved

A

B

C
D

(c) Arm A moved

Figure 7: Sequence of robot positions with good forward-looking stability

7

Figure 9: Position used to recenter the robot
during a gait cycle

3.1 Alternate Climbing Methods

Several alternate ways exist for the robot to
climb the wall. These include modifications to
the robot (sensors and ratchet arms), and mod-
ifications of the wall (vertical ladder). Adding
sensors to the robot would make it possible to use
sensor feedback to guide the robot as it climbs
the wall. The use of a vertical ladder was ex-
plored in this thesis, while the others represent
possible future work.

The alternate climbing method that was ex-
amined involves a regular configuration of the
wall; specifically, a ladder formed from two sets
of pegs in vertical lines. In this configuration,
and in any configuration that repeats as it pro-
gresses up the wall, it is possible to climb using
a cyclic gait. This greatly simplifies the problem
of finding a path up the wall, as it is only nec-
essary to find one complete cycle. The length of
the cycle is determined by the regularity of the
wall. For a ladder with perfectly vertical sides,
the cycle only needs to result in each arm of the
robot being one handhold higher up the wall.

In order for a gait to be successful, the robot
must not shift from side to side as it climbs up
the wall. Thus, it is necessary to perform some
motion or sequence of motions that returns the
robot to some known configuration. For a suffi-
ciently narrow ladder, the position shown in Fig-
ure 9 is capable of recentering the robot. In this
position, the robot hooks its upper arms over
the handholds at angles that cause the robot to
slide until the handholds are at the elbow joints.
For other configurations, it may be necessary for
the robot to fall slightly in order to become re-
centered. These recentering methods require the

robot to take some action in order to remove er-
ror from the system. Thus, the fact that the
robot is climbing open-loop encourages more ro-
bust trajectories to ensure success.

There are different possibile sensing methods
that can be used to provide feedback. The most
comprehensive method involves a vision system,
such as the one utilized by Tenzing. Vision pro-
vides complete information on the location of the
robot with respect to all of the pegs. This re-
moves many of the uncertainties involved with
open-loop climbing, as the robot’s internal rep-
resentation of where it thinks it is can be more
closely matched to where it actually is.

A much simpler sensing method involves the
use of current-sensing servos. These servos pro-
vide information about how much current they
are drawing. The amount of current draw in-
creases when the servo is meeting resistance, as
would be the case if the arm had run into an
obstacle. With this system, it might be possible
to climb a wall without any pre-existing knowl-
edge of the wall’s configuration. Essentially, the
robot would be climbing blindly, swinging its
arms around to find obstacles, and then using
them as handholds. A major disadvantage to
this system is that the robot might end up climb-
ing up a false path that does not lead to the top
of the wall. Simple touch sensors would provide
less information than current sensors, but they
should still yield enough information to allow the
robot to feel its way up the wall.

Ratchet arms might allow the robot to be ca-
pable of climbing in any arbitrary field of hand-
holds, especially if the robot body is raised away
from the wall to a sufficient distance that it will
not collide with handholds. The basic idea of a
rachet arm is an arm that can push past hand-
holds in one direction, but not in the other.
One possible method of accomplishing this is
to use spring-loaded arms that can bend down-
ward to allow the arm to push up past a hand-
hold, but that are prevented from bending up-
ward to allow the arm to rest on top of a hand-
hold. Another possible method involves attach-
ing a sloped plane to the upper portion of the
arm. This would cause the handhold to push
the arm outward as the servos move the arm up-

8

(x,y,Φ)

β
π r

l
1

l
2

Φ
d1

Φ
d2

D

BA

C

p
d2

Φ
c2

Φ
c1

α

Figure 10: Variables used in the forward kine-
matics calculation

wards. The current robot construction should
have enough flexibility in this dimension to make
this possible, but a spring-loaded system might
be necessary. If the arbitrary field of hand-
holds is dense enough, a robot with ratchet arms
should be able to climb blindly using a cyclic
gait.

4 Mathematical Analysis

Mathematical analyses were performed to deter-
mine the forward and inverse kinematics of the
robot and to examine the stability of the robot in
different configurations. The forward kinematics
equations are used in the GUI that controls the
robot. The stability calculations are currently
used as a tool for designing gaits. Future work
would involve combining the inverse kinematics
and stability calculations as part of the auto-
matic planning software.

4.1 Forward Kinematics

Forward kinematics (FK) maps the configuration
of the climbing robot, given below as q, to the
(x, y) positions of the endpoints of the arms. It
is also possible to compute the (x, y) positions
of the joints as intermediate steps in the overall
FK calculation if desired. Figure 10 indicates
the physical meanings of the variables used in
computing the forward kinematics.

The configuration of the climbing robot is

given by

q =




x
y
θ

θa1

θa2

θb1

θb2

θc1

θc2

θd1

θd2




, (1)

where x, y, and θ are the position and rotation
of the robot’s body, and the remaining θin values
represent the angles of the various arm servos. i
represents the arm, where A is the lower left arm,
B is the lower right, C is the upper left, and
D is the upper right. The number n represents
whether the servo is the inner servo (n = 1) or
the outer servo (n = 2).

Let cijk··· and sijk··· represent cos(θi +θj +θk +
· · ·) and sin(θi+θj+θk+· · ·), respectively. Taking
arm D as an example, we see that

pd0 =

(
xd0

yd0

)
=

(
x + rcθδ

y + rsθδ

)
(2)

pd1 =

(
xd1

yd1

)
=

(
x + rcθδ + l1cθd1

y + rsθδ + l1sθd1

)
(3)

pd2 =

(
xd2

yd2

)
(4)

=

(
x + rcθδ + l1cθd1 + l2cθd1d2

y + rsθδ + l1sθd1 + l2sθd1d2

)
(5)

= Rθ

(
x + rcδ + l1cd1 + l2cd1d2

y + rsδ + l1sd1 + l2sd1d2

)
(6)

Rθ is defined as

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. This is

a rotation matrix, which has the effect of rotating
the x, y coordinates by θ.

These equations can be combined into the fol-
lowing form to describe the endpoints of all 4

9

arms at once (each 0 represents a 2x2 matrix of
zeros):

Rθ =




Rθ 0 0 0
0 Rθ 0 0
0 0 Rθ 0
0 0 0 Rθ


 (7)

p2 = Rθ ·




x + rcα + l1ca1 + l2ca1a2

y + rsα + l1sa1 + l2sa1a2

x + rcβ + l1cb1 + l2cb1b2

y + rsβ + l1sb1 + l2sb1b2

x + rcγ + l1cc1 + l2cc1c2

y + rsγ + l1sc1 + l2sc1c2

x + rcδ + l1cd1 + l2cd1d2

y + rsδ + l1sd1 + l2sd1d2




(8)

p1 and p0 are similarly defined for the elbow
and shoulder joints, respectively.

4.2 Inverse Kinematics

Inverse kinematics (IK) maps the (x, y) position
of a point on the arm to the joint angles that will
position the arm at the desired (x, y) position.
Since the arm doesn’t need to contact a handhold
at the end of the arm (it is actually undesirable
to do so), the IK equations have been modified
to give the range of angles for which contact with
a handhold occurs.

Since all four arms are symmetrical, the fol-
lowing derivation only considers one of the arms,
which is modeled as a 2R arm with a fixed base.
The configuration of the arm is given by

q =

(
θ1

θ2

)
(9)

The links in the arm have lengths l1 and l2.
For what ranges of θ1 and θ2 is there a collision
between l2 and a point A at (x, y)? To reduce
the number of solutions, only those values for
which 0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ π are consid-
ered. Heuristically, the climbing methods that
yield the most stability have these constraints.

Let u be the distance from the second revolute
joint (the elbow) along l2 to the point of collision.
Given the joint constraint, the minimum value of
u occurs when θ2 = 0 and θ1 = arctan

(y
x

)
. This

value is umin =
√

x2 − y2 − l1.

Φ

β

π-�
2

�
2

α

c

l
2

l
1

x

y
�
1

u

Figure 11: Inverse Kinematics Geometry

The maximum value of u is clearly l2, at which
point the end of the arm will be touching point
A. The following standard inverse kinematics
calculation gives θ1 and θ2 for this configuration:

Consider the geometry in Figure 11, with c =√
x2 + y2. By the Law of Cosines, c2 = a2 +b2−

2ab cos(C), we have

x2 + y2 = l21 + l22 − 2l1l2 cos(π − θ2) (10)
x2 + y2 − l21 − l22

−2l1l2
= cos(π − θ2) (11)

θ2 = arccos

(
x2 + y2 − l21 − l22

2l1l2

)
(12)

Because of the joint constraint on θ2, one of
the two solutions produced by the above calcu-
lation can be discarded. To compute θ1, the Law
of Cosines is applied again.

l22 = x2 + y2 + l21 − 2l1

√
x2 + y2 cos(β) (13)

l22 − l21 − x2 − y2

−2l1
√

x2 + y2
= cos(β) (14)

β = arccos

(
l22 − l21 − x2 − y2

−2l1
√

x2 + y2

)
(15)

Once again, due to the geometry, one of the
two solutions for β can be discarded. From the
figure, we have θ1 = φ + β. Thus:

θ1 = β + arctan2 (y, x)

θ2 = arccos
(

x2+y2−l21−l22
2l1l2

)
}
⇒ umax = l2 (16)

10

-

-

-

-

-

+

+

+

+

+
+

A

B

Figure 12: Reuleaux’s method applied to one
contact point.

θ1 = arctan2 (y, x)
θ2 = 0

}
⇒ umin = c− l1, (17)

where arctan2(y, x) is the 2-argument arct-
angent function provided by standard math li-
braries in C and Java. This function takes into
account the signs of y and x when computing the
arctangent.

If l1 is replaced with u = [
√

x2 + y2 − l1, l2] in
equation 16, it results in a range of θ1, θ2 values
for which contact with point A occurs somewhere
along the outer arm.

4.3 Stability

We analyze the stability of the robot using
two methods, one geometric, and one algebraic.
Both methods describe the possible free motions
that the system can exhibit. The first method,
Reuleaux’s Method, is a graphical method. The
second method is an algebraic method involving
the normals at the contact points.

4.3.1 Reuleaux’s Method

Reuleaux’s method [7] is a graphical method that
uses the contact normals to determine free mo-
tions. This method is based on the well-known
theorem, mentioned in Mason [6], which states
that every instantaneous motion of a planar rigid

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

+

Figure 13: Reuleaux’s method applied to 3 con-
tact points.

body can be described as a differential rotation
about an instantaneous rotation center, possibly
at infinity.

As an example, consider the basic case given
in Figure 12. The triangle has one point contact,
with the normal as shown. Extending the nor-
mal divides the space into two half-planes. For
any rotation center in the right half-plane (such
as point A), only negative rotations are possi-
ble. For any rotation center in the left half-plane
(point B), only positive rotations are possible.
As each new contact point is added, it is consid-
ered in the absence of the other contact points.
Once all of the positive and negative rotation re-
gions have been identified, only the regions with
only positive or only negative rotations will al-
low free motions that do not cause penetration.
If two more contact points are added to the tri-
angle example (Figure 13), the free motions are
reduced to only positive rotations in the shaded
region.

Adding gravity to the system is a simple step.
Gravity can be thought of as a point contact that
prevents upward motion of the center of mass.
Thus, it can be drawn by a downward normal at
the center of mass. Applying all of these con-
cepts, it is possible to determine the possible ro-
tation centers for the configuration of the climb-

11

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-
- +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

Figure 14: Reuleaux’s method applied to the
robot.

-

-

-

-

-

-

--
-

-

- -
-

-

-

-

-
- +

+

++

+

+

+

+

+

+

+

+

+

-

Figure 15: The robot is stable with only 3 hand-
holds.

x

y

gravity

(x
a
,y

a
)

(x
c
,y

c
)

(x
d
,y

d
)

(x
b
,y

b
)

(x
g
,y

g
)

Figure 16: Stability Geometry

ing robot given in Figure 14. As shown in the
figure, there are no possible rotation centers. It
can also be shown that the robot can be stable
with only 3 handholds and gravity (Figure 15).

4.3.2 Algebraic Method

Although Reuleaux’s method is very descriptive
about possible free motions, it is difficult to im-
plement in code. Therefore, it was necessary to
compute possible free motions using an algebraic
method as well. The basic concept of the al-
gebraic method for calculating the possible free
motions of a system involves comparing the ve-
locity vectors of the contact points to the normal
vectors of the contacts. If the velocity is in the
half-plane formed by the normal, then the veloc-
ity is permissible. For this derivation, Figure 16
details the variables and geometry.

This calculation assumes that the robot is a
rigid body, and that it is capable of locking its
arms such that they do not move at all. The
configuration of the robot is given by

q =




x
y
θ


 (18)

Let x be a vector that collects all of the contact

12

points:

x =




xa

ya

xb

yb

xc

yc

xd

yd

xg

yg




(19)

xg = (xg, yg) represents the “contact point” of
the gravitational force. The coordinate system is
defined to have its origin at the center of mass
(the weight of the arms is neglected), and thus
xg = (0, 0).

Additionally, define the normal vectors as fol-
lows, and collect them into a matrix N (each 0
in N is a 2-vector of zeros):

na =

(
sin(θ + θa1 + θa2)
− cos(θ + θa1 + θa2)

)
(20)

nb =

(
− sin(θ + θb1 + θb2)
cos(θ + θb1 + θb2)

)
(21)

nc =

(
sin(θ + θc1 + θc2)
− cos(θ + θc1 + θc2)

)
(22)

nd =

(
− sin(θ + θd1 + θd2)
cos(θ + θd1 + θd2)

)
(23)

ng =

(
0
−1

)
(24)

N =




na
T 0 0 0 0

0 nb
T 0 0 0

0 0 nc
T 0 0

0 0 0 nd
T 0

0 0 0 0 ng
T




(25)

We will compute the free motions of the robot,
q̇(t), as a function of q(t). x = f(q), where
f is the forward kinematics map, as calculated
in Section 4.1. Then, taking the time deriva-
tive, ẋ = J(q)q̇, where J is the Jacobian ma-
trix of partials of f with respect to q. Rather

than compute these partials directly, we use the
“cross-product method” [2] for calculating the
Jacobian:

J =




x̂ ŷ ẑ× xa

x̂ ŷ ẑ× xb

x̂ ŷ ẑ× xc

x̂ ŷ ẑ× xd

x̂ ŷ ẑ× xg




(26)

x̂, ŷ, and ẑ are the direction vectors. Because
xg = (0, 0), the term ẑ × xg is zero. Comput-
ing N · J yields a matrix that converts velocities
of the configuration variables to velocities of the
contact points in the direction of the normals.

JN = N · J (27)

=




nax nay na
T · (ẑ× xa)

nbx nby nb
T · (ẑ× xb)

ncx ncy nc
T · (ẑ× xc)

ndx ndy nd
T · (ẑ× xd)

ngx ngy 0




(28)

Thus, JN q̇ represents the velocities of the con-
tact points along the normals. If JN q̇ ≥ 0, then
motion is possible along the contact normals and
along the “virtual contact” due to gravity. if
JN q̇ ≤ 0, for any q̇, free motion is not possible,
and the configuration is stable.

The above form (Ax ≤ 0) is known as the
face-normal representation of a polyhedral con-
vex cone (PCC). In this form, each row ai of A is
a normal to a half-plane which forms a half-space
in 3-dimensional space. The intersection of all of
these half-spaces is the PCC. If x (in this case,
q̇) lies in the PCC, then it is a valid solution to
the inequality. For the purposes of computing
stability, it is necessary for the PCC to contain
only q̇ = 0.

It can be determined if a configuration is stable
by testing to see if the PCC is empty. It is possi-
ble to convert the face-normal representation to
an edge-normal representation [3, 4], from which
it can be determined if the edges contain only the
origin. Finding stable configurations is more dif-
ficult, as it is necessary to determine how chang-
ing the configuration will affect the PCC. For the

13

Java

software on

host system

Tx board

Rx board Servos

Figure 17: Block diagram of overall system

climbing robot, the PCC has 5 faces. Four faces
are sufficient to reduce the PCC to just the ori-
gin. This should make it slightly easier to find
a stable configuration. If we had infinite compu-
tation capabilities, the best way to find a con-
figuration yielding an empty PCC would be to
start with one arm at some given position, and
to choose the positions of the remaining arms
such that each new arm reduced the PCC by as
much as possible. Essentially, we are sampling
to find a PCC that is empty. With less com-
putational power, a probabilistic method will be
necessary.

5 Robot Control

As described earlier, the robot is controlled
through IR communications. This relies on three
main pieces of software (Figure 17). The host
system runs a Java application that sends com-
mands through a serial cable to the transmitter
SV203C (Tx board). Code written in SVBA-
SIC runs on the Tx board, and retransmits the
commands along with a checksum to the receiv-
ing SV203C (Rx board). Additional SVBASIC
code on the Rx board interprets and verifies the
commands before moving the appropriate servo.

5.1 Embedded System Code

The SV203C boards contain microcontrollers
that can be programmed in SVBASIC. The
SVBASIC code is converted to assembly by an

assembler on the host system, and the corre-
sponding hex file is downloaded to the SV203
through a serial cable. Both boards are set to
automatically start running their respective pro-
gram when they are powered up.

5.1.1 Tx Board

Code 1 Pseudocode for the Tx board

• Wait for memory location 186 to
become 1 //This is changed by serial
commands

• Transmit memory location 184
(ServoNumber) via IR //Set by serial

• Transmit memory location 185
(ServoPosition) via IR //Set by
serial

• CheckSum = ServoNumber +
ServoPosition

• Transmit CheckSum via IR

• Reset memory location 186 to 0

The pseudocode for the Tx board is listed
in Code 1. It is not possible to command the
SV203C to send IR data directly through serial
commands. Thus, it was necessary to write code
to monitor a specific memory location (which can
be set by a serial command). The host system
should write the servo number and position first,
and then set memory location 186 to 1. This trig-
gers the transmission of 3 bytes of data to the
robot (Servo number, servo position, and check-
sum).

5.1.2 Rx Board

The pseudocode for the Rx board is listed in
Code 2. This code needs to perform some basic
error checking to make sure that the IR data was
correctly received. Early tests of the IR system
demonstrated that bad bytes do occasionally get
received, which caused the servos to jump ran-

14

Code 2 Pseudocode for the Rx board

• Set State = 0

• IRWait: Wait until IR data is
received

• If State = 0

– If the received byte is a valid
servo number (1≤ServoNumber≤8),
then save it and set State = 1

– Go to IRWait

• If State = 1 Then save the received
byte as the servo position, set
State = 2, and go to IRWait

• If State = 2

– ChecksumExpected = ServoNum +
ServoPos

– If ChecksumExpected matches the
received byte, move ServoNum to
ServoPos

– In either case, set State = 0

– Go to IRWait

domly. The checksum was implemented to pre-
vent this from happening.

The Rx board functions as a small state ma-
chine, and deals with the received IR byte ac-
cording to the state. It expects to receive a servo
number, servo position, and a checksum. If the
transmission gets out of sync, either the servo
number validity check or the checksum verifica-
tion will eventually resync the Tx and Rx boards.

5.2 Host System Code

The host system runs a Java program that pro-
vides a GUI interface to the robot. The first
revision of the program only provided sliders
that controlled the servos. This was replaced
with a version that used the forward kinemat-
ics equtions to draw a pictorial representation of
the robot’s current position. The robot’s arms
are controlled by selecting a servo and using the
up and down arrows on the keyboard to provide
smooth motions.

The host software provides the capability to
record keyframes to a file, and to later play them
back without the delays between motions that
result from planning the next move during man-
ual operation. A significant advantage of the
keyframe system is that it makes it possible to
shift all of the servos together (as shown ear-
lier in Figure 8), which is difficult to do during
manual control. This is done by looping over all
8 servos. If any servo is not at the position of
the next keyframe, it is incremented or decre-
mented by 1, as appropriate. This is not true in-
terpolated movement, as some servos may arrive
at their goal positions much sooner than others.
Moving multiple servos at once requires a longer
delay between serial commands than moving a
single servo. The reason for this has not been
determined; it is possible that the SV203C takes
extra time to switch between controlling differ-
ent servos.

6 Results and Conclusions

The robot is capable of climbing under manual
control and on the basis of a set of pre-recorded
keyframes. In addition, a cyclic gait has been

15

developed for climbing a vertical ladder configu-
ration of the wall.

To reiterate, the three main climbing modes
are

1. Manual remote control

2. Autonomous, with pre-recorded keyframes

3. Autonomous, using a simple cyclic gait

In manual control mode, the robot is directly
controlled by the human operator. The operator
manipulates the robot through the sliders in the
Java GUI. Commands are sent to the Tx board
through the serial port, and then on to the Rx
board through IR. This is the slowest method of
control, primarily because it takes time for the
operator to decide which arm should be moved
next. However, this mode is very reliable, as
there is an inherent feedback system through the
operator’s vision.

I have successfully used this manual control
system to climb the wall pictured in Figure 4.
Through doing this, I was able to get a good
feel for stable positions, and to use this for later
implementation of the gait. A major benefit of
manual control is that some sideways motion was
possible. I could use an arm to push or pull
sideways on a handhold to slide the robot, which
would be difficult to do automatically due to the
effects of friction.

During one of the climbs on the wall, I
recorded the keyframes using the recording func-
tion of the GUI. It was easily possible to man-
ually modify and splice together the files con-
taining the recorded keyframes. This made it
possible to create keyframe recordings piece by
piece. I could climb some distance, and if the
robot got into a difficult position, I could remove
the last few keys, play back the good keys, and
start recording from the ending position of the
previous set of keys. During these pre-recorded
climbs, it was necessary to be very precise in po-
sitioning the robot on the wall in its initial po-
sition. The robot needed to be within about 0.5
cm of the initial position to successfully climb the
wall. Through this process, I was able to make
the robot climb up 2 rows of handholds using a

single set of about 60 keyframes. This also as-
sisted in later development of the gait, as I was
able to observe one of the recentering motions
that was later used in the gait.

With the wall in a perfectly vertical ladder
configuration, the robot can climb using a cyclic
gait (Figure 18). The first cycle of the gait was
manually operated and recorded. The result-
ing keyframes were then cycled eight times, en-
abling the robot to climb to the top of the wall in
about 10 minutes. This yields an upward speed
of about 0.8 pegs per minute.

The gait begins at the bottom of Figure 18 and
proceeds upward. The robot begins by lifting
the left leg and then the right leg onto higher
handholds. In the process of moving the right
leg, it is necessary to move the right arm to lift
the entire robot upward slightly. Next, the robot
performs the recentering move (center image). In
this move, it hooks the arms over the pegs, and
lifts the entire body. Then, the left and right
arms are moved to higher handholds. Finally,
the robot returns all of the joints to their initial
positions so that the cycle can repeat itself.

A toy rock climbing robot was successfully de-
veloped. Although it is not capable of truly au-
tononmous climbing, it can climb a ladder using
a cyclic gait in an open-loop mode. It achieves
this through the use of a recentering motion that
ensures that the robot is correctly positioned
during each cycle. Currently, this recentering oc-
curs during the middle of the cycle, and as such,
some care is required in the initial positioning of
the robot. If the robot were produced as a kit
marketed to the general public, it would prob-
ably be necessary to perform the recentering at
the start of the climb. The robot is sufficiently
simple that it could be marketed as a kit. The
robot does not require a bulky tether to operate
correctly, and the GUI is fairly easy to use.

This thesis has also explored the mathematics
involved in robotic climbing, including the for-
ward and inverse kinematics, and calculations of
stability. In the future, these could be integrated
into a full path planning algorithm to make the
robot completely autonomous. Various high and
low-level path planning strategies have been ex-
amined. The cyclic gait method has been suc-

16

Figure 18: Sequence of robot configurations during a single cycle of a gait

17

cessfully implemented for one wall configuration,
and other gaits could be developed for other reg-
ular configurations. It is possible that a general
gait could be developed for a set of similar con-
figurations, provided that a generic recentering
strategy exists.

There are several potential areas of further ex-
ploration. A full path planning algorithm could
be developed to allow the robot to climb any wall
based only on knowledge of the locations of the
pegs. A general-purpose cyclic gait could exist
for a certain set of wall configurations. Sensors
could be added and incorporated into the climb-
ing algorithm, and the robot itself could be re-
designed to allow it to climb blindly without any
knowledge of the wall. The work contained in
this thesis forms the basis for these areas of fur-
ther research.

7 Acknowledgments

I would like to express my sincere gratitude to
my advisor, Devin Balkcom, for developing the
initial thesis idea and for building the basic form
of the robot. His help with understanding the
mathematical basis for the climbing robot was
also very valuable. I would also like to thank
Stephen Linder for his suggestions and his assis-
tance with getting the Pontech boards to work.
Finally, I would like to thank Anne Loomis, Nel-
son Rosa, Joseph Pechter, and my parents for
reviewing early versions of this thesis.

References

[1] T. Bretl, S. Rock, J. C. Latombe, Brett
Kennedy, and Hrand Aghazarian. Free-
climbing with a multi-use robot. In Inter-
national Symposium on Robotics Research,
2004.

[2] John J. Craig. Introduction to Robotics: Me-
chanics and Control. Addison-Wesley, second
edition, 1989.

[3] A. J. Goldman and A. W. Tucker. Polyhe-
dral convex cones. In H. W. Kuhn and A. W.
Tucker, editors, Linear Inequalities and Re-
lated Systems, pages 19–40. Princeton Univ.,
York, 1956.

[4] S. Hirai. Analysis and Planning of Manipula-
tion Using the Theory of Polyhedral Convex
Cones. PhD thesis, Kyoto University, March
1991.

[5] Stephen Paul Linder, Edward Wei, and
Alexander Clay. Robotic rock climbing us-
ing computer vision and force feedback. In
IEEE International Conference on Robotics
and Automation, 2005.

[6] Matthew T. Mason. Mechanics of robotic
manipulation. MIT Press, 2001.

[7] Franz Reuleaux. The Kinematics of Machin-
ery. MacMillan, 1876. Reprinted by Dover,
1963.

[8] Jizhong Xiao, Jun Xiao, and Ning Xi. Min-
imal power control of a miniature climbing
robot. In IEEE/ASME International Confer-
ence on Advanced Intelligence Mechatronics,
pages 616–621, July 2003.

18

	A toy rock climbing robot
	Recommended Citation

	tmp.1596484807.pdf.2Ip4G

