
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2004

Synchronizing Keyframe Facial Animation to Multiple Text-to-Synchronizing Keyframe Facial Animation to Multiple Text-to-

Speech Engines and Natural Voice with Fast Response Time Speech Engines and Natural Voice with Fast Response Time

William H. Pechter
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pechter, William H., "Synchronizing Keyframe Facial Animation to Multiple Text-to-Speech Engines and
Natural Voice with Fast Response Time" (2004). Dartmouth College Undergraduate Theses. 38.
https://digitalcommons.dartmouth.edu/senior_theses/38

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/38?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Synchronizing Keyframe Facial Animation to
Multiple Text-to-Speech Engines and Natural

Voice with Fast Response Time

A Senior Honors Thesis
Submitted to the faculty

in partial fulfillment of the requirements for the
Degree of Bachelor of Arts in Computer Science

Dartmouth Computer Science Technical Report TR2004-501

by

William H. Pechter
Dartmouth College

Hanover, NH
May 2004

 Lorie Loeb

 Hany Farid

 Stephen Linder

i

Abstract

This thesis aims to create an automated lip-synchronization system for real-time
applications. Specifically, the system is required to be fast, consist of a limited number
of keyframes with small memory requirements, and create fluid and believable
animations that synchronize with text-to-speech engines as well as raw voice data.

The algorithms utilize traditional keyframe animation and a novel method of
keyframe selection. Additionally, phoneme-to-keyframe mapping, synchronization, and
simple blending rules are employed. The algorithms provide blending between keyframe
images, borrow information from neighboring phonemes, accentuate phonemes b, p and
m, differentiate between keyframes for phonemes with allophonic variations, and provide
prosodromic variation by including emotion while speaking. The lip-sync animation
synchronizes with multiple synthesized voices and human speech. A fast and versatile
online real-time java chat interface is created to exhibit vivid facial animation.

Results show that the animation algorithms are fast and show accurate lip-
synchronization. Additionally, surveys showed that the animations are visually pleasing
and improve speech understandability 96% of the time. Applications for this project
include internet chat capabilities, interactive teaching of foreign languages, animated
news broadcasting, enhanced game technology, and cell phone messaging.

ii

Table of Contents

Chapter 1 – Introduction...1

Chapter 2 – Phonetic Transcription and Phoneme Alphabets3
2.1 Phonetics and Phonemes..3
2.2 The International Phonetic Alphabet: Phonemic versus Phonetic
Transcription ..3
2.3 Choosing Phonemic Transcription..4
2.4 Phoneme Alphabets Used ..4

Chapter 3 – Lip-Sync Animation and Diphone Durations5
3.1 Text-to-Speech Engines, Diphones, and Prosodromic Variation5
3.2 Interfacing Festival Text-to-Speech with Animation ...6

Chapter 4 – Articulation of Phonemes and Choosing Eight Keyframes for
Animation ..8
4.1 Keyframe Assignment ..8
4.2 Articulation of Consonants ...10
4.3 Articulation of Vowels..11
4.4 Articulation of Diphthongs ..12
4.5 Creating Strip Files with In-Betweens..12

Chapter 5 – Using X-sheets and Loading into the Master Data Structure14
5.1 Parsing Phoneme and Word Data Files ...14
5.2 X-Sheets and Aligning the Data ..15
5.3 Master Data Structure ...17

Chapter 6 - The Simple Blending Function – Smoothing Transitions between
Keyframes ...19

Chapter 7 – Complex Blending Rules ...23
7.1 Blending Within Phonemes – Assigning Multiple Keyframes to Diphthong
Phonemes ...23
7.2 Modifying/Grouping Blending Rules ..24
7.3 Adding Prosodromic Variation ..24
7.4 Stealing Frames..26
7.5 Accentuating Phonemes /b/, /p/, and /m/ ..26
7.6 Allophonic Variation and the Decision Algorithm for Phonemes /d/, /l/, 27
and /v/...27
7.7 Evaluation ...27

Chapter 8 – Applications ..29
8.1 Introduction..29
8.2 Java Implementation of Animation over IP ...29

iii

8.3 Speech-to-Text Voice with Animation over IP ...29
8.4 Scalability ..30
8.5 Future Work ...30

Appendix A ..32

Appendix B ..35

iv

List of Figures

Figure 1.1 Project Overview...2

Figure 3.1. Phoneme and Diphone Wave Data...6
Figure 3.2 Phoneme Data to JWAnimate ...7

Figure 4.1 Phoneme Assignment ..8
Figure 4.2. Keyframes...9
Figure 4.3. Places of Articulation (Hall 2004)..10
Figure 4.4. American English Vowel Space (Venditti 2002)11
Figure 4.5. Strip-File...12

Figure 5.1. Master Data Structure...18

Figure 6.1. Keyframe Assignment and Frame Durations for “I love you”...............19
Figure 6.2. Strip File Offsets...20
Figure 6.3. Before Simple Blending ...21
Figure 6.4. After Simple Blending I ...22
Figure 6.5. After Simple Blending II ..22

Figure 7.1. Blending within Phonemes for “hide”..24
Figure 7.2. Frame Durations and Strip File Offsets for “I love you” using
Simple Blending and without prosody...25
Figure 7.3. Frame Durations and Strip File Offsets after Addition of Blending
within Phonemes and Prosody...25
Figure 7.4. Stealing Frames ..26
Figure 7.5. Accentuating Phonemes b, p, and m ..27

Figure 8.1. Avatar-over-IP..29
Figure 8.2. New Keyframes ..31

v

List of Tables

Table 3.1. Phoneme Alphabets and Pronunciation Dictionaries...............................7

Table 4.1. Consonant Phoneme-to-Keyframe Mapping ...11
Table 4.2. Vowel and Diphthong Phoneme-to-Keyframe Mapping.........................12
Table 4.3. Summary of Phoneme-to-Keyframe Mapping ...13

Table 5.1. X-Sheet 1 ...15
Table 5.2. X-Sheet 2 ...16

Table 6.1. Keyframe Assignment to “I love you” ..19

1

Chapter 1 – Introduction

Humans learn to use auditory and visual cues to comprehend speech from an early
age. Lip-reading – one type of visual cue – is not only a tool for the deaf; people with
normal hearing use visual information to aid in the understanding of audio signals.
Studies reveal that when audio degradation is present, visual cues are particularly helpful
(Waters 1994).

Animated avatars – virtual representations of human figures – are capable of
improving the comprehension of speech by offering accurate lip-synchronization of
speech. Both text and speech drive facial animation systems. Text-driven facial
animation involves the use of a text-to-speech engine to provide both a synthesized voice
and phoneme timing data for animation rules. Speech-driven facial animation is achieved
by obtaining phoneme timing data directly from the speech signal.

Lip-sync animation involves synchronizing timing data derived from speech and
the formulation of animation rules. Currently available software employ 3D facial
models, complex wire-frames, skin and muscle wrappers, and manipulation of facial
movement (“Façade” 2001). Typically, 3D characters require complex lip-sync
animation rules, varying adjustment, and training rules to enable the mouth to work
correctly (Kakumanu et al. 2001). Additionally, existing facial animation software lacks
visual simplicity. Lip-sync animation performed with elaborate faces often causes
unreasonable expectations of the character, and an elevated attention to the inaccuracies
caused by synchronizing animation to speech. The complex faces may look cluttered,
unappealing, and the synchronization appears awkward.

Conversely, when less complex characters are successfully animated, the simplest
and slightest facial movements are more fully appreciated by the viewer. These simpler
images leave more to the viewer’s imagination, and are thereby easier to accept and to
identify with. For example, virtual pet keychains are popular because people can relate to
the simple images. Thus, the employment of carefully constructed simple images
provides the viewer with enhanced overall enjoyment of the animation.

Accordingly, simple images make the facial animation system uncomplicated as
fewer images are required to convey highly effective speech. Facial animation rules
relying on fewer keyframe transitions are easier to implement. Additionally, the facial
animation system benefits from decreased memory requirements. This aids in making
the system fast, especially if images are preloaded. By utilizing a small number of
keyframes displaying simple images, the original software developed for this thesis
produces faster lip-synchronization that is also highly enjoyable for the viewer.

The requirement of accurate synchronization between speech and animation
complicates even the simplest facial animation rules. The phoneme timing data obtained
from text-to-speech engines strictly constrains the facial animation model. However, by
merely focusing on precise synchronization with phoneme timing data, the believability
of many existing programs suffers, as certain phonemes are merely represented by
opening and closing the mouth (Comet 1998). While this thesis exploits the framework
of strict synchronization timing rules, it manipulates them is such a way as to incorporate
timing adjustments for more believable lip-sync animation.

Thereby, this thesis aims to create an automated lip-sync system for real-time
applications. Specifically, the system is required to be fast, use a limited number of

2

keyframes, and create fluid and believable animations that synchronize with text-to-
speech engines as well as raw voice data.

Figure 1.1 Project Overview

Chapters 2 and 3 of this thesis describe the input stage: Chapter 2 outlines the

process of narrowing down speech sounds to be used as input for the facial animation,
and Chapter 3 explains voice synthesizer selection as well as the phoneme data chosen as
input for the facial animation.

The image selection stage is described in Chapters 4 and 5. Here, the techniques
of narrowing down to a limited number of keyframes by examining articulation points are
described. Additionally, these chapters describe the process of keyframe-to-phoneme
mapping and the creation of strip-files. Chapter 5 describes the creation of X-sheets and
the subsequent loading of phoneme and word timing data into a Master Data Structure.
 Chapters 6 and 7 describe the novel lip-sync algorithms and timing refinements.
Chapter 6 outlines the simple blending algorithm and the synchronization method. Then,
Chapter 7 presents the addition of more complex rules to increase fluidity and
believability of speech. Here, the complex blending algorithms are described – blending
within phonemes, stealing-frames, accentuating phonemes b, p and m, deciding between
keyframes for phonemes with allophonic variations, and providing prosodromic variation
by including emotion while speaking.

Finally, Chapter 8 describes the original Avatar over IP animation program
written in Java. In this program, all of the lip-sync and emotion algorithms are applied,
and users are able to run the program over the Internet via a chat interface. Multiple
voices and avatars may be selected. Applications and future work is discussed.

3

Chapter 2 – Phonetic Transcription and Phoneme Alphabets

2.1 Phonetics and Phonemes

Synchronizing animation to the spoken word requires an understanding of phonetics,
the study of spoken language and speech sounds. Developing a standardized way to
transcribe English sounds is difficult as the English language is not written as it is
spoken: there is no 1-to-1 mapping between letters and sounds. In English, there are
silent letters (‘knife’), combinations of the same letters that have different pronunciation
(‘tomb’ and ‘bomb’), combinations of different letters that have the same pronunciation
(‘see’ and ‘sea’), along with numerous other linguistic subtleties. To solve these
pronunciation discrepancies, a standardized pronunciation guide is required.
Additionally, while many words are easily differentiable for a fluent English speaker, the
exact pronunciation of foreign words, or names, may be difficult to discern. Similarly, if
the speaker uses a different dialect, this information is not sufficiently transcribed using
written English.

Of the 26 letters in the English alphabet, 5 (a,e,i,o,u) are vowels, and the remaining
21 are consonants. In phonetics, there are around 24 consonant sounds and 19
vowel/diphthong sounds, totaling approximately 43 sounds that encompass the English
language; these distinct sounds are called phonemes (Singh 1976). The exact number of
phonemes varies between phoneme alphabets, as some alphabets group certain sounds
together (making the alphabet smaller than 43), or have separate symbols representing
variations on the stress applied to a phoneme based on its placement within a word or
sentence (making the alphabet much larger than 43). Most phoneme alphabets, however,
tend to have around 43 phonemes. One of the most widely known standard phoneme
alphabets is the International Phonetic Alphabet.

2.2 The International Phonetic Alphabet: Phonemic versus Phonetic Transcription

By means of phonetic transcription, the International Phonetic Alphabet (IPA)

provides one of the most technical ways to transcribe orthography (the written word) into
phonetic representation. Phonetic transcription differs from phonemic transcription in
that phonemic transcription simply combines acceptable variations of the 43 phonemes,
whereas phonetic transcription provides representation of specific variations of a
phoneme. Each variation of a phoneme is called an allophone, and is usually caused by
the phoneme’s position in a word (Singh 1976). Single consonants, produced by creating
constriction in the human breath channel, are thus differentiated into prevocalic (at the
start of a word), intervocalic (between two vowels) or postvocalic (at the end of a word).

4

Similarly, vowels and diphthongs are subdivided into preconsonantal (at the start of a
word), interconsonantal (in the middle of a word), and postconsonantal (at the end of a
word). For example, the phoneme /p/ in the word ‘put’ is more aspirated than the
phoneme /p/ in the word ‘apple.’ Thus, the exact phonetic transcription for the phoneme
/p/ in the word ‘put’ would be [ph] because it is more strongly aspirated, and the phonetic
transcription for the phoneme /p/ in the word ‘apple’ would be [p] because it is
unaspirated. Deliberate aspiration of the phoneme /p/ in the word ‘apple’ by a native
speaker would be phonetically transcribed as [p+].

This precise representation is particularly useful in studying different dialects of a
language, or the slight variations of speech in an unfamiliar language. In these cases, the
IPA provides phonetic transcription as a way for one to carefully listen to sounds in order
to be able to account for allophonic variations of phonemes (Bronstein 1998).

2.3 Choosing Phonemic Transcription

For the purposes of this project, phonemic transcription is utilized, allowing rules
applied to just 43 phonemes to be applied to the entire English language. The rules
increase in complexity when accounting for individual allophones and variations on
phonemes based on their placement within a sentence. For this reason, allophonic
variations are addressed during the phoneme timing refinement stage in Chapter 6, and
not while obtaining speech data during the input stage. Additionally, applying animation
rules to the broad phoneme description makes this project more scalable.

2.4 Phoneme Alphabets Used

Since the IPA uses non-ASCII symbols to represent phonemes and their variations,
and as allophonic representation is not used during the input stage of this project, two
other phoneme alphabets are utilized: WorldBet and ARPAbet, each a subset of the IPA
(see Appendix A). Throughout this paper, the ARPAbet alphabet is used to represent
phonemes, which will be delimited slashes. For example, the word ‘dog’ is transcribed
as /d aw g/ using ARPAbet.

5

Chapter 3 – Lip-Sync Animation and Diphone Durations

3.1 Text-to-Speech Engines, Diphones, and Prosodromic Variation

Lip-sync animation utilizes the keyframe mapping described in Chapter 4 to
synchronize video at a certain number of frames-per-second on top of natural English
speech. Before this mapping is carried out, however, decisions need to be made as to
which type of speech sounds should be assigned rules – should lip-sync animation rules
be applied to phonemes, diphones (two phonemes), triphones (three phonemes), syllables,
or morphemes (roots of words). This decision is based on looking at the trends of text-to-
speech technology and exploring how it will fit with the animated face.

Numerous text-to-speech engines have been created, such as ATT Bell Labs,
Microsoft TTS, Festival, and MBROLA. These engines use different methods for
turning text into speech, and these methods need to be investigated before assigning lip-
sync animation algorithms to the synthesized speech. For example, some text-to-speech
programs use a large sound file database containing thousands of words (Pechter 1999).
While these systems possess the advantage of word clarity and fixed word duration, the
disadvantage lies in the difficulty of applying animation rules to sounds within words
unless a separate animation is made for all of the words. Other text-to-speech engines
have very large syllable and morpheme databases that can be very accurate, but suffer
from the same problem: separate animations must be applied to thousands of speech
segments.

However, the most commonly used method of performing text-to-speech is using
a phoneme dictionary to predict phonemes and blending between diphone sounds. The
concatenation of diphones by diphone blending is central to the MBROLA Project. The
MBROLA project contains voice synthesizers for over one hundred dialects and
languages. These voices take a list of phonemes as their input, along with prosodic
information (duration of phonemes and piecewise linear description of pitch) to produce
speech (“MBROLA” 2001). The voices are freely available and can be used with
Festival Text-to-Speech.

There are many advantages to assigning lip-sync animation to the diphone
blending system. First, there are generally only (43 phonemes)*(43 phonemes) = 1894
diphones. Thus a sound database of 2000 files is relatively small, so a 1-to-1 mapping of
2000 animations to their corresponding diphones would not be as difficult or time
consuming as attempting the animation of a large database of words. Additionally, as the
diphones are composed of specific phoneme cuts, and this information is readily output
by the text-to-speech engine, these systems are more suitable for accurate lip-sync
animation.

6

Figure 3.1. Phoneme and Diphone Wave Data

Obtaining a list of phonemes and phoneme durations is ideal for the lip-sync
animation algorithm. The strategy consists of creating speech animation algorithms using
only the information from the phonemes and phoneme cuts. Through this method, the
lip-sync algorithm will work with text-to-speech programs with single phonemes,
diphones, and morphemes, as long is there are phoneme cuts. Additionally, some
freeware speech-to-text programs such as Baldisync are available for extracting
phonemes and phoneme timing from wave files (“CSLU Speech Toolkit” 2003). This
information makes synchronization with natural voice possible.

3.2 Interfacing Festival Text-to-Speech with Animation

In this project Festival Speech Synthesis System is used. The Carnegie Mellon
University (CMU) and Oxford Advanced Learner’s Dictionary (OALD) pronunciation
dictionaries are used in conjunction with Festival synthesized voices to facilitate text to
phoneme needs (see Figure 3.2). Text-to-speech synthesized voices use the phonemes to
perform diphone blending with phonemes and phoneme duration output. Pronunciation
dictionaries use different phoneme alphabets (see Table 3.1).

7

Table 3.1. Phoneme Alphabets and Pronunciation Dictionaries

Pronunciation

Dictionary
Phoneme Alphabet

Used
English Variety

CMU Dictionary ARPAbet American
Standard English

OAL Dictionary Radio British
Moby Dictionary WorldBet American

Standard English
Celex IPA British

Figure 3.2 Phoneme Data to JWAnimate

8

Chapter 4 – Articulation of Phonemes and Choosing Eight
Keyframes for Animation

4.1 Keyframe Assignment

Once phonemes and word timings have been extracted, phonemes are assigned to
images in the image selection stage. The keyframes of the lip-synchronization animation
are chosen with two main criteria in mind: speed and aesthetics. Based on these criteria,
a small set of eight simple 2D drawings is chosen. Each keyframe shows only subtle
tongue and teeth placement, facilitating blending between keyframes. A careful
examination of the physical articulation of phonemes is used in deciding which keyframe
to assign to each phoneme in the animated lip-sync of any word. The phoneme to
keyframe mapping is summarized in Figure 4.1. Keyframe 3 is used most often as it
represents the most versatile lip shape.

Phoneme Assignment

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8

Keyframe

N
um

be
r o

f P
ho

ne
m

es

R
ep

re
se

nt
ed

Figure 4.1 Phoneme Assignment

9

Keyframe 1 Keyframe 2 Keyframe 3

Keyframe 4 Keyframe 5 Keyframe 6

Keyframe 7 Keyframe 8

Figure 4.2. Keyframes

10

4.2 Articulation of Consonants

In order to map a small set of keyframes to consonant sounds, the phonemes are
categorized based on the contact points and mouth shape during articulation.

Consonants have six main places of articulation within the mouth: bilabial (lips
touching) labiodental (upper teeth touching lower lip), linguadental (tongue in between
upper and lower teeth), alveolar (tongue anterior to upper teeth), palatal (tongue touching
the hard palat), and velar (tongue touching the velum) (Singh 1976). These six contact
points do not encompass all the variations for consonant phonemes; consonants
pronounced in different English dialects and in other languages may be articulated in
other contact points. In fact, certain phonemes in Arabic have a contact point deep down
into the throat, where the tongue touches below the velum. Phoneticians believe that
humans are capable of making as many as twenty six articulatory contact points (Singh
1976). Together, these account for the places of articulation of all the languages of the
world. In order to create a keyframe set for a language other than English, the twenty six
contact points can be grouped into the nearest key and still provide effective lip-sync,
rather than using additional keyframes. Tests for this method of mapping keyframes to
contact points of different languages is a future project.

However, for the purposes of this project, the six main points of articulation
described above are considered when assigning keyframes to consonant phonemes, along
with the exterior variations in lip formation.

Figure 4.3. Places of Articulation (Hall 2004)

11

Table 4.1. Consonant Phoneme-to-Keyframe Mapping

Place of Articulation ARPAbet Phonemes

Represented
Matching Keyframe Set

Bilabial (p, b, m, w) (2, 2, 2, 3)
Labiodental (f, v) (2, (2 or 4))
Linguadental (th, dh) (2, 7)
Alveolar (t, d, n, s, z, l, r) (2, (2 or 4), 2, 4, 4, (3 or 7), 3)
Palatal (sh, zh, ch, jh, y) (3, 4, 3, 3, 3)
Velar (k, g, h, ng) (4, 4, 3, 4)
*Note – Choosing between keyframes for consonants /d/, /l/, and /v/ is discussed in
chapter 7

4.3 Articulation of Vowels

In order to map a small set of keyframes to vowel sounds, the phonemes are
categorized based on the position of the tongue within the mouth during articulation.
Vowels have nine main places of articulation within the mouth. These nine points of
articulation are considered when assigning keyframes to vowel phonemes, along with the
exterior variations in lip formation.

Figure 4.4. American English Vowel Space (Venditti 2002)

12

4.4 Articulation of Diphthongs

When matching the set of keyframes to diphthong sounds, the diphthongs are
assigned one keyframe in some instances, and two keyframes in other instances. One
keyframe is used when not enough time is available to perform blending within the
phoneme. For example, if the sentence ‘I love you’ is spoken quickly, the word ‘I’
corresponding to the phoneme /ay/ may only have two frames designated to this sound.
In this case, only keyframe 8 is assigned to this phoneme during the image selection
stage. On the hand, if ‘I love you’ is spoken slowly, the phoneme /ay/ may have six
frames designated to this sound. In this case, both keyframes 8 and 3 are assigned to this
phoneme during the image selection stage.

Table 4.2. Vowel and Diphthong Phoneme-to-Keyframe Mapping

Diphthong One Keyframe Mapping Two Keyframe Mapping
AW 6 6 and 3
AX 6 6 and 3
AY 8 8 and 3
EW 8 8 and 5
OW 3 3 and 1
OY 3 3 and 1

4.5 Creating Strip Files with In-Betweens

Strip-files are image files containing multiple frames in order to blend one
keyframe into another during the lip-sync animation. The strip-files used in this project
are generated automatically using an optical flow morphing algorithm (Periaswamy and
Farid 2003). The strip-files may also be generated manually by drawing the in-betweens
between each of the 8 keyframes.

One strip file is needed between any two keyframes; thus, for these 8 keyframes,
28 strip files are needed, and in general,

1

1

keyframes

n
n

−

=
∑

is the total number of strip files required for a given number of keyframes.
For this project, four in-between images are used in each strip file, resulting in a

final strip file consisting of six images.

Figure 4.5. Strip-File

13

Table 4.3. Summary of Phoneme-to-Keyframe Mapping

 ARPABet Example
Phonemic
Transcription

Keyframe Mapping

1 AA odd AA D 8

2 AE at AE T 8

3 AH hut HH AH T 5

4 AO ought AO T 8

5 AW cow K AW 6 or (6 and 3)

6 AX about AX B AW T 6 or (6 and 3)

7 AY hide HH AY D 8 or (8 and 3)

8 B be B IY 2

9 CH cheese CH IY Z 3

10 D dee D IY 4 or 2

11 DH thee DH IY 7

12 EH Ed EH D 5

13 ER hurt HH ER T 3

14 EY ate EY T 8 or (8 and 5)

15 F fee F IY 2

16 G green G R IY N 4

17 HH he HH IY 3

18 IH it IH T 5

19 IY eat IY T 4

20 JH gee JH IY 3

21 K key K IY 4

22 L lee L IY 7 or 3

23 M me M IY 2

24 N knee N IY 2

25 NG ping P IH NG 4

26 OW oat OW T 3 or (3 and 1)

27 OY toy T OY 3 or (3 and 1)

28 P pee P IY 2

29 R read R IY D 3

30 S sea S IY 4

31 SH she SH IY 3

32 T tea T IY 2

33 TH theta TH EY T AH 2

34 UH hood HH UH D 3

35 UW two T UW 6

36 V vee V IY 4 or 2

37 W we W IY 3

38 Y yield Y IY L D 3

39 Z zee Z IY 4

40 ZH seizure S IY ZH ER 4

41 PAU -
** This is a silent
“pause” phoneme

“blink” emotion

14

Chapter 5 – Using X-sheets and Loading into the Master Data
Structure

5.1 Parsing Phoneme and Word Data Files

Data files containing information from the text-to-speech engine need to be
parsed for use with the animation. After a sentence is sent to the text-to-speech engine,
three data files are obtained: a file with words and word-durations; a file with phonemes
and phoneme-durations; and a wave file. The wave file contains the audio representation
of the input sentence. The word-timing file contains a list of all the words in the
sentence, and the time (seconds) in the wave file that each word ends.

0.3893 Would
0.5658 you
0.8181 like
0.9473 to
1.2219 see
1.2590 a
1.5993 movie
1.7339 with
2.0172 me

The phoneme-timing file contains a list of all the phonemes in the sentence, and the time
(milliseconds) in the wave file that each phoneme ends.

0.2200 pau
0.2771 w
0.3367 uh
0.3893 d
0.4396 y
0.5658 uw
0.6372 l
0.7608 ay
0.8181 k
0.8963 t
0.9473 ax
1.0875 s
1.2219 iy
1.2590 ax
1.3473 m
1.4645 uw

15

1.5144 v
1.5993 iy
1.6576 w
1.7010 ax
1.7339 dh
1.8064 m
2.0172 iy
2.4660 pau

Parsing the word-timing and phoneme-timing files requires breaking down the
files into four lists; a list of words (type String), a list of phonemes (type String), a list of
word-timings (type double), and a list of phoneme-timings (type double).

Different types of word-timing and phoneme-timing files are produced for
different text-to-speech engines. For example, Festival outputs phonemes and phoneme-
timing into two columns, but MBROLA outputs in a different way. Thereby, files are
parsed slightly differently, and the type of program must be stipulated before initializing
the parsing process. Fortunately, the four lists described above represent are all the
information required for the rest of the algorithm.

5.2 X-Sheets and Aligning the Data

As the algorithm requires a lot of data mapping, X-sheets are useful to visualize
the data and align it to a usable form. Two main X-sheets are created using the four lists
parsed from the data (described in 5.1). The first X-sheet has columns containing: which
phoneme_alphabet is used (type String); the phoneme (type String); the phoneme_timing
(type double); the phoneme_duration (type double); the num_frames assigned (type int),
and the keyframe_assigned (type int). The second X-sheet contains columns for words
(type String), word_timings (type double), word_durations (type double), num_frames
(type int), and emotion_mapping (type int).

Table 5.1. X-Sheet 1

phoneme_alphabet phoneme phoneme_timing phoneme_duration Num_frames keyframe_assigned
ARPAbet pau 0.22 0.22 7 Blink
ARPAbet w 0.2771 0.0571 2 3
ARPAbet uh 0.3367 0.0596 2 3
ARPAbet d 0.3893 0.0526 2 4
ARPAbet y 0.4396 0.0503 2 3
ARPAbet uw 0.5658 0.1262 4 6
ARPAbet l 0.6372 0.0669 2 7
ARPAbet ay 0.7608 0.1236 4 8
ARPAbet k 0.8181 0.0573 2 4
ARPAbet t 0.8963 0.0782 2 2
ARPAbet ax 0.9473 0.051 2 6
ARPAbet s 1.0875 0.14 4 4
ARPAbet iy 1.2219 0.1344 4 4
ARPAbet ax 1.259 0.0371 1 6

16

ARPAbet m 1.3473 0.0883 3 2
ARPAbet uw 1.4645 0.1172 4 6
ARPAbet v 1.5144 0.0469 1 4
ARPAbet iy 1.5993 0.0849 3 4
ARPAbet w 1.6576 0.0583 2 3
ARPAbet ax 1.701 0.0434 1 6
ARPAbet dh 1.7339 0.0392 1 7
ARPAbet m 1.8064 0.0752 2 2
ARPAbet iy 2.0172 0.2108 6 4
ARPAbet pau 2.466 0.4488 14 Blink

 Total: 77

Table 5.2. X-Sheet 2

phoneme_alphabet word Word_timing word_duration Num_frames
ARPAbet Would 0.3893 0.3893 12
ARPAbet you 0.5658 0.1765 5
ARPAbet like 0.8181 0.2523 8
ARPAbet to 0.9473 0.1292 4
ARPAbet see 1.2219 0.2746 8
ARPAbet a 1.259 0.0371 1
ARPAbet movie 1.5993 0.3403 10
ARPAbet with 1.7339 0.1346 4
ARPAbet me 2.0172 0.2833 22

 *Note – first and last words include frames for the pause phonemes

The keyframe_assigned column in the first X-sheet is obtained by using a static array (the
size of the phoneme_alphabet used) that assigns phonemes to keyframes. A function
linearly takes each phoneme on the X-sheet as input, and fills in the corresponding
keyframe in the keyframe column. Rules governing this phoneme-to- keyframe mapping
are explained in Chapter 4.

The phoneme_duration column is obtained by aligning the phoneme_timing
column. In the phoneme_timing column (the list obtained by the parsing step (5.1)), only
the time (milliseconds) in the wave file that each phoneme ends is given. The useful
phoneme_duration column contains the time in milliseconds that each phoneme is held.
Subtracting one from adjacent rows in the phoneme_timing column allows the
phoneme_duration data to be filled.

for (int j = 1; j < phoneme_timing.length; j++)
 phoneme_duration[j] = phoneme_timing[j] – phoneme_timing[j-1]

Finally, the num_frames column contains the exact number of frames assigned to animate
each phoneme. Multiplying each element of the phoneme_duration column by the
frames_per_second fills in the num_frames column. No element can be rounded to zero
frames.

17

for (int j = 0; j < phoneme_duration.length; j++)
 num_frames[j] = (int) Math.round(phoneme_duration[j] * frames_per_second)
 if (num_frames[j] == 0)
 num_frames == 1;

The num_frames column is one of the most important in the animation algorithm as it
gives the number of frames to work with for each phoneme. Thus, the rounding of
num_frames in this function may need to be more accurate in the future. Possibly, a tally
may keep track of a fractional number of frames as rounding occurs, and using this tally,
frames may be added or subtracted.

5.3 Master Data Structure

For simplifying the implementation of the rest of the algorithm, and specifically
in order to more easily insert emotions while speaking, the X-sheet is loaded into the
Master Data Structure. This Master Data Structure is specifically designed for ease of
use with speech rules, blending, emotion rules, and playing the finished movie. Classes
are broken down as follows:

ParserLoader
myVideoFrame
myPhone
myWord

Parsing of input files, building X-sheets, and loading into the Master Data Structure is
performed by the ParserLoader class. Building using the X-sheet starts with creating
three doubly-linked-lists on top of each other. First, a doubly-linked list of
myVideoFrames is created; the total number of frames in the animation is calculated by
adding up the num_frames column. Next, a doubly-linked list of myPhones is created
using the phonemes column of the X-sheet. Each myPhone is given a pointer to the start
frame and to the end frame by moving through the list of myVideoFrames and using the
num_frames column of the X-sheet. Finally, a doubly-linked-list of myWords is created
using the words column of the second X-sheet, the num_frames column of the first X-
sheet, and the num_frames column of the second X-sheet (see Figure 5.1).

Most importantly, this data structure directly corresponds to the synchronization
of phoneme sounds to video frames. Additionally, following the pointers in this data
structure allows one see where emotions can be animated for words. Changing the
pointer assignment allows for easy insertion and deletion of frames, as well as changing
the starting and ending frames for phonemes (and thereby words). Thus, rules at each
level (frames, phonemes, and words) can be easily and accurately applied. Also, playing
the finished movie is performed by simply traveling through the myVideoFrames at a
number of frames_per_second. The runtime to parse, align in X-sheet, and load into data
structure is O(numwords+numsegs).

18

Figure 5.1. Master Data Structure

19

Chapter 6 – The Simple Blending Function – Smoothing
Transitions between Keyframes

Once the image selection stage is completed, lip-sync is accurate but not very
believable. For example, after the sentence ‘I love you’ goes through the image selection
stage, keyframe assignment and timing data is available:

Table 6.1. Keyframe Assignment to “I love you”

Phoneme Keyframe Assigned Frames to Hold
Ay 8 4
L 7 3
Ah 5 5
V 4 2
Y 3 2
Uw 6 6

Phoneme-to-keyframe mapping is performed and keyframes are simply held for the
duration of each phoneme (see Figure 6.1).

Figure 6.1. Keyframe Assignment and Frame Durations for “I love you”

20

This animation is synchronized with the audio, but it is clearly choppy; transitions
between phonemes are too sharp. Thereby, simple blending rules are needed to increase
the fluidity of the transitions.

Once the parsing and loading of the empty data structure have been performed,
rules begin for simple blending. For the simple blending, each phoneme is first mapped
to one keyframe ([hany1, hany8]). Next, the duration for each phoneme in seconds is
rounded off to the nearest integer number of frames for each phoneme (num_frames).
Diphone blending is performed by taking first_keyframe and its num_frames and
applying it to the Blend function with the call int[] result = Blend(first_keyframe,
next_keyframe, num_frames). For the last phoneme in a sentence, or before a /pau/
(pause phoneme) blend back to the first keyframe by calling int [] offsets =
Blend(first_keyframe, 1, num_frames). The integer array of offsets and the filename will
be used to obtain the frames when playing the animation. The filename and offset are
given to each myVideoFrame. At the end of the rules, the animation is played by simply
moving through the myVideoFrames at the number of frames_per_second.

Index 0 1 2 3 4 5

Figure 6.2. Strip File Offsets

int[] Blend(int first_keyframe, int next_keyframe, int num_frames)
{
 String filename =“hany”+first_keyframe+“_”+“hany”+next_keyframe+“.JPG”;

 int remainder = num_frames % (STRIP_SIZE-1);
 int quotient = frames / (STRIP_SIZE-1);

 if (frames <= 1) {int[] res = {0}; return res;}
 else if (frames == 2) {int[] res = {0,3}; return res;}
 else if (frames == 3) {int[] res = {0,2,4}; return res;}
 else if (frames == 4) {int[] res = {0,2,3,4}; return res;}
 else if (frames == 5) {int[] res = {0,1,2,3,4}; return res;}
 else if (frames == 6) {int[] res = {0,0,1,2,3,4}; return res;}
 else if (frames > 6)
 {
 int[] res = new int[frames];
 int count = 0;
 for (i = 0; i < INBETWEENS; i++) {
 for (j = 0; j < quotient; j++) {
 res[count] = i;
 count++;
 }
 if (remainder != 0)

{
 res[count] = i;

21

 --remainder;
 count++;
 }
 }
 return res;
 }
 else {int[] res = {}; return res;}
}

Using this simple method, extremely accurate synchronization and smooth blending
between keyframes is obtained. For each diphone, a strip file is obtained which contains
in-betweens from the first_keyframe to the next_keyframe. The blending algorithm
obtains the movie frames by selecting the frames which will be used for smooth transition
towards the next_keyframe. The frame at index 5 will never be reached; instead, the
next_keyframe will start with its own index 0 in the strip file. This method prevents
duplication of frames when moving between phonemes.

Figure 6.3. Before Simple Blending

22

Figure 6.4. After Simple Blending I

Figure 6.5. After Simple Blending II

23

Chapter 7 – Complex Blending Rules

7.1 Blending Within Phonemes – Assigning Multiple Keyframes to Diphthong
Phonemes

After having achieved simple blending between phonemes, the believability of the
facial animation is still not sufficient. Thereby, additional rules are implemented that
clarify diphthong phonemes, take allophonic variation into consideration, provide
prosodromic variation, and offer stricter timing refinements.

With the simple blending rules, diphthong phonemes are mapped to single
keyframes. However, diphthongs are composed of the blending of two distinct sounds.
For better synchronization and more realistic speech, two keyframes are mapped to each
diphthong. For example, the phoneme /ay/ as in /hh ay d/ (‘hide’) is a combination of the
vowels /aa/ (as in ‘odd’) and /ih/ (as in ‘eat’). The keyframes assigned to /ay/ are 8 and 3,
so blending within this phoneme should hit both of these keyframes within the
num_frames allowed. By using the two separate keyframes, the diphthong phoneme is
clarified, and the believability of the animation is significantly improved. However, if
too few frames exist for this transition to look fluid, then only one keyframe is assigned
(in this case keyframe 3).

if (num_frames <=2)
 Blend(keyframe 3, keyframe 1, num_frames);
else
 Blend(keyframe 3, keyframe 1, 2);
 Blend(keyframe 3, next_keyframe, num_frames – 2);

24

Figure 7.1. Blending within Phonemes for “hide”

7.2 Modifying/Grouping Blending Rules

Assigning multiple keyframes to certain phonemes adds complexity to the
blending rules, thereby increasing the fluidity of phoneme transitions. It is then useful to
group the phonemes in a phoneme alphabet into three categories: open mouths (mostly
vowels), closed mouths (mostly consonants), and diphthongs. Single keyframe
assignment goes to vowels and consonants, while double keyframe assignment goes to
diphthongs. In most phoneme alphabets, six phonemes are assigned multiple keyframes
– on the X-sheet these phonemes are mapped to the numbers 10-15. When blending rules
are applied phoneme by phoneme, looking ahead to blend towards the next phoneme is
slightly more complicated. For example, the word ‘boy’ has the phonemes /b oy/ and is
mapped to (keyframe 2, key 10 [keyframe 3 to keyframe1]). Since the first phoneme is a
consonant with one keyframe, and the next phoneme is a diphthong with two keyframes,
one must first blend keyframe 2 to keyframe 3 within the num_frames for /b/, then blend
within the phoneme /oy/. A similar problem occurs when blending from one diphthong
to another. Thus eight functions are created to deal separately with all transitions
between the three categories of phonemes (vowels, consonants, and diphthongs).

7.3 Adding Prosodromic Variation

Additionally, most text-to-speech engines provide a pause phoneme /pau/ that is
useful for delaying speech between sentences. Most sentences begin and end with
pauses, and pauses also occur after commas. In the simple blending, the /pau/ phoneme
was assigned the keyframe 1, a neutral closed face. However, it is useful to add blending
within this phoneme for such expressions as blinking or other mid-sentence emotions,
adding prosody to the animation. The method for blending is similar to the diphthongs
above

25

An example demonstrating blending within phonemes for pauses and diphthongs for the
sentence ‘I love you’ /pau, ay, l, ah, v, y, uw, pau/ is shown in Figures 7.2 and 7.3.

Figure 7.2. Frame Durations and Strip File Offsets for “I love you” using Simple
Blending and without prosody

Figure 7.3. Frame Durations and Strip File Offsets after Addition of Blending within
Phonemes and Prosody

26

7.4 Stealing Frames

Although the blending described so far is synchronized with the sound and appears to
provide excellent transitions from phoneme to phoneme, problems occur when multiple
phonemes in a row are mapped to the same keyframe. For example, the words ‘hit tom’
(as in ‘he hit tom with the ball’) are collectively composed of the phonemes /h ih t t aa m/
and are mapped to the keyframes (3, 5, 2, 2, 8, 2) respectively. In between the words
‘hit’ and ‘tom’, the same phoneme /t/ occurs twice. Previously, the keyframe 2 would be
held for the ‘t’ in ‘hit.’ In order to reduce the number of frames the keyframe is held, a
method of stealing frames is used so that the same keyframe is not held very long. In the
example above, the extra frames from the ‘t’ in ‘hit’ can be assigned to the word ‘tom’ so
that more frames are given for the blending from /t/ to /aa/.

The method stealing frames is provided in the blend function. When the blend
function is called on phonemes that map to the same keyframe, pointers to the start and
end frame are changed for each phoneme. The first phoneme receives only one frame,
and the next phoneme is assigned the rest of the frames. Additionally, the number
framelength of the second phoneme is incremented. When the blend function is then
called for the second phoneme, more frames are available to start blending to the next
phoneme.

Figure 7.4. Stealing Frames

7.5 Accentuating Phonemes /b/, /p/, and /m/

The phonemes /b/, /p/, and /m/ are consonants (closed-mouth phonemes), such as in the
words ‘boy’, ‘pig’, and ‘man.’ For these prevocalic consonant phonemes, words are

27

more accurately animated if the keyframe 2 is held for at least two frames (at 30
frames_per_second) before blending to the next phoneme. Hitting these phonemes for
enough time thus improves the believability of the animation.

Figure 7.5. Accentuating Phonemes b, p, and m

7.6 Allophonic Variation and the Decision Algorithm for Phonemes /d/, /l/, and /v/

Allophonic variation – phonetic variation caused by a phoneme’s position in a
word – is addressed for the phonemes /d/, /l/, and /v/. These phonemes are chosen as it is
found that these consonant phonemes appear drastically different when they appear in the
prevocalic and postvocalic positions of a word. For example, the phoneme /l/ in the
words ‘love’ and ‘apple’ appear different because /l/ is at the start of the word ‘love’ and
the end of the word ‘apple’ – these are allophonic variations of the phoneme /l/. A
decision algorithm is implemented during the phoneme-to-keyframe mapping for these
phonemes. Thus, in assigning the keyframe for the phoneme /l/ there must be a decision
whether /l/ should be assigned keyframe 7, or keyframe 3. A simple decision algorithm
that chooses between two keyframes has been implemented as follows: during the
loading process, myVideoFrames are given a boolean at_start which is set to true if the
phoneme appears near the start of a word, and false if it appears at the end of a word.
Based on this value, the keyframe is decided during phoneme to keyframe mapping.

7.7 Evaluation

The rules for the complex blending algorithm deal with blending within
phonemes, stealing frames, accentuating phonemes b, p and m, and deciding between
keyframes for phonemes with allophonic variations. All of these rules make the second
blending algorithm highly effective. Animation is exactly synchronized with speech, so
enunciation appears accurate, and speech appears smooth and fluid. Furthermore, all of

28

the rules put together run in O(num_phonemes + num_words) for the loading process,
and O(num_phonemes) for implementation of all the rules.

The usefulness of the rules may be evaluated in a two main ways: qualitatively,
by evaluating visual appeal, and quantitatively, by determining if the rules improve the
understanding of certain sentences or words. Results show (see Appendix B) that in
comparison to two other lip-sync animation programs, the thesis’s program was preferred
visually and in understandability. Sentences were chosen to test the different components
of the rules: blending within phonemes, allophonic variation, stealing-frames, and
prosodromic variation. 97% percent of the time, the lip movements improved the
understanding of speech. Additionally, in comparison to the other programs, this
program was more synchronous with the speech and fluid (see Appendix B).

29

Chapter 8 – Applications

8.1 Introduction

The fast runtime for the implementation of animated speech rules is extremely
useful for animation over IP. In fact, the application of these rules is the fastest part of
the entire animation-over-IP algorithm. It takes much longer for the text-to-speech
engine to convert text into a wave file than it takes for the lip-sync animation rules to
work in O(num_phonemes + num_words). Classes to perform the animation rules are
written in Java Swing.

8.2 Java Implementation of Animation over IP

Figure 8.1. Avatar-over-IP

The users begin by logging into the chat program by running the JWAnimate
applet. The user then chooses which voice the avatar should use. When typing into the
chatbar, the user can include emotion tags to place emotions on words, at the end of
sentences, or both (see Pechter 2004). After the tags are evaluated for emotion rules, the
tags are extracted, and the raw text is given to the Festival program. The resultant wave,
phoneme, and word duration files are then given to the class ParserLoader along with the
voice type so that the phoneme alphabet is known. The ParserLoader class then parses
the phoneme and word data and loads it into the Master Data Structure described in
Chapter 5. Once the data structure is loaded, the animation rules are applied using class
myRules. When the rules are finished, the frames are played at 30 fps along with the
wave file. During the playing stage, emotions are displayed on top of the speech and at
the end of sentences. Blinks after sentences also provide some prosodromic variation.
When idle, the character blinks, shrugs, and looks from side to side.

8.3 Speech-to-Text Voice with Animation over IP

Lip-sync animation is also available with raw audio. Microphone-recorded
speech is applied to a speech-to-phoneme API where word and phoneme are fit onto the
wave file (see Pechter 2004). From here, the sound, word, and phoneme data files are
manipulated similarly as described for the text-to-speech driven animation.

30

Applications for this speech driven animation are for the application of lip-sync to
raw voice data on mobile forms. Here, the processor speed on a portable phone is
significant. The algorithms described in this paper have the potential to work with a very
small delay if the speech-to-phoneme part is done fast enough. The additional visual
cues may even aid in the understandability of garbled speech caused by poor wireless
phone connections.

8.4 Scalability

“Horsie the Horse” is an example of an avatar that was easily imported into the
program (see Figure 8.2). Eight keyframes were chosen and strip-files were created by
automatic generation of the in-betweens (Periaswamy and Farid 2003). Currently, this
avatar may be selected in the Avatar over IP program. This application is clearly
scalable, and many more avatars are expected to be added in the near future.

8.5 Future Work

Future work involves obtaining additional statistics on the effectiveness of the
existing rules by means of surveys to see which ones have the most visual appeal, and
which ones best improve the understandability of noisy speech. Additional rules may
also be added to improve prosodromic variation. For example, some head swaying may
be used at certain points in the sentence to improve visual appeal.

Furthermore, lip-sync rules can be geared to coincide with phonetics courses or
the teaching of languages. Different languages and dialects may also be included in the
near future, since voice synthesizers from MBROLA use the diphone blending method,
which can easily be incorporated with the methods described in this paper.

Additionally, a toolkit for the general population can be created, whereby 8
keyframes (drawings, photographs, etc.) are selected by the user and input into the
toolkit, which then automatically generates the files required for lip-sync animation. The
avatars created by the toolkit can then be incorporated into Internet chat programs.

Finally, interactive games on mobile devices may be attempted. An interactive
game need only store thousands of quotes on a database and feed them to the lip-sync
animation program as necessary. In the future, users could even video conference by
choosing an avatar and having the avatar lip-sync each person’s raw voice.

31

Keyframe 1 Keyframe 2 Keyframe 3

Keyframe 4 Keyframe 5 Keyframe 6

Keyframe 7 Keyframe 8

Figure 8.2. New Keyframes

32

Appendix A – Phoneme Alphabets

Table 1. Phoneme Alphabets (Venditti)

33

Table 2. Phoneme Alphabets II

 ARPABet WorldBet Example Phonemic Transcription

1 AA A odd AA D

2 AE @ at AE T

3 AH ^ hut HH AH T

4 AO > ought AO T

5 AW aU cow K AW

6 AX about AX B AW T

7 AY aI hide HH AY D

8 B b be B IY

9 CH tS cheese CH IY Z

10 D d dee D IY

11 DH D thee DH IY

12 EH E Ed EH D

13 ER 3r hurt HH ER T

14 EY ei ate EY T

15 F f fee F IY

16 G g green G R IY N

17 HH h he HH IY

18 IH I it IH T

34

19 IY i: eat IY T

20 JH dZ gee JH IY

21 K kh key K IY

22 L l lee L IY

23 M m me M IY

24 N n knee N IY

25 NG N ping P IH NG

26 OW oU oat OW T

27 OY >i toy T OY

28 P ph pee P IY

29 R 9r read R IY D

30 S s sea S IY

31 SH S she SH IY

32 T th tea T IY

33 TH T theta TH EY T AH

34 UH U hood HH UH D

35 UW u two T UW

36 V v vee V IY

37 W w we W IY

38 Y j yield Y IY L D

39 Z z zee Z IY

40 ZH Z seizure S IY ZH ER

41 PAU .pau -
** This is a silent
“pause” phoneme

35

Appendix B – Evaluation Surveys

Evaluation Survey for Avatar over IP
Three individuals were included in the survey.
“Yes” responses are recorded.

Sentence Do the lip

movements
improve
the
understand
ing of
speech?

Do the lips
move in
synchronizati
on with the
speech?

Is the
lip
animati
on
fluid?

I like dogs and pigs. 3 3 3
The toy I know is not large. 3 3 3
I think the new crayon color is wicked cool. 3 3 3
He ate hay down by the bay, what do you say,
okay?

2 3 3

Why I don’t fly in the cave, I don’t know. 3 3 3
Replay because the baby is sick. 3 3 3
The baby boy brought us a pig. 3 3 3
I just may do something, but I’ll do it politely. 3 3 3
Baywatch is for people in Europe to gawk at
hot girls.

2 3 3

Men of honor pay the price for the book. 3 3 3
Big maggots pose a threat to society. 3 3 3
He hit tom on the head with the broom 3 3 3
He wins something good. 3 3 3
Don’t tell Lance, say yes or no. 3 3 3
Win nothing or report back to me. 3 3 3
Porch chairs stop moving. 3 3 3
I like the apple. 3 3 3
The dog dove and was mad. 3 3 3
The violin music is shows love is in the air. 3 3 3
Voices have distinction. 3 3 3
Don’t become jaded, okay? 3 3 3
Would you like to sing with me today? I have
time for you. It would be fun.

3 3 3

Are you available for an early lunch? I want
some steak. Come with me!

3 3 3

Have a cheeseburger on me. You win. I lose. 3 3 3
The elephant at the zoo is huge! Do you think? 3 3 3

 Totals: 97% 100% 100%

36

Evaluation Survey for VHost SitePal by Oddcast (“VHost SitePal”)
Three individuals were included in the survey.
“Yes” responses are recorded.

Sentence Do the lip

movements
improve
the
understand
ing of
speech?

Do the lips
move in
synchronizati
on with the
speech?

Is the
lip
animati
on
fluid?

I like dogs and pigs. 0 0 0
The toy I know is not large. 0 0 0
I think the new crayon color is wicked cool. 0 0 0
He ate hay down by the bay, what do you say,
okay?

0 0 0

Why I don’t fly in the cave, I don’t know. 0 0 0
Replay because the baby is sick. 0 0 0
The baby boy brought us a pig. 0 0 0
I just may do something, but I’ll do it politely. 0 0 0
Baywatch is for people in Europe to gawk at
hot girls.

0 0 0

Men of honor pay the price for the book. 0 0 0
Big maggots pose a threat to society. 0 0 0
He hit tom on the head with the broom 0 0 0
He wins something good. 0 0 0
Don’t tell Lance, say yes or no. 0 0 0
Win nothing or report back to me. 0 0 0
Porch chairs stop moving. 0 0 0
I like the apple. 0 0 0
The dog dove and was mad. 0 0 0
The violin music is shows love is in the air. 0 0 0
Voices have distinction. 0 0 0
Don’t become jaded, okay? 0 0 0
Would you like to sing with me today? I have
time for you. It would be fun.

0 0 0

Are you available for an early lunch? I want
some steak. Come with me!

0 0 0

Have a cheeseburger on me. You win. I lose. 0 0 0
The elephant at the zoo is huge! Do you think? 0 0 0

 Totals: 0% 0% 0%

37

Evaluation Survey for Famous3d (“Famous3d”)
Three individuals were included in the survey.
“Yes” responses are recorded.

Sentence Do the lip

movements
improve
the
understand
ing of
speech?

Do the lips
move in
synchronizati
on with the
speech?

Is the
lip
animati
on
fluid?

I like dogs and pigs. 3 3 3
The toy I know is not large. 2 3 3
I think the new crayon color is wicked cool. 1 2 2
He ate hay down by the bay, what do you say,
okay?

2 2 2

Why I don’t fly in the cave, I don’t know. 2 2 2
Replay because the baby is sick. 2 2 2
The baby boy brought us a pig. 3 3 3
I just may do something, but I’ll do it politely. 2 2 2
Baywatch is for people in Europe to gawk at
hot girls.

2 3 3

Men of honor pay the price for the book. 2 2 2
Big maggots pose a threat to society. 3 3 3
He hit tom on the head with the broom 1 1 1
He wins something good. 1 1 1
Don’t tell Lance, say yes or no. 2 2 2
Win nothing or report back to me. 3 3 3
Porch chairs stop moving. 2 2 2
I like the apple. 2 2 2
The dog dove and was mad. 2 2 2
The violin music is shows love is in the air. 3 3 3
Voices have distinction. 2 2 2
Don’t become jaded, okay? 3 3 3
Would you like to sing with me today? I have
time for you. It would be fun.

2 2 2

Are you available for an early lunch? I want
some steak. Come with me!

2 2 2

Have a cheeseburger on me. You win. I lose. 1 1 1
The elephant at the zoo is huge! Do you think? 2 2 2

 Totals: 69% 73% 73%

38

References

Brand, Matthew and Ken Shan. “Voice Driven Animation.” Mitsubishih Electric
Research Lab. Online Available:
http:///cs.ucsb.edu/conferences/PUI/PUIWorkshop98/Papers/Brand.pdf. May 24, 2004.

Bronstein, J. Arthur. American Dialect Society – Conference Papers on American
English and the International Phonetic Alphabet. Tuscaloosa: University of Alabama
Press, 1998.

Cohen, Michael and Dominic Massaro. “Modeling Coarticulation in Synthetic Visual
Speech” Online Available: http://dipaola.org/stanford/facade/lipsync/geneva.pdf. May
24, 2004.

Comet, Michael. “Lip-Sync – Making Characters Speak” Online Available:
http://www.comet-cartoons.com/toons/3ddocs/lipsync/lipsync.html. 1998.

“CSLU Speech Toolkit.” Online Available: http://cslu.cse.ogi.edu/toolkit/. August 21,
2003.

E.J. Yannakoudakis and P.J. Hutton. Speech Synthesis and Recognition Systems.
Chichester: Ellis Horwood Limited, 1987.

“Façade – Standford Facial Animation System.” Online Available:
http://dipaola.org/stanford/facade/presentation.html. March 19, 2001.

“Famous3d.” Online Available: http://www.famous3d.com/web/index.html. May 12,
2004.

Hall, Currie Daniel. “Interactive Sagittal Section.” Online Available:
http://www.chass.utoronto.ca/~danhall/phonetics/sammy.html. May 23, 2004.

International Phonetic Association. “The International Phonetic Alphabet.” Online
Available: http://www2.arts.gla.ac.uk/IPA/fullchart.html. 1996.

Kakumanu, Osuna, Esposito, Bryll, Goshtasby, Garcia. “Speech Driven Facial
Animation.” Department of CS and Engineering, Wright State University (2001).

Lance, Williams. “Performance Driven Facial Animation.” Advanced Technology
Group. Apple Computer Inc. (1990).

Lewis, J.P. and F.I. Parke. “Automated Lip-Synch and Speech Synthesis for Character
Animation.” Computer Graphics Laboratory, New York Institute of Technology (1987).

39

“MBROLA.” Online Available: http://tcts.fpms.ac.be/synthesis/mbrola.html. April 26,
2004.

Pechter, Joseph and William Pechter. “Hybrid Text-to-Speech 2000 Software.” October
1999.

Pechter, Joseph. “Enhancing Expressiveness of Speech thorough Animated Avatars for
Instant Messaging and Mobile Phones.” Diss. Dartmouth College, 2004.

Periaswamy, Senthil and Hany Farid. "Elastic Registration with Partial Data."
Proceedings of the Second International Workshop on Biomedical Image Registration,
Philadelphia, PA, 2003. Hanover: Dartmouth College, 2003.

Periaswamy, Senthil and Hany Farid. "Elastic Registration of Intensity Variations." IEEE
Transactions on Medical Imaging 22(7) (2003): 865-874.

Pfauntsch, Josef E. and Charles M. Shub. “Graphic Animation and Speech Synthesis
Applications for the Auditory and Visually Disabled.” University of Colorado (1988).

Pullum, Geoffrey and William Ladusaw. Phonetic Symbol Guide. Chicago: University
of Chicago Press, 1986.

Singh, Sadanand and Kala Singh. Phonetics – Principles and Practices. Baltimore:
University Park Press, 1976.

Venditti, Jennifer. “Phonetic Transcription, Context-dependent variation, and
Intonation.” Columbia Computer Science (September 123, 2002).

“VHost SitePal.” Oddcast. Online Available:
http://vhost.oddcast.com/vhost_minisite/products/sitepaltts.php. May 24, 2004.

Waters, Keith and Tom Levergood. “An Automatic Lip-Synchronization for Synthetic
Faces.” Digital Equipment Corporation, Cambridge Research Lab (1994).

	Synchronizing Keyframe Facial Animation to Multiple Text-to-Speech Engines and Natural Voice with Fast Response Time
	Recommended Citation

	tmp.1596484807.pdf.YQWp5

