View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-4-2004

Scheduling Pipelined, Multi-Threaded Programs in Linux

Brunn W. Roysden
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

b Part of the Computer Sciences Commons

Recommended Citation

Roysden, Brunn W., "Scheduling Pipelined, Multi-Threaded Programs in Linux" (2004). Dartmouth College
Undergraduate Theses. 37.

https://digitalcommons.dartmouth.edu/senior_theses/37

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://core.ac.uk/display/337600878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/37?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TRZD
Scheduling Pipelined, Multi-Threaded Programs in Linux

Brunn W. Roysden Il
Dartmouth College
Department of Computer Science
Brunn.W.Roysden.lll.04@alum.dartmouth.org

Advisor: Thomas H. Cormen

June 4, 2004

Abstract

A process causes latency when it performs 1/O or commuiicatPipelined processes mitigate latency by
concurrently executing multiple threads—sequences ofatfpas—and overlapping computation, commu-
nication, and 1/0. When more than one thread is ready to henstheduler determines which thread in fact
runs. This paper presents techniques for scheduling piggliwith the following three findings.

First, using Linux kernel version 2.6 and the NPTL threadskpge, we observe a 3-6% performance
improvement over kernel version 2.4 and the LinuxThread&age.

Second, we test techniques that both take advantage ofkmamwledge about whether a program is
I/0-bound or compute-bound and raise and lower prioritiefote the pipeline begins working. These
techniques, referred to as fixed scheduling, further imgrerformance by 5% in the case of the compute-
bound columnsort algorithm. In the 1/O-bound algorithmetibxscheduling failed to yield better performance
than the default scheduling.

Third, we test simple, adjusting methods that do not takeuathge of prior knowledge about whether
a program in compute-bound or I/O-bound but rather adjusédaling as the pipeline progresses. These
techniques, called adjusting scheduling, fail to yielddrgperformance than the default scheduling in any
of our test cases.

In addition, we suggest new scheduling calls and other ¢tipgraystem improvements.

1 Introduction

Latency is a significant but surmountable problem for higifgrmance computingLatency is idle time
on the CPU while it waits for data to arrive. Pipeline-stiured programs mitigate latency by overlapping
high-latency and CPU-intensive operations. FG is a framkwgenerator that reduces time to completion
and facilitates experimentation. We shall introduce piyoto extend FG’s capabilities. Scheduling the
priority of operations to maximize system-resource usagiér improves performance.

Pipelines mitigate latency by overlapping operations thed different system resources. To set up
a pipeline, the programmer breaks up the code stdges, where each stage predominantly has one of
computation, communication, and I/O operations. He alsakzrep the data intblocks, so that a stage can
work on a single block without needing outside dataraénd in a pipeline is the time during which every
stage begins and completes work on its buffer. At the endefdlind, each stage conveys its buffer to its
successor and accepts its next buffer from its predecesonext round subsequently begins. While each
block passes through the stages sequentially, all stageddlata at a given time. Rather than using only one
resource at a time, therefore, a pipelined program can lisesalurces at the same time. The lower bound
of a pipelined program is not the sum of computation, comation, and I/O time, but only the maximum
of the three times—the running time of thieniting resource.

If the limiting resource is running at maximum throughpten scheduling will not reduce the running
time of the program; scheduling can improve overall runniinge in a pipeline to the extent that it can
reduce the actual running time per round of the limiting tese. FG, a framework generator for pipelined
programs not only simplifies creating pipelined programsaiso allows scheduling changes by changing
the structure of the pipeline. This paper expands on thoetras by introducingpriority to FG. Priority
has to do with whether one process or thread should preergtiemn

This paper investigates scheduling in the two followingesas/O-bound and compute-bound programs.
The 1/0 case works as follows. Assume that a program is I/@abd@and that the 1/0 device is not running at
maximum throughput. The scheduler can give I/O operatiagisan priority to the CPU. The increased pri-
ority means that the I/O thread can preempt other threadsemdia new read request back to the I/O device
more quickly, reducing idle time on the 1/O device. The saliedcan also try to reorder I/O operations.
Alternatively, assume that a program is compute-boundhibdase, the scheduler can give computation op-
erations higher priority. The higher priority means otheeiads will not be able to preempt the computation
threads, resulting in fewer context switches and prevgridathe misses. One computation stage could take
considerably longer than another. In an 1/0O-bound pipadingingle processor node the imbalance does not
matter once the pipeline is in full swing. In an SMP node ragra compute-bound pipeline this will reduce
performance. Unfortunately, Linux controls are not fine wgioto handle individual-thread time quanta.

It is difficult to determine the limiting resource directlypwever, especially “on the fly.” We must use
techniques to guess which is the limiting resource in ordeadjust priority and improve performance. A
programmer can raise the priority of any stage that has pialtiuffers in its input queue, or lower the
priority of a stage with multiple buffers in its output quesdsigns that the stage is moving slower or faster
than its neighbor respectively.

The results are as follows. First, using Linux kernel vansio6 and the NPTL threads package, we
observe a 3-6% performance improvement over kernel vetibiand the LinuxThreads package. Second,
we test techniques that both take advantage of prior knay@ledbout whether a program is 1/0-bound or
compute-bound and raise and lower priorities before thelpip begins working. These techniques, referred
to as fixed scheduling, further improve performance by 5%hindase of the compute-bound columnsort
algorithm. In the I/O-bound algorithm, fixed schedulingddito yield better performance than the default
scheduling. Third, we test simple, adjusting methods tatat take advantage of prior knowledge about
whether a program in compute-bound or I/O-bound but ratdpgrsa scheduling as the pipeline progresses.
These techniques, called adjusting scheduling, fail tlybetter performance than the default scheduling

in any of our test cases.

The remainder of this paper is organized as follows. Se@idascribes threading and FG. It describes
how the design of FG relates to the problem of schedulingatise In Section 3, we survey scheduling in
Linux and the system calls for altering the default schedplivailable to Linux users. Section 4 discusses
experimental results. Section 5 concludes the paper byestigg further areas of research and system calls
that would be helpful for pipeline scheduling in an ideal @img system.

2 Threadingand FG

Pipelined programs can use threads to overlap computatmmmunication, and 1/O, thereby reducing
latency. This section describes threads, how FG simplifiakiwg with threads, and how FG allows easy
experimentation with pipeline structure. We extend FG lisoiducing priority.

Threading

The performance of threads and processes in Linux forms @isesbof how we handle concurrency and
what controls we have on scheduling. The operating systeitnlsg between active threads when running
a multithreaded program. It puts threads on a waiting quengwihey need access to data currently locked
or when they perform a blocking operation, such as a disk ce@dmmunication.

Whereas processes are separate programs with separateysgraces, threads are concurrent paths of
execution in the same program. One process can have mamg#hré&he Linux kernel represents threads
and processes identically, however, witpracess descriptor, which is a kernel-level data structute? flag
in the process descriptor indicates whether it is a processtioread. This model is called tloae-on-one
model because the operating system schedules each threadydiatiér than scheduling processes and
letting the user divide up the process’s time among its thséa

This implementation, when combined with hardware and Keimerovements, allows for efficient
thread use. Thélative Posix Threading Library has replaced the old implementation of threads, Linux-
Threads, in the standard runtime environment. The newrljbuges the same low-level system call for
creation and exiting of threads as is used for processes skistem call results not only in constant-time
creation and exiting of threads, but also in each actiomtakpproximately one eighth as long as in Linux-
Threads, the old implementation. The number of threadsilthary allows has increased front%to 2%,

In tests run by the creators of NPTL, creating and deletin@,d@0 threads took 15 minutes using Linux-
Threads and only 2 seconds using NPTL. The developers alde other improvementsin Section 4, we
shall see that the NPTL implementation, when combined veitieduler improvements in kernel version 2.6
versus version 2.4, results in better performance. Altiaingeads are efficient, they are also hard to work
with. Creation, synchronization, and exiting of pipelinggricky. Also, changing the configuration of a
pipeline is cumbersome.

1source code for the process descriptor and scheduler apipeaisr/src/kernel/sched.c.

2The alternative model is thidl-on-N model, where the number of kernel data structures is fewer thamtimeber of threads.
The operating system allows the user to schedule threagstigiror to pass information about which thread to schethuigugh a
message-passing scheme such as scheduler activations.

30ne important change is that all threads within a process Imave the samerocess ID. One can test which version of
threading is running by creating a few threads and seeirteeif &ll have the same PID. The second improvement concemnalsi
handling. The kernel now handles signals much more effilgidat threads. There are still shortcomings preventing ROSIX
compliance. For example, although thiece system call is supposed to be a process-wide command, ifoSdctwe shall see
that we cami ce a single thread. We will usei ce to test different scheduling arrangements because it duesquire superuser
privileges.

FG

FG is a framework generator for pipelined programs. It rexutime to completion and facilitates experi-
mentation. A programmer takes a program that runs sequigriiiaa single node or with communication on

a cluster and breaks it into smaller pieces. The programiaeep each piece of code in a separate function
and associates each function with an FG stage. FG createsaal tior each stage and handles synchroniza-
tion between stages. Each stage works on buffers of data.aR@és creation, recycling, and swapping of
buffers. FG also notifies each stage when the last buffer iipelipe passes through, as some algorithms
require stages to treat the last buffer differently. Thgstarun concurrently. By overlapping computation,
communication, and I/O, the system mitigates the effecatdricy in the multithreaded implementation.
After the completion of the pipeline, FG automatically shiitdown. FG provides additional functionality,
described in the next paragraph, that allows programmaesstalifferent configurations of pipelines.

FG facilitates trying many different pipeline configuratg these features constitute FG’s built-in
scheduling controls. There are three such features. ThHedfinwultistage threads. If a programmer wants
two stages to run as a unit, then he can map both stages tdextsirend. For example, a pipeline might con-
tain two communication stages on a single thread since lasthat run in parallel. As a result, the pipeline
requires fewer threads, but the downside is that the buiteheduling of the operating system—including
that found in the operating system’s communication and d&ts—must schedule the stages in the order
specified by the programmer. As described in Section 3, sdimgdis optimized in Linux. Second, FG
also providesnultistage repeat. For example, a pipeline could have a multistage read ant wmead run
two reads and then two writes. Multistage repeat also dgfiamn the built-in scheduling of the operating
system. Third, the programmer can easily separate stafpeprogrammer can break computational stages
into smaller pieces so that the operating system can bathaoein an SMP node. More stages means more
synchronization overhead and could reduce performanc@uiH concept, not yet implemented in FG, is
forking andjoining. Multiple incarnations of a stage could run in parallel andd back into the pipeline.
Each of these techniques relates to controlling the numtibreads or the behavior of stages within threads.
There are advantages and disadvantages to each. Pipdigasiare best compared by testing them against
one another. FG facilitates quickly trying different pijme structures in order to improve performance.

Introducing the notion of priority into FG allows more cooitiover scheduling and the possibility of
increasing performance even further. The stage data stejdhe building block of pipelines in FG, easily
facilitates adding the notion of priority. FG representsteatage as a C++ object with methods to accept
buffers from the stage’s predecessor and convey buffetages successor. In Section 4, we add adjusting-
scheduling code to these methods. This code will change ribatp of the calling stage under certain
circumstances. During accept and convey calls, stageshesgyhchronization primitives that control the
interstage queues. A stage can check on the status of thegjbgunaking a system call to the primitives.
The addition of this call requires introducing locking, hewer, and might diminish performance. Each FG
stage can also have programmer-defined init and cleanupidascwhich are called at the beginning and
end of the pipeline respectively. These functions are Elgiaces to put fixed-scheduling code. Section 4
discusses the results of the tests of fixed and adjustinglatihg.

3 Linux scheduling and system callsfor scheduling

This section describes default scheduling in Linux and whahges a programmer can make to scheduling
behavior.

Linux scheduling

The implementation of the scheduler in Linux not only detieas the default scheduling behavior, but also
the options for customizing scheduling behavior. Recemrovements in kernel version 2.6, particularly
the load balancer and preemptable kernel, have increaséatmpance for I/O-bound or compute-bound
applications.

The scheduler is designed around the one-to-one model anmtbtfon of priority. Linux 2.6 introduced
the O(1)-time scheduler, which has two identical data structurdse data structure is an array of ready
gueues with one entry for each possible priority. One ar@gd$ready queues of active processes, and the
other holds queues of expired processes. An expired prasasse that has used up its timeslice on the
CPU but is otherwise ready to run. After all the processesgtidst priority have used their timeslices, the
scheduler gives every process a full timeslice and desigriéie expired array as the ready array and the
ready array as the expired. The switch is the start of agmeh, which will last until another switch. The
design of the scheduler shows that its basic behavior isrtétmel highest priority threads round robin.

Two important functions run in the background: the load beéa and the timeslice-adjustment function.
The load balancer ensures that in an SMP node, each pro¢esstire same number of processes. An equal
number of threads does not ensure an equal load, since saoespes can take longer than others. The
timeslice-adjustment function keeps track of which prgesaise up their quanta and lowers their priorities.
In testing, | did not observe the effects of this function.

The 2.6 kernel is preemptable. Preemption helps I/O-bomadcammunication-bound pipelined pro-
grams. High-priority threads can become ready after infgsrand send new requests to devices faster in
a preemptable kernel. The 2.6 kernel has other improvenasté All of these improvements lead to
performance gains.

System callsfor scheduling

Although the POSIX standard defines ways to control whichhef tready threads the operating system
chooses to run—modifying the default scheduler behavidBSEX leaves considerable leeway to vendors
in implementing controls. Linux provides minimal implentation of scheduling controls, and in some
regards it fails to meet the POSIX requiremehfBhe lack of controls constrains what actions the user can
take to control scheduling.

POSIX scheduling controls are called real-time schedulirtgch suggests the philosophy behind them.
Real-time scheduling occurs when some task requires inateedystem attention because of concerns ex-
ternal to the computer. An example, cited in [3], is the cohtinread for a robotic arm in a factory. This
thread needs to be able to react to sensor input in real titme u$er can give the control thread privileges to
preempt the other threads, by increasing its priority. fsias all or nothing. The scheduler always chooses
a ready thread with the highest priority to run. If a highepitly thread’s timeslice expires and no threads of
equal priority are ready to run, a new epoch begins and thie-piirity threads continue to run, starving
low-priority threads.

4The virtual file system has been redesigned to have a simptargiructure for a memory block. The simplicity improves
kernel performance and should speed up I/O requests. Thatopesystem has a new I/O layer, and the separate |/O slgredu
has a more efficient algorithm that groups reads and writgstker. The virtual memory system can directly access higimary.
If the SCSI driver is not already making these optimizatidghe 1/0O layer will improve performance. Future versiongtod Linux
kernel will have an improved SCSI layer. In another vein, tiegv Intel compiler has the capability to uksgperthreading built
into the Xeon processor. Hyperthreading is fast contextchivig between processes at the hardware level to increasegsor
throughput. Intel claims performance improvements of 25%.

5The function sysconf6C THREAD_PRIORITY.SCHEDULING) returns 1 if real time support is provided andtBeswise.
The sysconf source appears in /usr/include/unistd.h. ofiigh the sysconf call returns 1 for NPTL, it should return thrélad
priority scheduling is actually undefined in NPTL,; diffetesystems may experience different behavior.

| System Call | Result | Type |

schedsetscheduler, schegktschedule Sets and gets static priority, values 0-99 (highest) Static
nice Raises the dynamic priority by the number provided Dynamic
values 20 (highest)—19, nice(0) returns current priotity
setpriority, gepriority More modern version of nice Dynamic
schedyield Causes caller to yield the processor and -
go to the back of the priority queue

Table 1: Summary of scheduling system calls.

In testing, | observed that the magnitude of priority diffieces does not matter (i.e., priority 2 versus
priority 1 has the same behavior as priority 20 versus gxidt). | observed that there are two different
priority metrics, static and dynamic, although both hadshme effect—the higher priority thread always
runs. Confusingly, a higher priority number does not alwaesan higher priority. For dynamic priority, a
lower number is a higher priority. For static priority, a higr number is higher priority.

The operating system grants access to the CPU for threadsualf priority based on the scheduling
policy. POSIX defines first-in first-out (FIFO) and round nolfRR) policies. As the name implies, a FIFO
policy means that the thread given access to the CPU runstoiticks or a higher-priority thread is ready.
An RR policy means that threads are given time quanta and tieetime expires, another thread with the
same priority will run. If a process with higher priority bames ready, it preempts the running process in
both policies, as in the default policy.

Table 1 provides a summary of scheduling commands and tekaor.

4 Experimental results

This section describes the results of performance testsmam out-of-core implementation of the column-

sort algorithm. The algorithm has the following five stagesad, compute, communicate, compute, and
write. Two versions of the columnsort algorithm are useddach test. The first is compute-bound. The
computation stages in the second have been optimized, angldbrithm is I/O-bound. In the tests, the

I/0-bound version of columnsort is sorting twice as mucladet the compute-bound version.

Since all scheduling system calls have the same observed-eftausing the thread with the highest
priority to run whenever it is ready—we use the nice systefthliecause the user can call nice (with a
positive value) without needing superuser privile§edther scheduling calls, specifically the thread calls,
require superuser privileges.

Testing environment

| tested timing and performance using a Beowulf cluster ofl@2l 2.8-GHz Intel Xeon nodes. Each node
uses Fedora Core 1 running Linux kernel 2.6.5 #1 SMP. ThevBI®OSIX Threading Library (NPTL)
is the thread package. | used GCC version 3.3.3-03 to cor@leand the algorithms. | used the time
command from tcsh shell version 6.12.00.

Each node has 4 GB of RAM and an Ultra-320 36-GB SCSI hard dumaing at 15,000 RPM. | used
the C stdio interface for disk I/0. The nodes run the EXT3 Bistem, which has journaling built on top
of EXT2. For future research, it is more efficient to use plBXT2 or a raw disk. The nodes are con-

6Although the user can raise the nice value—lower the pyieriof a thread, he cannot lower the nice value of the threaldowit
superuser privileges, even back to its original value. Tibe nall is an irreversible action for a non superuser, ttuzee

\ Kernel | Observationg Mean | Std. Err. |
Compute: Kernel v. 2.4, LinuxThreads 125 13.38| 0.040
Compute: Kernel v. 2.6, NPTL 251 12.61| 0.039
I/O: Kernel v. 2.4, LinuxThreads 41 43.52 0.58
I/0: Kernel v. 2.6, NPTL 43 42.09 0.26

Table 2: Performance in new and old kernel and thread libsari

\ Scheduling | Observationg User Time| System Time| Clock Time | Procc. Use]
Compute: Default 251 23.50 1.05 12.61 194.6
Compute: Nice Down I/Q 227 23.05 1.05 12.41 194.1
Compute: Nice Up I/O 202 22.24 1.05 12.05 193.1
I/0: Default 173 23.88 11.07 24.26 143.6
I/0: Nice Down I/O 112 23.82 11.10 24.36 142.9
I/0: Nice Up I/O 83 23.99 11.07 24.21 144.32

Table 3: Performance in fixed scheduling algorithms.

nected with a 2-GB/sec Myrinet network. Communication esatia MPI calls. | used the ChaMPlon/Pro
implementation of MPI.

The tests were run on a single node using an out-of-coreeatdtesited on the local hard drive in the /tmp
directory. To prevent file caching from affecting the testuks of the 1/O-bound version of columnsort, we
generate two datasets and work on the first. The second iagmend is the size of the node’s main memory
to ensure that data from the dataset we are using does rionstaemory.

Kernel improvements

These are the results from the columnsort algorithm run en2td kernel with LinuxThreads and the 2.6
kernel with NPTL. Table 2 shows the new kernel and thread&e are 6% faster than the old imple-
mentations for the compute-bound thread and 3% faster &V @+bound thread. The code run on the two
systems has only minor differencéhe 1/0-bound columnsort code used for this test was skgtiffer-
ent than that used in the other tests in this paper, which jstiva running time is longer and the processor
usage higher.

Fixed scheduling

The first step in fixed scheduling is determining the limitnegource and raising the priority of the threads
that use it. We see from Table 2 that one implementation has@psor usage of 194.6% out of 200%.
The other has 143.6%. It is safe conclude that they are catipntbound and I/O-bound respectively. We
can also run tests where we double the number of I/O opesatiod see the effect on clock time. If the
clock time doubles, then the pipeline is 1/0-bound. A simtlst can be used if the programmer thinks
the pipeline is communication-bound. Having determine the algorithms are compute-bound and 1/0O
bound, the next step is to increase the priority of the thedhdt contain operations for the limiting resource.

"The implementations used different communication callsvio tests—cmpic versus mpic in the new versus old respdgtive
Since the tests were run on single nodes, this probably dates/en affect the results.

\ Scheduling | Observationg User Time| System Time| Clock Time | Procc. Use]

Compute: Default 251 23.50 1.05 12.61 194.6
Compute: Dynamic up 143 23.08 1.05 12.42 194.0
Compute: Dynamic up, down 121 23.06 1.05 12.44 193.7
I/O: Default 173 23.88 11.07 24.26 143.6

I/O: Dynamic up 83 23.80 11.10 24.44 142.4

I/0: Dynamic up, down 137 24.05 11.10 24.56 142.8

Table 4: Performance in adjusting scheduling algorithms.

| Variable | Compute: Coefficienf 1/0: Coefficient]|

User time 0.512 0.64
(1072.86)** (18.76)**

System time 0.501 0.70
(19.64)** (15.15)**

Percent used -0.066 -174
(213.71)** (90.89)**

t stats. in parens.
* sig. at 5% **sig. at 1%

Table 5: Clock Time and components regression.

Table 3 shows the results from the tests of fixed schedulirgrilt the test 225 times for the compute-
bound algorithm and 173 times for the 1/0-bound algorithmheWalue of 12.61 for clock time for the
default scheduling of the compute-bound thread means thilecleak time for the default scheduling is
12.68 seconds. Similarly, the value of 12.05 for the nice/@pscheduling means that the average running
time for the program with the I/O threads calling nice with@sjlive parameter (having lower priority) is
5% faster than the default. The results from a simple t-taswhether the two means are equal (i.e. whether
the running times are statistically different) shows timedddition to having a difference in running times of
5%, the probability that the running times are different yace is less than 0.005%. There are no other
significant improvements in performance over the defadledaling in Linux.

Adjusting scheduling

A second set of tests calls nice on threads during running tiased on a rule that does not take advantage of
knowing whether the program is compute-bound or I/O-boundhe first technique, a stage calls nice up—
permanently lowers its priority—if it observes a two or mdmaffers in its output queue when it conveyed

a completed buffer. The priority is lowered only once; fnthbackups do not result in subsequent calls to
nice. In the second technique, the thread calls nice upékis & backup and does not already have a lowered
priority (as in the first). The thread also calls nice down+isea its priority—if it sees no other buffers when

it conveys and if it has a lower priority. This technique riga superuser privileges.

Table 4 presents the results. Both of these techniques haldusrunning times. The improvement in
clock time, however, is minor (approximately 1%). Stilletprobability that these running times are the
same as the base case is significant at 1%.

Table 5 is a measure of load balancing. It shows that in gemarsing user or system time by 1 second
raises clock time by 0.5 seconds in the compute-bound #fgoriA two processor SMP node would exhibit

this behavior if the load is evenly balanced. If the coeffitiere different from 0.5, as is the case for the
I/0O-bound thread, then raising user or system time woulcehav effect substantially different from 0.5.

The load balancer cannot balance the 1/0-bound algorithmedidbecause it cannot control how long disk
reads and writes take. A lower wall clock time correlatedweithigher percent used of the CPU time. This
result confirms that faster running times have higher CPlgesates and lower latency on average.

5 Conclusion

The conclusion reviews the findings of the paper. In additibdiscusses new scheduling calls and other
operating-system improvements.

The three main findings of the paper are as follows. Firshgikinux kernel version 2.6 and the NPTL
threads package, we observe a 3-6% performance improvemwentkernel version 2.4 and the Linux-
Threads package. Second, we test techniques that bothde#tetage of prior knowledge about whether a
program is 1/0O-bound or compute-bound and raise and loweripes before the pipeline begins working.
These techniques, referred to as fixed scheduling, furthprave performance by 5% in the case of the
compute-bound columnsort algorithm. In the I/O-bound athm, fixed scheduling failed to yield better
performance than the default scheduling. Third, we tespEnadjusting methods that do not take advantage
of prior knowledge about whether a program in compute-baamidO-bound but rather adjust scheduling
as the pipeline progresses. These techniques, calledtiadjssheduling, fail to yield better performance
than the default scheduling in any of our test cases.

The default algorithm for scheduling in Linux is generalffident. The new threads package reduces
the time to create and exit threads by two orders of magnitwee the old package and allows a virtually
unlimited number of threads. The lack of control over schieduprevents any custom scheduling other
than raising thread and process priority, however. Theatgltd lengthen or shorten timeslices would allow
the user to control better computational threads and teegehaniform throughput. More control over load
balancing would allow the user to ensure that a CPU is notpdk of the time in an SMP environment.
These capabilities would make Linux scheduling even hetter

Even if better scheduling controls are implemented, sclimeglmethods that require knowledge of the
overall state of the pipeline may still not be practical. Bkoowledge is difficult to obtain in a distributed
system. One solution is to extend semaphore semantics ltcdéatomic semaphore up and semaphore
down commands that return the value of the semaphore afteargge in its value. These commands would
allow a stage to know the number of buffers in its incoming aattjoing queues without requiring a critical
section and a lock.

FG facilitates experimentation with pipeline structuratréducing priority in FG allows more control
and more possibilities. The system calls described in #d@n would provide even more control. Because
performance varies in test runs and it is hard to get compieteretical understanding of the complexity of
scheduling, experimentation may be the best way to impripaipe performance.

Acknowledgements

I would like to thank Tom Cormen, my advisor, for suggestihg topic, enlightening me on research, and
most of all teaching me how to write. | would also like to thdrdney Davidson, who developed FG and
kindly helped me run tests on it. Tim Tregubov and Wane Crggisup the Beowulf cluster and answered
all questions. Geeta Chaudry wrote the 1/0-bound colunimgogram. Finally, | want to thank my family,
who has supported me and made my Dartmouth experience [gssib

References

[1] Daniel P. Bovet and Marco CesatiUnderstanding the Linux Kernel. O’Reilly & Associates, Inc.,
Sebastopol, CA, second edition, 2003.

[2] Thomas H. Cormen and Elena Riccio Davidson. FG: A framéwgenerator for hiding latency in
parallel programs running on clusters. To appear in PDC3208vailable athtt p: / / www. CS.
dar t mout h. edu/ FG 2004.

[3] Bradford Nichols, Dick Buttlar, and Jacqueline Proularfell. Pthreads Programming. O’Reilly &
Associates, Inc., Sebastopol, CA, 1998.

	Scheduling Pipelined, Multi-Threaded Programs in Linux
	Recommended Citation

	tmp.1596484807.pdf.5mHsr

