
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-9-2004

Mobile Agents Simulation with DaSSF Mobile Agents Simulation with DaSSF

Nikita E. Dubrovsky
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dubrovsky, Nikita E., "Mobile Agents Simulation with DaSSF" (2004). Dartmouth College Undergraduate
Theses. 36.
https://digitalcommons.dartmouth.edu/senior_theses/36

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/36?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report
TR2004-499

Mobile Agents Simulation with DaSSF

Nikita E. Dubrovsky
Advisor: Robert S. Gray

June 9, 2004

Abstract
Mobile agents are programs that can migrate from machine to machine in a

network of computers and have complete control over their movement. Since the
performance space of mobile agents has not been characterized fully, assessing the
effectiveness of using mobile agents over a traditional client/server approach currently
requires implementing an agent system and running time-consuming experiments.

This report presents a simple mobile-agent simulation that can provide quick
information on the performance and scalability of a generic information retrieval (IR)
mobile-agent system under different network configurations. The simulation is built
using the DaSSF and DaSSFNet frameworks, resulting in high performance and great
configuration flexibility. This report also implements a real D’Agents mobile-agent IR
system, measuring the performance of the system. A comparison of these real-world
performance results and those given by the simulation suggest that the simulation has
good accuracy in predicting the scalability of a mobile-agent system. Thus this report
argues that simulation provides a good way to quickly assess the performance and
scalability of an IR mobile-agent system under different network configurations.

1. Introduction
Mobile agents are programs that can migrate from machine to machine in a

network of computers. An agent has complete control over the time and direction of its
movement. Using mobile agents instead of traditional distributed approaches can
significantly improve the performance of some applications, especially in low-bandwidth,
low-reliability networks. A mobile-agent system will not always perform better than a
client/server solution however, and the performance space for mobile agents has not been
characterized fully. Therefore, assessing the effectiveness of using mobile agents over a
traditional approach currently requires implementing an agent system and running time-
consuming experiments.

To address this problem, this report presents a generic information retrieval (IR)
mobile-agent simulation. The goals of the simulation are to provide a fast and simple way
of assessing the performance and scalability of an IR mobile-agent system under different
network topologies and conditions. The simulation is built using the DaSSF and
DaSSFNet frameworks, to provide high performance and configuration flexibility. These
simulation frameworks use DML for creating network models, allowing quick
development of different network configurations.

The overall approach of using only simulation to evaluate MA performance has
some obvious drawbacks, but also several advantages, making it a worthwhile research
direction. Since MA is a complex system, it is difficult to achieve high accuracy with just
simulation. Also, some experiments on a real MA system are still necessary to obtain
parameters for the simulation (and usually, the more accurate a simulation is, the more
parameters it requires). On the other hand, simulation has the advantages of great
simplicity and speed. Using simulation, the performance of a system can easily and
quickly be evaluated under many different network and system configurations.

The remainder of this report is divided into the following sections. Section 2
presents an overview of past research relating to mobile-agent performance, scalability
and simulation. Section 3 presents the simulation software, while Section 4 describes the
D’Agents mobile-agent system and the IR agent application used for the comparison
experiments. Section 5 presents the experiments used to assess the accuracy of the
simulation, and the experimental results and analysis. Finally, Section 6 presents the
overall conclusions.

2. Related Work
This section outlines the existing research in the areas of mobile-agent

performance, scalability and simulation. MA performance evaluation research extends
into several different areas—the papers most relevant to this report are described below.

In [6] and [7], R. Gray et al use an information retrieval application similar to the
one presented in this report to evaluate and compare the performance of mobile agents
and an equivalent client/server solution. Both papers focus on a single-hop agent
scenario. [6] compares four different MA platforms (D’Agents, NOMADS, EMAA,
KAoS), using different query pass ratios1 (5% and 20%), network speeds (1, 10, and
100Mbps), and number of clients (1 to 20). [7] presents a detailed study of the scalability
of D’Agents under varying network speeds (1, 2, 3, 7, 10, 100 Mbps), query pass ratios
(5% and 20%), and number of clients (1 to 20). The papers provide insight as to when
mobile code should be considered as a solution.

Along the same lines, [8] presents a performance evaluation of mobile agents
versus the client/server paradigm. The study is very practical in its approach, using “real
networks” (as opposed to a dedicated experimental network), including Internet links
connecting Switzerland, France and the UK. For the application, both single-hop and
multi-hop agents were used to retrieve a list of hotels and corresponding phone numbers
(stored on different servers). The system is analogous to the IR system used in [6] and
[7], and it presents similar results. The experiments use only a single agent, however, and
do not assess the scalability of the system under different loads.

In [3] and [4], Dikaiakos et al develop a framework of benchmarks for
quantitatively evaluating MA performance. Their structured, hierarchical approach allows
analysis of the performance of an MA platform and the identification of existing
bottlenecks. Using this framework, the performance of a mobile-agent platform can be
characterized, thus making it possible to then predict the performance of an MA

1 Although all of the documents are searched, the query pass ratio is used to determine the percentage of
documents that actually “pass” the query. This allows the number of documents that the query agent
returns to be controlled exactly.

application implemented on top of the platform. This approach still requires a time-
consuming process of implementing and running the benchmark experiments. Even the
simple simulation presented in this report, however, requires some benchmark
experiments to be conducted in order to obtain simulation parameters.

Kotz et al [10] and Woodside [17] take a mathematical approach to MA
performance evaluation. [10] presents an analytical model to examine the tradeoffs
associated with a mobile-agent system versus a traditional solution. The model is then
parameterized using data from previously conducted filtering experiments, and the
model’s implications are discussed, confirming that mobile agents provide a significant
performance benefit in a wide range of situations. In [17], Woodside introduces a model
for scalability to analyze the mobile-agent paradigm. Performance is expressed in terms
of the time it takes for an agent to execute its “tour” (a task that involves visiting several
hosts). The number of servers and agents can then be varied to evaluate the scalability.

Finally, [1] and [11] present simulation frameworks for evaluating MA systems.
In [1], Cao et al propose a direct-execution-simulation approach for evaluating mobile-
agent performance. The paper describes a generic simulation model named MADES, and
an implemented prototype of the model. The simulation environment allows a mobile-
agent application to be directly executed, while the simulation collects and processes
performance information about the application. A similar approach is taken by Liotta,
Ragusa and Pavlou in [11]. They propose a hybrid simulation framework, which allows
execution of prototype agent code over simulated networks. The framework uses NS for
network simulation, while implementing a virtual execution environment for mobile
agents. Synchronization between MA processing and network events was not yet fully
developed however, making the simulation only suitable for MA systems whose
processing is not tightly bound to networking events.

As this overview shows, this report takes a somewhat unique approach to MA
performance evaluation, using only simulation with just a few simple parameters.

3 Simulation Software
This section describes the software pieces that make up the mobile-agent

simulation. Section 3.1 and 3.2 present DaSSF and DaSSFNet, the two simulation
frameworks on top of which the MA simulation is built. Section 3.3 provides a brief
overview of the DML language used for model configuration. Finally, the last sections,
3.4 and 3.5, describe the MA simulation implementation and configuration.

3.1 DaSSF
DaSSF or Dartmouth Scalable Simulation Framework is a C++ implementation of

the Scalable Simulation Framework (SSF). SSF is an object-oriented API for a public
domain standard for discrete-event simulation. SSF was designed for parallel simulators
and allows easy porting of simulation models across different platforms and applications.
The SSF API provides a self-organizing, scalable simulation infrastructure. This
infrastructure is based on five simple classes (SSF_Entity, SSF_Process, InChannel,
OutChannel, and Event), which provide a generic framework for modeling systems as a
collection of objects communicating via event exchange. The details of the SSF API can
be found in [2].

DaSSF provides several advantages over other implementations. In the design of
DaSSF, performance was a top priority, resulting in an implementation that is highly
efficient in memory usage and provides high performance even for very complex
systems. DaSSF is fast, portable and capable of simulating very large systems. The
DaSSF homepage [12] provides a full description of the framework implementation.
What DaSSF lacks however is a higher-level infrastructure specifically for simulating
networks. This shortcoming was alleviated by the development of DaSSFNet, described
below.

3.2 DaSSFNet
DaSSFNet implements a network simulation infrastructure. It is a framework built

on top of SSF, consisting of a collection of simulation components for modeling
communication networks. DaSSFNet provides a complete suite of network elements for
simulating hosts, routers, protocols, interfaces, etc. The DaSSFNet framework has its
own object model, providing classes representing specific network elements. Compared
to DaSSF, which is a very generic framework, DaSSFNet provides an infrastructure
specifically for network simulation, and allows the intuitive construction of large-scale
network models from familiar, real network components. More extensive descriptions of
DaSSFNet are available at [9] and [13].

DaSSFNet consists of the following main classes. The Net class is a container for
all Machines and Links and other Nets. A Machine class models hosts and routers, as well
as acting as a container for Interfaces and SSF_Protocols, providing utility functionality
between the two. The Link and Interface classes simulate all communication. Finally, the
ProtoGraph and SSF_Protocol classes describe the protocols running on a simulated
host. ProtoGraph is simply a container for all protocols and is implemented as a DAG
(Directed Acyclic Graph), since each protocol can have more than one protocol on top of
it, but always only one below. SSF_Protocol is a base class for all simulated protocols.
The Hardware class is a protocol that is at the root of the ProtoGraph. Protocols that are
implemented as part of DaSSFNet include IP, TCP and UDP, sockets, and HTTP. These
simulated protocols implement the familiar functions from their corresponding real-world
counterparts, such as bind(), accept(), connect(), send(), recv(), etc for sockets. Thus, in
order to model a particular application (for example a Web browser, or in this case, a
mobile-agent client and server), one simply needs to implement a class or classes derived
from both SSF_Protocol and SSF_Process, simulating the application functionality, and
then add those classes to the ProtoGraph along with the lower-level protocols used by the
application.

As a network simulator, DaSSFNet has several advantages. Since it also is
implemented in C++, DaSSFNet is capable of running very large network models with
high performance in terms of both memory usage and speed. More importantly for this
mobile-agent simulation, DaSSFNet also allows the creation and configuration of
simulated networks very easily and quickly through DML, as described in the next
section. These advantages prompted the choice of using DaSSF and DaSSFNet as the
simulation frameworks. Other simulation packages (such as NS) have comparable
strengths, however, and the MA simulation does not depend on any features unique to a
particular simulation package.

3.3 DML
Domain Modeling Language or DML is a simple language that allows the

specification of properties for attributes. DML is the language used by DaSSFNet for
model specification and configuration, allowing easy and intuitive creation of simulation
networks. A DML expression is just a list of key value pairs separated by whitespace;
keys are strings, while values can be either strings or other DML expressions. DaSSFNet
then specifies a set of keys that are used to define a simulation model. [15] gives a full
description of DaSSFNet/SSFNet DML attributes, while [14] and [16] provide detailed
tutorials for defining simulation models for DaSSFNet using DML. Section 3.5 describes
more details of configuration, specifically for the MA simulation.

3.4 Mobile Agents Simulation
The simulation models an IR mobile-agent system. Information retrieval is a

common and relatively generic application for mobile agents. Thus, using this system for
the model allows the simulation to be applicable to many different real-world
applications. In an IR scenario, a client needs to obtain some information stored on a
remote server. The client sends a query agent to the server, where the agent scans all the
documents. The agent determines which documents are relevant based on its query string,
and returns to the client with just those files.

In the simulation, agent clients generate query agents that jump to one or more
servers to execute the query, then return to the client with the results of the query. The
simulated agent servers wait for and receive agents, simulate processing the query, and
finally let the agent jump to another server or back to its source client with the query’s
results.

The simulation is based on the following parameters: the size of the agent and
query results, the agent serialization/un-serialization times for the client and server, the
query execution time, and the number of servers an agent must visit to process the query.
The different network scenarios that can be modeled by the simulation in DaSSFNet is
practically unlimited.

The MA simulation code is split among four files: AgentsClient.h/.cc and
AgentsServer.h/.cc. The implementation details for the simulated agent client and server
are described below.

3.4.1 Simulation agent client.
The client code is divided among five classes: AgentsClient, AgentInfoTable,

AgentSender, AgentReceiver and ClientAgentHandler. AgentInfoTable implements a
simple dynamic array to keep track of generated agents, including their id, size and start
time. AgentsClient is derived from the SSF_Protocol and SSF_Process classes, as it is
both a DaSSFNet protocol and an individual simulation process. When the class is
instantiated, SSF automatically calls its Configure(), Initialize() and action() functions,
which serve as the entry point and whose implementation is required. Configure() simply
reads in and stores the client’s DML parameters, while Initialize() gets the client’s IP
address and opens a new socket interface. The simulated agent client then begins
execution in the action() function. The client first creates a new AgentReceiver class to
wait for and accept connections from servers as the agents return. The client then drops
into a loop to generate agents. The loop first sleeps (using the SSF waitFor() function) for

a random delay, calculated using an exponential distribution whose mean is obtained as a
parameter from the DML configuration. A new agent then is generated by creating an
entry in the AgentInfoTable and instantiating a new AgentSender object with the new
agent’s id passed as an argument. The agent’s size is set according to the parameter
specified in the client configuration. The loop ends when the number of generated agents
reaches the cap set in the client’s DML configuration. After that, the client sleeps until
the end of the simulation. When the simulation ends, the client’s destructor outputs the
client’s overall statistics for the run.

AgentSender, AgentReceiver and ClientAgentHandler are all derived from
SSF_Process. These classes serve essentially as containers, as they merely call the
corresponding SendAgent() , ReceiveAgents() and HandleAgent() functions of
AgentClientwhen they are instantiated by the simulation. The reason why AgentClient
does not call the functions directly, but goes through these helper classes, is so that SSF
will create separate simulation processes for each of these actions and simulate their
parallel execution.

The SendAgent() function records the start time for the agent and then takes care
of simulating the agent’s jump to the server. The server is selected at random from the list
of possible servers specified in the traffic DML configuration parameter (see Section
3.5). The agent’s serialization time is simulated by sleeping for the amount of time
specified by the client’s serialization time parameter (also in the DML configuration).
The client then creates a new socket, opens a TCP connection to the server, sends the
agent, and waits for an ACK (all simulated using the DaSSFNet socket protocol, which
provides the familiar connect(), send() and recv() functions). The number of bytes sent
and received for this agent jump is added to the client’s global variables that keep track of
the amount of incoming and outgoing data.

The ReceiveAgents() function simply creates a new socket and loops forever
accepting connections. When a server attempts to connect, the function creates a new
socket for the connection and instantiates a new ClientAgentHandler object, passing the
socket to it as the argument. The HandleAgent() function called by the
ClientAgentHandler class then takes care of receiving the agent trying to jump back to
the client. After successfully receiving the agent, the function sends an ACK back to the
server and closes the connection. As in SendAgent(), the client then simulates the agent
un-serialization. Finally, the number of bytes received and sent, and the total time taken
by the agent, are calculated and added to the client’s overall statistics.

3.4.2 Simulation agent server.
The server code consists of just two classes: AgentsServer and

ServerAgentHandler. After its initialization, which parallels that of the client (through the
Configure() and Initialize() functions called automatically by SSF), the server starts
executing in the action() function. That function is essentially identical to the
ReceiveAgents() function of the client. The server loops forever accepting connections,
creating new sockets and ServerAgentHandler objects so that a separate SSF process
handles each connection. The ServerAgentHandler class then merely calls AgentsServer’s
HandleAgent() function.

After receiving the agent, HandleAgent() simulates the agent un-serialization and
query processing. In order to simulate the execution of these actions, a simple FIFO

queue is used as the model for process scheduling and execution. A global semaphore
represents the server CPU. HandleAgent() waits on the semaphore (“waits for the server
CPU to be free”), simulates execution while holding it, and “releases the CPU” (i.e.
signals the semaphore) when the execution is “finished.” The execution itself is simulated
as on the client, by sleeping for the amount of time specified by the corresponding
parameter in the server DML configuration.

The advantage of this FIFO queue approach is its great simplicity, requiring only
one parameter. Simplicity, however, is also the main disadvantage of the model, since it
does not account for many of the factors involved in executing code, including the far
more efficient process scheduling used by a real system, the overlap of I/O tasks with
CPU usage, and caching. Still, this model provides adequate accuracy for agents that are
not overly complex.

Initially, the simulation used this “CPU” approach only for simulating the query
processing. After running experiments on D’Agents however, it was discovered that
agent un-serialization becomes a major bottleneck for the agent system under heavier
loads (see section 4.3). Therefore un-serialization is also simulated using the “server
CPU,” unlike the client’s serialization/un-serialization. After thus “processing” the query,
HandleAgent() adds the simulated results to the agent and sends it on to the next server or
back to its source client. Serialization of the agent before sending it is simulated as on the
client, by simply sleeping, without waiting to get the “CPU.” This is because serialization
time is very small (approximately 0.003 sec for the D’Agents IR application used) and
never causes a bottleneck on the real D’Agents server (since the rate at which agents need
to be sent is already involuntarily capped by the un-serialization and processing time).
Using the “CPU” model for serialization in the simulation would therefore cause some
agents to have unrealistically long execution times, if they simply got stuck behind
another agent’s query processing in the “CPU” queue.

3.5 Simulation Configuration
Through DML configuration, the simulation can easily and quickly be configured

to use the desired network topology and characteristics. Section 3.1 contains several
references to detailed DaSSFNet DML manuals. A sample MA simulation configuration
is shown in Appendix A. On a higher level, the simulation’s DML configurability allows
the user to create simulated networks by specifying a set of hosts and routers connected
by links. Every host or router’s interface speed, latency and reliability can be specified
individually. Additional static delays also can be assigned to links and interfaces
individually. For every host, the user also specifies the simulated protocols running on it
(in this case: IP, TCP, sockets, and either AgentsClient or AgentsServer). Finally, a
traffic pattern parameter allows the user to define which hosts communicate with each
other; for the MA simulation, this parameter defines, for each host, a list of servers to
which the host can send its agent (a server then can be chosen at random for each agent).
Thus, one can very easily construct different network configurations, and see the
resulting effects on MA performance.

4. Experiment Software

This section outlines the real mobile-agent software used to evaluate the accuracy
of the simulation. Section 4.1 describes the D’Agents mobile-agent system. Section 4.2
then explains the simple IR application implemented using D’Agents for the comparison
experiments. Finally, Section 4.3 explains the D’Agents instrumentation that was done in
order to obtain parameters for the simulation.

4.1 D’Agents
D’Agents is a mobile-agent system developed at Dartmouth College. D’Agents

agents can be written in several languages, including Java and Tcl (Tool Command
Language). Tcl is a powerful, yet easy to learn, high-level scripting language, allowing
rapid development of complex agents. It was therefore the language chosen for the
implementation of the mobile-agent application used in this report. A D’Agents Tcl agent
has access to all of the standard Tcl commands, plus a set of special mobile-agent
commands, allowing it to migrate from one machine to another, communicate with other
agents, and obtain information about its current state (such as network location and
identities of other agents, etc). D’Agents provides a very effective platform for
experimentation, especially since the system’s source code is available, allowing
instrumentation to get more precise time measurements. Details of the D’Agents system
(previously known as Agent Tcl) can be found in [5].

In addition to using D’Agents for assessing the accuracy of the simulation, the
system also was used as reference for the development of the simulation. Most important
for the simulation is the way in which an agent accomplishes migration. D’Agents
implements an agent_jump command to handle this task. The command captures the
current state of the agent, packages the state image, and sends this agent image to the
destination host (over a TCP connection). The destination receives the image and starts a
Tcl interpreter, which restores the agent’s state and resumes the agent execution
immediately after the jump command (strong mobility). The process of capturing state
and packaging the agent and its reverse are referred to as agent serialization and un-
serialization, both of which are modeled by the simulation.

4.2 D’Agents Query Agent
The experimental IR system used for evaluating the simulation consists of a main

parent agent that generates child Query agents. The Query agents jump to one or more
servers and conduct a simple text search on several test documents, returning to the client
with only the documents satisfying the query.

The parent agent consists mainly of a simple loop that submits new Query agents
and receives messages from returning agents. A random delay between each new agent is
calculated using an exponential distribution, given a mean delay parameter. The loop
ends when the parent reaches the cap on either the number of agents to generate or the
experiment duration. Messages from any remaining agents that have not yet finished are
then received, and the overall statistics for the run are calculated and output.

The Query agent’s parameters include: a list of servers, the path to the test
documents directory, and a relevance percentage specifying how many of the documents
should end up satisfying the query (all of the test documents are searched, but this
parameter is used to actually determine how many of them should “satisfy the query” for
experimental control). The Query agent visits the same number of severs as is contained

in the list of servers argument, but it does not necessarily visit each server exactly once,
since the next server to which to jump is always picked at random. For the single-hop
scenario, only one server is specified, so that all agents go to the same server. After
jumping to the server, the agent reads in all of the test documents and runs a string search
on each one. It then keeps just the number of documents specified by the relevance
percentage parameter (all documents have the same size) and discards the rest. When
visiting multiple servers, the Query agent replaces the documents obtained on a previous
server with those resulting from running the query on the next server. Once the Query
agent returns to its home machine, it sends a message to the parent agent, containing the
timing information for the query, including the total round trip time.

4.3 D’Agents Instrumentation
The D’Agents system code was instrumented in order to obtain agent timing

information to parameterize the simulation. To determine how much time agent
serialization and un-serialization takes, logging was added to the D’Agents server. The
server obtained and output a timestamp just after an agent image was read from the
network and a timestamp just before writing an agent image to the network. The size of
the incoming and outgoing agents also was output. The Query agent itself output the time
when query processing starts (right after the agent_jump command returns), as well as the
time when the query finishes. Subtracting the times logged by the instrumented D’Agents
server and the Query agent provided the time for agent serialization and un-serialization.
These values, along with the agent size, then were used as parameters for the simulation.

The D’Agents instrumentation also provided insight to at least one of the
bottlenecks faced by the agent server under heavier loads. Below are two snapshots of the
server log, one under normal load and another under heavy load. The logs record the time
(in sec), agent id, and event. The un-serialization time is calculated by subtracting the
“Agent Received” time from the “Query Exec Start” time.

Normal Load (0.5 agents / sec)
Timestamp Agent Id Event

1084076223.673090 1927 Query Exec End
1084076223.749990 1928 Agent Received

1084076223.788000 1928 Query Exec Start
1084076223.918370 1928 Query Exec End

1084076223.949860 1929 Agent Received
1084076223.987550 1929 Query Exec Start

1084076224.122450 1929 Query Exec End
1084076224.186730 1930 Agent Received

1084076224.163540 1930 Query Exec Start
1084076224.307960 1930 Query Exec End

1084076224.301630 1931 Agent Received
1084076224.321210 1932 Agent Received

1084076224.355740 1931 Query Exec Start
1084076224.395940 1932 Query Exec Start

1084076224.656220 1932 Query Exec End
1084076224.663750 1931 Query Exec End

Heavy Load (1.5 agents / sec)

Timestamp Agent Id Event
1084075887.227360 1902 Query Exec End

1084075885.552780 1904 Agent Received
1084075885.554390 1905 Agent Received

1084075885.556030 1906 Agent Received
1084075885.557720 1907 Agent Received

1084075885.559370 1908 Agent Received
1084075885.562690 1909 Agent Received

1084075885.564390 1910 Agent Received
1084075885.566070 1911 Agent Received

1084075885.567790 1912 Agent Received
1084075885.578840 1913 Agent Received

1084075885.577130 1914 Agent Received
1084075885.575430 1915 Agent Received

1084075885.573740 1916 Agent Received
1084075885.572060 1917 Agent Received

1084075885.569490 1918 Agent Received
1084075885.580560 1919 Agent Received

1084075885.561040 1920 Agent Received
1084075885.992530 1903 Agent Received

1084075887.887150 1917 Query Exec Start
1084075887.644960 1916 Query Exec Start

1084075887.727300 1913 Query Exec Start
1084075888.076500 1911 Query Exec Start

1084075888.155040 1910 Query Exec Start

1084075887.505990 1909 Query Exec Start
1084075887.395620 1907 Query Exec Start

1084075887.448290 1905 Query Exec Start
1084075887.474690 1904 Query Exec Start

Under a normal load the un-serialization time is approximately 0.05 sec. As the
load on the server increases, however, the time explodes to about 2 sec. This is likely due
to high CPU contention, since creating a new interpreter for each new agent that arrives is
a CPU intensive task. This observation prompted the simulation of agent un-serialization
on the server using a simulated CPU, described in Section 3.4.2.

5. Experiments and Results
This section describes the experiments that were run on the D’Agents system and

simulation, in order to evaluate the simulation’s accuracy. Section 5.1 gives an overview
of the experiment scenarios, while Section 5.2 presents the results. The results are
discussed in Section 5.3.

5.1 Experimental Design and Setup

In addition to a single-client, single-server baseline experiment, two main
scenarios were used for the experiments. The first scenario varies the number of client
hosts generating a single-hop agent that visits only one server to execute the query. The
second scenario uses a single client that generates multi-hop agents, varying the number
of servers that the agent has to visit to process the query. Having access to only 11
physical machines2, this resulted in the following network configurations: “1 server, {2,
4, 6, 8, 10} clients” and “1 client, {2, 4, 6, 8, 10} servers”.

5.2 Results
For each experiment, every client was set to generate a total of 100 agents, while

the agent generation rate was varied. Five to ten trials were run for each generation rate.
The “agent time” (the whole roundtrip time of an agent) was then obtained by averaging
across all the agents. Each of the plots below shows the agent time corresponding to the
generation rate used. Appendix B contains tables summarizing the results.

Baseline

2 The machines used were Gateway Solo 9300 laptops with 128MB RAM, 20GB hard drives, and 3COM
10/100Mbps Ethernet cards. The laptops were running Linux kernel 2.2.19 and PCMCIA version 3.2.4.
The machines were connected through a 100Mbps hub on a dedicated network.

Single-Hop

Multi-Hop

Summaries

5.3 Discussion
The agent times predicted by the simulation are clearly slightly off from the real-

world performance results produced by D’Agents. The plots also show, however, that the
simulation is off fairly consistently. For the single-hop experiments, the simulation is off
by about 0.06 sec, until the server starts getting overloaded. When the load starts
becoming too heavy for the server, the real-world time catches up with the simulation and
explodes slightly before the simulation prediction. For the multi-hop experiments, the
simulation predicts higher agent times across all generation rates, and the difference
between the simulation and D’Agents grows as the number of servers increases.

There are several possible reason for the simulation’s higher values. First, the
simple FIFO queue model used for the “server CPU” to simulate un-serialization and
query execution is certainly responsible for at least some of the extra time predicted by
the simulation, since such a model is not nearly as efficient as real process scheduling.
Another possible cause is that the network settings used for the simulation may not be
completely accurate. The exact speed, latencies and static delays on the different parts of
real network were not measured, so the values used to configure the simulation are best
estimates. Therefore, the simulation’s network configuration may be slightly off from the
real network, causing higher agent time predictions. Finally, another reason for the lower
D’Agents times is the caching in the real system, which would improve the speed of
processing agents and executing the queries, as the same process is repeated again and
again.

Since the simulation times are higher for the single-hop experiments, it makes
sense for the gap between the simulation and real-world values to grow as the number of
servers and agent migrations is increased. In the multi-hop experiments, the agents do
both more network travel and more query processing; therefore, the offset already present
in the single-hop experiments accumulates for every extra server, resulting in higher
discrepancies.

Although the actual times predicted by the simulation do differ from the real-
world results, the experiments also show that the simulation provides good accuracy in
predicting the scalability of an agent system. As can be seen from the summary graphs,
the simulation produces curves that closely parallel those produced by the real mobile
agents system. Thus, even though the simulation is not completely accurate in predicting
the exact performance of an agents system, it does make good predictions as to the
scalability of the system under varying network and load conditions.

6. Conclusion
Since the performance space of mobile agents has not been characterized fully,

there is currently no easy way of determining how well a mobile-agent solution will
perform, and whether it is better than a traditional client/server approach. To address this
problem, this report presents a simple mobile-agent simulation. The simulation models a
generic information-retrieval agent system, since IR is a common area of mobile-agent
application, allowing the simulation to be relevant to many different problems. Although
the simulation cannot predict the exact performance of a system, the experiments
presented in this report show that the simulation provides good accuracy in predicting the
overall performance and scalability of a mobile-agent system. In particular, the

simulation does well in predicting the scalability of an agent system under varying
network and load configurations. Finally, the greatest advantage provided by the
simulation is the ability to quickly and easily evaluate a mobile-agent system. Through
DML configuration, the simulation allows for fast development of different network
models and their evaluation. Additionally, since the simulation is built on top of the high-
performance DaSSF and DaSSFNet frameworks, it provides high speed and efficient
memory usage when assessing complex models. Therefore, this report argues that
simulation provides a good tool for quickly evaluating and predicting the overall
performance of a mobile-agent system under varying network configurations.

There are also several areas where additional work could make the simulation an
even better alternative for evaluating mobile-agent performance and scalability. First,
more accurate simulation of execution on the server would greatly improve the overall
accuracy of the simulation. Even a simple round-robin model for simulating process
scheduling (instead of the FIFO queue) should improve accuracy. Secondly, the MA
simulation would provide more precise information on agent performance if more of the
different agent platform pieces are simulated. The model presented here only simulates
the agent serialization/un-serialization performed by the agent platform. Breaking up
these general processes into their smaller sub-tasks and simulating them individually
would provide better accuracy and allow the simulation to predict the scalability of the
different platform parts. And thirdly, development of an effective simulation (or
mathematical model) for the equivalent, traditional client/server application would allow
fast comparison of the two paradigms under varying conditions.

References
[1] Jiannong Cao, Xuhui Li, So King, Yanxiang He, "Direct Execution Simulation of
Mobile Agent Algorithms", Proc. 2003 Internationbal Symposium on Parallel and
Distributed Processing and Applications (ISPA2003), July 2-4, 2003, Aizu-Wakamatsu
City, Japan. Lecture Notes in Computer Science (Springer-Verlag).

[2] J. H. Cowie, ed. Scalable Simulation Framework API Reference Manual (1998).
Available at http://www.ssfnet.org/SSFdocs/ssfapiManual.pdf (1 June 2004).

[3] M. Dikaiakos, M. Kyriakou, G. Samaras, "Performance Evaluation of Mobile-agent
Middleware: A Hierarchical Approach," in Proceedings of the 5th IEEE International
Conference on Mobile Agents, J.P. Picco (ed.), Lecture Notes of Computer Science
series, vol. 2240, pages 244-259, Springer, Atlanta, USA, December 2001.

[4] M. Dikaiakos, G. Samaras, "A Performance Analysis Framework for Mobile-Agent
Systems," in Infrastructure for Agents, Multi-Agent Systems, and Scaleable Multi-Agent
Systems, Proceedings of the First Annual Workshop on Infrastructure for Scalable Multi-
Agent Systems, The Fourth International Conference on Autonomous Agents 2000,
Wagner and Rana (Eds.), Lecture Notes in Computer Science, Vol. 1887, pages 180-187,
Springer, July 2001.

[5] R. Gray. Agent Tcl: A flexible and secure mobile-agent system. PhD thesis, Dept. of
Computer Science, Dartmouth College, June 1997. Available as Dartmouth Computer
Science Technical Report TR1998-327.

[6] Robert S. Gray and George Cybenko and David Kotz and Ronald A. Peterson and
Daniela Rus. “D'Agents: Applications and Performance of a Mobile-Agent System.”
Software-- Practice and Experience, 32(6):543-573, May, 2002.

[7] Robert S. Gray, David Kotz, Ronald A. Peterson, Joyce Barton, Daria Chacon, Peter
Gerken, Martin Hofmann, Jeffrey Bradshaw, Maggie R. Breedy, Renia Jeffers, and
Niranjan Suri. “Mobile-Agent versus Client/Server Performance: Scalability in an
Information-Retrieval Task.” In Mobile Agents, pages 229-243, 2001.

[8] L. Ismail and D. Hagimont. “A performance evaluation of the mobile agent
paradigm.” ACM SIGPLAN Notices, 34(10):306-313, October 1999.

[9] M. Iyigun. DaSSFNet: An Extension to DaSSF for High-Performance Network
Modeling. Undergraduate honors thesis, Dept. of Computer Science, Dartmouth College,
June 2001. Available as Dartmouth Computer Science Technical Report TR2001-405.

[10] David Kotz and George Cybenko and Robert S. Gray and Guofei Jiang and Ronald
A. Peterson and Martin O. Hofmann and Daria A. Chacón and Kenneth R. Whitebread
and James Hendler. “Performance Analysis of Mobile Agents for Filtering Data Streams
on Wireless Networks.” Mobile Networks and Applications, 7(2):163-174, April, 2002.

[11] A. Liotta, C. Ragusa, G. Pavlou, “Running Mobile Agent Code over Simulated
Inter-networks: an Extra Gear Towards Distributed System Evaluation”, Proceedings of
the 2nd WSEAS International Conference on Simulation, Modeling and Optimization
(ICOSMO'2002), Skiathos Island, Greece, pp.404-409, September 2002.

[12] J. Liu. Dartmouth S.S.F. (2002). Available at
http://www.cs.dartmouth.edu/research/DaSSF/intro.html (1 June 2004).

[13] J. Liu. DaSSFNet—A High-Performance Network Simulator (2002). Available at
http://www.crhc.uiuc.edu/~jasonliu/projects/ssfnet/ (1 June 2004).

[14] J. Liu. Introduction to SSFNet DML (2002). Available at
http://www.crhc.uiuc.edu/~jasonliu/projects/ssfnet/dmlintro/ssfnet-dml-intro.html (1 June
2004).

[15] SSF Research Network. SSFNet DML Reference (2002). Available at
http://www.ssfnet.org/InternetDocs/ssfnetDMLReference.html (1 June 2004).

[16] SSF Research Network. How to write DML network models (2002). Available at
http://www.ssfnet.org/InternetDocs/ssfnetTutorial-1.html (1 June 2004).

[17] M. Woodside. “Scalability metrics and analysis of mobile agent systems.” In
Infrastructure for Agents, Multi-Agents, and Scaleable Multi-Agent Systems, Volume
1887 of LNCS, pages 234-245. Springer-Verlag, 2001.

Appendix A: Sample MA Simulation DML Configuration File

c6-r-s.dml
#
6 clients, 1 router, 1 server.
Agent itinerary: C(21,22,23,24,25,26)->S11
S11->C(21,22,23,24,25,26)

Net [

 frequency 1000000000 # 1 nanosecond time resolution

 randomstream [
 generator "MersenneTwister"
 stream "seedstarter1"
 reproducibility_level "timeline"
]

 router [
 id 1
 graph [ProtocolSession [name ip use SSF.OS.IP]]
 interface [idrange [from 0 to 6] buffersize 16000 _extends .dictionary.100BaseT]
 route [dest default interface 0]
]

 host [
 idrange [from 21 to 26]
 interface [id 0 _extends .dictionary.100BaseT]
 route [dest default interface 0]
 _extends .dictionary.Client
]

 host [
 id 11
 interface [id 0 _extends .dictionary.100BaseT]
 route [dest default interface 0]
 _extends .dictionary.Server
]

 link [attach 1(0) attach 11(0) delay 0.001] # Router 1 to Server 11 link.
 link [attach 1(1) attach 21(0) delay 0.001] # Router 1 to Client 21 link.
 link [attach 1(2) attach 22(0) delay 0.001] # Router 1 to Client 22 link.
 link [attach 1(3) attach 23(0) delay 0.001] # Router 1 to Client 23 link.
 link [attach 1(4) attach 24(0) delay 0.001] # Router 1 to Client 24 link.
 link [attach 1(5) attach 25(0) delay 0.001] # Router 1 to Client 25 link.
 link [attach 1(6) attach 26(0) delay 0.001] # Router 1 to Client 26 link.

 # This attribute allows us to assign a list of servers to each individual host,
 # specifying to whom it should send its agents (picked at random if more than one).
 traffic [

 pattern [
 client 21
 servers [nhi 11(0) port 1600]
]
 pattern [
 client 22
 servers [nhi 11(0) port 1600]
]
 pattern [
 client 23
 servers [nhi 11(0) port 1600]
]
 pattern [
 client 24
 servers [nhi 11(0) port 1600]
]
 pattern [

 client 25
 servers [nhi 11(0) port 1600]
]
 pattern [
 client 26
 servers [nhi 11(0) port 1600]
]

 pattern [
 client 11 # the server
 # There is no other server (any received agents will
 # be sent back to their source after processing).
]
]

] # end of Net

dictionary [

 100BaseT [
 bitrate 100000000
 latency 0.0001
]

 Client [
 graph [
 ProtocolSession [
 name client

use SSF.OS.TCP.test.AgentsClient

Verbosity.
 _find .dictionary.appsession.DEBUG
 _find .dictionary.appsession.OUTPUT_INDIVIDUAL_REPORT

Send and receive ports, and ACK size (same for all clients and servers).
 _find .dictionary.appsession.RECEIVE_PORT
 _find .dictionary.appsession.SEND_PORT

_find .dictionary.appsession.ACK_SIZE

 # Agent generation frequency and cap parameters.
 DELAY_LAMBDA 0.5 # DELAY_LAMBDA is 1/(desired mean delay in seconds)

MAX_AGENTS 100

 # Agent simulation parameters.
 AGENT_SIZE 29803
 SERIALIZE_TIME 0.002500
 UNSERIALIZE_TIME 0.044000
]
 ProtocolSession [name socket use SSF.OS.Socket.socketMaster]
 ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster _find .dictionary.tcpinit]
 ProtocolSession [name ip use SSF.OS.IP]
]
]

 Server [
 graph [
 ProtocolSession [
 name server

use SSF.OS.TCP.test.AgentsServer

Verbosity.
 _find .dictionary.appsession.DEBUG
 _find .dictionary.appsession.OUTPUT_INDIVIDUAL_REPORT

Send and receive ports, and ACK size (same for all clients and servers).
 _find .dictionary.appsession.RECEIVE_PORT
 _find .dictionary.appsession.SEND_PORT

_find .dictionary.appsession.ACK_SIZE

 # Cap on the number of servers an agent should visit.

MAX_SERVERS 1

 # Agent simulation parameters.
 UNSERIALIZE_TIME 0.038200
 SERIALIZE_TIME 0.003200

 # Query execution and results parameters.
 QUERY_EXEC_TIME 0.132000
 QUERY_RESULT_SIZE 11972
]
 ProtocolSession [name socket use SSF.OS.Socket.socketMaster]
 ProtocolSession [name tcp use SSF.OS.TCP.tcpSessionMaster _find .dictionary.tcpinit]
 ProtocolSession [name ip use SSF.OS.IP]
]
]

 # Shared TCP configuration.
 tcpinit [
 ISS 10000 # initial sequence number
 MSS 1000 # maximum segment size
 RcvWndSize 32 # receive buffer size
 SendWndSize 32 # maximum send window size
 SendBufferSize 128 # send buffer size
 MaxRexmitTimes 12 # maximum retransmission times before drop
 TCP_SLOW_INTERVAL 0.5 # granularity of TCP slow timer
 TCP_FAST_INTERVAL 0.2 # granularity of TCP fast(delay-ack) timer
 MSL 60.0 # maximum segment lifetime
 MaxIdleTime 600.0 # maximum idle time for drop a connection
 delayed_ack false # delayed ack option
 fast_recovery true # implement fast recovery algorithm
 show_report true # print a summary connection report
]

 # Shared client/server parameters.
 appsession [
 DEBUG false # print detailed client/server diagnostics
 OUTPUT_INDIVIDUAL_REPORT false # print individual agent reports

 RECEIVE_PORT 1600
 SEND_PORT 1601
 ACK_SIZE 4
]
]

Appendix B: Results Summary

Experiments
1 Client, 1 Server Simulation D'Agents
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D

0.5 0.305183 0.241839 0.063344

1 0.325815 0.267223 0.058592
1.5 0.344741 0.280793 0.063948

2 0.370884 0.320288 0.050596
2.5 0.412087 0.337871 0.074216

3 0.442907 0.372026 0.070881
2 Clients, 1 Server
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D

0.4 0.309788 0.256108 0.053680

0.6 0.325118 0.272341 0.052777
0.8 0.346244 0.290876 0.055368

1 0.372190 0.314440 0.057750
1.2 0.389636 0.331078 0.058558

1.5 0.445724 0.391520 0.054204
4 Clients, 1 Server
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D

0.4 0.346080 0.288114 0.057966

0.6 0.391316 0.333767 0.057549
0.8 0.469356 0.413282 0.056074

1 0.557155 0.558361 -0.001206
1.2 0.758563 0.964808 -0.206245

1.4 1.569288
6 Clients, 1 Server
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D

0.2 0.328167 0.268662 0.059505

0.4 0.393377 0.352773 0.040604
0.5 0.442860 0.408331 0.034529

0.6 0.503973 0.468254 0.035719
0.8 0.768206 0.904998 -0.136792

8 Clients, 1 Server
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D

0.1 0.308009 0.252035 0.055974
0.2 0.350311 0.285418 0.064893

0.3 0.390239 0.343428 0.046811
0.4 0.462686 0.417322 0.045364

0.5 0.557830 0.546398 0.011432
0.6 0.742258 0.970799 -0.228541

0.8 7.295608 11.907552 -4.611944
10 Clients, 1 Server
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D

0.1 0.319164 0.261035 0.058129

0.2 0.373287 0.310817 0.062470
0.3 0.443026 0.402261 0.040765

0.4 0.551099 0.593644 -0.042545

0.5 0.842917 1.507537 -0.664620
0.6 4.050119 10.192165 -6.142046

1 Client, 2 Servers
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D D / Server

0.5 0.531861 0.449236 0.082625 0.0082625
1 0.570851 0.483709 0.087142 0.0087142

1.5 0.639904 0.547563 0.092341 0.0092341
2 0.707835 0.591642 0.116193 0.0116193

2.5 0.750844 0.632569 0.118275 0.0118275
3 0.858560 0.731644 0.126916 0.0126916

1 Client, 4 Servers
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D D / Server

0.5 0.976537 0.842433 0.134104 0.0134104
1 1.095040 0.920933 0.174107 0.0174107

1.5 1.243388 1.049681 0.193707 0.0193707
2 1.374950 1.133136 0.241814 0.0241814

2.5 1.533766
3 1.750053 1.443673 0.306380 0.030638

1 Client, 6 Servers
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D D / Server

0.5 1.458659 1.248616 0.210043 0.0210043
1 1.631510 1.402502 0.229008 0.0229008

1.5 1.821449 1.538172 0.283277 0.0283277
2 2.078145 1.676694 0.401451 0.0401451

2.5 2.303826 1.901068 0.402758 0.0402758
3 2.524360 2.155687 0.368673 0.0368673

1 Client, 8 Servers
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D D / Server

0.5 1.910696 1.644476 0.266220 0.026622
1 2.179204 1.822479 0.356725 0.0356725

1.5 2.462558 2.002469 0.460089 0.0460089
2 2.743328 2.250280 0.493048 0.0493048

2.5 3.129285 2.529987 0.599298 0.0599298
3 3.413358 2.837030 0.576328 0.0576328

1 Client, 10 Servers
Generation Rate (agents/sec) Agent Time (sec) Agent Time (sec) D D / Server

0.5 2.362934 2.059154 0.303780 0.030378
1 2.672887 2.22162 0.451267 0.0451267

1.5 3.066415 2.61152 0.454895 0.0454895
2 3.449798 2.784701 0.665097 0.0665097

2.5 3.875105
3 4.171138 3.84412 0.327018 0.0327018

	Mobile Agents Simulation with DaSSF
	Recommended Citation

	tmp.1596484807.pdf.GYS7Q

