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Abstract

This paper proposes algorithms to create atomic multi-word buffers that support a single
writer and multiple readers. The first algorithm given uses multi-writer, multi-reader variables
whereas the second algorithm uses single-writer, multi-reader variables as a base. Both of the
algorithms require O(nm) space and run in O(m) time for a logical read or a logical write, where
m is the number of words in the buffer and n is the number of reading processes.

1 Introduction

Hardware-supported atomic read and write operations apply only to single words of memory. If a
parallel application needs a large (m-word) shared object with atomic read and write operations,
such an object needs to be implemented in software. The simplest way to implement an m-word
atomic buffer B is to use a lock so that only one process can manipulate the data in the buffer at
once. The major disadvantage to this approach is that it can be slow; if a single process is stalled
or crashes while performing a logical read or write, all processes that wish to access the data need
to wait for the stalled or crashed process to finish.

Our paper gives an implementation for a buffer B that supports a single writer and n ≥ 2 readers
in a wait-free manner; that is to say that any logical read or write operation can be completed in
a finite number of steps, regardless of the status of other processes. We first offer an algorithm
that uses multi-writer, multi-reader variables, then an algorithm that is based on single-writer,
multi-reader variables. Our implementations run in O(m) time for both a logical read and a logical
write and require O(nm) space. The best known comparable implementation [Peterson83] runs in
O(nm) time for a logical write and O(m) for a logical read and requires O(nm) space.
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2 Related Work

As stated in the previous section, Peterson also presents a construction for a single-writer, multi-
reader, m-word atomic buffer that uses O(nm) space. Although a logical read runs in O(m) time,
this implementation runs in O(nm) time for a logical write operation [Peterson83].

Singh, Anderson, and Gouda offer a way to construct a single-writer, multi-reader m-word
register from single-writer, single-reader multi-word registers [SAG94]. Li, Tromp, and Vitányi give
an algorithm to create an atomic, single-word, multi-user variable from single-writer, single-reader
single-word variables [LTV96]. Haldar and Vidyasankar create single-writer, multi-reader single-
word variables from multi-reader regular variables [HV95]. Vidyasankar constucts a single-writer,
multi-reader atomic register from a single-writer, multi-reader boolean atomic register and single-
writer, multi-reader regular registers [Vidyasankar89]. Israeli and Shaham create multi-writer,
multi-reader atomic registers from single-writer, single-reader atomic registers [IS92].

3 The Main Algorithm

Figure 2 describes our algorithm for implementing an m-word atomic buffer B that supports a single
writer and n ≥ 2 readers (named Reader0, . . . ,Readern−1), using multiple-writer, multiple-reader
variables. We refer to read and write operations on B as logical read and logical write operations,
respectively. The procedure write(v) describes how the writer executes a logical write, where v is
an m-word value. The procedure read(i) describes how Readeri executes a logical read operation
that returns an m-word value. We claim that our algorithm is atomic; each read operation returns
the m-word value that was written by teh write operation that was most recently linearized before
the linearization point of the read.

In the following, we first informally describe what the various variables of the algorithm represent
and how the algorithm works. We then prove the algorithm correct.

3.1 The Variables and Their Roles

In our algorithm, we write shared variables in a typewriter font (BUF), and our persistent local
variables in an italicized font (index). The roles played by these variables in the algorithm are
described as follows.

• BUF[i, b] (0 ≤ i ≤ n − 1, b ∈ {0, 1}): The algorithm uses 2n buffers, each consisting of m

words. These 2n buffers are arranged into n banks, with two buffers per bank: BUF[i, 0]
and BUF[i, 1] are the two buffers in the ith bank (see Figure 1). Only the writer may write
into each of the buffers, but any of the n readers may read any of the buffers. We require
only that the buffers to be safe: a read of BUF[i, b] is guaranteed to return the latest value
written in BUF[i, b] only if the read does not overlap with any write operation on BUF[i, b].

• X, a pair of integers: In the algorithm, each logical write operation writes into a single buffer.
The variable X indicates the buffer into which the last logical write operation wrote. Thus, if
X has (i, b), then BUF[i, b] holds the value written by the latest logical write.

• last, an array of integers and index, an integer: Another feature of the algorithm is that suc-
cessive logical write operations write into buffers in successive banks in round-robin order.
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Thus, the writer visits each bank once every n logical write operations. If a logical write
operation writes into BUF[i, b], it stores the value i in index and the value b in last[i]. Thus,
when the writer visits bank i, last[i] denotes the buffer of bank i that was most recently
written (n logical write operations ago).

• setaside, an array of integers: If the writer is very fast relative to a reader, then any reading
of a buffer by the reader might face interference from the writer (the next subsection describes
such a scenario). In this case, the reader needs the writer’s help, which is provided through
the setaside array. Specifically, after writing into a buffer BUF[i, b], the writer checks if
Readeri needs help; if it does, the writer sets BUF[i, b] aside for Readeri. Until Readeri signals
that it no longer needs BUF[i, b], this buffer won’t be touched by the writer (when the writer
writes into bank i, it will write into BUF[i, b̄]). We define b̄ to be 1 if b = 0, 0 if b = 1.

In the algorithm, a value of b ∈ {0, 1} in setaside[i] means that BUF[i, b] is set aside for
Readeri (note that only a buffer in bank i may be set aside for Readeri). A value of −1 in
setaside[i] means that no buffer is set aside for Readeri.

At any point during the execution of the algorithm, the values of the variables will reflect the
state of the algorithm. X always points to the buffer that was written in the last logical write.
last[i] always indicates which of BUF[i, 0] and BUF[i, 1] was most recently written into.

• If Readeri is currently not performing a read operation, then setaside[i] can hold any value
v ∈ {−1, 0, 1}.

• If Readeri is performing a read and there is no chance that the buffer being read has been
corrupted, then setaside[i] = −1, and Readeri is reading from the buffer indicated by X.

• If Readeri is reading from the buffer indicated by X and there is a chance that that buffer has
been corrupted, then setaside[i] = v, where v ∈ {0, 1}. When Readeri finishes reading that
buffer, it will begin reading (and eventually return the value from) BUF[i, v].

3.2 Explanation of the Algorithm

Readeri performs a logical read operation as follows: The reader sets setaside[i] to −1, to indicate
that it no longer needs any buffer that had been set aside for it (Line 1). It then reads a value
(j, b) from X (Line 2), thereby learning that BUF[j, b] holds the value of the latest logical write. To
learn this value, the reader reads BUF[j, b] (Line 3). The reader cannot rely upon the value read at
Line 3, however, if that read overlaps with a writing of BUF[j, b] (which is possible if the writer is
very fast, as demonstrated in the next subsection). To detect such a possible overlap, the reader
reads setaside[i] (Line 4). If this value a is −1, then the reader is certain that there is no overlap,
and hence returns the value read at Line 3. Otherwise, BUF[i, a] has been set aside by the writer
and contains a legitimate value to return, as we will explain in the next subsection. So the reader
returns the value in BUF[i, a] (Line 6).

The writer performs a logical write operation as follows: To ensure that sucessive logical write
operations write into successive banks, the writer increments index to point to the bank where the
writing should be performed (Line 7). There are two buffers at this bank, namely BUF[index, 0] and
BUF[index, 1], and the writer uses the following rule to decide which of these two to write into. If
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last

BUF
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0   1     ...    i     ...    j    ...   n-1

-1

 0

 ... ... ...

 ... ... ...

 ... ... ...
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j, 0

Figure 1: The data structure used to construct the m-word atomic buffer. Consider the ith bank
to consist of BUF[i, 0] and BUF[i, 1]. In the figure, X = [j, 0], meaning that the last logical write
wrote into BUF[j, 0] (the shaded buffer). Since setaside[i] = −1, then Reader i must have begun a
logical read since the writer last wrote into one of the buffers in the ith bank. The next time the
writer has index = i, the writer will write into BUF[i, 1] because setaside[i] = −1 and last[i] = 0
(as specified in section 3.2.2).

either buffer had been set aside for Readerindex, then it is avoided for writing; otherwise, whichever
of BUF[index, 0] and BUF[index, 1] was most recently written into (n logical write operations ago)
is avoided. We defer to Subsection 3.2.1 an explanation of why this rule is necessary. Lines 8–10
implement the above rule, by setting a to be the buffer to avoid. Hence the writer writes into
BUF[index, ā] (Line 11) and sets X to point to this buffer (Line 12). To record that BUF[index, ā] is
the latest buffer written at bank index, the writer sets last[index] to ā (Line 13). The writer reads
setaside[index] (Line 14). If it is −1, then no buffer had been previously set aside for Reader index.
In this case, the writer sets aside for Readerindex the buffer BUF[index, ā], which contains the latest
value (Line 15).

To provide intuition for how the algorithm works, we illustrate how the helping mechanism
works (Subsection 3.2.1) and why the writer avoids last[index] at Lines 9–10 (Subsection 3.2.2).

3.2.1 The Helping Mechanism

To illustrate how the helping mechanism works, consider the execution of a logical read operation
R by Readeri. Let (j, b) be the value read from X at Line 2. From this the reader infers that the
latest logical write, call it W , wrote into BUF[j, b]. The reader proceeds to read BUF[j, b] (Line 3).
If the reader is slow relative to the writer, the reader might obtain a corrupted value from BUF[j, b]
at Line 3, as the following scenario demonstrates.

While the reader is at Line 3, suppose that the writer performs n logical write operations, which
we denote as Wj+1,Wj+2, . . . ,Wn−1,W0,W1, . . . ,Wj−1,Wj . Notice that, for all k, Wk writes in a
buffer at bank k (because W , which immediately precedes Wj+1, wrote in BUF[j, b] and successive
logical write operations write in buffers at successive banks). In particular, Wj writes into either
BUF[j, 0] or BUF[j, 1]. To understand the worst case, suppose that Wj writes into BUF[j, b], the buffer
that Readeri is still reading at Line 3. Then, Readeri obtains a corrupted value from buf[j, b].
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Types

integer
valuetype = Any type

Shared Variables Initialization

setaside: array of integers setaside[i] = −1, ∀i

X: a pair of integers X = (0, 0)
n: integer n = number of readers
BUF: 3-D array of valuetype index = 0

last[i] = 1, ∀i

procedure read procedure write(v)

1: setaside[i] = −1 7: index = (index + 1) mod n

2: x = X 8: a = setaside[index]

3: read BUF[x] 9: if (a == −1)
4: a = setaside[i] 10: a = last[index]
5: if (a 6= −1) 11: write v in BUF[index, ā]

6: read(BUF[i, a]) 12: X = (index, ā)
13: last [index] = ā

14: if (setaside[index] == −1)
15: setaside[index] = ā

Figure 2: Multireader single-writer atomic multi-word buffer algorithm

However, in this scenario, the reader is sure to have received help from the writer, as we explain
next.

When performing Wi, the writer reads −1 from setaside[i] at Line 14 (because Readeri wrote
−1 at Line 1), So, by writing ā in setaside[i] (Line 15), the writer sets aside the buffer BUF[i, ā],
which holds the value written by Wi. When Readeri eventually performs Line 4, it reads ā from
setaside[i] and proceeds to read and return the value written by Wi in BUF[i, ā]. Since Wi is
concurrent with Readeri, it is legitimate for Readeri to return the value written by Wi.

3.2.2 The Avoidance of last[index]

Recall the Avoidance Rule that, when the writer reads −1 from setaside[index] at Line 8, the
writer must avoid writing into BUF[index, a], where a is the value of last[index]. The following
scenario demonstrates the need for this rule.

Suppose that the latest logical write operation W writes into BUF[i, a] and sets last[i] to a.
Then, Readeri initiates a logical read, writes −1 in setaside[i], reads (i, a) from X, and begins to
read BUF[i, a] at Line 3. While Readeri is at Line 3, suppose that the writer performs enough logical
writes for index to move from i to i − 1. Furthermore, suppose that the writer initiates another
logical write operation W ′. During W ′, the writer increments index to i (Line 7) and reads −1 from
setaside[i] (because Readeri wrote −1 at Line 1). If the writer does not respect the Avoidance
Rule, it could overwrite BUF[i, a], thereby causing Readeri (who is still reading BUF[i, a] at Line 3)
to obtain a corrupted value. Now, if Readeri completes Line 3, it finds setaside[i] = −1 at Line 4
and returns the corrupted value. Thus, it is crucial that the writer respects the Avoidance Rule.
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3.3 Proof of the Algorithm

The point where an operation is considered to have successfully completed is called the Lineariza-
tion Point (LP) of the operation. In the algorithm given in Figure 2, the LP of read is Line 2
(where X is read) if the condition in Line 5 is false, otherwise the LP for read is Line 15 (where
setaside[i] is assigned a new value by some call to write). The LP for write is Line 12, when X

is assigned a new value.
Let the notation LP(x) denote the moment in time where operation x is linearized.
For any read or write operation O, let O[i] be the time that O executes Line i. Note that all

lines of the algorithm are atomic operations with the exception of Lines 3, 6, and 11

Lemma 1 For any read operation R by Readeri, if the value of setaside[i] read by R at Line
4 is not −1, then there is a unique write operation W that writes into setaside[i] between R[1]
and R[4].

Proof . Since there is a single writer, calls to write cannot overlap. Let us assume that W is the
first write operation where R[1] < W [14] and index = i. Then W will find that setaside[i] = −1,
and will execute Line 15, thereby setting setaside[i] to 0 or 1. Since for all subsequent writes,
W ′, where R[1] < W ′[14] < R[4] and index = i, W ′ will find that setaside[i] 6= −1, then no W ′

will execute Line 15, making it impossible for any W ′ to change the value of setaside[i].

Lemma 2 The linearization point of a read or a write operation, O, occurs at some point during
the execution of O.

Proof. For a write operation W , we defined LP(W ) to be W [12]. So the lemma trivially holds for
any write operation W .

For a read operation R, we defined LP(R) to be either:
(a) R[2], if at R[5] setaside[i] = −1, or
(b) W [15], if at R[5] setaside[i] 6= −1, where W is the write operation that changes the value

of setaside[i] between R[1] and R[4].
Case (a) holds trivially. Case (b) must hold since we have shown in the proof of Lemma 1 that

there is a single W that changes setaside[i] between R[1] and R[4].

Lemma 3 Let R be any read operation by Readeri,
W be the latest write operation linearized before R,
a′ be the value R reads at R[4],
BUF[j, a] be the buffer into which W writes.
Then, R will read BUF[j, a], W finishes writing into BUF[j, a] before R starts reading it, and no

write operation W ′ that is linearized after W will write into BUF[j, a] until R has finished reading
it.

Proof . There are two cases to consider based on the value of a′.

Claim 1 If a′ = −1, then
(1) W [11] completes before R[3] starts,
(2) R reads BUF[j, a],
If j equals i, then

6



(3) There is at most one write, W ′, which is later than W with
index = i that starts before R[4]. If it exists, then
W ′ starts after R[1] and
does not write into BUF [i, a].

If j 6= i, then
(4) If W ′ is a later write than W with index = j, then W ′[11] does not
start until R[3] completes.

Proof .
(1) Since a′ = −1, LP(R) = R[2] and LP(W ) = W [12] as defined for the algorithm, so clearly

W [11] < W [12] < R[2] < R[3].

(2) We defined W to be the latest write operation linearized before R, and since LP(R) is
R[2], where X is read, then W was the last logical write to change the value of X before R read it.
W wrote into BUF[j, a], thus at W [12], W set X to (j, a). Therefore R would have read BUF[j, a]
at R[3]. Since a′ = -1, Line 6 was not executed by R, so the value in BUF[j, a] would be returned
by Readeri.

(3) If more than one write with index = i started after W [12] but before R[4], then at least one
such write would have to terminate. Let us call the first such write to terminate X, and let W ′ be
the last write with index = i to start between W [12] and R[4]. Remembering that any W ′ would
have to be linearized after LP(R) = R[2], and that since there is only a single writer, writes are
executed sequentially, then,

W [12] < R[2] < X[12] < W ′[7] < R[4].
We also know that X would find setaside[i] = −1, so X would execute Line 15, and conse-

quently we would find that
X[12] < X[15] < W ′[7].
However, this implies that X would change the value of setaside[i] to 0 or 1. This contradicts

the conditions of the claim. Therefore there can only be one write, W ′, with index = i such that
W [12] < W ′[7] < R[4].

Since there must be 2 or more readers, then in order for W ′[7] < R[1], then some write X for
the Readerx, x 6= i, must have completed and thus,

W [12] < X[7] < X[12] < X[15] < W ′[7] < R[1],
and this contradicts the definition of W as the latest write to be linearized before R. So we can
conclude that W ′ starts after R[1] if such a W ′ exists.

We know that W ′ won’t write into BUF[i, a] as follows: since R[1] < W ′[7], then W ′[8] finds
setaside[i] = −1, and thus writes into last[i], which must have last been set by W to a. Therefore
W ′ will write into BUF[i, ā].

(4) Let X be the earliest write linearized after W where index is i, and W ′ be the earliest
write linearized after W where index = j. Since write will write into all {BUF[k, ] | k 6= j, 0 ≤ k
< number of readers} before writing into BUF[j, ] again, then LP(X) < LP(W ′). Thus,

W [12] < R[2] < X[12] < X[14] < X[15] < W ′[7]
Since at R[4], a′ = −1, and X[15] would change the value of setaside[i] to something other than
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−1, we know that
R[3] < R[4] < X[15] < W ′[7] < W ′[11],

which shows us that R[3] < W ′[11], and thereby that no write can possibly overwrite the data
being read by R until R has finished reading that data.

Claim 2 If a′ 6= −1, then
(1) a′ = a, j = i, and W changed the value of setaside[i]
(2) W writes into BUF[i, a′] before R[4], and
(3) No write operation writes into BUF[i, a′] between R[4] and R[6].

(1) We proved in Lemma 1 that in the time from R[1] to R[4], only a single write could change
the value of setaside[i] (if this write operation is X, then R[1] < X[15] < R[4]). Since a ′ 6= -1,
LP(R) = X[15]. Recalling that LP(X) = X[12] and that all writes must be executed sequentially,
we know X must have been the latest write operation to linearize before R, so W = X. Con-
sequently, we know that W changed the value of setaside[i] to be the buffer in bank i that it
wrote, so a′ must equal a. Moreover, since W is able to change the value of setaside[i], index

must equal i, and thus thereby j must equal i.

(2) Since a′ 6= −1 at R[4], then W [15] < R[4]. Consequently,
W [11] < W [12] < W [15] < R[4].

(3) Since W [15] < R[4], we know that W set X = (i, a) at W [12], last[i] = a at W [13], and
setaside[i] = a at W [15]. Thus, any write operation that occurs from R[4] to R[6] will find that
setaside[i] 6= −1 at Line 9 and will thereby write into BUF[i, last[i]] = BUF[i, ā] at Line 11.

Clearly, the proof for Lemma 3 follows from Claims 1 and 2.

Theorem 1 The shared register algorithm in Figure 2 is linearizable

Proof . The theorem follows immediately from Lemmas 1, 2, and 3.

4 Algorithm Using Single-Writer Variables

In Figure 3 we propose an algorithm for a multi-reader single-writer m-word buffer for 2 or more
readers that uses only single-writer, multi-reader variables, whereas the algorithm in Figure 2 uses
multi-writer, multi-reader variables. This algorithm differs from the one given by Figure 2 in that
the array setside is replaced by

(1) An array R of integers, where R[i] is written solely by Readeri

(2) An array W of pairs of integers, where W is written solely by the writer. Let W[i].a denote the
first integer of the pair at the ith index, and W[i].b the second integer of the pair.

The algorithm works the same as the algorithm given by Figure 2, with the exception that, to
indicate that it is reading a buffer, Readeri sets R[i] 6= W[i].a, and the writer sets W[i] = (R[i], x) to
let the reader know that it has set aside Readeri’s buffer x.
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Types

integer
valuetype = Any type

Shared Variables Initialization

R: array of integers R[i] = 0, ∀i

W: array of pairs of integers [a, b] W[i] = [-1, -1], ∀i

X: a pair of integers X = [0, 0]
n: integer n = number of readers
BUF: 3-D array of valuetype index = 0

last[i] = 1, ∀i

procedure read(retval) procedure write(v)

1: [a, b] = W[i] 8: index = (index + 1) mod n)
2: R[i] = ā 9: r = R[index]

3: x = X 10: [c, d] = W[index]

4: read BUF[x] 11: if r == c

5: [a′, b′] = W[i] 12: buf = d̄

6: if (a′ == ā) 13: else buf = last[index]
7: read(BUF[i, b′]) 14: write v in BUF[buf]

15: X = [index, buf ]
16: last[index] = buf

17: r = R[index]

18: if (c 6= r)
19: W[index] = [r, buf ]

Figure 3: Multireader single-writer atomic multi-word buffer algorithm using 1-writer, n-reader
variables

4.1 Proof

In the algorithm given in Figure 3, the LP of read is Line 3 (where X is read) if the condition in
Line 6 is false, otherwise the LP for read is Line 19 (where W[i] is assigned a new value by some
call to write). The LP for write is Line 15, when X is assigned a new value.

Lemma 4 For any read operation R by Readeri, if the value of W[i].a read by R at Line 5 equals
R[i], then there is a unique write operation W that writes into W[i] between R[1] and R[5].

Proof . Since there is a single writer, calls to write cannot overlap. Let us assume that W is the
first write operation where R[2] < W [18] and index = i. Then W will find that R[i] 6= W[i].a at
Line 18, and will execute Line 19, thereby setting W[i].a = R[i]. Since for all subsequent writes,
W ′, where R[2] < W ′[18] < R[5] and index = i, W ′ will find that R[i] = W[i].a and won’t execute
Line 19, making it impossible for any W ′ to change the value of W[i].

Lemma 5 The linearization point of a read or a write operation, O, occurs at some point during
the execution of O.

Proof . For a write operation W , we defined LP(W ) to be W [15]. So the lemma trivially holds for
any write operation W .

9



For a read operation R, we defined LP(R) to be either:
(a) R[3], if at R[6], R[i] 6= W[i].a, or
(b) W [19], if at R[6], R[i] = W[i].a, where W is the write operation that changes the value of

W[i] between R[2] and R[5].
Case (a) holds trivially. Case (b) must hold since we have shown in the proof of Lemma 4 that

there is a single W that changes W[i] between R[2] and R[5].

Lemma 6 Let R be any read operation by Readeri,
W be the latest write operation linearized before R,
ā be the value that R writes into R[i] at R[2],
[a′, b′] be the value R reads from W[i] at R[5],
BUF[j, a] be the buffer into which W writes.
Then, R will read BUF[j, a], W finishes writing into BUF[j, a] before R starts reading it, and

no write operation W ′ that is linearized after W will write into BUF[j, a] until R has finished reading
it.

Proof . There are two cases to consider based on the value of a′.

Claim 3 If a′ 6= ā, then
(1) W [14] completes before R[4] starts,
(2) R reads BUF[j, a],
If j equals i, then

(3) There is at most one write, W ′, which is later than W with
index = i that starts before R[5]. If it exists, then
W ′ starts after R[2] and
does not write into BUF [i, a].

If j 6= i, then
(4) If W ′ is a later write than W with index = j, then W ′[14] does not
start until R[4] completes.

Proof .
(1) Since a′ 6= ā, LP(R) = R[3] and LP(W ) = W [15] as defined for this algorithm, so clearly

W [14] < W [15] < R[3] < R[4].

(2) We defined W to be the latest write operation linearized before R, and since LP(R) is
R[3] (where X is read) then W was the last logical write to change the value of X before R read it.
W wrote into BUF[j, a], thus at W [15], W set X to (j, a). Therefore R would have read BUF[j, a]
at R[4]. Since a′ 6= ā, Line 7 was not executed by R, so the value in BUF[j, a] would be returned.

(3) If more than one write with index = i started after W [15] but before R[5], then at least one
such write would have to terminate. Let us call the first such write to terminate X, and let W ′ be
the last write with index = i to start between W [15] and R[5]. Remembering that any W ′ would
have to be linearized after LP(R) = R[3], and that since there is only a single writer, writes are
executed sequentially, then,

W [15] < R[3] < X[15] < W ′[8] < R[5].
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We also know that X would find W[i].a 6= R[i], so X would execute Line 19, and consequently
we would find that

X[15] < X[19] < W ′[8].
However, this implies that X would change the value of W[i].a to equal R[i]. This contradicts

the conditions of the claim. Therefore there can only be one write, W ′, with index = i such that
W [15] < W ′[8] < R[5].

Since there must be 2 or more readers, then in order for W ′[8] < R[2], then some write X for
the Readerx, x 6= i, must have completed and thus,

W [15] < X[8] < X[15] < X[19] < W ′[8] < R[2],
and this contradicts the definition of W as the latest write to be linearized before R. So we can
conclude that W ′ starts after R[2] if such a W ′ exists.

We know that W ′ won’t write into BUF[i, a] as follows: since R[2] < W ′[8], then W ′[10] finds
W[i].a 6= R[i], and thus writes into last[i], which must have last been set by W to a. Therefore W ′

will write into BUF[i, ā].

(4) Let X be the earliest write linearized after W where index is i, and W ′ be the earliest
write linearized after W where index = j. Since write will write into all {BUF[k, ] | k 6= j, 0 ≤ k
< number of readers} before writing into BUF[j, ] again, then LP(X) < LP(W ′). Thus,

W [15] < R[3] < X[15] < X[18] < X[19] < W ′[8]
Since at R[5], W[i].a 6= R[i], and X[19] would change the value of W[i].a to equal R[i], we know that

R[4] < R[5] < X[19] < W ′[8] < W ′[14],
which shows us that R[4] < W ′[14], and thereby that no write can possibly overwrite the data
being read by R until R has finished reading that data.

Claim 4 If a′ = ā, then
(1) b′ = a, j = i, and W changed the value of W[i]
(2) W writes into BUF[i, b′] before R[5], and
(3) No write operation writes into BUF[i, b′] between R[5] and R[7].

(1) We proved in Lemma 4 that in the time from R[2] to R[5], only a single write could change
the value of W[i] (if this write operation is X, then R[2] < X[19] < R[5]). Since a ′ = ā, LP(R) =
X[19]. Recalling that LP(X) = X[15] and that all writes must be executed sequentially, we know
X must have been the latest write operation to linearize before R, so W = X. Consequently, we
know that W changed the value of W[i].b to be the buffer in bank i that it wrote, so b ′ must equal
a. Moreover, since W is able to change the value of W[i], index must equal i, and thus j must equal i.

(2) Since a′ = ā at R[5], then W [19] < R[5]. Consequently,
W [15] < W [18] < W [19] < R[5].

(3) Since W [19] < R[5], we know that W set X = (i, a) at W [15], last[i] = a at W [16],
and W[index] = [R[i], a] at W [19]. Thus, any write operation that occurs from R[5] to R[7] will
find that R[i] = W[index].a at Line 11 and will thereby write into BUF[i, last[i]] = BUF[i, ā] at Line 14.

Clearly, the proof for Lemma 6 follows from Claims 3 and 4.
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Theorem 2 The shared register algorithm in Figure 3 is linearizable

Proof . The theorem follows immediately from Lemmas 4, 5, and 6.

5 Algorithm with a single reader

Both of the algorithms that we present in this paper work for n readers where n ≥ 2. We were
able to develop a similar algorithm for a single reader and a single writer. However, this algorithm
made no asymptotic improvements over the algorithm offered by Peterson when implemented with
a single reader [Peterson83].

The structure of this algorithm that we discovered is very similar to those of the algorithms given
in Sections 3 and 4. To implement an m-word atomic buffer for a single reader and a single-writer,
we maintain the following shared variables:

• setaside. The reader sets setaside to −1 to notify that it is beginning a logical read
operation. If the writer, when executing a logical write, finds that setaside = −1, it sets
setaside to X, and guarantees that it will not write into that buffer until the reader no longer
has need for it.

• reading. The reader sets reading to equal X to warn that it might start reading the buffer
indexed by X.

• X. As in the other two algorithms, X is the buffer into which the writer last wrote.

• BUF[i], i ∈ {0, 1, 2, 3}. Each entry of BUF is m words long, and is written only by the writer.
As in the implementations in Sections 3 and 4, all entries of BUF are required to only be safe.

To perform a logical read, the reader first sets setaside to −1 to signal that it is reading. The
reader then reads the value of X and stores it in the local variable x. Then, it sets reading to x to
notify the writer that it might be reading the buffer indicated by reading. At this point the reader
checks the value of setaside. If it still equals −1, then it knows that the data there has not been
corrupted, so it reads and returns the value at BUF[x]. However, if setaside 6= −1, then the buffer
indicated by setaside has been reserved for the reader, and so the reader reads and returns the
value at that buffer.

The writer begins a logical read by checking if the reader is reading. The writer accomplishes
this by reading the value of setaside to see if it equals −1. If it does equal −1, then the writer
changes setaside to equal X (the last buffer that the writer wrote), and guarantees not to write
into that buffer until the reader is finished with it. The writer then chooses a value i such that
i ∈ {1, 2, 3, 4} − {setaside, reading, X} and writes into BUF[i]. To finish, the writer changes the
value of X to equal i.

Since this algorithm is not improvement of existing algorithms, we won’t provide a proof of it’s
correctness.

6 Conclusion

We have shown how to simply implement an atomic m-word buffer for multiple readers and a single
writer using both multi-writer, multi-reader variables and single-writer, multi-reader variables.
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Both of these algorithms have optimal time complexity; logical reads and logical writes run in
O(m) time. Specifically, the O(m) time complexity for a logical write is a significant improvement
over the O(nm) time complexity offered by Peterson’s solution, where n is the number of readers
[Peterson83]. Principles of distributed computing
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