
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

5-26-2003 

Using Low Level Linear Memory Management for Type-Preserving Using Low Level Linear Memory Management for Type-Preserving 

Mark-Sweep Garbage Collector Mark-Sweep Garbage Collector 

Edward Wei 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Wei, Edward, "Using Low Level Linear Memory Management for Type-Preserving Mark-Sweep Garbage 
Collector" (2003). Dartmouth College Undergraduate Theses. 34. 
https://digitalcommons.dartmouth.edu/senior_theses/34 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/34?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Using Low Level Linear Memory Management

for Type-Preserving Mark-Sweep Garbage

Collector

Edward Wei

Advisor: Chris Hawblitzel

Dartmouth College

Department of Computer Science

05/26/2003

Dartmouth College Computer Science Technical Report TR2003-465

1



Abstract

E�cient low-level systems such as garbage collectors need more control

over memory than safe high-level languages usually provide. Due to this

constraint, garbage collectors are typically written in unsafe languages

such as C. A collector of this form usually resides as a trusted primitive

runtime service outside the model of the programming language. The type

safety of these languages depends on the assumption that the garbage col-

lector will not violate any typing invariants. However, no realistic systems

provide proof of this assumption.

A garbage collector written in a strongly typed language can guarantee

not only the safety of the garbage collector and the program being garbage

collected (mutator), but also the interaction between the collector and

the mutator. Removing the garbage collector from the trusted computing

base has many additional bene�ts: Untrusted code could be given more

control over memory management without sacri�cing security. Low-level

code such as device drivers could interface in a safe way with a garbage

collector. For these and the growing prevalence of garbage collectors in

the typical programming system necessitate a safe solution.

Previous research by Wang et al introduced a safe copying collector

based on regions, where the live graph structure of the heap is copied

from an old region to a newer region. This paper seeks to improve the

e�ciency of type-preserving garbage collection with the introduction of a

type-preserving mark and sweep garbage collector.

1 Introduction

More of today's applications rely on trusted low-level infrastructure. These

systems perform critical tasks that can tolerate few failures. One would expect

these important systems to be especially sound. E�orts have been made in

2



the community to establish clear standards and guidelines for creating bug free

code. Due to the high probability of human error, these can only be met with

limited success. Other approaches have involved active run time testing. This

is also useful only to a certain extent as run time tests cannot examine every

possibility of execution. Any bugs missed by human or mechanical intervention

could be a potential for undesirable behavior. Just a few lines of incorrect low

level code could make the di�erence between a secure system and an insecure

system, successful commerce and failure in down time. Ideally, we want systems

for which we can assert certain correctness properties.

However, the usage of such safe high level languages in systems development

is rare. Programmers lean towards using unsafe languages like assembly or C

because they need more e�cient low-level control of memory. For example, Java

includes the length of an array in a header word for array bounds checking. Not

only is this an in�exible form for an array, there is extra run time overhead to

check for bu�er over�ow. The goal of this paper is to give type-safe code more

control over memory in order to implement a mark-sweep collector. We utilize

static type-checking techniques in order to reduce overhead.

To demonstrate the practicality of our ideas, we have implemented our type-

preserving mark-sweep garbage collector in a safe C-like language called Clay.

The Clay compiler typechecks the garbage collector code to verify its safety,

and then translates the code into ordinary C++.

2 Background

In order to discuss the data structures of the garbage collector, we must

take a detour into language theory. We will return to the garbage collector in

section 4. The language Clay used in this paper is statically checked. A set of

properties encoded into a Clay program can be checked at compile-time. These

3



set of properties can be useful for early detection of program bugs and also

provide a soundness guarantee that your program will behave accordingly. The

language tools we describe below allow us to be expressive with our types to

encode such properties.

2.1 Linear Types vs. Nonlinear Types

In a program with complex data structures, memory management can be

di�cult. To be safe, an explicit �free� operation must guarantee that there

is only one reference to the memory being freed. If multiple references exist,

dangling pointers would leave a potential hazard the next time those pointers

are used.

Linear types can solve this problem. Linear types [4] are types whose values

may be used exactly once. Linear types have only one reference that is consumed

with the use of the linear value. Linear types can neither be duplicated nor

discarded. Nonlinear types are types whose values can be used in the traditional

sense. Nonlinear values can be referenced by any number of principals, and can

be duplicated or discarded. In Clay, we denote linear variables with @type, and

nonlinear variables with type.

With linear types, values may be used exactly once:

4



void discard(@type T);1

...

discard(car);

// Error! car is no longer in scope.

drive(car);

...

// This function may not be written.

Pair[T,T] duplicate(@type T);

Since linear variables can only have one reference, no garbage collection is

needed. Nonlinear types su�er from the multiple aliasing problem and thus

require garbage collection. If the world was linear, garbage collection would be

a trivial task and this paper would not be needed. However, natively, linear

types can only implement trees! (and not all data structures are trees). Fur-

thermore, linear data types can be di�cult in practice to use. Especially for

low level typed assembly language and compiler generated proof carrying code,

nonlinear data types must be supported at the low level in order to express the

nonlinear data types in the high level language.

2.2 Regions and Type-Preserving Collector

Linear types are simply too in�exible. Nonlinear types aren't safe when you

need to �free� to deallocate the type. One synthesis of these two types is regions

[6]. Regions are linear types that contain other possibly nonlinear types. More

speci�cally, a region is an unbounded area of memory where objects/types can

be allocated. Regions serve to group objects with similar lifetimes. When a

region is deallocated, all the objects it contains are deallocated with it. We will
1Clay-like pseudo code

5



see how to implement regions later in our discussion of linear memory. For now,

we will use pseudocode to demonstrate the concept of regions.

let r = newregion() returns a new region

alloc(τ at r ) allocates type τ in region r, returns type �τ at r�

store i in x stores value i in variable x

freeregion(r ) frees region r

Objects may be allocated into di�erent regions.

let r = newregion();

let r1 = newregion();

...

let x = alloc(int at r);

let f = alloc(float at r);

let t = alloc(int at r1);

The type system forbids using an object whose region not in scope (ie. has been

deallocated)

store 5 in t; // ok

freeregion(r1);

store 3 in t; // error region r1 is not available

Wang et al [7] introduced the idea of using regions to implement a type-safe

garbage collector. Upon garbage collection, the collector creates a fresh alloca-

6



tion region and performs a deep copy of all the data in the old region reachable

from a set of root nodes. Once this is done, all the data reachable from the roots

should live in the to-space. The collector can safely deallocate the from-space

and resume with the to-space as the new from-space.

3 Advanced types

We now describe the promised tools for the encoding and static checking of

invariants in a program.

3.1 Polymorphism

When creating data structures, oftentimes you �nd that you need that to

contain a di�erent type. In C++, we often see usage of the standard template

library to generate the version required for a job. Polymorphism allows us to

create types that can contain any other type. A common structure that often

requires polymorphism is an Array. We would like to de�ne the array type so

that it can be used for ints, �oats, strings, etc. In Clay we could de�ne such a

type as follows.

Array polymorphic over type T

Array[type T]

Function polymorphic over type T

T get_i[type T](Array[T] arr, int index)

With this we could easily use Array[int], Array[�oat], etc.

Array[int] arr;

get_i[T=int](arr, index);2

2This explicit declaration of T=int oftentimes can be inferred by the type-checker and

7



3.2 Type Arithmetic/Constraints via Dependent Types

Dependent types allow for types to be indexed by terms. This is useful

for more precisely expressing a type. For example, the length of lists can be

expressed by List[length], where length is the index object specifying that the

length of List is exactly the value length. Dependent types allow the programmer

to de�ne what invariants she expects to hold, and can detect violations of these

invariants during type checking, rather than run time. Following the approach

of Xi et al[8], in Clay, Int[I] is a singleton integer representing a one-word run-

time representation of the integer type I. For example, Int[7] refers to a run-time

word with exactly the value 7. This actually becomes useful when we introduce

polmorphism over integers. ie. Int[4*I] refers to an integer that is a multiple

of 4. In order to check that a value �ts this constraint, we must introduce

constraint checking into the type system.

The type system needs to deal with a subset of integer arithmetic that can

be solved easily by a standard constraint solver [3]: addition, subtraction, com-

parison, and multiplication by constants. This avoids having to implement full

blown dependent types, which is in undecidable and unpractical. This exam-

ple in Clay shows use of dependent types to implement bounds check during

dependent type checking in contrast to Java's run time bounds check.

// With dependent types:

// Polymorphic Array parameterized with length: Array[type T, int Length]

// Singleton value representing the value I: Int[I]

// Invariant index<length

T get_i[type T, int L, int I; 0<=I && I<L]

(Array[T,L] array, Int[I] index)

omitted.

8



Dependent types may also be used to create data structures that obey a set of

constraints. This example in Clay shows a simple data structure supplemented

with dependent types. NonNullPtr is polymorphic type that is an integer that

cannot be 0. This constraint is introduced with the �exists� construct which

packages type variables and constraints.

typedef NonNullPtr =

exists[int Ptr; Ptr!=0] Int[Ptr]

In this example, we use exists to package the length of an array in a tuple of

(length, array). Linear tuples are represented by @[t1,t2,t3 ], and nonlinear by

.[t1,t2,t3]

exists[int L] @[Int[L], Array[A,L]]

3.3 Linear Memory

Linear memory types in this paper are based on a simpli�ed version of alias

types[5]. Linear memory types map integer word addresses to the types of

individual memory words. A linear memory type that contains type τ at word

location 400 is expressed by the size zero linear type Has[400,τ ] . Using each

memory word as an individual linear value, we can construct types with multiple

memory words. For example, @[Has[400,int], Has[401,int]] describes a pair of

integers at word locations 400 and 401. Since Has is a linear type, it is consumed

upon its �rst usage. To use the type, store and load are de�ned accordingly:

9



@[Has[I,A],A] load[int I, type A]
(Int[4*I] ptr, Has[I,A] state);

Has[I,A2] store[int I, type A1, type A2]
(Int[4*I] ptr, A2 data, Has[I,A1] state);

Consistent with linear type usage, calling the load or store function consumes

the linear type and produces a new linear type.

//Load returns a Has type stating that the location still contains

//the same type, and the value of the word at the location.

Has[50,Int[7]] x1 = ...;

let (x1, y1) = load(50*4, x1); // x1: Has[50,Int[7]]

// y1: Int[7]

//Store returns a Has type stating that the location now contains

//the new type stored into the location.

let x2 = store(50*4, 3, x1); // x2: Has[50,Int[3]]

// x1: not in scope

//x1 as a linear type is consumed. The new Has contains the up to date

//state of the memory word at the location.

Note that the type of τ in Has[50,τ ] is nonlinear as it may be discarded or

copied.

let (x2,y1) = load(50*4, x2);

let y2 = y1; // duplication of y1 nonlinear value

10



3.3.1 Lists and Stacks

Simple data types such as lists and stacks can be created using linear mem-

ory. We will use types of the form If[B,τ ], which contains τ if B is true.

If[B,τ]

B == true => τ

The following type de�nes a singly linked list terminated by 0 containing items of

type τ . I, the address of the cell in the list can be null (0) or some valid address.

If I is 0, the list terminates with an empty tuple. Otherwise, it contains two

Has linear memory words, one containing the cell data of type τ and the other

containing the address of the next cell in the list. This data-type is recursively

de�ned for for the remainder of the list List[Next].

List[int I] =

If[I!=0,

exists[int Next]

@[Has[I,Int[Next]], Has[I+1,τ], List[Next]]]

Similarly we can de�ne a stack type in a contiguous sequence of memory loca-

tions I1 .. I2.

Stack[int I1, int I2] =

If[I1!=I2,

@[Has[I1,τ], Stack[I1+1,I2]]]

More complex data-types such as trees and free lists can also be built with linear

memory and simple integer arithmetic.

11



3.4 Coercion Functions

In the previous section, the stack type illustrates a problem with recur-

sively de�ned data types. It is not trivial to conceive how one could implement

constant-time random access into the middle of the stack. The program must

run a loop for n iterations. In fact, this operation should not impose any run

time cost. We describe coercion functions as a method for combining coercion

operations into a single constant time operation. A coercion function must

satisfy the following constraints:

1. It has no e�ect on memory (no stores to memory)

2. Returns no values of size greater than 0

3. It is guaranteed to terminate by evaluating to a value in a �nite time.

Here is such a function for constant access into the middle of a stack:3

@[Stack[Il,Ii], Has[Ii,τ], Stack[Ii+1,I2]]

stack_i[int I1, int I2, int Ii; I1<=Ii && Ii<I2]

(Stack[I1,I2] stack, Int[Ii] index) limited[Ii-Il] {

// unpack the stack

let (has, next_stack) = if_true(stack);

if[I1==Ii] {

// base case. if we are at the right location, return the has.

return @(if_make_false(), has, next_stack);

} else {

// recursive case, run function on smaller stack.

let (left_stack, has_i, right_stack) = stack_i(next_stack,index);
3Intensionally written as pseudo clay code

12



// package the left_stack

let left_stack = if_make_true(@(has, left_stack));

return @(left_stack, has_i, right_stack);

}

}

Since the stack type is of size 0, and the Has linear memory word is simply a size

zero fact stating that the memory word should contain a certain type, conditions

1 & 2 are easily met. If we could guarantee that the function evaluates to a

value in a �nite amount of time (terminates), then we could have the compiler

eliminate this call at run-time. We will do so by annotating coercion functions

with a nonnegative integer limit. The type system only allows coercion functions

to call functions with lower limits than their own limit. We see that if we

annotate the stack_i function with �limit Ii-Il �, we can show that this function

will terminate as the recursive call is to a function of limit Ii-Il-1.

Viewed from another perspective, with the Curry-Howard isomorphism we

argue that our coercive function is no more than a strongly normalizing proof

that takes a proof as an argument and returns three proofs as a result.

3.5 Nonlinear Type Sequences

Although linear types can be used to implement some common data struc-

tures e�ciently, linear data structures are too di�cult to use for other appli-

cations. Compiler generated proof-carrying code and typed assembly language

must support nonlinear data types at a low level in order to support nonlinear

types in the high level language. In our case, a garbage collector must be able

13



to support the nonlinear data types of the language being garbage collected.

We introduce type sequences to support nonlinear types.

A type sequence is a mapping from integers to types. The linear mem-

ory type, which is a mapping from integer memory locations to types, can be

modi�ed to use a type sequence F that maps integers to types:

Has[I1, F[I2] ]

The type sequence F is controlled by a size zero linear generator of type Fun-

Gen[F,I]. This sequence is growable using the expression de�ne_fun(FunGen[F,I ],

τ). de�ne_fun(FunGen[F,I ], τ) grows the sequence by 1 and adds the type τ

to the sequence at index I. It does this by consuming the old generator and

returning three size zero values:

• a new generator of type FunGen[F,I+1]

• a nonlinear proof (Eq_T[F[I],τ ]) that F[I ] = τ

• a nonlinear proof (InDomain[F,I ]) that I will always be in the domain of

F (since sequences grow but don't shrink)

@type0 FunGen[SEQ F, int I]; // linear function generator

// creates a new function generator with no types in sequence

exists[SEQ F] FunGen[F,0] new_fun();

@[FunGen[F,I+1], Eq_T[F[I],τ], InDomain[F,I]]

define_fun[SEQ F, int I, type T](FunGen[F,I] fungen);

For example de�ning F = [Int[111], Int[333], Int[222]]:

14



let fungen = new_fun();

let (fungen,eq_1,ind1) = define_fun[T=Int[111]](fungen);

let (fungen,eq_2,ind2) = define_fun[T=Int[333]](fungen);

let (fungen,eq_3,ind3) = define_fun[T=Int[222]](fungen);

Nonlinear types eq_1,eq_2,eq_3 may be used as the basis of a nonlinear data

structure:

NonlinearData = struct {

Eq[F[0],Int[111]] eq_1;

Eq[F[1],Int[333]] eq_2;

Eq[F[2],Int[222]] eq_3;

}

We can re�ect this data structure on the linear side:

@(Has[500,F[0]], Has[501,F[1]], Has[502, F[2]])

We can write this more generally as:

∀0 ≤ I < 3.Has[500+I,F[I]]

In Clay, we have de�ned a Linear array type LArray[int StartI, int EndI, (int)-

>type], which is really a just a more polymorphic version of the stack type.

(int)->type is a type function that takes an int as a parameter and returns a

type. In Clay we show this using the construct fun[int I] T, where T is some

type.

15



//The above example in an array

LArray[500,503, G]

// where G[I] = Has[I,F[I]]

// One step further

LArray[0,3, fun[int I] Has[500+I,F[I]]]

Now we have the basis for creating regions.

Region[SEQ F, int Alloc] = struct {

FunGen[F,Alloc] fungen;

LArray[0, Alloc, fun[int I] Has[I, F[I]]] facts;

}

By obtaining a Has[I,F[I]] from the array of facts, we may load the value with

type F[I]. The type of F[I] is recovered through the equality F[I] = τ . By

substitution of type F[I] withτ , we may load a value at location I of type τ from

the region.

3.6 Garbage Collection

Garbage collection is the automatic reclamation of computer storage. In

many systems, programmers have to explicitly reclaim heap memory by using

statements such as �free� and �delete�. Manual memory management can be

error prone. Garbage collection systems free programmers from this burden.

Mark-sweep garbage collection is de�ned by two phases, namely mark, then

sweep.

1. Mark phase: Distinguish the live objects from the garbage. This is done by

starting from some root set of nodes, pointers into the heap, and traversing

16



the graph structure formed by inter-object pointers. This is usually done

by a depth-�rst or breadth-�rst traversal. Objects that are reached are

marked as live. Typically this marking is done by setting a header bit in

the object, or by recording in a bitmap or table. At the end of the mark

phase, any objects left unmarked are garbage as they cannot be reached

in any future execution of the program.

2. Sweep phase: Reclaiming the garbage. Once the live objects have been

distinguished from the garbage, memory is swept to �nd all the unmarked

objects (garbage) in order to reclaim their space.

4 Type-Preserving Garbage Collection

This section describes a type-preserving mark-sweep garbage collector.

This collector improves on previous type-preserving copying collectors:[2, 7]

• The nature of the mark-sweep algorithm allows for objects to be garbage

collected in place. This is in contrast to the two space region copying

garbage collectors described previously.

• Potential for extension with additional improvements such as incremental

collection. Mark-sweep collectors are easier to make incremental than

copying collectors. With the approach of Wang et al, collection could only

occur at safe points which needed to be de�ned.

In order to model the mark phase of the collector, we will borrow Dijkstra's

tri-color abstraction [1]. We will divide existing objects into three regions rep-

resented by the colors white, gray, and black. Before the mark phase of collec-

tion, all objects will start as white. At the end of the mark phase, live objects

17



are black and garbage objects are white. In order to implement the depth �rst

search, root pointers will be followed to objects in the heap of the white color.

These objects will be then marked as gray. The gray objects form a list struc-

ture. The head of this list is popped o� and pointers examined. The objects

these pointers refer to are pushed onto the head of the gray list. The original

popped head of the gray list is then colored black. While marking, each object

will progress from white to gray to black. This step is repeated until the gray list

is empty, in which case all live objects will have been marked. When the mark

phase is completed, the sweep phase will scan through the heap and reclaim

all white objects that remain as garbage. At the �nish of the sweep phase, the

black objects will become white objects ready for the next collection. Here is

pseudocode of the garbage collection loop, assuming every object contains two

pointers (pointer1 and pointer2).

make_gray(root_object_pointer)4

enqueue(gray_list,root_object)

while (gray_list.is_not_empty()) {

let obj = dequeue(gray_list)

make_gray(obj.pointer1)

enqueue(gray_list,obj.pointer1)

make_gray(obj.pointer2)

enqueue(gray_list,obj.pointer2)

make_black(obj)

}

We represent the three color abstraction of the mark phase by the region number

R. Upon the �rst collection, all objects are white with the region number 1.
4Pseudocode for garbage collection loop.

18



RMin refers to the region number that currently represents white. In this �rst

collection, gray objects have the region number 2, and black objects, 3. When

garbage collection is �nished, and the black objects must be converted to white,

RMin is incremented by 2. White objects have region number RMin+0, gray

objects RMin+1, and black objects RMin+2.

region0 region1 region2

(RMin=1) (RMin=3) (RMin=5)

R=1 white

R=2 gray

R=3 black white

R=4 gray

R=5 black white

...

4.1 Nonlinear Representation

Using the linear memory/nonlinear representation model described earlier,

we will now describe the nonlinear representation of the garbage collection space.

4.1.1 Abstract Invariants

We use a two dimensional type sequence M that carries information about

each memory location's color and types as a sequence over time. M[V ] denotes

a row containing all memory objects' color and types. M[V ][i ] refers to object

i at time V. M[V ][i ] = R:T where R is the number whose value refers to the

current region number of the memory word, and within context of a speci�c

region (ie. region0, RMin=1), the color white, gray, or black. T is the type of

the Object.

19



m[v][i] = R:T
i = memory word
v = version
* ---> mem object
* 0 1 2 3 4 ...
* m[0][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
* | m[1][ 0 ][ 0 ][ 1:T ][ 0 ][ 0 ]
* | m[2][ 0 ][ 0 ][ 1:T ][ 0 ][ 1:T2']
* V m[3][ 0 ][ 0 ][ 2:T'][ 0 ][ 1:T2']
* .
* t .
* i .
* m .
* e .
* m[v][ ][ ][ ][ ][ ]

Using this type sequence of type sequences M array, we can make assertions on

the types of objects through the mark phase:

Type-Preserving: Live objects should retain the same type

before and after garbage collection.

An object should additionally retain the same type in between collection cycles.

[RMin] m[V ][i ] = R:T
[RMin'] m[V '][i ] = R':T'

R ≥ RMin′ ⇒ T = T ′

We motivate this invariant by looking at three cases of it:

• R<RMin': Object is not live at time V'. When objects aren't live, the

memory words they occupy reside in a freelist. These words may be allo-

cated for use in the program. At this point, the type may change to re�ect

the type of the new allocated object.

20



0 1 2 3 4 ...
(RMin=1) m[2][ 0 ][ 0 ][ 0:T ][ 0 ][ 0 ]
(RMin=1) m[3][ 0 ][ 0 ][ 1:T'][ 0 ][ 0 ]
(RMin=1) m[4][ 0 ][ 0 ][ 2:T'][ 0 ][ 0 ]

• R>=RMin' and RMin>=RMin': With two rows belonging in the same

collection cycle, any valid object either white, gray or black (RMin+0,

RMin+1, or RMin+2) must be greater than equal to RMin. Thus the

type of that object is forced to remain the same within the same collection

cycle.

0 1 2 3 4 ...
(RMin=1) m[2][ 0 ][ 0 ][ 2:T ][ 0 ][ 2:T2]
(RMin=1) m[3][ 0 ][ 0 ][ 3:T ][ 0 ][ 2:T2]
Here valid objects at 2 and 4 are both gray in row 2.
Objects at row 3 become black and gray respectively.
Types are preserved with this step of the collection.

• R>=RMin' and RMin'>RMin: In between collection cycles, RMin be-

comes RMin'. If an object was valid in the old region RMin and if the

object is still valid in the new region RMin', the type of the object will

remain the same.

0 1 2 3 4 ...
(RMin=1) m[2][ 0 ][ 0 ][ 3:T ][ 0 ][ 2:T2 ]
(RMin=3) m[3][ 0 ][ 0 ][ 3:T ][ 0 ][ 2:T2']
Here valid objects 2 and 4 are black and white respectively in row 2.
With the sweep phase, all objects still white are garbage collected,
and all objects once black are now white as RMin'=RMin+2.
Between collection cycles, T type is preserved.

21



In short, as long as an object is live, it will retain the same type.

Progression: Objects can only travel from white to gray to

black.

We maintain in the M array that the region number is nondecreasing. That is

for:

m[V ][i ] = R:T

m[V '][i ] = R':T

V ′ ≥ V => R′ ≥ R

Non discarding: Live objects should not be discarded as

garbage.

Constraints are placed upon the colors of pointers in an object. Pointers from

white objects may point to white, gray or black objects. Pointers from gray

objects may only point to white, gray or black objects. Pointers from black

objects may only point to gray or black objects. Upon sweep phase, black

objects may only point to black objects.

22



With this, any live object graph structure must be marked, and upon completion

of collection, this structure must reside completely in the black region to avoid

loss of live objects.

4.1.2 Nonlinear Datatypes

A nonlinear heap object consists of information contained in M and colors

of the internal pointers.

GcHas[V,I,RegionColor,Ptr1,Ptr2] contains the relation from the two di-

mensional array: M[V ][I ] = RegionColor:Type, where Type is Ptr1,Ptr2. Using

this equality of the cell M[V ][I ] and the MArray, we can assert the invariants

mentioned above.

// information about M array

GcHas[int V, int I, int Color,

int Ptr1, int Ptr2] =

M[V][I]=Color:Ptr1,Ptr25

NObject[V,I,RegionColor,ObjPtr1,ObjPtr2] is the nonlinear version of a heap

object. RegionColor refers to the current region color of the object: white,
5This is pseudocode notation for Clay's construct Eq_T for the proof that M[V][I] = τ .

23



gray, black, or non-live (RegionColor<RMin). ObjPtr1 and ObjPtr2 refer to

the addresses of the two object internal pointers that allow the object to point

to other objects in order to create the live graph structure of the heap. As we

will see later, a heap object is actually four words containing: region number,

gray list pointer, internal pointer #1, and internal pointer #2. Three of these

words are described in the nonlinear portion of the object.

// heap object

NObject[int V, int I, int RegionColor,

int ObjPtr1, int ObjPtr2] =

If[I>0,

GcHas[V,I,RegionColor,

ObjPtr1,ObjPtr2],

NPtr[V, ObjPtr1, RegionColor-1],

NPtr[V, ObjPtr2, RegionColor-1]]

NPtr[V,Ptr,HadColor] is a statement about the color of the object of an internal

pointer stating that the object at least has color Region-1. For white objects at

RMin+0, this generality requires some extra work to show that no objects exist

at RMin-1. White objects can point to objects with colors greater than equal

to RMin, white, gray, and black. Gray objects at RMin+1 can point to objects

with colors greater than equal to RMin, white, gray, and black. Black objects

at RMin+2 can point to objects greater than equal to RMin+1, gray and black.

// object internal pointer

NPtr[int V, int Ptr, int Color] =

exists[int V0; V0<=V]

GcHadColor[V0,Ptr,Color]

// object at least with color HadColor

24



GcHadColor[int V, int I, int HadColor]

exists[int Color; Color>=HadColor]

M[V][I] = Color

It is important to note that the nonlinear representation of objects and the type

sequence M are simply type checking time constructs that take no run time

space or time.

4.2 Linear Representation

We maintain an array of linear objects.

In our linear representation, the heap object consists of two header words

and the internal pointers. The �rst word with R is the region color of the object.

The second word with GrayPtr is the pointer to the next gray object in a singly

linked list of gray objects. The third and fourth words are the data words of the

object. In our case, we have described these two words on the nonlinear side as

the object's internal pointers. GrayColor[GrayPtr,R] places the constraint that

if the current object is gray, then its gray pointer must be either null or valid

and once have pointed to a gray object. In reality, the gray list could have black

elements and this would indicate a bug in the collector. We will discuss how we

solve this with a run-time check.

LinearObject[int V, int I, int R, int GrayPtr,

type T1, type T2, int RMin] =

struct {

M[V][I] = R: T1,T2;

GrayColor[V,GrayPtr, R] graycolor;

25



@[Has[I+0, Int[R]],

LIf[R>=RMin,

Has[I+1, Int[GrayPtr]],

Has[I+2, T1],

Has[I+3, T2]]] has;

}

GrayColor[int V, int GrayPtr, int R] =

exists[int V0, int GrayR;

V0<=V &&

(R!=RMin+GRAY_COLOR || GrayR==RMin+GRAY_COLOR)]

If[GrayPtr>0, M[V0][GrayPtr] = GrayR:_,_ ]

4.3 Garbage Collection Space

In order to describe in detail the changes in types as we garbage collect, we

will describe a simpli�ed version of the garbage collection data structure.

GcSpace[int V, int RMin, int S, int GrayPtr] =

struct {

MArray[TSEQ,RSEQ,V,S,RMin] marray;

LArray[...,

fun[int I]

exists[int R, int GrayPtr, type T1, type T2]

LinearObject[V,I,R,GrayPtr,T1,T2,RMin] linear_memory;

// array of ∃Region,Ptr1,Ptr2.NObjects
LArray[...,

26



fun[int I]

exists[int R, int Ptr1, int Ptr2]

NObject[V,I,R,Ptr1,Ptr2] object_list;

// head of the gray list

exists[type T1, type T2]

NObject[V,GrayPtr,RMin+COLOR_GRAY,Ptr1,Ptr2] gray_object;

FreeList[...] freelist;

FreeStore[...] freestore;

}

MArray[RSEQ,TSEQ,S,V,RMin] is a datatype containing the abstractions men-

tioned in the previous section. RSEQ and TSEQ refer to the type sequence two-

dimensional arrays for the region color and the types respectively (for technical

reasons, these are maintained separately). S is the number of gray objects in

the current row. For sake of brevity, this datatype is not included in this paper.

Garbage collection starts with GcSpace[M_V,RMin,0,0]. Of note, S=0 and

GrayPtr=0, which means that there are 0 gray objects and the gray_list is

empty. All objects are currently colored white (RMin). There are no gray

objects at this time, and the gray_object list is empty.

Given a root object NObject[M_V,RootPtr,RMin+GRAY_COLOR,...] root,

we add this object to the gray list. Now the GcSpace isGcSpace[M_V,RMin,1,RootPtr]

where there is one gray object. Now proceeds the mark phase.

27



* these are indices 0, 1, 2, 3 into object array.
actual addresses would be Base+OBJECT_SIZE*Index

Mark Phase:

Suppose we have the case in the �gure above. RootPtr is Base+OBJECT_SIZE*1,

or the object at index 1 in the �gure. Currently the gray list consists only of

the root pointer at index 1.

1. The Collector removes the head from the gray list. This involves a load of

the gray pointer linear memory word Has[RootPtr+1, GrayPtr], followed

by extracting the NObject at index 1 from the ObjectArray object_list.

After the dequeue operation, the gray list is null.

2. Next, the internal pointers of object 1 are examined. The �rst internal

pointer is to the object at index 0. This object is made gray.

When an object's color changes, this must be re�ected in M. The latest

row in MArray is duplicated, with the exception of the cell which changed.

Any additional row to the M array must also obey the abstract invariants

we discussed in 4.1.1. ie. Region number is nondecreasing.

28



0 1 2 3 4 ...
(RMin=1) m[2][ 1W ][ 2G ][ 1W ][ 1W ][ 0 ]
(RMin=1) m[3][ 2G ][ 2G ][ 1W ][ 1W ][ 0 ]

The gray list now consists of object at indice 0. GcSpace is now Gc-

Space[M_V,RMin,2,ObjPtr1] where ObjPtr1 is a pointer to object at

index 0. We repeat the same with object at index 2. GcSpace is now

GcSpace[M_V,RMin,3,ObjPtr2] where ObjPtr2 is a pointer to object at

index 2. The gray list is now 2, 0, null.

3. The object 1 popped o� the head of the gray list is now turned black.

Note that one of the condition of a black object is that its children must

be at least color gray. This case is ful�lled

4. Steps #1,2,3 are repeated with object at indice 2 as the new head of the

gray list. This cycle is repeated until the gray list is empty, only white

and black objects remain in the list.

These steps might seem very standard to a mark-sweep collection, except upon

closer examination of the types involved in conjunction with the M array.

After collection, we see that a black object 01 pointed at one time to a

gray object 02, but no gray objects are left. Since we maintain a count �S� of

29



gray objects, and no gray objects are left, we can roll forward in the M array

to conclude that 02 is black, not collected, and 01->02 is not dangling. The

�rolling forward in the M array� operation is actually a simple index into the M

array cell. Each M array cell has the constraint that if S == 0, RegionColor !=

GRAY_COLOR. So once we index into the array, we can be assured that the

cell's current color is at least black.

// Cell M[V][I] of the M Array

typedef XMArrayCell[SEQ M, int V, int I, int S, int RMin] =

exists[int RegionColor, type T1, type T2; R<=RMin+2

&& (S>0 || R!=RMin+GRAY_COLOR)

MArrayCell[M,V,I,RegionColor,T1,T2]

// heap object

NObject[int M_V, int This, int RegionColor,

int ObjPtr1, int ObjPtr2] =

If[This>0,

GcHas[M_V,This,RegionColor,

ObjPtr1,ObjPtr2],

NPtr[M_V, ObjPtr1, RegionColor-1],

NPtr[M_V, ObjPtr2, RegionColor-1]]

An object contains facts about itself and the color the internal pointer objects

once had. A gray object will always claim that its internal pointer objects were

once white - a claim that will always be true. Recall that while linear facts may

be invalidated, nonlinear facts persist forever.

30



4.4 Features, Optimizations, Ine�ciencies

One additional implementation detail glossed over was the treatment of the

gray list. Recall that the linear type representation of the heap object only

maintains that if the current object is gray, then the gray pointer points to an

object that once was gray. This could allow an incorrect implementation of

the mark-sweep garbage collector to use this datatype and incorrectly create

a gray list with black objects during the mark phase. This would be a bug.

Fortunately, the type system exposes this problem and forces us to solve it with

a runtime check. We see that make_black (in the gc loop pseudocode) must

take a gray object as a parameter. Since the best information we have on the

color of the object is that it is at least gray, the only way to know that we in

fact have a gray object, and not a black object is to make a run time check.

Another di�culty with the gray list resided in the type variable �S�. �S�

should re�ect the number of gray objects currently in the object list. However,

this is not connected to the proper construction of a gray list. If there is a bug

in the collector, an incorrect implementation could have gray objects (S>0) and

an empty gray list. Once again, the type system requires that we deal with this

at runtime if this bug occurs.

These run-time checks only slow the collector. They do not slow the pro-

gram's loads/stores to the object data �elds. This is evident in the pseudocode

below, that once a constraint has been introduced into the environment (result

of being inside if/else branch after run-time check), static checking of the main-

tanance of that constraint is possible. Lacking a better scheme for encoding the

number of gray objects and the length of the gray list, we accept this minor

overhead in runtime checks.

// code to handle incorrect cases.

31



if (S>0) {

if (Gray_list == null) abort(�Bug! Gray List should not be null�);

} else {

let object = hd(graylist);

if (object.color != gray) {

abort(�Bug! Gray List should only contain gray objects�);

} else {

//make_black_object has as constraint that object must be currently gray

make_black(object);

}

}

5 Conclusions and Future Work

This paper demonstrated that linear types with support for simple arith-

metic types, coercion functions and type sequences can give type-safe code

more control over low-level memory management. Using these we constructed a

type-preserving garbage collector with many advancements over existing type-

preserving garbage collectors. With static type-checking techniques and little

added runtime overhead, it is hoped that this garbage collector can be compa-

rable in performance to existing collectors. Performance evaluations could help

to �ne tune our methods. Our mark-sweep implementation has the potential

for extension. Incremental collecting would be more feasible with a mark-sweep

collector than previous type-preserving copying collectors. It should also be

feasible to create a general-purpose collector with arbitrary type heap objects.

Hopefully in a few years time, we can make use of some of our ideas in the

creation of an e�cient practical garbage collector.

32



References

[1] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and

E. F. M. Ste�ens. On-the-�y garbage collection: An exercise in coopera-

tion. Communications of the ACM, 1978.

[2] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In

Proceedings of the ACM SIGPLAN'01 conference on Programming language

design and implementation, pages 81�91. ACM Press, 2001.

[3] William Pugh. The omega test: a fast and practical integer programming

algorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE

conference on Supercomputing, pages 4�13. ACM Press, 1991.

[4] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, ed-

itors, IFIP TC 2 Working Conference on Programming Concepts and Meth-

ods, Sea of Galilee, Israel, pages 347�359. North Holland, 1990.

[5] David Walker and Greg Morrisett. Alias types for recursive data structures.

Lecture Notes in Computer Science, 2071, 2001.

[6] David Walker and Kevin Watkins. On regions and linear types (extended ab-

stract). In Proceedings of the sixth ACM SIGPLAN international conference

on Functional programming, pages 181�192. ACM Press, 2001.

[7] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collec-

tors. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 166�178. ACM Press, 2001.

[8] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through

dependent types. In Proceedings of the ACM SIGPLAN '98 conference on

Programming language design and implementation, pages 249�257. ACM

Press, 1998.

33


	Using Low Level Linear Memory Management for Type-Preserving Mark-Sweep Garbage Collector
	Recommended Citation

	tmp.1596484807.pdf.2a8M1

