
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2003

Trusted S/MIME Gateways Trusted S/MIME Gateways

Mindy J. Pereira
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pereira, Mindy J., "Trusted S/MIME Gateways" (2003). Dartmouth College Undergraduate Theses. 33.
https://digitalcommons.dartmouth.edu/senior_theses/33

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/33?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Trusted S/MIME Gateways

Mindy Pereira
Mindy.Pereira.03@alum.dartmouth.org

Senior Honors Thesis: Winter/Spring 2003
Department of Computer Science

Dartmouth College

Advisor: Prof. Sean Smith
sws@cs.dartmouth.edu

Dartmouth Computer Science Technical Report TR2003-461
May 2003

Abstract:

The utility of Web-based email clients is clear: a user is able to access their email
account from any computer anywhere at any time. However, this option is unavailable to
users whose security depends on their key pair being stored either on their local computer
or in their browser. Our implementation seeks to solve two problems with secure email
services. The first that of mobility: users must have access to their key pairs in order to
perform the necessary cryptographic operations. The second is one of transition: initially,
users would not want to give up their regular email clients. Keeping these two restrictions
in mind, we decided on the implementation of a secure gateway system that works in
conjunction with an existing mail server and client. Our result is PKIGate, an S/MIME
gateway that uses the DigitalNet (formerly Getronics) S/MIME Freeware Library and
IBM’s 4758 secure coprocessor. This thesis presents motivations for the project, a
comparison with similar existing products, software and hardware selection, the design,
use case scenarios, a discussion of implementation issues, and suggestions for future
work.

Acknowledgements

This thesis would not have been possible without the kind assistance of many people.

First and foremost, thank you to Grace, Esther, Kristen, and Reid for reading and editing

the many incarnations of this thesis and participating in my use case studies. Thanks to

Neha for the daily sanity checks and emergency food and beverage supplies. A big thank

you to Alex and John for all the help with coding, Linux, and the many other problems I

encountered. Also, thank you Mike and Ling for your help with Sherlock. And last, but

certainly not least, thank you to Professor Sean Smith for giving me an interesting

problem to work on and all the support I needed to make things happen.

1

1. Preliminaries

1.1 Introduction

Currently, a person using an email program that allows them a degree of mobility must

choose between convenience and security. The utility and convenience of Web-based

mailers is clear: they give a user the ability to operate her email account from any

Internet-connected computer at any time. However, if a user is tied to security that

depends upon her key pair being stored either on her local computer or in her browser,

she loses the ability to send or receive secure mail while mobile. Our solution for making

public-key cryptography work for mobile email is the use of a secondary trusted server

that stores and manages the user’s key pair and performs all operations associated with

user authentication, encryption and decryption of text, and the addition and verification of

digital signatures. PKIGate fills the role of the trusted server, providing a set of S/MIME

and secure cryptographic services while still allowing the user to retain the use of her

preferred client.

1.2 Organization

This thesis is organized into six sections. The first section introduces the problem, its

motivations, and the interesting case of email at Dartmouth. Section 2 provides

information on the MIME and S/MIME standards, compares existing technologies with

the design for ours, and explains the technical concepts and technologies we plan to use.

The third section discusses the thought process that went into selecting software and

hardware for the project as well as describing the software we used in our final design.

2

Section 4 lays out the hi- and lo-level design for the entire PKIGate mail system. Use

case scenarios for the design from Section 4 are diagramed and detailed in Section 5. We

conclude in Section 6 with a discussion of implementation difficulties, suggestions for

future work, and an evaluation of our solution and the project as a whole.

1.3 Motivation

Since public key cryptography requires no prior contact between sending and receiving

parties, as long as the recipient’s public key information is published, it is an ideal

solution for email. Using other cryptographic standards that depend on the exchange of

an agreed upon key requires the implementation of a number of security protocols, with

each step opening the key to access by an adversary.

The utility of Public Key cryptography in email situations is easy to see. A user is able to

digitally sign email, allowing the recipient to verify the sender. Imagine that the college

application process takes a digital and paranoid turn and admissions offices wish to verify

every letter of recommendation. If a letter writer uses an email program with public key

functionality, he can digitally sign the letter, allowing the admissions office to verify he

sent it, and satisfy their paranoia.

The case for encryption is even easier to make, but we will give a particularly pertinent

example. Medical offices must now meet Condition 3 of HIPAA, the Health Insurance

Portability & Accountability Act, which states that security standards must be put in

place “protecting the confidentiality and integrity of ‘individually identifiable health

3

information’”[9]. Assume that a doctor at Dartmouth Health Services needed to contact a

student with confidential health information. In order for the email communication to be

HIPAA compliant, the information must be secured. If there is a certificate server set up

on the Dartmouth campus, the doctor can easily access the student’s public key and send

him an encrypted message without the additional administrative tasks of creating and

sharing an encryption key.

1.4 Email at Dartmouth

The email system at Dartmouth College provides a particularly difficult environment in

which to offer secure mobile email access. Students, faculty, and staff at the college

enjoy the use of Blitzmail, a homegrown email client that allows a user to access his

account from any computer on which the program is installed without altering the

application. Additionally, Dartmouth is home to at least two incarnations of Web-based

mailers, Netblitz and Webblitz. Since a majority of communication on the campus by is

done through email, the campus is home to hundreds of public computers, fondly referred

to as “Blitz terminals,” from which users often check their email.

Obviously in this environment, public key cryptography tied to a user’s computer would

be inconvenient, at the least. If the user’s key needed to be on the machine hosting the

email client, we would have two options: either we would be forced to install the key pair

of every student, faculty and staff member on every computer, including personal

computers, at Dartmouth or we would have to restrict the number of computers a user

4

could operate her email account from. At a minimum, the first option would require the

upgrade of the 1,000+ personal computers belonging to the incoming freshmen every

year. However, Webblitz and Netblitz give students the ability to check email from

anywhere in the world. Unless the student had a way of transporting her key pair, we

could not guarantee her secure email services away from the campus. Therefore, a

reasonable solution, at least for PKI services at Dartmouth, is to store user’s key pairs on

a secure central server.

5

2. Background

Before beginning the discussion of our implementation of PKIGate, it is necessary to

provide some background information. A description of the MIME and S/MIME

standards, existing technologies, and definitions of terms we will be using throughout this

thesis follow.

2.1 Standards

2.1.1 MIME

MIME, or Multipurpose Internet Mail Extensions, is a standard for Internet messages that

ensures that messages from different email systems are exchanged successfully [19].

Messages in MIME format can contain files of varying types, including types defined by

users. The file type is described in a “content-type” header, which the recipient email

program (or browser) uses to determine the application to use in opening the enclosure.

The binary data that makes up the enclosure is transformed into ASCII text via the

base64-encoding scheme.

2.1.2 S/MIME

S/MIME, Secure/Multipurpose Internet Mail Extensions, is a standard designed to add

authentication and encryption services to MIME formatted email messages [14]. It is

based on the X.509 certificate standard and the ASN.1 syntax. In the standard, digital

signatures and key transport both depend on public key cryptography. Encryption in

S/MIME is a two-stage process referred to as creating a digital envelope. First, a

6

symmetric cipher using the content encryption key (CEK) is applied to the message. Next,

the CEK is encrypted using the recipient’s public key. Both the message and encrypted

key are sent.

Figure 2.1

2.2 S/MIME Gateway

Sending an email message in a simple email system involves several steps. First, the user

composes a message in his email client, a program installed on his computer that allows

him to connect to the mail server [4]. The client sends the message to his email server,

where the user’s account information is stored. There, the message recipient’s address is

broken into two parts: the user and domain names (Ex: user@domain) [5]. The sender’s

server forwards the message to the server where domain is located. The domain server

then delivers the message to user’s account. Later, when that user logs on to his email

account, his client will issue a request to have the mail in his account sent to his

computer.

A gateway is not an email server. Rather, as defined by the marketers of the S/MIME

gateway applications we are about to discuss, it serves as a layer between the email server

and the outside world that allows the email client to remain unchanged. Outgoing email is

piped through the gateway, where S/MIME wrapping and cryptography are applied

S/MIME Encryption
1) Create CEK
2) Use CEK in symmetric cipher encryption of message
3) Encrypt CEK with recipient’s public key
4) Send encrypted CEK and message

7

before the message reaches the outside world. Incoming mail passes through the gateway

where S/MIME unwrapping and decryption or validation are applied before the message

reaches the mail server.

Figure 2.2: S/MIME Gateway

2.3 Existing S/MIME Gateway Applications

Before creating the design for a new S/MIME gateway, we researched existing products

similar to the technology we intended to develop. This allowed us to see what features

were being offered, how other groups made their designs secure and understandable, and

provided some initial ideas on how our own application should be constructed. Before

beginning the comparison, it is essential to understand that none of the applications we

Mail Server

*Format
*Encrypt/

Sign

Outgoing Messages

Incoming Messages

World

*Decrypt/
Verify

*Format

S/MIME Gateway

Regular Message

Regular Message S/MIME Message

S/MIME Message

8

discovered clearly state how a user’s private key or cryptographic operations are made

secure. Our PKIGate is the only one that offers a tamper-proof hardware platform to

protect sensitive operations and information. The following section introduces some of

the major ideas behind the design of our S/MIME gateway-style application, PKIGate, as

it relates to existing products, with the actual design to follow in Section 4.

2.3.1 “Seamless” S/MIME Gateway Applications

I will use the term seamless gateway to refer to an S/MIME application that the user does

not need to know exists. The use cases of these applications are most similar to those

corresponding to our secure level functionality. For example, the ZipLip Email

Gateway and BayCorp MailMarshal are each responsible for all key management tasks

and act irrespective of the client’s S/MIME or cryptographic abilities [22, 1]. The

gateway application itself decides whether an outgoing message should be signed or

encrypted, and automatically decrypts and verifies incoming messages. With S/MIME

Stripper, all outgoing emails are signed. The first time a user sends an email, S/MIME

Stripper generates a private key and an X.509 Certificate [15].

PKIGate is different from the applications above in that it is unclear whether or not the

user has any control over the application’s function. In PKIGate, even a user at the

secure level has the option of setting account or recipient preferences via the Security

Manager (A full discussion of this follows in Section 5).

9

2.3.2 User controlled S/MIME Gateways

User controlled refers to the ability of the user to affect the way in which the gateway

operates. The IAIK S/MIME Mapper is an example and signs and encrypts email

messages based on user-specified preferences that the user has defined [20]. For

decryption, the email client requests messages from the mail-server, at which point

S/MIME Mapper connects to the server, receives the messages, decrypts those that were

encrypted, and verifies signatures. The application generates and attaches a message

containing information about authentication or encryption schemes and the validity of the

signature, if there was one to verify, before the message is transferred to the email client.

Much like what is described for S/MIME Mapper, a user at the secure level of PKIGate

can set preferences for the entire account. We add information messages to secure

level user’s messages and display them for paranoid level users in the Security

Manager window, a secure client connected to the application.

2.3.3 Mixed-mode S/MIME Gateways

Applications that fall into this category are closest to our design for PKIGate because

they allow the user to select the level of security at which he/she wishes to operate his/her

account with the gateway. The CryptoEx Selflearning Gateway for Email Security

supports both normal users and “end-to-end encryption for special users” via scripting

[2]. Emails can be processed according to any set of rules that can be expressed in a script

language, such as those based on the message sender. Key pairs are generated on

10

demand, rather than being created in advance by an administrator and manually

maintained.

PKIGate will have three levels of security, to be explained later, that allow the

application to determine what, if anything, should be done to incoming and outgoing

messages. Instead of scripting, however, the user will be allowed to set a series of

preferences. Current plans for PKIGate do not call for the automatic generation of

certificates or key pairs, and instead assume they will come from outside the application

or be managed by someone in an administrative role.

2.4 Secure Coprocessors

A secure coprocessor is a tamper-proof, sealed device with a processor, memory storage,

and, (in some cases) fast cryptography support [21]. It is trusted to protect the

information stored on it and its computations from a set of physical attacks by an

adversary. Any attempt at penetration will result in the erasure of all critical memory. A

secure coprocessor serves as the trusted server for PKIGate by providing an area in the

system on which to perform sensitive cryptographic operations. For a more in depth

explanation of using a secure coprocessor in a practical security solution, see Smith and

Weingart’s “Using a High-Performance, Programmable Secure Coprocessor” [17].

11

3. Software and Hardware Selection

When developing any new application, it is essential that the developer research tools,

libraries, or other existing ideas that can aid in development. Given the timeline for this

project, the growth of S/MIME as an internet standard, and the availability of outside

resources, it seemed prudent to spend time investigating the available resources and

selecting from amongst them to use in the implementation of PKIGate rather than coding

all components from scratch. For fulfilling the requirements of the S/MIME standard,

open source options existed in the form of the pre-written utility, OpenSSL S/MIME, or

as a set of libraries from DigitalNet that provided all the necessary functionality [13, 6].

For MIME formatting, a number of open source options existed. We chose to explore

two: Mpack, a Linux utility, and the S/MIME Freeware MIME library [12, 6]. The design

called for a secure platform on which all cryptographic operations could be performed.

For that, we chose the IBM 4758 secure coprocessor, used in many other PKI Lab

projects. We now discuss the details of these implementation options and their

differences and provide the reasons for the selections we eventually made.

3.1 Choosing an S/MIME Implementation: OpenSSL vs. SFL

3.1.1 The OpenSSL S/MIME Utility

OpenSSL is a software package often associated with creating secure socket layers [13].

However, it also contains a utility for handling S/MIME email processing. The S/MIME

utility operates via the command line and offers encryption, decryption, signing, and

verification of messages. Certificates, which the S/MIME utility uses in performing

12

cryptographic operations, are sent to the application as another input parameter. The

utility supports DES, TDES, RC2-40, RC2-64, and RC2-128 (where the number in each

of the RC2 algorithm names refers to the key length) algorithms, through its

cryptographic library, crypto.

3.1.2 The S/MIME Freeware Library

 The DigitalNet Government Solutions (formerly Getronics) S/MIME Freeware Library

(SFL) is a set of libraries that, when used in conjunction, provide cryptographic message

syntax (CMS) wrapping and can interface with any type of underlying cryptography

[6,7]. When used in combination with other DigitalNet libraries, all necessary services

for creating an S/MIME application are provided: the DigitalNet Enhanced SNACC

library provides ASN.1 encoding and decoding and the Certificate Management Library

provides X.509 Certificate Processing. (See Figure 3.1 for the overall architecture).

 Cryptographic functionality is provided by loading “instances” of crypto-tokens, in the

form of dynamically linked libraries, which can be thought of as sessions with the

selected Cryptographic Token Interface Library (CTIL) [8]. A user is allowed multiple

active crypto-tokens from which the application selects the instance that provides the

appropriate functionality for decrypting or verifying incoming messages. The user (or

application) may also set a preference for which underlying crypto-token he/she would

like to use in outgoing message operations.

13

Figure 1. S/MIME Freeware Library Architecture
(Note: only those pieces from the library essential to our implementation are shown)

3.1.3 Selection of SFL

There were two main factors in the decision to use the S/MIME Freeware Library (SFL)

rather than the OpenSSL S/MIME utility. OpenSSL offered an entire S/MIME

application, which in other cases may have proved the ideal solution. However,

OpenSSL’s S/MIME processing is dependent upon its crypto library. In order to use our

own underlying cryptographic system, the actual classes and code responsible for

processing S/MIME message would have to be separated from the rest of the code base,

and calls to their library replaced with calls to ours. Here, SFL’s modular design was a

major advantage. SFL operates independently of the underlying cryptography. The only

Application: PKIGate

CTIL
(Cryptographic Token

Interface Library)

Crypto Token Interface Libraries
(interface to the underlying

cryptography)

S/MIME Freeware Libraries

14

necessary change to the library would be the implementation of a Cryptographic Token

Interface to communicate with our underlying cryptographic operations.

Additionally, OpenSSL is more than just a tool for processing and creating S/MIME

messages. It provides many other services that are not required for the application, and,

given the restrictions placed on the application size by the limited memory space of the

4758, it would have been necessary to remove all unnecessary functionality from

OpenSSL. With SFL, the library provides only the functionality we need, with the option

of plugging in extras, such as Access Control.

3.2 MIME Formatting: Mpack vs. SFL MIME

3.2.1 Mpack

Mpack is a Linux utility operated via the command line [12]. The user inputs a set of

parameters, including the recipient or newsgroup, and the file to be encoded. That file is

encoded in one or more MIME messages, which are then mailed to recipients, posted to a

newsgroup, or written to an output file.

3.2.2 The SFL MIME Library

The SFL MIME library is a set of open source classes included as part of the test code of

the S/MIME Freeware Library [6]. Creating a MIME message consists of instantiating a

MIME object, filling in data using either the constructors or set methods, and then

15

allowing the SFL MIME library functions to determine content type and produce the

message’s MIME headers. Once a message object is created, it can be sent to a data

stream and written to a file or to the screen.

3.2.3 Selection of SFL MIME

The first cause for choosing SFL MIME over Mpack for our implementation is similar to

the first reason that made us choose the SFL over OpenSSL. Mpack, like OpenSSL

S/MIME, includes a set of functions not needed by the application we desire to produce;

it would have been necessary to tease out only the pieces of the application we actually

needed. Additionally, SFL MIME is featured in the test cases for the SFL, not only

proving the two can interact, but also providing examples of how to properly use the

libraries.

3.3 Hardware: The Secure Coprocessor

Using the IBM 4758 secure coprocessor was a nearly obvious choice. It provides us with

a secure place to perform all the necessary cryptographic operations, one of the goals

described for our application in Section 1. The 4758 was successfully tested and loaded

with a Linux kernel, it is possible to run a C++ application inside the card, and it provides

fast hardware support for cryptographic operations [10]. Communication is easily

performed over socket connections between the host and card applications. However, the

4758 imposed one major restriction, which spawned difficulties to be discussed later.

16

Namely, there is an upper limit on the size of the application that can reside on the card

of about 1.8M.

17

4. Design

The design of PKIGate and its place in an overall email system that follows is one of the

many possibilities that may have worked given the goals of our project. The design

attempts to minimize time and effort costs to users who do not wish to use the new

S/MIME functionality, while still providing those with the desire for privacy the means to

have it. The section begins with a hi-level description of all the components in the system

and follows with design detail for each, where communication between the various parts

is explained.

4.1 Components Overview

PKIGate is designed as an add-on to an existing email system and requires that an email

server and client already be in place. Instead of being located between the mail server and

the outside world like the gateway described in Section 2.2, PKIGate is designed to work

in direct conjunction with the mail server. This helps to eliminate some of the time costs

to users who do not wish to utilize the system in some cases or at all. Because of this, the

normal email server must be reconfigured to communicate over a secure connection with

PKIGate in addition to its connection to the outside world. It is also important to note that

the application is not designed for use by individual users, but is instead intended for use

as part of an institutional mail system with a central mail server and an administrator in

charge of account management.

18

Figure 4.1: High-level design of the PKIGate System. Dashed lines represent applications
and connections for which we cannot guarantee security.

PKIGate adds three additional components to the existing system: the PKIGate

application, Crypto Server, and the Security Manager Window client. PKIGate is the

manager of the S/MIME system: it handles requests from the mail server and Security

Manager Window for all accounts. The Security Manager Window is a direct secure

connection to PKIGate. It allows a user to interact with his/her gateway account, set

preferences, update his/her address book, and, in the case of paranoid level users, the

Security Manager Window provides a direct connection to trusted hardware through

World

Email ServerPKIGate

Email Client

Crypto
Server
(4758)

Secure Hardware Platform: IBM 4758

Security
Manager
Window

In the best case,
the combined
size of Crypto
Server and
PKIGate are
small enough to
fit on the same
card, making
this connection
unnecessary.

SSL Connection

19

which to securely send and view sensitive messages. Crypto Server accesses the 4758

secure coprocessor’s built-in cryptography hardware support.

4.2 PKIGate

PKIGate performs the actual functionality to meet the S/MIME standard. The Getronics

S/MIME Freeware Library provides S/MIME functionality for the gateway, with

cryptographic operations currently offloaded to Crypto Server, and MIME formatting

supplied through the SFL MIME Library. Additionally, PKIGate manages all system user

accounts. Each user account is kept in an Account object, identified by a unique

identification (UID) number based on some account setting in the original email system.

Eventually, we hope to move PKIGate and the cryptographic functionality onto the same

secure hardware device. (For more on this, see Section 6.1.1). For now, the connection

between PKIGate and the Crypto Server will be private.

4.2.1 Desired Hardware

In the interest of keeping all text and key pairs secure, our design calls for PKIGate to

reside on the 4758 secure coprocessor. Outside applications would communicate with the

application through either a private or SSL connection. (Information on difficulties with

the implementation follows in section 6.1.1).

20

4.2.2. Account

An Account Object holds all information pertaining to a user. In an unset account, all

preferences are set to the defaults (minimum security) and the user’s address book is

initially empty. Upon login, the user is able to set a SecurityLevel (secure or

paranoid), preferences for his/her account, and his/her address book. (For more

information on how these preferences affect the application, see the use cases scenarios in

Section 5). An Account keeps a list of key pairs and a pointer to the preferred (or

default) key pair. The first time during a session a user sends or receives a message,

PKIGate checks for an Account object for that user. If there is one, it examines the

user’s preferences to see if any action needs to be taken, and then calls the proper

operation using the selected key pair. Otherwise, the message is left unaltered and the

system sets a variable stating this user does not have an account, making any future calls

to PKIGate during the session unnecessary, and reducing the time costs to user’s without

accounts.

Figure 4.2: The Account Class

Account

Preferences
SecurityLevel
AddressBook
KeyPairList
PreferredKeyPair
ClientSession
SecurityManagerWindow

21

4.2.3 ClientSession

ClientSession represents the user’s normal email client account upon login. When a user

logs in, the list of Account objects is checked by UID. If there is an Account, the

session is marked to check messages with PKIGate. If a user never logs into the Security

Manager, then his/her messages will not enter PKIGate.

4.3 Crypto Server

Crypto Server resides on the 4758 secure coprocessor. It accepts XDR encoded requests

from PKIGate containing an operation identifier and all necessary input for the requested

operation. (More on these requests follow). Following the ideas in Sean Smith’s paper

"Outbound Authentication for Programmable Secure Coprocessors,” the user’s private

key is encrypted with the 4758’s public key [16]. Therefore, the secure Crypto Server is

the only place where the user’s private key exists unencrypted.

4.4 Connection Between PKIGate and Crypto Server

PKIGate and the Crypto Server communicate through encoded request objects over a

private connection (unless their final combined size is such that both applications can be

placed on one secure coprocessor, see Section 6.1.1).

22

Figure 4.3: Communication between PKIGate and Crypto Server

Our Libsmcard library implements the Crypto Token Library interface of the SFL and

utilizes the ASN.1 encoding and functionality provided. We added a method,

cardConnect, to send requests to the Crypto Server and receive and parse responses,

and created two C structures for transferring information between components,

crypt_request and crypt_response. Each of the SFL interface cryptographic

functions creates a crypt_request object (see figure 4.4) specifying the operation

and information and input buffers and passes this to cardConnect.

Figure 4.4: The crypt_request object

crypt_request

ENUM operation
Info1
Info2
Info3
Info4
Input

PKIGate Crypto Server

Encoded crypt_request
buffer

Encoded crypt_response
buffer

Private SCCSocket Connection

23

The cardConnect function accepts a crypt_request object and an unallocated

output buffer. The request is XDR encoded, and sent over a private socket to Crypto

Server, where it is parsed. Crypto Server makes the appropriate function call and returns

a crypt_response object containing the length of the output buffer and the buffer

itself.

Figure 4.5: The crypt_response object

4.5 Security Manager Window

The Security Manager window communicates directly with PKIGate via an SSL

connection. For users at the secure level, the Security Manager window is used only

for login and altering account preferences. However, for paranoid level users who are

opening or sending encrypted messages, the Security Manager serves as a second secure

email client. The Security Manager Window will offer a set of options to the paranoid

level user, including setting and altering his/her account preferences. Specifically, it will

provide options for creating encrypted or signed and encrypted messages and also for

viewing received encrypted messages. (For more details on each of the operations, see

Section 5, Use Cases).

crypt_response

Length
Output

24

Figure 4.6: Possible layout for the Security Manager Window, Paranoid Level User View

Menu

Input and Output Window

Manage
Account

Encrypt

Sign and
Encrypt

View
Encrypt

Messages

Security Manager Window: Secure Connection to PKIGate

25

5. Use Cases

The following use case scenarios are the result of conversations between members of the

PKI Lab and brief user studies I organized and conducted with undergraduates at

Dartmouth. They do not represent the only possible implementation of PKIGate, but

simply one of the many that matched the design and restrictions of the system as

described in the previous section. In this set of use cases, users are organized into three

levels of security, insecure, secure, and paranoid, descriptions of which follow.

The different user levels allow minimal to maximum user interaction with PKIGate via

the secure client, the Security Manager Window.

We now discuss these use cases as they relate to the different user security levels of

PKIGate.

5.1 Launch and Login

Login is necessary for users at either the secure or paranoid levels. Brainstorming

sessions I led earlier this term with a user group led to two suggestions for convenient

ways to launch the two-window secure email system. In each of the below cases, the user

would set his security level as part of account preferences during his first login to the

Security Manager window, and have the option of changing it at any later point in time.

The first two cases below refer to logins for web-based email clients, while the third

refers to the launch of a desktop client.

26

The first login scenario requires administration by an entity with knowledge of all email

clients operating with the PKIGate application. The administrator would create a website

with links to each of the supported clients from amongst which the user would select the

link for his email client of choice. The link would open two windows: one with the

original email client login screen and the second with the Security Manager Window

login screen. After logging in to both applications, the user would be signed in to the

system at his set security level.

The second idea is similar to the first, except that instead of a page of links, there would

be a secure link for each of the supported email clients. For example, the secure version

of “Webblitz” would reside at http://secure.basement.dartmouth.edu/~blitz instead of

http://basement.dartmouth.edu/~blitz. At that address, the Security Manager and regular

email client login forms would open in separate browser windows, allowing the user to

log in to both applications.

27

Figure 5.1: PKIGate Secure vs. Insecure Connections. Dashed arrows and boxes
represent applications and connections for which we cannot guarantee security.

Since the Security Manager is a Web-based client, there are no clear shortcuts for desktop

email clients to launch the system without altering the client. Therefore, it would be

necessary for the user to launch a browser window for the Security Manager login screen.

5.2 Insecure

The insecure level denotes a session with the user’s regular email client. In this case,

it seems justified to assume that a user who never has an account created with PKIGate

and who never logs into the Security Manager system should not be subject to the time or

effort costs involved in using the gate. The Security Manager window need not be

opened, nor does the user ever need to log into that part of the system. On the first

attempt during a session by the mail server to contact PKIGate with this user’s messages,

Security Manager Window

Login:

Password:

Email Client

Login:

Password:

Mail Server PKIGate
SSL Connection

SSL Connection

Secure

Mail System Specified
Connection

Secure? System Dependent

28

the application will notify the server that the user does not have an account and set a

variable to that effect.

5.3 Secure

A secure level user has an account with PKIGate, has registered at least one key pair,

and is comfortable with allowing the application to operate on her email with little to no

interaction. At some point, she has set overall account preferences or preferences in her

account address book for PKIGate to follow in performing S/MIME operations; the

session operates nearly seamlessly once preferences have been set. The secure level

user has the ability to protect her outgoing and incoming messages from possible

interception by adversaries outside her mail system. She is also able to digitally sign and

verify messages, all without changing the client through which she normally sends or

receives messages.

5.3.1 Sign

For signing, the user creates an outgoing message in her regular client. The message

passes to the regular email server, which then contacts PKIGate through an SSL

connection. Assuming the user has an account, PKIGate checks the address book for

recipient preferences, and, if none are found, checks the overall account preferences to

determine if the message should be signed. If either of the above cases holds true, the

user’s private key, either default or preference specified, and the message is sent via a

private connection to Crypto Server, the only location where the private key is decrypted.

29

The output of the signing operation is returned to PKIGate where it is formatted by the

S/MIME Freeware Library, wrapped in MIME headers, and returned to the mail server

for sending. If neither the recipient nor the account preferences are set for signing, the

message is returned to the mail server unaltered for sending.

Figure 5.2: The path of a Secure Level Signed Message
Dashed arrows and boxes represent possibly insecure connections or components.

5.3.2 Verify

A user at the secure level allows the Security Manager to automatically verify her

incoming messages. Assuming an account exists, PKIGate checks incoming email. The

message MIME headers are parsed for information on which, if any, operations were

performed on the email and, if the message was signed, PKIGate obtains the signer’s

information and sends a request to Crypto Server on the 4758. Crypto Server verifies the

1. User
composes
message

3. Msg.
to

PKIGate

2. Does user
have

account? If
yes, go to 3.
Else, go to 9.

9. Send
Message

4. Do
preferences

call for sign?
If yes, go to
5. Else, go to

8.

8. Return
resulting

msg.

5. Send text/ encrypted
private key in sign request

6. Return
results of

sign

7. MIME
format
msg.

Email Server

Email Client

Crypto
Server
(4758)

PKIGate

World

Secure Hardware Platform: IBM 4758

30

signed content and returns a string representing the success or failure of the operation.

After verification, a content-description header stating whether or not verification was

successful is added to the message.

Figure 5.3: The path of a Secure Level Message Verification.
Dashed arrows and boxes represent possibly insecure connections or
components.

5.3.3 Encrypt

Encrypt works in a similar manner to sign. The user creates an email message in her

regular client. The mail server forwards the relevant information to PKIGate, which

checks the recipient followed by the account preferences and, if warranted, sends a

request consisting of a content encryption key (CEK) and the content to Crypto Server.

Once returned, PKIGate sends a second request to Crypto Server to encrypt the CEK with

PKIGate
Crypto
Server
(4758)

9. User views
message

3. Msg.
to

PKIGate

2. Does user
have

account? If
yes, go to 3.
Else, go to 9.

1. Receive
Message

4. Prefs. set
for verify?

If yes, go to
5. Else, go to

8.

8. Return
resulting

msg.

5. Send plaintext,
signed text, key in

verify request

6. Return
results of

verify (T/F)

7. Add
verify info

to msg.

World

Email Server

Email Client

Secure Hardware Platform: IBM 4758

31

the recipient’s public key, wraps the key and message in MIME headers, and returns it to

the mail server for sending.

5.3.4 Decrypt

A user at the secure level allows PKIGate to automatically decrypt her incoming

messages. PKIGate parses the incoming message headers for information on what, if any,

cryptographic operations were performed. If the message was encrypted, a request

containing the user’s encrypted private key and the content encryption key (CEK) is sent

to the Crypto Server via a private connection. The user’s private key can only be

decrypted inside the Crypto Server using its host coprocessor’s private key. After the

Crypto Server returns the decrypted CEK, a second request is issued with the decrypted

key and the encrypted content. The Crypto Server returns the decrypted text as part of the

crypt_response object. After PKIGate adds a content-description header noting the

decryption operation performed, the message is returned to the mail server.

5.4 Paranoid

A user at the paranoid level has registered for an account with PKIGate and set a

preference noting she wishes to have as much control over her email as possible. Like

users at the secure level, he has the option of setting account and address book

preferences. However, she also has the added advantage of being able to see and verify

all of the messages PKIGate sends out using her key pairs.

32

In exchange for the ability to hide her secure messages from the email administrator, the

paranoid level user surrenders the ability to view decrypted messages or compose

message to be encrypted with her own email client. Instead, in order to guarantee the

security of her messages, the user must type or paste these messages directly in to the

Security Manager window. To have a copy of the message, we suggest the user add

herself as a recipient. Encrypted messages may only be viewed decrypted in the Security

Manager window; they are stored encrypted on the mail server.

Figure 5.6: The PKIGate system view for a Paranoid Level user

World

Email ServerPKIGate

Email Client

Crypto
Server
(4758)

Secure Hardware Platform: IBM 4758

Security
Manager
Window

SSL Connection

33

We feel the gains for a paranoid level user are well worth the additional effort she

must put in to send or view encrypted messages. In addition to being able to hide

messages from adversaries on the outside of the user’s mail system, the paranoid user can

also hide messages from the email administrator and any other parties snooping within

her mail system. The user does not need to trust anyone involved in the email service and

can assume that if her messages are sent to the correct recipient, only the intended reader

will be able to view the plaintext message.

5.4.1 Sign

To add a signature, the user creates a message using her regular email client. The mail

server contacts PKIGate, and if account or recipient preferences are set to sign the

message, the text of the message, the recipient, and identifying information for the key

used in signing are displayed in the Security Manager Window. There, the user has the

option of making any changes to the content or to the key pair being used before

verifying that she really wishes to send it. If the user consents to send, PKIGate issues a

request to the Crypto Server containing the user’s encrypted private key and the content

to be signed. Crypto Server returns the output of the operation to PKIGate, where it is

wrapped in MIME headers and sent. Otherwise, the user cancels the entire message.

34

Figure 5.7: Signing a message at the Paranoid Level
Dashed arrows and boxes represent possibly insecure connections or components.

5.4.2 Verify

A user at the paranoid level allows the Security Manager to automatically verify her

incoming messages. The mail server shunts the incoming message to PKIGate, and, if the

user has an account, MIME headers are parsed for information on which, if any,

operations were performed on the email. If the message has been signed, PKIGate obtains

the signer’s information and sends a request to the Crypto Server on the 4758 over a

private connection containing the sender’s public key and the signed and plain content for

1. User
composes
message

3. Msg.
to

PKIGate

2. Does user
have

account? If
yes, go to 3.
Else, go to

10.

10. Send
Message

4. Do
preferences

call for sign?
If yes, go to
5. Else, go to

9.

9. Return
resulting

msg.

5. Display text and key in use.
If user ok’s, go to step 6. Else,

cancel the message.

7. Return
results of

sign

8. MIME
format
msg.

Email Server

Email Client

PKIGate

World

Security Manager
Window

6. Send text/ encrypted
private key in sign
request

Crypto
Server
(4758)

Secure Hardware Platform: IBM 4758

35

comparison. The Crypto Server verifies the signed content and returns a string

representing the success or failure of the operation. After verification, PKIGate adds a

content-description header to the message stating whether or not verification was

successful.

5.4.3 Encrypt

The encryption case for a user at the paranoid level is difficult to implement both

securely and conveniently. A user at this security level does not want the email

administrator to have access to the unencrypted content of her messages. However, if a

message passes through the client to the regular mail server, it will exist unencrypted on

the server. Given the difficulty of this case, especially since at this point the user is not

required to change her email client, it makes sense to have the user type or paste her

message directly into the Security Manager window. We realize that this is inconvenient,

and leave a better solution to future work.

To send an encrypted message, the a user opens the Security Manager window, selects

“Encrypt” from the list of tasks, and types or pastes the message directly into the trusted

window. The message passes via an SSL connection directly to PKIGate. There, a request

containing the content to be encrypted and the content encryption key (CEK), produced

previously by Crypto Server, is created and sent to the Crypto Server over a private

connection. The server returns the output of the encryption operation to PKIGate, which

sends a second request, this time for encryption of the CEK. PKIGate creates a message

36

with the encrypted content and encrypted CEK, wraps it in MIME headers, and returns it

to the mail server for sending.

Figure 5.9: Encrypting a message at the Paranoid Level. Dashed arrows and boxes
represent applications and connections for which we cannot guarantee security.

5.4.4 Decrypt

Decrypting messages is another area in which the paranoid user must make sacrifices

for her desire for security. The message cannot reside on the mail server unencrypted,

therefore it must not be allowed to pass out of PKIGate in its decrypted state. Instead,

when a user is not logged in, the messages go to the mail server encrypted. When the user

logs in to their regular mail client, the messages will appear encrypted. To decrypt them,

the user must log into the Security Manager window, thereby creating a direct secure

connection to PKIGate. From there, she is given a list of the encrypted messages residing

1. User
composes
message

7. Send
Message

6. Return
resulting

msg.

2. Send text/CEK in encrypt
request

3. Send CEK, recipient.
Public key in encrypt

request

4. Return
results of
requests

Email Server

Security
Manager
Window

Crypto
Server
(4758)

World Secure Hardware Platform: 4758
5. MIME

format
msg.

PKIGate

37

in her account from which she may select a message to decrypt and view. The message is

ONLY decrypted on the screen; it remains unaltered on the mail server.

To decrypt the text, PKIGate sends a request with the encrypted content encryption key

(CEK) and the user’s encrypted private key to the Crypto Server. The private key is

ONLY decrypted inside the Crypto Server by using the host 4758’s private key. The

server decrypts the CEK and returns it. Another request with the encrypted content and

the decrypted content encryption key are sent to the Crypto Server, which decrypts the

message and returns the output to PKIGate. The decrypted text is displayed in the

Security Manager window. In the case of an attachment, PKIGate provides a link to

another browser window where the attachment may be viewed.

Figure 5.9: Decrypting a message at the Paranoid Level. Dashed arrows and boxes
represent applications and connections for which we cannot guarantee security.

Secure Hardware Platform: 4758
2.

Retrieve
encrypted

msg.

1. User
requests

encrypted
msg. 5. Return

results of
requests

Email Server
3. Send CEK/encrypted private

key in decrypt request
4. Send CEK, text in decrypt

request
Crypto
Server
(4758)

PKIGate

6. Display
decrypted

msg.

Security
Manager
Window

38

6. Implementation and Conclusions

This section describes difficulties experienced in the process of implementing PKIGate

that prevented us from completing a prototype and suggests future work and user studies

in the S/MIME gateway application area. We conclude by evaluating the success of

PKIGate with respect to our goals for the project and suggesting a new path to victory in

creating a mobile S/MIME solution.

6.1 Implementation Difficulties

The implementation of PKIGate was plagued by several difficulties, preventing us from

creating the desired prototype implementation. The most major of those difficulties, a

suggested solution, and an outline for applicable future work follow.

6.1.1 PKIGate Size or “So, how big is it?”

The design for PKIGate calls for the S/MIME functionality as well the cryptographic

operations to reside on the IBM 4758 secure coprocessor. However, the 4758 imposed a

size restriction on the executable of about 1.8M.

To get an accurate size estimate before writing to the card, we coded an application

representing the SFL object construction and library calls PKIGate would have to make

to offer both authentication and encryption services. We compiled and statically linked

the above executable with all the required libraries using G++3.2.2. Since the libraries

(including the ESNACC 1.4 distribution) were created with G++3.0 in mind, and the

compiler is known to have issues, some of which arose in coding other parts of the

39

system, we were forced to apply patches from a newer release that corrected the issues

with our compiler, version 3.2.2. (All steps taken to make the release compile correctly

were documented and are available upon request). The Unix strip utility, which removes

all unnecessary information from the executable, brought the total size of the executable

to 4.8M, larger than the space available on the 4758.

To further reduce the size of the application, we mounted the uClibc (micro-c-libc) file

system. Uclibc is a smaller version of the standard C library used in developing

embedded Linux systems [18]. The file system contains a version of the GCC distribution

and standard libraries that were compiled with the uClibc set of libraries instead of with

the standard versions, reducing their size. Compiling with uClibc G++3.2.2 reduced the

size to 3.9M, almost a 1M difference, but still not small enough to fit on the card.

Bob Colestock, the S/MIME Freeware Library point of contact, suggested in an email

message earlier this term that it would be possible to remove the Cryptographic Token

Interface Library component of the S/MIME Freeware Libraries and plug our

cryptography directly into the application. We hope this will allow the final reduction in

size required to fit PKIGate inside the 4758, and make it possible to combine Crypto

Server and the S/MIME application, therefore removing an unnecessary line of

communication in the system. It is also possible that IBM will release a 4758 secure

coprocessor with more memory space for executables. We leave moving the PKIGate

executable to a secure coprocessor for future work.

40

6.2 Implemented Parts

In spite of time consuming difficulties, portions of PKIGate were implemented. The XDR

encoding and communication to be used between PKIGate and Crypto Server has been

coded and tested to work over a regular socket connection (thanks to Alex Iliev and his

previous work with the technology). Additionally, the crypt_request and

crypt_response structures described in Section 4 are implemented and there is an

outline of the PKIGate Account class and necessary calls for S/MIME formatting, used

in attaining an executable size.

6.3 Future Work

We see several areas for future work in addition to the implementation of a full prototype

from the design and the move of PKIGate to a secure coprocessor, as described in

Section 6.1.1.

First, as previously stated, we suggest finding a better way to implement a paranoid

user’s encryption and decryption operations. The current system forces the paranoid user

to use the Security Manager Window as an email client when sending or viewing

encrypted messages and does not provide her with a way to securely save plaintext

messages.

The above ties into an idea for another set of user studies that should be conducted before

a final implementation of PKIGate is released. As Jon Callas notes in “Improving

41

Message Security with a Self-Assembling PKI,” PKI will only work if people use it, and

people will only use it if it is as easy to use as the insecure alternative [3]. We suggest

presenting the prototype and alternatives to users who would operate at both the secure

and paranoid levels.

Finally, PKIGate is not a fully operational email client. Eventually, there will come a

time when users are willing to switch to a new email client in exchange for a higher level

of security. This calls for the design of a new trusted Web-based client. Evan Knop’s

paper “Secure Public-Key Services for Web-Based Mail” suggests a method by which the

4758 secure coprocessor can serve its own, trusted content to a client, creating a trusted

environment for S/MIME email [11].

6.4 Conclusions

The PKIGate design meets the goals we laid out in the introduction for a mobile S/MIME

solution at Dartmouth. The system:

1) Gives users a mobile solution. Since a user’s key pair is stored on a central

server, he/she has access to it for cryptographic purposes anywhere at

anytime.

2) Supplies a trusted environment. It utilizes the IBM 4758 secure coprocessor as

the location for all cryptographic operations.

3) Allows users to retain their original email client. PKIGate operates in

conjunction with the mail server without any changes to the email client.

42

Given the importance of correct use cases, interfaces, and S/MIME formatting to

PKIGate and the difficulty of installing executables on the 4758, I suggest future work

follow a different research path than the one we took. It would perhaps make more sense

to implement an insecure version of the application on the Blitzmail system or in

conjunction with one of the Web-based email clients, and allow users to test the system

first. To take the study one step further, the application’s underlying cryptography could

be replaced with a temporary stand-in set of functions, such as from the Crypto++ library,

before moving it to a secure hardware platform.

In conclusion, through this thesis I learned many lessons about the design of a large-scale

project. Namely, there will always be more than one good way to design the initial

incarnation of any new application and it is vital to conduct background research, talk to

groups of “real” users, and synthesize the many ideas presented carefully. A better

design will result from better research and from having to justify one’s design decisions

than from simply deciding on a design path. With this in mind, I suggest to anyone

undertaking this project in the future to familiarize themselves not only with the ideas and

technologies presented in this paper, but also conduct to their own research of new

technologies and with new users.

References

[1] Baycorp Advantage. MailMarshalSecure.
http://www.baycorpid.com/id_services/information_strategic_
mailmarshal.asp.

[2] Biodata IT. CryptoEx Gateway. http://www.biodata.co.za/gw.htm.

[3] John Callas. Improving Message Security With a Self-Assembling PKI. In
2nd Annual PKI Research Workshop—Pre-Proceedings, April 2003.

[4] Dreamhost. What’s an email client? What does it do?
https://panel.dreamhost.com/kbase/index.cgi?area=2376.

[5] Dreamhost. How does email work?
https://panel.dreamhost.com/kbase/index.cgi?area=2403.

[6] Getronics Government Solutions. S/MIME Freeware Library Software Design
Description, version 2.1, July 2002.

[7] Getronics Government Solutions. S/MIME Freeware Library Application
Programming Interface, version 2.1, June 2002.

[8] Getronics Government Solutions. Cryptographic Token Interface Library Application
Programming Interface, version 2.1, June 2002.

[9] HIPAAdvisory. What’s HIPAA? - A Basic HIPAA Primer.
http://www.hipaadvisory.com/regs/HIPAAprimer1.htm.

[10] IBM Research News. IBM Research Demonstrates Linux Running on Secure
Cryptographic Coprocessor.
http://www.research.ibm.com/resources/news/20010828_mycroft
.shtml

[11] Evan Knop. Secure Public-Key Services for Web-Based Mail: A sketch of a secure
environment. Honors Thesis, Dartmouth College, 2001.

[12] Mpack Manpage: 1995.

[13] Openssl. smime. http://www.openssl.org/docs/apps/smime.html#.

[14] RSA Security. S/MIME Frequently Asked Questions.
http://www.rsasecurity.com/standards/smime/faq.html

[15] Security Softlabs. SMIME Stripper.
http://www.vroyer.org/smimestripper/index.html.

[16] S.W. Smith. Outbound Authentication for Programmable Secure Coprocessors. In
7th European Symposium on Research in Computer Security. Springer-Verlag LNCS
2502.

[17] S.W. Smith, E. Palmer, S.H. Weingart. Using a High-Performance, Programmable
Secure Coprocessor. In 2nd International Conference on Financial Cryptography.
(Springer-Verlag LNCS.) February 1998.

[18] uClibc. A C Library For Embedded Systems. http://www.uclibc.org.

[19] Webopedia. MIME. http://webopedia.com/TERM/M/MIME.html

[20] XiCrypt Technologies. IAIK S/MIME Mapper.
http://www.xicrypt.com/modules.php?op=modload&name=IncludeP
age&file=smime_eng.

[21] Bennett Yee, J.D Tygar. Secure Coprocessors in Electronic Commerce Applications.
In First USENIX Workshop on Electronic Commerce. July, 1995

[22] ZipLip. Integrated Email Gateway. http://www.ziplip.com.

	Trusted S/MIME Gateways
	Recommended Citation

	Microsoft Word - mindy.doc

