
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2002

Performance and Interoperability In Solar Performance and Interoperability In Solar

A Abram White
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
White, A Abram, "Performance and Interoperability In Solar" (2002). Dartmouth College Undergraduate
Theses. 25.
https://digitalcommons.dartmouth.edu/senior_theses/25

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/25?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

1

Performance and Interoperability in Solar

A. Abram White
abewhite@mac.com

Senior Honors Thesis
Dartmouth College Computer Science

Advisor: David Kotz

Dartmouth College Technical Report TR2002-427

Abstract
Ubiquitous computing promises to integrate computers into our physical environment,
surrounding us with applications that are able to adapt to our dynamics. Solar is a software
infrastructure designed to deliver contextual information to these applications. To serve the large
number and wide variety of context-aware devices envisioned by ubiquitous computing, Solar
must exhibit both high performance and the ability to interoperate with many computing
platforms. We created a testing framework to measure the performance of distributed systems
such as Solar, as well as a pluggable data-transfer mechanism to support the dissemination of
information to heterogeneous applications. This paper explores the testing framework developed,
analyzes its findings concerning the performance of the current Solar prototype, presents several
optimizations to Solar and their effects, and finally discusses the design of the pluggable data-
transfer mechanism.

1 Introduction

The next generation of computing devices will be capable of adapting to our behavior and
surroundings, becoming at the same time both more useful and less conspicuous than
computers today. Ubiquitous computing is a vision of a world in which these “smart”
devices pervade our environment; to date, however, there is very little software that is
able to adapt its user’s context.

The primary obstacle to the creation of context-aware applications may be the lack of a
system capable of delivering the necessary contextual information [3]. A viable system
must be able to disseminate diverse forms of context quickly, must be able to scale to
handle a truly pervasive computing environment, and must be able to interoperate with
the many heterogeneous devices in such an environment. Solar is a system infrastructure
designed to meet these challenges.

This thesis explores measures taken to improve the performance and interoperability of
Solar. It begins with a general introduction to ubiquitous computing and the Solar
context-dissemination system. It then presents a testing framework we developed to
measure the performance of highly distributed, highly configurable systems such as
Solar. Next, it analyzes the performance of the Solar prototype using this testing
framework. Following the analysis, it presents several optimizations we implemented,

2

along with their effects. Finally, it discusses the design of a mechanism we created to
allow devices interacting with Solar to receive context data in their own preferred format,
enabling Solar to operate in a heterogeneous computing environment.

2 Ubiquitous Computing

In the past, staying warm was an important daily concern, and the fire or stove often
became the center of attention on cold winter nights. Today, thermostats and extensive
heating systems are built into our homes, buildings, and cars, and though indoor heating
is as important to our lives as ever, it rarely enters our thoughts. Advances in climate-
control systems have allowed us to forget they even exist, enabling us to focus our
attention on other matters.

The above example is meant to illustrate that technology often becomes most useful to us
only when it effectively disappears from our consciousness. Ubiquitous (or pervasive)
computing applies this principle to computers; it envisions a world in which computers
are integral to our daily life, yet so seamlessly interwoven into the physical environment
that they no longer occupy our attention [11]. While this vision may be compelling, it
faces several challenges:

o Hardware. To embed ubiquitous computing devices into our surroundings, the
devices themselves must be small and inexpensive, but at the same time powerful
enough to run the complex logic needed to adapt to changes in the environment.
Rapid advances in hardware miniaturization and continuous exponential growth
in computer processing power indicate that this challenge may be met within the
next few years.

o Network. The network is obviously critical in delivering contextual information
to ubiquitous devices. The network infrastructure must be able to support heavy
wireless traffic, must use standard protocols able to address large numbers of
densely packed hosts, and must scale to potentially hundreds of devices per room.
The growing prevalence of wireless networks, standardization on the TCP/IP
protocols, and the emergence of IPv6 are all advances towards these ends.

o Software. While computing hardware and the network infrastructure are well on
their way to meeting the needs of ubiquitous computing, the necessary software is
still in its infancy [7]. Two categories of software must be developed: “smart”
applications, and a context dissemination system to support them.

Traditional applications are not designed to cope with changes to the environment
they run in. Smart applications, on the other hand, are programs designed to
adapt to their user and setting. Their goal is to assist the user, and often to
anticipate her needs, without getting in the way. The infamous Microsoft
paperclip is an example of a failed smart application, and illustrates the delicate
balance between being helpful and being a nuisance. There are many positive

3

examples of smart applications, however, such as location-aware Palm programs
for displaying local entertainment options, stock price trackers that notify the user
when certain criteria are met, or intelligent reminder systems that account for
traffic and distance from the appointment location [9]. The common trend among
these applications is that they are able to effectively use context to provide a
service that adapts to changing conditions. Unfortunately, there is no standard
framework for the dissemination of the location data, stock prices, traffic
conditions, and other context these programs require. Each application must
obtain the needed data in an ad hoc manner, and must handle difficult problems
like mobility and variable network conditions on its own. The lack of a support
infrastructure for context-aware applications is one of the major obstacles to
ubiquitous computing.

2.1 Context Dissemination

A context-dissemination infrastructure must meet several requirements to be useful in a
pervasive-computing environment:

o Flexibility. The system must be able to deliver the diverse forms of data
employed by various context-aware applications, and to communicate with these
applications regardless of their native computing platform.

o Scalability. The infrastructure must be able to deliver context information from
thousands of sensors to thousands of applications employed by hundreds of users.

o Information Quality. Context often comes from error-prone sensors and
resource-constrained embedded devices. It is unreasonable to ask each
application to transform this low-level, unreliable information into the high-level
context it requires. The system must assist applications in ensuring a certain level
of information quality.

o Mobility. Both the sensors producing context data and the applications
consuming it may be highly mobile. The infrastructure must continue to deliver
the needed information during rapid location changes.

3 Solar

Solar is a system infrastructure designed to meet the challenges of supporting end-to-end
information collection, dissemination, and utilization for adaptive ubiquitous applications
[3]. As such, its primary goals correspond exactly to the challenges discussed in Section
2.1:

o Flexibility. Solar must not restrict the content of context information, and it must
be able to deliver this information to applications on heterogeneous computing

4

platforms.

o Scalability. Solar must collect information from many sources and disseminate it
to numerous clients without becoming a bottleneck in the information flow.

o Information Quality. Solar must allow applications to access both raw sensor
data and high-level refined context. Additionally, Solar should enable
applications to easily manipulate context to best suit their needs.

o Mobility. Solar should use location-dependent information sources to support
mobile sources and applications. Solar must handle fast context changes as these
devices travel across geographic space.

3.1 Design

Solar represents context as events. Sensors and other sources of context information
publish streams of events, and applications subscribe to the streams they are interested in.
The events themselves are objects, and the class of each event represents its type.
Publishers are free to define their own event classes; thus Solar allows the dissemination
of arbitrarily complex data.

Still, few applications want to work with the relatively low-level information published
by most sources. Solar enables applications to construct new, higher-level event streams
from existing streams through the use of operators. Operators are small, chainable
programs that receive one or more event streams as input and publish a single event
stream as output. Solar allows applications to reuse existing operators, or to define their
own operators, which Solar will dynamically load and deploy across the network. Most
operators perform one of four basic actions:

1. Filter. Filters are used to remove redundant or otherwise uninteresting events
from a stream. For example, a sensor might publish the current temperature
every 10 seconds, but the application might only want to receive temperature
readings that exceed 90 degrees.

2. Transform. Transformation involves replacing events of one type with those
of another. A location transformer might convert map coordinates to rooms
within a building.

3. Merge. Merge operators subscribe to two or more event streams and simply
re-publish all the events they receive as single stream. While not strictly
necessary, merge operators can aid stream reuse, as we will see shortly.

4. Aggregate. Aggregators are the most complex form of operator. They output
an event stream based on input from one or more streams, often in
combination with internal state. An aggregator might be used to track the

5

price of a stock and publish an event only when the stock reaches a new high
or low for the day.

Solar maintains a logical overview of event flow in the operator graph. The operator
graph is an acyclic graph in which sources, operators, and applications are represented as
nodes, and event streams as directed edges between them. Using the operator graph,
Solar can identify overlapping event pathways so that these portions of the event flow can
be shared by multiple applications. The reuse of event streams conserves network and
computational resources and greatly enhances Solar’s scalability.

To facilitate this reuse, Solar allows symbolic names to be attached to frequently used
publishers. Applications can then subscribe to event flows using their names rather than
having to specify the construction of the flow from the basic building blocks of sources
and operators. Solar combines the symbolic names of publishers with the names of
available services (printers, displays, etc.) and organizes them hierarchically to form the
naming tree. The naming tree consists of both static names used to identify specific
devices or users and context-sensitive names whose bindings may shift over time. For
example, the static name /devices/printers/23 may refer to a specific printer (printer
number 23) while the context-sensitive name /labs/005/devices refers to a dynamic list of
devices (possibly including printer 23) that is calculated based on the current content of
lab 005, as determined by location sensor data. Context-sensitive names can adapt to
mobile sources in a manner that is completely transparent to applications.

3.2 Implementation

Figure 1: The architecture of the Solar system. Circles represent sources and operators
executing on Planets. The dashed arrows are tree edges in the name space while the solid
arrows represent subscription links in the operator graph [3].

The Solar prototype is implemented in Java. At the center of the Solar system is the Star,
which runs in its own Java Virtual Machine (JVM). The Star maintains the operator
graph and naming tree, and receives subscription requests from applications.

6

Applications lie outside the Solar system; subscription requests are specified using a
simple XML subscription language, and are sent to the Star using a client-side Solar
library. When a subscription requires the deployment of a new operator, the Star
instantiates the operator’s object on one of many Planets. A Planet runs within a JVM
and acts as an execution platform for Solar sources and operators. Planets are typically
distributed throughout the local network.

Solar event types are represented as Java classes, and each event is a Java object. Events
are transferred between Planets and from Planets to applications using standard Java
serialization.

4 Performance Testing Framework

Studying the design and implementation of Solar shows us that it meets the challenges of
flexibility, information quality, and mobility posed to context dissemination systems in
section 2.1. The only way to measure the performance and scalability of Solar, and
therefore its viability as an infrastructure for truly pervasive computing, though, is to
gather empirical data. Unfortunately, Solar exhibits many characteristics that make it
unsuitable for evaluation using traditional performance-testing software:

o Distributed. Solar is a highly distributed system. Any realistic tests of Solar’s
performance and scalability must incorporate multiple Planets running on several
physical hosts.

o Server. Solar Stars and Planets are independent servers that are meant to be run
as standalone programs. They do not expose APIs that allow them to be invoked
as components from within other applications.

o Highly Configurable. There are no “standard” configurations in Solar; instead,
each application specifies its own tree of sources and operators. To accurately
simulate these applications in testing scenarios, each test case must be free to
create arbitrary operator graphs using arbitrary network hosts. Additionally, the
types of results from test cases may vary depending on the type of test performed.

o Variables. Because Solar is a complex system, each test of Solar may involve
many runs using different combinations of multiple variables. For example, a test
measuring event throughput using filter operators might vary the number of
clients, the event size, and the fraction of events filtered.

o Evolving. Solar is an evolving system. Testing code placed within the Solar
code-base is likely to break as Solar develops over time. Individual test cases
may rely on Solar’s public APIs to interact with the system, but the testing
framework itself must lie outside of Solar and be general enough to continue to
function as Solar changes.

7

We decided to develop our own performance testing framework to meet the needs of
complex, highly distributed systems like Solar. In addition to supporting the
characteristics of such systems listed above, we set the following goals for our
framework:

o Simplicity. While the systems our framework is designed to test are complex,
testing them should not be. Implementing test cases should not involve an
arduous integration process to tie into the testing framework. Furthermore,
despite the highly configurable nature of systems like Solar, setting up and
describing test runs to the framework should be made as easy as possible.

o Automation. Tests may take minutes, hours, or even days to run. The testing
framework should be able to process tests without constant developer interaction.

o Fully Documented Results. It is all too easy to painstakingly collect volumes of
results, only to later discover that we no longer remember the tests we ran to get
them. To overcome this problem, results outputted by the testing framework
should include the complete test configuration.

o Multiple Result Formats. It should be possible to easily transform test results
into multiple formats, such as graphs or tables.

8

4.1 Design

Figure 2: The architecture of the testing framework. The dashed arrows represent test
descriptions. The solid arrows represent test results. A wide arrow from A to B indicates
that A spawns or produces B.

The testing framework is divided into two primary components: the runtime system and
the result processing system. We focus on each of these parts in turn.

4.1.1 Runtime System

The runtime component of the testing framework is centered on the test server. Test
servers are multithreaded servers responsible for running all or part of a test. The test
server that receives the request to run a particular test oversees the test’s execution and
collects its results. Most tests involve running applications on multiple hosts; the
overseeing test server also coordinates with other test servers running on these hosts to
distribute applications according to the test specifications. Test servers communicate
with each other and with other applications through the use of command objects, where
each command type contains the logic for executing that command. This design enables
us to easily extend the set of commands a server understands without disrupting its core
API.

9

Test servers receive requests from the user through a test client. A test client translates
the user’s request into the server’s native test format, sends the test to the server, receives
the results from the server, and then translates these results into a format suitable for
display back to the user. Different test clients can accept different forms of input and
produce different forms of output. We developed one test client for use within Java
applications; this client inputs and outputs Java objects. A second test client we
developed is meant for command-line use; it accepts XML documents describing tests to
run and produces XML documents containing the results.

Test servers represent tests internally as Java objects. These objects have several
responsibilities within the framework:

1. They hold global configuration information pertaining to the test.

2. They list the variables for the test, along with enumerations or start/stop/step rules
for the variables’ possible values.

3. During testing, test objects act as iterators over the possible values their variables
can take. The test server runs the test for each possible combination of variable
values. We employ a recursive algorithm to evaluate the possible variable value
combinations as if the variables are placed in nested loops.

4. They act as containers for the server objects the test uses; server objects are
covered below.

5. They acts as containers for their own results. Once a test has been run for all
possible combinations of variable values, the test server processes the results it
has collected; for numeric results it calculates simple statistics like min, max,
mean, and standard deviation. The results and statistics are then stored within the
test object itself, and the test object is transmitted back to the waiting test client.
The client can obtain the results from the test object, together with the original
test configuration data; thus the result is fully documented.

Tests are often placed together in test groups. Test groups are little more than
conglomerations of related tests. Test groups can also hold arbitrary name/value pairs
used to record information about the testing environment, such as the operating system
used, the network speed, etc. For convenience, test servers and test clients have
overloaded APIs for handling entire test groups as well as individual tests.

As we noted above, tests contain one or more server objects. Each server object is the
logical representation of a physical host where a portion of the test should be run. The
server object lists the set of applications that should be executed on the machine it
represents. It also holds configuration information that is shared by these applications.

The testing framework supports the execution of three types of applications: Stars,
Planets, and user-defined programs. User-defined programs are specified in the test

10

description by naming the Java class that acts as the entry point into the program. To
make integration with the testing framework as painless as possible, there is only one
requirement placed on this class: it must implement the standard Java Runnable
interface, which is made up of a single run() method. The system invokes this method
and waits for it to complete. If the program is meant to produce a test result, it can
implement the TestCase interface, which extends the Runnable interface with a
getResult() method. The testing framework automatically detects when applications
have results to return, and sends these results back to the overseeing test server for
processing.

Stars, Planets, and user-defined applications are all run within separate processes. The
test server spawns these processes at the beginning of each test run, and kills them once
the run has completed. This ensures that test runs are completely independent from each
other, and that the server process does not interfere with the execution of applications.

We have mentioned application configuration several times: tests can contain
configuration information global to all applications, servers can contain configuration
information shared by the applications on that server, and application representations can
contain configuration information for that particular application. Each configuration
parameter is specified as a pair of strings representing a property name and the value that
property should take. When an application instance is constructed, the testing framework
attempts to match the supplied property names with the available setter methods of the
instance. If a match is found, the framework converts the property value to the type
expected by the method and then invokes the method with the converted value. For
example, a user-defined throughput application might have a method
setStarHost(String host, int port) to tell it where to send its subscription
request. The configuration for this application could ensure that this method is invoked
with the host name “agent1.cs.dartmouth.edu” and the port number 8080 by specifying
that the property “starHost” has the value “agent1.cs.dartmouth.edu,8080”. Thus the
chore of configuration is entirely handled by the testing framework.

4.1.2 Result Processing System

On a test’s conclusion, its results are packed into the test object and sent back to the
client. What format should the client use to display these results to the user? There is no
single answer to this question; the correct format depends on the type of test and the
user’s needs. Therefore, we designed a dynamic result-processing system that includes a
plug-in architecture for creating new output styles.

In the result processing system, the test grapher is responsible for accepting test results as
input, along with options for how the results should be processed. One of these options
specifies the graph mode the test grapher uses to format results. Graph modes are system
plug-ins for transforming result data. Developers can create their own graph modes to
format this data in any style they choose, and, despite the names of these components, not
all formats involve graphs. In fact, though one of the graph modes we developed does in

11

fact produce line graphs in Portable Network Graphics (PNG) format, another outputs a
simple text file of comma-separated values.

4.2 Example

To make the preceding discussion of the testing framework more concrete, it may be
helpful to consider an example. Assume that we have created a simple Solar source that
outputs a series of events as quickly as possible. Additionally, we have created a Solar
application called SolarThroughput that subscribes to this source and measures the
amount of time it takes to receive all of the events, then calculates the event throughput in
events per second.

<?xml version="1.0" standalone="yes"?>
<test-group name="Throughput (2 Receivers)">

<!-- test description -->
<test name="Solar">

<server host="agentc24.cs.dartmouth.edu">
<star />

</server>
<server host="agentc23.cs.dartmouth.edu">

<planet />
</server>
<server host="agentc22.cs.dartmouth.edu">

<app name="throughput1" class="solar.test.cases.SolarThroughput"/>
</server>
<server host="agentc21.cs.dartmouth.edu">

<app name="throughput2" class="solar.test.cases.SolarThroughput"/>
</server>

<!-- vary the payload of the message events -->
<var name="randomInstance.stringLength"

start="0" end="1000" step="100"/>

<!-- global configuration -->
<param name="iterations" value="1000"/>
<param name="starHost" value="agentc24.cs.dartmouth.edu"/>

</test>

<!-- used in graphing -->
<param name="categoryAxisLabel" value="Message Length (characters)"/>
<param name="valueAxisLabel" value="Throughput (messages / second)"/>

<!-- env properties -->
<param name="date" value="2002/2/25"/>
<param name="os" value="RedHat 7.1"/>
<param name="network-speed" value="100Mbs"/>
<param name="java-version" value="1.4.0 FC"/>

</test-group>

Figure 3: Test description suitable for use with the XML test client.

To run this test case, we must first create the test description. Figure 3 depicts a
description of the test suitable for use with the XML test client. It is not necessary to
understand the details of this document, but the gist of it should be clear. The test uses
four servers: one to run the Star, one to run the Planet for the event source, and the others
to run two instances of the throughput application. The event type the test uses is the

12

MessageEvent, a standard Solar event type whose payload consists of a string message.
The test uses a variable to systematically vary the size of this message, and by extension
the network size of the transmitted events.

Once the test description is written, we must start test servers on each of the hosts
mentioned in the test. We then use the XML test client to transfer our XML description
as a test object to one of the servers. This server divides the test object into its
constituent hosts and distributes the application-description objects to the relevant test
servers. Each server configures the described applications with the supplied parameters,
and then spawns the applications as separate processes. Once the results from the two
throughput applications have been sent back to the coordinating test server, the processes
are killed.

Next, the test server asks the test object to step to its next variable value, and the entire
processes repeats. Eventually the variable values are exhausted. At this point the test
server performs some final processing on the results, packs them into the original test
object, and transfers it back to the waiting XML client. The client outputs the test object,
including the results it now contains, as an XML document. Figure 4 displays a result
document from a typical run of our test.

<test-group name="Throughput (2 Receivers)">
 <test name="Solar">
 <server host="agentc24.cs.dartmouth.edu" port="8108">
 <star data-port="4104" control-port="5105"/>
 </server>
 <server host="agentc23.cs.dartmouth.edu" port="8108">
 <planet data-port="6106" control-port="7107"/>
 </server>

remainder of server configuration omitted…

 <result min="290.697" max="294.811" mean="292.754" std-dev="2.056">
 <var name="randomInstance.stringLength" value="0.0"/>
 <value app-name="throughput1" error="false" value="290.697"/>
 <value app-name="throughput2" error="false" value="294.801"/>
 </result>
 <result min="291.460" max="292.740" mean="292.100" std-dev="0.639">
 <var name="randomInstance.stringLength" value="100.0"/>
 <value app-name="throughput1" error="false" value="291.460"/>
 <value app-name="throughput2" error="false" value="292.740"/>
 </result>

remainder of results omitted…

 </test>

 global parameters omitted…

</test-group>

Figure 4: Test results from the XML test client.

Finally, these results can be passed through the test grapher for formatting. The test
grapher supports both XML, which it translates into test objects, and test objects

13

themselves as input. Figure 5 is an image produced by the test grapher using the PNG
graph mode.

Figure 5: Output from the test grapher using the PNG graph mode.

5 Test Cases

With a suitable testing framework in hand, we turned our attention to gathering data on
Solar’s performance and scalability. Solar is designed to support a wide variety of
context-sensitive applications, and it would be impossible to evaluate the system’s
performance in every possible scenario. Instead, we focused our attention on the
following aspects of context flow:

o Latency. How much time does it take to transfer an event from its source to its
final destination?

o Throughput. Can Solar deliver a series of rapid-fire events without becoming a
bottleneck? How does Solar scale when delivering these events to multiple
receivers?

14

o Filter. Most applications will probably only be interested in a small fraction of
the context information that is potentially available to them. How does reducing
the event flow using filters influence performance?

5.1 Design

For each of the facets of performance listed above, we wanted to compare Solar to other
methods of context dissemination designed specifically to maximize performance, often
at the expense of functionality. This comparison would give us a baseline measure of
how much overhead Solar incurs due to its extreme flexibility. Thus, for each test, we
wrote test cases designed to run through Solar as well as cases designed to run
standalone.

To simplify the development and use of our test cases, we gave them a core set of
common configuration options:

o Data Type. The type of raw data or event to use within the test.

o Data Size. The size of each piece of data or of the payload of each event.

o Iterations. The number of iterations to average the test results over. The exact
meaning of this parameter changes with the test.

o Transfer Mode. The method to use in sending the context data. In Solar tests,
this parameter is ignored, because Solar takes care of event transfer using Java
serialization. In standalone tests, however, other data-transfer methods are
available:

o Byte Stream. Raw bytes are sent through Java sockets directly.
o String Stream. This transfer method uses character streams in place of

bytes.
o Serialized String Stream. Like the string stream, this method also

transfers strings, but employs Java serialization rather than character
streams.

o Serialized Object Stream. Solar events are transmitted using Java
serialization. This method is closest to the event transmission process of
Solar.

5.1.1 Latency

The latency test is designed to measure the cost of routing context through Solar, as
opposed to sending it straight from the data source to the waiting receiver. This latter
case is easily modeled by developing small standalone client and receiver programs. A
data packet of the configured type and size is sent from the client to the receiver, which

15

bounces the packet back to the client. The round-trip transfer time is a measure of system
latency. Performing a complete round trip rather than sending data one way enables the
client to have total control over the timing of the transfer, which avoids clock
synchronization issues that arise when multiple machines must coordinate to time a
process. Events are bounced back and forth like this for the number of iterations given in
the test configuration, and the average round trip time is reported as the test result.

Figure 6: Solar version of the latency test. The solid arrows indicate data event flow.
The dashed arrows denote timing data.

The Solar version of this test is diagrammed in Figure 6. An event containing a payload
of the specified size is sent from Planet 1 to a waiting bounce-back operator on Planet 2.
The bounce-back operator receives the event and re-publishes it to a receiver operator
back on Planet 1, mimicking the round trip performed in the standalone test case. The
receiver operator coordinates with the source to time the trip; because the receiver and
source are on the same Planet, clock synchronization issues are once again avoided. The
computed time is then sent as a special event type to the test application. As in the
standalone case, this process is repeated for the specified number of iterations, and the
final latency calculated as an average over the round trip times observed.

In each test, we varied the size of the data packet or event payload to assess its influence
on transfer times.

5.1.2 Throughput

Throughput is a measure of how much data can be passed through a system per unit time.
As an infrastructure designed to support ubiquitous computing environments consisting
of thousands of devices and hundreds of users, Solar must support high throughput of
context information. Additionally, this throughput should not degrade as the system
scales to more and more users.

The standalone version of the throughput test consists of a lone sender program and a
configurable number of receiver programs. The sender transmits a single start event to
each receiver, then fires them a stream of data packets of the specified type and size.

16

Each packet is sent in round-robin fashion to each receiver; the number of packets sent is
determined by the iterations parameter of the test. The receivers measure the amount of
time that elapses between the arrival of the start event and the arrival of the last data
packet, and then divide the total number of packets received by this time to calculate the
throughput in packets per second.

The Solar version of the test is similar. Each application in the test subscribes to the
same source, which transmits a single start event and then a stream of data events whose
payload is the configured size. Solar handles the distribution of events to each subscribed
application.

As in the latency tests, we varied the size of the data packet or event payload across test
runs.

5.1.3 Filter

Solar filters have no clear analog in simple sender/receiver systems; therefore, we did not
implement a standalone filter test. The Solar version of the filter test is straightforward:
the test application subscribes to a filter operator, which in turn subscribes to a source
that fires a stream of events of the specified type and size, just as in the throughput test.
The filter operator, though, is configured to remove a fraction of the events from the
stream. The placement of the filter can be toggled between three settings, as shown in
Figure 7:

1. Source. The filter is placed within the source program, so that events that would
have been filtered are instead simply never published. No operators are used.

2. Independent Host. The filter is an operator, placed on a separate host from the
source and from the receiving application, so that events must take an extra hop
through the filter’s Planet.

3. Application. Filtering is performed in the application program. In this setting
100% of the events are transferred from source to receiver, just as in the
throughput test without filters. No operators are used.

17

Figure 7: The three possible placements of the filter operator in the Solar filter test.

5.2 Profiler

Profilers are tools for analyzing the resource consumption of various components in a
program. CPU time, memory usage, and other metrics are broken down by method and
thread. Testing frameworks like ours and profilers compliment each other: testing
frameworks can assess the overall performance of a system, but cannot shed any light
onto the reasons for this performance. Profilers, on the other hand, analyze the inner
workings of the program and determine what pieces might be slowing it down; however,
they cannot measure total performance.

To get a more complete view of Solar’s performance, we supplemented our testing
framework cases with profiling data from the JProbe Java profiler [6].

6 Findings

This section presents results and analysis of the tests described in Section 5. We
executed all tests on 450Mhz Pentium II workstations with 256MB RAM running
RedHat Linnux 7.1 and the final candidate release of the Java Development Kit version

18

1.4. We ran multi-host tests on a cluster of these workstations connected by an isolated
100Mbps switched network.

6.1 Latency

Figure 8 presents the results of the latency tests. Solar was much slower than the
standalone methods of data transfer in context delivery speed, though the difference is
less apparent in the standalone case that also relied on event serialization. Curiously, the
transfer mode using serialization on strings performed better than the mode utilizing
character streams; we believe that this is due to the buffering that Java serialization
employs. Also, because strings are a native Java type, the serialization process for them
has been extensively optimized.

Aside from this minor anomaly, the results are not surprising: the transfer modes
employing the simplest data conversion and the smallest transmission size exhibited the
lowest latency. This implies that decreasing the network transfer size of events and
replacing Java serialization with a less complex mechanism may reduce latency in Solar.

Figure 8: Results of the latency tests.

19

6.2 Throughput

We conducted throughput tests with both one and 10 receivers. The results for a single
receiver are shown in Figure 9; overall they are quite similar to the results of the latency
test discussed in the preceding section (except that in throughput graphs, higher is better).
Transfer modes that minimize network traffic and require little or no work to prepare data
for transmission dominated, though even the standalone test case that shares Solar’s
mechanism of event serialization bested Solar by up to 75%. This result implies that
other inefficiencies in Solar are also contributing to its low throughput.

Figure 9: Results of throughput tests with one receiver.

20

Figure 10: Results of throughput tests with 10 receivers: a) the test cases were run
without shared serialization; b) shared serialization was enabled for the standalone
versions of the test, leading to the apparent increase in performance for these cases.

We ran the 10-receiver throughput tests to evaluate Solar’s scalability. Figure 10 plots
the throughput per receiver against the message length. Comparing the single receiver
results from Figure 9 with the base case of 10 receivers displayed in Figure 10a, it is easy

21

to see that Solar’s throughput per receiver degrades more or less linearly with the number
of subscribers; Solar’s total throughput remains constant. The standalone tests initially
exhibit similar behavior; however, enabling shared serialization in the standalone test
cases boosts their performance and scalability tremendously.

Normally, data bound for multiple recipients is re-packaged for each transmission.
Shared serialization is an optimization in which data is serialized once into a network-
ready form, and then sent to each client without further modification. In addition to
reducing the computation time involved in distributed data transfer, shared serialization
reduces the gap between fast and slow data-transfer modes, as the clustered results in
Figure 10b attest. This result indicates that Solar, which is forced to use a heavyweight
serialization mechanism to handle arbitrarily complex context, could benefit from the
implementation of shared event serialization.

6.3 Filter

Figure 11 plots the average time for each of 10 subscribers to receive a stream of events
against the fraction of events filtered under various filter placements. Of the tests we ran,
this one was designed to most closely approximate real-world usage, where the vast
majority of available context will be ignored. Of the tests we ran, this one also exhibited
the most encouraging results.

There are two reasons why the results of this test are encouraging. First, the results
demonstrate that the operator-level filtering employed by Solar drastically increased
performance over application-level filtering. When 90% of the 1000 streamed events
were filtered, the application using Solar’s operator filtering was a full 5 times faster than
the application that executed filtering locally.

Second, the test results indicate that filtering through operators is efficient, and that filter
operators do not have to be deployed to the same physical host as the event source to
realize performance gains. In fact, filtering within the source program itself exhibits only
slightly better performance than filtering using an operator on an independent server,
though the gap may widen as network bandwidth decreases. Thus Solar does not have to
lock itself in to a specific operator placement for the sake of efficiency.

22

Figure 11: Results of filter tests in which a source with 10 subscribers publishes 1000
events. The graph plots the average time for each subscriber to receive all expected
events vs. the fraction of events that were filtered.

6.4 Profiler

The results of the latency and throughput tests indicate that while complex serialization
and large event size are at least partially responsible for Solar’s sluggishness, there may
be other factors involved as well. For a hint as to what else might be preventing Solar
from maximizing its potential performance, we turned to JProbe [6], a Java profiler.

We ran JProbe on a Solar Planet during a throughput test. While we have not yet finished
analyzing JProbe’s output, one piece of information immediately caught our attention:
Solar spends a large amount of time executing event-queuing methods.

Solar relies heavily on threading and queuing to dispatch events. The profiler data
suggest that optimizing these aspects of the system could result in significant
performance gains; however, further investigation is required.

23

7 Optimizations

Based on the test results presented in the preceding section, we implemented several
optimizations intended primarily to improve Solar’s throughput. The first such
optimization was to decrease the size of Solar events. By simplifying some of the
standard information included in each event, we were able to achieve a constant 222-byte
decrease in the network transfer size of events without any loss of flexibility or additional
restrictions on event content. Because most events tend to contain very small payloads,
such as temperature readings or single stock prices, 222 bytes can amount to a significant
fraction of the total event size (30% or more). Furthermore, these numbers assume the
use of Java serialization as the network-transfer mechanism. Java serialization is a
compact format; other more verbose formats will experience an even greater drop in total
network size.

After reducing the size of events, we wanted to decrease the amount of time spent
preparing them for network transfer. The standalone throughput tests showed large
performance gains when data bound for multiple receivers was serialized once up-front,
and then transmitted in serialized form to each client, as opposed to re-serializing the data
for each intended destination. Thus, we implemented a similar system for Solar events
published to multiple subscribers.

Unfortunately, Solar’s execution of shared serialization cannot be as simplistic as the
approach taken in the standalone tests, and therefore the performance gains realized are
less dramatic. Two factors contribute to the added complexity of the Solar
implementation:

1. Each Solar event must be annotated with its final destination. Therefore, while
the event itself can be serialized once for a large number of clients, the destination
information, which is clearly unique to each client, must still be serialized
independently.

2. Different receivers can require different formats for transferred events (this
functionality is covered in Section 8). The algorithm implementing shared
serialization must group receivers by their preferred format, then serialize the
context data once per group to ensure that each receiver is sent the event in the
expected mode.

Despite these difficulties, we were able to increase throughput by approximately 85% in
test cases involving 10 receivers, assuming that they use a common result format. Figure
12 compares the performance of Solar before and after the realization of shared
serialization.

24

Figure 12: Performance gains using shared serialization for a throughput test involving 10
receivers.

The final optimization we attempted takes advantage of the pluggable data transfer
mechanism we developed to increase Solar’s interoperability. The details of this
mechanism are explored in Section 8; suffice it to say that Solar is no longer limited to
Java serialization for event transmission.

We created two new transfer modes designed to reduce network traffic and serialization
time: the command mode, and the data-stream mode. The command mode serializes the
internal events Solar uses for communication between Stars and Planets. The only
important piece of information in these events is the command they denote, which is
identified by a string. The command mode extracts this string and sends it over the
network, then reconstructs the proper event on the receiving end. Though this process is
extremely efficient, the overall performance gains are negligible, as command events
represent only a tiny fraction of the total event load Solar must handle.

The vast majority of events routed through Solar come from sources and operators; a
simple string cannot represent these arbitrarily complex events. The data-stream mode,
however, can. The data-stream mode assigns logical id numbers to each member field of
an event class. To transmit an event instance, it processes each field in numeric order,
serializing the data in the field with a DataStream, a low-level Java stream type used
to read and write Java class files. If a field represents a container or a relation to another
object, it is processed depth-first. On the receiving end, the mode instantiates a new

25

instance of the event class and packs it with the streamed field content. The data-stream
mode preserves object identity on reconstruction, and therefore is able to handle data
structures containing circular references and fields that point to the same object instance.

Using the data-stream mode, we were able to reduce object serialization times by an
average of 68% relative to standard Java serialization. To our surprise, however, the
data-stream mode also increased the network transfer size of objects by almost 30%. Our
use of shared serialization reduces the importance of serialization speed; in our tests, the
rise in the amount of data that must be transmitted for each event completely negated the
benefits of faster serialization. Moreover, tests conducted in low-bandwidth
environments would suffer an even greater penalty due to the increased network traffic.
Thus our attempt to enhance throughput using an alternative data-transfer mechanism
failed.

7.1 Optimization Conclusions

While not always successful, our attempts to optimize Solar produced some valuable
conclusions. It is now clear that standard Java serialization uses a condensed format that
employs advanced buffering to significantly boost performance. To make appreciable
throughput gains, then, it is not enough to create a transfer mode that can package and
unpackage objects faster than standard serialization; the mode must also employ tune its
buffering for the network and output compact data to compete. It may even be necessary
to limit the complexity of context data so that intricate serialization can be avoided. For
example, we found that simply adding object identity preservation to our data-stream
mode decreased its speed in converting objects to and from a network-ready form by over
20%, and increased the network size of its output by 5%. If considerations like these
could be ignored, the serialization process could become dramatically more efficient. It
might also be worthwhile to investigate lessening the amount of data that must be
transferred by tracking changes to successive events in a stream and only transmitting
data that differs between them.

8 Interoperability

Interoperability is a key requirement for any ubiquitous-computing infrastructure. In an
environment consisting of thousands of independent sensors and devices, it is
unreasonable to expect every application to run on a common computing platform or to
use a single programming language. Thus, system infrastructure components such as
Solar must bear the burden of communicating with heterogeneous clients. Traditionally,
interoperability is accomplished in one of two ways:

1. Standards. Infrastructure components can use a single platform-agnostic
standard for all communication with the outside world. Any application that
conforms to the standard can integrate with the system. This approach has been
adopted by the emerging web services paradigm in cross-platform computing,
which uses XML for all inter-machine data transfer. Using a single standard such

26

as XML simplifies the chore of maintaining cross-platform compatibility, but it
lacks flexibility. The chosen standard must be a lowest-common-denominator
format to support the greatest number of outside systems, which means that it is
likely not ideally suited to the task at hand. Also, relying on a single standard
often negates the possibility of optimizing communications when the system
happens to be used in a more homogeneous computing environment.

2. Pluggability. An alternative to relying on a single standard is to offer
applications a choice of several possible communication modes. This approach is
more complex than a single-standard mandate, but it offers several advantages:
more applications can be supported, applications can choose their preferred data
format, and the most optimal format can be used for each client.

Despite the added complexity, we chose to implement the second option in Solar. This
option is more in line with the goals we set for the interoperability framework, namely:

o Subscriber Choice. Solar subscribers should be able to choose their preferred
method of receiving context events. This contributes to Solar’s overall objective
of easing the difficult task of context-aware application development as much as
possible.

o Efficiency. The interoperability framework should not be a bottleneck in event
transmission. It should be possible to build transfer modes with the framework
that are at least as fast as standard Java serialization.

o Extendibility. The interoperability framework should be extensible, so that more
data formats can be added later, enabling applications to choose the optimal
format for their needs. Additionally, creating an extensible framework ensures
that the system can evolve over time while maintaining backwards compatibility
with older applications.

o Complex Context. Solar sources can publish arbitrarily complex events. The
interoperability framework must not impede sources with restrictions on the data
they can distribute.

o Transparency. The interoperability framework should be completely transparent
to developers. Event types should continue to be represented by standard Java
classes, without having to implement special interfaces or logic to be serialized
into the various supported data formats. Additionally, event classes that have
already been written should not need to undergo modification to work with the
new interoperability framework.

o Security. Many events may include non-public fields that contain sensitive
information. The interoperability framework should not allow unauthorized
access to the data stored in these events.

27

8.1 Design

How can we access the non-public fields in event objects to serialize them? And even if
we are able to access the fields’ data, how do we prevent malicious code from also
gaining unfettered access to it? Furthermore, how do we accomplish all of this so that it
is completely transparent to the event class developer? The answers to all of these
questions lie in the power of Java bytecode enhancement.

8.1.1 Bytecode Enhancement

Bytecode refers to the low-level building blocks of compiled Java classes. Just as Java
programmers must write source code that complies with the Java language specification
for it to compile correctly, so too must Java compilers output bytecode that conforms to
the Java bytecode specification for it to run correctly [8].

Bytecode enhancement is the process of modifying the bytecode of a class to increase the
functionality of that class. Bytecode enhancement is an extremely powerful development
technique with some compelling advantages over more traditional methodologies:

o It does not require access to the source code. This flexibility is beneficial in
situations in which the source code has been lost or was never provided.

o It is transparent to the developer. Bytecode enhancement takes place after
compilation. The developer of the to-be-enhanced classes may not even know it
will occur – her write/debug/test cycles are completely unaffected, and the
functionality provided by enhancement is given without her having to implement
any special interfaces or write special code. In a very real sense, the functionality
is provided “for free”.

o It is “clean”. Parsing and manipulating bytecode is often much more
straightforward than attempting to automatically generate or modify source code,
though this is a subjective observation rather than an objective fact. Furthermore,
careful bytecode modification can preserve the debugging line numbers of the
original code, while source-code modification cannot.

o Bytecode modifications can be made through custom class loaders at runtime,
removing the need for even an extra after compilation. Our Solar interoperability
mechanism currently does not use this capability, but it may in the future.

There disadvantages to dealing directly with bytecode as well:

o Errors are difficult to debug. If an enhancer produces invalid bytecode, the
resulting class will simply fail to load or fail to execute properly, often with
cryptic or absent error messages.

28

o Programming is low-level. Working with bytecode is akin to working in a simple
assembly language.

o Finally, some developers seem to have an aversion to bytecode modification.
Their fear, though often irrational, sometimes hinders the adoption of systems that
employ bytecode enhancement.

Bytecode enhancement is certainly not suitable for every project. In situations that
require absolute transparency, or situations that would normally put too much of a burden
on the class developer, though, it can often succeed where all else fails.

8.1.2 Event Modifications

We enhance the bytecode of Solar events to add three new aspects of functionality to
each event class: factory operations, metadata operations, and state operations. Transfer
modes use these operations to implement custom event serialization and deserialization.
All operations are designed for maximum efficiency.

Factory operations are methods enabling an event instance to act as a factory for other
instances of the same type. The bytecode enhancer adds a solarNewInstance()
method to each event class; this method constructs and returns a new instance of the
event. The enhancer also adds code to each event class so that when the class is loaded
into the Java Virtual Machine (JVM), it registers an instance of itself with the transfer
helper, a singleton helper object. The transfer helper hashes each registered instance
based on the instance’s type. When an event is sent over the network, the code on the
receiving end of the transfer uses the transfer helper to create a new instance of the proper
event class; this instance can then be packed with the streamed data. To create the
requested instance, the transfer helper simply looks up its hashed event object for the
given class and uses the object’s solarNewInstance() method to construct a new
event. Using the transfer helper and the solarNewInstance() method, we avoid
Java reflection, a relatively slow means of dynamically inspecting and creating an object
given its class. Tricks like this one are partially responsible for the superior speed of the
data-stream transfer mode built on the interoperability framework; the data-stream mode
is discussed in Section 7.

Figure 13 displays a source code representation of the factory operations added to each
enhanced class. The enhancer implements the factory operations in bytecode; therefore,
the given source is only an approximation of the actual operations.

29

public class TemperatureEvent
implements Transferrable // interface added by enhancer

{
static
{

TransferHelper.getInstance().register(new TemperatureEvent());
}

public Transferrable solarNewInstance()
{

return new TemperatureEvent();
}

// remainder of class definition omitted…
}

Figure 13: Source-code view of the bytecode added during class enhancement to
implement factory operations.

The metadata operations added to enhanced events are also designed to circumvent Java
reflection. These operations enable transfer modes to gather information about the
member fields of an event class so that it can choose the most efficient network format
for the data in each field. Figure 14 depicts an approximation of the source code for
some of the metadata operations on hypothetical TemperatureEvent and
UnitTemperatureEvent classes.

Metadata operations use absolute ids rather than names to refer to class member fields.
During enhancement, we assign each member field of an event class a relative id, where
relative ids are monotonically increasing integers starting at 0. At runtime, we calculate
the absolute id of a field by adding its relative id to the total number of fields it inherits
from other classes further up the inheritance hierarchy. We do not calculate absolute ids
at enhancement time so that modification to the field count of a superclass does not
require re-enhancement of it subclasses. The example displayed in Figure 14 may clarify
the use of absolute and relative ids.

Ids are more useful than field names in several respects. For example, they can be used
in fast switch statements, and multiple fields can be specified at once as a range from a
low id number to a higher id number. The state operations discussed below take
advantage of this latter capability of ids to implement efficient state transfer between the
event and the transfer mode.

Given the absolute id of a field, the metadata operations of an event can return the field
name, the field class, and a symbolic constant indicating the general field type, such as
INT, MAP, or ARRAY. This constant is often more useful than knowing the exact field
class, as it can be used in switch statements. Metadata is used by most transfer modes
during both event serialization and deserialization.

30

public class TemperatureEvent
implements Transferrable

{
private double temp;
private long timestamp;

public int solarGetFieldCount()
{

return 2;
}

public String solarGetFieldName(int field)
{

switch(field)
{
case 0: return “temp”;
case 1: return “timestamp”;
default: throw new IllegalArgumentException();
}

}

public int solarGetFieldTypeCode(int field)
{

switch(field)
{
case 0: return Transferrable.DOUBLE;
case 1: return Transferrable.LONG;
default: throw new IllegalArgumentException();
}

}

// remainder of metadata methods and class definition omitted…
}

public class UnitTemperatureEvent
extends TemperatureEvent

{
private String units;

public int solarGetFieldCount()
{

return super.solarGetFieldCount() + 1;
}

public String solarGetFieldName(int field)
{

int relId = field – super.solarGetFieldCount();
if(relId < 0)

return super.solarGetFieldName(field);

switch(relId)
{
case 0: return “units”;
default: throw new IllegalArgumentException();
}

}

// remainder of metadata methods and class definition omitted…
}

Figure 14: Source-code view of some of the bytecode added during class enhancement to
implement metadata operations.

31

The final category of functionality added during event enhancement deals with state
transfer. We add methods to the event class so that the data in each field can be read or
written by the event-transfer system. Like metadata methods, these methods use absolute
field numbers; unlike metadata methods, however, they do not simply return the
requested data. Rather, they use a system of callbacks on an output manager or an input
manager.

An output manager is used to retrieve state from an event instance during serialization.
The transfer mode passes the output manager and a range of field ids to the added
solarProvideFields() method of the event being serialized. This method first
checks with the Java security manager to make sure system security policy grants the
calling code permission to access internal event state. Next, for each absolute field id in
the given range, it provides the value of the corresponding event field to the output
manager. The output manager typically serializes the value and outputs it to the network.
This process is diagrammed in Figure 15.

Figure 15: Possible method call sequence for outputting the state of a
UnitTemperatureEvent.

The input manager is the complement of the output manager; it is used to load state into
an event instance during deserialization. The transfer mode performing the
deserialization constructs an event instance using the transfer helper discussed earlier.
The mode then calls the added solarReplaceFields() method of the newly
constructed event, passing it the input manager and a range of field ids. The
solarReplaceFields() method uses the Java security manager to ensure that the

32

calling code has permission to set internal event state. For each field id in the given
range, it then calls the one of the input manager’s replacing() methods with the field
id as an argument. The replacing() method returns the value the field should be set
to; the value is typically pulled from the serialized data stream being read from the
network. Figure 16 illustrates this system in action.

Figure 16: Possible method call sequence for inputting the state of a
UnitTemperatureEvent.

8.1.3 Security

The purpose of implementing all state access through a series of callbacks is security –
or, more accurately, security combined with efficiency.

The interoperability framework integrates with Java’s standard security APIs to ensure
that malicious code cannot access the information stored in non-public event fields. It
defines special permissions that the system’s security policy must grant to any code-base
that will set or retrieve data from an event instance through the methods added by the
bytecode enhancer. Checking these permissions every time a transfer mode requires
access to an event field, however, would be prohibitively slow; one of the primary goals

33

of the framework is to be as efficient as possible. Thus, we architected the system to
allow groups of fields to be accessed with a single method call, and therefore a single
permission check.

Java supports neither pass-by-reference semantics nor methods with variable-length
parameter lists. Therefore, there are only two options for methods that wish to return
multiple values or take arbitrary parameters: pack the information into a single data
structure, or implement a series of callbacks. The data-structure approach is complex and
relatively inefficient, primarily due to the primitive/object duality that exists in Java.
Standard Java data structures, such as Collections, Sets, and Maps, can store objects but
not primitives. Primitives must therefore be wrapped in simple value objects to be
stored; the process of wrapping a primitive in an object is often called “boxing” and is
inefficient due to the required allocation of heap space during object construction, and the
subsequent need to garbage collect the objects when they are no longer referenced.
Thus, to maintain efficiency in our interoperability framework, we were left with the
callback approach illustrated above. Figure 17 gives a source-code view of the state
operations, including the security checks and the callback system.

public class UnitTemperatureEvent
extends TemperatureEvent

{
public void solarProvideFields(int start, int finish,OutputManager outputMgr)
{

System.getSecurityManager().checkPermission(TransferPermission.GET_STATE);
for(int i = start; i < finish; i++)

solarProvideField(i, outputMgr);
}

protected void solarProvideField(int field, OutputManager outputMgr)
{

int relId = field – super.solarGetFieldCount();
if(relId < 0)

return super.solarProvideField(field, outputMgr);

switch(relId)
{
case 0: outputMgr.providedObjectField(field, units);
default: throw new IllegalArgumentException();
}

}

public void solarReplaceFields(int start, int finish, InputManager inputMgr)
{

System.getSecurityManager().checkPermission(TransferPermission.SET_STATE);
for(int i = start; i < finish; i++)

solarReplaceField(i, inputMgr);
}

continued on the next page…

34

protected void solarReplaceField(int field, InputManager inputMgr)
{

int relId = field – super.solarGetFieldCount();
if(relId < 0)

return super.solarReplaceField(field, inputMgr);

switch(relId)
{
case 0: units = inputMgr.replacingObjectField(field);
default: throw new IllegalArgumentException();
}

}

// remainder of class definition omitted…
}

Figure 17: Source-code view of the bytecode added during class enhancement to
implement state operations.

8.2 Transfer Modes

Section 7 presented the command mode and the data-stream mode, two transfer modes
built on the interoperability framework and designed for performance. We also created
one other transfer mode – the XML mode. This transfer mode is not built to improve
performance, but to improve interoperability. As its name implies, it transmits events as
XML documents, enabling any computing platform with a compliant XML parser to take
advantage of Solar’s context-dissemination capabilities.

9 Related Work

The callback system used in the interoperability framework is modeled after portions of
the Java Data Objects specification from Sun Microsystems [10].

JECho is a Java-based communication infrastructure for collaborative high performance
applications [2]. JECho includes some of the same data-transfer optimizations we
implemented for Solar in the course of this thesis, as well as many others that we should
consider for future work. Our novel approach of using bytecode modifications to access
internal object state allows us to maintain higher development transparency for our
serialization system than that of JECho, and should allow us to eventually surpass JECho
in performance as well.

The Sienna project conducted a detailed performance analysis of matching algorithms for
content-based routing [1]. There is little information available on the analysis of overall
system performance in Sienna, however, or in other highly distributed information
dissemination systems.

Similarly, few testing frameworks are designed to run performance tests on highly
distributed infrastructure systems. The vast majority of test harnesses either presuppose a
specific type of application, such as J2EE [5] or CGI [4], or, as in the case of the popular
JUnitPerf library [7], do not consider tests spanning multiple hosts.

35

10 Conclusions

Though there is still a lot of work to be done, our effort to increase the performance and
interoperability of Solar was, for the most part, successful. We improved many aspects
of Solar's performance and gave it the ability to communicate with heterogeneous
systems. More importantly, we gained insight into what facets of Solar must be
optimized, and laid the architectural foundations for future optimizing software
extensions.

In addition to accomplishing our stated goals, our work produced two interesting side
effects: the performance testing framework and the interoperability framework. The
performance testing framework appears to surpass other testing software in its ability to
handle unknown, highly distributed, highly configurable applications. Its generic,
modular architecture should also allow it to expand to meet the challenges of testing
future systems. Frameworks like this one may be increasingly important as the role of
the network expands in computing.

The interoperability framework is interesting for two reasons. First, it teaches us about
the power and utility of bytecode enhancement. We created a fairly complex
infrastructure that enables the serialization of instances of certain classes to almost any
format, and yet to the authors of these classes the process is completely transparent.
Moreover, exploiting bytecode modification allowed us to avoid other less efficient forms
of state access, resulting in a data-stream serialization mode that was three times faster
than standard Java serialization at converting objects to and from a network-ready format.

Second, the interoperability framework itself could benefit many applications that must
communicate with heterogeneous systems. The framework is only very loosely coupled
to Solar, and could easily be adapted for other uses.

11 Future Work

Solar is poised to become a viable option for context dissemination in ubiquitous
computing environments. It offers extreme flexibility and simplifies the development of
context-aware application tremendously. We must, however, continue to improve Solar’s
performance and further expand its interoperability. Possible measures towards these
ends include:

o Additional Test Cases. More test cases are needed to evaluate Solar’s
performance under varying conditions. Comparing the results of tests run under
different network speeds would be particularly interesting, as would analyzing
results from complex tests designed to model real-world usage scenarios.

36

o Optimizations. The optimizations we have implemented thus far only scratch the
surface. Solar is still in prototype phase, and opportunities for further
optimization abound.

o Further Profiling. As Solar performance improves and fine-tuning becomes
increasingly important, profiler data will be an invaluable tool in pinpointing
bottlenecks and identifying further optimization prospects.

o Additional Transfer Modes. The library of transfer modes should be expanded,
giving applications a wider variety of data formats to choose from.

o Extending Interoperability. The interoperability framework we developed
allows non-Java applications to take advantage of Solar as a context delivery
mechanism; they are prevented from deploying their own non-Java operators,
however. Options to expand interoperability to Solar operators should be
investigated. For example, XSLT or XQuery, used in conjunction with the XML
transfer mode we created, may be able to act as simple, platform-neutral operator
languages, though this approach has drawbacks [12].

The performance testing framework also has the potential to become a useful tool in its
own right. The following improvements will help it to excel as a general harness for
testing highly distributed, highly configurable systems:

o Error Reporting. The current implementation does not capture enough
information about errors that occur in the processes that it spawns.

o Statistics. The testing framework calculates the min, max, mean, and standard
deviation of numeric results. Its abilities in this area should be expanded to
encompass other statistics and calculations.

o Network Usage. It would be useful to track the amount of data sent through the
network during a test.

12 References

[1] Antonio Carzaniga, David Rosenblum, and Alexander Wolf. Design and
Evaluation of a Wide-Area Event Notification Service, Volume 19. ACM
Transactions on Computer Systems, 19(3):332-383, August, 2001.

[2] Yuan Chen, Greg Eisenhower, Karsten Schwann, and Dong Zhou. JECho –
Interactive High Performance Computing with Java Event Channels. International
Parallel and Distributed Processing Symposium, 2001.

[3] Guanling Chen and David Kotz. Supporting Adaptive Ubiquitous Applications
with the Solar System. Technical Report TR2001-397, Dept. of Computer
Science, Dartmouth College, May, 2001.

[4] Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

37

[5] Java 2, Enterprise Edition. http://java.sun/com/j2ee/
[6] JProbe is a product of Sitraka. http://www.sitraka.com/software/jprobe
[7] JUnitPerf. http://www.clarkware.com/software/JUnitPerf.html
[8] Tim Lindholm and Frank Yullin. The Java Virtual Machine Specification,

Second Edition. Addison Wesley, May 1999.
[9] Arun Mathias. SmartReminder: A Case Study on Context-Sensitive Applications.

Technical Report TR2001-392, Dept. of Computer Science, Dartmouth College,
June, 2001. Senior Honors Thesis.

[10] Craig Russell. Java Data Objects Specification, version 1.0. Sun Microsystems,
April 2002. http://access1.sun.com/jdo

[11] Mark Weiser. The Computer for the 21st Century, volume 265. Scientific
American, 265(3):66-75, January, 1991.

[12] Abram White. XSLT and XQuery as Operator Languages. Technical Report
TR2002-429, Dept. of Computer Science, Dartmouth College, June 2002.

	Performance and Interoperability In Solar
	Recommended Citation

	tmp.1596484807.pdf.3BNBK

