Dartmouth College

Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations
6-1-2001

DaSSFNet: An Extension to DaSSF for High-Performance Network
Modeling

Mehmet lyigun
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

b Part of the Computer Sciences Commons

Recommended Citation

lyigun, Mehmet, "DaSSFNet: An Extension to DaSSF for High-Performance Network Modeling" (2001).
Dartmouth College Undergraduate Theses. 20.
https://digitalcommons.dartmouth.edu/senior_theses/20

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/20?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR2001-405

DaSSFNet: An Extension to
DaSSF for High-

Performance Network
Modeling

Mehmet Iyigun ‘01
Advisor: David M. Nicol

June 1, 2001
Dartmouth College

Abstract

Scalable Simulation Framework (SSF) is a discrete-event simulation framework providing a unified
programming interface geared towards network simulation. Dartmouth SSF (DaSSF) is a C++
implementation of SSF, designed for simulating very large-scale multi-protocol communication networks.
As of the latest release, DaSSF lacks many features present in SSF and this prevents it from achieving
mainstream use. To alleviate this shortcoming we designed and implemented DaSSFNet which extends
DaSSF to the levels of functionality found in SSF. In this paper, we show that DaSSFNet and SSFNet are
identical in operation given the same input. We also show that DaSSFNet is about twice as fast and has one
third the memory consumption of SSFNet when simulating identical networks. Therefore, we argue, that
the DaSSF simulation package with DaSSFNet now offers a viable alternative to SSF in high-performance
network simulation.

Introduction

Network modeling and simulation is an indispensable tool for evaluating network
applications in today’s connected world. Being able to install and run protocols in an
arbitrary network topology allows developers to efficiently validate and analyze their
protocols, thus reducing development time and cost.

1. SSF and SSFNet

Scalable Simulation Framework (SSF) is a general-purpose discrete-event
simulation framework providing a unified programming interface geared towards
network simulation. This programming interface is an object-oriented API for performing
process-oriented discrete event simulation [1]. The SSF object model provides the
following objects: Process, Entity, Event, outChannel, and inChannel. In this model, each
Entity object owns a number of Processes that are executing in its context. Entities may
also contain inChannels and outChannel that are used for communication. When an
Entity A wants to communicate with Entity B, it creates and writes an Event into one of
its outChannels that is mapped to B’s inChannel. If B has a Process waiting on the
inChannel, it will read and process the Event. Each mapping between an outChannel and
an inChannel may have a certain delay. Moreover, each write into an outChannel may
specify an additional delay. That way, Entities can cause the simulation time to advance
when sending Events to each other. For more complete information on the SSF object
model see [2].

Although the inChannel and the outChannel objects in the SSF object model
might remind one of network interfaces or links, SSF really doesn’t know anything about
simulating networks. As far as the SSF API is concerned, there’s no difference between
using the same objects to simulate a molecule or a network. What really enables SSF to
shine in the network simulation field is SSFNet which provides its own object model and
framework on top of SSF specifically aimed at simulating networks. SSFNet provides
objects representing network elements such as Machines, Links, Interfaces and Protocols.
Each of these objects can be easily configured through Domain Modeling Language
(DML). DML is a very simple, but powerful language consisting of attribute-value pairs.
We’ll see more about DML in Section 3.1.1. The DML interface allows the simulator to
easily create arbitrary networks and feed them into SSFNet for simulation. This feature
alone makes SSF and SSFNet a very attractive choice as a network simulation package.

2. DaSSF and DaSSFNet?

Since the core SSF API is public, it is possible to implement the same API using a
language other than Java. Dartmouth SSF (DaSSF) is a C++ implementation of the SSF
API. The DaSSF objects corresponding to the SSF ones are, SSF'_Process, SSF_Entity,
SSF _Event, SSF_OutChannel, and SSF_InChannel. In addition to the core SSF objects,
DaSSF provides what it calls SSF Extensions. These extensions are aimed towards
achieving higher performance or better usability while providing the same features as
their SSF counterparts. For instance the DirectInChannel class in DaSSF is an extension

of the SSF_InChannel class, which doesn’t require a process to be waiting on the channel
in order to receive events. Instead, the DirectInChannel calls a function when an event
arrives at the channel, thereby eliminating the need for a process wait. See [3] for a very
detailed DaSSF manual.

Although DaSSF is at least as powerful as SSF as a discrete-event simulation
kernel, it lacks crucial features of SSFNet such as DML-configurability. Because of this,
DaSSF has not achieved the mainstream use that SSF has enjoyed for a long time. To
alleviate this shortcoming, we designed and implemented DaSSFNet, which extends
DaSSF to the levels of functionality found in SSF. Similar to SSFNet the DaSSFNet
framework provides a complete suite of network elements such as Hosts, Routers, Links
and Protocols all of which are configurable through DML.

3 Goals of DaSSFNet

The main goal behind DaSSFNet is to make DaSSF a viable alternative to SSF as
a network simulation package. This objective can be broken down into several subgoals.

3.1 Configurability

Being able to easily create and configure networks is extremely important because
it allows the user to be a lot more efficient. For this reason, support for DML
configuration is a prime goal for DaSSFNet.

3.1.1 Domain Modeling Language (DML)

DML is a simple language that can be used to describe anything that has
properties. Each DML expression is a list of whitespace separated key and value pairs.
Although keys (property names) can only be strings, the value can either be a string (a
simple property value) or it can be another DML expression (a property value that has
more properties). Here’s what the DML grammar looks like:

DML = (space* Attribute space*)+
Attribute = Key space+ Value

Key = Name | ReservedName

Name = ~["_1la-zA-20-9 -1*
ReservedName ::= ~ [a-zA-Z0-9 -]*

Value = String | \[DML \]

String = [~(space)\I\[]1+ | "[*"]+"
space = [\t\n]

For instance the following could be a DML expression describing a car:

Car [
Name DreamCar
Wheels 4
Seats 6
Engine [

Volume 3000
HP 200

In order to use DML to describe networks, SSFNet has selected certain strings
such as net, host, router, interface to have special meanings. For example, the
following DML expression describes a host with 3 interfaces and a protocol stack
composed of four protocols:

host [

id 1

interface |
idrange [from 1 to 3]
bitrate 10000000
latency 0.001

]

graph [
ProtocolSession [name Netscape]
ProtocolSession [name socketMaster]
ProtocolSession [name TCP]
ProtocolSession [name IP]

We will look at the exact range of DML attributes supported by DaSSFNet in Section 5.
3.2 Extendibility

DaSSFNet design should allow anyone to easily make modifications to the code
in order to add features and improve usability. It should not make unwarranted
assumptions about what its users expect or confine the user to a restricted set of features.
For example, one feature a developer might want to add to DaSSFNet is a framework for
automatically taking latency or throughput measurements at various points in the
simulated network. The interface/link design of DaSSFNet should allow problem-free
addition of such features.

3.3 Ease of Protocol Development

The reason most people use a network simulation package is to test their
applications on various network configurations. Therefore it should be straightforward to
develop protocols that run on DaSSFNet. Since these protocols might eventually be used
on an actual operating system running on some network, the translation of the code
between the DaSSFNet and OS frameworks should be relatively easy, so that the user
needs to change the minimum amount of code to move from one to another. Furthermore,
the protocol stack design should allow arbitrary composition of protocols with respect to
one another. Conforming to the principles in Section 3.2, the protocol stack should not
assume the existence of certain protocols in the stack to be functional.

3.4 High Performance, Low Overhead

Being able to simulate bigger networks over a longer simulation time is
advantageous for protocol developers because it allows them to analyze the long-term
behavior of the software in a more realistic setting. Therefore, the network application
has a better chance of surviving when deployed in the Internet. So, a good network
simulation package must strive to achieve the highest simulated time / real time ratio and
at the same time keep a low memory profile. The high simulated time / real time ratio
means that the user can simulate his network for a longer simulated time and the latter
enables the user to simulate bigger network models.

4. Design of DaSSFNet

DaSSFNet basically includes a number of C++ classes that model the behavior of
some network element. Some of these, like the SSF_Protocol class, are meant to be used
by protocol implementers to derive from and others are meant to be used stand-alone.

4.1 SSF_Protocol and ProtoGraph

The SSF_Protocol and ProtoGraph classes together describe the protocols running
on a simulated host. Every DaSSFNet protocol must be derived from SSF_Protocol and
ProtoGraph is just a container for SSF_Protocols. Upon thinking about how different
protocols interact with each other, we came to the conclusion that the protocols running
on a host constitute a Directed Acyclic Graph (DAG) rather than a stack. This is because
protocols like TP can have more than one protocol on top of it while every protocol
always has only one protocol below. Since protocols need to send packets both to their
parents and to their child, the SSF_Protocol class contains a list of parents and a child
protocol pointer.

To enable the transfer of data between protocols, SSF_Protocol contains two pure
virtual functions to send and receive data to/from a protocol:

// Send Data down the protocol stack.
// MUST BE IMPLEMENTED BY THE DERIVED CLASS.
virtual int send (msglist* data,
general data* options=NULL,
uint32 oplength=0) = 0;

// Receive Data up the protocol stack to the application
// MUST BE IMPLEMENTED BY THE DERIVED CLASS.
virtual int receive (byte* data, uint32 length,

general data* options=NULL,

uint32 oplength=0) = 0;

In order to give the protocols the maximum freedom in exchanging messages with
different context information, each call to send () and receive () contains options
which can be any data relevant to the particular communications. In the next section, we
will see an example of the use of this feature.

One important requirement that DML-configurability brings about is the ability to
instantiate protocols on a host give the protocol’s name. This is no problem in the Java
implementation because Java supports the creation of classes by name. In C++, however,
this is more challenging. In order to be able to implement this crucial feature, we require
each protocol to “register” with the protocol graph statically. In doing so, each protocol
has to associate its name with a “creation function” which, when called, will create an
instance of the protocol. The details of this procedure are hidden behind the
REGISTER PROTOCOL macro and the protocol implementer only needs to implement a
static “creation function” and pass the function pointer to the REGISTER PROTOCOL
macro along with the protocol name in global scope. Internally, the ProtoGraph class
contains a static hashtable that maps protocol names to creation functions. When the
REGISTER PROTOCOL macro is called by a protocol at global scope, the <protocol

name, creation function> pair will be added to the hashtable and consequently all
protocols compiled into the DaSSFNet executable will have registered before main()
starts executing. Therefore, when the ProtoGraph needs to create a protocol given its
name, it can just look it up in the hashtable and call the creation function. Before creating
any protocol, the ProtoGraph class instantiates the Hardware class, which is an internal
protocol, which is always at the root of the protocol DAG. The role of the Hardware class
will be discussed in the next section.

In order to support DML configuration and enable protocols to do initialization at
different phases of the simulation, SSF Protocol class contains two pure virtual
functions:

//

// After a protocol is created, it will be given a DML AttribList which
// corresponds to the DML attributes specified in the DML file for this
// protocol. The protocol should read, verify and apply the attributes.
//

virtual int Configure (DML AttribList* config) = 0;

// This function will be called after the entire network is read in and
// Configure()d and after all the links have been connected,

// but before the simulation starts running. The protocols

// can do any kind of initialization they need which requires the network
// to be connected.

virtual int Initialize() = 0;

As explained in the function comments, the Configure () function will be
called with the DML attribute list belonging to this protocol so that the protocol can
configure itself. In order to give the protocol one last chance to initialize before the start
of the simulation, we also provide the ITnitialize () function that gets called after the
network has been connected and IP addresses have been assigned. For instance, the static
OSPF protocol that we implemented for DaSSFNet uses this callback to calculate its
shortest paths.

4.2 Interface and Link

The Interface and Link classes together handle all the communication that
happens during the simulation. They work together to ensure that network packets get
delivered to the correct interface on a link and that each packet incurs the required delay
given the bit rate and the latency on the interface and the link. In addition, the Interface
class implements the interface internal buffer, which is used to store packets before they
are sent out at the interface’s bit rate. The implementation makes sure that the interface
never sends data faster than its bit rate and that if the interface receives so much data that
its buffer overflows, the extra packets are dropped. It is worth noting here that the
interface buffer and bit rate checks are implemented only when sending data; so an
interface can receive data at any rate. The assumption here (also made by SSFNet) is that
an interface will always be connected to another of the same speed, so that implementing
the buffer and bit rate at one end is sufficient.

DaSSFNet is not designed for the simulation of link layer protocols like Ethernet
or Token Ring. As such, it needs to be able to do link layer routing when there are more
than two hosts on a link (called a Local Area Network - LAN link). We implement this
requirement at the Hardware class. Being a regular SSF_Protocol in the protocol graph
root, the Hardware will receive any data sent down from the lowest layer protocol. Here,
we require the lowest-layer protocol to place the routing table entry for the packet
destination in the options parameter of the send () function. The Hardware class,
takes the next hop field from the routing table entry, prefixes it to the message and sends
it down to the appropriate link as specified in the routing table entry. When the packet
finally gets to the Link class, the link looks at the next hop and resolves it to the correct
interface by using a hash table, which it precomputes during initialization.

4.2.1 NHI Addressing
When a link is specified in DML, the following format is used:
Link [attach 1:2(3) 4:5(6)]

The 1:2(3) and 4:5(6) are the Net:Host:Interface (NHI) addresses of the interfaces
that are on this link. The last two numbers in an NHI interface address are the machine
and the interface id respectively. Any numbers before the last two are Net ids. NHI
addresses of interfaces in the DML expression for the link are given relative to the
enclosing Net. So 1:2(3) refers to interface id 3 on machine id 2, which is in Net id 1.
Please refer to [4] for a full discussion on NHI addressing.

4.3 Machine

The machine class models both a host and a router. In fact, there’s absolutely no
difference between a host and a router from an implementation point of view. Frequently,
however, hosts have only one interface while routers have many. The machine is
basically a container for the protocol graph running on the machine and the interfaces.
Being derived from an SSF_Entity, a machine is also a container for SSF_Processes. This
is extremely useful from a protocol implementation point of view because protocols that
need to generate traffic actively (like a web browser application) need to be
SSF Processes and they can use the machine (which is passed to their constructor) as an
owner. Our previous design for protocols that need to generate traffic was to derive them
from SSF_Entity, which also works, but consumes a lot more memory.

In addition to acting as a container for protocols and interfaces, the machine also
provides utility functions for the protocols to query the interfaces and links the machine is
connected to.

4.4 Net

The Net is not a physical network element, but it acts as a container for machines,
links and other nets. The reason one uses a Net attribute in DML', is to group machines

" One outermost Net is mandatory in DML. We’re talking about inner Nets here.

or other nets sharing some common features. In the case of DaSSFNet, the common
feature that the elements of a Net share is the IP address prefix; Nets in DaSSFNet are
implemented as subnets and during IP address assignment, each Net gets its own IP

prefix.

Since every element of the network is enclosed (at some level) in a Net, we also
use Nets to resolve NHI addresses to Nets, Machines or Interfaces.

5. DML Support in DaSSFNet

This section is a complete description of the DML attributes supported by
DaSSFNet. It only includes those attributes that are understood by DaSSFNet and not the

ones specific to protocols.

Function

Attribute
1d <int>

Enclosing Attribute(s)
Net, Host, Router, Interface

Assigns an integer id to the
enclosing attribute

idrange [from <int1> to <int2>]

Net, Host, Router, Interface

Duplicates the enclosing
attribute with ids ranging from
<int1> to <int2>

Net Net or nothing Creates a Net
Host Net Creates a Host
Router Net Creates a Router
Interface Host or Router Creates an Interface
Link [attach <NHI1> ... <NHIn>] Net Creates a Link that connects

the Interfaces that the NHIs
resolve to

Graph Host or Router Creates a Protocol Graph
ProtocolSession [name <str>] Graph Creates a protocol with the
given name.
bitrate <int> Interface Defines the bit rate of the
interface in bits/sec
latency <float> Interface Defines the internal latency of
the interface in seconds.
buffer <int> Interface Defines the internal buffer size
of the interface in bytes.
flaky <float> Interface Causes the interface to drop
packets with the given
probability.
no_queue <truelfalse> Interface Causes the interface not to use
its queue so that packets don’t
incur any queuing delay.
delay <float> Link Defines the delay of the link in
seconds.
nhi_route [dest default] Host or Router Defines a default route for this
machine

interface <int>

nhi_route

Specifies the target interface
for this default route by giving
its id.

10

next_hop <NHI>

nhi_route

Specifies the next hop
interface for this default route.
Only required if the interface
is on a LAN link.

Traffic

Outermost Net

Specifies the traffic pattern
that traffic generator protocols
should use.

Pattern

Traffic

Specifies one traffic pattern

Client <NHI>

Pattern

Specifies the source clients for
the traffic pattern. The NHI
will be first resolved as a Net
address. If it works all clients
in that Net will be selected.
Otherwise, it will be resolved
as a host address.

Servers

Pattern

Specifies the servers that the
clients in this pattern should
connect to

nhi <NHI>

Servers

Specifies the NHI address of
the server in a servers
attribute.

nhi_range [from <NHI1> to <NHI2>]

Servers

Specifies a range of NHI
addresses of servers in a
servers attribute. The host id
in NHI1 will be incremented
until it reaches NHI2’s host
field and all the matching
servers will be selected.

Port <int>

Servers

Specifies the port on the server
that the clients should connect

to.

Frequency <int>

Outermost Net

Not used in DaSSFNet

because DaSSF has a floating-

point event queue.

AS status boundary

Net

Specifies that the enclosing

Net is an Autonomous System.

OSPF area 0

Net

Not used

Seed <int>

Outermost Net

Used as a seed for the
drand48() random number
generator.

11

6. Comparison of DaSSFNet vith SSFNet
6.1 Correctness

We have implemented DaSSFNet so that given the same DML description of a
network, it will behave the same as SSFNet if the protocols are identical. It is virtually
impossible to prove this assertion because there are so many different cases to test.
Instead, we have performed some experiments that strongly suggest that DaSSFNet and
SSFNet are functionally identical.

Method: We implemented a pair of very simple server/client protocols called
SimpleClient and SimpleServer for both DaSSFNet and SSFNet. The client side of the
protocol sends a greeting message to the server at a DML-configurable interval and
includes the current simulation time in the packet. When the server responds with another
greeting, it doesn’t change the time in the packet. When the client receives the response
from the server, it calculates the roundtrip time for the packet and adds it to a global
variable and increments the number of packets received. At the end of the simulation, the
average round-trip time is printed along with the average throughput (which is just the
multiplicative inverse of the average roundtrip time).
We ran the SimpleClient/SimpleServer pair on several networks with different

topologies for 100 simulated seconds:

e campus2.dml (see Appendix 1)

e usal.dml (a.k.a BIGNETWORK. See Appendix 2)

e usa2.dml (2 usal.dmls linked together)

Here are the results:

DML File ~ Average Packet Latency =~ Number of Packets Sent
SSFNet DaSSFNet SSFNet DaSSFNet
campus2.dml 0.08237 0.082 456 456
usal.dml 0.07631 0.076 24700 24700
usa2.dml 0.08427 0.084 57200 57200

Therefore, we see that the behavior of DaSSFNet and SSFNet (at least for these network
configurations) is identical.

6.2 Performance

All our experiments were run on cairngorm.cs.dartmouth.edu which has 1GB of
RAM and 4 500Mhz Intel PIII processors running on Linux 2.2.X.

6.2.1 Running Time

In order to measure the running time of DaSSFNet with respect to SSFNet, we
performed two experiments:

12

e We simulated DaSSFNet and SSFNet on networks of increasing size. Since we
didn’t want protocol implementations to skew results, we used the above-
mentioned SimpleClient/Server protocol pair which have virtually identical
implementations in C++ and Java. We ran SSFNet and DaSSFNet for 100
simulated seconds on USAn.dml where n goes from 1 to 25. USAn.dml is
composed of n usal.dml’s linked together in various ways. USA25.dml can be
seen in Appendix 3.

e We ran DaSSFNet and SSFNet on USA10.dml for the following lengths of
simulation time: 10, 50, 100, 400, 700, 1000 (s)

The following graph shows the relationship between running time and the size of the
network. We could not simulate SSFNet on bigger networks than USA20.dml because
the memory on the simulation machine was not sufficient.

Time taken vs. Number of 1300-host BIGNETWORKs
1800 T T T

' SSFNet

1600 | —

1400 - n

1200 .

1000 | —

Time (s)

800 - —

600 - .

400 | .

200 - —

0 1 1 1 1
0 5 10 15 20 25

Number of 1300-host BIGNETWORKs

This graph clearly shows that DaSSFNet has a minimum of 2X speed advantage
over SSFNet and the ratio grows as the networks get bigger. Also notice that the running
time of DaSSFNet is completely linear in the size of the network (as expected) whereas
SSFNet diverges a little bit’.

* This might be explained by the fact that towards the end of the simulation, SSFNet uses memory close to
the limit set by —Xmx flag and therefore the garbage collector might be running more forcefully and thus
taking more time.

13

The following graph shows the real time taken by each simulator versus the
length of simulation.

Real Time Taken vs. Simulation time {LUSA10.dml)
5000 T T T T T T T

' SSFNet
4500 |- —

4000 -
3500 | E
3000 |- —

2500 -

Real Time (s)

2000 -

1500 |- —

1000 | .

500 -

0 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Simulation Time (s)

The slope of the green line in the above graph is 2.44 and that of the red line is
4.97. This clearly shows that simulation time / real time ratio of DaSSFNet in this case is
very close to twice that of SSFNet.

14

The following graph shows the relationship between the initialization time of the
simulation and the size of the network being simulated. Initialization time is defined as
the time it takes to actually start the simulation from the time the simulator is run.

Initialization Time vs. Number of 1300-host BIGNETWORKs
180 T T T

' SSFNet
')

160 |- .

140 i

120 |- .

100 |- .

Time (s)

80 - .

60 - .

0 I L 1 1
0 5 10 15 20 25

Number of 1300-host BIGNETWORKs

DaSSFNet has a big lead in the initialization time. Again, it’s worth noting that
DaSSFNet scales linearly with the size of the network (as expected) whereas SSFNet
seems to be more like exponential.

15

6.2.2 Memory Use

We ran the same experiments as in Section 6.2.1 and also recorded the memory
usage of each simulator.

The following graph shows the relationship between amount of memory allocated
and the size of the network.

Memory Use vs. Number of 1300-host BIGNETWORKSs
800 T T T

' SSFNet

700 n

600 - .

500 .

400 + 4

300 - —

Memory Allocated (MB)

200 .

100 n

0 1 1 1 1
0 5 10 15 20 25

Number of 1300-host BIGNETWORKSs

The graph reveals that the memory consumption of DaSSFNet is about 1/3 of
SSFNet. Moreover, the memory usage of DaSSFNet is linear in the network size as
expected whereas SSFNet has some fluctuations here and there.

16

The next graph shows the memory allocation pattern of DaSSFNet and SSFNet
while simulating USA15.dml.

Memory Allocated vs. Real Time in USA15.dml (100 sec simulation time)
500 T T T

SSFNet

450

400

350

300

250

200

Memory Allocated (MB)

150

100 -

50

0 1 1 1 1 1
0 200 400 600 800 1000 1200

Real Time (s)

This graph clearly shows that DaSSFNet’s memory usage does not increase with
time while SSFNet seems to allocate memory until more than halfway into the
simulation. Also note that, in this case SSFNet uses about 4 times the memory of
DaSSFNet and that DaSSFNet takes less than half the time to complete the simulation.

17

7. Conclusion

We have shown that DaSSFNet and SSFNet have identical behaviors when run on
the same DML file if they have identical protocols. Moreover, we also demonstrated that
DaSSFNet is superior to SSFNet in both running time and memory usage under identical
conditions. With the implementation of some core internet protocols like TCP/IP, OSPF
and BGP for DaSSFNet, it is now able to simulate most SSFNet network models with
minimal modifications. Therefore, although still lacking in some features such as WWW
clients/servers and DML-configurable measurement framework, the DaSSF simulation
package with DaSSFNet now offers a viable alternative to SSF in high-performance
network simulation.

18

BIBLIOGRAPHY

[1] http://www.sstnet.org/SSFdocs/javaBinding.html

[2] http://www.ssfnet.org/SSFdocs/ssfapiManual.pdf

[3] http://www.cs.dartmouth.edu/~jasonliu/projects/ssf/papers/dassf-manual-3.1.ps
[4] http://www.ssfnet.org/InternetDocs/ssfnetDMLReference.html#nhi

19

APPENDIX 1

campus2.dml

Net O 1:1
\ EN

20

APPENDIX 2

usal.dml (a.k.a BIGNETWORK)

21

APPENDIX 3

USA2S.dml

	DaSSFNet: An Extension to DaSSF for High-Performance Network Modeling
	Recommended Citation

	Microsoft Word - TR2001-405.doc

