
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2001

Optimizing the Dimensional Method for Performing Optimizing the Dimensional Method for Performing

Multidimensional, Multiprocessor, Out-of-Core FFTs Multidimensional, Multiprocessor, Out-of-Core FFTs

Jeremy T. Fineman
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fineman, Jeremy T., "Optimizing the Dimensional Method for Performing Multidimensional,
Multiprocessor, Out-of-Core FFTs" (2001). Dartmouth College Undergraduate Theses. 17.
https://digitalcommons.dartmouth.edu/senior_theses/17

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/17?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR2001-402

Optimizing the Dimensional Method for Performing

Multidimensional, Multiprocessor, Out-of-Core FFTs

Jeremy T. Fineman

Dartmouth College

Department of Computer Science

Advisor: Thomas H. Cormen

June 1, 2001

Abstract

We present an improved version of the Dimensional Method for computing multidimensional Fast
Fourier Transforms (FFTs) on a multiprocessor system when the data consist of too many records
to fit into memory. Data are spread across parallel disks and processed in sections. We use the
Parallel Disk Model for analysis.

The simple Dimensional Method performs the 1-dimensional FFTs for each dimension in term.
Between each dimension, an out-of-core permutation is used to rearrange the data to contiguous
locations. The improved Dimensional Method processes multiple dimensions at a time.

We show that determining an optimal sequence and groupings of dimensions is NP-complete. We
then analyze the effects of two modifications to the Dimensional Method independently: processing
multiple dimensions at one time, and processing single dimensions in a different order.

Finally, we show a lower bound on the I/O complexity of the Dimensional Method and present
an algorithm that is approximately asymptotically optimal.

Contents

1 Introduction 2

1.1 Fast Fourier Transforms . 2
1.2 The Parallel Disk Model . 2
1.3 BMMC Permutations . 3
1.4 Some BMMC permutation matrices . 4
1.5 Technique for BMMC complexity analysis . 5

2 The Dimensional Method 6

2.1 The Basic Dimensional Method . 6
2.2 Optimization . 7
2.3 NP-Completeness . 7
2.4 Grouping Dimensions . 8
2.5 Ordering Dimensions . 10
2.6 Analysis of Permutations . 11
2.7 Determining the Optimal Ordering . 19
2.8 Lower Bound on Dimensional Method . 21
2.9 Approximation of Optimal Solution . 23
2.10 Some Notes on Optimization . 25

1

Chapter 1

Introduction

1.1 Fast Fourier Transforms

Fourier Transforms are based on complex roots of unity. The complex number ωN = e2πi/N , where
i =
√
−1 and eiu = cos (u)+ i sin (u) for any real u, is called the principal Nth root of unity. Without

loss of generality, we assume that N is a power of 2.
Given a vector a = (a0, a1, . . . , aN−1), the vector y = (y0, y1, . . . , yN−1) is the Discrete Fourier

Transform (DFT), where

yk =

N−1∑

j=0

ajω
kj
N .

Multidimensional DFTs have a similar definition. We are given k dimensions N1, N2, . . . , Nk

where N = N1N2 · · ·Nk. We assume that each dimension is an integer power of 2. We are also given
a k-dimensional array A[0 : N1 − 1, 0 : N2 − 1, . . . , 0 : Nk − 1]. The DFT of A is the k-dimensional
array Y [0 : N1 − 1, 0 : N2 − 1, . . . , 0 : Nk − 1], where

Y [β1, β2, . . . , βk] =

N1−1∑

α1=0

N2−1∑

α2=0

· · ·
Nk−1∑

αk=0

ωβ1α1

N1
ωβ2α2

N2
· · ·ωβkαk

Nk
A[α1, α2, . . . , αk] .

The Fast Fourier Transform, or FFT, is a method of computing the Discrete Fourier Transform.
For more details, see [CLR90].

1.2 The Parallel Disk Model

Throughout this paper, we assume that we are using the Parallel Disk Model (PDM) described by
Vitter and Shriver [VS94].

In the PDM, we have the following parameters:

1. N is the total number of records on disk.

2. M is the number of records that can fit in the internal memory. We assume that all records
are the same size.

3. B is the number of records stored in each block.

4. D is the number of disks, which are denoted by D0,D1, . . . ,DD−1.

5. P is the number of processors, which are denoted by P0,P1, . . . ,PP−1.

2

P1 P2

D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 1.1: The layout of N = 64 records in a parallel disk system with P = 2, B = 2, and D = 8. Each

box represents one block. The number of stripes is N/BD = 4. Numbers indicate record indices.

We assume that 1 ≤ B ≤M/2, 1 ≤ D ≤ bM/Bc, and P ≤ D. Furthermore, M < N (or we could
read all the data into memory and perform our operations in-core). Each processor Pi has access to
the D/P disks DiD/P ,DiD/P+1, . . . ,D(i+1)D/P−1. Each processor also has internal memory capable
of holding M/P records.

The data are stored evenly across the D disks, with N/D records on each disk. Each disk is
partitioned into N/BD blocks, with B records per block. The layout is shown in Figure 1.1. We
refer to the set of the ith block on all disks as stripe i. When data are transferred to or from a disk,
an entire block must be read or written. A parallel I/O operation can read or write at most one
block from each disk, which is at most BD records in total. We use independent I/Os, in which the
blocks accessed can be at any location on each of the disks, so we do not have to access an entire
stripe at once.

When we refer to a record, we refer to it by index or address. Each index is an n-bit vector
x = (x0, x1, . . . , xn−1). The least significant b bits, x0, x1, . . . , xb−1, represent a record’s offset within
a block. The next d least significant bits, xb, xb+1, . . . , xb+d−1 represent the disk number. Note that
the bits xb+d−1−p, xb+d−p, . . . , xb+d−1 indicate which processor can access the record. Finally the
remaining n− (b + d) bits, xb+d, xb+d+1, . . . , xn−1, indicate the stripe number.

Throughout this paper, we will refer to n = lg N , m = lg M , b = lg B, d = lg D, and p = lg P .
We assume that each of n, m, b, d, and p are nonnegative integers, which means that N, M, B, D,
and P are powers of 2.

We measure the efficiency of an algorithm by the number of I/O operations required. Since
a parallel I/O operation can only access BD records, an algorithm that accesses all N records
requires Ω(N/BD) parallel I/O operations. Thus, O(N/BD) is analogous to linear time in sequential
algorithms.

1.3 BMMC Permutations

A BMMC is characterized by a nonsingular (or invertible) n × n characteristic matrix A = (aij),
where aij ∈ {0, 1}. The specification also includes a complement vector c = (c0, c1, . . . , cn−1).
Treating a source address x as an n-bit vector, we perform matrix-vector multiplication over GF (2)
and complement some subset of the resulting bits to form the corresponding n-bit target index
y = Ax ⊕ c. For our purposes in this paper, we that assume that the complement vector c is the 0
vector, leaving us with y = Ax. Because A is nonsingular, this mapping of source to target addresses
is one-to-one.

BMMC permutations are closed under composition. That is to say, if we wish to perform the
the BMMC permutations characterized by matrices A1, A2, . . . , Ak in that order, we could instead
perform the single BMMC permutation characterized by the product A = AkAk−1 · · ·A1.

The universal lower bound for BMMC permutations on the PDM is presented in [CSW99]. Any

3

nonidentity BMMC permutation requires

Ω

(
N

BD

(

1 +
rankγ

lg (M/B)

))

parallel I/Os, where γ is the lower left lg (N/B)× lg B submatrix of the characteristic matrix, and
where the rank is computed over GF (2). Note that because γ is a lg (N/B)× lg B matrix, its rank
is at most lg min (B, N/B).

Also included in [CSW99] is an asymptotically optimal algorithm for performing BMMC per-

mutations. This algorithm requires at most 2N
BD

(⌈
rank φ

lg (M/B)

⌉

+ 1
)

parallel I/Os, where φ is the

lower left lg (N/M) × lg M sumbatrix of the characteristic matrix. Note that rankφ is at most
lg min (M, N/M).

1.4 Some BMMC permutation matrices

The algorithms for the Dimensional Method use several BMMC permutations. The following are all
bit-permute/complement, or BPC, permutations. A BPC permutation has a characteristic matrix
with exactly one 1 in each row and column. Essentially, a BPC permutation forms each target
address by applying some fixed permutation to the source address bits.

x-bit right-rotation:

We rotate the bits of each index by x bits to the right, wrapping around the rightmost bit. The
characteristic matrix has the form

x n− x
[

0 I

I 0

]
n− x

x

.

Stripe-major to processor-major and vice-versa:

The standard PDM layout of the data is in stripe-major order. In this layout, each processor
only has access to small sets of contiguous data of only BD/P records. It is often easier to deal
with the data in processor-major order, in which each processor has access to N/P consecutive
records. Processor Pi has access to the N/P records with indices i(N/P) to (i + 1)(N/P)− 1. The
characteristic matrices to reorder from stripe-major to processor major order and vice-versa follow,
where s = b + d:

s− p n− s p

I 0 0

0 0 I

0 I 0

s− p

p

n− s

,

stripe-major to processor-major

s− p p n− s

I 0 0

0 0 I

0 I 0

s− p

n− s

p

.

processor-major to stripe-major

4

1.5 Technique for BMMC complexity analysis

When we analyze the complexity of BMMC permutations, we are usually concerned with finding the
rank of φ, the lower left lg (N/M)× lg M submatrix of the characteristic matrix A. The submatrix
φ is equivalent to the matrix product φ = XAY , where X and Y have the forms

m n−m

X =
[

0 I
]

n−m

m

and Y =

[
I

0

]
m

n−m

.

We can view X as a row selection matrix and Y as a column selection matrix. Clearly φ = XAY
because XA selects the lower lg (N/M) rows of A, and AY selects the leftmost lg M columns of A.
Thus computing the rank of XAY is equivalent to computing the rank of φ.

If we permute the rows and columns of XAY , its rank remains the same. Thus, if we let Π1 be
any lg (N/M)× lg (N/M) permutation matrix (with exactly one 1 in each row and column) and Π2

be any lg M × lg M permutation matrix, then the rank of the product Π1XAY Π2 is equivalent to
rankφ.

Note also that we can perform the matrix products in any order. We use Π1 and Π2 to permute
the subproducts for easier computation.

5

Chapter 2

The Dimensional Method

2.1 The Basic Dimensional Method

The Dimensional Method for computing multidimensional out-of-core FFTs as outlined by Lauren
Baptist [Bap99] is relatively straightforward. Multidimensional FFTs can be computed by computing
the one-dimensional FFTs of each dimension in turn. We assume that we are working with a PDM
and that data are stored contiguously on the first dimension. Because the subsequent dimensions
are not in contiguous memory locations, we reorder the data using BMMC permutations between
FFT computations to minimize I/O costs.

We assume that the one-dimensional FFTs for each dimension fit into the memory of a single
processor. That is, for each dimension j, we assume that Nj ≤M/P , or nj ≤ m− p. On each read,
each processor can hold the data of (M/P)/Nj one-dimensional FFTs. We can then compute these
FFTs in-core and write the results back to disk. If the current dimension is stored in contiguous
addresses in processor-major order, we can do these in-core FFT computations with exactly one
pass through the data.

We can use the Cooley-Tukey method for computing one-dimensional FFTs in-core.
The data starts in stripe-major ordering with the first dimension in contiguous memory locations.

Thus, before doing the first FFTs, we must first arrange the data into processor-major ordering.
After computing the dimension-j FFTs, we want to reorder the data so that dimension j + 1 is in
contiguous addresses. This reordering entails an nj-bit right rotation on the data when in stripe-
major order. After we finish with the computations for the dimension-k FFTs, we need to put the
data back in the order given in the beginning.

We need the following BMMC permutation matrices:

• S characterizes the stripe-major to processor-major permutation.

• S−1 characterizes the processor-major to stripe-major permutation.

• Rnj
characterizes an nj-bit right rotation permutation.

Our algorithm is as follows:

1. Though dimension 1 is in contiguous addresses, the data are in stripe-major ordering, so we
perform the BMMC permutation characterized by S.

2. Between computing the FFTs for dimensions j and j + 1, we want to rearrange the data so
that dimension j + 1 is in contiguous locations. Thus, we perform the BMMC permutation
characterized by the matrix product SRnj

S−1.

6

3. After computing the dimension-k FFTs, we must move the data back to the original ordering
with the BMMC permutation characterized by the product Rnk

S−1.

Note that this algorithm ignores the nj-bit partial bit-reversal permutations presented in the
original method. The Cooley-Tukey method begins the FFT computation with a bit-reversal followed
by some butterfly-operations. These bit reversals can be performed in-core (since we assume that
each dimension fits in the memory of a single processor), and they do not affect the I/O complexity.
For simplicity, therefore, we omit them for now.

2.2 Optimization

There is no reason, however, that the one-dimensional FFTs must be computed in the order given.
Working with the data in a different order may result in fewer I/O operations. Furthermore, we do
not always have to read only one dimension into memory at a time. When we compute the FFTs
on a single dimension, we need one pass through the data for each dimension in addition to the
number of passes required for our reorderings. If we can read multiple dimensions into the memory
of a single processor at one time, we still have to reorder data, but we reduce the number of passes
required to do the computations.

This algorithm permutes the data, then performs the one-dimensional FFTs for one or more
dimensions in-core, and then repeats until all dimensions are computed. Upon completion, the data
must be reordered back to the initial ordering. We will go into more detail later on, but the problem
is now to determine the optimal ordering and grouping of the dimensions so as to minimize I/O.

2.3 NP-Completeness

As it turns out, the problem of determining the optimal ordering and grouping of dimensions to
minimize I/O operations is NP-complete.

FFT-ORDERING INSTANCE: Nonnegative integers n, m, b, d, p, a positive integer k,
a positive integer C, and a sequence of nonnegative integers 〈n1, n2, . . . , nk〉 representing
the size and orderings of dimensions in the data, where n = n1 + n2 + · · ·+ nk.

QUESTION: Is there a sequence and grouping of the dimensions and a sequence of
permutations 〈A0, A1, . . . , Ak〉 such that we can perform the multidimensional FFT
with no more than C passes through the data using the Dimensional Method with
the permutations Ai? More formally, is there a sequence 〈G1, G2, . . . , Gz〉 where each
Gi = {gi1 , gi2 , . . . , giy

} is a set of dimension numbers, such that our Dimensional Method
takes no more than C passes through the data when performing the permutation Ai fol-
lowing the computation of FFTs in Gi? Note that the modified Dimensional Method
will permute the data so that FFTs for dimensions in Gi can be performed with a single
pass through the data using Ai−1, then perform the FFTs for these dimensions in-core,
and then permute for the dimensions in Gi+1 with Ai−1.

Claim 1 FFT-ORDERING is NP-complete.

Proof: First, we need to show that FFT-Ordering is in NP. This is fairly obvious. Given a series
of groupings 〈G1, G2, . . . , Gz〉 and a series of permutations 〈A0, A1, . . . , Ak〉, we can verify whether
the Dimensional Method can be performed in C passes through the data.

Next we need to show that FFT-Ordering is NP-hard. Reduction from Bin Packing follows.

BIN-PACKING INSTANCE: A finite set U of items, a size s(u) ∈ Z+ for each u ∈ U ,
a positive integer V representing bin capacity, and a positive integer K.

7

QUESTION: Can U be divided into K bins of capacity V ? That is to say, is there a
partition of U into U1, U2, . . . , UK such that

∑

u∈Ui
s(u) ≤ V for all 1 ≤ i ≤ K?

Given an instance to BIN-PACKING, we can reduce to an instance of the FFT-ORDERING
decision problem in polynomial time as follows. Set p = 0, b = 0, m = V, d = 0, k = |U |, n =
∑

u∈U s(u). The ordering of u ∈ U does not matter, so let us assign some canonical form U =
{u1, u2, . . . , u|U |} to our original instance. We set ni = s(ui). Finally, set C = K. This reduction
obviously takes polynomial time.

We need to show that the instance to BIN-PACKING causes a “yes” if and only if the reduction
to FFT-ORDERING produces a “yes.”

(=⇒) Suppose the instance to BIN-PACKING is solvable. Then there exist U1, U2, . . . , UK such
that

∑

u∈Ui
s(u) ≤ V . If we make Gi = {x : ux ∈ Ui} (the ordering does not matter), each Gi

represents a group of dimensions that can be read into memory of the single processor at once. How
do we know?

∑

u∈Ui

s(u) ≤ V

∑

x∈Gi

s(ux) ≤ V

∑

x∈Gi

nx ≤ V

2
∑

x∈Gi
s(ux) ≤ 2V

∏

x∈Gi

Nx ≤ M .

Thus, we can read the data for the multiple dimensions into memory at the same time, and our
grouping is valid. By the Dimensional Method, we perform some BMMC permutation to rearrange
the data in order to access the dimensions in Gi, and then we perform the FFT computations for
these dimensions. In general, a parallel I/O operation reads one block from each disk, or BD records
in total. If B = 1 and D = 1, as it does in this reduction, each I/O operation reads exactly 1 record
from disk. Thus, we can load any M records into memory with exactly M I/O operations, regardless
of how the data are stored on disk. Therefore, we can perform the identity permutation, with an
I/O cost of 0, between each group of FFT computations. As for the FFT computations themselves,
since we can read any M records into memory with M read operations, we still only need one pass
through the data to perform all the FFTs in-core for the dimensions in Gi. Thus, the total I/O cost
is K = C passes through the data.

(⇐=) Now suppose we can solve our instance of the FFT-ORDERING. That means that there
is a grouping/ordering 〈G1, G2, . . . , Gz〉 such that the modified Dimensional Method takes no more
than C passes through the data. We create bins U1, U2, . . . , Uz where Ui = {ux : x ∈ Gi}. By the
same relationship used in (=⇒), it must be true that

∑

u∈Ui
s(u) ≤ V . Thus we have a valid packing

into z bins. Since we have to bin pack into K bins, we just need to verify that z ≤ K. We need z
passes through the data to compute the FFTs for the dimensions in each of the groups, and we need
at least 0 passes to permute between the groupings. Thus C ≥ z. Since C = K by the reduction,
z ≤ K. We conclude that the instance of Bin Packing also has the solution Ui = {ux : x ∈ Gi}.

2.4 Grouping Dimensions

Now, let us look at the problem of grouping dimensions without doing any reordering. Suppose
we are given dimensions 1, 2, . . . , k of sizes N1, N2, . . . Nk. If there exist i and j, i < j, such that
∑j

x=i nx ≤ m − p, then we can read data for multiple one-dimensional FFTs into the memory of

8

a single processor and perform the computations in-core. Thus, we reduce the number of passes
through the data. The question arises whether we can determine the optimal way of grouping
dimensions.

If we use the simple method — without grouping dimensions at all — we perform an ni-bit
right-rotation permutation after working with dimension i to get dimension i+1 into the contiguous
memory locations. If, however, we read dimensions i, i + 1, . . . , j into memory at the same time,

we can perform an
(
∑j

x=i nx

)

-bit right-rotation permutation to get to the next dimension. Since

we can only read multiple dimensions into memory at the same time if
∑j

x=i nx ≤ m− p, the cost
analysis is identical to that in Baptist’s thesis .

Let us assume that we are trying to group dimensions into the sequence 〈G1, G2, . . . , Gz〉 where
each Gi is a set of consecutive dimensions. We can then do the following operations:

1. Before we do any FFT computation, perform the BMMC permuation S.

2. After performing FFT computations for dimensions in Gi = {gi1 , gi2 , . . . , giy
}, perform the

BMMC permutation characterized by the matrix product SRgiy
Rgiy−1

· · ·Rgi1
S−1.

3. After doing FFT computations on Gz = {gz1
, gz2

, . . . , gzy
}, perform the BMMC permutation

characterized by the matrix product Rgzy
Rgzy−1

· · ·Rgz1
S−1.

Since
∑

j∈gi
nj ≤ m− p, we can apply the results of Baptist’s cost analysis. That is to say, the

cost of (1), in passes through the data, is

(⌈
min (n−m, p)

m− b

⌉

+ 1

)

.

The cost of (2), each time, is

min

(

n−m,
∑

x∈Gi

nx

)

m− b

+ 1

 .

The cost of (3) is

min

(

n−m,
∑

x∈Gz

nx + p

)

m− b

+ 1

 .

The problem exhibits optimal substructure. Let us suppose we are given an optimal group-
ing 〈G1, G2, . . . , Gz〉 for dimensions 1, 2, . . . , k. Dimension k belongs to the group of dimensions
Gz = {j, j + 1, . . . , k}. It must be the case that 〈G1, G2, . . . , Gz−1〉 is an optimal solution to the
problem of grouping dimensions 1, . . . , j − 1. Suppose there is some solution 〈S1, S2, . . . , Sy〉 that
uses fewer I/O operations than 〈G1, G2, . . . , Gz−1〉. Then we would be able to create the group-
ings 〈S1, S2, . . . , Sy, Gz〉 to take fewer I/O operations than our optimal solution 〈G1, . . . , Gz〉, which
yields a contradiction.

The total cost of the Dimensional Method algorithm consists of both the costs of (1), (2) and (3)
to permute that data between FFT computations, and the cost of the FFT computations themselves.
For each group Gi, we require one pass through the data to compute the FFTs.

Next, we can develop a recursive definition for the cost Ci of an optimal solution for dimensions
1, . . . , i. This definition is relatively straightforward. The cost always includes the cost of (1)
(assuming we have at least one dimension), and so we set C0 to the cost of (1). If 1 ≤ i < k, then Ci

can be calculated by going through all possible groupings for the last group and adding the resultant
cost of (2) plus one pass (for the FFT computations of this group) to the best way of doing all the

9

other groupings. We use similar logic if i = k except we use the cost of (3) instead of (2). We get
the following as our cost function:

Ci =

⌈
min (n−m,p)

m−b

⌉

+ 1 if i = 0 ,

min
j s.t. 1 ≤ j ≤ i

and
∑

i
x=j

nx ≤ m − p

{⌈

min

(

n−m,
i∑

x=j

nx

)

m−b

⌉

+ 2 + Cj−1

}

if 1 < i < k ,

min
j s.t. 1 ≤ j ≤ i

and
∑i

x=j nx ≤ m − p

{⌈

min

(

n−m,
i∑

x=j

nx+p

)

m−b

⌉

+ 2 + Cj−1

}

if i = k .

Pseudocode for the algorithm may look like:

1 C[0]←
⌈

min (n−m,p)
m−b

⌉

+ 1

2 for i← 1 to k do

3 C[i]←∞
4 for i← 1 to k − 1 do

5 j ← i
6 s← nj

7 while s ≤ m− p and j ≥ 1 do

8 C[i]← min
(

C[i],
⌈

min (n−m,s)
m−b

⌉

+ 2 + C[j − 1]
)

9 j ← j − 1
10 s← s + nj

11 j ← k
12 s← nk

13 while s ≤ m− p and j ≥ 1 do

14 C[k]← min
(

C[k],
⌈

min (n−m,s+p)
m−b

⌉

+ 2 + C[j − 1]
)

15 j ← j − 1
16 s← s + nj

The nested loop runs in O(k2) time, and so the whole algorithm has a run time of O(k2).

2.5 Ordering Dimensions

There is also no reason why we have to compute the FFTs in the order given. In many cases, it takes
fewer passes through the data if we compute the dimensions in a different order. For example, take
the simple case with M = 211, D = 25, P = 24, B = 25, k = 6, N = 220, and the dimensions are of
the following sizes: N1 = 22, N2 = 27, N3 = 22, N4 = 23, N5 = 23, N6 = 23. Our general assumptions
about the problem are true here, so this example is valid. Doing the dimensions in order according
to the simple Dimensional Method yields the cost of 21 passes through the data. If, however, we
compute the FFTs in the order of dimensions 1, 2, 6, 4, 5, 3, then we only need 19 passes through the
data. Between dimensions 2 and 6, we do a 15-bit right-rotation. Between dimensions 6 and 4, we
do a 14-bit right-rotation. Between dimensions 5 and 3, we do a 15-bit right rotation. We finish
with an 11-bit right-rotation to get the data back to the original order. The rest is pretty obvious.

Let us assume for now that we are only going to read one dimension into memory at a time, but
that we can do the one-dimensional FFT computations in any order. If we wish to do the dimensions
in the order 〈x1, x2, . . . , xk〉, we can use the following modified algorithm:

1. Before doing any FFT computations, permute to the starting dimension and convert from
stripe-major to processor-major order with the BMMC permutation characterized by SR1,x1

.

10

2. After performing the FFT computations for dimension xi, we must perform the BMMC per-
mutation characterized by SRxi,xi+1

S−1.

3. After doing the FFT computuations for the dimension xk, perform the BMMC permutation
characterized by the matrix product Rxk,1S

−1.

where Ri,j is defined as follows:

Ri,j =

(
∑j−1

x=i nx

)

-bit right-rotation matrix if i ≤ j ,
(

n−∑j−1
x=i nx

)

-bit right-rotation matrix if i > j .

2.6 Analysis of Permutations

Before we can determine what the optimal ordering is, we have to determine the I/O complexity
of each of the permutation matrices we will need. Any BMMC permutation can be performed in
2N
BD

(⌈
rank φ

lg (M/B)

⌉

+ 1
)

parallel I/O operations, where φ is the lower left (n−m)×m submatrix of the

characteristic matrix. The algorithm to solve the one-dimensional FFTs in a different order, without
grouping, requires the characteristic matrices represented by the matrix products SRx, SRxS−1,
and RxS−1. The analyses of these matrices differs from Lauren Baptist’s analyses [Bap99] in that
x is now only limited to 0 ≤ x ≤ n instead of 0 ≤ x ≤ m− p. We need the following results before
we can prove anything regarding the optimal ordering.

Lemma 1 For the matrix product SRx, we have

rankφ = min (n−m, m, n− x + p, |x− p|) .

Proof: Computing rankφ is equivalent to computing the rank of the (n−m)×m matrix product
Z = XSRxY . We can group these factors however we choose, so we will compute E = XS and
F = RxY , then Z = EF . We can represent this grouping as

XS
︸︷︷︸

E

RxY
︸ ︷︷ ︸

F
︸ ︷︷ ︸

Z

We begin by finding the subproduct E = XS, where the matrices have the forms

m n−m

X =
[

0 I
]

n−m

s− p n− s p

and S =

I 0 0

0 0 I

0 I 0

s− p

p

n− s

.

In the PDM, we assume that BD ≤M , or s = b + d ≤ m. We can view X as a row selection of S,
selecting the bottom n−m rows. Given that s ≤ m, we know n−m ≤ n− s, so

m− p n−m p

E =
[

0 I 0
]

n−m
.

Next, we need the subproduct F = RxY , where Rx and Y have the forms

x n− x

Rx =

[
0 I

I 0

]
n− x

x

m

and Y =

[
I

0

]
m

n−m

.

From this point on, we have two cases: x < m and x ≥ m. We examine each case separately.

11

1. Suppose x < m. We can view Y as a column selection of Rx, selecting the leftmost m
columns. Since x < m, these leftmost m columns includes the leftmost x columns of Rx. So
we have that F is

x m − x

F =

0 I

0 0

I 0

m− x

n−m

x

.

Now we can compute the rank of the product Z = EF . Note that E is

m− p n−m p

E =
[

0 I 0
]

n−m
.

We can view E as a row selection of F . Notice that if x = p, then the n−m rows selected are
the 0 rows in the middle of F , so the rank is 0. Increasing x up to m− 1 slides the band of 0s
in F up, so E selects up to x − p rows with 1s from the bottom x rows of F . If, on the other
hand, x decreases from p, the band of 0s in F slides down, so E selects up to p− x rows with
1s from the top m − x rows of F . Since we only select n−m rows, the rank can be at most
n−m. Thus we have rankφ = min (n−m, |x− p|).
Since we assumed that x < m, we know that |x − p| ≤ m, so we can restate this rank as
rankφ = min (n−m, m, |x− p|). Furthermore, if x < m, then n−x+ p > n−m+ p ≥ n−m,
so we can can end with rankφ = min (n−m, m, n− x + p, |x− p|).

2. Suppose x ≥ m. Recall, we are computing the product F = RxY . Again, we view Y as a
column selection of Rx, selecting the leftmost m columns. In this case, the leftmost m columns
fall within the the leftmost x columns. So we have

m

F = RxY =

0

I

0

n− x

m

x−m

.

Now we can look at the rank of the final product Z = EF . Let us divide this product further
into a few cases.

(a) Suppose that x ≥ m and m ≤ n−m. Then we can treat F as a column selection of E.

Our assumption that m ≤ n − m implies that m + p ≤ n − m + p. Notice that if
m + p ≤ x ≤ n− (m− p), then the are at least m− p 0 rowss on the top of F , and there
are at least p 0 rows on the bottom of F . Thus, the m columns of E selected fall within
the n−m columns with 1s, and the rank is m.

When x falls below m + p, the band of 0s on the bottom of F decreases below p, so F
selects columns with only 0s from E. Thus, the rank decreases. We see there is a linear
relationship here. When x = m + p, the rank is m. When x = m, the rank is m − p.
Within this range, the rank is x− p.

When x increases past n − (m − p), the band of 0s on the top of F decreases to below
m−p rows. Thus, F selects some columns of 0s from the left of E. Again, we see a linear
relationship here. When x = n − (m − p), we select m 1s. When x is at its maximum
of x = n, we only select p 1s. We can describe this linear relationship as n− (x − p) 1s
being selected.

12

To sum up, the product Z = EF product gives us

rankφ =

x− p if x ≤ m + p ,
m if m + p < x ≤ n− (m− p) ,
n− (x− p) if x > n− (m− p) .

In no case are more than m 1s selected, and m ≤ n−m by assumption. Thus, we actually
have

rankφ =

min (m, x− p) if x ≤ m + p ,
m if m + p < x ≤ n− (m− p) ,
min (m, n− (x− p)) if x > n− (m− p) .

We can reduce this piecewise function into a single expression. Since we assumed that
m ≤ n−m, we have m ≤ n/2. Therefore, when x ≤ m+p it follows that x−p ≤ m ≤ n/2,
so x − p ≤ n − (x − p). Furthermore, m + p < x ≤ n − (m − p) implies m < x − p and
m ≤ n− (x − p). Finally, when x > n−m + p, we know that x > m + p(or x − p > m)
by our assumption that n −m ≥ m. Thus, we can combine everything in our piecewise
function to get rankφ = min (m, n− x + p, x− p).

Because of our assumption that m ≤ n−m, we can add an n−m term to this minimum.
Furthermore, x > m by our other assumption implies that x > p, so |x − p| = x − p.
Thus, we can restate rankφ = min (n−m, m, n− x + p, |x− p|).

(b) Suppose that x ≥ m and m > n − m. Recall that we are computing the product
Z = EF where E and F have the forms

m− p n−m p

E =
[

0 I 0
]

n−m

m

and F =

0

I

0

n− x

m

x−m

.

We can view E as a row selection of F .

If n−m+ p ≤ x ≤ m+ p, then there are fewer than m− p rows of 0s on the top of F and
fewer than p rows of 0s on the bottom of F . Thus, the n −m rows selected fall within
the n−m rows containing 1s. Thus, when x falls within this range, we have the rank is
n−m.

When x decreases below n−m+p, the number of rows of 0s across the top of F increases
above m− p. Thus, E begins to select 0s from F . We observe a linear relationship here
when x is between m and n − m + p. When x = m, E only selects m − p 1s. When
x = n−m + p, E selects n−m 1s from F . Thus, E selects x− p 1s when x falls within
this range.

When x increases above m + p, the band of 0s across the bottom of F increases to be
more than p rows, so E selects rows of 0s from F . Again, when x = m + p, E selects
n − m 1s, and when x = n, E selects p 1s. Thus, we can describe this relationship as
n− (x− p).

Since E never selects more than n−m rows from F , we have

rankφ =

min (n−m, n− (x− p)) if x > m + p ,
n−m if n−m + p < x ≤ m + p ,
min (n−m, x− p) if x ≤ n−m + p .

It is again useful to combine this piecewise function. When x > m + p, x− p > m. Our
assumption that m > n−m implies that n−m < n/2. Therefore x ≤ n−m + p implies
x − p ≤ n −m < n/2, so n − (x − 2) ≥ n/2 > n −m. Finally, n −m + p < x ≤ m + p

13

implies n−m < x− p and n− x ≥ n− (m + p) which means n− x + p ≥ n−m. Thus,
we have rankφ = min (n−m, n− x + p, x− p)

By assumption, n−m > m. Furthermore, x ≥ m implies x ≥ p, so x− p = |x− p|. Thus,
we can rewrite rankφ = min (n−m, m, n− x + p, |x− p|).

All cases yielded the same result, so we have rankφ = min (n−m, m, n− x + p, |x− p|).

Lemma 2 For the matrix product SRxS−1, we have

rankφ = min (n−m, m, x, n− x) .

.

Proof: Computing rankφ is equivalent to computing the rank of the (n−m)×m matrix product
Z = XSRxS−1Y Π1Π2. Again, we can set Π1 and Π2 later to make calculations easier. We can
group these factors however we choose, so we will compute E = XS (which we already have above)
and G = S−1Y . We can then compute H = GΠ1 followed by J = RxH and K = JΠ2. Finally,
Z = EK. We can represent this grouping as

XS
︸︷︷︸

E

Rx S−1Y
︸ ︷︷ ︸

G

Π1

︸ ︷︷ ︸

H
︸ ︷︷ ︸

J

Π2 .

︸ ︷︷ ︸

K
︸ ︷︷ ︸

Z

First, we compute the subproduct G = S−1Y where S and Y have the forms

s− p p n− s

S−1 =

I 0 0

0 0 I

0 I 0

s− p

n− s

p

m

and Y =

[
I

0

]
m

n−m

.

The work here is identical to Lauren Baptist’s. We can think of Y as a column selection of S−1,
selecting the leftmost m columns of S−1. Since we know that s ≤ m, the n−m columns not selected
will fall within the rightmost n− s columns. Thus, we have the matrix G of the form

s− p p m− s

G =

I 0 0

0 0 I

0 0 0

0 I 0

s− p

m− s

n−m

p

.

We can next look at the matrix subproduct H = GΠ1. Π1 can be any m × m permutation
matrix. To make later products easier to compute, we want to move the rightmost m− s columns
to follow the leftmost s− p columns. If we set Π1 to be the column permutation matrix

s− p m− s p

Π1 =

I 0 0

0 0 I

0 I 0

s− p

p

m− s

,

14

then the product GΠ1 is
m− p p

H =

I 0

0 0

0 I

m− p

n−m

p

.

The next subproduct is J = RxH , where Rx looks like

x n− x

Rx =

[
0 I

I 0

]
n− x

x

.

From here on, it is easier to look at three separate cases: x < m − p, m − p ≤ x < n − p, and
x ≥ n− p.

1. Suppose x < m − p. There is no need to continue. Baptist’s work made this assumption
and shows that rankφ = min (n−m, x). The only difference is that we dropped the nj-bit
partial bit-reversal permutation, but the rank is unaffected by this change to the product.
Since x < m− p, x < m, so we can rewrite the rank as rankφ = min (n−m, m, x, n− x).

2. Suppose m − p ≤ x < n − p. We can view H as a column selection of the leftmost m − p
and rightmost p columns of Rx. Since x ≥ m− p, the leftmost m− p columns falls within the
lower left identity matrix. Since x ≤ n− p, we have n−x ≥ p, so the rightmost p columns fall
within the upper-right identity matrix of Rx. Thus, we have the subproduct

m− p p

J =

0 0

0 I

I 0

0 0

n− x− p

p

m− p

x− (m− p)

.

We can reorder the two columns with the matrix product K = JΠ2, so let us combine the to
identity submatrices by setting Π2 to be

p m− p

Π2 =

[
0 I

I 0

]
m− p

p

.

The resulting matrix product is K = JΠ2

m

K =

0

I

0

n− p− x

m

x− (m− p)

.

Finally, rankφ is the rank of the matrix Z = EK. We already have E to be

m− p n−m p

E =
[

0 I 0
]

n−m
.

15

(a) Suppose that m− p ≤ x < n− p and m ≤ n−m. Then we can treat K as a column
select of E.

If m ≤ x ≤ n−m, then there are at least m−p rows of 0s across the top and p rows of 0s
across the bottom of K. Thus, m columns that K selects fall within the n−m columns
with 1s in E. When x is within this range, the rank is m.

When x increases past n−m, the number of 0 rows across the top of K decreases below
m − p. Thus, K selects some 0 rows from the left of E. We notice a linear relationship
here between x = n−m selecting m 1s and x = n− p selecting p 1s. We can denote this
relationship by n− x 1s being selected.

When x decreases below m, the number of 0s across the bottom of K decreases below p,
so K selects some 0s from the right or E. When x = m, K selects m 1s from E. When
x = m− p, K selects m− p 1s from E. Again, there is a linear relationship when x falls
within this range, and we can write the rank as x.

In any case, K only selects m columns, so the rank can be at most m. This gives us the
piecewise function

rankφ =

min (m, x) if x ≤ m ,
m if m < x ≤ n−m ,
min (m, n− x) if x > n−m .

We assumed that m ≤ n−m. Therefore, x ≤ m implies x ≤ n−m ≤ n− x. Similarly,
x > n−m implies x > m. When m < x ≤ n−m, we have x > m and m ≤ n− x. Thus,
we can reduce the piecewise function to rankφ = min (n−m, m, x, n− x).

(b) Suppose instead that m− p ≤ x < n− p and that m > n−m. We can treat E as a
row select of K.

If n −m ≤ x ≤ m, we see that K has fewer than p rows of 0s on the bottom and fewer
than m− p rows of 0s on the top. Thus, E selects n−m rows with 1s from K.

When x increases past m, the number of 0 rows on the bottom of K increases past p, so
E selects some rows of 0s from the bottom K. Notice that when x = m, E selects n−m
1s from K, and when x = n− p, E selects p 1s from K. Thus, when x falls within this
range, the rank is n− x.

Decreasing x below n−m increases the number of 0 rows across the top of K past m−p.
Therefore, E selects some 0s from the top of K. When x = n−m, E selects n−m 1s.
When x = m− p, E selects m− p 1s from K. Thus, E selects x 1s from K.

Because E only selects n−m rows from K, so far have the relationship

rankφ =

min (n−m, x) if x ≤ n−m ,
n−m if n−m < x ≤ m ,
min (n−m, n− x) if x > m .

Again, note that if x ≤ n −m, then m ≤ n − x. Since we assume that m > n −m, we
have n−m < n−x. Similarly, x > m implies x > n−m. Finally, n−m ≤ x < m implies
that n− x > n−m and n−m ≤ x. Thus, we have rankφ = min (n−m, m, x, n− x).

3. Suppose x > n− p. Recall we are interested in the matrix product J = RxH , where Rx and
H have the forms

x n− x

Rx =

[
0 I

I 0

]
n− x

x

m− p p

and H =

I 0

0 0

0 I

m− p

n−m

p

.

16

We can view H as a column selection of Rx, selecting the rightmost p and the leftmost m− p
columns of Rx. Since x > n− p, p > n− x, so the rightmost p columns includes all the upper
right identity submatrix of Rx, and part of the lower left identity submatrix. Furthermore,
the m− p leftmost columns fall entirely within the lower left identity submatrix of Rx. So we
have the product J = RxH is

m− p x− (n− p) n− x

J =

0 0 I

I 0 0

0 0 0

0 I 0

n− x

m− p

n−m

x− (n− p)

.

Again, before we compute the product K = JΠ2, we can set Π2 to be any m×m permutation
matrix. Since we would like to combine the two identity submatrices above the 0 rows, we let
Π2 be

n− x m− p x− (n− p)

Π2 =

0 I 0

0 0 I

I 0 0

m− p

x− (n− p)

n− x

,

which causes K = JΠ2 to be of the form

m− (x− (n− p)) x− (n− p)

K =

I 0

0 0

0 I

m− (x− (n− p))

n−m

x− (n− p)

.

Finally, we’re interested in the product Z = EK. Recall that E is of the form

m− p n−m p

E =
[

0 I 0
]

n−m
.

We can treat E as a row selection of K. If x = n−p, E selects all but the bottom p 0 rows from
the n−m 0 rows, so that is p = n− x 1s. Increasing x slides the band of 0s up, adding more
0 rows to the selection. x ≤ n, so the bottom right identity submatrix of K is at most p rows
high. We, therefore, see that the rank of Z is rankφ = min (n−m, m, n− x). We assumed that
x > n−p, which means that x > n−m. Thus, we can write rankφ = min (n−m, m, n− x, x).

Thus, combining all three possibilites (x ≤ m−p, m−p < x ≤ n−p, and n−p < x) consistently
give rankφ = min (n−m, m, n− x, x) for any value of x.

Lemma 3 For the matrix product RxS−1, we have

rankφ = min (n−m, m, |n− (x + p)|, x + p) .

Proof: Again, we want to find the rank of the product Z = XRxSY Π1Π2. Let us start by comput-
ing the subproduct G = S−1Y , then H = GΠ1. Next, we can compute J = RxH , then K = JΠ2.

17

Finally, we can do the product Z = XK. We can represent this grouping as follows.

X Rx S−1Y
︸ ︷︷ ︸

G

Π1

︸ ︷︷ ︸

H
︸ ︷︷ ︸

J

Π2 .

︸ ︷︷ ︸

K
︸ ︷︷ ︸

Z

We have to work with three cases again.

1. Suppose x ≤ m−p. Then we can follow exactly Lauren Baptist’s work, which gives rankφ =
min (n−m, x + p). Note that we assumed that x ≤ m − p, so x + p ≤ m. Furthermore,
n− (p + x) ≥ n−m ≥ 0. So it is also true that rankφ = min (n−m, m, |n− (x + p)|, x + p).

2. Suppose m − p ≤ x ≤ n − p. We can compute K in exactly the same manner we did in
Lemma 2. The only work to do here is to compute the product Z = XK. Recall that X and
K are of the forms

m n−m

X =
[

0 I
]

n−m

m

and K =

0

I

0

n− p− x

m

x− (m− p)

.

Let us view X as a row selection of K, selecting the bottom n − m rows. We see that if
n− p− x = 0, or x = n− p, the bottom n−m rows are all 0s, so the rank is 0. Decreasing x
slides the band of 1s down and increases the rank until all m rows are selected. The rank can be
at most n−m, so the rank of the resulting (n−m)×m matrix Z is min (n−m, m, n− p− x).
Note that x ≥ m− p in this case, so x+ p ≥ m. Also, n− p−x ≥ 0, so n− p−x = |n− p−x|.
Therefore, we can say rankφ = min (n−m, m, |n− p− x|, x + p).

3. Suppose x ≥ n− p. We can again compute K in the same way as in Lemma 2. We are left
with the matrix product Z = XK where X and K are of the forms

m n−m

X =
[

0 I
]

n−m

m− (x− (n− p)) x− (n− p)

and K =

I 0

0 0

0 I

m− (x− (n− p))

n−m

x− (n− p)

.

Let us again view X as a row selection of K, selecting the bottom n − m rows. We see
that X will never select ones from the top left identity submatrix. When x = n − p, the
bottom n − m rows of K are all 0s. Increasing x moves some rows with 1s up from the
bottom, increasing the rank of the resulting (n −m) ×m matrix up to p when x = n. Here,
we have rankφ = min (n−m, m, p− (n− x)). By our assumption, it is always true that
x ≥ n − p, or x + p ≥ n. Thus, p − (n − x) = (x + p) − n = |n − (x + p)|. Thus, we have
rankφ = min (n−m, m, |n− (x + p)|, x + p).

In all three cases, we have the same result, so this expression holds for all values of x.

Lemma 4 The costs of performing the BMMC permutations characterized by the matrix products
SRxS−1 and SRn−xS−1 are the same.

18

Proof: From Lemma 2, the cost of performing the permutation characterized by SRxS−1 is

2N

BD

(⌈
min (n−m, m, x, n− x)

m− b

⌉

+ 1

)

parallel I/O operations. The cost of performing the permutation characterized by SRn−xS−1 is

2N

BD

(⌈
min (n−m, m, n− x, n− (n− x))

m− b

⌉

+ 1

)

These two are obviously equal.

2.7 Determining the Optimal Ordering

Given our data, we want to determine what the optimal ordering of dimensions is to have the
minimum I/O operations. For now, we will only read one dimension into memory at a time using the
algorithm in Section 2.5. We just have to determine what the optimal ordering X = 〈x1, x2, . . . , xk〉
of dimensions is.

Lemma 5 The cost of performing the BMMC permutation characterized by the matrix SRx differs
by at most 1 pass through the data from the cost of performing the BMMC permutation SRxS−1.

Proof: Recall that the BMMC permutation characterized by SRx requires
⌈

min (n−m, m, n− x + p, |x− p|)
m− b

⌉

+ 1

passes through the data, and the BMMC permutation characterized by SRxS−1 requires
⌈

min (n−m, m, n− x, x)

m− b

⌉

+ 1

passes. Observe that min (n−m, m, n− x + p, |x− p|)| and min (n−m, m, n− x, x) differ by at
most p. By our PDM assumptions, m ≥ d + b ≥ p + b, so m − b ≥ p. Thus, the permutation SRx

requires at most
⌈

min (n−m, m, n− x, x)

m− b
+

p

m− b

⌉

+ 1 ≤
⌈

min (n−m, m, n− x, x)

m− b

⌉

+ 2

passes through the data. Similarly for the minimum.

Lemma 6 The I/O costs of the BMMC permutations characterized by RxS−1 and SRxS−1 differ
by at most 1 pass through the data.

Proof: Recall that the BMMC permutation characterized by the matrix product RxS−1 requires
⌈

min (n−m, m, |n− (x + p)|, x + p)

m− b

⌉

+ 1

passes through the data. Notice that min (n−m, m, |n− (x + p)|, x + p) and min (n−m, m, n− x, x)
differ by at most p. Recall that p ≤ m− b. Thus, the permutation RxS−1 requires at most

⌈
min (n−m, m, n− x, x)

m− b
+

p

m− b

⌉

+ 1 ≤
⌈

min (n−m, m, n− x, x)

m− b

⌉

+ 2

passes. Similar math applies for the minimum.

19

Theorem 7 The ordering 〈1, 2, . . . , k〉 takes at most 4 more passes through the data than an optimal
ordering.

Proof: Recall that the algorithm for computing the FFTs in the order 〈x1, x2, . . . , xk〉 is

1. Before doing any FFT computations, we perform the BMMC permutation characterized by
SR1,x1

.

2. After performing the FFT computations for dimension xj , where 1 ≤ j < k, perform the
BMMC permutation characterized by the matrix product SRxj ,xj+i

S−1.

3. After performing the FFT computations for dimension xk , perform the BMMC permutation
characterized by the matrix product Rxk,1S

−1.

By Lemma 5, the cost of (1) differs by at most 1 from the cost of performing the permutation
characterized by the matrix product SR1,x1

S−1. By Lemma 6, the cost of (3) differs by at most 1
from the cost of performing the permutation characterized by the matrix product SRxk,1S

−1.
Let us look at the cost of performing the FFT computations in the order 〈1, 2, . . . , k〉. Since

we assumed that each nj ≤ m − p, Lemma 2 gives us that the cost of performing the BMMC
permutation characterized by the matrix product SRnj ,nj+1S

−1, or SRnj
S−1, is

⌈
min (n−m, nj)

m− b

⌉

+ 1

passes through the data. Thus, performing the FFT computations in the order 〈1, 2, . . . , k〉 takes at
most

1 +

k∑

j=1

(⌈
min (n−m, nj)

m− b

⌉

+ 1

)

+ k + 2

passes through the data.
Let us assume that we have an optimal ordering X = {x1, x2, . . . , xk}. To make the work a little

bit clearer, let us define Y = {y0, y1, . . . , yk} to be the sequence of rotation amounts. That is to say,

yi =

min

(
x1∑

j=1

nj , n−
x1∑

j=1

nj

)

if i = 0 ,

min

(
max (xi,xi+1)−1∑

j=min (xi,xi+1)

nj , n−
max (xi,xi+1)−1∑

j=min (xi,xi+1)

nj

)

if 1 ≤ i < k ,

min

(
xk∑

j=1

nj , n−
xk∑

j=1

nj

)

if i = k .

From Lemmas 2 and 4, we know that performing the BMMC permutation characterized by the
matrix SRyj

S−1 requires
⌈

min (n−m, m, yj)

m− b

⌉

passes through the data. Therefore, when we apply Lemmas 5 and 6, we get that the cost of
performing our algorithm in the ordering X takes at least

k∑

j=0

(⌈
min (n−m, m, yj)

m− b

⌉

+ 1

)

+ k − 2 .

20

passes through the data. It is fairly obvious that

k∑

j=0

(⌈
min (n−m, m, yj)

m− b

⌉

+ 1

)

+ k ≥ 1 +

k∑

j=1

(⌈
min (n−m, nj)

m− b

⌉

+ 1

)

+ k ,

so, computing the one-dimensional FFTs in the order given is at most 4 passes (or 8N/BD parallel
I/Os) slower than an optimal ordering, giving us a fairly good approximation.

2.8 Lower Bound on Dimensional Method

We already showed the FFT-ORDERING decision problem to be NP-complete. We are now inter-
ested in finding a good approximation of an optimal solution. We first look at a good lower bound
on the I/O complexity of the Dimensional Method.

We rely heavily on the universal lower bound for BMMC permutations in [CSW99]. Any non-
identity BMMC permutation requires

Ω

(
N

BD

(

1 +
rankγ

lg (M/B)

))

parallel I/Os, where γ is the lower left (n− b)× b submatrix of the characteristic matrix.
We are going to need some minimum cost based on a given grouping G = 〈G1, . . . , Gz〉, where

Gi = {gi1 , . . . , giy
} and each gij

is a unique dimension number. Before we can establish the minimum
I/Os needed to perform the FFTs for all the dimensions, it makes sense to look at the cost to go
from group Gi to group Gi+1.

The Dimensional Method requires that we perform the FFTs for the dimensions in Gi followed
by some BMMC permutation so that the dimensions in Gi+1 are accessible. That is, we want to be
able to perform the FFTs for the dimensions in Gi+1 with only one pass through the data.

Notice that when we perform these FFTs, we have some concept of FFT groups. That is to say,
certain groups of records are processed together. For example, suppose we have 4 dimensions, each
of size 2, and we have G1 = {1, 2}, where g ∈ Gi is a dimension index. We perform the FFTs in
FFT groups {0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}, and {12, 13, 14, 15}, where each of these integers is
a record index. Notice that the concept of FFT groups is independent of the available memory.

In finding a lower bound, let us first look at the structure on disk of a grouping Gi. That is, we
want to show some minimum number of specific records in one block. Then, we can show a minimum
rank γ to get from Gi to Gi+1. Once we have that, we can show a lower bound for performing the
full Dimensional Method.

Lemma 8 If

C =
∏

gj∈Gi

Ngj
≥M/B ,

and the data are stored so that Gi is accessible, then at least C/(M/B) records in each block must
belong to the same FFT group.

Proof: We can read only M/B blocks into memory at a time. These M/B blocks hold a total of M
records, which must consist of M/C FFT groups. Suppose there is a block that contains fewer than
C/(M/B) records from any FFT group. Since we assume that we use only one pass through the
data for FFT computations, we can only work with the M/C FFT groups, so the block holds fewer
than (M/C)(CB/M) = B records. But the block must contain exactly B records, so this produces a
contradiction. Thus, every block must contain at least C/(M/B) records from some FFT group.

21

Lemma 9 Suppose we want to perform a BMMC permutation characterized by the matrix A to get
Gi to be accessible, and we define C as in Lemma 8 (C ≥ M/B), and all blocks have just 1 record
from the FFT groups. Then rank γ ≥ lg C − (m− b).

Proof: From Lemma 8, following the BMMC permutation, each block must have at least C/(M/B)
records from an FFT group. Thus, each block must draw its records from at least C/(M/B) pre-
permutation blocks. It follows that each pre-permutation block must send its records to at least
C/(M/B) post-permutation blocks. Suppose this is not the case. That is, suppose some block σ
sends its records to fewer than C/(M/B) blocks when performing the BMMC permutation. Then
that block must send more than B/(CB/M) = M/C records to some block ω. We know that σ
started with only 1 record from any FFT group. So now ω has more than M/C records that do not
share any FFT group. So fewer than B/(M/C) in ω share an FFT group, which violates Lemma 8.
Thus, we now have that every block must send its records to at least C/(M/B) blocks.

Let us now look at what implications this result has on γ. We perform the BMMC permutation
characterized by the matrix

b n− b

A =

[
α β

γ δ

]
b

n− b

and some n-bit complement vector c = (c0, c1, . . . , cn−1). The permutation maps a source address
x = (x0, x1, . . . , xn−1) onto a target address y = (y0, y1, . . . , yn−1), where

y0

y1

...
yn−1

=
[

α β

γ δ

]

x0

x1

...
xn−1

⊕

c0

c1

...
cn−1

.

Now, if we are not concerned with the offset within a block (only with which block a record is
mapped to), we can look at the product

yb

yb+1

...
yn−1

= [
γ δ

]

x0

x1

...
xn−1

⊕

cb

cb+1

...
cn−1

.

We know that given a source block, its records must map to at least C/(M/B) target blocks. Notice
that y′ = (yb, yb+1, . . . , yn−1) represents a target block. Since the most significant b bits of x are
fixed, it follows that the range of

[
γ
]

x0

x1

...
xb−1

consists of at least C/(M/B) elements, so rank γ ≥ lg (C/(M/B)) = lg C − (m− b).

We want to show that an optimal solution to BIN-PACKING can give us an optimal solution to
FFT-ORDERING. Thus, given an approximation to BIN-PACKING, we have a good approximation
of the best way to perform the Dimensional Method. In the remainder of this section, we use bin
packing to show a lower bound on the Dimensional Method. In Section 2.9, we show an asymptoti-
cally optimal Dimensional Method algorithm which uses an optimal solution to BIN-PACKING.

22

Theorem 10 Suppose b ≤ m/2 (or B2 ≤ M). Suppose also that we make an instance to BIN-
PACKING with U = {u1, u2, . . . , uk}, s(u) = nu, and a bin capacity of m. If z is the minimum
number of bins into which U can be packed, then the Dimensional Method requires at least Ω (zN/BD)
parallel I/Os.

Proof: This proof is fairly obvious. If z is the minimum number of bins, then it is also the minimum
number of groups that we can arrange for the Dimensional Method. Since we need one pass through
the data following each BMMC permutation to compute the FFTs, we need a minimum of 2zN/BD
parallel I/Os.

Theorem 11 Suppose b ≥ m/2 (or B2 ≥ M). Suppose also that we make an instance to BIN-
PACKING with U = {u1, u2, . . . , uk}, a bin capacity of 2(m− b), and

s(u) =

{
nu if nu ≤ 2(m− b) ,
2(m− b) if nu > 2(m− b) .

If U1, U2, . . . , Uz is the optimal partition, then the Dimensional Method requires at least

Ω

N

BD

z +
∑

i s.t. ni > 2(m − b)

ni − (m− b)

m− b

parallel I/Os.

Proof: Let us first examine the grouping generated by an optimal BIN-PACKING solution. It must
be the case that we have no more than one group Gi such that

∑

g∈Gi
ng ≤ m− b. If there were 2

such groups, they could easily be combined because our bin capacity was 2(m− b). Notice also that
the

Ω

N

BD

∑

i s.t. ni > 2(m − b)

ni − (m− b)

m− b

component of the cost comes from the large dimensions. From Lemma 9, if
∑

g∈Gi+1
ng ≥ m − b,

then we require

Ω

N

BD

∑

g∈Gi+1

ng − (m− b)

m− b

parallel I/Os to permute from Gi to Gi+1.
In order to reduce the number of groupings, we must increase the sizes of each grouping. Since

only one group is smaller than M/B, reducing the number of groups by more than 1 results in a
similar increase in cost from Lemma 9 (since (m − b)/(m − b) = 1). Thus, we have the minimum
cost as stated above.

2.9 Approximation of Optimal Solution

Since the lower bound on I/Os for the Dimensional Method relied on BIN-PACKING, our approxi-
mation relies on a good approximation for BIN-PACKING.

First, we need a new BMMC permutation matrix. We want Ai to be the characteristic matrix
of the permutation we need to get Gi to be accessible. Notice that the data are initally ordered so
that bits 0, 1, . . . , n0 − 1 indicate dimension 0 (fixing all other bits, you get all the addresses for a
vector in dimension 0). Similarly, n0, n0 + 1, . . . , n0 + n1 − 1 is the range of bits for dimension 1,
etc. We want to maintain this simple bit ordering. So essentially, let Ai swap the bits representing

23

dimensions in Gi with the bits representing the dimensions that can fit in memory (i.e., the least
significant m bits; we start the swapping with the most significant of these). For example, if we have
m = 5, n = 10, n1 = 3, n2 = 2, n3 = 2, n4 = 2, and n5 = 1, and we want A1 where G1 = {3, 5},
then we would have

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0

.

Suppose b < m/2. Then we construct an instance to BIN-PACKING as in Theorem 10. Suppose
U1, U2, . . . , Uz is the optimal partition. Then we want groups Gi = {gj : uj ∈ Ui}.

Suppose b > m/2. Then we construct an instance to BIN-PACKING as in Theorem 11.
We can now use the following algorithm:

1. Perform the BMMC permutation characterized by the matrix SA1.

2. Between computing the FFTs for dimensions in group Gi and Gi+1, perform the BMMC
permutation characterized by the matrix SAi+1S

−1.

3. After computing the Gz FFTs, perform the BMMC permutation characterized by the matrix
A0S

−1.

We want to show that this algorithm performs as well as the minimum shown in Theorems 10
and 11.

Theorem 12 Suppose b < m/2. This Dimensional Method algorithm takes at most O (zN/BD)
parallel I/Os.

Proof: This proof is fairly obvious. If we have z groups, we need z passes through the data to
perform the FFTs. Since b < m/2, we can perform any BMMC permutation with 3 passes through
the data. Since we must perform only z +1 such permutations, our cost is no more than 2N

BD 4(z +1)
parallel I/Os, or O (zN/BD) parallel I/Os.

Theorem 13 Suppose b > m/2. This Dimensional Method algorithm takes at most

O

N

BD

z +
∑

i s.t. ni > 2(m − b)

ni − (m− b)

m− b

parallel I/Os.

Proof: For now, let us assume that we are using a single processor. Then this proof is relatively
simple. The rank of the lower left (n−m)×n submatrix of Ai is

∑

g∈Gi
ng. So the cost of performing

the BMMC permutation characterized by Ai is at most

2N

BD

(⌈∑

g∈Gi
ng

m− b

⌉

+ 1

)

24

I/O operations. For the large groups (a group with a dimension bigger than 2(m − b)), the cost
becomes

2N

BD

(
ni − 2(m− b)

m− b
+ 4

)

.

For the other groups (the size is less than 2(m− b)), the cost becomes

2N

BD
(3) .

If we add the cost of performing the z groups’ FFT computations, we get a total cost of less than

2N

BD

5z +

∑

i s.t. ni > 2(m − b)

ni − (m− b)

m− b

parallel I/Os, so the complexity is

O

2N

BD

z +

∑

i s.t. ni > 2(m − b)

ni − (m− b)

m− b

 .

2.10 Some Notes on Optimization

We can trim off some I/O operations. This optimization does not affect the I/O complexity sig-
nificantly, but it may reduce some constants involved. When we permute the data above in the
Dimensional Method, we get m − (b + d) bits for free. The Dimensional Method presented in this
paper rearranges the data so that consecutive stripes are read in to perform the FFTs, but this
reordering may waste I/O operations. We can read in any m − (b + d) stripes we want at a time.
Thus, any movement within bits b + d, b + d + 1, . . . , m− 1 is wasted. Since the overriding factor is
the number of groups, this optimization only affects the constant.

25

Bibliography

[Bap99] Lauren M. Baptist. Two Algorithms for Performing Multidimensional, Multiprocessor,
Out-of-Core FFTs. Dartmouth College Computer Science Technical Report PCS-TR99-
350.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. The MIT Press, Cambridge, Massachusetts, 1990.

[CN98] Thomas H. Cormen and David M. Nicol. Performing out-of-core FFTs on parallel disk
systems. Parallel Computing, 24(1):5-20, January 1998.

[Cor97] Thomas H. Cormen. Determining an Out-ofCore FFT Decomposition Strategy for Parallel
Disks by Dynamic Programming. Dartmouth College Computer Science Technical Report
PCS-TR97-322, July 1997.

[CSW99] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically tight
bounds for performing BMMC permutations on parallel disk systems. SIAM Journal on

Computing, 28(1):105-136, 1999.

[CWN97] Thomas H. Cormen, Jake Wegmann, and David M. Nicol. Multiprocessor Out-ofCore
FFTs with Distributed Memory and Parallel Disks. Dartmouth College Computer Science
Technical Report PCS-TR97-303, January 1997.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

theory of NP-Completeness. W. H. Freeman And Company, New York, 1979.

[VS94] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for Parallel Memory, I: Two-
Level Memories. Algorithmica, 12(2/3):110-147, August/September 1994.

26

	Optimizing the Dimensional Method for Performing Multidimensional, Multiprocessor, Out-of-Core FFTs
	Recommended Citation

	tmp.1596484807.pdf.H89bh

