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Abstract 
We present and analyze a system for dynamically tailoring discrete audio content 

for numerous users based on aggregate data and intuitive feedback mechanisms. The 

framework for this system utilizes a flexible client-server architecture to facilitate 

audio dissemination, with particular attention to distribution over wireless networks. 

We discuss the requirements and specifications of such a system. We further analyze 

the algorithms and protocols required for its operation. Finally, we outline and 

provide data from a demonstration of this application. 
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1.  Introduction 
The Internet revolution of the late 1990s brought with it a glut of media. As of May 2001, 

Google,2 a popular text search engine, reports to have indexed 1,346,966,000 pages. With more 

web pages than humans on this continent, it is no wonder that it is difficult to find relevant 

information. Many companies have devised search engines to help find textual content [Google, 

Yahoo,3 AltaVista,4 and so forth]. Unfortunately, there are few comparable tools to aid in finding 

relevant audio information. Even more importantly, traditional audio-based media such as news, 

weather, and sports-scores are extremely time and location dependent.  

 

It would be a boon for society to allow each person to have information that they need when they 

need it. Ideally, this information would be provided before the person realized that they needed it 

and without significant input. It is our goal to lay the groundwork for such a system, and discuss 

its components, uses, and extensions. 

 

We envision a system for both work and play. Imagine a busy couple waking up in the morning. 

Within half an hour, they are awake, dressed, and headed off to their respective workplaces. 

Before heading out, each grabs hold of a small device that has been resting overnight in small 

stands. The wife is fortunate to live close to work, but on the way she plugs her device into the 

car stereo, and can listen to up to date news, weather, and relevant traffic reports immediately. 

The device has tailored the information to her tastes and downloaded the audio during the night.  

 

The husband has a longer commute. He also listens to news, but as he travels, a GPS unit in his 

device finds pertinent location based information such as traffic jams and detours, and informs 

him in a timely manner. If he is running low on gas, then he can ask the device to search for the 

closest station with the lowest price, and it will tell him where to go. Having listened to his 

desired news at the beginning of the trip, the device chooses music to play. Based on his 

feedback, the device will learn and improve its choices.  

 

                                                        
2 http://www.google.com 
3 http://www.yahoo.com 
4 http://www.altavista.com 
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Upon arriving at work, each can attach the device to his computer using a small stand. The device 

will download a new batch of content. Using predictive technology, a constant connection to the 

Internet is not required. The device can store a days worth of audio with extra space to spare. As 

such, it can predict what audio might be required and store content accordingly. The device 

proceeds to upload rating, listening, and GPS data to aid in improving the choices in the future.  

 

The system designed within this project takes the first steps in realizing this vision. The system 

functions as a client-server model. The server is capable of storing extensive details about the 

users and content. It is able to quickly process this data to formulate recommendations for any 

particular user. It passes these recommendations to the client. The framework deliberately makes 

as few assumptions about the client as possible. The system functions correctly and efficiently 

whether the client is a mobile wireless device, or if it has a fixed device with a permanent real-

time Internet access.  

 

The remainder of this paper is structured as follows. Section 2 outlines existing research within 

academic forum and applications in the burgeoning Internet industry. Section 3 discusses the 

framework of our audio recommendation system. Section 4 describes and analyzes algorithms 

and protocols used within this project. It proceeds to discuss extensions to the core algorithms, 

including wireless considerations. Section 5 describes the technical and logistical details of the 

demonstration. It also discusses results, metrics, and conclusions related thereto. Section 6 

proposes future extension and applications of this technology. This section discusses resolutions 

to problems proposed in the earlier sections, and a brief analysis of the financial viability of this 

technology. Finally, Section 7 concludes the paper. 

2.  Related Work 
The academic and commercial forums have been working extensively to develop the underlying 

technologies in these devices. This section explores the related research found in institutional 

studies, and discusses the similar systems that have been brought to market.  

2.1 Papers and Studies 

This paper binds together research from three different fields: 

1) Personalization: zero-knowledge and metadata based algorithms 

2) Audio: distribution, content management, and deriving metadata 

3) Wireless technologies 
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The literature is rich with papers that span several of these fields. For example, Alghoniemy and 

Tewtik [AT00] propose algorithms that personalize and devise an optimal order for content. 

These algorithms operate under the assumption that metadata describing the content is available 

in advance. Khan and McLeod [KM00] review personalization relating to audio data specifically, 

and focus on the process of deriving content metadata using speech recognition. Furthermore, the 

metadata is stored ontologically for ease of conducting specific queries. This representation 

facilitates accurate searching of the corpus.  

 

Our work differs from these previous works in three ways. First, our proposed system is not a 

search engine. It does not query the corpus in response to a specific question. On the contrary, its 

sole task is to choose content rapidly and accurately from the corpus that the user will enjoy. 

Second, the proposed system does not assume that there is any metadata describing the content. It 

is capable of classifying a content item and determining which users to recommend it to, relying 

solely on user feedback. Despite this ability, it is still be able to use any available content 

metadata to form optimal recommendations. Third, we examine the personalization algorithm in 

the context of a complete content distribution and management system. 

 

The academic forum has conducted considerable research in the above three fields in isolation. 

This paper builds on several of these.  

 

Clustering Algorithms form the basis of the personalization algorithm presented in this paper. 

Extensive research demonstrates that clustering has applications that span numerous unrelated 

fields [HS86, AB84]. Jain and Dubes [JD88] provides a comprehensive general overview, while a 

description of Information Retrieval (IR) related applications are can be found in [Wil88]. These 

uses of the technique are a result of the Clustering Hypothesis [Rij79]. This insight establishes 

that relevant content items are more closely related to each other than non-relevant content items.  

 

2.2 Commercial Applications 

Outside of the academic forum, the software industry has conducted extensive research and 

development into technologies involving Personalization and Distribution of Audio. Much of the 

research is ad-hoc and the exact methodology is not public, but nonetheless it has provided 

insight into the feasible and interesting applications of this technology.  
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The necessity for personalization occurred during the Internet revolution of the late 1990s. At this 

time, a myriad of companies ‘realized’ the potential of the Internet and chose to place a vast 

supply of audio, visual, and textual content onto the web. The prevalent logic was that if 

something is accessible online, then consumers will buy it. In their haste to establish a presence 

online, these corporations failed to create a long-term plan to allow end users to search for their 

content. As such, everything may be online, but there was no way for the end user to ever find it.  

 

Search engines such as Yahoo, Excite, and Google sprung up to remedy this problem. Some such 

as Excite offered help in finding audio. These companies succeeded admirably in solving to 

problem of allowing users to find relevant content online. However, with the ability to find 

specific content came the realization that users do not know what content they desire. Any of the 

above search engines yield thousands of matches to nearly any query, but this is useless to such a 

user. The new goal has become personalization: to give the end user what he wants before he 

knows that he wants it. 

 

Examples of this application are varied and widespread. The goal of top Internet retailer 

Amazon.com5 is to aid customers in “Finding and Discovering” their merchandise. While the first 

verb is a standard searching algorithm, the latter is an entirely different class of operations based 

on personalization, ‘finding things that the customer wants before he knows that he wants them.’ 

Amazon.com created numerous personalization and clustering features for its web-store. Intricate 

knowledge of its customers’ habits both improved sales and allowed it to expand into new 

markets. Amazon.com discovered that their fast store of user book purchasing habits allowed 

them to predict music tastes. This insight allowed the company to dominate the online CD 

marketplace despite being a later entrant into this field.  

 

Similarly, advertising leader DoubleClick6 set up a network 

that spanned an estimated 10,000 websites. Through this 

network, the company could track the actions of a specific user 

and determine his or her preferences. By doing so, 

DoubleClick could tailor ads accordingly and produce a higher rate of sales.  

                                                        
5 http://www.amazon.com 
6 Site: http://www.doubleclick.com, Logo: http://www.doubleclick.net/us/images/logo.dc.gif 
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While the above descriptions focus solely on the process of marketing and retail, corporations 

have conducted additional development to personalize content presentation. TiVo7 created a 

hybrid Video Cassette Recorder (VCR) and content classification system. This device hooks up to 

a standard Television, and uses personalization algorithms to determine what kind of content a 

user enjoys. It proceeds to recommend new content for the user, and automatically records it for 

future playback. Numerous companies have devised audio personalization systems for the 

Internet, but none operate on the individual level. These 

sites involve segmenting by genre8 or catering to a specific 

group of people. These methodologies do not make use of 

complex selection algorithms or feedback mechanisms. As 

such, there is significant room for improvement within this 

field.  

 

Moving away from the topic of personalization, many 

firms have also been using the Internet for broadcasting radio content. Within the past 5 years, 

thousands of traditional radio stations have been simply broadcasting their content over the 

Internet. While technically feasible, legal community currently hinders this process. The 

Recording Industry Association of America [RIAA] recently chose to charge stations content fees 

three times higher than normal for webcasting. This is in addition to a host of rules concerning 

limitation on the number of songs that a station can play from a particular album or artist within a 

specified period9. Numerous web sites such as MP3.com and Launchcast.com have attempted to 

create online radio stations, with legal repercussions.  

 

Digital radio technologies exist on platforms other than to desktop computers. For example, 

Ericsson Telephone Co. and IBM are designing hardware systems to play audio content in 

                                                        
7 Site: http://www.tivo.com, Image Locations:  

http://a423.g.akamai.net/7/423/1788/4800507a0e5da6/www.tivo.com/images/home_logo.gif 

http://a423.g.akamai.net/7/423/1788/a11cf2100b64e1/www.tivo.com/images/home_act1.gif 
8 http://www.mp3.com,  http://www.emusic.com 
9 Wired. Webcasters in License Limbo. March 27, 2000. 

http://www.wired.com/news/technology/0,1282,34115,00.html 
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automobiles. Microsoft has designed the AutoPC operating system to run on these devices. GM 

has created OnStar, an in-dash computer to both aid the driver and entertain passengers.10  

3.  System Architecture 
We have created a system that is capable of recommending and delivering audio content. Using 

stored user information, the framework can formulate recommendations for each user, and 

facilitate playback for the user in a platform and bandwidth agnostic manner. The system can 

match thousands of audio content items with hundreds of users, using algorithms that are based 

on proven clustering, stochastic, and Information Retrieval methodologies. We also attempt to 

simulate a marketable functionality within this framework by placing and testing advertisements. 

Furthermore, we formulate and conduct a demonstration to test these algorithms. The purpose of 

this exercise is three-fold: 

1) To test the accuracy of these algorithms 

2) To test the limiting hardware, software, and network load of these algorithms 

3) To provide a positive and intuitive user experience 

 

To demonstrate the process of tailoring discrete audio content on a per user basis, we created a 

novel system. This client-server system is pictured below, and Figure 1 below provides a high-

level snapshot of the components, together with a visual representation of the devices involved. 

 

                                                        
10 New York Times on the web. Microsoft Announces Windows in Cars. By AP. 

http://www.nytimes.com/aponline/technology/AP-Microsoft-Autos.html 
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Figure 1: The Components of Our System11  

 
 

From left to right in the above diagram, we explain several critical components in detail below: 

1) The Client [Section 3.1] 

2) The Internet connection between the client and server [Section 4.2] 

3) The Personalization Engine [Section 4.1] 

4) The database [Section 5.2] 

 

We formulated this model to make as few assumptions about the client as possible. Under the 

current system, a minimal client needs only the ability to connect to the server via HTTP, be able 

to download audio content, and be able to play it back to the user.  

                                                        
11 Portable Devices Image: 

http://www.microsoft.com/mobile/pocketpc/wireless/images/wire_hmbuzz_1.gif 

Server Image: http://www.dell.com/images/global/products/pedge/rack_4210.jpg  
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3.1 The Client 

Under the current model, many devices can function as a client. The client can be a Pocket PC 

that the user carries around during the day. The client can be an autoPC, which is permanently 

located in the user’s automobile and only has sporadic access to the Internet when it happens to 

be in range. The client can be a personal computer that is located on a stationary desktop and has 

a permanent connection to the Internet.  

 

The client has three requirements: 

1. A method of playing audio to the user 

2. A method of communicating with the server 

3. A method of downloading content to play immediately, or storing it until the correct time. 

 

The client has several optional requirements: 

4. A Feedback Mechanism, with the ability to store results until the device comes back into 

contact with the server 

5. A GPS device [if mobile] 

6. An onboard method of selecting from stored content based on GPS information 

 

The second requirement is that the client be able to communicate with the server. At present, the 

accepted protocol is HTTP due to its ubiquitous nature and compatibility. However, there is no 

unique aspect of HTTP that makes it the sole choice. The system might integrate other protocols 

in the future. 

 

The client uses a three-stage protocol to obtain content. First, it must authenticate its identity to 

the server. The server responds by acknowledging the client. Second, the client must request new 

content. The server responds with the identification codes of the recommended content. Third, the 

client submits the content identification codes to the server. The server responds with the 

complete content file.  

 

Note that the client is then free to play the content for the user immediately, or cache the content 

for future playback. The client is also free to cache the recommended codes and download the 

content in the future. This flexibility proves useful in adapting the protocol to the wireless 

environment presented in Section 4.2.  
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Figure 2 – A visual representation of the 3 stage protocol between the client and the server.   

 
 

The third requirement is that the client possesses a method to download content for immediate 

playback, or the facility to store it until the correct time. In short, the client must have a real-time 

connection to the Internet so that it can stream content directly, or it must have a cache so that it 

is capable of downloading content in advance and storing it for play later.  

 

Within the above parameters, it is possible to build many forms of clients. We have experimented 

with four types. First, it is possible for the client to be a web page, which plays content within the 

Internet browser. Second, it is possible for the client to be an external plugin to a web site. 

Thirdly, the client can be a completely separate application able to download content and play it. 

Finally, the client can be a standard MP3 playing device that can interface with software that 

fulfills the three aforementioned requirements. 

3.2 The Server 

The server is the more complicated entity in the system. It must perform 5 core tasks: 

1) Communicate with the client over a network, 

2) Create, authenticate, and manager user accounts, 

3) Track all data and metadata about each user and content item, 

4) Formulate recommendations based on this data, and 

5) Selectively hand out content. 

 

Client-Server communications use the HTTP protocol because it is ubiquitous and flexible. 
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We use CGI to create, authenticate, and manage user accounts. We store the results in a SQL 

based database. Similarly, we store all available user information in numerous database tables. 

We describe these scenarios in detail in Section 5.2. 

 

The recommendation engine is our most complex task algorithmically. It uses all available 

information to choose content items for users within a given set of constraints. We discuss this 

algorithm in depth in Section 4, and optimized in Section 5. 

 

4.  Recommendation Model and Algorithms 
There are two principle algorithmic areas in this paper. First, we present the algorithms 

responsible for the personalization and ordering of the recommended content. Second, we discuss 

the protocols and algorithms required to resolve issues encountered within a wireless framework.  

4.1 Personalization Algorithm 

Before describing a Personalization Algorithm (PA), it is necessary to define its functionality in 

detail: 

 

A Personalization Algorithm uses available information (1) to choose a subset (2) of 

the content in a specific order (3) within time and space constraints (4) to optimize 

utility (5). 

 

This definition requires elaboration. First, we assume that the PA has available all of the 

information that the current user as well as all other users has provided to it. These consist of both 

past recommendations to the users, their feedback, existing or derived metadata describing the 

content, and metadata describing the users.  

 

Second, we define the output of such an algorithm as an ordered subset of the audio corpus.  

 

Third, the content may provide different utility if played in a certain order. For example, the user 

may derive utility from listened to content which is similar in genre, or possibly with alternating 

genres [AT00]. There may also be an advantage to playing content at a certain time. The order of 

play dictates the exact time at which the client presents a content item to the user, and so it is 
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significant. Finally, it may be desirable to provide ‘instant gratification’ to the user to improve 

their initial impression of the system and improve retention. Thus is may be beneficial to present 

the content item with the highest estimated utility first. As such, an algorithm can have different 

priorities when determining an ordering. 

 

Fourth, constraints may limit the type, size, or length of content that may be recommended. For 

example, the client device may have a fixed cache size that can only hold 10 megabytes of data. 

Alternately, the data may have an associated cost, for example, if the user has to pay 10 cents per 

content item and she has limited her spending to 2 dollars per day, the utility per unit price metric 

must be optimized and its constraint followed.  

 

Fifth, utility is defined as ‘the amount of benefit that the user receives’ from the recommended 

content. It is an extremely difficult and hard to quantify problem to perfectly assess utility for a 

human. As such, an estimation function is the best that the system can do to predict how much 

utility a content item will provide for the end user.12  

 

Consider the algorithmic implications. As defined above, the PA problem is NP-Complete.13 

Since the academic community considers this category of algorithm to be intractable using 

present computing methodologies, we must either pare down the definition or begin examining 

approximation functions. We investigate two methods to simplify the computability of the 

problem. First, we stochastically filter the set of content items. This has several implications. The 

most important us that we generate a smaller input set, which can reduce an intractable problem 

to a problem that can be computed in real-time. The implication of this operation on the quality of 

the algorithm is minimal, as is shown in the following section.  

 

                                                        
12 Though we politely glossed over this detail, note that the fifth point could be defined alternately. 

Currently the algorithm will optimize the utility of the user. It is equally possible to optimize the utility of 

other parties related to the system. For example, the creator of the content, who will perhaps be selling each 

item at a specific cost, would optimize her utility by a maximum profit. It is similarly possible to jointly 

optimize the sum of the users’ utilities. While this is feasible, we will commence by focusing solely on 

optimizing the one user’s utility. 
13 The 0-1 Knapsack problem reduces to the PA algorithm.  
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The second option for simplifying the Personalization Algorithm is to fill the recommendation list 

with items using a greedy algorithm instead of the optional 0-1 knapsack methodology. While 

this step would reduce the running time to a computable level, it may influence quality. Note, 

however, that if we limit the scope of the possible constraints imposed by the client device, a 

greedy algorithm may still yield an optimal solution. If the only constraint the number of songs 

that could be given to the client, then the greedy algorithm would function optimally. On many 

streaming clients, this is the only constraint imposed, and thus it is worthy of consideration.  

  

Figure 3: The process of generating recommendations 

 
 

The Personalization Algorithm: 

1) Begin with the full corpus 

2) Stochastically Filter Content to create a workable sample size 

3) Create a knowledge vector for each item in the sample 

4) Estimate Utility of each item in the sample using clustering methodologies 

5) Use 0-1 knapsack problem to fill up the recommendation list  
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Utility Estimation 

The Utility Estimation in this project is based on prior work on Clustering Algorithms in the field 

of information retrieval [APR99], and in particular its use in filtering [APR00]. The core to the 

Utility Estimation process is based on a offline clustering algorithm. 

 

Building on the definition of a PA, it is necessary that we define a method to represent all of the 

available information within the system in a manner that allows convenient estimation of utility. 

Using Clustering intuition as a guide, we formulate our data into a similarity graph, which is 

defined as an undirected, weighted graph G = (V,E,w) where each vertex corresponds to a content 

item. Furthermore, we add one vertex to the graph G for each user. Each edge weight corresponds 

to the similarity between two items. We measure similarity between two documents by using a 

metric that is standard within the Information Retrieval field. The cosine metric in the vector 

space model of the Smart information retrieval system [Sal91, Sal89] has been used extensively.  

 

The vector space model within our Utility Estimation function contains seven different categories 

of dimensions. Each of these represents a type of data used to estimate utility. There is no 

fundamental difference between these categories, and they are all formulated such that the cosine 

metric will function without modification. We use these divisions to emphasize the different 

sources of the data, since user and content vertices are filled using different mechanisms.  

 

The seven categories of dimensions are as follows: 

Category Content Data User Data 

1) Content Ratings. n dimensions 

are allocated for content, where n 

equals the number of content 

items.   

Content j receives a 1 in 

dimension j, and a 0 in all 

other content dimensions 

0 for all unrated content. The 

rating, positive or negative, for 

each rated content. 

2) Temporal Rating. 24 

dimensions for hours. 365 

dimensions for days. Or as many 

as applicable. 

0 if no applicable temporal 

rating. Above zero if it is tuned 

for a specific time or date. 

Set the current time and date with 

a rating of 1. Create a bell curve 

ahead and behind. 

3) Spatial Rating. 3 dimensions, 

x-y-z. These are applied to 

longitude, latitude, and altitude 

0 if no applicable spatial 

rating. Above zero if it is tuned 

for a specific location. 

Set the dimensions equal to the 

current location. 
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and aid in geographic relevance.  

4) Attribute Rating. m 

dimensions are allocated for 

attributes, where m equals the 

number of attributes.  

0 if the content does not 

possess that attribute. 1 if it 

does. [or higher as applicable] 

0 if the user is neutral on that 

attribute. 5 if the user is in favor. 

50 if the user would like to listen 

to this attribute exclusively. 

5) Frequency Rating. n 

dimensions are allocated for 

content, where n equals the 

number of content items.  

Content j receives 0 if it does 

not diminish in frequency. 

Above 0 if it does. 

Negative if the user has heard the 

content j recently. Positive if the 

user has not heard the content 

recently. 

6) Popularity Rating. 1 

dimension 

Sum of all of the user vectors 

assigned to the song in the 

content rating 

1  

7) User Rating. w dimensions 

were w is equal to the number of 

users 

Dimension k contains the 

rating of this content by user k. 

Dimension k contains Similarity 

rating with user k as described in 

the User to User Comparison 

section below 

 

The result of this representation is a high-dimensional vector space. Once formulated in this 

manner, the model can compare any user with any content item to determine the similarity 

between them. By construction, similar users and content items map to nearby vectors. In the 

vector space model, similarity equals the angle between the corresponding document vectors. The 

standard in the information retrieval community is to map the angles to the interval [0,1] by 

taking the cosine of the vector angles.  
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Figure 4: The following are sample dimensions within a User Vector and a Content Vector. 

The vectors below depict the Content, Attribute, and Popularity Dimension. In this 

particular instance, the user has not rated this content item before. The user has also 

exclusively requested News [as shown by the high bar in the News dimension]. Since the 

content item is a news attribute, when these vectors are multiplied, they produce a high 

value that denotes similarity.  

 
 

Given the nature of the algorithm, three applications are presently feasible. User-to-User 

Comparison and User to Content Comparisons are vital in order to perform the operation. 

Content-to-Content comparison is of interest within the clustering field, but is not used within the 

context of this paper.  

 

User to User comparison 

This process is an intermediate step in formulating the user Information Vectors, specifically 

filling in the User Rating category of dimensions. The critical insight is that we can determine 

which users possess similar tastes to the current user, and then factor in their content ratings 

accordingly to aid in formulating future recommendations. Only two categories differ in User-

User comparisons: Attribute Rating and Content Rating. As such, we can construct vectors for 

each user leaving all but these two dimensions at zero, or simply leaving out the extraneous 

dimensions. We then determine the cosine of the vector angles to determine the similarity 

between the users. The algorithm then places this result in the User Rating dimensions, and it aids 

in User to Content Comparison. 
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The justification for this critical insight stems from Dense Star-Shaped covers as presented by 

Aslam, Pelekov, and Rus [APR99].  

 

The intuition of this result is as follows: 

Assume that the similarity between person 1 and person 2 is 0.9. Furthermore, we know that 

person B heard a content item and rated it highly. Person A has not heard this content item yet. 

However, we can infer that person A is likely to enjoy this content item.  

 

Since we have defined users and content items within the same vector space, we can compare 

them directly. The mathematically rigorous proof of this statement is as follows: 

 

Consider three Information Vectors U1, U2, and C. U1 and U2 represent the two users described 

above, while C represents the content item. These entities are vertices of a star-shaped subgraph 

of graph G, which has a threshold of σ. We can assume that σ < 0.9 and that the similarity 

between U2 and C is greater than σ [lets say 0.7]. U1 and C are satellite vertices and U2 is the star 

center. We obtain the similarity coefficients in the vector space model by s calculating the cosine 

of the angle between the information vectors of each document.  

 

Fact 1 Let Gσ be a similarity graph and let S1 and S2 be two satellites in the same cluster in Gσ. 

Then the similarity between S1 and S2 must be at least [APR99] 

 

Equation 1:  cos(α1 + α2) = cos α1 cos α2 – sin α1 sin α2 

 

Using the numbers stated above, we conclude that the similarity between User 1 and the content 

item must be a minimum of:14 

 32.0)9.0(1)7.0(1)9.0()7.0( 22
!"""•  

 

While the above result does not imply a strong match, it mathematically proves that User 1 is 

likely to enjoy the content item C. Note further that this result is a worst-case scenario, and it is 

possible that a stronger match is present.  

 

                                                        

14 Note that sin !! 2
cos1"=  
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Having established that our intuition is mathematically grounded, we show that it is computable 

within the vector model. Recall that we constructed the User Rating set of dimension so that the 

user vector contains the similarity between the current user and user j [cos α1], while the content 

vector contains the similarity between user j and the content item [cos α2]. Multiplying these two 

items in a vector multiplication yields the first term in the equation 1. We will proceed to show 

that this is sufficient to provide useful results.  

 

Equation 2:  cos(α1 + α2) !  cos α1 cos α2 as cos α1 approaches 1 

 

Since the construction of the user vector only includes the users that are similar, we conclude that 

(cos α1) approaches 1. If this is the case, then the second term will approach 0 regardless of the 

value of cos α2. Thus, the remaining value is the first term, and our approximation is correct. 

 

User to Content Comparison  

The previous section describes the process for constructing the vector for each user vertex within 

the similarity graph G. At this point, we are ready to discuss the process of determining m 

recommendations.  

 

The recommendations are currently optimal within the Stochastically selected sample set. We 

sample to reduce the running time of the algorithm. For example, assume that we draw k items 

for each item needed. We assume that the similarity of documents to the user is distributed 

uniformly about the range [0,1]. The average quality of the resulting documents can be estimated. 

According to statistics, if we draw k items from a uniformly distributed range of [0,1], then the 

expected maximum is (1-1/k). Assuming that (the size of the corpus) >> (the number of 

User to Content Personalization Algorithm, choose m items: 

 

1) Pick the user in question V0 

2) Stochastically pick n content items, V1-Vn, where n > m 

3) Create edges between (V0, Vi) for all i between 1 and n  

4) Calculate the weights of the edges according to the cosine of the vector angles 

5) Perform the 0-1 knapsack algorithm to choose the optimal items within constraints. If no 

constraints or n is too large, then use a threshold to greedily take the top m items. 

6) Sort the items according to the optimal time ordering if applicable 
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documents sampled), then we can assume that each drawing is independent. Thus if we draw k 

samples m times and take the maximum each time, then the average quality of the results will be 

E[1-1/k]. As k grows, the marginal benefit of this extra sampling shrinks asymptotically.  

 

Within the model using Stochastic sampling, we state a desired expected quality. In the case of 

the demonstration, we used 90%, which resulted in a k of 10. In comparison to using the full 

corpus, the running time of the algorithm is significantly reduced since we are using a fixed 

constant as opposed to a variable input equal to the size of the corpus.  

 

Stochastic filtering prevents an optimal outcome. This is helpful a helpful feature. Without some 

randomness injected into the system, it is likely that the recommendations for a user would settle 

at a local maxima. The filtering allows the system to attempt slightly sub-optimal content items to 

check user feedback and change accordingly.  

 

Ordering Algorithms 

There are numerous methods for choosing the ordering of the content. Alghoniemy and Tewtik 

[AT00] describe situations that allow the algorithmic optimization of content ordering in response 

to the users’ preferences. The algorithm could perform this process at step 6 above to determine 

the proper order to place the items. 

 

We presently choose to optimize for ‘instant gratification,’ by sorting the content in decreasing 

order of similarity number. Exploring in depth other efficient manners to extract ordering 

preferences from the data remains an important research topic.  

 

Exclusive Categories 

One of the requirements within our model is that the user be able to choose to listen to a 

particular category exclusively. For example, a busy person on the way to work may decide to 

listen to the news, weather, and nothing else during the short commute. The algorithm can 

account for this by assigning an extremely high value on the user’s Attribute Rating segment for 

those particular items. Within the algorithm, vector dimensions generally have a magnitude 

between [0,1]. By placing a magnitude of 100 on an attribute causes it to dominate all other 

factors, and ensures that the personalization algorithm chooses items in this category exclusively. 

The other dimensions are still be counted accordingly for personalization and ordering purposes. 

Thus, the concept of an exclusive category can exist within the vector similarity model. 
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Advertisements 

In some applications, the algorithm must interlace advertisements with the content. To fulfill this 

requirement, it is simple to grant a particular category a bonus by predisposing each user towards 

it. The PA fulfills this goal by assigning each user to have a value of 1 [or higher] in the 

advertising Attribute Rating. This ensures that advertisements are presented within the model and 

do not swamp the regular content. Advertisements can also possess additional attributes, allowing 

the PA to select advertisements based on their other traits accordingly. The algorithm will target 

users with advertisements that they are likely to enjoy. See Appendix 1 for a discussion of the 

marketable features of this approach.  

 

4.2 Wireless Considerations 

Wireless devices can fit within the previously established framework, but they do require 

significant variations. First, wireless devices are often capable of movement. Thus, user location 

becomes a particularly valid attribute when formulating recommendations. Second, wireless 

devices often have a tenuous connection to the network, or do not have sufficient bandwidth to 

connect at speeds which are capable of downloading content in real-time. Third, wireless devices 

might connect to networks that rely on multicasting. This aspect is inherent to satellite and 

various wireless broadband technologies. While these three facets are not confined to wireless 

devices, connectivity variations are especially extreme in the context of wireless devices. As 

such, we discuss these connectivity issues together in this section. 

 

Real-time Connectivity 

We define Real-time Connectivity as the ability to download and play content in real-time. The 

category of devices that possess this attribute includes most desktops and any device on a 

wireless network of sufficient speed. The advantages of this category of device are multifold. 

First, the device can query the personalization often to yield more accurately recommendations 

based on up to date information. The PA can account for variables such as time and location that 

are subject to frequent fluctuations. Second, these devices can play audio directly off the network, 

and do not need to cache content. This aspect results in a cheaper device since they does not need 

caching functionality.  
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Slow Connectivity 

A device with slow connectivity is capable of communicating with the server at anytime, but it is 

not able to stream content fast enough to play it immediately. Two primary mechanisms can 

compensate for this deficiency. First, the device must be able to cache content. This ability allows 

the device to spend its idle resources downloading content for use later. Caching also allows the 

device to reuse existing content, which both occupies the end user and frees up bandwidth for 

downloading new content. A second compensation mechanism is to transfer content in a more 

concise format. The client device can then use increased processing power to present it to the 

user. An example is to transfer content in textual form and require that the client use Text-To-

Speech software to convert it before presenting it to the user.  

 

Slow connectivity still assumes that the client can query the server at any time. The client can still 

receive new content selections in adjustment to factors with high variability such as location. A 

device which can download textual information in real-time, coupled with a Text-To-Speech 

module reduces this problem to the aforementioned Real-time Connectivity case. 

 

The format of the content warrants discussion. Content is stored and transmitted in a concise 

format for two primary reasons. First, the client could store more content in less space. Thus, the 

client could have less storage and thus be cheaper to manufacture, or that the client could store 

more content in available space. Second, if the audio file is smaller, then the bandwidth required 

to fulfill the definition of Real-time connectivity it reduced. For these two reasons, we chose the 

MP3 format for the demonstration. It is approximately an order of magnitude smaller than a 

WAV file of equivalent quality, and is nearly as ubiquitously accepted. As such, within the 

context of this paper, we define Real-time connectivity as 17kBps. If we had chosen an 

equivalent WAV file, real-time connectivity would have been approximately 100kBps. 

 

Sporadic Connectivity 

A device with sporadic connectivity is capable of communicating with the server only during 

certain intervals, while the rest of the time it has no connectivity whatsoever. To compensate, the 

device requires a cache. However, it also requires sufficient predictive abilities to compensate for 

the lack of any direct communication with the server. One possibility is to download content in 

advance and use an onboard predictive engine can pick from the available media on the fly based 

on current data. Such a device also needs to cache any user feedback for uploading later.  
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The sporadic connectivity case requires a larger cache even more than in the slow connectivity 

case. The former has a significantly longer lag between updates from the server and requires more 

onboard content to avoid being repetitive.  

 

Multicast Downloading 

A current technology is fast-multicast download coupled with slow or non-existent upload. These 

qualities are present in various satellite networks, cable, and digital radio stations. The advantage 

of this technology is that it is already in place, and that it requires significantly less processing 

power and bandwidth on the part of the server since it does not need to connect to each device 

individually.  

 

Three mechanisms allow the model to function using this technology: 

1) Client intelligence 

2) Server Prefixing 

3) Server Confirmation 

 

Client Intelligence implies that the client possesses a minimized version of the Personalization 

Algorithm. It also implies that the server must broadcasts each content item prefixed with its 

attributes. This process allows the client to create an information vector for the content item as it 

arrives, compare it to the user to determine its similarity, and then compare the similarity rating to 

other items in the cache. If the quality of the item in question exceeds the items in the cache, then 

it will be stored and played for the user. If it is not likely to exceed the utility of the items in the 

cache, then it will simply not be stored. A client using this model needs a cache and enough 

processing power to run a version of the PA. 

 

Server Prefixing assigns the server the task of deciding which content the client should store. The 

server prefixes each content item with a header that lists all of the users that should download it 

and store it in their cache. The client can thus be simpler, all it needs to do is read the header, 

check if it is one of the listed users, and then choose whether to store the content item for later 

playback. 

 

Both of the above options assumed that the client could not communicate with the server directly. 

Server Confirmation makes the assumption that the client has Slow Connectivity available. In this 

model, no prefixes are required for each content item. The client must occasionally send a 
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message to the server asking about content items. For example, the client may cache 10 

broadcasted content items. It then communicates with the server and checks if it should play any 

of these items for the user. If the server responds with a message stating that they are not likely to 

generate utility, then they will be not be stored, and the process is repeated. This method has the 

advantage that it will continually update the selection with recent items, but has the disadvantage 

that the cache is constantly churning. 

5.  Experiment 
In order to test the functionality of this system, we have created a demonstration. For these 

reasons, a demo was created. It was small scale. The specifications were as follows: 

 

The purpose of the demo was to act as proof of concept for the algorithms and system. As such, 

numerous questions need to be answered: 

 

First, can it be done? Is it possible to implement these algorithms to distribute content to users on 

present day architecture at a reasonable cost? This small-scale demo simultaneously identifies 

difficult to implement software modules and costly hardware units.  

 

Second, can it be used? In order to make this project market friendly, the desired user has 

minimal computer knowledge. Can they use the system correctly and find it to be functional? 

 

Third, what processes are required in a large-scale application of this concept? What are the 

bottlenecks within the software that would be difficult to scale? 

Goals for the Demonstration 

 

Users:  50-100 Dartmouth Undergraduates, Graduates, and Faculty 

Dates:   May 11, 2001 – May 26, 2001 

Content: A mixture of News [The Daily Dartmouth, online news sources], 

Weather, Music [local bands, free music, classical, user’s 

personal collection], Stock quotes, Local Events, ads, User 

Generated content [i.e. – Radio shows] 

Content amount: 1 hour of new content per day 

Ads:  10+ local businesses 
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5.1 Client Details 

We designed our system for four types of client software.  

 

Stand Alone Client 

We wrote the earliest client for Windows, in C++ using the MFC libraries. The name of this 

program was ‘The MusicBox Project’ and Figure 5 contains a picture of it. It existed as a 250k 

executable that required no installation. It conducted authentication of the user’s identity through 

the Dartmouth Name Directory. This client used an embedded copy of Microsoft Media Player to 

stream content. It used HTTP to communicate with the demonstration server, and assumed real-

time communication. As can be seen on the image below, the interface of this program consisted 

of three primary sections.  

 

In the top section contained 5 content items as a subset of the corpus. The user could select which 

content item would begin playing. This limited sampling allowed the recommendation engine to 

acquire preliminary user preferences without giving the user direct control over all of the content 

available.  

 

The middle section contained the current playlist of five content items, and allowed the user to 

view the upcoming selections. 

 

The bottom section allowed the user to rate and skip content items. The rating simple rating 

system included one negative button [“Ding”], which recorded a negative rating and caused 

interface to skip to the next content item. There was also one positive rating button [“Good 

Song”], which merely recorded this fact and kept playing. The “Suggest” button prompted the 

client to load 5 new suggestions from the server. Finally, the user could skip through the song, 

control the volume, or pause it using the standard Media Player interface on the bottom left. 
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Figure 5 – The layout of a Windows Stand-Alone Client 

 
 

We distributed this program to 20 Dartmouth undergraduates and received positive results. 

Feedback included the desire to add one’s own music to the selection, and the desire to rate items 

more directly so that the client would learn tastes more rapidly. 

 

The server was set up to communicate with this client via CGI scripts. The client would query the 

server using the protocol shown in Figure 2. 

 

Web Browser Based External Client  

While the above client functioned very well, it was desirable to create a client which A) was 

system agnostic so that it could run anywhere B) had no installation or binaries. The solution was 

to create a client that ran entirely within a Web Browser.  

 

The technical aspects of the solution require more explanation. In this model, the client does not 

exist as a standalone program. Instead, the server generates the HTML code that forms the client. 

The protocols still work in the same fashion in that they transfer the same core information. The 

server now must embed that data in human readable HTML, which contains the link to the next 

step in the protocol. For example, the user first goes to the starting page, and the server presents a 

web page with a login form [stage 1 of the protocol in figure 2]. The user fills in her name and 
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submits it to the server, at which point the server authenticates. If it is successful, then it replies 

with a web page linking the user to request content from the recommendation engine [stage 2 of 

the protocol in figure 2].  

 

The main difficulty was that not all web browsers are created equal. Specifically, we cannot 

assume that a web browser has the ability to play audio content. Even the browser could play the 

sound file; there is no ubiquitous manner to direct a browser to play multiple files in order. As 

such, the remaining solutions were to use external programs to accomplish this goal.  

 

Fortunately, the HTTP technology has a near universal method of executing a specific application 

using a downloaded file. All that is required is that one sends the file with the correct MIME type. 

The browser spawns a copy of the desired program and directs it to open the file. The desired file 

type was a playlist M3U file. The MIME type is “audio/x-mpeg”. This activates an audio player 

and sends it a playlist with one URL per line. Similar applications exist for all platforms. 

 

The client architecture is thus consistent with the original protocol. The playlist is now the 

response to the request for content. The external audio player conducts the third stage of the 

protocol by downloading the required content items and playing them directly. An additional 

feature is that one can setup the playlist with embedded titles for each content item. Many 

applications display the titles correctly, while the rest politely ignore it. 

 

Figure 6 – The data flow in a Playlist based external system. The browser receives the 

playlist, and forwards it to an audio player. The player then streams the content. 
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Advantages 

1) This methodology is completely platform independent. The only assumptions are that the 

end user has an audio player, and that your web browser’s MIME types are set up 

correctly. 

Disadvantages 

1) There is no method within this model to add new content once the playlist is exhausted. 

2) Digital Rights Management is currently impossible in a system neutral manner 

3) It is extremely browser dependent on how to set mime types, and this should not be a task 

for those unfamiliar with computers. 

4) There is no mechanism custom rating mechanisms within the external audio player. In 

fact, the server never knows what application it is. 

 

Unfortunately, there are no remedies for the first two disadvantages. The third can be resolved 

with extensive and user-friendly documentation on how to set up the programs correctly. 

However, we can minimize the fourth disadvantage by carefully constructing the playlist. While 

it is not possible to directly determine what content the user listens to, we know that the external 

player attempts to download every item on the playlist as it encounters them. Thus, it is possible 

to interlace URLs to scripts between every item on the playlist. After finishing content item #1, 

the external player tries to access the script that immediately follows. This script has its 

parameters specified so that it alerts the server that content item #1 just finished and content item 

#2 will begin next. The server notes this information and the time that it arrived. The script then 

returns a sound file containing a fraction of a second of silence, which prevents the external 

player from recording an error. 

 

With the recorded information, it is possible to make numerous inferences as to the actions of the 

user in relation to the external player. For example, suppose that 9 seconds after the script in the 

above paragraph was called, the server is alerted that the user has finished item #2 and will start 

listening to item #3. The server checks and realizes that item #2 is a three minute long song. As 

such, the server can infer that the user must have skipped item #2. At this point, it infers that the 

user did not like that song, and rates it accordingly. The server can make two additional 

inferences in other circumstances. First, if the user jumped to a non-contiguous item on the 

playlist and listens to it in full, the server can not only infer that she did not like the original song, 

but also infer that she must have liked the second one. Secondly, if the user skips from one 
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content item to a new item and does not listen to either in full, then the user liked neither, so the 

server rates these items accordingly.  

 

This solution works extremely well in practice. We tested this mechanism extensively in the final 

demonstration, and no users had any negative comments on this system. A visual example of this 

system running in MacOS using the SoundJam audio player is below in Figure 7. As is visible in 

the background, the client is running in Netscape, and it has spawned a copy of SoundJam to play 

the audio. The “s.cgi” files represent the interlacing scripts. While it is possible to embed the title 

of content items within a playlist file, many applications politely ignore them. While the protocol 

works correctly, the URLs are not helpful in identifying the content item. 

  

Figure 7 – An external player [SoundJam] used by the system for a Macintosh 
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Internal Web Browser Client 

While the Sound Jam browser-neutral technology is useful in theory, in practice its disadvantages 

weigh heavily on this method. Foremost, it is quite difficult for novices to set up the MIME types 

correctly. In particular, many popular Apple audio players do not process playlists. In the 

consumer sector as a whole, Windows encompasses approximately 95% of Internet traffic. 

However, within the test population at Dartmouth College, Apple computers account for 

approximately 66% while Windows computers make up the remainder15. Internet Explorer 

encompasses approximately 90% of the Windows based traffic.  

 

Windows is a significantly easier platform to work on for Internet based clients. The primary 

reason is that Windows is bundled with standard audio and Web Browsing software. As such, it is 

extremely likely that all the software that the user requires to run a web-based client is already 

present on his or her home system. Given the significant attrition during a lengthy software 

installation and the desire to obtain a very high participation rate, we used a specific web site for 

the Windows platform. Aside from the use of a different but compatible plugin, the Netscape for 

Windows platform functions in the exact same manner as Internet Explorer for Windows.  

 

The Windows version of the web Client functions in nearly the same manner as the 

aforementioned system agnostic-version. The primary difference is that instead of relegating the 

audio playback to an external program, it is played within the browser as seen in Figure 8. 

 

                                                        
15 Stephen Campbell, Head of Dartmouth Network Services 
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Figure 8 – The layout of the In Browser Player for IE for Windows 

 
 

Note that the controls are extremely similar to the standalone client presented earlier. This client 

requires no setup whatsoever. It also allows content to be rated in a manner consistent with the 

other clients. 

 

Within the demonstration, the server automatically determined which Operating System and 

browser the client was using, and presented the content using the appropriate method. The user 

was also capable of overriding these default settings if that proved necessary, though none of the 

users within the study found it necessary to do so. 

 

Portable devices 

We tested portable devices for compatibility with the demonstration. The server is capable of 

generating a playlist of songs and allowing the user to download them to a directory on their 

personal computer. At this point, it can be transferred to any the portable device for future 

playback. The devices tested include a Cassiopeia 115 and a Rio MP3 player. However, there is 

no theoretical reason why this methodology would not function with any current MP3 playing 

device. 
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5.2 Server Details 

The server side of the demo is by far more complex than the client. It has four primary modules 

that are each be discussed in detail:  

1. CGI Scripts 

2. MySQL database 

3. HTTP server 

4. FTP server 

 

CGI Scripts 

We developed the entire personalization algorithm in a Common Gateway Interface. This format 

rendered it accessible to the client through the HTTP server. The program was implemented in 

ANSI C++ using MySQL libraries to communicate with the database. The executables were 

capable of identifying the variety of client though the HTTP protocol and tailoring its 

communication mechanisms accordingly. For example, the CGI scripts were capable of 

generating HTML websites for Browser Based clients, or stripped down Comma Separated Files 

(CSV) data for the Stand Alone client. The scripts are capable of receiving commands via GET or 

POST methods within HTTP.  

 

The server contains only one CGI file. It would run all of the functionality of the program 

depending on the CGI parameters that used when calling it. The primary parameter is the “cx” 

flag, which states the function. The chart below described the seven primary system tasks. They 

operate for all of the client platforms.  

 

CX =  Action Auxiliary CGI Parameters 

Login Login to the system ID, Password 

Recommend Produce a list of recommended content items Number of songs 

Create Create a new account ID, Password, Name, Class 

Rate Rate a content item ID, Content ID, Rate 

Listen Inform the server that client listened to an item ID, Content ID 

Addcontent Allows the user to add or upload content URL, Content, Name, Source 

NULL Login page in the web client  
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Recommend is the most processor intensive function. It runs the algorithm as described in 

Section 3.1. We implemented numerous optimizations to improve the running time, which are 

described in Section 5.4. 

 

HTTP server 

To be accessible to the client, we assumed that all forms of the client were able to communicate 

though the HTTP protocol. As such, the server was equipped with an HTTP server. This 

component allows the client to download recommendations and streaming content. 

 

MySQL database 

We used MySQL to handle all data storage and retrieval aspects within this demonstration. This 

software is free, robust, powerful, and quick enough for the standard and stress tested user load. 

The system made use of nine tables. Six are for user information, two are for content, and the last 

is for setting up a metadata hierarchy. 

 

1) Users 

2) User Attributes 

3) User Preferences by category [meta-data] 

4) User Ratings [preferences by individual content item] 

5) User Listening History 

6) User Listening Temporary 

7) Content 

8) Content Attributes 

9) Preference Hierarchy 

 

Table schemas: 

 

Users 

user_id  id password    first_name last_name   creation    

int(11) varchar(50) varchar(50) varchar(50) varchar(50) timestamp(14) 

 

The user table stores all data that is unique to the user and is required for identification and 

authentication. The id and password are used for logging in. The first_name and last_name allow 

us to identify the user and contact her if necessary. User_id is the unique key for this table. 
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User Attributes 

user_id  attribute_name  attribute_data 

int(11) varchar(100) varchar(100) 

 

All optional non-preference related user data is stored in the User Attributes table. This open 

architecture allows us to define new attributes later without altering the tables. Client settings and 

email addresses are examples of attributes that are stored in this table. 

 

User Preferences 

user_id  pref_id  pref_data Time 

int(11) varchar(100) varchar(100) timestamp(14) 

 

User preferences stores category ratings. For example, if the user states that he likes music 

[category 4], then the pref_id will be 4 and the pref_data will be a positive number designating 

how much the user approves of this category. Items in this table are used as part of the preference 

engine. 

 

User Rating 

content_id  user_id  rate  Time 

int(11) int(11) float timestamp(14) 

 

When a user rates a specific content item, the result is stored in this table. Content_id is a foreign 

key into the Content table and user_id is a foreign key into the User table. Rate is a value 

symbolizing the rating. It is a float to allow it to be modified according to future research. 

 

User Listening History 

content_id  user_id  Time 

int(11) int(11) timestamp(14) 

 

This table stores the approximate time when a user listens to a content item. Different schemes of 

the system place it either at the beginning, the end, or when the server confirms that the user has 

played the song. The exact time is not required. This table is used in the recommendation process 

to ensure that a content item is not repeated too often. 
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User Listening Temporary 

content_id_next user_id  time 

int(11) int(11) timestamp(14) 

 

This table is used in the Web Browser Based External Client in order to implement the inference 

engine. It stores the next song that a user will listen to.  

 

Content 

content_id  name type_id     user_id     creator     creation    

int(11) varchar(100)   int(11)        int(11)        varchar(100)   timestamp(14) 

 

All identifying information about a content item is stored in the content table. Content_id is the 

unique key within this table. The field name is the human readable name of this item. The field 

type_id is a binary type identification of the item. The field user_id determines if a single user is 

allowed to play the item. The field creator identifies the artist in the case of music, or author in 

the case of a text article.  

 

Content Attributes 

content_id  attribute_name  attribute_data 

int(11) varchar(100) varchar(100) 

 

All additional metadata on a content item is stored in the Content Attributes section. This data is 

used to aid in the recommendation process.  

 

FTP Server 

Though this section has no direct impact on the user experience, the FTP server is required in 

order to place content onto the system. After files are added, they must further be registered with 

the personalization. This process adds the content to the SQL content tables, and inserts any 

known metadata. After this process is complete, the Personalization algorithms can recommend 

the new content to clients accordingly.  
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5.3 Content and Ratings 

The demonstration contained an extensive collection of content. The corpus contained a mixture 

of local and international News, such as The Daily Dartmouth and readings of AP reports coupled 

with online news sources. Local up to date Weather was also included. The corpus contained a 

large amount of music, particularly local bands, free music, and classical works. We also devised 

the facility for the user to insert items of her personal collection into the model. The PA would 

process this content in the normal fashion with the exception that it would not recommend this 

item to anyone but the individual who uploaded it. We recorded and inserted local events on a 

daily basis. The server included an insertion page that facilitated this action, and allowed the 

person who was adding content to choose relevant attributes for it. A representative of our group 

gathered ads from local businesses. These ads possessed with the category bonuses described in 

Section 4.1. 

 

One of the comments on the original system was that rating in a piecewise manner was too slow, 

and the system required a long time to learn the user’s tastes. As such, we devised a quicker 

‘batch’ learning technique. This method presented the user with the names of 10 content items. 

Each was accompanies by a dropbox containing rankings from 2 [Great!] to 0 [Neutral] to –2 

[Horrible!]. Users could rank these items and receive yet another page of random items to rate. 

We found that many users enjoyed this activity and would continue rating items for numerous 

screens. By the end of this quick exercise, the system had accumulated a significant amount of 

information on each user and produced significantly more accurate recommendations [according 

to a closing poll]. 

5.4 Optimizations 

After making the personal radio system publicly available to users, few problems appeared in 

response to load. We believe this is due Dartmouth College’s extensive bandwidth. Usage of the 

system was steady throughout the demonstration period. The main problem occurred in the 

middle as the ratings table increased in size. At this point, the recommendation algorithm 

experience slowdown. We fixed this problem through the user of an index. Future solutions to 

this problem include the possibility of precalculating results or omitting old data. 

 

Whenever possible, formulas were carried out directly within SQL to optimize access times and 

minimize the number of required queries [for example, the cosine metric can be computed in 2 

SQL queries].  
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Few of the tables required indices to improve access times. Notably, the User Rating table was 

used extensively within the Personalization Algorithm. The content_id and user_id fields were 

indexed, and this process improved the running time of this algorithm by 2 orders of magnitude. 

No other tables were of sufficient size or use within this model to warrant extensive optimization. 

5.5 Conclusions and Metrics 

The demonstration ran from noon on Friday, May 11 to Midnight on Saturday, May 26th. At the 

end of the demonstration, we collected approximately 40 hours of audio content within the 

corpus. A total of 210 users had subscribed to the system and listened to a total of 24438 content 

items. These users rated 15118 contents items. The average user listened to 116 content items. 

Note however that the median user listened to 40 content items. This disparity between the mean 

and median indicates that a skew exists among the data were those who liked the system used it 

extensively while most users exhibited moderate use of the program. Figure 9 below outlines the 

usage of the system by day. The Internet Explorer client for the Windows Operating System 

encompasses 86.6% of the system’s use. The Other category was primarily composed of 

RealPlayer, which exists on both Windows and Macintosh platforms. 
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Figure 9 – Number of content items listened to segmented by Operating System, Browser, 

and Date. 

Date 

Windows 

IE 

Windows 

Other 

Mac 

SoundJam 

Mac 

Netscape 

Mac 

Other Other Total Note 

11/May/2001 225 0 5 14 41 4 289 Mailings 100 Initial Users 

12/May/2001 140 9 0 0 0 21 170  

13/May/2001 190 0 36 0 0 25 251  

14/May/2001 571 0 106 0 0 22 699  

15/May/2001 330 1 55 17 0 14 417  

16/May/2001 487 0 90 0 0 5 582  

17/May/2001 439 0 0 0 0 19 458  

18/May/2001 639 1 0 1 0 20 661  

19/May/2001 422 0 0 18 0 15 455  

20/May/2001 307 3 21 1 0 56 388  

21/May/2001 1,771 74 106 4 74 198 2,227 Mailings 150 New Users 

22/May/2001 3,005 106 359 7 119 107 3,703 Mailings 150 New Users 

23/May/2001 1,900 129 128 1 32 68 2,258 Mailings 150 New Users 

24/May/2001 2,709 54 44 0 31 74 2,912  

25/May/2001 1,848 20 14 1 47 63 1,993 Mailings 150 New Users 

26/May/2001 2,319 12 78 6 6 83 2,504  

Total 17,302 409 1,042 70 350 794 19,967  

 

We structured the demonstration to test the load on the system and functionality of the algorithms 

under various usage levels. During the first week, the system was confined to 100 test users. 

These users were seniors, with a significant number of knowledgeable Computer Science majors 

represented. During the second week, we emailed 600 people to use the system. These people 

were a random sampling of freshmen with no pre-assumed knowledge. The Notes column 

describes the exact dates of the mailings.  

 

As expected, the usage level was significantly higher during the second week. The server 

performed well under the increased bandwidth. The SQL database functioned correctly, with no 

significant slowdown due to the increased amount of data that the PA needed to process.  
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Figure 10 – The number of days that a user accessed the system  

# Days # Users 

15 1 

10 2 

7 1 

6 3 

5 7 

4 8 

3 17 

2 42 

1 129 

Total: 210 

 

 

 

Figure 10 describes the average level of use of the system. The heaviest user used the system on 

15 of the days of the demonstration. The usage peaks at the one-day use. One of the difficulties 

with a system such as this is that it requires significant branding and advertising in order to 

remind the user to user the system daily. Without frequent reminders, the user may simply forget 

to come back.  

 

Users were pleased with the rating facility within the system. Users first discovered the batch 

rating system when they began using the program since it is introduced in the walkthrough for 

new users. Many users rated dozens of content at the onset. Branding within the web client 

requested the users continue to rate content as they heard them. Finally, the program could infer 

ratings as described above. When the demonstration had ended, a large amount of rating 

information had been accumulated as is evident in figure 11 below. This distribution is consistent 

with expectations. 
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Figure 11 – The Number of Ratings by User 
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Users were also invited to set category preferences when they began using the system. The option 

to set exclusive preferences was also given. Most users set a few preferences, but by design, the 

amount was an order of magnitude less than the number of ratings, as is evident in Figure 12 

below. This distribution is consistent with expectations. 

 

Figure 12 – The Number of Preferences by User 
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Another issue presented in the algorithmic framework is the concept Exclusive Categories. These 

allow the user to listen to a specific category or categories of content items exclusively. The users 
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were presented with the option of doing so within the demonstration. The metrics show that the 

number of regular preferences exceeded the number of exclusive preferences by nearly 13 times. 

This finding may be an artifact of the user base. Dartmouth undergraduates formed the bulk of the 

test users and most of them were using the program as a source for background music while 

performing another task, rather than as a source for specific news. The distribution of regular 

versus exclusive preferences is shown in Figure 13. 

 

Figure 13 - The Number of Exclusive Categories by User 
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A Survey of User Opinions 

We conducted a brief poll the day after the demonstration was completed. We emailed an 

invitation to participate in this poll to all users who had subscribed in the demonstration and 

listened to at least one content item. Each person was to log into a polling web site that we 

designed.16 This site would authenticate their identity using the Dartmouth Name Directory, 

present them with the poll questions, and record their responses. We extracted the results 24 

hours later. There were 44 responses, representing 21% of the user base.  

 

The aggregate responses for the survey are as follows. First, the users were asked whether they 

approved of the Online Radio. On a scale of 1-5, with five being the highest, the users reported a 

4.3 approval rating of the program. Second, in response to the statement “The Online Radio 

                                                        
16 NetPoll. This program is available at http://www.cs.dartmouth.edu/~marmaros/p 
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adjusted quickly to my tastes?” the users were presented with a scale of 1-5, with five being 

“Agree” and one being “Disagree”. The users reported a 3.91 agreement with this statement. 

Thirdly, 17% of the users reported being willing to pay for such a system. The average monthly 

subscription that these users were willing to spend was $7.87. 

 

The final two questions were freeform responses, and asked what aspects the users liked most and 

least about the system. The top three aspects that the users enjoyed were, in order of popularity: 

1) The diverse selection of content  

2) The ability of the system to quickly adjust to the user’s tastes  

3) The ability to skip content.  

 

The three aspects of the system that the users enjoyed least about the system were, in order of 

popularity: 

1) Repetition of content items that the user approved of 

2) Limited selection of content 

3) Missing a genre that the user wanted 

 

We will now discuss the negative comments and propose solutions. The first reflects 

misweighting within the system. The Personalization Algorithm notices if a user has listened to a 

content item lately and compensates accordingly. This process is described in the Frequency 

Rating set of dimensions in Section 4.1. However, this critique demonstrates that the coefficient 

attached to a recently played song was not sufficiently negative in comparison to the coefficients 

on the other sets of dimensions. Altering this ratio will cause content items to repeat less often.  

 

The second negative comment was that the program had a “Limited selection of content." The 

trivial solution would be to add more audio data to the corpus. However, it is also possible that 

this complaint is correlated with the first negative aspect. It is possible that the PA adjusted too 

quickly to the user’s tastes and then would overplay a specific segment of the corpus. The 

corollary is that it would underplay the rest of the corpus, leaving the user with the impression 

that the selection of content in the corpus was smaller than it truly is. The solution to this problem 

would also be a reexamining the ratios of coefficients within the dimensions of the 

Personalization Algorithm. 

 



Page 43 of 50 

The third negative aspect was that the corpus was “missing a genre that the user wanted.” Once 

again, the naïve aspect is to simply add this genre. However, given that a significant portion of 

the popular music today is copyrighted, it was not possible for this demonstration to distribute 

several genres of music that do not have free versions. Once the copyright issues have been 

resolved, then it will be possible to add missing genres to the corpus, and remedy this problem.  

6.  Future Extensions 
There is much room for future research in this field. The three main areas are Algorithmic 

Research, Device Research, and Security Research. 

 

Algorithmic Research describes the process of updating the Personalization Algorithm. There are 

numerous aspects of the algorithm that prompt further study. For example, it was necessary to 

choose coefficients for the dimension categories within the information vectors within algorithm. 

Whenever possible, we attempted to keep the values roughly equal to one. However, it is likely 

that altering the ratios of the coefficients between the various categories can optimize the 

algorithm. This area of research would be fruitful in resolving the problems of over-focusing and 

over-repeating, which were the top problems mentioned in the user survey. 

 

Furthermore, it is likely that the coefficients within the Personalization Algorithm adjust 

depending on usage levels within the system. For example, as more users join the system and the 

body of ratings on content items expands, the popularity dimension must normalize itself to 

prevent it from dwarfing the other dimension. Furthermore, as the tenure of a particular user 

within the system increases, that user may benefit from having her dimensional coefficients 

altered accordingly.  

 

Finally, Algorithmic Research could encompass methods of optimizing the above Personalization 

Algorithm. It may be determined that certain dimensions do not contribute to significant utility 

estimation and can be omitted. A more efficient algorithm can be designed with the same 

properties.  

 

Device Research encompasses research for extensions to this project on different devices. The 

system can be implemented on devices with bandwidth limitations as described in Section 4.2. 

Numerous wireless and automotive-based devices are presently in design for release in the near 
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future, and major automobile manufacturers have endorsed the premise. There will shortly be a 

new generation of devices to test this system on.  

 

Furthermore, additional Device Research can be done into the exact caching algorithms to 

optimize benefit / memory constraints. This is particularly relevant on the extensive assortment of 

wireless connections that are possible in the current environment. Finally, it is important to 

determine the optimally priced sub-PC hardware device to implement this system. 

 

Security Research encompasses the devising and implementing Digital Rights Management. 

Numerous advances and legislature will undoubtedly appear in the near future to control the 

dissemination of copyrighted material. The algorithms that must be used will thus be dictated by 

legal and market forces.  
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7.  Conclusion 
We devised these algorithms and created this two-week demonstration to accomplish three goals: 

1. To test the accuracy of a Personalization Algorithm 

2. To test the limiting hardware, software, and network load of this system 

3. To provide a positive and intuitive user experience  

 

We believe that we have succeeded on all accounts. First, users report that the Personalization 

Algorithms were able to accurately zero in on the user’s preferences. Indeed, the algorithms may 

have worked too accurately, thereby causing repeats once it located an optimal set of items. 

 

Second, the network and hardware loads of the system were well within operating parameters and 

barely dented the campus bandwidth. Software limitations in the recommendation engine were 

the key bottleneck to the system, but this can be remedied through optimizations. An additional 

software dilemma was the difficulties of setting up the system in a true platform independent 

manner. While feasible, this process is not trivial for the novice user. 

 

Third, users report high satisfaction with the system and beyond setting up the program on 

various non-standard program, we received no questions on how to operate the system. The user 

interface was intuitive and trouble-free to a novice user. 

 

In summary, this project was a success in recommending discrete audio content to a large number 

of users. Both skilled and novice users reported high levels of use and satisfaction with the 

system, and it received higher levels of use than was originally intended. The servers, database, 

and network received the extra traffic without any difficulties. The Personalization Algorithms 

functioned as intended, and users were pleased with the results. We hope that this work leads to 

more accurate and scalable approaches to information customization. 

 

Testimonials: 

"hi visited your site today - GREAT STUFF!! keep it up" '04 

"wow.... great idea! :)" '04 

"this is the coolest thing i've ever seen!" '04 

"this program is pretty awesome." '04 

"I really like your radio project. nice work =)) thanks!!" '04 
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Appendix 1 A Brief Profitability Analysis and Business Plans 
There are four principle sources of revenue that are possible within this model: 

 

1) Commissions and Cobranding 

Pros: Potentially extremely profitable 

Cons:  Overt commercialism may alienate the users 

 

Most successful commercial websites have experimented in cobranding their product. They allow 

other sites to become affiliates or associates which are licensed to sell their products in exchange 

for a commission. The PA system is no different. While the traditional radio model allow the 

content to be played at random, it is perfectly reasonable to sell a CD containing the music 

alongside its radio counterpart. This process allows the user to buy the content if they enjoy it 

enough, and allow them to play it at anytime instead of at random under the current model. 
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Commissions would be given to the RIAA, the artist, or whoever owns the copyright to the 

content item. 

 

2) Selling aggregate data 

Pros: Few ethical issues, not hard to implement 

Cons:  Low margin 

 

There are two distinct groups that purchase aggregate data from a content intermediary: 

advertisement firms and manufacturing firms.  

 

Traditionally, advertisement companies have thrown their campaign into the waiting jaws of the 

public. Few metrics were available to determining if the campaign was successful. The primary 

method was simply to analyze sales patterns and attempt to find a correlation. This method was 

prone to error, and that fact was known to both the ad companies and their clients. The former 

could always argue that the ad had a long-term impact in building brand awareness and the lack 

of an immediate spike in demand was a direct result.  On the flipside, they were quick to argue 

that any surge in demand was due to a campaign as opposed to random chance. 

 

The web revolutionized this model with the advent of real-time feedback of ads. Since customers 

now had the opportunity to act on the ad immediately, the makers of the ad could similarly 

determine the effect of the ad immediately. This mechanism for immediate feedback allowed for 

improved accountability within the realm of advertising, and could facilitate campaigns that are 

more profitable since ineffective ones would be detected quickly and discontinued. 

 

On the other side to this discussion, manufacturers are willing to pay for aggregate product 

purchasing information as a form of forecasting. These corporations are extremely dependent on 

the whims of the market. For example, if 128 megabyte RAM chips happen to be extremely 

popular this week, a semiconductor manufacturer would like to know about it immediately. This 

will allow them to retool their production line to produce more (or less) chips accordingly.  This 

will allow them to avoid having excess inventory and having to liquidate their supply, or not 

having sufficient stock product in a boom time. In the past, these companies have needed to poll 

the market directly or process huge amounts of information from varied distributors in order to 

glean this forecasting knowledge.  
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Aggregate data is easily gathered based on listening and purchasing habits. As an added bonus, 

the public is relatively unperturbed by having their information collated and anonymously 

aggregated. As such, this business practice does not raise ethical qualms or promote customer 

backlash. On the other side of the equation, aggregate data fetches a relatively lower price. The 

primary method of adding value is to provide a continual supply of data in an up to date and 

constant manner, for example, a day by day or hour by hour dependent on the particular product 

and industry. A second method of adding value to this information commodity is to provide tools 

to aid in the analysis of the data.  

 

3) Selling personalized data 

Pros: High margin  

Cons:  Ethical minefield 

 

Even more valuable than aggregate data is personalized data. Companies are currently attempting 

to learn everything about their customers in the hope of better tailoring products and increasing 

sales. As such, many corporations would pay generously for data about individuals. As part of the 

functionality of the PA, it collects and categorizes a significant amount of user information. This 

information could be packages and sold to whichever parties would like to purchase it. 

 

The problem with this is ethical. Users wish to maintain their privacy and seek to avoid 

dissemination of their personal information. If this practice is followed, users may deliberately 

shun the system or avoid entering their tastes to avoid disseminating them. This area is legally 

challenging since numerous legislature limit the distribution of personal information without prior 

notice.  

 

4) Targeted advertising 

Pros: High Margin 

Cons:  Overt commercialism may alienate the users 

 

The current incarnation of the program includes ads from local businesses. It would be possible to 

ad many more such ads in the future from a host of sources. Thus would provide a proven 

revenue stream, since this mechanism has long been used by the traditional radio industry. 

However, the new model of personalization would allow for better targeted advertisements than 
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traditional radio which would increase the revenue yield. However, users generally are not in 

favor of advertising and this aspect may cause users to shun the system. 

Appendix 2 The Post Mortem Survey 
We distributed a survey the day after the demonstration was completed. We emailed it to all of 

the users of the system. The eight questions are listed below. 

1) Did you like the Online Radio? 

5 (I liked it a lot) 

4 

3 (I am Neutral) 

2 

1 (I did not like it) 

 

2) The Online Radio adjusted quickly to my tastes? 

5 (Agree) 

4 

3 (Neutral) 

2 

1 (Disagree) 

 

3) How often did you listen to this program? 

Several hours each day 

Less than one hour per day 

2-3 times per week 

Once per week 

Less than once per week 

Never 

 

4) Would you pay for a product like this? 

Yes 

No 

 

5) If you answered yes to the above question, how much per month? 

 

6) What was your favorite aspect about the Online Radio? 

 

7) What was your least favorite aspect about the Online Radio? 

 

8) Comments or suggestions? 
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