
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

6-1-2001

Implementing a Database Information System for an Electronic Implementing a Database Information System for an Electronic

Baseball Scorecard Baseball Scorecard

Tiffany M. Wong
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wong, Tiffany M., "Implementing a Database Information System for an Electronic Baseball Scorecard"
(2001). Dartmouth College Undergraduate Theses. 14.
https://digitalcommons.dartmouth.edu/senior_theses/14

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/14?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR2001-396

Implementing a Database Information System for an Electronic

Baseball Scorecard

Tiffany Wong
Dartmouth College

Department of Computer Science
June 2001

Advisor: Thomas H. Cormen

2

Abstract

We present our design and implementation of a database system of information storage

and retrieval for an electronic baseball scorecard. The program uses the relational

MySQL database to hold information and a Tcl API to handle interactions between the

database and the user interface code. This paper discusses the inner workings of how

information storage was broken down inside the database, how queries were internally

constructed in accordance with the user’s input, and how statistics for players and teams

were calculated and returned to the user. Finally, we discuss some limitations attached to

our current implementation of the program and propose improvements that can be made

in future versions.

3

1 Introduction

The game of baseball has perhaps the richest history of all sports in popular culture today.

Among the most important manifestations of this history are the record books and

statistics about teams and players that have been kept since professional baseball began.

Keeping a scorecard for each game is an essential part of contributing to this ongoing

history because it provides the necessary information to reconstruct the progression of

any game, and the statistics of any player or team. It is also serves as an important

resource for coaches and managers in making strategic decisions in both the short and

long term, for sports media personnel in analyzing a team’s or player’s performance, and

for some fans as merely an enjoyable part of the game as a whole.

A proposed version of an electronic scorecard with a graphical user interface

(GUI) and an information database [4] can have several advantages over the traditional

paper model. It allows the user to efficiently store information about multiple games in a

central location that can later be accessed for future use. Also, all events that are

recorded during the course of a game will be instantaneously added to the database, so

that game statistics will be kept current without any additional work needing to be

performed by the user. In addition to holding data solely relating to specific game events,

the database will also store information such as team rosters and player profiles in order

to help further automate the process of initially setting up the scorecard. Finally, access

to all this data allows for an extensive query system to be implemented that will enable

the user to retrieve various statistics that have been filtered according to the user’s

specifications. In this paper, we focus specifically on the implementation of this database

4

query system. We first discuss how information in the various data tables will be stored

and outline how we will construct the necessary information to answer queries. We then

present our actual implementation of the query system and describe how it interacts with

GUI. Finally, we discuss limitations that software currently imposes and propose some

future improvements that can be made.

2 Design and Overview

In this section we present an overview of how the various data tables that will be used to

hold different pieces of information are structured. We then discuss in general terms the

processes of calculating statistical information from the database.

2.1 Data Tables

We have designed our program to use a relational database system as its means of

information storage. The nature of the relational database model is a collection of tables

that represents both data and the relationships among those data [3].

We take advantage of this model’s ability to store data very efficiently by

minimizing the amount of repeated information in the individual tables and instead using

the join operation to establish relationships among the data whenever information

retrieval becomes necessary. All game information will be stored in one of five table

categories: one Roster table for all teams, a player list table for each individual team, one

Games table for all games, a plate appearance table for each individual game, or one

Game Events table for all events in all games.

5

There will be only one instance of the Roster table and it will contain the names

of all teams who have been entered into the database. Each new team name entry will

subsequently trigger the creation of a new table, referenced by the team’s name, that will

be used to store the name, handedness, position number, and uniform number of every

player on the team. The name, position, and number fields will all be text boxes allowing

the user to enter the information in whatever form he wishes. Examples of both of these

tables are depicted in Figure 1.

Figure 1. Examples of the Roster table and a team table.

Figure 2 gives an example of the Games table, which holds situational

information for each game being scored. Each table entry stores data about the date and

time of the game, as well as the names of the two teams participating. Additionally, each

game is assigned a unique identification number that will be used as a reference back to

that specific game in subsequent tables.

6

Figure 2. Example of the Games table.

We now need to store more specific information about the actual events that take place

during each game. We begin by creating a new table for each game, GameID, that is

referenced by the game’s unique identification number. These tables will hold

information about all plate appearances that happen during the game. An example of one

of these individual game tables is given below in Figure 3.

Figure 3. Example of a game table.

Each entry in one of these game tables holds information about the current state of the

game at the moment each batter is making a plate appearance. This data includes the

current inning and number of outs, the names of the batter, pitcher, and catcher, the

batting and fielding teams, and the names of the runners on each base. Similar to what

7

was done in the Games table, each at-bat is assigned a unique identification number that

will be used as a reference back to the information contained in its row. The need to

disjoin all of this situational information into separate tables will be made clear shortly.

All outcomes that result from an individual plate appearance— such as hits,

strikeouts, assists, put-outs, and base advancements —are then stored in the Game Events

table which is presented in Figure 4.

Figure 4. Example of Game Events table.

This table also stores all events that may occur during an at-bat, but are not a direct

consequence of the at-bat. For example, events such as wild pitches, stolen bases, and hit

batters are all recorded in the Game Events table. In addition to the event itself, each

table entry also holds information about which player was directly involved in the event

and what team they were on. All of the situational information relating to the event is

cross referenced by a game identification number and an at-bat number. Since there can

be many outcomes relating to the same plate appearance, a lot of space in the table can be

saved using identification numbers instead of entering all the situational data directly into

the Game Events table.

8

2.2 Calculating Statistics

At any point in time, the user has the ability to query the database for statistics relating to

batting, pitching, catching, fielding, and running. We present the user with a list of

possible constraints they can place on their query, and then use their preferences to filter

out the relevant data before performing the calculations. Construction of the actual query

and calculation of all statistics is abstracted away from the user and done internally. The

results are then presented to the user in graphical form. Statistics can be calculated for

past games as well as current ones, and the combination of different queries that can be

constructed is almost limitless. We discuss information retrieval and statistic calculations

in greater detail in Section 3.3.

3 Implementation

In this section, we discuss our actual implementation of the database query system. We

first present the reasoning behind our database choice, and then discuss how information

will actually be sent to and retrieved from the database.

3.1 Database Choice

We have chosen to use MySQL [2], a database management system, in our

implementation for several reasons. First, MySQL is a relational database system, which

is what we had intended on using when we designed our program. The choice was also

cost effective since the software is open source. The database is fairly simple to use, and

has no limitations on table size that would be a hindrance to our project. The MySQL

9

database is also accessible through the Structured Query Language (SQL), which is ideal

to use in constructing our queries.

One additional benefit of choosing to use MySQL was the existence of a Tcl

Application Programming Interface (API) [1] that the program could use to interact with

the database. The API package provides a series of Tcl commands to connect to and

disconnect from the database, execute SQL commands, and send queries and fetch their

results. Since the GUI for the electronic scorecard [4] was already written in Tcl/Tk,

being able to use a Tcl API meant that we could avoid the extra step of having to extend

the Tcl code to work with a C/C++ API. All of these factors seemed to indicate that

MySQL was the best database choice to use in this program.

3.2 Information Storage

Information gets recorded into the database at several different points throughout the

program. All interactions directly involving the user of the electronic scorecard are

handled by the programmer of the GUI. Relevant pieces of information gleaned from

these interactions are then stored in global variables that our database program can

access.

3.2.1 Team and Player Information

Upon starting up the electronic scorecard program, the user has several options of how to

proceed, including the ability to enter data for a new team into the database. Selecting

this option brings up a series of entry boxes that allow the user to enter the team name

and a player roster. This information is kept in global variables and arrays until the “OK”

10

button has been pressed. At that point, procedures are called to send that information to

the database. We chose to use this method of having global variables serve as

intermediaries between the user and the database in order to give the user the opportunity

to change their mind or correct any errors they may have made before anything is

actually sent to the database.

Once the user has elected to enter a new team, the first entry box to appear asks

for the name of the team. Once the user clicks on “OK”, we have inserted into the GUI

code a query_team_list procedure that creates an array filled with the names of

every team currently listed in the Roster table. We then check to make sure that the new

team name that has been entered is not identical to any other name that already exists,

since the Roster table disallows duplicate entries. Any attempts to insert a duplicate

name into the table will result in a MySQL error which we do not want the user to have

to deal with. So, we circumvent this problem by calling the insert_new_team

procedure, which issues the actual SQL command to insert a new entry into the Roster

table, only if the new team name is unique. Additionally, this procedure also sends to

MySQL the command to create a new table named after the new team, which is

structured according to the description given in Section 2.1.

Once the insert_new_team procedure has finished, another entry box appears

that allows the user to enter player information for the new team, which is subsequently

stored in a global multidimensional array. After the user has pressed the “OK” button,

the GUI code calls a new procedure we have written which loops through the array and

sends SQL commands through the Tcl API to insert a new entry row into the team’s table

11

for every new name entered. Because the players will referenced by name throughout

much of the scorecard, we do not allow the user to enter any player information into the

table with the name field left blank, although any of the other fields may remain empty at

the user’s discretion.

In addition to entering a new team, the user also has the option of editing a

currently existing team. The user has the ability to add or remove player names from

team rosters, or to remove an entire team completely. We can process these requests

fairly simply by using the MySQL commands insert INTO tbl_name, delete

FROM tbl_name, and drop table tbl_name. We also give the user the

possibility of editing a player’s profile as listed on the team roster by using MySQL’s

update command.

3.2.2 Creating a New Game

Once the user has made any necessary changes or additions to any of the current team

information, they can begin the process of scoring a new game and recording game

events into the database. The user begins by selecting the teams playing, the location of

the game, and the date and the time of day and their choices are stored in temporary

variables. The database contains a table called Defaults, that serves more as a variable.

It contains only one row and one column and is initially set to 0. When each new game is

initialized, we query the database to get the number stored in Defaults. We set that

number to be our identification number for the game, which we store in a global variable.

Then, we update the Defaults table with the old number incremented by 1. It is necessary

to use the database to store this number to ensure that the number will remain static in

12

between every new game, even if the scorecard program has been shut down. This way,

we are able to guarantee that no two games will ever be assigned the same identification

number. Once we have this ID number, we can create a new entry for the Games table in

the database, using the number and all of the other situational information the user has

entered.

3.2.3 Event Information

Many of the events get sent to the database automatically through procedures inserted

into the GUI code without any additional work done by the user other than the routine

work needed to keep score. Other pieces of data rely on the user to specifically record

the events in order for them to be correctly sent into the database.

Every new plate appearance is automatically recorded into the proper game table

in the database. The GUI portion of the scorecard already contains code to display the

current batter on the screen, so we simply add in our own procedure to update the

database along with the interface. The GUI code contains global variables telling us the

current inning and number of outs, who the current batter is along with what team he is

on, and we maintain our own variables to hold the names of the current pitcher and

catcher. Additionally, the GUI programmer has provided us with an array of the numbers

of the players who are currently on base. We use this information to extract the players’

names out of their team’s table in the database. Finally, we keep a global counter

variable that will serve as the at-bat identifier number and be incremented at each new

plate appearance.

13

The GUI programmer has provided the user with numerous menu options to

handle the most common outcomes that may result from an at-bat, in order to minimize

the amount of work the user needs to perform. These built-in choices include all possible

outcomes for the batter, as well as common fielding situations for fly-outs, ground-outs,

and double plays. Since we are concerned with everything that happens as a result of an

at-bat, the GUI also provides a means for the user to enter information about what

happened to all the runners and which fielders were involved during each play. All of

this information is kept in various arrays and variables that we will use to record

information in the database. To keep the code efficient, we have written a general

purpose procedure called insert_event_record that takes in the name of the player

involved, his team, and the event name as parameters. We will call this procedure for all

entries we make into the Game Events table, referencing each entry with the game

identification number as well as the at-bat identification number.

 We first need to send to the database information about what happened to the

batter. The menu options help simplify this task because we can easily obtain the value

of the event that was selected (e.g., BB, Fly Out, HR), and we already know that the

batter was the player involved in the event. We also need to record what, if anything, the

fielders did during the play. The GUI presents the user with the opportunity to select the

order in which the fielders, referenced by position number, were involved in the play

(e.g., 6-4-3). We can use this information to assign credit to each player as dictated by

the rules of baseball. For example, in a 6-4-3 Ground Out, we credit the players in

positions 6 and 4 with assists, and the player in position 3 with a put-out. The GUI

14

programmer has implemented an array that correlates each player with their position

number so we are able to get the name of the fielder involved in the play. We can then

call insert_event_record for each new event that we need to add to the database.

3.3 Information Retrieval

In this section, we discuss how queries will actually be constructed from the constraints

selected by the user. We also discuss how statistics are calculated in more detail.

3.3.1 Constructing Queries

Figure 5 below depicts an example of how the user will enter their query.

Figure 5. Screenshot of Batter Query Window.

We will use their preferences to construct the actual query in SQL and retrieve the

filtered results from the database. Once the user has made their selections, the values of

which are temporarily stored in global variables, pressing the “Query Now” button will

15

initiate the call of a send_query procedure. This procedure begins by filtering data

from all the available games to find the set of specific outcomes which match the user’s

criteria. It is only this set that will be used in the calculation of the statistics. The data

filtering proceeds through three primary stages, which are represented graphically in

Figure 6.

The first stage narrows down the possible list of games based on locational

information. We query the database for the identification numbers of all entries in the

Games table that match the user’s criteria on date, time, and location of the games, as

well as the two teams in the match-up. We use the sql fetchrow command from the

Tcl API to have the ID numbers returned one by one, so we can store them in our idlist

array.

The next stage filters out the relevant at-bats from each game in idlist. The user

may narrow down their query to include either a specific batter, pitcher, catcher, or

runner depending on the type of statistics they are querying for. If the user is querying

for either all players on a specific team or all players on all teams, he may also choose to

filter the players by their handedness. Additionally, the user can also ask for more

situation-specific information, such as the inning, the number of outs, or the positions of

the runners. The user has the opportunity to make the query as narrow or as broad as

they want and they are not limited to choosing only one specific situation.

At this point in the send_query procedure, we want to loop through the idlist

array and query each game table for a list of all at-bats that match the user’s situational

criteria. But before we perform the query, we must first join together each game table

16

All entries in
GAMES table Filter by date, location, time, teams playing

Fill idlist array
with ID numbers
of all games that

match criteria

For every game ID
in idlist, fill ablist
array with all AB

numbers that match
criteria

Filter by players, handedness, inning, outs

Filter by outcome types

Select rows from
Game Events table

which match all
game IDs, ABs,
and outcomes

Figure 6. Data filtration procedure.

17

with the tables of the two teams playing in the game so we can filter the players by

handedness. Figure 7 below gives an example of such a joined table.

Figure 7. Example of a game table joined with team tables.

We can now query this newly joined table for all of the relevant at-bats matching the

user’s specifications. We fill in a new 2-dimensional array, ablist, where the row index

will correspond to the game identification number. Each entry in the row will contain an

at-bat identification number that has been returned by the query for that game.

We now have every (game ID, at-bat ID) combination that is relevant to the user’s

query criteria. At this stage, we can now query the Game Events table for all of the

outcomes that the user has chosen. We loop through every entry in the ablist array, and

for each index, we append to our query string an or clause that filters out rows matching

the game ID number and the at-bat ID number (e.g., select from Game Events

where (gid=1 and ab=2) or (gid=3 and ab=5)…). Finally, we append to

our query string the set of outcome types that the user has selected. We can now issue an

sql query command that will return every row in the Game Events table which

matches all of the criteria the user entered in the query box. We store the results of this

final query command in a temporary table which will be used in our statistic calculations.

18

3.3.2 Calculating Statistics

To help standardize the results, we return the same set of statistics to the user for each

query, regardless of what outcomes they selected. Therefore, depending on how narrow

the constraints were, it is possible that many of the statistics that are returned will have

values of 0. At this point, most of the statistic calculations are done either by querying

the temporary table of results for a specific outcome and then obtaining the number of

entries returned, or by performing mathematical operations on two or more different

statistics. The Tcl API provides a nice sql numrows command that will return the

number of rows in the query results, which in our case is also identical to the number of

times a specific outcome occurred. Keeping in mind this convenient means of compiling

statistics, we make sure that when we enter events into the database, we enter each one

separately so as to have an accurate count. For example, when storing the number of

RBIs that resulted from one at-bat, we create a new entry in the Game Events table for

each RBI that the batter was credited with. This way, we are able to very simply count

the number of RBIs that occurred in a given situation without having to do any string

parsing.

3.3.3 Performance

We conducted several tests to measure how fast queries are performed on tables with

large record sizes. Tables were created and filled with a large number of entries, and

were then queried for different numbers of records as a proportion of table size. The

results are given below in Table 1:

19

Table 1. Performance Testing

No. of table
records

Time to query
all records

Time to query
50% of records

Time to query
20% of records

Time to query
10% of records

3000 0.13s 0.09s 0.06s 0.02s

8000 0.32s 0.19s 0.08s 0.04s

15000 0.65s 0.36s 0.15s 0.10s

(Note: Tests were conducted using MySQL on a UNIX platform.)

The results indicate that MySQL continually performs well on large tables, and that the

time needed to execute a query varies directly with the number of records returned by the

query. The largest query tested was for 15,000 records, and the execution time was under

1 second. We therefore expect that the overall time of query execution for our program

will depend more on the amount of work done through Tcl code and less on the amount

of work done through the database.

4 Current Limitations and Future Work

There are several areas of limitation contained in this version of the program that have

the potential to be improved for later versions. One severe limitation is that the program

is not yet fully comprehensive at this point. It is extremely important that the program is

able to record data for all situations that may arise or else the statistics returned will be

inaccurate. The more information we are able to store, the more statistics we are also

able to return. Many of the at-bat event category menus list “other” as an option for

telling the scorecard what happened during the at-bat. However, selecting this option

20

currently does not record anything in the database. One reason for this is that the “other”

option gives the user a text box in which to enter the event. Since the user may enter

anything he wishes, there is no way to either interpret his input into standard form or to

offer him the option of later querying for the event he entered.

Another limitation of the current version of the scorecard is that there is still a lot

of user responsibility for entering events. One of the proposed benefits of an electronic

scorecard versus a paper one was the automation of information storage. Unfortunately,

the complex rules of baseball make it impossible to ever make very many definite

assumptions about what may have happened during the course of the game. For example,

although it is very improbable, it is not completely impossible for a batter to reach first

base after getting three strikes. However, there is still room for improvement in making

the program as intuitive as possible.

An alternative method of query construction that needs to be explored is to join

together the information contained in the Games table, the individual game tables, the

team tables, and the Game Events table into one large table. Then, we send only one

query containing all of the attributes selected by the user to this joined table. However, in

order to use this method, we would need to restructure the way we information is stored

in our tables. Rather than have individual tables for teams and game at-bats, all of the

information stored in those table types must be conglomerated into two large tables—one

to hold player information for all teams, and one to hold at-bat information for all games.

Using this breakdown of tables, we would then be able to easily join together all the

information we have stored into one large table from which we can select our query.

21

This method needs to be implemented and compared against the algorithm we presented

in Section 3.3 so that we may determine which would be a more effective method to use

in our program.

5 Summary

This paper presented the basic infrastructure for a database query system that will interact

with an electronic baseball scorecard GUI. Although the current implementation is still

an early version of the program, we have designed a functional algorithm that allows us

store a lot of important game information in the database and later retrieve that

information in the form of basic player and team statistics. Through the interaction of Tcl

and the MySQL database, our program allows the user to utilize an intuitive user

interface to submit an almost limitless number of potential queries. With the groundwork

we have laid, we should be able to adapt the query system to be even more

comprehensive and useful in future versions.

22

Acknowledgments

I would like to thank my advisor, Tom Cormen, for all his help and support throughout

this project. Also, Lea Wittie for all her help with debugging program, Jessica Webster

for giving me the opportunity to join in with her baseball program and for answering all

my Tcl questions, and John Konkle for all his help in setting up the software we needed.

I would like to thank my family for all the support they have given me, both morally and

financially. And finally, thanks to my friends Brad, David, Elizabeth, Rob, and Terrence

for all of the great times we’ve had in the past four years.

23

References

[1] Tony Darugar. The Tcl Generic Database Interface. Available at
http://www.binevolve.com/~tdarugar/tcl-sql/docs/api.html
(27 September 1998).

[2] MySQL AB. MySQL database version 3.23. Available at
http://www.mysql.com/downloads/mysql-3.23.html (22 January 2001.)

[3] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts, 3rd ed. Boston: WCB McGraw-Hill, 1997.

[4] Jessica Webster. Stats and Bats: Covering Your Bases from Interface to Database.
Senior Honors Thesis, Department of Mathematics and Socical Science, Dartmouth
College.

	Implementing a Database Information System for an Electronic Baseball Scorecard
	Recommended Citation

	tmp.1596484807.pdf.r_rZD

