
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2000

An Infrastructure for a Mobile-Agent System that Provides An Infrastructure for a Mobile-Agent System that Provides

Personalized Services to Mobile Devices Personalized Services to Mobile Devices

Debbie O. Chyi
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chyi, Debbie O., "An Infrastructure for a Mobile-Agent System that Provides Personalized Services to
Mobile Devices" (2000). Dartmouth College Undergraduate Theses. 3.
https://digitalcommons.dartmouth.edu/senior_theses/3

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/3?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report TR2000-370

An Infrastructure for a Mobile-Agent System that Provides

Personalized Services to Mobile Devices

Debbie Chyi
Dartmouth College

Department of Computer Science
May 2000

Advisor: David F. Kotz

2

Abstract

In this paper, we present the design of a mobile-agent system that provides a

mobile user with a personalized information retrieval service and we describe the

implementation of the infrastructure for such a system. This “Personal Agent System”

gathers information from the Internet and uses context-aware mechanisms to manage the

information according to a mobile user’s needs and preferences. The user’s schedule and

location are the context indicators in this system. These indicators are critical in ensuring

that users obtain only the information they want, receive information in a form that is

most useful for viewing on their mobile device, and is notified of new information in a

minimally intrusive manner. The system incorporates a rule-based learning system to

enhance the personalization achieved by the system.

1. Introduction

With the wealth of information that has become available to users through

distributed multimedia information services, including the World Wide Web, and with

the advancement and increasing popularity of mobile devices, the information accessible

to users is greater than ever before. Virtually any information is accessible any time and

anywhere. The amount of information available, however, can easily overwhelm users

and prevent them from fully utilizing their information resources. The need exists for an

information-gathering system that is closely integrated with mobile devices and that

personalizes its service to the user. This idea forms the basis of this project.

3

Using mobile agent technology developed at Dartmouth College, we designed a

system that gathers information from the Internet and uses context-aware mechanisms to

manage the information according to the user’s needs and preferences. The user’s

schedule and location are the context indicators in this system. These indicators are

critical in personalizing the information service so that users obtain only the information

they want, receive information in a form that is most useful for viewing on their mobile

device, and is notified of new information in a minimally intrusive manner. For this

reason, our system focuses on personalizing services to suit the needs of a user and we

call our system a “Personal Agent System”.

The next section in this paper presents the background on this project. In Section

3, the paper discusses the design and architecture of the Personal Agent System. We

describe the implementation of the system’s infrastructure in Section 4. In Section 5, we

discuss personalization of the system. Section 5.1 discusses the use of rules to represent

user preferences and Section 5.2 describes both learning mechanisms that we chose for

our rule-based system and learning mechanisms presented in other papers that may be

useful to our system. Finally, we conclude the paper with a summary of our work on the

Personal Agent System.

2 Background

Before we describe our system, we provide some background on mobile agents

and on our hardware platform.

4

2.1 Mobile Agents

A mobile agent is a “named program that can migrate from machine to machine in

a heterogeneous network” [4]. Mobile agents provide a convenient paradigm for working

with communication channels and offer a reliable way for packaging programs and data

to be sent and executed over the network. Because they are able to continue execution at

each server that they migrate to, they are “pro-active and run autonomously in the

network” [2]. The mobile agent system used for the project was Pokegent. Pokegent, a

name that alludes to the phrase “pocket agent”, supports agents running on a stationary

host and on a mobile device. Specifically, it supports agents running on Windows NT

and on Windows CE. This project uses the inter-communication capabilities of the

agents heavily. Although we did not use the agents’ migration capabilities, they will

become critical when we extend the Personal Agent System.

The agents in the Pokegent system are written in C++. An agent server and a

stationary “system agent” run on each machine that will host agents. Agents are

dynamic-link libraries (DLLs) that are passed to the system agent upon creation and

downloaded from the Internet upon migration. Essentially, agents are threads running in

the environment of an agent server. An application program interface (API) for

communicating between agents hides socket connections from the application

programmer. The system of communication between agents is event-driven. Each agent

has an event loop that processes incoming messages and the agent system automatically

queues messages until they can be processed. Because the Personal Agent System relies

so heavily on communication between a mobile device and a stationary host and its future

5

extensions will involve migrating processes through the network, we used mobile agents

for the implementation of this project.

2.2 Platform

We developed the Personal Agent System on a Hewlett Packard Jornada (see

Figure 1) running Windows CE 2.11, a Pentium II workstation running Windows NT 4.0,

and a WaveLAN network for communicating wirelessly between the two machines. The

Jornada used a Lucent WaveLAN IEEE 802.11 PC Card (Bronze) to communicate over

the wireless network. Windows CE is an operating system that runs on mobile devices

and supports multi-threaded programming. This support of multiple threads is a central

reason why Pokegent was chosen to run on Windows CE. A multiple-threaded

environment can better support a system of agents because the paradigm of an agent

closely resembles that of a thread. Because Windows CE only supports Unicode and, of

the Windows family, only Windows NT supports Unicode, Windows NT is the only

other operating system that Pokegent supports.

Figure 1: Hewlett Packard Jornada

6

3. Design and Architecture

3.1 Overview

The Personal Agent System consists of agents, information servers, information-

viewing applications, and context-related sensors (see Figure 2). The agents form the

central part of the Personal Agent System. The actual Personal Agent resides on a

stationary server and it communicates with agents residing on the mobile device. The

agents in the system handle the gathering and personalization of information and

communicate with one another extensively to provide an integrated service to the user.

The information servers supply the Personal Agent with the various information that the

agent requests. These information servers can reside on any machine and typically would

be owned and maintained by third parties that wish to offer information services to users.

For each form of information that the Personal Agent gathers, there is a corresponding

user application that provides an interface for displaying and managing the information.

Finally, the context-related sensors monitor the user’s location and schedule and notify

the appropriate agent when the user’s context changes.

7

Figure 2: Overview of the Personal Agent System (Pages refer to one-way electronic messages)

The project involves personalizing information services by using the user’s

current context to filter and convert incoming information as well as to determine when

to notify a user of new information. The project also involves migration of the Personal

Agent to other stationary servers so that it follows the user around in the wired network

while the user and her mobile device move around in the wireless network (see Figure 3).

In other words, the Personal Agent always moves to a location that is close to the user.

Having the Personal Agent and the agents on the mobile device in close proximity to

each other (ideally in the same local network) allows communication between them to be

fast and reliable.

8

Figure 3: The Personal Agent (PA) always moves to a location that is close to the mobile user

A central concept in the personalization of our system is the concept of context-

awareness. The system is aware of both the user’s location and schedule. The general

location of a user can be determined from the subnet in which he is located. The user’s

schedule can be determined from a calendar application that is on the mobile device and

is updated by the user. When combined with user preferences, these two forms of

information can be actively used to filter and convert incoming information as well as to

determine the timing of notifications so that the user is presented with a minimally

intrusive user interface. As mentioned in Chavez, Ide, and Kirste, the main goal of a

mobile information system is to “provide the right information at the right time and

9

place—with minimal interaction” [3]. The article explains, “an optimal assistant

provides the required information autonomously and independently, without requiring the

user to ask for it explicitly” [3]. These ideas are central to the design of our project, too.

3.2 A Closer Look

The Personal Agent communicates with information servers over an ASCII socket

and polls the information server at an interval specified by the user. The Information

Gatherer thread within the Personal Agent opens a socket to an information server, sends

the information request over the socket, and then receives the information over the

socket. The information servers are stateless because the Personal Agent will constantly

change information servers as it jumps from server to server. With each jump, the

Personal Agent should not have to establish and delete its state on the information

servers. An important aspect of the interaction between the Personal Agent and an

information server is that the Personal Agent can provide location information as a

command-line argument to its request. Since the Personal Agent is aware of what subnet

it is in, for example, it can lookup its subnet in a web-based directory to determine the zip

code corresponding to the subnet and then supply the zip code as a command-line

argument to its request to the weather server. The weather server works with a weather

site that provides zip-code-specific weather and therefore provides the Personal Agent

with the local weather. Jose and Davies state that in “mobile distributed environments

applications often need to dynamically obtain information that is relevant to their current

location” but “the current design of the Internet does not provide any conceptual models

for addressing this issue” [5]. We therefore address this issue by having a location-aware

10

agent supply its location to information servers that are programmed to obtain location-

specific information from the Internet.

The agents that reside on the stationary host are the Information Gatherer, the

Information Dispatcher, and the HHHelper (where HH refers to “Handheld”). These

agents together comprise the actual Personal Agent. To avoid confusion, I refer to these

three agents as threads of the Personal Agent. The Information Gatherer is the thread

responsible for polling the information servers. The Information Dispatcher is the thread

responsible for personalizing the data. The process of personalization includes deleting

unwanted information, converting data into a desired form, and determining the details of

user notification.

The Information Dispatcher extracts the appropriate personalization profile from

the Personal Agent’s collection of profiles and then uses the profile to determine how the

incoming information should be processed. A personalization profile is simply a list of

personalization rules and each information type has its own associated profile. If the

personalization profile determines that the new information should be filtered out, then

the information is deleted and the processing is completed. If however, the

personalization profile allows the new information to filter through, then it will perform

any needed conversion on the information and provide the Information Dispatcher with

context data that specifies under what context the user should be notified of this new

information and what message should be posted with the notification. If the network

connection is down when it is trying to push data to the mobile device, the Information

Dispatcher queues the data until a network connection is re-established.

11

The HHHelper is the thread within the Personal Agent that handles task requests

from the mobile device. These tasks include changing preferences, carrying out cache

management requests, and storing information about the user’s current context.

The agents that reside on the mobile device are the Notifier agent and the

PAHelper agent (where PA refers to “Personal Agent”). The Notifier receives new

information pushed to the mobile device by the Personal Agent. When it receives new

information, the Notifier provides the information to a user application and then uses its

knowledge of the user’s current context to determine if and when the user should be

notified of the new information. Notifying the user, in most applications, entails

displaying a message box with a brief summary of the new information. The PAHelper

processes task requests from the Personal Agent. These tasks include receiving

information files from the HHHelper, carrying out cache management requests, and

storing information related to the location of the Personal Agent.

The user applications allow the user to view a window that lists entries for the

existing information and to double-click on an entry to pop-up a window that displays the

actual information. These applications also allow the user to manage existing

information (i.e., delete information and set expiration times) and explicitly request new

information. A user application exists for each type of information that the Personal

Agent retrieves. These user applications interact with the Personal Agent System

primarily through the Windows CE database. They do, however, also send events

directly to agents in the system.

The context-related sensors include the Location Detector and the Calendar.

These are Win32 applications--not agents. The Location Detector sends the mobile

12

device’s IP address to the Notifier each time the user moves into a different subnet. The

Calendar application organizes the user’s schedule and has a user interface that allows the

user to easily add, change, and delete activities. The user categorizes each activity

entered into the Calendar as one of the following types: Meeting, Class, Eating, or

Leisure. Users can also add their own categories. At the start of each activity, the

Calendar sends the activity’s category to the Notifier. The system therefore uses these

categories to determine the user’s schedule context. The more categories that the

Calendar uses the better informed the system is of the user’s schedule and the better it can

adjust to the user’s needs.

Ensuring a fast and reliable network connection between the Personal Agent and

mobile device (by having them in close proximity) is critical because the Personal Agent

continually pushes information to the mobile device, all requests from the mobile device

are routed through the Personal Agent, and the caching mechanism (below) requires

integrated data management between the Personal Agent and the mobile device.

Constant interaction between a mobile device and a stationary server allows users to take

advantage of the mobility offered by their mobile device as well as to take advantage of

the resources of the stationary server. These server resources include more memory,

faster processing, an unlimited power source, and a faster, more reliable network

connection.

Integrating a cache into the Personal Agent System allows the mobile device to

store frequently used data locally. We designed the cache as a three-level hierarchy

consisting of a local level, a Personal Agent level, and a “World” level. The data at the

local level is a subset of the data at the Personal Agent level while the data at the Personal

13

Agent level is a subset of the data at the “World” level. The “World” level is all

information that can be obtained from any source available to the Personal Agent. With a

data hierarchy, however, the user sometimes views out-of-date information. This

situation occurs when the data that the user wishes to view exists on the local or Personal

Agent level and is older than the “World” version. Unless the local version is deleted by

the user or automatically replaced in the cache, the cache will never retrieve the newer

version from the “World”. Because not all data resides locally in this cache structure, a

disconnected network causes additional complications. If the device tries to retrieve

remote data but the network is disconnected, the system would have to notify the user

that the data is currently unavailable.

4. Implementation

Because the focus of this project is to develop an infrastructure for the

personalization of information services, we did not implement migration of the Personal

Agent or caching. In our implementation, all data resides with the Personal Agent and

we assume the Personal Agent has an unlimited storage capacity. This greatly simplifies

data management because only a single version of any data ever exists. Although this

storage decision does present the issue of a bottleneck and a single-point of failure,

ideally it should not pose a serious problem since the connection between the Personal

Agent and mobile device should be fast and reliable. For this section, the reader should

refer to Figures 4 and 5 to gain a better understanding of the interaction between the

various parts of the system.

14

Figure 4: The Personal Agent

15

Figure 5: The Mobile Device

The information servers implemented in this project are a weather server, a

paging server, and a bulletin server. A simple way to implement these servers would be

to write Perl scripts that periodically receive requests from the Personal Agent over a

socket, parse a specific web page to obtain needed information, and then send the

information back over the socket to the Personal Agent.

In the implementation of the project, however, the Information Gatherer obtains

information from pre-written files. After the Information Gatherer has obtained the

needed information, it determines the values for the fields used for personalization (i.e.,

for a bulletin the fields would be the source, subject, and urgency of the bulletin) and then

16

stores the actual information in a file. The thread then sends an event to the Information

Dispatcher to notify the dispatcher of the new information. This event contains the value

of the personalization fields and also contains the full path of the file containing the data.

When the Information Dispatcher receives an event from the Information

Gatherer, it carries out the personalization specified by the new information’s associated

personalization profile. The personalization profile could delete the information if it

determines that the information will not be useful to the user. If the personalization

profile does not filter out the information, then it will produce data that describes how the

Notifier should handle notification of the new information. Any information that the

profile does not delete will be available to the user. The system, however, may or may

not explicitly notify the user of the new information. The Information Dispatcher sends

this notification data, the fields the viewing applications will display for the new

information, and a pointer to the file that contains the actual information. This pointer is

simply the file’s full path on the Personal Agent’s host machine.

When the Notifier receives the above data, it immediately supplies the viewing

application associated with the new information, including the information’s display

fields and the pointer to the name of the information’s file. This notice allows the user

application to create and display an entry for the new information. The Notifier then

analyzes the notification data sent by the Information Dispatcher. This data includes a

list of the activity categories and the list of locations under which the notification can be

posted. If both lists are empty, then the Notifier knows that a notification should never be

posted. The data also includes the message that should be displayed during the

notification. If the user need not be notified of the new information, then the Notifier is

17

done processing the information. If the user needs to be notified, then the Notifier must

now check if the user’s current context satisfies the information’s context criteria. The

Notifier is always aware of the user’s current context because it is informed of any

context changes by the Calendar application and the Location Detector. If the current

context satisfies the information’s context criteria, then the Notifier displays a message

box containing the notification message. The Notifier is then done processing the new

information. If the current context does not satisfy the information’s context, then the

Notifier places the notification data into a list of notifications that must still be processed.

Each time the Notifier receives a context change, it runs through the list to see if the

current context satisfies any of the notifications’ context criteria. For each one that is

satisfied, the Notifier posts the appropriate notify to the user and removes the notification

data from the list.

The user applications currently integrated with the Personal Agent System are a

Weather Service, a Paging Service, and a Bulletin Service. Each of these user

applications has its own database and when the Notifier receives new information, it

writes the display fields and file pointer of the information to a new entry in the

appropriate database. The user application automatically receives notification of the new

entry and, in its listbox window, the user application creates an entry for the new

information. When the user double-clicks on a listbox entry, the user application obtains

from the database the pointer to the information file. The application then sends this

pointer and the id of the information’s database entry to the HHHelper. The HHHelper

receives the information file request, opens the file specified by the pointer, and sends the

contents of the file and the database entry id to the PAHelper. When the PAHelper

18

receives this event, it saves the contents of the file into the database entry specified by the

id. The user application automatically receives notification of the change to the database

entry. It reads the contents of the file from the database entry and displays it in a pop-up

window. When the user closes the pop-up window, the user application deletes the

contents of the file from the database entry since data should be stored only with the

Personal Agent.

The Calendar used in the implementation reads a pre-written schedule from a file

on the hand-held. A schedule consists of the begin and end time of each activity and

specifies a category for each activity. The Location Detector is a stub that sends a

different IP address to the Notifier at pre-selected times.

As this implementation section shows, the Personal Agent System provides an

infrastructure for using context detectors to personalize information retrieved from

information servers and pushed to user applications located on a mobile device.

Information servers, viewing applications, personalization profiles, and context detectors

are all easily integrated into the system. Together they provide mobile users with a

personalized information retrieval system that manages the vast amount of information

available and provides a convenient and minimally intrusive interface to the users.

5. Personalization

The method of personalizing this information gathering system to a user is an area

that can be explored in depth. Personalization involves a variety of concepts—including

concepts in user-interface design, machine learning, information retrieval, information

19

filtering, and context awareness. We focus here on rule-based systems and learning

models used in designing the Personal Agent System’s learning mechanism.

5.1 Rule-Based System

We designed the Personal Agent System to support personalization profiles that

are a collection of rules that establish how a specific information type should be

personalized. For example, the weather service would have an associated profile for

personalizing incoming weather data to the user’s preferences. Having user preferences

about a specific data type encoded in a module such as a personalization profile greatly

increases the flexibility of the system—it allows the system to be easily changed and

extended. If the user would like to personalize the retrieval of stock quotes, for example,

then she would just need to add a stock profile to the collection of existing

personalization profiles. Profiles could even be pre-configured to represent a certain user

type. A user could select a pre-constructed profile that most closely matches her

preferences and then she could either explicitly update the preferences encoded in the

profile or could have them automatically updated through the learning mechanism that

we describe later.

We selected a rule-based system as the system for encoding user preference’s into

a profile because such a system is extensible and is a representation into which an

application can easily translate user preferences. This ease of translation exists because

rules directly associate conditions into desired actions and also provide a straightforward

way of organizing many preferences. We can, for example, simply have preferences

listed in order of specificity or importance. Furthermore, we can easily update a list of

rules by adding more rules or changing a specific condition in an existing rule.

20

Therefore, having preferences encoded as rules is well suited for handling preference

changes--either directly from the user or through the learning mechanism.

The main components of a system of rules are conditions, actions, and defaults

[1]. To determine how it should personalize incoming information, the system starts at

the top of the list of rules and stops at the first rule whose conditions, represented as

Boolean expressions, are satisfied. The conditions involve the values of the

personalization fields extracted from the information being processed. For example,

when processing a news bulletin, the conditions involve the value of the bulletin’s source,

subject, and urgency. The system stops at the first rule in which the conditions have the

same value as the personalization fields of the bulletin. The condition has an associated

action that describes whether the information being processed should be deleted, whether

it should be converted into another format (i.e., a large picture might be reduced to the

size of the mobile device’s screen), and both whether and when the user should be

notified of the incoming data. The rules are organized in order of importance and

specificity and the last rule is a default rule that handles any incoming information that

does not match any of the other rules. This structure allows the system to handle all

information systematically. The structure of this rule-based system is directly analogous

to the structure of programming languages such as Awk and Prolog and of the “switch”

and “if-else” programming constructs.

For the Personal Agent System, one possible language for expressing

personalization rules is Tcl. Tcl is an interpreted language that can run on Windows NT

and that interfaces easily with C/C++. Below is sample Tcl code that represents two

21

rules in a personalization profile associated with pages (one-way electronic messages).

An application that presents a user interface for entering preferences generates this code.

if {$sender == “Sally Brown” && [string match
“*performance*” $subject] && $urgency < 3} {

if {filterPage $filename} {
pageToASCII $filename
set notifyActiv {leisure eating}
set notifyLocat {any}
set notifyMsg “$sender has sent a \
page concerning $subject and with an \
urgency of $urgency.”

}
} elseif {$sender == “Sally Brown”} {

delete $filename
}…

To express the main points in this rule-based personalization system, we present

simplified personalization rules. The Information Dispatcher has already extracted the

sender, subject, and urgency fields from the page received and placed their values,

respectively, in the “sender”, “subject”, and “urgency” variables used in the code. The

Information Dispatcher has also placed the file path received from the Information

Gatherer in the “filename” variable. We place the Tcl rules, along with any Tcl

initialization code, into a function that the Information Dispatcher will call from its C++

code to personalize a new page.

For the two example rules, imagine that the user is in an orchestra organized by a

woman named Sally Brown. Imagine also that the user must read any of Sally Brown’s

pages that are not of the lowest urgency and are about a performance. The user, however,

is not interested in any other page from Sally Brown. When the system receives a page

from Sally Brown with an urgency of 1 and the subject “performance tomorrow”, the

conditions in the first example rule are satisfied. The string match function uses

glob style pattern matching to determine if the word “performance” is in the subject. The

22

matched rule performs the following personalization. First, it calls the filtering function

filterPage to perform more detailed filtering of the page. For example, this function

could analyze the content of the page to see if Sally provides the time and location of the

performance. If she does not, then the function deletes the page because it knows or has

learned that the user will not be interested in the page. When this deletion occurs, the

function returns a 0 and the code is finished. If the filter function does not delete the

page, it returns a 1 so that the if statement’s condition is satisfied and further

personalization occurs. The code then converts the page into ASCII text by calling the

pageToASCII function. Next, the code forms a list of activity categories that the user’s

schedule context can be for the user to receive notification of the page. In this case, the

user wishes to receive notifications when he is in at leisure or eating. The creation of a

location list works the same way, but for this example the user does not have a certain

location where she must be to receive the notification. Finally, the code forms the

message that the Notifier will display when notifying the user of the page. The Tcl

function returns the activity list, schedule list, and notification message to the Information

Dispatcher so the Information Dispatcher can send this information to the Notifier.

In exploring the Sally Brown example further, consider what happens when the

user receives a page from Sally Brown that either has the lowest urgency or does not have

the word “performance” in its subject. In this case, the conditions of the first rule will not

be satisfied but those of the second rule will be. The body of the second rule simply

deletes the page—which is what the user wants. If we had reversed the order of the two

rules, then all pages from Sally Brown would be deleted and the second rule would never

be reached. The order of the rules is therefore critical. Rules with more specific

23

conditions should come before those with less specific conditions. Otherwise, the general

rule will always be satisfied before the more specific rule and therefore the more specific

rule will never have any effect on the personalization system.

5.2 Learning Models

From the example just presented, one begins to understand both the amount of

detail that rules must incorporate and the number of rules needed to achieve a high level

of personalization for the user. For this reason, we wanted to integrate a learning

mechanism into the Personal Agent System that would not require the user to manually

enter all personalization specifications. The user would have to perform this manual

entry in what Pannu and Sycara [6] refer to as a Static Filtering model.

The Static Filtering model is one of three filtering models described by Pannu and

Sycara in their paper about information-retrieving agents [6]. Although our project

performs the more general action of personalization rather than just filtering, the models

described by Pannu and Sycara are still useful in discussing the design of our project. In

a Static Filtering model, the initial setup costs are high and no learning mechanism is in

place to adjust the agent’s actions. With this model, the user must undergo a tedious

initialization process and changing user interests are difficult to handle. Furthermore,

users often have difficulty expressing their interests through preferences and this model is

unforgiving of inaccurate preference settings [8]. In a Dynamic Learning Filtering

model, no initial setup occurs and the agent learns the user preferences based on various

feedback. Such a model, however, is “time consuming and frustrating” to users because

they are burdened with providing user feedback until “the agent [reaches] a reasonable

level of expertise” [6]. The third model that Pannu and Sycara describe is a Semi-

24

Dynamic Filtering model. This model has an initial setup phase followed by continuous

use of user feedback to adjust the agent’s actions.

For the Personal Agent System, the most suitable type of personalization model is

a Semi-Dynamic model. This model has the user set basic preferences and then allows

the system to refine these preferences to achieve more advanced personalization of

services. Unlike with a Static Filtering model, the user does not have to enter all possible

preferences or manually update any preference changes. Unlike with a Dynamic

Learning Filtering model, the Personal Agent System can immediately provide

personalized service to the user.

5.3 Design of the Learning Mechanism

In the setup phase for the “Semi-Dynamic Personalization model” of our system,

users specify the learning sensitivity of the system, which information sources the

Personal Agent should monitor, and how often the Personal Agent should poll each

information source. For each information type, the user then specifies filtering,

conversion, and notification preferences for information having certain personalization

field values. The user can enter any number of these and can also rank these preferences.

For example, a preference for pages could specify something like: “If the sender is

‘George Smith’, the subject includes the word ‘dinner’, and the urgency is ‘2’, then delete

the page.” A preference that a user might rank higher than this preference could specify

something like: “If the subject includes the word ‘free’, then convert the page into ASCII

text and notify me when I am in class, eating, or at leisure.” Note that this second

preference does not filter on the sender or urgency field. Any page that has “free” in the

subject will be sent to the user and posted to the user as long as he is not in a meeting.

25

Because the user has ranked the second preference higher, the system will send George

Smith’s page about dinner to the user if it has the word “free” in its subject but otherwise

will delete the page. The application that obtains the user’s preferences for each

information type directly translates the preferences into the list of rules that form the

personalization profile for the information type.

The learning phase for this model of our rule-based system consists of two

different mechanisms. The first type involves learning if certain notifications are useful

and if certain information is even wanted. This type of learning relies on feedback from a

“Unwanted Information”, “Intrusive Notify”, and “Thanks” button that appear on every

message box that notifies the user of new information. The “Unwanted Information”

button means that the user finds the new information uninteresting and does not want it

again. The “Intrusive Notify” button means that the user wants the new information but

finds notification of the information intrusive. When the user finds the new information

interesting and the notification of the information useful, then he would click the

“Thanks” button. The user clicks any of the buttons to close the notification box and

“Intrusive Notify” is the default. We chose the “Intrusive Notify” as the default because

if the user must rely on the default, he most likely finds the notification intrusive and

wishes to close it quickly. Assuming that the user does not want the information is too

strong of an assumption. With only three buttons to respond with, the interface does not

demand too much from the user.

Because the system always knows the user’s context and therefore can record the

context under which a notification is posted, it can receive clues about why a notification

was not useful. Because the system can determine which rule handled a notification, it

26

receives clues on how to prevent further postings of intrusive notifications and further

obtaining of unwanted information. If the user consistently clicks the “Intrusive Notify”

button on a notification posted under a certain context, the system will remove the

context from the context list generated by the rule. If the user consistently marks

information with the same personalization fields and of the same type as unwanted and if

the personalization fields do not precisely match every condition in its matching rule,

then the system infers that matching rule is too general. In other words, the rule probably

matches too broad of an information category because it does not have enough conditions

or its conditions are too easily satisfied (i.e., it has a ≥ condition rather than an =

condition). The system therefore forms a new rule whose conditions exactly match the

value of the consistently unwanted information’s personalization fields. The rule’s action

will consist simply of deleting the data. The system places this new rule before the more

general rule.

The second type of learning mechanism involves learning what information the

user finds interesting. This mechanism adjusts the filter function called within a

personalization rule. This function deletes the information if it decides that the user

would not be interested in the information or it allows further personalization of the

information if it decides the user would be interested in the information. For weather

reports, the filtering function could be as simple a function that deletes a report if it does

not contain the word “tornado”. For information types such as news bulletins, however, a

much more complicated filter function might be needed to analyze the information’s

content.

27

Much research has been conducted on content-based information filtering. Pannu

and Sycara suggest having the user provide a collection of information which they are

interested in (positive examples) and a collection of information that they are not

interested in (negative examples) [6]. They then suggest using either term frequency-

inverse document frequency weighting (tf-idf), a technique that utilizes the occurrence

properties of various terms, or a neural network to analyze the information collections

[6]. A filter allows information through if the information’s analyzation more closely

matches that of the positive examples and does not allow information through if its

analyzation more closely matches that of the negative examples. In their research, Pannu

and Sycara found tf-idf to be more effective.

Winiwarter suggests the use of evolutionary adaptation to determine information

of interest [8]. For each of her interest domains, the user must supply a collection of

information that represents the domain. From this collection, the system creates “a

ranked list of descriptors” that it will use to categorize new information into an interest

domain [8]. From these collections, the system also derives the initial population of

“chromosomes” used in the evolutionary algorithm. For each interest domain, the system

derives an initial population from random variations of the collection of information

representing the interest domain. When the user receives incoming information, the

system categorizes it into a domain and then asks the user to rate the actual relevance of

the information to the domain. The system uses the user’s rating to determine the fitness

of the chromosomes for the corresponding interest domain and then runs the evolutionary

algorithm to adjust the system’s model of the user.

28

In the GroupLens Research Project, the researchers integrated filterbots into a

collaborative filtering system [7]. A collaborative filtering system is one in which

information is filtered based on the opinions of other users [7]. This system would

therefore apply more to news bulletins and web documents rather than information such

as e-mails, pages, or weather reports. Filterbots are “automated rating robots” that

evaluate new documents [7]. They help address the problem of trying to filter

information that has not yet been rated by other users. In the project, filterbots that the

user consistently agrees with are given a high weight when filtering information for that

user.

Determining what properties of the network or of the incoming information the

system should use for personalization is another aspect of designing a personalization

service. Quality of Service (QoS) factors such as network bandwidth, noise, cost, and

delay can be used to determine when information should be pushed to the user and

perhaps what type of conversion the information should undergo. If the system keeps a

history of the personalization fields of past information gathered, personalization could

also occur based on the amount of change that occurs between incoming information.

For example, a weather report could be filtered through only if it has a temperature

difference of more than 5 degrees or a stock quote could be filtered though only if it has

dropped more than 10 points.

6. Summary

This paper presented the design of a mobile-agent system that provides a mobile

user with a personalized information retrieval service and described the implementation

29

of such a system’s infrastructure. This project integrated research in information

retrieval, information filtering, personalization, mobile agents, context-aware

applications, and mobile computing. The Personal Agent System not only addresses the

resource-limitation problems associated with mobility, it actually takes advantage of the

characteristics of mobility to provide an enhanced service to the user. Because the

Personal Agent System recognizes what information the user is interested in, converts

information into a form the user can most easily view, presents the information only

when the user can use it, and offers its services in virtually any location, the system

indeed allows the user to take advantage of the vast amounts of information available in

this exciting age of information.

Acknowledgements

I would like to thank Amanda Eubanks, Neha Narula, and Tiffany Wong for

working with me on this project. I would also like to thank Guanling Chen for both his

work on the Pokegent system and his help integrating the Pokegent system into the

Personal Agent System. Finally, I would like to thank Professor David Kotz, my thesis

advisor, for guiding me throughout this project and, ultimately, for making this project

possible.

30

References

[1] Stefan Arbanowski and Sven van der Meer. Service Personalization for Unified

Messaging Systems. In Proceedings of The Fourth IEEE Symposium on Computers and

Communications, 1999.

[2] Susan T. Dumais. Combining Evidence for Effective Information Filtering. In

Proceedings of the AAAI Spring Symposium on Machine Learning and Information

Retrieval, 1996.

[3] Esteban Chavez and Rudiger Ide and Thomas Kirste. SAMoA: An experimental

platform for Situation-Aware Mobile Assistance. In Proceedings of Workshop on

Interactive Applications of Mobile Computing (IMC'98), 1998.

[4] Robert S. Gray. Agent Tcl: Alpha Release 1.1. December, 1995. Available at

http://agent.cs.dartmouth.edu/manual/doc.1.1.ps.gz.

[5] Rui José and Nigel Davies. Scalable and Flexible Location-Based Services for

Ubiquitous Information Access. In Proceedings of First International Symposium on

Handheld and Ubiquitous Computing, HUC'99, 1999.

[6] Anandeep S. Pannu and Katia Sycara. A Learning Personal Agent for Text Filtering

and Notification, 1996. Available at

http://www.cs.cmu.edu/~softagents/papers/kbcs96.ps.gz.

[7] B. Sarwar and J. Konstan and A. Borchers and J. Herlocker and B. Miller and J.

Riedl. Using Filtering Agents to Improve Prediction Quality in the GroupLens Research

Collaborative Filtering System. In Proceedings of the ACM Conference on Computer

Supported Cooperative Work (CSCW), 1998.

31

[8] Werner Winiwarter. PEA-A Personal Email Assistant with Evolutionary Adaptation.

In International Journal of Information Technology, 1999.

	An Infrastructure for a Mobile-Agent System that Provides Personalized Services to Mobile Devices
	Recommended Citation

	Microsoft Word - FINALTHESIS.doc

