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Abstract

A network models relationships. For a network that either encodes or supports

internal information sharing activities, a better understanding of the network may

enable data-driven applications (e.g., social network based recommendation), and

boost both descriptive and predictive modeling of information flow in itself.

In a multi-faceted manner, we propose in this thesis to contribute to several

challenges that arise in the development of personalized applications in the general

area of information and networks: 1) articulation of new patterns (and associated

metrics) for individual user behavior and network structure; 2) exploitation of new

forms of feature vector representations derived from large datasets integrating users

and network structure; 3) modeling the space of information flow with network

science models and in particular, the prediction of direction, outlier, and outcome

for information flow; 4) improving the transparency of a network-based recommender

system to enable exploration of the underlying information space. The proposed

methodologies combine machine learning models, network analysis and statistical

analysis, which can successfully address open problems in the field. They are validated

on a range of real data and show practical significance in providing widely applicable

models and displaying increased accuracy over useful baselines.
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Chapter 1

Introduction

Networks and network analysis have proved to be an extraordinarily useful

mathematical paradigm for the understanding of interacting and related objects and

the dynamics occurring between agents as well as the dynamics that take place by

virtue of their connection. In this thesis, we consider both network dynamics and

information flow in a network relevant to the enhanced utility of network structures

in a variety of applications.

A network articulates explicit structures describing the connections among a

group of entities, such as a social network of people built with their interactions.

The amount of data associated within a network, in terms of the number of nodes

(entities or agents) and their connections as well as the metadata attached to them,

is growing explosively in different domains. Particular examples include social media

platforms and activity records of professional collaboration. In such cases, big data

acts as a useful source for building network-based applications for the benefit of the

whole community, however different user groups (down to the scale of the individual,

and known either directly in the metadata or discovered through some aspect of

commonality) often require more accurate and even personalized service.
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Introduction Introduction

In a network, the interactions between nodes may transfer a kind of information,

such as the diffusion of news in a social network and the sharing of knowledge and

skills on an employee’s career path in a network of companies from one job to another.

If we group the activities of information sharing by the ID of a piece of information or

the “walker” who/which jumps from one node to another in the network, we will get

multiple parallel tracks of information flow in the network. A better understanding

of information flow will provide explanations about the dynamics in a network, and

suggest new powerful personalized predictive applications.

Given the diverse and dynamic nature of a network and the information flow

inside, we face multiple challenges in personalizing applications. Before building the

model in such an application, we would like to get some insights about the walkers

(i.e., users) who/which carry a kind of information as they traverse the underlying

network (e.g., a social network). A particular application area of interest for our work

is healthcare where data can be used to create networks of patients and providers,

either separately or together. Past work [Barnett et al., 2012a, Mandl et al., 2014] did

not apply network science models to large-scale patient-physician visiting records. In

our work we make use of the collection of derived physician interactions through the

a patient referral network defined by us (and others). Here a patient plays the role

of a walker who transfers her treatment history to multiple nodes in the network of

physicians. Among the opportunities that the non-network-based approach missed –

and which we uncovered in our work – is the representation of a sequence of visited

physicians by the same patient as a network walk, which corresponds to the track

of information flow in a generalized network, the statistics of which can produce

important metrics of physician characterization.

Another area of interest for us is information diffusion in a network. We find that

most previous work [Bourigault et al., 2016, Kempe et al., 2003, Yang and Counts,

2



Introduction Introduction

2010] about information diffusion in a social network (e.g., news on Twitter) explains

only the paths of observed information flow, without the prediction of future direction.

In contrast to the explosive “multi-track” (a node could pass a piece of information

to multiple nodes) news information flow in an directed acyclic network where the

path of information diffusion does not contain duplicate nodes, the contexts of patient

referrals, travelers visiting places, and career paths represent a class of “single-track”

information flow. Single-track information flow could be described as a “walk” in

the network that may contain duplicate nodes. In the single-track scenario where

duplicate nodes on the track are allowed, for the purpose of personalized prediction, we

need to design a new model to predict the next node that will receive the information

after a time point of observation. Several applications related to information walk

requires a predictive model as well, such as predicting the future outcome of a given

event (e.g., treatment outcome of a patient) related to the information walk.

Finally, many popular websites/mobile applications (e.g., Yelp and Rotten

Tomatoes) produce recommendations based on either inferred or explicit social

networks. The inference is influenced by and evolves according to many hidden

(at least to the user) variables. The track of browsing on such platforms is also

an information walk in the network of candidate items. A final piece of this

dissertation investigates the idea that greater transparency and interpretability in

the recommendation engine would be of interest and excite more active participation

in the recommendation platform.

To address the above challenges in the context of several datasets and applications,

we investigate four general research problems to improve the performance, robustness,

and interpretability of network-based personalized applications. Our first goal is to

better understand the behavior of users and structural patterns of a network. Of

particular interest is the interaction between generative models and network analysis

3



Introduction Introduction

for explaining user behavior and network structures. Second, is a goal of feature

engineering with novel features and the incorporation and integration of diverse data

into a feature vector. Open public databases and network science models present

opportunities for new relevant material. Third, we investigate the personalized

applications (e.g., the next visited node prediction) of information flow in a network.

As a part of this, we introduce the notion of an information walk in a network and

investigate its realization in various explicit contexts. Based on the network structure

patterns and the observed information flow, a preference score in the Bayesian

Personalized Ranking framework might be able to predict the next node that receives

the information. Finally, we explore a framework to improve the transparency of a

personalized application, such as a recommender system. When users are walking

in the vast network space of candidate items, we hope that visualization of a user’s

feature vector space contributes to transparent network navigation in a recommender

system. In addition to a traditional recommendation performance evaluation, we

implement a user study to quantify the degree of improved transparency in user

experience.

Personalized applications about information flow in a network cover a wide range

of topics with many related research problems. We organize the research issues into

the following chapters of this thesis:

Chapter 2 introduces some necessary background knowledge for the thesis. It

briefly reviews three research topics, including network analysis, predictive models

for information diffusion and efforts on transparent data mining made by other

researchers.

Starting with Chapter 3, we introduce several original contributions. Chapter 3

describes smartphone usage behaviors with a generative model. We also investigate

how to apply network science to unstructured raw datasets and detect significant

4



Introduction Introduction

patterns in a proposed physician collaboration network derived from patient-physician

visiting records. The methods are applicable to diverse contexts. In general, user

behavior models and structural patterns of a network describe the “walker” and

where she “walks”, respectively.

Chapter 4 shows two examples of feature engineering for data-driven projects. We

explore the use of new geographical features from a public database for user preference

prediction and build a feature vector of the chronological visiting records during a

patient’s treatment. This Chapter targets both the “physical walk” in local business

units and the “walk” in a referral network. Those features enable a general framework

applicable to diverse contexts for recommendation and information walk prediction.

Chapter 5 digs into three predictive tasks for an information walk on the context

of referral network, including the sequence of referrals in the physician collaboration

network. For the problem of future direction (i.e., the next visited node) prediction,

we translate it to a problem of ranking over all candidate nodes and learn latent

parameters in a novel preference score for the ranking. Second, we describe the

“space” of all information walks in an articulate and rigorous way to detect the

possible outliers of information walk. Third, we apply machine learning models to

predict the final result (e.g., treatment outcome of a patient) of an event along with

an information walk.

Chapter 6 presents a general transparent framework for users, with the goal of

giving users a better understanding of why they find the current information on the

screen. To improve the user experience in network navigation, we design a transparent

recommender system with user-controlled settings and dynamic visualization of

network space. This is in contrast to some online tools (e.g., “people you may know”,

“movies you may like”) that directly display a list of suggested items. An initial

user study of our proof-of-concept Wikipedia pages recommender shows positive
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feedback (e.g., more transparency and good recommendation performance) for such

enhancements.

The four Chapters (from Chapter 3 to Chapter 6) of new work follow the

chronological order in the practice of building a data-driven project with network and

information walk. First of all, we need to understand the context in the raw dataset.

Second, we should implement feature engineering for more meaningful information.

Third, the prediction of a target variable may need a framework of machine learning

or statistical analysis. Last but not least, it will be better to explain the logic

of the algorithm with diverse visualization of the user’s feature vector space and

more interactions with users. Our models/methods in those Chapters could work as

independent modules for different contexts (e.g., smartphone users, referral network,

Yelp, Wiki, etc.), but we can also combine them together as a complete data-driven

project about information walk, or other desired target.

Finally, Chapter 7 summarizes the contributions of this thesis and discusses

possible future directions of work, including several research problems proposed in

this thesis.
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Chapter 2

Background

Chapter 2 presents a very brief introduction to the background knowledge and

related baseline works. Given the breadth of the four themes in the thesis

(patterns of user behaviors and network structure, feature engineering and

entity representation, predictive models for information flow, transparent

network applications), the coverage of background knowledge below cannot be

complete. Our research builds on the background models to address new problems in

different contexts.

Section 2.1

Descriptive Network Models

Network science underlies each of the four aspects of the problems in the thesis, since

we usually either build a network with unstructured raw data or propose a network

model to address a problem.

In general, network science produces structural measures (e.g., clustering

coefficient, diameter), node position measures (e.g., PageRank, eigenvector centrality)

and edge weights measures (e.g., assortativity) as summary measures of a social

network. Several network models (e.g., core-periphery [Borgatti and Everett, 2000],

7



2.2 Information Flow Prediction Background

“small-world” [Amaral et al., 2000]) describe general patterns of nodes connections.

Recent books [Barabási et al., 2016, Serrat, 2017] survey network analysis with

a complete list of powerful methods. In addition to traditional network analysis

methods, we can introduce new desired features and models depending on the goal of

a project. There are also connections to the so-called “multilayer networks” [Kivelä

et al., 2014] and hypernetworks [Ghoshal et al., 2009, Zlatić et al., 2009] used to model

complex types of relationships (with different kinds of edges) in a set of entities.

Enlightened by the above works, we implement network analysis on several

network datasets to validate significant patterns and derive new structural features.

Additionally, we propose a new model, a high-level network of information flow.

Moreover, we apply the idea of network analysis to a recommender system. As

one of our projects in the thesis, we build a network of candidate items based on

their connections with the context of Wikipedia pages, and visualize the network

with several algorithmic parameters set by users. We hope the network visualization

could remind users where they are in the vast space of candidate items and why the

recommendation algorithm returns such a list of items.

Section 2.2

Information Flow Prediction

Our proposed predictive models target the single-track information flow. This is

different from the hot topic of multi-track information diffusion which talks about a

kind of explosive information sharing where a node may pass a piece of information

to multiple successors rather than a node-by-node single track.

In this context, the focus of our work is related to but different from the

well-investigated problem of link prediction. Considering network dynamics and the

diffusion of information on networks, we define an information flow as a sequence of

8
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nodes in a network (supporting some kind of information flow or sharing dynamic)

that successively receive and pass a kind of information. If available, the observed

explicit node-to-node path of an information flow will provide additional data for the

prediction of information flow in the future, such as the next node (i.e., “direction”)

of the information flow. We make use of the baseline methods from the above related

works to verify the efficacy of our proposed information flow prediction model.

Link prediction [Liben-Nowell and Kleinberg, 2007] refers to the task of predicting

the next most likely links to be produced in an evolving network based on the current

snapshot of the network. This is one of the most popular predictive methods for a

social network that adapts to information diffusion. A typical supervised learning

framework [Mart́ınez et al., 2017] requires a target label and the corresponding

feature vector for model training. Probabilistic generative models [Kashima and

Abe, 2006] exploit a joint distribution of links along with related node features, while

discriminative methods [Yu et al., 2007] directly model links using related features

as the input for classifiers. Current works [Bourigault et al., 2016, Saito et al., 2008]

mainly aim to explain the observed track of information diffusion on a social media

platform with possible hidden connections between nodes.

Another related problem is finding missing links [Nakagawa and Shaw, 2004].

Traditional link prediction models (e.g., [Adamic and Adar, 2003] and [Liben-Nowell

and Kleinberg, 2007]) usually rely only on a form of node similarity derived from

network topology and generally ignore the whole (information) walk. Many past

works target the problem of multitrack spreading or broadcasting in directed acyclic

graphs (DAGs), while our proposed information walk model allows the existence of

a loop. Representative works include the Independent Cascade (IC) model ([Kimura

and Saito, 2006] and [Bourigault et al., 2014]), the Linear Threshold (LT) model [He

et al., 2012], and probabilistic methods [Gomez-Rodriguez et al., 2011, Myers and
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Leskovec, 2010]. In addition, past works do not consider observed information walks

as a part of their key inputs. In contrast, we incorporate information walks using

summary measures of network features in the corresponding network. Diffusion

models are clearly different, and they have been introduced to the research of

epidemics [Raj et al., 2012].

The idea of network navigation (e.g., [Leibon and Rockmore, 2013]) is related

to a class of state transition method for an accurate recommendation. Recently,

a Transition-based Factorization Machine model (TFM) (see [He et al., 2017] and

[Pasricha and McAuley, 2018]) was used to predict the next state in an abstract space

of items for users. In contrast to the TFM model, our proposed preference score model

considers network science measures and shows the benefits of incorporating them with

other metadata features.

In specific domains, several applications (most notably online shopping or search)

try to predict a visit to a next “item”. The general BPR model [Rendle et al.,

2009] has been introduced to online shopping [Rendle et al., 2010] to serve users with

personalized goods recommendations in the context of user activity logs. A common

problem has been to predict the next place of work of a given employee in a labor pool

using LSTM [Li et al., 2017] or a “gravity law” based approach [James et al., 2018]. In

medical research, Choi [Choi et al., 2016] applied deep learning to estimate the next

medication code in a course of treatment by combining codes of medical treatment

and physician visiting records to obtain a comprehensive feature representation.

Section 2.3

Transparency in Applications

Section 2.2 introduces several examples of good predictive models, which will greatly

improve user experience. The same is true of transparency: if a user has a
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better understanding of the hidden algorithm in a recommender system (or other

applications), as well as some agency in changing the algorithmic parameters,

arguably the user can improve her experience.

We exploit the context of Wiki browsing to implement our idea of transparency

in Chapter 6. Here we briefly review several works about better user experience on

Wiki. Several projects have focused on Wikipedia navigation, as relates to efficient

browsing. Lamprecht [Lamprecht et al., 2015, Lamprecht et al., 2017] discussed

the influences of Wikipedia navigation policies and the structure of Wikipedia pages

network. Odor [Odor et al., 2018] presented the evolution of Wiki hyperlink networks

to aid navigation and understanding. Another automatic tool [Sáez and Hogan,

2018] aimed to generate info-boxes for Wikipedia pages from a Wikipedia knowledge

graph. In a different direction, Leibon et al. [Leibon and Rockmore, 2013] show how

the Wikipedia pages around a given topic – e.g., mathematics – can support a metric

and thus structure of a hyperbolic geometry and with that, enables the construction

of geodesics (paths in the Wikipedia space) that optimally guide a user’s viewing

experience (the use case of the paper is the MathWikipedia). We also propose

our new model of information flows network in Chapter 5. Figshare [Wikipedia,

2016] provided content-based embeddings learned from Wiki corpus as the navigation

vectors on a 2D plane. Cartograph [Sen et al., 2017] enables the presentation of a

vast map of Wikipedia pages with the embeddings learned from neural networks.

The last of these differs from our proposed navigation schema would allow users to

change the visualization and any underlying metric supporting the visualization. Our

proposed framework in Chapter 6 also brings more transparency via user-controlled

visualization.

Also related is work on semantic annotation and some applications of collaborative

filtering applied to Wikipedia data. IkeWiki [Schaffert, 2006] and SweetWiki [Buffa
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and Gandon, 2006] made the inherent structure of a Wikipedia page accessible to

users and computing machines via annotations derived from semantic methods (e.g.,

RDF and conceptual graphs). A visual analytics framework [De Sabbata et al., 2015]

illustrated how editors could work together for a public visualization of Wikipedia

data.

Researchers also have been working on diverse kinds of Wiki tools to improve

knowledge transfer and user experience. Harder et al. [Harder et al., 2017] designed

a new measure to model and display the degree of “verifiability” of a Wikipedia page

and implemented a demo in a Chrome browser extension. A visual article development

tool [Flöck et al., 2015] explored editor interaction history to deal with disagreement.

Balaraman [Balaraman et al., 2018] proposed a new metric to describe the relative

completeness of Wikipedia data. Gundala [Gundala and Spezzano, 2018] reported

the initial progress about predicting hyperlinks between pairs of non-connected pages

that are helpful for search navigation. WikiTrails [Reinhold, 2006] provides a tracking

system of visited Wikipedia pages to facilitate the understanding of Wikipedia content

structure. Omnipedia [Bao et al., 2012] visualized multi-language editions of the same

Wikipedia page via colorful circles in different sizes based on an article alignment

algorithm, but it ignored network analysis. SuggestBot [Cosley et al., 2007] proposed

a link recommendation framework to match people with suitable editing tasks on

Wikipedia.

Lastly, there is now a growing body of experimentation with digital interfaces

for searching and exploring traditional information materials, specifically for the

interaction with libraries. An interesting example of this is the Harvard Stacklife

project1, which aims to bring back to online library search the missing – and bemoaned

– loss of the serendipity of browsing the stacks that occurs when going to retrieve a

1http://stacklife.harvard.edu
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book of interest. It is in the spirit of achieving such exploratory serendipity that we

present the work in Chapter 6. Another interactive graph [Leibon et al., 2018] allows

users to set up the weights of link structure measures and textual similarity for a 2D

map of legal documents, from which researchers explore how new opinions influence

the search behavior of judges and litigants and thus affect the law.

13



Chapter 3

Understanding the Datasets

Before building a data-driven personalized application, it is necessary to analyze the

dataset we have and try to find some meaningful pattern in the dataset if there

is. Therefore, we explore both individual user behavior models and global network

structural patterns on real datasets. This Chapter provides general methods of

understanding user behaviors and structural patterns in a network, which are of great

value to a data-driven project related to a generalized network (i.e., the underlying

metadata of a “society”). The significant patterns in our dataset may suggest a new

target for the application. Taking information flow as an example, it is necessary to

understand both individual users and the whole network before digging into a detailed

task.

To model the communications between nodes (e.g., users) in a social network,

it is beneficial to understand the user behavioral patterns. The daily routine of

mobile phone usage is a good example. Our work [An and Rockmore, 2016b] focused

on the use of a Hierarchical Generative Model to explain and predict phone usage

behaviors. Our user behavior model describes three important kinds of phone usages

(messages, phone calls and cellular data) with three layers: (1) the state of user-phone

interaction, (2) occurrence times of an activity and (3) the duration of the activity
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in each occurrence. We find the prediction error of the generative model to be the

smallest in comparison with several baseline methods. Since many users stay in touch

with others via mobile apps, the results suggest a new way of modeling user behavior

and provide a better understanding of users. Depending on the app, connections via

the app may create a network of users. Beyond the context of mobile phone usage

activity, the proposed hierarchical model could serve as a template for other ways

of communication between users in a social network when there is some time series

related pattern (e.g., seasonal or weekly change in the size of information flow).

A well-organized social network may contribute to a working society, depending

on its ability for information and resources to flow efficiently within itself. Therefore,

the application of network science matters in terms of mining structural patterns of

a network, especially when we are going to build a data-driven application based on

social network data. As an example, our paper [An et al., 2018a] analyzes the U.S.

Patient Referral Network and various subnetworks in 2009-2015. In these networks,

two physicians are linked if a patient encounters both of them within a specified time

interval. We find power law distributions as well as a core-periphery structure in

most of the state-level networks. We also discover the so-called small-world structure

and the “gravity law” that often exists in some large-scale economic networks. Some

physicians play the role of hubs for interstate referrals. The patterns in the referral

network illustrate the potential for using network analysis to provide new insights into

the healthcare system. The network models applied in the paper [An et al., 2018a]

could be extended to a wider range of contexts for more significant patterns.
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Section 3.1

Phone Usage Behavior

The work in this Section has already appeared in the refereed publication [An and

Rockmore, 2016b].

Smartphone applications can record data from diverse sensors and components in

the device, such as an accelerometer or Bluetooth. The popularity of smartphone

usage makes it possible to collect large amounts of sensory data, from which it

is possible to predict user behavior. Examples include the prediction of mobile

application usage [Shin et al., 2012] and daily geographic routines between different

locations [Farrahi and Gatica-Perez, 2010]. Some usage records, such as phone calls,

alarms, and GPS are clearly related to human behavior. Those behaviors are in

turn correlated with a person’s daily routine. Communication behaviors (e.g., sent

messages, phone calls, cellular data) are of particular interest since they are related

to the business model of the data carriers and service providers. With an in-depth

knowledge of user behavior, or a good predictive algorithm for such behavior, service

providers can offer plans personalized for the usage pattern. For example, a better

pop-up message service of a mobile application would not disturb certain ongoing

events. The question we ask here is, can we extract and predict the patterns making

up a daily routine from a large number of phone records?

Traditional methods for solving “prediction problems” (e.g., linear regression)

treat categorical (but still numerical) features as numerical values without an

explanation of the result. In this work, we take for granted that daily routine is

the basic and intrinsic foundation of behavior prediction. The traditional prediction

methods do not organize all features in the natural way as they are generated in daily

life. For example, binary output or values in [0, 1] of logistic regression might not
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reflect the accurate value of usage behavior in a wide range (even as the amount of

data increases dramatically).

Current work on mobile device usage mining does not give a direct route to

predicting user behaviors with an understanding of daily routine. In the literature,

there is primarily a focus on the prediction of the next event in the near future,

such as the next used application or next geographic position or route [Farrahi and

Gatica-Perez, 2010, Liao et al., 2013]. Some methods [Xu et al., 2013] require external

information, such as a large community of people to find similar user profiles. In our

method, the prediction for a user does not rely on outside datasets so that the lack

of similar user groups will not weaken the result.

Given the history user behavior records, we would like to predict the total amount

of some phone usage behaviors (e.g., the number of messages) in a period of time

(e.g., 30 days). Our method addresses the phone usage prediction problem with a

hierarchical generative model of three levels. The first one is state transition. Human

circadian rhythm affects the frequency of activity on phones. We divide a day into

smaller time slots and classify them into different states, such as sleep, passive and

active. The second parameter is the number of occurrences for some activity in

each time slot. The third is the duration of each occurrence. Once we learn the

necessary parameters in those three levels, a generative model will simulate the user’s

behaviors on a phone in order to make a prediction. We apply our generative model to

a dataset from Android Device Analyzer [Wagner et al., 2014a]. The results show that

our generative model performs well with the smallest error among several methods.

Briefly, the contributions of this model are:

• A hierarchical generative model to predict phone usage behaviors, which extends

the current focus on event intervals to event duration.
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Figure 3.1: The behavioral pattern of a user at time slots in a day.

Figure 3.2: Generative Model includes three levels, which are S states of time slots,
O times of occurrences, duration D of one occurrence. The state changes in time
order through sleep, passive, and active.

• Demonstration of the effectiveness of the generative model in large practical

datasets of sensory data (given enough states in the Markov model to describe

state-to-state transition).

• Enabling better personalized mobile service based on user behavior.

• Exploration of the best setting of parameters in the generative model with

control experiments.

3.1.1. Problem Definition

Consider a set of users u1, u2, ..., un, with time-stamp sensory records on phones. The

records will reflect the change of device setting or the user-phone interaction. Each

record can be described as R = (D,T, U,A). D is the day when the usage happens.

T is the time of the day. U represents the usage and system settings of a certain

sensor or component, such as messages, screen locks, network connections. A means
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the attributes and values of U . The paper [Wagner et al., 2014b] introduces possible

values of U and corresponding A. One sample record of alarm volume is

“2012-01-21T08:16:50.533+1300;audio—volume—alarm;7”.

Our goal is to predict the phone usage in the future t days based on the given

records of u1, u2, ..., un. Though we can predict other sensory data similarly, we focus

on three kinds of behaviors: the number of sent messages M , the total duration of

phone call (call in and out) C and the size of cellular data (rx and tx) D. They

occupy the main part of bills on phone communication and represent daily usage on

the phone. They reflect a user’s connectivity in a social network. To predict phone

usages using a generative model, we should define and learn states of user-phone

interaction, then explore the distribution of messages M , phone call C and cellular

data D in each state based on some pattern.

3.1.2. Behavior Prediction

Patterns in Phone Usage Behavior. Dividing a day into 48 even time slots, we

count the average number of event occurrences over many days. Figure 3.1 shows the

number of records, the number of received and sent messages, the total phone call

duration, and the size of cellular data. The user interacts with phones more actively

in some time slots. For example, Figure 3.1(a) shows that the device will collect more

records from 9am to 10pm. At night, especially from midnight to 7am, the number of

records decreases sharply. When the user is sleeping, the device might collect records

about itself rather than the user (e.g., records about networking). The different and

uneven distributions for all users suggest a differentiation of states. The transition of

phone-usage states in a day becomes the first layer in the following generative model.

We define three states since in Figure 3.1(b), the number of messages can be zero,

small or large (and bursty), which correspond to the sleep, passive, active states in

our model. One could imagine a finer distinction with more states.
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Algorithm 1 Generate phone usage behaviors as prediction.

Input: N length of prediction days, Slot num number of slots in a day, S0 is the
initial state of the first slot in the first day, T denotes the transition matrix of
three states (sleep, passive, active), ΨO is the distribution of occurrence times in a
certain state, and ΨD is the distribution of duration in a certain state.

Output: Oij times of occurrence in the jth slot of the ith day, Dijk the kth duration
of the usage behavior in the jth slot of the ith day.
i← 0
while i < N do
i← i+ 1
j ← 0
while j < Slot num do
j ← j + 1
if Sj 6= sleep then
Oij ← RAND(ΨO(Sj))
for each kth occurrence in Oij do
Dijk ← RAND(ΨD(Sj))

end for
end if
state seed ← RAND()
(T sleep, T passive) ← transition(T , Sj)
Snext ← decide(T sleep, T passive, state seed)

end while
end while

Hierarchical Generative Model. Figure 3.2 illustrates the process of generating

a kind of event (e.g., phone call). A day is divided into several time slots. The

state of phone usage Si of the ith time slot can be described with one of the three

states, which are sleep, passive, and active. Given the state of phone usage, the model

generates the times of occurrence Oi of the event in each slot based on a random seed

of a probability distribution learned from training set. Then the model generates the

duration Dij in ith time slot for jth occurrence of the event. After the generation

in a time slot, a transition matrix between usage states will lead the process to the

next time slot with the usage state S2. The model can generate a prediction for any

length of time in the future. Different values of parameters give a range of diversity

in user behaviors.
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Algorithm 1 shows how to generate the usage records for a given behavior. Some

instantaneous behaviors such as messages only need to generate occurrence times.

A transition matrix of states determines the current state with a uniform random

variable in the interval [0, 1]. In each state S, assume the time of occurrences is in the

distribution of ΨO(S). We can generate a random value with ΨO(S) as the prediction.

Finally, for each occurrence, with the distribution of duration ΨD(S) under a certain

state, a generated random value represents the duration for each occurrence in a

similar way. We can sum up the results of duration for all days in the future to get

the prediction results. The model simulates user behaviors in the three layers, where

parameters in statistical distributions determine the expectation of output prediction.

Section 3.1.2 will introduce how to learn the input transition matrix and parameters

of several distributions.

State transition. The distribution of usage behaviors in Figure 3.1 suggests

three states of user-phone interaction. “Sleep” means that the user does not use the

phone but it remains on. “Passive” and “Active” correspond to the normal and peak

periods of occurrence times and duration.

Algorithm 2 Classify time slots into three states.
Input: Set of records in all slots TS= {TS1, TS2...TSn}, State = {Sleep, Passive, Active},

Set of behaviors to predict U = {messages, phone call, cellular data}
Output: TSi.state state of each slot.

for each time slot TSi in TS do
fi ← count feature(TSi)

end for
for each feature fi do

if no occurrence of any event in U then
TSi.state ← sleep

end if
end for
Undefined ← {TSi — TSi.state 6= sleep}
k-means-cluster(Undefined)
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Given all usage records in the training set, Algorithm 2 shows the way to identify

states for all time slots. For all usage records in each time slot, we count the

user-phone usage related behaviors to build a feature vector. The elements in the

feature vector are in Table 3.1. If during a slot there is no occurrence of any event

which we aim to predict, the state is “Sleep”. Then for the other time slots, apply

the k-means algorithm to cluster them into two classes, “Passive” and “Active”. The

distance metric used in k-means is Manhattan Distance.

Once we know the states of all time slots in the training set, we can compute the

transition probabilities based on the frequency of change between two neighbors. A

probability will be set as (tiny) α if it is zero to avoid endless self-looping in some state.

We treat a day as four time periods, night (0am-6am), morning (6am-noon), afternoon

(noon-6pm), and evening (6pm-0am). For each time period, a 3×3 transition matrix

describes the threshold of transition between any two states, so a uniform random

seed can determine the next state. An even distribution among three states can

generate the initial state S0 in Algorithm 1.

Occurrence times distribution. A series of occurrence times O1, O2, ..., On in

all time slots within the same usage state suggests a distribution. Theoretically, it

matches the definition of Poisson distribution as Equation 3.1. By solving the MLE

problem with likelihood function as Equation 3.1, we find the Poisson parameter λ

for each state, which works as the ΨO in Algorithm 1.

P (X = O) =
λOe−λ

O!
L(λ) =

n∏
i=1

e−λλOi

Oi!
(3.1)

P (x;µ, σ) =
1

σ
√

2π
e−

(ln x−u)2

2σ2 (3.2)

Duration distribution. Duration of an occurrence for an event corresponds to

the amount of resources it gets, such as data flow in a period of connection to a
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cellular network. According to the definition of Poisson distribution, the intervals

of consecutive events should obey an exponential distribution. However, we target

the duration of some event rather than the gap between two neighboring events.

Therefore, we do not model the length of an event with exponential distribution. Since

the duration should always be positive and the dataset shows that people tend to have

short conversions, we choose a log-normal distribution to describe the distribution of

durations. Given the probability density function Equation (3.2) of the log-normal

distribution and the observed duration list D1, D2, ..., Dn, by MLE method we will

know µ and σ, which determine the ΨD in Algorithm 1. If the durations in the

training set do not obey a log-normal distribution, we limit the errors by simple

methods such as the lastest value before the timestamp of observation. Moreover,

to avoid prediction of an infinite duration we set limits on the maximum duration in

each occurrence and for the sum of duration each day.

3.1.3. Experiment Results

Datasets. The original datasets are recorded by the application called Device

Analyzer [Wagner et al., 2014a, Wagner et al., 2014b], which contains records of

more than 10, 000 users. We filter the datasets with several thresholds, such as the

length of period when the app is recording data, the average number of records

related to messages, phone calls and networking per month. Usage records over two

months make it possible for predictions month to month. We omit the datasets in

which some records miss the accurate time and date by formatting check. We end

up with 107 users whose records are complete and correct for a period of time. The

records reflect the attributes of start/shut-down, power, air mode, audio, CPU, video,

image, memory card, phone, screen, time, messages, wifi, networking, Bluetooth,

root, contacts, location, alarm and other sensors. The shortest length of records is 59

days and the longest is 632 days. The total number of all kinds of usage records (e.g.,
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sensory data, device settings, and communication) varies from 587, 817 to 22, 906, 385

for a user.

We select those attributes which are caused by the user or change the user’s

behavior to build feature lists, then classify all time slots with the values in each

feature list as Table 3.1. More kinds of sensory data can be added to the list if the

sensors are deployed on all users’ devices. Since we cannot equip all devices with more

sensitive and advanced sensors, the list only includes features that almost all devices

can record. We should also realize that the other sensors, such as accelerometer and

GPS module might be helpful to reflect user’s behaviors.

Table 3.1: Elements in a feature list.
1 number of apps start by a user 2 sum of rx data by cellular network
3 sum of tx data by cellular network 4 times of cellular network connection
5 number of phone calls 6 total length of phone call
7 length of the time when the screen is on 8 number of screen switch (on/off)
9 number of devices found by Bluetooth 10 number of received messages
11 number of sent messages 12 number of bell rings

Performance. We compare the average prediction errors among 107 users of their

sent messages, phone call duration, size of cellular data with several baselines. The

datasets are divided into training sets and test sets. The size of test set for all users

is 30 days, which means we predict the usage behaviors for about a month in the

future. Each day is divided into 48 time slots, which means a time slot lasts half an

hour. The experiments are running offline in a server, so we do not focus on time

complexity. All experiments about generative models are executed multiple times.

(1) Naive. Treat the latest records in training set as the prediction.

(2) Average. Average the value in previous months as the prediction.

(3) Drift method. Predict with the first and the latest observations.
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Figure 3.3: Errors and CDF curves of #sent messages.

(4) Similar One. Choose the value of the past month which has the smallest feature

list distance to the test case.

(5) Simple Linear Regression. Only consider the values of target usage behaviors.

(6) Lasso Algorithm. Treat the feature list as the input.

(7) No-States (CNPP). Run the generative model with only two states.

In Figure 3.3, the average errors of 107 users in the prediction of number of

sent messages (in the future 30 days) vary from 158.48 to 318.90. The generative

model performs the best while the Lasso method is the worst. The naive method,

average method and no-states method have almost the same errors about 165

messages/month. The generative model is slightly better. This illustrates the utility

of the generative model and the distinguished user-phone interaction states. The

generative model can avoid the rare peak in message usage, so it is better than

naive or average. The three states facilitate the model to describe the distribution

of occurrences and durations more accurately. In terms of the other methods, they

ignore the inner relationship between user states and features and the target message

behavior, so they have much larger error than the generative model. On the right,

CDF curves show the distribution of errors among all users. The generative model

stays with several other methods in the beginning part and comes to the top when

the horizontal variable reaches 500. For the generative model, more than 65% of

25



3.1 Phone Usage Behavior Understanding the Datasets

 450

 600

 750

 900

 1050

generative naive average drift similar linear lasso no-states

T
o
ta

l 
ti
m

e
 (

m
in

)

Average errors of phone call duration.

504.98

598.96
539.53

685.18
648.67

917.15

1091.11

520.43

 0

 20

 40

 60

 80

 100

 0  1000  2000  3000  4000  5000

P
e
r
c
e
n
ta

g
e
 (

%
)

Errors of phone calls (min)

generative
naive

average
drift

similar
linear
lasso

no-states

Figure 3.4: Errors and CDF curves of phone call duration.

users have errors less than 100 messages/month, about 80% errors are less than 200

messages/month, it has the smallest maximum errors among all methods. All users

in the dataset frequently use their devices, some of them may change their routine

or have unexpected burst, so all models face instances of large errors. However, for

the majority of users, the generative model performs well and avoids more huge error

cases than other methods.

In Figure 3.4, the average errors of 107 users’ phone call durations in the future 30

days range from 504.9 to 1091.11 (min). The generative model has the smallest error.

The second and third best methods are “no-states” and “average”. The generative

model and its no-states version allocate a tiny possibility for the rarely observed

data so they are not sensitive to long-time phone call communication. Thus they

work better with the average method than the others. In the right hand figure of

CDF curves, the generative model is at the top among all methods with more than

60% of users’ estimations having errors less than 500 min/month and 80% of users

having errors less than 640 min/month. Though the log-normal distribution that we

choose to describe duration distribution needs to be improved, the generative model

still performs better than other methods. It proves the advantages of the generative

model, including a seemingly deeper identification of daily routine and robustness

with seldom usage patterns.

In Figure 3.5, the predicted average of 107 users’ cellular data size in the future

30 days changes from 1605 to 2105 (MB). The generative model still has the smallest
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Figure 3.5: Errors and CDF curves of cellular data size.

error. No-states, naive, similar methods are comparatively better than others. For the

generative model, though more than 60% cases have errors less than 500 MB/month

and about 80% cases have errors less than 650 MB/month, about 9% of cases show

errors more than 1000MB. The large errors in data flow prediction exist in all methods,

because some users will receive or send huge data packets in the future without a

similar history, and the size of data flow is unlimited. As a result, the generative

model stays on the top in the beginning, but it mixes with other curves at the

end due to the rare cases with huge data errors. Though the generative model is

not the best in the beginning, with less huge-error cases, it still beats the other

methods in terms of average error. Moreover, the log-normal distribution might not

fit well with the rare unexpected large dataflow since it estimates the large data flow

with a small probability. Cellular data flow usually happens in an environment of

movement or a place without Wi-Fi. The generative model lacks more detail about

user routine, which limits the performance of cellular data prediction. However, in

total the generative model is better than the other methods due to the hierarchical

framework.

Sent messages, phone call duration and cellular data size represent three types of

usage behaviors respectively. They are no-duration behavior such as sent messages,

occurrence with a limited duration such as phone calls, occurrence with an unlimited

duration such as cellular data. For the third type of usage behavior, we should find

more ways to limit the prediction and model the unexpected burst.
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Figure 3.6: Effects of three parameters on three usage behaviors. Left: number of
messages. Middle: call duration. Right: cellular data. For each behavior, we tune
three parameters: number of time slots in a day, length of training set and length of
prediction in the future.

Effect of Factors. Figure 3.6 illustrates the effect of three parameters: number of

time slots in a day, length of training set and length of prediction in the future. Since

they have a similar range between 0 and 100, we combine them in the horizontal axis.

The vertical axis shows errors of certain usage behavior. To get a different length of

a slot (e.g., 48 slots of 30 mins in a day), we adjust the number of time slots with

different values from 4 to 96. We fix 30 days as the size of test set and the rest of the

records are training sets. The size of training sets for each user varies from 5 to 50

days. We fix records of 30 days as the test sets with 48 time slots in a day. To see

the effect of prediction length, we put aside the records in the lastest 50 days as the

test sets, and run the generative model using 48 time slots, then compare the errors

in the first 5, 10, ..., 50 days of test sets. When the number of time slots increases,

the errors of three usage behaviors decrease at first and then fluctuates after 48. If

we divide a day into a few slots, the differences between sleep, passive and active

states diminish. In contrast, too many time slots will result in a sparse feature list.

Like time slots, when the training sets are small, the generative model lacks enough

records. When the training sets become large, perhaps the previous usage pattern is

not inherited by the test sets. So medium-size training sets perform well. The errors

are approximately proportional to the increase of prediction length from 5 to 50, since

the model accumulates errors day by day.
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3.1.4. Conclusion

In this project, we illustrate daily patterns in mobile usage and sensory records and

build a hierarchical generative model with multiple user-phone interaction states.

The model predicts three usage behaviors with acceptable errors for the majority

of users. Given the simple distributions of occurrence and duration, our improved

accuracy over various baselines demonstrates the value of our revised model on large

real datasets. We explore the effects of several parameters in the prediction process

to guide a suitable choice of timeslots as well as the size of training and test sets.

The prediction of phone usage behavior by a generative model may be useful for

personalized service. The model could explain diverse user behaviors with suitable

distributions in different layers, so it is not limited to the context of mobile usage

records.

There are several natural avenues for future work. Our model is straightforward

and it would be of interest to integrate more advanced inference methods (e.g.,

variational inference). Latent features for usage behaviors should be explored,

including the possibility of using more meaningful sensors (e.g., GPS) even though

their records are not complete. Moreover, the detection of unexpected huge bursts in

some usage behaviors remains a problem. The use of an additional layer or branch

in the generative model could be helpful in this regard. The running time of the

application which collects the sensory data is limited by energy, so the prediction

with sparse data is a practical issue. A suitable sampling method may be the critical

point for this.
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Section 3.2

An Example of Network Analysis

The work in this Section has already appeared in the refereed publication [An et al.,

2018a]. It shows an example of network analysis before we build a network-related

application.

A well-designed healthcare system is a key component of a working society,

and the ability for information and resources to flow efficiently in such a

system is crucial to its efficacy. Referrals are one of the most common and

important forms of primary-specialty care communication. The existence of a

shared patient relationship between physicians likely means there are professional,

information-sharing relationships [Barnett et al., 2011, Uddin et al., 2013]. Physicians

decide to refer patients to other physicians in other hospitals for a multitude of reasons

ranging from the need for specialization to addressing problems of overcrowding. A

physician’s decision to refer (or not refer) a patient is important in determining the

cost and quality of care [Barnett et al., 2012b].

The referral of a patient by physician A to physician B is naturally represented

as a directed edge from a network node labeled A to a node labeled B, forming a

directed network (possibly weighted by the number of such referrals) [Barnett et al.,

2011]. Here we analyze the structure of a patient referral network and in this context

introduce a number of novel concepts from the network science and social networks

fields. Drawing together methods from both of these two growing but surprisingly

distinct fields is an important and novel feature of this work. We hope it will catalyze

their use in healthcare related networks.

Prior studies provide little guidance about the network structure of effective

healthcare collaboration. I.e., they do not state clearly what types of structures
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may be more conducive for the administration of effective healthcare. Nor have they

prescribed how individual healthcare professionals should develop relationships over

time for better outcomes [Uddin et al., 2013].

Another overlooked issue is the impact of artificially imposed boundary definitions

on healthcare networks. Several works [Lee et al., 2011, Barnett et al., 2012a] target

hospital level patient referral networks, but their findings are not validated in a larger

network (e.g., a state level). We are uniquely positioned to investigate boundary

effects given that our data covers the complete US referral network. This allows us

to assess the degree that analyses of geographically-defined sub-networks (e.g., state

networks) and derived structural assessments are sensitive to the definition of the

boundary and thus may distort the relationship of the network definition to important

healthcare related variables.

We analyze the structure of patient referral networks at both national and state

levels. We evaluate both macro (global) and micro (local configuration or actor

specific) network features, describe the network in static and dynamic terms, and

test against and for simple generative models such as the random network, the

small-world, and power-law network, while also measuring the degree to which

structural phenomena such as high core-periphery tendency are evident in the referral

network.

3.2.1. Materials and Methodology

Table 3.2: Dataset size by year.
Year 2009 2010 2011 2012 2013 2014 2015

#Records 50.3M 52.2M 54.0M 54.9M 55.1M 55.8M 34.9M
#Physicians 890k 922k 956k 988k 1.02M 1.04M 961k

Data. We used the CMS patient referral data set [CMS, ] to form a physician (a

subset of those physicians who accept medicaid in U.S.) network of the U.S. healthcare
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system. Datasets are available for the years 2009–2015, measuring the number of

patients encountered by one physician and then the other physician within 30-, 60-,

90-, and 180-day interval per year, so the referrals are derived with a threshold (e.g.,

30-day) over a given year. Sharing (referral) occurs when the same patient is recorded

as having been treated by two different physicians in a given time period. The dates

of treatment are timestamps. In this project, we choose the 30-day interval referral

dataset, because it judges the existence of direct referrals between two physicians

with the most stringent criteria. The temporal proximity defines a “referral”. The

referral dataset includes two parts, the IDs of the two physicians in a referral and

the attributes of the physicians. Physicians are listed according to National Provider

Identification (NPI) number. (There are 4, 332, 951 physicians in the NPI dataset.) In

addition, the National Bureau of Economic Research “National Provider Identification

number by state” data was used to attribute each physician in each year to a state

based on their NPI. Some physicians are registered in several states. We label a

physician according to the state in which the physician makes the most referrals.

Table 3.2 shows the number of 30-day-interval referral records for the years

2009-2015. Notice that there are fewer referrals in 2015 due to the fact that data

was only obtained for 7 months of the year (the end-date of the data is 10/1/2015

and so the last date for a first visit under which a full 60-days is available for a second

visit is 7/31/2015). Accordingly, we expect a reduced average number of referrals

between two physicians in 2015 compared to the earlier years.

Networks of interest. We form three kinds of networks (over a given time period):

(1) The National Patient Referral Network includes all physicians in the US who have

either made or received referrals over the period; (2) The (50) State Patient Referral

Networks wherein for state S, the node set is all physicians who are either labeled

as physicians in state S or have either made referrals to or received referrals from
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physicians labeled with state S over the period; The (50) Intrastate Patient Referral

Networks is a subnetwork of the State Patient Referral Networks and requires that

both physicians in a referral be labeled as in state S. The node set for state S is all

physicians with NPI numbers in state S who have either made or received referrals

over the given period. In network terminology the State Patient Referral Network

would be called the subnetwork induced by the Intrastate Patient Referral Network.

The three kinds of networks are nested as Figure 3.7 shows.

Figure 3.7: Three layers of referral networks.

For each state S. Each of these networks can be studied as simple undirected

or directed networks, weighted or unweighted (wherein the weights are the number

of referrals). These networks are also called shared patient networks [Mandl et al.,

2014].

We introduce these and then describe various small scale or local network

structures of interest whose prominence in the network can be tested against these

models of macro-level structure. There are still a relatively small number of

well-defined – or at least named – macro-level network structures. Three of interest

for this project are the random, small world and core-periphery networks.

• Erdós-Renyi (ER) random network – is the traditional null model against which

network structure is measured. The ER network on a fixed number n of nodes

is constructed by independently joining any two vertices with an (undirected)

edge with fixed probability p [Erdós and Renyi, 1959]. It is easy to see that the
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Figure 3.8: An illustrative directed network. The nodes A, B, C, D, E, and F represent
different physicians. The arrow of an edge points from a referring physician to a
referred physician (who accepts the patient referral).

expected degree for any vertex in such a network is µ = (n− 1)p, and that the

degree distribution follows the binomial B(n − 1, p), which for large n is well

approximated by a Poisson distribution with mean µ. Ascribing structure to

a network derives from showing that in various important parameters it differs

from the comparable ER network with probability p = µ/(n−1) where µ is the

average degree of the actors in the network.

• Small world network – is defined as a network with greater than expected local

connectivity and average path length smaller than expected in a comparable

ER random network [Watts and Strogatz, 1998]. More rigorously, a network is

a small world if it has a higher (local) clustering coefficient and much smaller

characteristic path length than expected under the Erdós-Renyi random graph

model. If the referral network is a “small world” one, it means that physicians

collaborate closely on the treatment of patients.

• Core-Periphery structure – is a generative network model whose departure from

the ER model is due to the network containing a “core” subset of interconnected

nodes, which are also connected to a less interconnected subset of “peripheral”

nodes [Yang and Leskovec, 2014]. For instance, in Figure 3.8, A, B, C, D are

core nodes with connections to a collection of neighbors, while E and F are

peripheral nodes.
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A core-periphery structure might occur in healthcare if the practice of medicine

is primarily driven by a subgroup of inter-connected physicians that impart

tremendous influence. By comparison, it might be that some states have a

more uniform network in which there exists no such subgroup. The “core-ness”

of a node can be quantified via the assignation of a Core-Periphery (CP) score

to each node [Rombach et al., 2014]. The range of the CP score is [0, 1], with

1.0 indicating the node has the highest core quality. The extent to which a

network has a generalized star structure can be captured by the Gini coefficient

(cf. [Wikipedia, ]) of the set of CP scores in the network. This is a standard

measure of dispersion in a collection of numbers.

There are various structural metrics fundamental to describing any network (see

[Newman, 2003, O’Malley, 2013] and the references therein) and so will be important

for our analysis. The presence of a particular structural feature or phenomenon is

ideally discovered by claiming that the observed network structure is highly unlikely

to have arisen under a null model that exchanges randomness for the structural feature

in question. In practice, investigators often claim that their network exhibits a certain

trait by using the Erdós-Renyi (ER) network as a null model. Such a comparison risks

confounding the feature in question with any other feature that is not controlled.

The distributional comparisons are limited to single feature departures from the ER

network. With this in mind, we describe various measures of small-scale network

structure used herein and describe statistical tests of the extent of their prominence

in the network beyond that expected by chance.

• Degree Statistics – in an undirected network, the degree of a node is the number

of edges incident to the node, which is the same as the number of neighbors of the

node, or in the referral networks, the number of distinct physicians that a given

physician has referred to (shared patients with) and/or received referrals from.
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In a directed network, there is an indegree and an outdegree. In Figure 3.8,

for node A, indegree is 2 while outdegree is 3. The indegree of Node F is 1

and outdegree is 0. The degree distribution is the frequency distribution of the

degrees (analogously for the in- or outdegree distribution).

Various families of degree distributions appear in the network literature. As

mentioned, the undirected Erdos-Renyi random network produces an expected

degree-distribution that is a binomial distribution with a probability parameter

equal to the proportion of non-null ties. Asymptotically, as the number of

referrals increases, the degree distribution will converge to Poisson. However,

over the past decade or so, much attention has been paid to kinds of

“heavy-tailed” distributions, especially those that follow a power law

y = Cx−α. (3.3)

that are often found in data. Power laws can arise for a number of reasons

(see [Mitzenmache, 2004, Newman, 2005]) and their discovery in data is but a

starting point for a deeper investigation into an appropriate generative model.

The measurement of a power law can be subtle. We use the estimation method

in [Clauset et al., 2009] and perform calculations in R.

• Cluster coefficient – a cluster coefficient measures the extent to which nodes

cluster together in a network. It is a measure taken on undirected networks of

the frequency with which a “3-chain” – defined as a triple of connected nodes.

The triple (A, B, C) in Figure 3.8 constructs a “triangle” when the graph is

treated as undirected since any two of them are directly connected, but without

an edge between A and F, the triple (A, C, F) is only a “connected” triple rather

than a “triangle”. Global clustering Cg measures the fraction of completed
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triangles over the entire network while local clustering Cl measures the average

number of triads centered at a given node that are completed to triangles.

• Assortativity, Degree Distribution Correlation, Reciprocity – Various kinds

of measures of connectivity can be supplemented by measures that get at

assortativity, a general term for quantifying the degree to which “likes link to

likes” (also called homophily in network science literature) where “like” can refer

to any kind of metadata. An intrinsic kind of assortativity in any network is

degree assortativity, often referred to as simply “assortativity”. It measures the

predilection of high degree nodes to attach to other high degree nodes and low

degree to low degree. In directed networks there are thus four different kinds of

degree assortativity: (in-, in-), (in-,out-), (out-,in-), and (out-,out-) depending

on which kind of degree is taken into account. Let eAB represent the weighted

edge from node A to node B in Figure 3.8, Ain be the in-degree of node A and

likewise define Bin. In this example, Ain = 2 and Bin = 2 and there are two

possible indegree values of the two edge nodes. The (in-, in-)-assortativity can

be described in terms of the Pearson correlation coefficient 1 between those two

values for all edges. Since an edge from A to B does not necessarily mean there

is another edge from B to A, corr(Ain, Bout) is not equal to corr(Aout, Bin). A

large assortativity means physicians in the network tend to build connections

to others who have similar degrees.

Self-Degree Correlation measures the correlation of in- and outdegree on the

node level 2. For those nodes in Figure 3.8, the in-degree (e.g. Ain =2) might be

in accordance with the out-degree (e.g Aout=3). While assortativity describes

1the covariance of the two variables divided by the product of their standard deviations
2measuring the relatedness between the number of referrals made with the number of referrals

received
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the relationship of two nodes on the same edge, self- (in- and out-) degree

correlation is evaluated as the nodes’ in- and outdegree.

Finally, reciprocity measures the pairwise relationship between two individual

physicians. 3

• Motifs – the physician-physician relationship is the core atomic structure of

the referral network. Nevertheless, it makes sense – and is often useful – to

attempt to identify other regularly repeating evolved substructures [O’Malley

and Marsden, 2008]. Such subnetworks are called motifs. Two-node or dyadic

motifs include null-dyads, directional dyads (e.g., Node B and E in Figure 3.8)

and bidirectional or mutual dyads (e.g., Node A and D in Figure 3.8). A familiar

example in an undirected network is the triangle representing the phenomenon

that “a friend of your friend is your friend”. In the case of directed referral

networks, we are interested in exploring the landscape of small (three-node)

motifs, or “triads”. In a directed network there are 16 distinct kinds of triads

(cf. Figure 3.12). Some researchers name them by the number of mutual,

asymmetric and null dyads [Faust, 2010]. We describe the distribution of the

16 triads across the physician network and use factor analysis to group the triad

types into categories that can be represented more parsimoniously in regression

models.

3.2.2. Results: Network Statistics

Network Models. Core-Periphery Structure. We compute Core-Periphery scores

and derive stats. Figure 3.9 gives an example of the CP (core-periphery) score

distribution for the intra-state networks for states of DE, LA and CA in 2009. These

states were picked because they have the minimum, median, and maximum of the

3the correlation of #referrals from A to B and B to A, where physicians A and B are connected
with bidirectional edges in the referral network. It reflects the extent of quid pro quo in patient
referrals between two physicians.
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Gini coefficients for the CP scores in 2009. Recall that a large Gini coefficient of the

CP scores implies the network has a strong Core-Periphery structure: there are a

small number of nodes have a large CP score (close to 1.0) implying close proximity

to the core, while the remaining nodes are in the periphery with a lower CP score.
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Figure 3.9: Counterclockwise from upper right: C-P score distribution of LA, DE,
and CA (minimu, median, maximum), in 2009 and the distribution of Gini coefficients
of C-P score among the 50 states over 2009-2015.

The uneven distribution of C-P scores suggests a strong Core-Periphery structure

in these state networks. Strong Core-Periphery structure is a trait seen generally

across all of the state-level networks.

Degree-, clustering-, and connectivity-related statistics. Degree

Distributions and Power Laws. We computed the in- and outdegree distributions

for both the national network and the fifty intrastate networks. The nearly zero

p-value of the goodness of fit test against the null hypothesis rejects that the degree

distribution is Poisson. Furthermore, the clear difference in terms of clustering
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coefficient in Table A.1 contributes to a rejection of the Erdós-Renyi random graph

model for the data.

We next check for a power law. The intuition for considering a power law comes

from a familiar generative model. For networks (cf., [Mitzenmache, 2004, Newman,

2005]): the so-called “rich get richer” process, this is wherein nodes acquire new

connections at random but in proportion to their current number of connections.

It is plausible that there are groups of physicians (e.g., certain types of specialists)

that receive and possibly make many more referrals than others and furthermore that

physicians accrue new ties in proportion to their existing number of ties. Reputation

spread may also manifest as a power law. In contrast, if physicians with many

referrals are less likely to accept new referrals (e.g., they stop taking new patients)

and are content with their existing set of “partner physicians” for referrals, the degree

distribution would be expected to be more uniform than depicted by a power law.

In a log-log plot, a power law will appear as a (roughly) straight line. The

lefthand of Figure 3.10 shows the power law fitting figure for the 2015 Delaware

Intrastate Referral Network. The straight line of the log of Delaware’s (unweighted)

degree distribution matches the form implied under a power law. The righthand side

shows the distribution of the p-value statistic for testing the null hypothesis that the

distribution in the network is a power law in the outdegree using the national 2012

data as an example.

The data in Table A.1 suggest that the outdegree distributions seem to have

a stronger tendency toward power law than indegree. Herein we find the number

of states with a p-value ≥ 0.05. Because a physician does not control who refers

patients to them, the number of distinct physicians sending patients may exceed

the proportional growth. This is supported by the observation that the indegree

distribution has a greater spread than outdegree. Alternatively, the departure of the
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Figure 3.10: Log plot of the out-degree and frequency in DE, 2015. P-value
distribution of out-degree Power Law test in 2012 for all states.

indegree distribution from a power law might be due to certain specialist physicians

being absorbing nodes in the sense that they are the last step in the patient’s care

(e.g., a sub-specialist).

Assortativity. Table A.1 displays the average correlation coefficient between two

degree values on edges of the 50 state induced referral networks. Given the directed

nature of the networks, three kinds of degree assortativity can be measured. We find

(in-,in-) and (out-,out-) degree correlations exhibit mildly negative assortativity,

which means patient referral has a small tendency to occur between physicians who

possess different levels of indegree or different levels of outdegree. The significance of

the assortativity values against a null hypothesis of no assortativity is tested under an

ER null network by using the fact that the asymptotic standard error of 0.5 log((1−

r)/(1+r)) is SE = (n−3)−1/2 = 3.35−9.78∗10−4, where r denotes the given Pearson

correlation coefficient of the respective degree frequencies and n is the number of

physicians in the network. Because the assortativity values are far from 0, it is clear

that assortativity is significantly different from 0 in all cases.

Correlation of in-degree and out-degree. Table A.1 shows the measurement

of correlations between indegree and outdegree on the same physician in several

years. Since the correlation coefficients in all states are very close to 1.0, only average
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values are reported. The results imply that physicians who receive a lot of referrals

also make a lot of referrals. The correlation may be inflated due to the fact that

specialty is not controlled for and past research [Barnett et al., 2012a] has shown that

degree varies substantially between specialties; if the correlation was measured within

physician-type the correlation would likely be lower.

Reciprocity. If we consider the weight on edges in a directed network, Table A.1

shows the R-squared value and correlation coefficient of wij and wji. The bidirectional

weights have strong correlations in different years. Reciprocity reflects the professional

relationship between physicians. The observations support the idea that physicians

refer patients back to the referring physician once the specialty appointment is

complete or distinct patients see the physician dyad members in opposite orders.

Either way, high reciprocity reflects stable collaboration.

Clustering coefficient. Figure 3.11 illustrates both global and local clustering

coefficients of states in several years. The error bars show the range of the coefficient

values.
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Figure 3.11: Clustering coefficients of state network in 2009-2015

Table A.1 shows the clustering coefficient in the whole national referral network.

The local clustering coefficient is much larger than the global one, reflecting a positive

correlation between geographic closeness and network flow. The expected local

clustering coefficient in an Erdos-Renyi model [Erdós and Renyi, 1959] p = µ/(n− 1)

is much smaller than the measured results. Taken together with the above discussion,
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we conclude that the patient referral networks have small world character, so we know

that those physicians in the network closely collaborate on treatment.

Motif analysis. Network “motifs” are commonly recurring small patterns of

connectivity, often thought of as a network’s “building blocks” [Milo et al., 2002].

Dyadic motifs are the simplest in structure having just two nodes and in a directed

binary-valued network only a few possible states. If the motifs do not distinguish

between the edge from physician A to B and that from B to A, there are only three

dyadic patterns: no edge, one directional edge and bidirectional edges. While the

no-edge case is dominant in terms of frequency, the fraction 4 of directional dyads

and bidirectional dyads is around 24:76, implying a very high-level of reciprocity is

present in the network. As a part of the exploration of patterns in patient referral

networks we engaged in exploratory analysis to discover what kinds of triads in our

directed networks are most prevalent. Figure 3.12 illustrates the 16 possible triads.

Figure 3.12: 16 kinds of triads.

Table 3.3 displays the Monte-Carlo estimated frequency of the various triad

structures (i.e., randomly sample node 3-tuples and record the connectivity structure)

over 2009-2015 in the national network (a Monte Carlo calculation of 108 random

4generated by Monte-Carlo sampling
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draws was used because complete enumeration is infeasible). The completely

disconnected triad (Triad 1 in Figure 3.12) is far and away the most prevalent and we

do not record its number. The remaining 15 kinds of triads break up naturally in terms

of order of magnitude of frequency into 7 groups: (1) Triads 2 and 3: Two physicians

share patients in one or two directions; (2) Triad 11: a physician shares patients with

two physicians mutually; (3) Triads 7 and 8: a physician shares patients with one

physician mutually and with another physician in only one direction; (4) Triads 5,6,15,

and 16: loose connections and close connections between three physicians; (5) Triads

12, 13, 14: a pair of mutually connected physicians with the third physician whose

degree is two; (6) Triad 9: a triple that follows transitivity (if A refers a patient to B

and B refers a patient to C the chance that A referred a patient to C is substantially

greater than otherwise) and lastly (7) Triad 10 without transitivity.

Since the referral records do not contain patient ID, we cannot track the same

patient and analyze the referral sequence. The rank order remains roughly the same

over each year, suggesting that the structure of the network is stable in this regard.

Triad 2 and Triad 3 are the two most popular triad patterns in the whole referral

network, accounting for the majority of the triads in the state networks. These

convey two of the most elementary care patterns. Under Triad 2, a patient encounters

physician A followed by physician B and then is done. Under Triad 3 the patient

emulates the care pattern of Triad 2 but then returns to see physician A again. The

frequency distribution suggests that the network contains regions of high density, or

even cliques, since some triads with more edges (T15 and T16), representing more

complex care patterns within reciprocated referrals between 2 or 3 physicians, occur

more frequently than triads with fewer edges (T9, T10, T12, T13, T14).
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Table 3.3: Triad frequency for the U.S. national referral network.
ID 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2009 23433902 76245745 188 4096 5113 56061 28650 66 1 222166 171 127 157 1484 2073
2010 23747795 75929710 206 4426 5321 58748 28634 49 4 221342 176 117 141 1427 1904
2011 23865204 75802642 175 4999 5720 62887 29448 56 0 225125 166 124 144 1342 1968
2012 23892310 75764994 167 4989 5811 64475 30656 63 1 233164 163 99 127 1264 1717
2013 24202517 75439104 180 5648 6524 68943 31777 51 5 242030 155 114 125 1185 1642
2014 24405405 75233266 201 5803 6571 69167 32792 51 4 243538 174 104 109 1210 1605
2015 25421893 74265148 147 5160 6326 59787 31480 52 2 207622 140 90 86 948 1119

Table 3.4: The nearest states to centroids of K-means.
Year\#cluster K=2 K=3 K=4 K=5
2009 ME MA LA NC SD NC OR SD TX KY MA OR SD TX
2010 ME NC LA PA SD LA OR PA SD LA ME OR PA SD
2011 ME MD IL PA SD LA NM PA SD LA MT NM PA SD
2012 ME MA ME PA TN ME PA SD TN LA ME MT PA TN
2013 ME MA ME MI TN MI MT OR TN MI MT NE OR TN
2014 ME MA ME MI MT ME MI MT TN ME MI MT NE TN

We may include the relative frequency measures for two of the three groups of

triads allowing more flexibility in regards to including other predictors, interaction

variables, and transformed predictors.

Diversity among states. From hereon, we discard the data in 2015 since the

period of observation is not complete and many healthcare attributes are not available

in 2015.

We apply the K-means clustering algorithm to the 50 feature vectors defined by

the state-level network measures [An et al., 2018a], some of which are introduced in

Section 3.2.1 as well. Figure 3.13 is a 2-d visualization, produced via multidimensional

scaling (MDS). The red and blue coloring of the nodes represents the outcome of

applying K-means with two clusters, for which the centroids are MA (red) and ME

(blue), respectively. We find that the cluster represented by MA generally includes

the states which have more physicians or larger population than those of the cluster

represented by MA. Table 3.4 shows the centroid states of each cluster for K =

2, 3, 4, 5.
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Figure 3.13: Multidimensional scaling (MDS) plot of 50 states based on feature vector
in 2014. Two clusters are in red and blue.

3.2.3. Conclusion

In this analysis, we applied algorithms and methods from network science and

statistics to explore many network features in the U.S. patient referral networks.

Those network features describe both micro and macro patterns about patient

referrals, such as power laws in some degree distributions, “small world” structure,

Core-Periphery structure, motifs of triadic structures.

From 2009-2015 we found that the majority of network features are fairly stable.

Our key results encompass both general or macro-level and micro-level network

features. At the macro-level, the power law structure cannot be rejected in most cases,

which suggests that these networks are “robust yet fragile” – i.e., robust to random

failure, but susceptible to “targeted” attack (i.e., consciously specified removal).

[Albert et al., 2000] The small-world property implies that physician networks are

suitable for efficient information transfer and diffusion of innovations. [Watts, 1999]

Analyses at both state and national network level tends to support the hypothesis of a

“small world” and thus a fertile environment for diffusion (see also [Strogatz, 2001] and
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[Kossinets et al., 2008] for other possible connections) and suggests a rich direction of

future research. At a micro-level, the computation of actor specific network measures

allows rankings of physicians to be constructed based on their importance in the

referral network. Possible measures that can be used include degree, local clustering

coefficient, CP score, and the number of external connections.

In general, the ultimate goal is to link the national physician network to individual

patient data in order to perform patient-level analyses that account for patient

demographics and clinical factors when assessing the association of the physician

network and its salient subnetworks to important patient outcomes. For other

contexts, the general network analysis is also applicable. We hope the derived network

measures and structural patterns will boost the mining of more insights in a network.

The analysis of two cases: user behavior and network structure in this Chapter

follows the routine at the beginning of the real practice of a data-driven project. We

need to be familiar with the available dataset before finalizing a detailed requirement

of a project. The following Chapter will present an example of feature engineering

when our dataset is not diverse enough to support the project, as well as the numerical

representation of information flow in a network.
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Chapter 4

Feature Engineering and Entity

Representation

In Chapter 4, we present two cases of feature engineering and entity representation:

local search and the referral sequence. Local search relates to the case of walking

and searching in a city and referral sequence considers the context of walking. They

are both a kind of information walk in the sense introduced in Chapter 5. This is

especially true for the feature engineering in Section 4.2, since it enables modeling in

the pipeline of a data-driven project.

Local search helps users find certain types of business units (restaurants, gas

stations, hospitals, etc.) in a given area. We are especially interested in the search

for preferred business units near a user’s current location. We call this the local

search problem. Some merchants do not have much online content (e.g., customer

reviews, business descriptions, opening hours, telephone numbers, etc.), this can

pose a problem for traditional local search algorithms (e.g., vector space based

approaches [Kalogeraki et al., 2002]). With this difficulty in mind, in Section 4.1 we

present an approach to local search that incorporates geographic open data. Using

the publicly available Yelp dataset [Yelp, ] we are able to uncover patterns that link
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geographic features and user preferences. From this, we propose a model to infer

user preferences that integrates geographic parameters. Through this model and

its estimation of user preference, we develop a new framework for “local” (in the

sense of geography) search that offsets a potential scarcity of features regarding the

physical business units. Our initial analysis points to a meaningful integration of open

geographic data in local search and points to several directions for further research.

Local search helps with a “physical walk” in a city, providing a way to

predict/recommend to the walker a “next” place to go in a specific context. This

is in some sense, an “information walk”, wherein the user’s previous and current

locations can affect the prediction of a next position. Related - but different - is

the analysis of and prediction for an information walk on an actual network, the

aforementioned patient referral network. Therefore, extended from the network

analysis in Chapter 3, we analyze the millions of referral sequences of patients’

interactions with the healthcare system for each year in the 2006-2011 time period and

relate them to cardiovascular treatment records. For a patient, a “referral sequence”

records the chronological sequence of physicians encountered by a patient (subject

to certain constraints on the times between encounters). It provides a basic unit of

analysis in the broader referral network. We consider referral networks defined over

a range of interactions as well as the characteristics of referral sequences, producing

a characterization of the various networks as well as the physicians they comprise.

The general method of entity representation in a network also works for other context

beyond the referral sequence. The numerical representation of information flow will

enable further predictive modeling.
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Section 4.1

Local search

The work in this Section has already appeared in the refereed publication [An and

Rockmore, 2016a].

Local search is responsive to the query for a certain type of “target” in the vicinity

of a user’s geographic location. In traditional web search, since some local business

units do not contain significant text as a part of their online presence, information

retrieval models based on word-document relationship may not work well. While

current search engines generally are able to return satisfying results, they can be

biased toward established businesses with a strong online presence. New business

units that lack a significant online description/presence are still challenged by this

“partial availability problem”. Presuming that many new business units could also

present excellent options for potential users, this is a problem/challenge/opportunity

for enhancing user experience.

With this in mind, we examine how external freely available resources (“open

data”) can augment information to build an enhanced model for local search. For

instance, the keywords in an advertisement of a local shop can be used as a proxy

for the basic description of the shop. Basic geographic open data is also very useful.

The locations of both user and business units enable the computation of the distance

between them. With thoughtful design local search can be improved with geographic

open data.

Current work tends to analyze a user’s search log to improve local search.

Teevan [Teevan et al., 2011] conducts a survey about mobile local search and describes

the user’s desired target in terms of distance and time, which suggests a rule of ranking

in the local search problem. Lv [Lv et al., 2012] considers several user-related signals
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in ranking for mobile local search. Dragut [Dragut et al., 2014] merges similar search

results in a local area with a consideration of user’s ratings. Bernerich [Berberich

et al., 2011] exploits direction requests, browsing logs and mobile search logs to refine

search ranking. Meanwhile, Ahlers [Ahlers, 2013] introduces the “entity retrieval

system” for Yellow Pages. Several papers note the geographic factors in search

problems: Gan [Gan et al., 2008] investigates the properties of geo-queries and

develops a new taxonomy for such queries. Lymberopoulos [Lymberopoulos et al.,

2011] predicts click behaviors with high-level location features, such as states and zip

codes.

The methods in the above papers have some limitations. Query log-based methods

cannot perform well when a new user executes a query for a new local store. For the

local search problem (in this project local search does not refer to the same-named

optimization strategy in artificial intelligence), when the history records are not

complete, improvements are derived from incorporating open data into the search

model. Moreover, the user-oriented analysis should also take advantage of more

detailed geographic and practical features beyond the simple distance. The geographic

data that we request from open databases are details about local business units, such

as the name of a store, the street address and the locations (accurate longitude and

latitude). The more features we get, the more we may be able to improve local search.

Other useful sources of information can also be included, including competitors, size

of target stores and business categories, since these can affect a user’s decision when

choosing among several shops.

4.1.1. Geo Features vs. Preferences

Here we describe an open dataset, available on Yelp [Yelp, ], and several geographic

features that we wish to relate to user’s choice. Our data analysis reveals several

patterns linked to user preference.
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Yelp dataset. The Yelp dataset contains 1.6M reviews by 366, 000 users for

61, 000 business units. After applying a filter for the set of cities, which is that a city

must have at least 10 business units of any kind listed, we are left with 96 cities in

North America and Europe and a total of 60, 503 business units. For each business

unit, the database provides the name, address, and its accurate location (latitude

and longitude). Included are also reviews and linked ratings by customers. Though

review content is also available, we do not dig into the natural language processing

in this project (it presents a further consideration and potential opportunity). We

can use the business unit location as the input for a secondary query to get more

information from a Geocoder [Geopy-1.11.0, ] database, then generate geographic

features of business units, such as neighboring business units density and others in

the following paragraph.

Features of interest. We explore the interactions of five features with the Yelp

user ratings and the number of reviews (#reviews) per business unit. Several papers

demonstrate the importance of incorporating a user’s current location into mobile

local search [Church and Smyth, 2008, Lv et al., 2012, Teevan et al., 2011]. While

we account for that as well, we additionally consider the following information in our

preference estimation model.

(1) Significance of ratings and #reviews in an area. For all business units in

a city, we compute the average of all ratings and #reviews. The result will show

whether local area matters in terms of user opinion. More statistical methods

and criteria should be applied here in future research, such as weighted average

and analysis of distribution about ratings and #reviews.

(2) Average distance between a given business unit and the other business

units in all types within the same city. This is effectively a measure of

business unit neighbor centrality. When a store is far from others, it looks like
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Figure 4.1: “Surrounding roads information”. We look to incorporate the road
address around certain center points of circles area in a road. We use the longitude
and latitude of the center point of a circle to get the output of address names of points
on the circumference. In Figure 4.1, given a radius of interest, we can determine circles
of interest, A and B, with different centers along the road R1. We can compute the
location of points on the circumference and query the corresponding address names
from a geographic database. If we set the radius with different values, we can get the
road names of more points near the central business unit.

an outlier away from the central business area of a city. More advanced metrics

and methods in the detection of outliers can be applied.

(3) Density of neighboring business units. For a store, we count the number

of neighbors of all types within a certain radius. We do not filter with the same

type of business when counting the number of neighbors because different types

of business might attract customers for each other. In general, high density may

be linked to the existence of shopping centers or prosperous business areas.

(4) Number of roads within a certain distance to a business unit. This

reflects the availability of local transportation. To find this, we query the

addresses of several points near the business unit. The points are located on

the circumference (without the limit of address query quota, we can set discrete

values of the radius so as to get the address names of more points within a

certain distance from the center point) of a circle at equal angle intervals, whose

center is the business unit. Then we analyze the returned addresses to see the

diversity (number of different roads by comparing road names) of roads nearby
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the target. Considering the example situation in Figure 4.1, There we see stores

A and B along the road R1. We draw two circles of a fixed radius around the

two stores. The results of the query would include the full names of roads (e.g.,

R2 and R3) nearby.

(5) Location of the business unit in a street or road. “Location” is a

categorical attribute like “middle” or “end”. The attribute here is a relative

concept. For the purposes of modeling we assume the business unit is located

along a straight road, rather than some types of roads (e.g., highway and

roundabout) without too many business units. Suppose a person is walking

through blocks to find a store as the target of shopping. The in-street location

might affect the possibility of seeing the store. We still query several points

around the store, and count how many points on the circumference are on

the same street with the central business unit. Consider again Figure 4.1, we

introduce two circles. For the locations around a center which is in the middle

of road R1, almost all points on the circumference are along the road R1, where

the center of circle A is located in. As a comparison, the center of circle B is

close to the right end of road R1, so the points on the circumference of circle

B are located on different roads, thus fewer points are in the road R1. By this

difference, we can judge the approximate location of a business unit on a road.

Patterns. The Yelp dataset offers the name, location, reviews and other information

about a business unit. With the accurate location (longitude and latitude) of a point

as the input, an open geographic database such as Geocoder [Geopy-1.11.0, ] will

return the full address of the point. Combined with the two data resources, we

investigate the previous five features and produce the histograms in Figure 4.2.
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Figure 4.2: Histograms of rating data per city. Left: average rating. Right: average
#reviews.
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Figure 4.3: Effect of average distances. Left: average rating. Right: average
#reviews.

On the left we see the histograms of the average ratings and on the right the

average number of reviews for all business units, per city. The number of business

units in a city varies from 11 to 13600. Though the majority of the average per city

ratings are in range [3.4, 3.8], the ratings have an obvious difference among cities,

since the range of rating is an integer from 0 to 5 and users rarely give a rating lower

than 3.2 (from the most left bin in the left histogram). We also find the uneven

distribution of #reviews in the bottom histogram. Here we pick up the bin size using

the knowledge of the mode and range. To sum up, Figure 4.2 tends to support the

assumption that business unit location matters in terms of user’s ratings and reviews

on business units, so we should consider location in city scale (and perhaps with the

other smaller scale geographic features) for user preference modeling.

Figure 4.3 shows the distributions of average rating and #reviews, when the

average distances from one business unit to the others changes. Average distance is

a form of geographic centrality. The average rating does not have a clear trend with

the uniform distribution, but the uneven distribution of #reviews seems to match a
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Figure 4.4: Effect of neighbors density. Left: Average rating. Right: average
#reviews.
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Figure 4.5: Effect of #roads nearby. Left: average rating. Right: average #reviews.

normal distribution or else. We find that if a business unit has an average distance

of 5-10 km to others, it tends to receives the most reviews.

By Figure 4.4, we explore the relationship between #neighbors (number of

neighbors) and reviews in terms of rating and #reviews. When a business unit has the

least or the most neighboring business units within 1 km radius as the left subfigure

shows, the ratings seem to be better than others. Though we are not sure why the

low or high neighbor density might relate to a higher rating, the possible relationship

suggests we consider the number of neighboring business units when predicting the

user’s reviews of a business unit. In addition, the bottom subfigure illustrates that

more neighbors (high neighbor density) will bring more reviews. This corresponds

with intuition: more people are attracted by more business units, and post more

reviews there.

Figure 4.5 shows the relationship between #roads around a business unit and our

statistics. We detect 12 points around a business unit with the same radius and equal

interval (30 degree) between angles. The radius is 0.1 km and angles are (0, 30, 60
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Figure 4.6: Effect of #roads in the same street. Left: average rating. Right: average
#reviews.

... 330) degrees in anticlockwise direction starting from the x axis in a 2-D virtual

plane. A comparison of the left half (0-5) and the right half (6-11) in the left subfigure

finds a a general trend of more roads locate around a business unit correspond with

higher average rating. In addition, when #roads becomes larger, #reviews decreases

a little for some reason. One assumption is that a person might choose another way

to go and miss some business units at road intersections, so a business unit with more

surrounding roads might receive less reviews. To sum up, the #roads nearby seems

to vary with the review statistics.

Figure 4.6 illustrates the relationship between location of a business unit in its

street and our statistics. Limited by the query request quota of Geocoder, we

randomly sample about three thousand business units from 27 cities and display

the distributions in Figure 4.5 and Figure 4.6. Each business unit is treated as the

center of a circle as Figure 4.1 shows, and we need the query of 12 points around the

center to analyze the road information nearby, so it becomes a bottleneck given the

limited times of address query. We find that business unit location in the middle or

at the ends of a street corresponds weakly with a higher average rating. There is not

much of a recognizable trend in #reviews.

The above figures suggest that geographic features do have some relationships

with user ratings and #reviews. This in turn suggests that open geographic data can

make an important contribution to local search.
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4.1.2. User Preference Model

Let fi denote the preference for business unit i and assume it has the form in Equation

(4.1). It requires the known locations of the business unit and the user. It is a simple

case since it does not include other neighboring business units as competitors. A

larger value of fi means the user is more likely to choose the business unit i in mind.

fi =
lαl,i ∗ tαt,i ∗ sαs,i ∗ gαg,i

cβc,i
(4.1)

The values αl, αt, αs, αg and βc are positive parameters reflecting user sensitivity,

which is similar to weights in a linear function. Each item in the numerator should

have its own exponent (α). The exponents denote the weights of several parameters.

The multiplication form means that mismatch of a parameter may exclude the

business from the short candidate list for a user. Users might be able to input their

initial values, and the search algorithm can adapt the parameters with the response

of query results. We also include several variables/functions in the numerator that

might have a positive correlation with user’s preference.

• The variable l captures the city’s environmental bias factors. Different

cities/towns have their own standard of rating and review style as Figure 4.2

and a previous work of click prediction in local search [Lymberopoulos et al.,

2011] show.

• The variable t represents the text matching result. If the semantics of query

inputs matches the type of business unit, t will be a larger value. For example,

if a user would like to have a meal and input “Where to eat”, then restaurants

will have a higher value of all business units. Some open semantic data with

latent vectors (such as Word2Vec1) might improve the matching performance.

1https://code.google.com/archive/p/word2vec/
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• The variable s means the score of inner attributes for a business unit, including

but not limited to the size of the store, the cleanliness, the opening hour, the

quality of service. Other kinds of open data, such as customer’s review and

introduction on Yellow Pages, can also be added to determine the value of s.

• The variable g represents the score based on geographic factors. The density

of neighbors, the feasibility of transportation (number of nearby roads) and

the location of store in a road (middle or end) are possible attributes. The

Figures 4.4 illustrate a possible relationship between geographic factors and

user feedback, so we add this item into the model.

• The variable c represents the cost of traveling from the current location to the

business unit, which has (generally) a negative correlation (when the cost for

a business unit increases, the user will grade the business unit with a lower

preference score) with user’s preference so it is in the denominator. Limits on

financial budget and time can affect user’s choice. So it contains at least two

parts, the time cost and money cost, depending on the way of traffic from user’s

current location to the target business unit. The user’s current location is a key

factor in the computation of c, since it determines the distance to the business

unit. Several papers [Berberich et al., 2011, Lv et al., 2012, Teevan et al., 2011]

point out the importance of distance in providing relevant recommendations.

Equation (4.1) is not the only possible form of a relationship between external

factors and user preference. It might also take the form of a weighted sum, but this

fractional form better reflects which factors have a positive or negative correlation

with the preference. In addition, there are several functions behind t, s, g and c.

Each function deals with factors of an aspect (e.g., geographic factors) and sets

corresponding values to describe a user’s preference.
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In any real case, if the user has a general target (e.g., a shopping mall) rather

than a clear query with a name (e.g., Walmart), the user might wander around a

local business area. The neighbors of a store might compete with the store, or they

might sell complementary goods. Equation (4.2) considers this case and encodes the

effect of neighbors:

Fi = p ∗ fi +
∑
k∈Ni

(1− p) ∗ u(tk, ti) ∗
fk
|Nk|

(4.2)

• The variable Fi is total preference value with neighbor’s contribution, which

might work in the ranking part of a search engine.

• The variable fi and fk result from Equation (4.1). Store k is a neighbor of store

i.

• Ni represents the set of store i’s neighbors. |Nk| means the size of the set. In

traveling, a user might be attracted by other stores nearby, so the interest of a

particular store can be affected either positively or negatively by a neighbor.

• The variable p is the probability of staying focused on the original target. It is

a personal attribute about purchase behavior.

• The variable u(tk, ti) describes the relationship between two business units.

They may be cooperators or competitors.

Here the preference value Fi depends on two parts, the simple point-to-point

interests and the neighbors’ effects. To define the set of neighbors Ni, geographic open

data must offer the locations of surrounding business units and the road information.

To get u(tk, ti), a comparison of keywords is necessary. For the personal parameters

(α, β and p), the model should learn them using user’s choices following query

results. Over time, the search algorithm might provide customization according to
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Figure 4.7: Revised structure of local search. It shows the data flow of the revised local
search. After the crawling and indexing, one additional layer of preference estimation
is added. It requires user’s current location and query from open geographic data.
The additional layer can give an estimation of user’s preference. Finally, an input
query will trigger the module of ranking combined with the estimation of preference.

user history. After the collection of query logs with user’s location track, we can

evaluate the model. The model puts more weights on features from open data, so even

when the documents (set of words used in traditional information retrieval model)

of business units are not complete, the revised model with geographic features might

generate a list of preference values for a better ranking result.

4.1.3. Improved Local Search

Here we give a high level description of a user preference model incorporating

geographic features. We describe the possible change in the structure of local search

to comply with the model.

The use of open data. Though we mainly focus on the new incorporation

of geographic open data, other types of open data can also contribute to a better

(in terms of user experience and performance) ranking result in the structure. The

classical structure of searching includes three sub-modules, which are crawler, indexer,

and query. Crawler downloads webpages and indexer build indices for those words

in webpages, then query responds to user input by returning the most highly related

pages.
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With this basic model in hand, here is a possible usage scenario of open data in

searching. In the first step of crawling, the crawling from both online and offline open

data (such as geographic databases, Yellow Pages brochure, social network reviews,

etc.) should be performed. Since the local area often has a limited range of business

unit candidates within a certain radius, it is possible to collect information from

multiple aspects and resources, when the single resource cannot generate a large

enough document set of business units. The second step is indexing. This necessitates

execution of the challenging task of merging multiple descriptions of the same entity,

acquired from diverse information resources. The third step is the modified design

that incorporates local search. Since GPS on mobile devices enables a real-time

location record, a user’s current location can trigger the preference estimation model.

The model will use the information of surrounding business units acquired from

geographic open data. Semantic open data can also work in the matching of query

and business category. The model will then produce a list of nearby business units

with their preference values for a user. The last step is the response to a user’s query.

Traditional ranking results relate the semantic similarity between the input string

and the candidate document with the index. Here we have another preference list

based on the additional estimation model. A suitable mix of the two methods should

improve the searching performance.

Advantages. The use of open data in preference estimation could solve the

problem of insufficient web-available information about local business units. Besides,

the added step of geographic analysis can also serve for a local recommendation system

before the user’s query. Meanwhile, the structure leaves room for incorporating other

types of open data.
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4.1.4. Conclusion

In this section, we analyze the patterns of relationships between geographic features

derived from open geographic data and user preference, and describe a preference

model that incorporates several detailed geographic features. We discuss the

potential improvement derived from the structure of local search for better preference

estimation. The initial analysis tends to support the idea that open data, and

especially geographic open data, can be a powerful factor in estimating user

preference, and local search incorporating a parser of geographic features might

overcome a lack of descriptive words associated with business units. We used Yelp

as a primary data source, but new geographical features will be beneficial to any

location based services, such as shopping, traveling and entertainment.

Future possible directions of work include: (1) Collecting real query logs that

track movement and evaluate the preference model and the revised local search. (2)

Finding and determining more helpful geographic features. (3) Mining the patterns

encoding the relationship geographic features and the preferences. At the same time,

working on different scales of local data in terms of the size of a city and the radius

of address query around a business unit.

Section 4.2

Referral Sequence

The work in Section 4.2 has already appeared in the refereed publication [An et al.,

2018b]. It introduces a numerical feature representation of the referral sequence and

suggests a schema for information flow in general. This section plays an important

role in connecting the raw dataset and the following chapter of predictive modeling.

The language (and mathematics) of network science is well-adapted to the

study of discretized and localized information and resource flow. In the particular
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case of healthcare records, a referral network generates various measures as a

way of understanding patient care, healthcare resource allocation and treatment

efficiency [An et al., 2018a]. A referral sequence for a given patient stores the

date of the visit and interactions between a patient and each node on the sequence.

Possibly because of specialty, different physicians might spend uneven amounts of

time and effort (e.g., as measured by the relative value unit or “RVU”)2 during

a typical encounter with a patient. We describe the referral sequence in terms of

multiple features (e.g., the time between initial and final encounters or average RVU).

Domains of investigation can range from the network of physicians in or attributed to

a hospital, the Hospital Referral Region (HRR), or the entire United States referral

network. A range of choices for edge weights can articulate different properties of

these interactions. Given groups of referral network structural measures and referral

sequence features, multilevel regression models and classification methods in machine

learning have the potential to reveal relationships between the organization of patient

flow in the healthcare system and the well-being of patients, and with this, insights

into improving efficacy and resource allocation for our healthcare system.

Patient referral networks are a record of doctor interactions mediated by the

sharing of a patient within a fixed timeframe. Through this interaction, information

is shared. We are interested in understanding the process of this step by step sharing

of information which we call an information walk. Classical models usually analyze

the “explosive” spread of information on a social network (e.g., Twitter). This is a

broadcast or epidemiological model wherein a given source node “infects” multiple

targets.

Prior studies related to referral sequences have been limited in terms of the range

of health records studied [Uddin et al., 2013, Uddin, 2016]. In this project, we

2RVU stands for “Relative Value Unit”. This is a Medicare invention used in the calculation of
reimbursements that encodes the “value” of a given procedure.
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analyze a much larger dataset and also include new metrics related to the study of

referral sequences and are able to compute detailed network measures in a much larger

dataset (the TDI3 dataset) of cardiovascular disease treatment, ranging from a local

hospital or HRR to the current national referral network. Aggregating the data from

thousands of local hospitals and hundreds of HRRs, we use statistical methods to

validate the general patterns of referral sequences and referral networks.

We characterize the dynamics of changes of node position and type among all

physicians on a referral sequence. In the case of cardiovascular treatment, we find

evidence of key roles on a referral sequence, especially for the physicians with a

specialty of cardiovascular and internal medicine. We also validate the prevalence

of patterns of referrals indicating that physicians work with their professional

acquaintances when choosing the target of a referral, i.e., regularly send patients

to the physicians who have many common collaborators. As a secondary benefit, we

then apply classification models to the cardiovascular referral network measures and

referral sequence features to predict the teaching status of a hospital and a patient’s

treatment outcome (e.g., an indicator of death within 1 year after treatment). Our

considerations of networks and referral sequences for cardiovascular treatment could

clearly be adapted for other contexts. More specifically, given patient referral records

tied to a different disease state, the metrics and methodologies we introduce here (e.g.,

the feature and pattern mining, model selection, analysis, etc.) could be directly

adapted. In addition, our study has implications for research about a generalized

notion of “referral sequence” in such contexts as information flow in online media or

social networks.

Some specific contributions of our feature engineering and entity representation

work include:

3The Dartmouth Institute for Health Policy and Clinical Practice
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• Novel definition of the health records-based referral sequence as well as a novel

definition of salient features for referral sequences generated from both network

science and time series analysis.

• Quantification of a physician’s position using centrality and other measures in

the U.S. national cardiovascular referral network with the help of techniques

specific to big data that are necessary for overcoming the infeasibility of using

traditional algorithms for calculations at scale.

• Investigation of the patterns of millions of referral sequences in the referral

network, which are validated by statistical tests.

4.2.1. Materials and Methodology

We used Medicare beneficiary claims data for all patients diagnosed with

cardiovascular disease in the U.S. during 2006-2011 to build referral sequences and

networks of the U.S. healthcare system. Here cardiovascular disease means that the

patient suffers from arrhythmia, congestive heart failure, coronary-heart disease or

peripheral vascular disease in the diagnostic codes of Medicare claims. This dataset

is of interest for several reasons. It is on the one hand a kind of network “big

data” (as we will see, giving rise to networks on hundreds of thousands nodes and

millions of edges) in a research area (healthcare) where traditionally data analysis

has not been accomplished at this scale. In particular, by focusing on the part

of the national dataset related to disease diagnosis, we can begin to articulate

and build out methodologies that relate to outcomes. Each such record contains

the patient or “beneficiary” (Bene) identification (ID) number, physician National

Provider Identification (NPI) number, visit date, RVU associated with the visit and

other details. Since the NPI numbers for all physicians changed in 2007, some of the

analysis we perform only obtains for the interval 2007-2011. Although claims data
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and other sources of patient-physician encounters have been previously used to form

physician networks [An et al., 2018a, Landon et al., 2012, Mandl et al., 2014, Lomi

et al., 2014, Shea et al., 1999], in this project we apply a more nuanced approach.

The “referral sequence” is a maximal sequence of referrals 4.

4.2.2. Definition

Figure 4.8: Bipartite graph between patients (α, β) and physicians (A,B,C,D). (L)
An edge between a patient and a physician means the patient visits the physician.
(R) A referral sequence of Patient α in chronological order.

In Figure 4.8, several edges connect two patients (α and β) to some physicians

whom they have visited. Patient α visits four physicians (A,B,C,D). By sorting the

four physicians according to the date of patient α’s visit, we recover a sequence of

four physicians reflecting the sequence of encounters.

4.2.3. Referral Network and Edge Weights

The referral network (over a given time period) is a directed network with node

set given by the physicians present in the database over a fixed time period. If

physician A refers at least one patient to physician B, this is represented by a

directed edge from A to B. Given all referrals over a year, we are able to build

the U.S. national patient referral network of US physicians. In this project, we

mainly investigate micro-patterns of referral sequences for each patient in HRR/PHN

4the team of physicians involved in the treatment of a patient over the course of a given episode
of illness
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referral networks, while our prior work [An et al., 2018a] introduces macro-patterns

derived from directed national, HRR, and state referral sub-networks. Herein, most

of the network measures are also derived from directed referral networks, except a few

measures from the corresponding undirected networks, such as diameter, clustering

coefficient and giant component.

Edges can be weighted in a variety of ways. A simple unweighted edge (i.e., edge

weight equal to 1) denotes simply a connection. More information is added if we use

other natural metrics such as the number of referrals or the geometric mean of RVU.

A novel metric that we define here is the “ranking based weight”: Let the vector

r = (1, 2, . . . , n) denote the chronological “ranks”5 of the encounters on a referral

sequence consisting of n physicians. In this case for a given physician A, let nA

denote the number of encounters for physician A on the referral sequence, and let rA

be the sub-list of the ranks of the encounters with a physician in the referral sequence

(so, if A was encountered on the first and last visits only, then rA = (1, n)). In this

way, nA is the length of the rA. The flow of patients from physician A to physician

B is then given by

fAB =

∑
i<j I(rAi < rBj)

nAnB
(4.3)

and from B to A by

fBA =

∑
i<j I(rAi > rBj)

nAnB
. (4.4)

To compute the ranking based weight of an edge, we compute a weighted sum of the

patient ranking index flow in each referral sequence p containing both physician A and

B. A referral sequence p might include multiple physicians, but the flow of patients

in the referral sequence between physician A and B only relate to their sub-vectors

rA and rB, without any impact from a third physician. The function of Equation 4.3

5The list of positions – denoting first, second,...,nth – in the sequence of n visits that make up
the referral sequence.
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increases in value at a rate proportional to a constant [Wikipedia, 2018] as nA and nB

go to infinity, but we would like to account for the length of each referral sequence, so

we add nAp and nBp and weigh the contribution from each referral sequence by their

geometric mean in Equation 4.5.

wAB =
∑
p

(nApnBp)
1/2fABp (4.5)

4.2.4. Referral Sequence Features

Figure 4.9: An example referral sequence with three physicians A,B,C. The patient
visits them five times. Let’s also assume that physician A and C are from the same
HRR/hospital in blue, while physician B is from another HRR/hospital in red.

As discussed in Chapter 3 we introduce the use of various basic network measures

for the study of patient referral networks and uncover macro-level network structures

including general patterns of “power law” in degree distribution, “small-world”

structure, core-periphery structure, and the existence of a “gravity law” in a

state-level referral traffic map. In this project we focus on the referral sequence and

to that end, introduce some metrics that get at the diversity of a referral sequence.

Denote the number of visits on a referral sequence as N , the ith node on a referral

sequence as Pi, the date of the encounter with the ith node as Ti, 1 6 i 6 N . With

this notation we make the following definitions and illustrate them using the example

in Figure 4.9 (note that in Figure 4.9, the nodes corresponding to the physicians are

color-coded according to some affiliation datum – e.g., HRR or hospital):
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• Sequence length. The total number of physicians on a referral sequence. A

physician would be counted multiple times if the patient visits the physician

repeatedly. It is 5 in Figure 4.9.

• Recurrence. A binary variable recording whether there exists i, j, with 1 6

i<j 6 N , and Pi = Pj. It is true (set to “1”) in Figure 4.9 because of multiple

occurrences of physicians A and B.

• Time range. TN − T1. It is the gap between the last visit and the first.

• Average time gap between referrals on the referral sequence: TN−T1
N−1

.

• Number of nodes before recurrence. It refers to the first reappearance of a

duplicate node. In our example, it is 3 since the first three nodes A,B,C are

different from each other before the first duplicate node, B.

• Physician distribution entropy. This is the standard probabilistic definition

of entropy (−
∑

x p(x) log2(x)) derived here from the physician occurrence

probability over the sequence. In Figure 4.9, the frequencies of A,B,C are

2, 2, 1 respectively. The physician distribution entropy of the related probability

distribution (0.4, 0.4, 0.2) is 1.522.

• Hospital distribution entropy. The entropy of the derived physicians’ hospital

distribution is another feature of diversity. Since we assume A and C are from

the same hospital, the frequency distribution is (3, 2) and the corresponding

entropy is 0.971.

• HRR distribution entropy. The entropy of the physicians’ HRR probability is

another feature of diversity. It is the same value as PHN distribution entropy

under the assumption that A and C are in the same HRR.
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• Main hospital. It is a derived referral sequence feature of the hospital in which

the most physicians on the referral sequence are working. It is the hospital with

A and C in Figure 4.9.

• Main or dominant HRR. The HRR in which the most physicians are working.

It is the HRR with A and C in Figure 4.9.

• Number of pairs of nodes with reciprocal referrals on a referral sequence.∑
i,j 1(1 6 i < j 6 T − 1, Pi = Pj+1, Pi+1 = Pj). There are two pairs of

nodes (A,B) and (B,C) which have such reciprocal relations.

4.2.5. Node Position Features

In a referral network, metrics related to node characteristics correspond to metrics of

physician “importance”. Meaningful examples include local clustering coefficient,

betweenness centrality, closeness centrality, eigenvector centrality, PageRank

centrality [Page et al., 1999], core-periphery score [Rombach et al., 2014]. In addition,

we adopt the notion of h-index to the patient referral network [Hirsch, 2005]. For a

node in the national referral network, consider the array of indegrees for all nodes

which refer patients to the node, then count the h-index of the indegree array, which

means h referral source nodes have at least h indegree in the array.

Here are some of the features describing node position that are relevant to the

context of referral sequences.

• Number of sequences that contain the node.

• Number of sequences where the node is the initial visit. In Figure 4.9, physician

A is the first node.

• Number of sequences where the node is the final visit. In Figure 4.9, physician

A is the end node.
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• Average index of the first-time occurrence in all sequences. In Figure 4.9, the

index of first-time occurrence for nodes A,B,C is 1, 2, 3, respectively, so we can

take the average over all referral sequences.

• Number of sequences where the node occurs multiple times. In Figure 4.9, nodes

A and B occur twice.

• Number of cross-HRR referrals proposed by the node. In Figure 4.9, given the

assumption that nodes A and C are from the same HRR, node A sends patients

to node B in another HRR. Nodes B and C also form an edge that spans HRRs.

• Number of cross-hospital referrals proposed by the node. In Figure 4.9, given the

assumption that nodes A and C are from the same PHN, node A sends patients

to node B in another hospital. The same is true of nodes B and C.

4.2.6. Results

We process raw patient-physician encounter records, build referral paths/networks

and derive the following patterns in Python, with the help of NetworkX

[NetworkX-Developers, 2017]. We build the machine learning programs for treatment

outcome prediction with scikit-learn [Scikit-community, 2017], and implement

statistical tests and regression models in R.

Table 4.1 describes features of millions of referral sequences over 2006-2011. The

average duration of each referral sequence is roughly 25 days (avg time range) and

comprises about four nodes (avg length). About one-third of referral sequences have

a node which the “defining patient” visits multiple times. The distribution of the

referral sequences when weighted by hospital entropy is more diverse than when

weighted by HRR entropy, which implies that a patient will more likely visit multiple

hospitals in the same HRR than to have multiple visits in different regions (HRRs).

Close to half of the pairs on a given referral sequence are reciprocating.
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Table 4.1: Overall statistics of all referral paths in 2006-2011.
Year 2006 2007 2008 2009 2010 2011
#referral sequences 4.44M 4.45M 4.54M 4.59M 4.63M 4.66M
avg length 3.850 3.907 3.983 4.023 4.061 4.115
avg gap for a referral 8.509 8.506 8.369 8.352 8.230 8.060
avg time range 24.247 24.727 24.969 25.245 25.192 25.109
percent of sequences with
recurrent nodes

33.418 32.879 32.836 32.784 32.573 32.301

avg #nodes before
recurrence

4.087 4.130 4.179 4.196 4.223 4.271

avg physician entropy 1.400 1.410 1.423 1.427 1.436 1.448
avg hospital entropy 0.475 0.473 0.476 0.459 0.480 0.481
avg HRR entropy 0.107 0.109 0.108 0.105 0.112 0.116
avg bidirectional pairs in a
sequence

0.450 0.455 0.465 0.474 0.476 0.479

In addition to the basic overall features for all referral sequences, we explore other

patterns from other perspectives.

Index on Referral Sequence vs. Node Position in Network Corresponding

“node position sequences” encode how a patient navigates along with physicians

in terms of the physician position of importance in the referral network. Here we

consider the node position sequence with respect to five node position measures in the

national referral network: clustering coefficient, betweenness centrality, eigenvector

centrality, PageRank centrality and h-index. Figure 4.10 shows an observed node

position sequence represented by the local clustering coefficient of each node. After

classical seasonal decomposition [Meyer, 2017] by moving averages on the sequence,

the seasonal component tends to fluctuate, which suggests that physicians in the core

and periphery parts appear alternately on the referral sequence.

Denote the N physicians on a referral sequence as P = (P1, P2...PN) and the node

position value of Pi as Ci, so that the corresponding node position sequence can be

denoted as C = (C1, C2...CN). Then the number of changes in trend
∑N−1

i=2 1((Ci −

Ci−1)(Ci+1 − Ci) < 0) counts the change of sgn (positive, negative) of the difference
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Figure 4.10: Observed local clustering coefficient of the nodes on a referral sequence,
and the three components divided by time series decomposition. The seasonal
component fluctuates along the time axis.

in the centrality of successive providers on referral sequence Pi, 2 ≤ i ≤ N − 1. The

event (Ci − Ci−1)(Ci+1 − Ci) < 0 is defined as a change point. For each node in the

middle of a referral sequence, if the neighboring nodes and itself satisfy the condition,

it contributes one to the number of change points.

Table 4.2 shows the percentage of change points in terms of five kinds of node

position measures in 2007-2011. In most cases, a patient will alternate visits between

a physician with a larger centrality measure and one with smaller centrality measure.

The pattern is stable in different years with all node centrality measures, which

suggests that some core physicians in the national referral network help to link some

physicians with fewer referrals for the patient’s treatment.
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Table 4.2: Percentage of change points in terms of increasing/decreasing trend in
node position sequence of a referral sequence.

Year 2007 2008 2009 2010 2011
clustering coefficient 75.0 74.9 74.9 74.8 74.7
betweenness centrality 74.9 74.7 74.8 74.7 74.5
eigenvector centrality 74.3 74.2 74.2 74.1 74.0
PageRank centrality 74.8 74.6 74.7 74.6 74.5
h-index 70.7 70.6 70.8 70.8 70.8

Table 4.3: Comparison of average common connected nodes between neighbors on a
referral sequence and the expectation in a random network with the same size.

Year 2006 2007 2008 2009 2010 2011
Random
network

3.60E−
03

3.10E−
03

3.00E−
03

2.90E−
03

2.80E−
03

2.80E−
03

Referral
network

25.13 24.64 24.95 24.97 24.95 24.96

The fluctuation suggests that on a referral sequence some physicians with relatively

larger centrality measure might diagnose the disease and organize the referral sequence

by referring the patient to nodes with lower centrality. This is the role that has been

envisioned for primary care physicians in the health care system and prior network

analyses [Barnett et al., 2012a] have found that the more prominent (i.e., central)

primary care physicians are in an intra-hospital network, the less the average cost of

care at that hospital.

Preference of collaboration Sometimes a physician might have multiple options

in terms of the target of a referral, especially when the physician is located in the

center of referral networks with a wide range of connections. We compute the average

number of common connected nodes for neighboring nodes in a referral sequence P ,

given by
∑N−1
i=1 |V (Pi)∩V (Pi+1)|

N−1
, where V (Pi) is the set of neighboring nodes of node Pi

in the national referral network.

Table 4.3 shows that on average the neighbors or direct collaborators on a referral

sequence have 25 common collaborators in the national referral network, while the

75



4.2 Referral Sequence Feature Engineering and Entity Representation

expected number in a random network is p(AX,BX|AB) = (N − 2) (M−1)(M−2)

(CN2 −1)(CN2 −2)
(N

is the number of nodes, M is the number of edges). Assume there is an edge between

node A and B. Then the remaining N−2 nodes are candidates for common neighbors.

With M − 1 edges remaining in the whole network and CN
2 − 1 remaining pairs of

possible edges, the probability that A and a candidate neighbor X are connected is

M−1
CN2 −1

, which is almost the same as the ensuring conditional probability that B and X

are connected. The sum of probabilities over N − 2 candidates leads to the resulting

probability being multiplied by N − 2 to yield the expected value for the network.

The clear gap in Table 4.3 supports a hypothesis that physicians tend to work with an

acquaintance or someone in the same community when a referral is required. Among

the referral steps of all referral sequences in 2006-2011, only 33.2% are cross-PHN

while 7.5% are cross-HRR referrals, which suggests that internal referral within the

same hospital or HRR is the first choice. This suggests that actual geographic distance

may be a factor for referral target selection. This would enable modeling of choice

of referral targets as a ranking problem that would take into account geographic

proximity (as well as possibly other factors).

4.2.7. Conclusion

We consider the new information sharing model of the information walk on a network

and construct new features about a referral sequence in the referral network. Several

exciting patterns show the power of proper feature engineering. For other contexts of

information flow/walk, it is possible to define similar features for different tasks. For

example, the sequence of webpages of user’s browsing may generate specific features

to improve a recommender system.
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Chapter 5

Predictive Models about

Information Flow

In Chapter 4 we did feature engineering for information flow in a network, now in

Chapter 5 we take up three predictive tasks about information flow. The dynamic

changes in a network make it a challenge to predict the future of ongoing information

flow, and an accurate prediction of information flow would be valuable for the

corresponding community of a social network.

First, we study the problem of walk-specific information spread in directed

complex networks. An important and motivating example is the sequence of

physicians visited by a given patient over a presumed course of treatment or health

event. In this case, the patient (and her health record) is a source of “information”

from one physician to the next. The records of transitions define the corresponding

network, where the existence and times of visiting some nodes in history will influence

the future possibility of visiting (transition) between a pair of nodes. Since we assume

a context of information sharing and metadata in specific domains, we name these

information walks and the problem in our research as information walk prediction.

We build a Bayesian Personalized Ranking (BPR) model to predict the next node on
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a walk of a given network navigator using network science features. The problem is

related to but different from the well-investigated link prediction problem [Mart́ınez

et al., 2017]. We present experiments on a dataset of several million nodes, showing

that the application of network science measures in the BPR framework boosts

hit-rate and mean percentile rank for the task of next-node prediction. The work

in this Chapter has already appeared in the refereed publication [An et al., 2019, An

et al., 2018b].

Second, We then move beyond the simple information walk to consider the derived

network space of all information walks within a period, in which a node represents an

information walk, and two information walks are connected if have nodes in common

from the original (social) network. To evaluate the utility of such a network of

information walks, we simulate outliers of information walks and distinguish them

with the other normal information walks, using five distance metrics for the derived

feature vectors between two information walks. The experimental results of such a

proof-of-concept application show the utility of the derived information walk network

for the outlier monitoring of information flow on an intelligent network.

Finally, based on the case of patient referral sequence, we apply machine learning

methods to predict the outcome of the event (i.e., treatment) on the information flow.

The predictive models introduced in this Chapter are the core part of a machine

learning project. Though they are built on the context of a kind of information flow

in this thesis, in general they connect the previous steps of feature engineering and

the following step of evaluation/improvement.
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Section 5.1

Direction

With the knowledge of network science, it is natural to build a network for a group

of people (or even any items which can help with information sharing) based on

their pairwise interactions. The person-to-person communication in such a network

turns into a path [Wikipedia, 2019], or more accurately a walk [Wikipedia, 2019],

since it is possible (and in many contexts even likely) for the “walker” (e.g., news)

to revisit some person (node).1 Indeed, multiple “visits” can provide a kind of

reinforcement of the information of interest that might be relevant to its learning or

absorption. This node-by-node (e.g., person-after-person) information spread model

– a “single-track” model – is a kind of epidemiological model but different from the

classical diffusion/broadcasting models that are often used in the analysis of social

media.

Single-track information spread is appropriate to our particular interest: the

problem of next visit prediction of a walker in a network. Our original motivation

arises from research on physician collaboration networks built by referrals [An et al.,

2018b], where two nodes/physicians are directly connected with a weighted edge if

they have been visited by the same patients within a given period. Patients “walk”

this network in the course of a presumptive treatment event. A predictive application

based on the features of such referral sequences may provide a better understanding

of the process of collaboration among health professionals.

Furthermore, precise prediction of the next visited physician may help with

the efficient allocation of medical resources for a patient’s treatment. If we know

a physician would probably have to treat many patients, we may prepare some

1One will recall that technically a “path” is a sequence of visits of connected nodes with no node
visited more than once, while a “walk” only requires the sequence of visited nodes be connected.
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assistance in advance. Other examples of single-track information walks in different

contexts include a traveler visiting preferred places, consumers traversing stores in

a shopping mall, or the work history of an employee. Indeed, a walker may be the

first to ever traverse from one node to another – suggesting that these nodes did

not connect each other in history records. Therefore, a more accurate framing is the

problem of visit prediction for a walker in a state space. In the above instances the

entire walk up to the last node may directly affect the selection of the next visited

node, so that this problem is generally not a memoryless Markov chain.

Herein, exploiting both metrics proposed in our analysis ([An et al., 2018b] and

[An et al., 2018a]) and classical network science measures, we propose a numerical

score to model the preference/attraction between the last observed node on an

information walk and any possible candidate node in the network. This score takes

multiple feature vectors from the targeted information walk as well as several groups

of involved nodes. Based on the preference score, we apply a general Bayesian

Personalized Ranking (BPR) framework to represent the goal of next-node prediction

in an objective function so that the problem could be solved by machine learning.

Several network science measures (e.g., node centrality) in the national physician

network facilitate the prediction for a pair of nodes, including those not directly

linked in the past.

5.1.1. Proposed Models

We begin with a preference model for information walk prediction, then describe

how to build a network of all information walks, and a proximity-based unsupervised

framework for information walk outlier detection.

Given an observed information walk in a directed network, the first task is to

predict the next visited node. To do so, we build a numerical preference/attraction

score for the observed part of an information walk (including the last node visited
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and an overall feature comprising all past visited nodes) and any possible next-visited

candidate. Therefore, when predicting which node would be more likely to be

visited by a walker, we can compute and sort the preference/attraction scores over

all candidate nodes. We then pick out a small number of nodes which have a

comparatively large score. As a result, this prediction framework allows for the

convenient detection of possible choices from the returned list (see Figure 4.8 for

an illustration of the identification process). The definition of a preference score is a

key component of the algorithm.

To formalize the problem, let P denote the set of all chronological node sequences

(i.e., information walks). For an information walk i ∈ P , pi represents the feature

vector of the observed sequence of nodes at a time point T , ci refers to the last node on

information walk i before time point T , fi is the first node on information walk i after

T (i.e., the actual next visited node). Let J represent the set of possible candidates,

which could cover a wide range of nodes, even the whole network except ci, or just

a subset of nodes in the network after filtering to speed up the computation if the

network is large. X(pi, ci, j) denote the preference/attraction score between the last

observed node ci, the overall walk feature pi and a candidate j ∈ J for the next node.

We aim to derive an objective function and train the preference-related parameters to

make X(pi, ci, fi) > X(pi, ci, j) for as many candidates j ∈ J (and j 6= ci) as possible.

If so, it indicates that a model predicts the next node on an information walk (i.e.,

the future direction in a network space) more accurately.

Diverse groups of network science features, either exogenous (metadata) or

endogenous (topological) to the observed walk, may boost the accuracy of information

walk prediction. The features detailed in Chapters 3 and 4 (also see [An et al., 2018b]

and [An et al., 2018a]) offer groups of such features useful for building our new

preference score model. Table 5.3 shows a detailed list of features used here.
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Table 5.1: Dimension of the model parameters/features in Equation 5.1.
Feature Dimension Note Parameter Dimension Note
p M × 1 information

walk
V M ×N walk-node

interaction
β N × 1 last node S M ×H walk-node

interaction
f, γ H × 1 ground truth

/ candidate
U N ×H node

interaction
d L× 1 profile

similarity
w 1× L profile weight

5.1.2. Preference/Attraction score

We define a preference score X(pi, ci, j) in the BPR framework, called BPR-IW

using the feature vector pi of the information walk. The other factors in the

preference/attraction score are the last/current node ci of walk i and a node j ∈ J

as the candidate:

X(pi, ci, j) = pTi V βci + pTi Sγj + βTciUγj + wd(ci, j) (5.1)

where in Equation 5.1 the superscript T refers to the transpose operator for a matrix.

pi means the overall feature of the whole observed part of information walk i. βci , γj

represent the feature vector of the last node ci and a candidate node j, respectively.

d(ci, j) represents the distance between ci and j in terms of their profile similarity

based on the metadata. Three matrices V, S, U about the node-walk interactions will

be trained as model parameters, which represent the feature interactions that exist in

a theoretical Factorization Machine [Rendle, 2010] or Polynomial Regression [Theil,

1992] model. In addition, another parameter w (weights) adjusts the importance of

node profile similarity, which corresponds to the last group of features in Table 5.3.

To make the matrix operation in Equation (5.1) clear, Table 5.1 shows the dimension

of several key parameters/vectors.
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Equation (5.1) considers multiple factors when predicting the next visited node

on an information walk. S, V represent the interaction between the initial part of

the walk and the candidate/ground truth node, respectively, while U describes the

extent of matching between the candidate and the last node on the walk which

might influence the decision of the future direction. Network science provides the

widely applicable features p, β, f, γ, since they can be computed from the topological

structure of a network, regardless of the type of metadata in the network. As the

profile distance d relies on the context (e.g., physician specialty), we distinguish it

from the other features.

5.1.3. Learning BPR-IW model

Equation (5.1) defines a preference score X(pi, ci, j) for sorting candidate nodes in J

for an information walk i. When evaluating the ranking of candidate nodes for an

information walk, it is convenient to get the scores for all candidates, and then pick

the top-K candidates. In this way, the relative order of the score counts more than the

actual values. The Bayesian Personalized Ranking (BPR) framework [Rendle et al.,

2009] defines the objective function as finding the optimal fitting MAP estimator

with the use of regularization to guide the choice of predictors. The crucial part of

this Bayesian procedure is the evaluation of the posterior probability of the model

parameters conditional on the network (i.e., the interactions among nodes stemming

from patients’ preferences about the next physician they visit). The procedure is

presented mathematically in Equation (5.2):

Θ = argmax
Θ

∑
i∈Ptrain

∑
j∈J\{ci,fi}

log σ(X̂(pi, ci, fi)− X̂(pi, ci, j))−
λΘ

2
||Θ||2 (5.2)

where σ represents the sigmoid function σ(x) = (1 + exp(−x))−1. Using the sigmoid

function, the gap between two preference scores for two candidate nodes is mapped
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into the interval (0, 1) so that the loss function is defined even if the gap diverges

to infinity when computing the optimal model parameters. The components of

σ, X̂(pi, ci, fi) − X̂(pi, ci, j), describe the gap in the preference scores between the

ground truth of the current walk, fi, and another possible candidate, j. Ptrain

refers to the training set information walks. In the objective function (5.2), Θ is

a general set parameter to be learned in the training process, such as V, S, U, w

introduced by Equation (5.1). We can use several random matrices/vectors drawn

from a multivariate Gaussian distribution as initial values. The values of the model

parameters will be optimized in the iterative training process. As the last item, λΘ

regularizes the objective function to avoid overfitting.

According to the size of the dataset in Table 5.2, the number of pairs of information

walks and candidate nodes O(|Ptrain||J |) is huge (more than 1 billion). In this case,

stochastic gradient descent (SGD) optimizes Equation (5.2) efficiently, which updates

the set of parameters Θ based on the derived gradient in Equation (5.3). To update

the parameters in each round of SGD with an information walk i and a candidate

node j, the gradients of Equation (5.2) for a parameter θ ∈ Θ are:

∂
∂θ

(logσ(X̂(pi, ci, fi)− X̂(pi, ci, j))− λθ
2
||θ||2)

= (1− σ(X̂(pi, ci, fi)− X̂(pi, ci, j))
∂
∂θ

(X̂(pi, ci, fi)− X̂(pi, ci, j))− λθθ
(5.3)

The partial derivative of X̂(pi, ci, fi)− X̂(pi, ci, j) with respect to some parameter

could be computed by Equation (5.1). Equation (5.4) gives the instances of S and U

that are defined in Table 5.1. Note that due to an offset in the gap of two preference

scores, it is not necessary to update V .

∂
∂S

(X̂(pi, ci, fi)− X̂(pi, ci, j)) = piγ
T
fi
− piγTj

∂
∂U

(X̂(pi, ci, fi)− X̂(pi, ci, j)) = βciγ
T
fi
− βciγTj

(5.4)
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5.1.4. Evaluation

Dataset. The data for our analyses are the U.S. Medicare beneficiary insurance

claims for a subgroup of patients over 2007–2011 explained in Chapter 4.

For the set of information walks P in a year, given an observation time point T

we build the training set Ptrain to store the walks ending before T . The test set Ptest

includes the walks that are ongoing at time T . Figure 5.1 illustrates two examples.

Since information walk A terminates before time point T , it is in the training set

Ptrain. At the time point T , a node on walk B is still passing information to the next

node, so walk B belongs to the test set Ptest. In A and B, the observed red nodes

contribute to the overall information walk feature p. For a walk in Ptrain, all nodes

but the last one belong to the observed part, while the last node serves as the ground

truth f . The candidate set J contains the ground truth f of all walks in Ptest; thus

it randomly samples a subset of nodes in the whole network.

Figure 5.1: At a given time point T , two information walks (A and B) belong to the
training and test set, respectively.

The U.S. physician collaboration network derived from the TDI dataset produced

4.66M information (referral) walks in 2011. The training and test set are defined as

information walks with at least six visits. Table 5.2 presents the size of training and

test sets at several time-points T , as wells as the candidate node set J . The size
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Table 5.2: Size of training, test and candidate sets at different time points in 2011,
which are derived from the TDI dataset.

Date of observation T Ptrain Ptest candidate nodes J
03/01 17.6K 18.7K 16.6K
05/01 51.8K 19.5K 17.3K
07/01 83.7K 16.6K 14.9K
09/01 113.1K 15.8K 14.3K
11/01 142.4K 16.8K 15.1K

Table 5.3: Features about information walks and related nodes including applicable
network measures, new metrics defined by our past analysis [An et al., 2018b], and
a few from the metadata of medical treatment records, such as Relative Value Units
(RVU) of medical service. Our paper [An et al., 2018c] shows the full list of applied
measures.
Group Measures
information walk p number of nodes on it, time range, pairs of mutually

connected nodes, sum of RVU for all visiting, number of
visited hospitals, average node PageRank values

next node/candidates
(j and f)

clustering coefficient, PageRank, Hindex, number of
initiated cross hospital referral region referrals

last node c Beyond the features in the group of next node/candidate:
time gap with last occurrence, RVU, a binary flag of
multiple occurrences on the walk, a binary flag of working
in the same hospital previous physician (node)

metadata for profile
similarity d(c, j)

Indicators of the same specialty/residency
hospital/hospital referral region, number of referrals
in history.

of Ptrain increases from March to November, since it contains all information walks

ending before T .

Table 5.3 groups by the measures of an information walk p, the feature vector γ

of a candidate that of the ground truth f , the feature vector β of the last node c

on an information walk. d(ci, j) refers to profile similarity between two physicians.

Each group contains several representatives of the full list explained in our past

works ([An et al., 2018b] and [An et al., 2018c]). We picked the above measures as

they boosted predictive performance in other applications (e.g., the result of medical

treatment along an information walk [An et al., 2018b]). To mitigate concerns about
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reverse-causality and to avoid the possible problem of predicting a variable with input

features in the future, when we extract features of an information walk in some year

(e.g., 2010), we use node centrality measures derived from the network in the previous

year (e.g., 2009).

Baseline Methods. Our BPR-IW model is a general model for diverse contexts

of information walks, not limited to the case of patient referrals. In addition to

our proposed BPR-IW, the models/metrics below also generate a preference score X

between a candidate node j and the last node c, so they could sort their available

candidate nodes for a top-K subset as the prediction result.

Most popular (MP). X(c, j) = e(c, j) It takes the edge weight in history

between c and a directly connected neighbor. It refers to the number of referrals

between two physicians. However, the range of candidates is limited.

The performance of traditional link prediction methods are used as benchmarks

against which to compare the new methods. We also implement several representative

methods, including Common neighbors (CN) [Lorrain and White, 1971],

Preferential attachment index (PA) [Liben-Nowell and Kleinberg, 2007],

Adamic-Adar index [Adamic and Adar, 2003] and Jaccard index [Jaccard,

1901]. Notably, these similarity metrics do not incorporate the other nodes on the

observed part of an information walk, and are only applicable for the neighbors that

interacted with node c before. However, our BPR-IW model extends the range of

possibly predicted candidates, even without a direct edge or common connected nodes

with the last node c.

Markov Chain (MC) [Rendle et al., 2010]. X(c, j) = Prob(c.next =

j|c, c.prev) The two-gram version incorporates the second-to-last node c.prev so as

to compute the frequency of state transition.
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Long Short-Term Memory (LSTM). Given the corresponding node sequence

of an information walk, we treat the features of all nodes (in Table 5.3) as the time

series inputs into a LSTM model [Hochreiter and Schmidhuber, 1997]. We aim to

explore whether the LSTM model could learn the hidden patterns based on the past

node-to-node transitions to yield an output tensor that is very close to the ground

truth f . However, the hit-rate of LSTM is lower than 0.01 under all parameter

settings in our experiment. Another paper [Choi et al., 2016] reported a similar level

of failure of LSTM when predicting the next medical visit.

Transition-based Factorization Machines (TFM) [Pasricha and

McAuley, 2018]. The TFM model merges the current item, next item and user

into a 1 × n vector −→y . It defines a preference score according to Equation (5.5), in

which d2 is the Euclidean distance function, −→w is a weight vector, −→v and −→v ′ represent

latent embedding and translation vectors, respectively:

X(−→y ) = w0 +
n∑
a=1

waya +
n∑
a=1

n∑
b=a+1

d2(−→v a +−→v ′a,−→v b)yayb. (5.5)

The hit-rate (defined in Equation (5.6)) of TFM on the TDI referral data is less

than 0.01 under all experimental settings, including an overall −→y with our proposed

network measures and a comparatively plain −→y with three IDs only (walker, current

and next node). The majority of the nodes in the network of physicians have a

small node degree (< 4). Therefore, in such a cold-start environment TFM may not

perform as well as that on a dense dataset [Pasricha and McAuley, 2018] consisting

of frequent users and a part of nodes. Meanwhile, when most of the applied network

measures are not categorical, TFM does not make full use of its advantage of dealing

with the features in one-hot encoding. TFM enumerates all possible pairs of feature

interactions, but some of them may not boost the prediction. As a highlight of TFM,
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it is better for the latent transition vector −→v ′ to depend on the past track (i.e.,

observed walk).

BPR-no-IW. X(c, j) = wd(c, j). As a comparative method to BPR-IW, this

model only takes the item of physician profile similarity in Equation (5.1) to show

the power of the other network science measures about an information walk and the

related nodes.

Results. For a pair consisting of walk i and its next node fi as the ground truth,

BPR-IW or any of the baseline models will return a sorted list of K candidate nodes

Ri. Here we choose two evaluation metrics: hit-rate (HR) and mean percentile rank

(MPR) defined by Equation (5.6). HR reflects the possibility of presenting the ground

truth f to users in the returned list, while MPR corresponds to the expected efforts

a user may take to find the ground truth.

HR = 1
|Ptest|

∑
i∈Ptest 1(fi ∈ Ri)

MPR = 1
HR×|Ptest|

∑
i∈Ptest,fi∈Ri

rank(fi)
K

(5.6)

A smaller MPR yet larger HR implies a more accurate predictive model, which

indicates that users would see the ground truth on top of the user interface from

sorting the returned candidates in decreasing order according to their preference

scores. Since the hit-rate values of LSTM and TFM are less than 0.01, Figure 5.2

through Figure 5.7 only present the result of the other successful models. As for the

parameters in training process, the λΘ in Equation (5.2) is 0.001 and the step size in

the SGD updating process is 0.05.

Figure 5.2 and Figure 5.3 show the HR and MPR at several time points in 2011

for BPR-IW and other baselines, under the setting of K = 20 in the returned list. In

terms of HR, BPR-IW beats the others and BPR-no-IW performs the second best.
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Figure 5.2: HR at several time points in 2011, when K = 20.
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Figure 5.3: MPR at several time points in 2011, when K = 20.

The other baseline methods get close hit-rate values between 0.3 and 0.4. In addition,

BPR-IW and BPR-noIW get the smallest MPR, which suggests the ground truth f

would be located near the top of the returned list. For most of the models, the

different observation time points do not result in obvious gaps in HR or MPR.
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Figure 5.4: HR with different K on 07/01/2011.

Figure 5.4 and Figure 5.5 show the impact of K on HR and MPR on the same day

of observation. Note that in Figure 5.5, MPR will be 1.0 for all models if the only

returned candidate (K = 1) hits the ground truth. When K increases from 1 to 20,

90



5.1 Direction Predictive Models about Information Flow

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 20

M
P

R

K, size of the returned list

Adar
Jaccard

CN
MC
MP
PA

BPR-noIW
BPR-IW

Figure 5.5: MPR with different K on 07/01/2011.

most of the models predict the next node better because the HR increases as well. For

our proposed BPR-IW model, under the setting of K = 20, the HR is over 0.7 for the

test set Ptest with 10K+ information walks. For MPR, non-BPR models are almost

stable when K increases, but BPR-IW and BPR-IW display a decreasing MPR from

0.4 to 0.2. As a result, it may be more desirable to choose a slightly larger K for

BPR related models so that the walk prediction system could present more possible

candidates to users, including the key node of ground truth f . We compare those

models with different K values since it is relevant to user experience and needs to be

accounted for in the design of a real application, like the number of pages returned

on a webpage in response to a search query.
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Figure 5.6: HR on 07/01 during 2008-2011, when K = 20.

Figure 5.6 and Figure 5.7 show the HR and MPR on 07/01 from 2008 to 2011,

respectively. It seems that all models perform very stable on the same day in those
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Figure 5.7: MPR on 07/01 during 2008-2011, when K = 20.

years, which tends to support that the network structure in the years of 2008-2011

may be steady as well.

Based on two basic features of an information walk, the length and time range,

we implement min-max normalization and classify the test set into five groups based

on the percentile. We compute the recall for the walks whose ground truth f is

successfully predicted by the BPR-IW model. The stable performance in all five

groups under varying size of R supports that BPR-IW does not adapt to one group

(e.g., a longer information walk) much better than another, at least no obvious

difference in terms of information walk length and time range.

Our initial experiments illustrate that features derived from network science and

time series analysis for the nodes on an information walk greatly boost HR at the

cost of only a slightly larger MPR. We believe it is more desirable and necessary to

present the ground truth node to users than the comparative ranking within the list.

Therefore, BPR-IW performs the best in our experimental settings. The classical

link structure based metrics do not predict as well as BPR-IW, since they do not

consider the feature p of the whole observed information walk. In addition, they are

able to find candidates from the connected or other nearby nodes only, according

to the network in history. The BPR framework does not predict the next node

directly with a state transition probability. However, the output of relative ranking is

enough for the users who do not want to determine the quantitative reasons behind
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the prediction. From the perspective of network research, we greatly recommend the

application of network measures and the derived information walk features for further

related projects. In addition, metadata also provides important features, since the

data-specific features (e.g., physician profile similarity) appear presumably to help

with successful prediction in the BPR-no-IW model.

5.1.5. Conclusion

We exploit the sequence of referrals in a physician collaboration network to solve the

problem of next-node prediction on single-track information walks from a network

science perspective, explore the network of multiple information walks, and implement

a simulation test of information walks outlier detection to support the general idea

of an information walk network.

We consider both newly derived information walk features and classical node

centrality features to build a BPR-IW model of preference/attraction. The

network-based measures yield a flexible BPR-IW model that identifies more possible

candidate nodes than the traditional static link prediction method, because in

BPR-IW it is not necessary for the last observed node to be directly connected

with a candidate. BPR-IW works well on the TDI referral dataset according to

a sensitivity analysis which tests both hit-rate and mean percentile ranking across

multiple factors, such as the time point (within and cross-year) of observation and

the number of nodes in the returned list. BPR-IW could be conveniently applied to

other datasets, where network science measures will probably successfully model the

structures and relationships among a set of items and nodes.

Since the BPR-IW model exploits general features derived from network analysis

and time series analysis, it could adapt to different context of network (e.g., network

of cities for traveling route and company network for career path). Based on the
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generalizability, domain experts may continue to add context-related features to boost

the performance of BPR-IW prediction.

Section 5.2

Outlier

Section 5.2 moves beyond our published paper [An et al., 2018c] in the Complex

Networks 2018 conference through its introduction and use of the relationships among

multiple ongoing information walks. We also investigate the space of information

walks with a network science model, in which each node represents an information

walk and an edge connects two nodes of information walks if they share at least one

common node (e.g., the same physician) in the originating network. We find several

significant patterns in the new network of information walks and verify them via a

statistical test.

A key contribution is our identification of criteria to label an information walk with

different structural patterns in the network of information walks as an outlier. We

use a simulation-based test of information walk outliers in the network of information

walks in order to (1) demonstrate the efficacy of the model for the information walks

network; (2) complement the proposed BPR-IW model of walk prediction since the

users of an intelligent network platform may not have time to focus on every walk and

check the prediction of its future direction while an overall outlier detection function

can be used to filter some “abnormal” or “new” walks and remind users to check, so

that users would be able to reduce the risk of loss made by abnormal information flow,

or detect the benefits of novel walks in an early stage. In related work [Eswaran and

Faloutsos, 2018, Ranshous et al., 2015, Savage et al., 2014, Takahashi et al., 2011],

researchers have targeted different parts in a graph to build a specific outlier detection

algorithm, including nodes, subgraphs, separate point-to-point edges (e.g., TCP-IP
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communication, connections between new accounts in social networks). Herein we are

the first to implement outlier detection for a whole information walk, which differs

from prior work due to the existence of the same single “walker” or information flow

along the sequence of visited nodes.

We simulate the outlier information walks with random replacement of their nodes,

explore the measures of an information walk in a network of information walks, and

design five distance metrics (based on the walk features) within a general outlier

detection framework to distinguish the simulated (outlier) information walks from

those actually observed. Moreover, since an outlier information walk may be an

abnormal or creative (e.g., new treatment procedure) case, the initial results suggest

a way to contribute to a more intelligent network via outlier detection for ongoing

information walks, which complements our proposed BPR walk prediction model.

5.2.1. Network of Information Walks

Figure 5.8: Three information walks with nodes from A, B, ..., G, and the
corresponding network of information walks.

Here we define the network of information walks to model the space of all

information walks, in which a node represents an information walk and two nodes

are connected when they share at least one node in the originating network.

In the network of information walks, several edge weights distinguish the

relationship between two connected nodes (i.e., information walks), such as the
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number of distinct common nodes, the Jaccard index [Jaccard, 1901] (size of

intersection divided by size of union) of two sets of originating nodes on two

information walks. Figure 5.8 shows an example of the network of information walks.

Here α, β, γ are three information walks with several nodes (A,B, . . . , G). Since every

pair of information walks share at least one node, the corresponding information walk

network is an undirected 3-node clique. For the edge linking β and γ, the number

of common nodes is 2 (nodes E and F ), and the Jaccard index weight is 2/5 = 0.4

because in total there are five kinds of nodes on them.

5.2.2. Outlier Detection for Information Walks

As a task for walk prediction, outlier detection identifies the information walks that

deviate from the expected patterns of the observed track in an unsupervised set of

information walks via the features derived from the network of information walks. The

target of outlier detection is the entire information walk rather than a single node

or edge on it. We hope that such a detector could provide an early stage “alert”,

identifying “abnormal” or favorable novel information walks to improve the safety of

subsequent carried information and the robustness of the network. For example, if we

detect a referral sequence that does not follow the popular patterns in Section 4.2, it

may suggest a delay in treatment or some improper referrals. To implement outlier

detection, we need to define key features of the network of information walks and use

these to design an algorithmic outlier detector.

An information walk grows node by node. Thus the evolution of an information

walk could be presented by a series of cumulative feature vectors at each timestamp

when the walker visits a new node. For example, the number of directly connected

distinct nodes would increase since new nodes join the sequence. We present the

general algorithmic outlier detection framework in Algorithm 3, which requires a

distance metric function between any pair of information walks.
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Algorithm 3 Proximity based outlier detection.
Input: A set of n unsupervised information walks (IWs). A parameter M to pick up the
Mth nearest neighbor for an outlier score.

Output: Pick up K information walks (IWs) as the outliers.
Compute the cumulative time series features CFi for each IWi ∈ {1,...,n}
Outlierscore ← {}
for i← 1 to n do

Tmp-array ← [ ]
for j ← 1 to n do

If j ! = i Tmp-array.append(Dist(CFi, CFj))
end for
sort(Tmp-array)
Outlierscore[Tmp-array[M ]] ← i

end for
Tmp-array ← sort(Outlierscore.keys(), decreasing)
Outlier-walks ← Outlierscore[Tmp-array[1, . . .K]]

Algorithm 3 is an unsupervised proximity-based outlier detection framework. The

key idea is to compute an “outlier-score” for each IW to pick the K information walks

with the largest K scores. The data preparation step refers to Line 1 in Algorithm 3,

where we compute the time series features for every information walk. In Lines

2-10, we compute the pairwise distance between two information walks with some

metric (introduced later in this subsection) and treat the distance to the Mth nearest

neighbor as the outlier score. Finally, in Lines 11-12, we sort the outlier score to get

the Top-K candidates of outliers. With a time complexity of O(n2), Algorithm 3 more

easily adapts to diverse kinds of proximity measures than statistical outlier detection

methods that are reliant on assuming probability distributions of the residuals and

models the degree to which IW is an outlier. A drawback is that the algorithm might

be sensitive to the choice of M when defining the outlier score, making it necessary

to tune the parameter M for each experiment.

Assume we extract P different measures of an ongoing information walk at T

timeslots on the time axis. In total, the feature vector is then a P × T tensor. An

equal-weighted distance function sums up the distance of each measure. Therefore,
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the Dist function in Line 6 could be transformed to a distance function between a

pair of numerical arrays of each measure, but their lengths may be different due to the

varying lengths of information walks. Denote the longer array as LA and the shorter

one as SA and their lengths as l and s, respectively. Here we propose or apply five

distance metrics to complete Algorithm 3.

• Sliding substring matching (SSM). To match the shorter array SA,

enumerate all s-length consecutive subarrays from LA and take the minimum

Manhattan Distance between a subarray in LA and the SA.

• Edit distance/Dynamic Time Wrapping (ED/DTW). Equation (5.7)

describes the state transition equation for the dynamic programming model, in

which d(i, j) is the distance between the first i units in LA and the first j units

in SA. The initial settings are d(i, 0) = i × λ for i ∈ [1, l] d(0, j) = j × λ for

j ∈ [1, s]. λ is the penalty factor to represent the cost of skipping a unit in an

array. After the process of dynamic programming in Equation (5.7), the value

of d(l, s) is our desired distance.

d(i, j) = min


d(i− 1, j − 1) + abs(LA[i]− SA[j]),

d(i, j − 1) + λ,

d(i− 1, j) + λ

(5.7)

• Interpolation. Treats LA and SA as several discrete samples from a function

of time in the interval [0, 1], in which the first unit in LA and SA is at zero while

the last unit is at one. The rest of the non-extreme units are allocated with an

equal interval. For example, if LA = [0.1, 0, 2, 0.3, 0, 4, 0.5], the corresponding

time intervals would be (0, 0.1), (0.25, 0.2), (0.5, 0.3), (0.75, 0.4), (1.0, 0.5). To

align SA and LA we take the simple linear interpolation for the corresponding
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points of LA to get new points that have the same time-index with SA. Finally,

we compute the pairwise Manhattan Distance.

• Longest common substring (LCS). The LCS method originally aims to

find the longest subsequence common to two strings. In contrast to substrings,

subsequences are not required to occupy consecutive positions within the

original sequence. Two numerical units are treated as equal if their abstract

distance is less than the threshold.

• Sliding substring averaging (SSA). Starting from the first node in LA, set

a sliding window of length of l − s + 1 and extract the average of those units

in LA covered by the sliding window. The sliding window moves right one unit

each iteration to generate s values from LA, so that it can compute the distance

between the derived values and SA.

5.2.3. Patterns in Network of Information Walks

In this section we define some operations on walks that are slightly inspired by

operations in algebraic topology.

We detect statistically significant (p-value less than 0.05) patterns between a pair

or among several special information walks defined by some structural relationship.

The following patterns are derived from the information walks network in the first

quarter of 2011. They may suggest hidden patterns in the healthcare system for

domain experts to explain and analyze the effects in further research.

• Citing the notion of path-homotopy from algebraic topology which explore

structural similarity between curves, we focus on a pair of homotopic

information walks as two information walks which share the common starting

and ending nodes in the physician collaboration network. Because of the

existence of two guaranteed common nodes, the homotopic information walks
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Table 5.4: Comparison of three kinds of edge weights in the network of information
walks, between the edges connecting homotopic (the same starting and ending nodes)
walks and the others connecting two non-homotopic walks. The visiting records and
RVU refers to the values of common physicians on the two walks.

Jaccard index number of visiting records sum of RVU
homotopic pairs 0.552 24.48 45.00
non-homotopic pairs 0.234 10.28 19.65

are more closely connected in the network of information networks than a pair

of non-homotopic walks. Table 5.4 shows the comparison, in which all the

measures are found to be significantly different by a two-sample t-test.

• “Lifting” refers to a shortcut of a longer information walk. Assuming a longer

information walk contains three consecutive nodes A → X → B, another

shorter walk contains A → B, and the rest of the nodes are the same, we

treat the two walks as a pair of lifting walks. In the first quarter of 2011, there

are 76K pairs of homotopic walks, and the shorter base walks have an average

PageRank value of 1.07×10−5 while the longer extended walks have an average

PageRank value of 1.20 × 10−5. Meanwhile, when putting the middle node X

between A and B in the originating physician collaboration network, we find

a significant difference in the resulting PageRank centrality of the nodes. The

order is X < A < B.

• Information walk composition exists among three groups of information walks.

The first group ends with two nodes A → B, the second one starts with two

nodes B → C, and the third contains the three nodes A → B → C in the

middle of the corresponding physician (node) sequence. Those three groups of

information walks have significantly different PageRank values in the network

of information walks, which are: the first group 1 × 10−5, the second group

9.8× 10−6, the third 1.09× 10−5.
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5.2.4. Simulation Test of Outlier Detection

Since the information walks in our physician collaboration network do not have a

natural metric, we evaluate the framework of outlier detection and five distance

metrics on a mixed set of the originating observed information walks and the simulated

outliers. We exploit the training set at a time interval of observation defined by

Figure 4.8 to get the neighbor (i.e., directly connected) list of every past node

(physician). We then take all the information walks beginning within one month

of the focal observation to sample from in order to form mixed set. Taking the

observation date as 2010-03-01 as an example, from the IWs beginning in April 2010

we randomly pick up 2, 500 IWs as the normal cases and the other 2,500 IWs to

generate outliers. To simulate an outlier, we keep the original starting and ending

nodes of an IW but randomly replace all the middle nodes with others from the set

of nodes located on a pool of IWs. The analysis period begins in the month following

the observation period to provide the pool of IWs for node replacement. In this way,

for a general test without a specific definition of an outlier information walk, the

replacement operation at least alters the track of the whole information walk to some

degree, but retains the basic source and target nodes.

Figure 5.9: A current information walk (C-IW) consists of four colored nodes. Four
different IWs share at least one node with C-IW. Besides, IW1 and IW3 have another
common node.
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Figure 5.10: The corresponding network of information walks in Figure 5.9.

Figure 5.11: The remaining walk-subnetwork after dropping the current walk (C-IW)
from the information walks network in Figure 5.10.

To apply the five distance metrics between a pair of information walks, we compute

the following network science measures for an ongoing/current information walk at

each step. They are either popular network measures or special measures to describe

the relationship between the ongoing IW and its connected nodes in the network of

IWs. Figure 5.9 gives an example of a current information walk (C-IW) with four

connected IWs. Figure 5.10 and Figure 5.11 illustrate walk-subnetwork and remaining

walk-subnetwork, respectively. The difference between these two local networks shows

the alteration of the network itself if the IW is dropped. The comparison metrics are:

(1) Number of connected nodes in the network of information walk. Represent the

set of nodes (walks) with the ongoing IW as the walk-subnetwork.
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(2) Number of physicians which are the neighbor of at least one physician on the

ongoing information walk.

(3) Number of physicians which are the neighbor of at least one physician on a walk

in the walk-subnetwork.

(4) Average number of covered physicians: the value of measure (3) over that of

measure (1).

(5) Average Jaccard index weight of those edges within the walk-subnetwork.

(6) Network strength of the walk-subnetwork, in terms of the weight of the number

of common physicians.

(7) Variance of the edge weights in the walk-subnetwork centralization, using the

number of common physicians as weights.

(8) Transitivity of the walk-subnetwork using the binary undirected edge.

(9) Survival rate of edges in the walk-subnetwork if the current IW (i.e., a node)

is removed. Denote the left edges and their connected nodes as the remaining

walk-subnetwork.

(10) Edge density in the remaining walk-subnetwork.

(11) Size of the largest connected component in the remaining walk-subnetwork.

The evaluation metric is hit-rate (precision), which means the percentage of

outliers in the returned K candidates. Figure 5.12 shows the performance of five

distance metrics under their optimal M about the choice of a similar neighbor for

the outlier score. We tune the neighboring choice parameter M for each metric to

maximize the hit-rate. Under different values of K, ED/DTW performs better than

103



5.2 Outlier Predictive Models about Information Flow

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500
P

re
c
is

io
n

K, the size of returned list

SSM

ED/DTW

Interpolation

LCS

SSA

Figure 5.12: Precision of outlier detection under different Top-K returned walks
setting.

others, and its optimal value is M = 10. The simulation test is a proof-of-concept

of the application of features derived from the network of information walks, which

suggests the possibility of the unsupervised proximity based information walk outlier

detection. The distance metrics might work better on real outliers. Therefore, to be

cautious, we should not judge the best metric based on the current simulation test.

Furthermore, we also have multiple options for sampling normal cases and outliers,

such as the Bootstrap and the Jacknife [Efron, 1992]. However, in the simulation test

we set a balanced ratio between normal cases and the outliers. The selected feature

set of 11 network measures may be expanded and optimized with feature engineering

or statistical factor analysis in order to correctly detect an outlier in a new (unseen)

dataset.

We try to define several operations and metrics in the space of IWs. The above

outlier detection is just one application. Beyond that we can define the taxonomy of

IW with a proper distance metric. Moreover, a taxonomy of IW networks would be

available if we sample a few IWs from each IW network and compute their distance.

Back to the definition of IW network, we have many other options, such as the

common walker (e.g., patient), a larger threshold of the number of common visited

nodes, or even a generative random model to produce different kinds of IW space.
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Therefore, our work about IW outlier detection points out many future directions

towards a theoretical framework of information walk.

5.2.5. Conclusion

The network of information walks has several significant patterns (e.g., high clustering

coefficient) and provides several features for the simulation test of outlier detection,

in which the Edit Distance/Dynamic Time Wrapping based metric performs the best

over all metrics in a general proximity based unsupervised framework. Anticipated

future work includes the prediction of real outliers defined by domain experts and

the subsequent deployment of such an intelligent information walk prediction and

detection system. The outlier detection framework is not limited by the context of

referral network because of the general model of information walks network.

Section 5.3

Event Outcome

We guess the track of IW may affect the future status of the walker, such as the

treatment outcome of a patient. Therefore, with a numerical representation of an

IW, we are interested in the prediction of outcome for the event carried by the IW.

The challenge main exists in the previous step of feature engineering since it is natural

to apply some standard machine learning models here.

5.3.1. Dataset and Features

We next explore whether it is possible to predict the treatment outcome for a

patient based on the measures and features of the physician referral network and the

referral sequence. Here we take a dataset of Medicare patients diagnosed with Acute

Myocardial Infarction (AMI) over 2006-2011, which by virtue of the serious nature of

the medical event was always diagnosed in a hospital setting. Because AMI embodies
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a small subset of the total claims with cardiovascular disease diagnoses, these claims

are a small subset of the claims used to construct the data set of referral sequences

and the associated physician network. Therefore, there is no tautological dependency

between the referral-sequence and network-based predictors based on the ensemble

of cardiovascular care and the treatment outcomes of patients who experienced an

AMI. The Medicare claims data record is analyzed for each patient to determine the

treatments the patient received post-diagnosis and key follow-up medical events. The

dataset has the following key attributes: Bene ID, admission date, death1yr (death

or not within one year after index admitted date), PCI (indicator of Percutaneous

Coronary Intervention within one year after index admitted date). By matching the

AMI admission date with the date of visit to the first physician on a referral sequence

for the same beneficiary, we get more than 100, 000 pairs of referral sequences and

the corresponding AMI treatment and outcome variables.

The outcome death1yr and treatment PCI are both binary-valued random

variables. We collect 69 kinds of features in Table A.2 from referral sequence and

patient referral network analysis, which are in six groups: network measures of the

dominant HRR on the referral sequence, referral sequence features (e.g., number of

nodes, time range), average node positions on the referral sequence, average weights

of edges in the national referral network covered by the referral sequence, features of

the last physician on the referral sequence (e.g., PageRank value, #cross-PHN referral

proposed by the physician), basic patient information (e.g., age).
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5.3.2. Methods and Performance

In addition to the seven traditional classification models (LR, KNN, SVM, DT, RF,

GBDT, AdaBoost 2), we try to boost the performance of classification with the

following methods.

• Feature engineering. Encoding categorical attributes, such as specialty of

the key physician and the month of admission date. Features are extracted

using both the exact matching referral sequence with the AMI record and

the immediately preceding referral sequence within the 90 day period before

the exact matching one, in order to capture the association between referral

sequence features and subsequent treatment outcomes.

• 10-fold cross validations. Accomplished by partitioning the original sample

into a training set and a test set in rotation.

• Undersampling. Undersample some training cases to balance the ratio of

positive/negative in training set.

• Feature selection. Apply Random Forest (RF) to sort features by their

importance [Genuer et al., 2010], and pick up a subset of important features for

classification models. Here the importance of a given feature is the increase in

the mean error of a tree in the forest when the observed values of this feature

are randomly permuted.

• Voting for the final label. Collect prediction result of each classification

model and vote for the final prediction result of a test case.

2Logistic Regression; K-Nearest Neighbors, Support Vector Machine, Decision Tree, Random
Forest, Gradient Boosting Decision Tree, Adaptive Boosting
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• Xgboost [Chen and Guestrin, 2016]. Upgrade the gradient boosting model

from GBDT to Xgboost, which aims to strengthen regularization of trees and

control overfitting.

GBDT has the highest F-score with its performance depicted in Table 5.5 for each

year and outcome. Since we can tune parameters in a classification model to get

a higher recall or precision, the F-score is more meaningful as an overall evaluation

metric. The moderate F-score suggests that a lot of unmeasured variables contribute

to treatment decisions and patients’ survival. The lack of clinical detail and personal

information such as heart rate and blood pressure weakens the power of machine

learning models, but the referral sequence features and network measures support

the above models to beat random prediction while the accuracy is almost as good as

that of other diagnosis classification. A complex convolutional neural network (CNN)

model [Fiterau et al., 2017] aims to predict osteoarthritis with much more (600+)

directly related features (e.g., clinical measures, joint symptoms/function) and 7-day

time series accelerometer sensory data, but the accuracy of baselines and the CNN

ranges from 0.633 to 0.789. Table 5.6 shows the average F-score for death1yr and PCI

classification on two separate groups divided by age. The power of referral sequence

features differs, which means age is an important factor. As predictability does

not necessarily imply causality, to attain rigorous causal inferences to the standard

typical in medical research would require more study regarding potential confounding

variables and possibly involve a randomized study. Moreover, if available, we should

group by referral sequences based on clinical tests and demographics, because it will

be clear to see the effects of referral sequences among a group of similar patients

before treatment.

Table 5.7 shows the top 10 important features for two indicators in 2011, which

are selected by the result of RF [Genuer et al., 2010]. For both death1yr and PCI,
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Table 5.5: Classification results of GBDT for death1yr and PCI in 2007-2011.
PCI 2007 2008 2009 2010 2011 average F-score
Recall 0.703 0.700 0.702 0.695 0.694
Precision 0.572 0.574 0.585 0.597 0.607
F-score 0.631 0.630 0.638 0.642 0.647 0.638
death1yr
Recall 0.702 0.698 0.710 0.704 0.682
Precision 0.640 0.632 0.639 0.650 0.633
F-score 0.669 0.663 0.672 0.675 0.657 0.667

Table 5.6: Average F-score in 2007-2011 of GBDT on groups divided by age.
death1yr PCI

Age<=75 0.592 0.695
Age>75 0.687 0.565

average time gap on the referral sequence is one of the most important features. We

conjecture that the gap reflects whether the case is serious. In addition, total RVU

of physicians on the referral sequence is predictive of death1yr (the patient outcome)

and physician position (measured by PageRank) is predictive of PCI (the patient

treatment received). The above significant features offer new directions for medical

researchers to investigate with their domain knowledge.

GBDT’s level of predictive accuracy was on average higher than LR for predicting

PCI and higher than LR for predicting death within a year. However, the form of

the model from LR is the most amenable to interpreting the model and determining

which terms are the most predictive.

5.3.3. Conclusion

By linking AMI treatment and outcome variables to the corresponding referral

sequences, we find several informative predictors with either larger feature importance

or significant effects, such as the time gap between two visits on the referral

sequence and the total RVU of all physicians’ endeavors. The novelty of these

referral sequence measures suggests that a deeper look into their significance is

warranted. We have only just scratched the surface of the enormous potential for
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Table 5.7: Top 10 important features for death1yr and PCI generated by Random
Forest feature selection method [Genuer et al., 2010].

Rank death1yr PCI
1 total RVU of the referral

sequence
average time gap on the referral
sequence

2 total RVU of the previous
referral sequence

indicator of patient’s age in
66-70

3 average time gap on the referral
sequence

average PageRank values of
all physicians on the referral
sequence

4 time range of the referral
sequence

indicator of the key physician’s
specialty on the referral
sequence as “interventional
cardiology”

5 average index of the first-time
occurrence on a referral
sequence for the last physician

indicator of patient’s age in 76+

6 local clustering coefficient of
the last physician on the
referral sequence

the number of referral
sequences that include the
last physician

7 times of being the end node
on a referral sequence of the
last physician on the referral
sequence

indicator of the key physician’s
specialty on the referral
sequence as “interventional
cardiology”

8 times of being the first node on
a referral sequence for the last
physician

average #involved sequences
among physicians on the
referral sequence

9 indicator of patient’s age in 76+ average times of being the first
node on a referral sequence for
all physicians on the referral
sequence

10 average times of being the end
node on a referral sequence for
all physicians on the referral
sequence

times of being the first node on
a referral sequence for the last
physician
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using referral sequence features to improve predictions of treatment received and

treatment outcomes. Understanding referral sequence patterns has the potential

to ultimately help hospitals, physicians and patients towards the ultimate goal of

building an optimal referral sequence for each patient with a better treatment outcome

and providing the most effective allocation of resources in the network. By replacing

the treatment outcome with other variables, it is possible to apply machine learning

models on different context of information walk.

Section 5.4

Discussion

In this Chapter, we take the referral network as an example to build three predictive

applications about an information walk: direction, outlier and event outcome. They

are the central part in the pipeline of a data-driven project. They are general models

without the limitation of the context of referral network. Moreover, this Chapter

helps with the united organization of this thesis around the target of information

walk.

Directions of further research include: an IW direction prediction model

considering the effects of other IWs; an extension in the IW network space with the

taxonomy of IW and IW network; a well-designed event outcome prediction model

with better accuracy.
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Chapter 6

Transparency with Network

Visualization

In the previous chapters, all of our work relates to the question of prediction for a

“walker” on a network. In some contexts the prediction is given directly to the walker

as the walker walks. The user may or may not be happy with the prediction, but

generally, the user/walker has no ability to modulate the recommendation algorithm.

This can be frustrating and inefficient. In this Chapter we address the problem - in

part - by considering the advantages of greater transparency in prediction.

We present a proof-of-concept of a visual navigation tool for a personalized

“sandbox” of Wiki pages, as an example of transparent application over a network.

The navigation tool considers multiple groups of algorithmic parameters and adapts

to user activity via graphical user interfaces. The output is a 2D map of a subset of

Wikipedia pages network which provides a different and broader visual representation

– a map – in the neighborhood (according to some metric) of the pages around

the page currently displayed in a browser. The representation schema includes the

incorporation of a kind of transparency in the algorithmic parameters affecting the

presentation of the landscape visualization, which in turn enables the delivery of a
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personalized canvas, designed by the user. A case study shows the combination of four

different sourcing (i.e., identification and extraction of the neighboring pages) rules

and three layouts over the same Wikipedia subnetwork. The basic schema is readily

adapted to other search experiences and contexts. The framework of transparent

visualization in this Chapter has already appeared in the refereed publication [An

and Rockmore, 2019]. In this thesis, Chapter 6 represents the step of evaluation and

improvement after we build a data-driven application. The transparent framework

aims to provide better user experience, but we can also propose other tasks depending

on the details of a project.

Section 6.1

Visualization of Wiki Pages

6.1.1. Introduction

Wikipedia is an important source of information [Thompson and Hanley, 2018]. For

many people, going to Wikipedia is just the first step in an information search task.

A standard search trajectory would then take place, realized as a sequence of clicks,

effectively something of a constrained, yet still “random” walk from the Wikipedia

page starting point, alike at least in spirit to the “random surfer” model that gave

birth to PageRank [Brin and Page, 1998] (and Google) whose depth and penetration

of the space of relevant webpage resources can and does depend on many contingent

characteristics. Regardless of the starting point, in this click-by-click revealing of the

relevant (one hopes!) knowledge, it may be easy to miss or get distracted away from

the original motivation for inquiry. More broadly, in such a blinded navigation the

user is unaware of the way in which the webpages she visits relate to one another.

Inadvertently she may be stuck in cul-de-sac of narrowly defined information or

strayed very far from her initial search goal. It is with this in mind, that we take on
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and suggest an alternate option, one that promotes a notion of visual search, that

presents a map-like visual summary of a general candidate item (e.g., a Wiki page)

neighborhood, thereby possibly promoting a broader field of vision in a search engine

or recommender system and highlighting different criteria for navigation.

We propose a visual navigation tool for Wikipedia based network visualization,

which allows users to select their preferred query target as the root page, and visualizes

the local “sandbox” of related pages in the form of a 2D map on a “canvas” (viewing

platform). Our motivation arises from the user experience of standard query on

Wikipedia. Figure 6.1 shows a list of related pages when the query input is not

exactly matched to a Wikipedia page. More often, Wikipedia will load a new page in

the browser or redirect it to a similar one as Figure 6.2. We believe a visual navigation

tool might be a useful broadening of our verified knowledge boundary during browsing

better than such a list of results or unexpected redirection.

For example, a series of automatically updated maps of the surrounding pages in

the network space could display a broader view of the information space that both

illustrate the distance among those nodes (pages) while also providing some sense of

context for the material on the page. A visual navigation tool based on Wiki page

networks could also facilitate a user’s understanding of the local network structure,

and would bring more transparency to the query results. While the network structure

articulates the link relationships between pages, the use of other kinds of metadata

(from the user and other users as well from the webpages) raises the possibility of

creating a non-link distance structure (metric) for the neighborhood, and with that,

new possibilities for display and user interaction. User response to the 2D Wiki map

might also offer interaction data for user-behavior oriented research projects. While

the focus of this article is on the Wikipedia environment, the general framework of

user-controlled network navigator is not limited to Wikipedia corpus. For example,
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Figure 6.1: Interfaces of query results on Wikipedia. Query result: a list of related
Wikipedia pages.

Figure 6.2: Interfaces of query results on Wikipedia. Redirection to a new page.

the dynamic graph visualization may also work as a recommender for online shopping

or the World Wide Web as a whole.

We present some initial ideas around the design of a personalized visual navigation

system on Wikipedia. Generally, the data flow starts from a seed Wikipedia page.

A “sandbox” of related pages is defined by a distance threshold on the Wikipedia

page network, in which a directed edge from page A to page B means page A

cites B in the HTML source file. The navigator will interact with users to get the

desired algorithmic parameters of the visualization to be personalized. Behind the

user interface, diverse algorithms implement the tasks of node filtering, coordinate

computation and edge selection due to a limited size of screen. Though researchers

have intended to diversify the user experience of Wiki with visual effects [De Sabbata

et al., 2015, Odor et al., 2018, Sáez and Hogan, 2018], our contributions include the

possibility of real-time updated visual navigation that responds to users browsing
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in the open space of Wikipedia pages, and the fact that nodes on the screen are

determined by the personalized algorithmic parameters directly set by users. As users

are often only aware of the pages that comprise their browsing paths only relatively

“blind” to any “surrounding” ones, we hope our design of such an immersive visual

navigation would make for a more useful Wikipedia search experience, as well as for

many other transparent recommender systems.

6.1.2. Data Pipeline

In this section, we present the data pipeline starting from a seed Wikipedia page to

the visualization of related pages. The following steps combine user interface and

algorithm-based computation for a personalized and transparent visualization. In

this case, transparency means that users would know how the thing they are looking

at is made, while customizability means that users have the power to directly change

the input parameters in our proposed navigation system. We hope that with that

transparency users will find it more useful and thus engage with it more, etc. in a

productive feedback that will both enable deep exploration as well as free and broad

exploration (i.e., “exploding” the filter bubble).

Wikipedia seed selection. The “seed page” represents the user-defined center

or starting point for a neighborhood of Wikipedia pages of interest for a given topic.

Wikipedia page crawler. If a Wikipedia page cites another one in the main

context, they are a pair of linked nodes in the network of Wikipedia pages. Among

the billions of Wikipedia pages, in this preliminary proof-of-concept study we work

with only a very small subset and limit the range of the crawler with some threshold

on the distance between a candidate page to the seed.

Parse sandbox structure. Given a seed page, the downloaded subset of

Wikipedia “nearby” pages is our “sandbox”. Our processing and analysis do not

edit their content. This step aims to build the network of the observed local

116



6.1 Visualization of Wiki Pages Transparency with Network Visualization

Wikipedia pages around the seed. There are various options for thresholding the

neighborhood (e.g., all pages within some fixed linked distance of the seed). A

Wikipedia (sub)-network not only contains the surrounding nodes, but also the edges

among them. Here we define the weight of an edge between two nodes as the number

Wikipedia pages that cite both of them. For a given node, this weight enables a

sorting of its direct neighboring nodes (i.e., with a distance of one) in the network.

Set algorithmic parameters. Different from traditional fancy digital-art based

user interface (UI) design, here we propose a framework for algorithmic visualization

for a (sub-) network of Wikipedia pages. It contains three groups of parameters, set

by users, to make the visualization more transparent:

(1) The rule of nodes sourcing and ranking. Here we apply four different methods:

– Semantic content-based similarity

– Graph structure

– Collaborative filtering of users browsing

– An overall PageDist (cf., [Leibon et al., 2018]) metric derived from link

and content similarity

The navigation tool could display a limited number of nodes within a

canvas, compute the internode distance matrix and then use that for node

placement/visualization. For example, to measure content similarity we

compute the distance between two Wikipedia page titles according to the word

vector representation GloVe [Jeffrey Pennington, 2014]. It is also possible to sort

the neighboring nodes with some network science features (e.g., node degree,

PageRank centrality). To simulate collaborative filtering, we assume that the

frequency of concurrence on a third page is proportional to the probability of

users preference for the two pages. The PageDist [Leibon et al., 2018] metric
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considers the commute distance [Yen et al., 2005] in a transition matrix which is

derived from both in-out link structures and semantic similarity of texts. All the

sourcing methods are independent with the link structure of the downloaded

pages in the sandbox. In the previous step of crawling, we have applied a

distance threshold. If the navigator serves the whole Wikipedia network without

a radius in the crawling step, those sourcing methods could narrow down the

range of candidates as well.

(2) Definition of “nearby” nodes on the canvas. According to the selected sourcing

and ranking method for a small number of candidate nodes to display with the

seed on a canvas, we could sort all surrounding nodes according to their feature

similarity to the root page. Therefore, for any two nodes appearing on the

canvas, their relative proximity to the center node would be in accordance with

their rankings in the sorted list of their feature similarity to the root page.

Another definition of proximity comes from the result of a user preference

predictive model, where the neighboring nodes with a larger probability of

preference will be closer to the center node. Those two settings may be in

accordance with each other, but sometimes a user might explore some new

and highly dissimilar pages rather than the most similar one. This might

be especially true when looking for information about particularly divisive or

“charged” subjects.

(3) Layout of nodes. We try to locate the current Wikipedia page at the center of

a canvas, except in the case of using the 2D multidimensional scaling [Cox and

Cox, 2000] (MDS). If the second setting (i.e., closeness to the center) is defined

by the feature similarity from the sourcing rule, the surrounding nodes should

follow the order of their distances to the root page in the feature vector space.

We implement spiral and spectral layouts to adapt to a ranking of the selected
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nodes. Both layouts point out the “close” neighbors and grant users the access

to adjust parameters for their desired neighboring nodes. The assigned node

coordinates in MDS match the idea of preserving between-node distances rather

than the arbitrary design of spiral/spectral layouts.

Visualization. As a part of back-end algorithmic visualization, several factors

might limit the actual effects, such as the size of the available screen (i.e., “canvas”)

to present the Wikipedia network, the number of pixels in a fixed size canvas (i.e.,

resolution), and the suitable number of nodes/edges. In addition, the location of a

node should follow the general direction defined by the layout. Therefore, except for

the MDS option, we first compute coordinates in a polar system, then transform it

to the 2D plane coordinates. This step needs the help of an external visualization

package which places nodes on a 2D plane at the accurate coordinates, so that

users could present a non-standard yet desired layout on a canvas. Though many

algorithmic terms are introduced in this tool, non-expert users could compare the

differences in visualization and – with a little experience and/or training – adjust

parameters for their preferred result.

Update the Sandbox. A transparent navigation system could incorporate user

activities, such as hyperlink clicks, revisiting a page or long-time browsing. Once

monitoring the above activity, the system should return to the second step to crawl

some new Wikipedia pages, and update the Wikipedia network with the following

steps, such as a new seed page and new selected neighbors. In this way, the navigation

tool could extend to an open Wikipedia space and gradually collect user preference

records for other personalized services on Wikipedia.
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6.1.3. System Implementation

In this section, we briefly introduce the implementation of a proof-of-concept visual

navigation system for Wikipedia pages which follows the data pipeline. It is

developed in Python to take advantage of multiple efficient existing programming

packages. Selenium [Muthukadan, 2018] enables the detection of the current

URL in a browser. Tkinter [Lundh, 2019] offers the UI modules (e.g., input

frames and radio buttons) for Wikipedia seed confirmation in Figure 6.3 and

algorithmic parameters settings in Figure 6.4. With the input of a seed Wikipedia

page, Urllib [Python-Software-Foundation, 2019] downloads all the cited Wikipedia

hyperlinks in the seed page with the help of a regression expression matching function.

BeautifulSoup [Richardson, 2018] facilitates the analysis of hyperlinks in local HTML

files so that we could build the network of Wikipedia pages in the “sandbox”.

NetworkX [NetworkX-Developers, 2017] could place a node at the given coordinates

in a 2D plane, so the navigator displays the same layout as what users choose (see

Figure 6.4). Here we show examples of the visualization.

Figure 6.3: The user interface of Wikipedia seed selection. Users could input a seed
or select the current one in a browser.

The implementation we describe above thus assumes an offline deployment to

determine a subset of edges and links on the screen. Extensions of this simple

approach may include (1) a much wider range of online Wikipedia pages around

the seed page (2) a combination of more advanced algorithmic settings without too

much time cost.
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Figure 6.4: The user interface of algorithmic parameter selection for network
visualization.

Therefore, an upgraded version of Wikipedia navigation might be an online

application deployed on a powerful server to execute the data pipeline fast. As a

starting point, the proof-of-concept satisfies the proposed requirements, and several

packages could be reused in the advanced version, too.

6.1.4. Case Study

To illustrate the diverse kinds of 2D maps for Wikipedia navigation, we take the

Wikipedia page “Film” as the seed, and crawl all its direct neighbors at depth one,

all of which are cited on the “Film” page. We set a threshold of 100 on the node

degree (i.e., the number of links it has) to get a denser network with 8,083 directed

edges and 151 nodes (pages). For a clear network visualization we only select top

20 neighboring nodes according to their feature similarity (depends on the choice of

sourcing rule) to the seed node (“Film”), and display the top one-third of edges among

those selected edges based on the edge weight defined by the times of concurrences

on a third page.

Since we apply four kinds of sourcing and ranking methods introduced as the

first group of algorithmic parameters, in total there are 80 nodes selected for all the

maps, but some nodes might be selected by multiple sourcing rules. Table 6.1 shows

a dictionary of them. Since an accurate user preference prediction requires real user
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1 Film 36 Classical Hollywood cinema
2 Screenplay 37 Cult of personality
3 Documentary film 38 Public relations
4 Television 39 Principal photography
5 Film production 40 Color motion picture film
6 Film genre 41 Spectacle (critical theory)
7 Short film 42 Script breakdown
8 Art film 43 Videography
9 Movie studio 44 Main Page
10 Independent film 45 Film industry
11 Sound film 46 Cinematography
12 Silent film 47 Special effect
13 Soundtrack 48 Internet
14 Science fiction film 49 Visual effects
15 Film history 50 Post-production
16 Film director 51 Storyboard
17 Film editor 52 Film score
18 Feature film 53 Film crew
19 Animation 54 Sound effect
20 Film release 55 Guerrilla filmmaking
21 Film editing 56 Filmmaking
22 Pitch (filmmaking) 57 Streaming media
23 Digital object identifier 58 American Dream
24 Concentration of media ownership 59 Film treatment
25 News broadcasting 60 Media event
26 Shooting schedule 61 Docufiction
27 Occupation (protest) 62 Culture industry
28 Cinema of the United States 63 Managing the news
29 Crowd manipulation 64 Strike action
30 Recuperation (politics) 65 United States
31 International Standard Book Number 66 Daily progress report
32 Daily production report 67 Mainstream media
33 Breaking down the script 68 Screenwriting
34 Demonstration (protest) 69 Political satire
35 Roadshow theatrical release 70 Bollywood

Table 6.1: Dictionary of the nodes selected by four sourcing methods.
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(a) Semantic content. (b) Network structure.

(c) Collaborative filtering. (d) A mixed PageDist [Leibon
et al., 2018] metric.

Figure 6.5: 2D map visualization of different sourcing methods. The distance to Node
1 is derived from feature similarity. The common layout is spiral. An orange diamond
represents the root page.

(a) Spiral. (b) Spectral.

(c) MDS.

Figure 6.6: 2D map visualization under different layouts. The distance to Node 1 is
derived from feature similarity. The common sourcing method is semantic content.
An orange diamond represents the root page.
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behavior data, we choose the second algorithmic parameter as “the distance based on

feature vector similarity” instead of a user preference prediction.

As for layout options, we take the coordinates directly generated by MDS and

compute spiral and spectral coordinates in a polar system, respectively. MDS exploits

a pairwise distance matrix to present a sense of how near or far points are from each

other in a low dimensional space (e.g., 2D plane) to users. The spiral and spectral

layouts tend to prove that users may choose their personalized layouts beyond the

traditional MDS visualization method, and the navigation system is flexible enough

to support the function. In total, we exploit the navigation system to generate the

enumerations of available sourcing-ranking methods and layouts, some of which are

displayed in Figure 6.5 and Figure 6.6.

Figure 6.5 illustrates the spiral 2D maps of Wikipedia nodes according to four

different sourcing methods. Their common algorithmic parameters suggest that

the distance to the center node (“Film”) corresponds to the ranking of their

feature similarity to that of the Node “Film”. For example, in Figure 6.5(a),

the semantic content method treats Node 4 (“Television”) as the most similar

neighbor to “Film”, and the second one is Node 13 (“Soundtrack”). The farthest

neighbor is Node 19 “Animation”. In Figure 6.5(b), according to some network

science feature (e.g., degree of a node within the sandbox), the most significant two

nodes are “Spectacle (critical theory)” and “Shooting schedule” (a daily plan of film

production). For the collaborative filtering map in Figure 6.5(c), “Visual effects” and

“Videography” occupy the nearest two locations to the center. In the PageDist map

(Figure 6.5(d)), “American Dream” and “Bollywood” become the nearest neighbors.

Users would recognize the obvious differences among the maps and choose their

desired method for the following browsing.
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With a limit of 20 or so nodes to a canvas in Figure 6.5, the four derived

node sets have almost no intersection. That is, the different metrics produce very

different neighborhoods in terms of their underlying node sets. If we use a larger

bound of 50 nodes on a given canvas, the semantic-content set and network structure

set have 10 nodes in common, the semantic-content set and collaborative filtering

set share 16 nodes, while the intersection of collaborative filtering and PageDist

contains 13 nodes. Going further, the first three sets (semantic, network and

collaborative), have five nodes in common “Film budgeting”, “Cinematography”,

“Roadshow theatrical release”, “Film industry”, “Principal photography”. The

diverse navigation maps will have varying levels of utility to different user groups.

Figure 6.6 displays three layouts of the same subset of nodes according to the

semantic content sourcing method, with the condition that the similar nodes of “Film”

would be placed close to the center. For the MDS one (Figure 6.6(c)), the coordinates

of all nodes are derived from a similarity matrix so that the node “Film” may not be

at the center of the canvas. More importantly, MDS considers the mutual similarity

between any pair of nodes on the canvas, while for the other layouts, the comparative

distance is only meaningful between the root node “Film” and another node.

Since only the edges with a large enough weight could be added to the map, the

dense edges suggest several local clusters, such as Nodes (4, 13, 11, 12, 7), or another

group (18, 3, 8, 19) in Figure 6.6(a). Besides, the spiral layout clearly shows the

similarity-based distance to the center node in an anti-clockwise order. For the second

spectral layout in Figure 6.6(b), we allocate the nodes mainly in four directions (upper

right, upper left, down right, down left). It might be more difficult to compare the

distance to the center for two nodes (e.g., Nodes 9 and 14), but the spectral layout

makes it possible to cluster the neighboring nodes into several groups and deploy

each group along a “beam”. In Figure 6.6(c), the MDS layout considers the distance
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matrix of all nodes in terms of the semantic vector of the corresponding Wikipedia

page’s title and computes their coordinates with a standard dimensionality reduction

algorithm, so the root page “Film” is automatically placed in the upper left corner.

In this way, without the special color/shape, it might not attract users attention

at the first glance. MDS is a popular standard visualization method, but when

users choose the second algorithmic parameter about closeness in the navigator as “a

probability from a predictive model”, it is more difficult to define a complete distance

matrix, especially between pairs of surrounding nodes.

Figure 6.7: A non-edge version of Figure 6.6(c) with MDS.

Beyond the above algorithmic parameters and layout options, other visualization

factors may be critical. Figure 6.7 displays the non-link version of MDS layout, in

which the neighborhood is determined by a textual distance instead of link-based

distance on the subnetwork. We would anticipate associating such a non-edge map

with some kinds of “sliders” that would allow the picture to vary according to user

feedback.

6.1.5. User Study

The user study contains two parts: iterative maps and personalized browsing. In

the first stage, we will present the iterations of all possible maps over all algorithmic

settings with a fixed root page (“Film”). After that, we grant users the access to tune
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Table 6.2: Average NDCG and transparency score for each group of parameters,
under the iteration mode with the fixed root page.

sourcing NDCG transparency
Content-based 0.584 3.752
Network structure 0.662 3.665
Collaborative filtering 0.63 3.633
Mixed PageDist 0.575 3.542

neighbor NDCG transparency
Feature vector similarity 0.5 3.534
Prediction of preference 0.726 3.761

layout NDCG transparency
Spiral 0.637 3.884
Spectral 0.677 3.795
MDS 0.524 3.268

the parameters for their preferred settings, and the root page will change along with

their preference.

For each map, users will answer two questions:

• Choose at least three preferred nodes for browsing. Here we take Normalized

Discounted Cumulative Gain (NDCG) [Valizadegan et al., 2009] to evaluate

whether the ranking of surrounding nodes matches users selection.

• Evaluate the transparency of the visualization framework based on the current

map. An integer from 1 to 5 refers to the degree users believe that the map shows

more transparency than a plain list. The value of 1 means “strongly disagree”,

value of 2 means “disagree”, value of 3 means “neutral”, while value of 4 and 5

suggests positive feedback of “agree” and “strongly agree”, respectively.

We invite 30+ Dartmouth students to take the user study1. Here are the initial

results.

1They are randomly picked up in study rooms.
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Table 6.3: Percentage among all choices made by users, average NDCG and
transparency score for each group of parameters, under the personalized browsing
mode with dynamic root page.

sourcing Percentage NDCG transparency
Content-based 34.63 0.639 4.194
Network structure 29.61 0.708 4.038
Collaborative filtering 22.91 0.621 3.78
Mixed PageDist 12.85 0.642 3.957

neighbor Percentage NDCG transparency
Feature vector similarity 40.22 0.519 3.93
Prediction of preference 59.78 0.748 4.084

layout Percentage NDCG transparency
Spiral 34.08 0.718 4.066
Spectral 43.58 0.678 4.09
MDS 22.35 0.519 3.825

Table 6.2 shows difference in all three groups of parameters with a fixed root

page. About the sourcing algorithm, network structure based method gets the highest

NDCG, which suggests the best recommendation result, while content-based method

brings the most transparency to users. In terms of the definition of neighboring nodes

on the map, the setting of user preference predicted by our algorithm looks better in

both NDCG and transparency. For the layout options, the spectral one is the best in

terms of NDCG and the spiral one makes more users feel transparency.

Table 6.3 presents users preference when they are able to tune the parameters

and feely browse among the sandbox of Wiki pages. About sourcing algorithm,

content-base method looks the most popular one with the highest transparency

score, while network structure method gets the highest NDCG. For the second

group of parameters, prediction of preference beats feature similarity in all three

measures. About layout, users prefer to view the map with spectral and feel the most

transparency with it.
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Table 6.4: Comparison between iteration mode and personalized mode.
Iteration Personalized

NDCG 0.613 0.656
transparency 3.648 4.022

Finally, Table 6.4 compares the two modes in user study, whose difference is

whether users have the chance to tune parameters and view dynamic maps of nodes

with various root pages. We find that personalized mode gets better recommendation

results with more transparency.

6.1.6. Conclusion

We have presented a proof of concept for an open navigation tool of Wikipedia pages

to broaden the understanding of the information context of Wikipedia pages to a

user, along with a form of algorithmic transparency for the users to enable them to

better understand why they get the current map of a vast Wikipedia network.

We find that the sourcing and ranking method can significantly affect the set

of finally selected nodes on the canvas, and different layouts highlight (according

to the different underlying metrics) different significant neighboring nodes in the

corresponding local cluster on the map.

The user study validates our design and assumptions that users prefer to browse

in the Wiki network with some parameters. With more behavioral data, we would

like to apply the BPR-IW model to recommend new pages for users since the track of

browsing is also an information walk. Conversely, the visualization framework may

also explain referrals to patients if needed. The collected data could also contribute

to other related research projects, such as a transparent online advertising/shopping

platform. There is also the possibility of an upgraded version of navigation tool

merged into a browser (e.g., a Chrome extension) or a back-end deployment on a web

server to speed up the Wikipedia page visualization in the whole space of Wiki world,

or even upgrade the current text-based browser to a visual-oriented one.
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6.1 Visualization of Wiki Pages Transparency with Network Visualization

This Chapter works as an evaluation and improvement in a data pipeline, after

the predictive modeling in a real data-driven project. Transparency is one of the

key points for a better user experience. Our proposed framework of transparent

interaction with users points out the next step of experiment and development in a

real web/mobile application.
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Chapter 7

Conclusion

Data-driven applications built with metadata of a network of users (or even a

generalized network of individual items) become a hot topic in both academia and

industry. This thesis considers various real problems and challenges in the data

pipeline of such a project, which arise from data understanding, feature engineering,

model building and user-experience oriented evaluation. The models and methods

we propose in this thesis work as independent modules on different contexts, but

they are connected by the topic of information walk, which is the general target to

represent our specific research targets in this thesis. Here we summarize the original

contributions of this thesis and list a few possible directions for further research.

• First, in terms of understanding the available dataset, we propose a generative

hierarchical behavior model for phone usage, which targets every user in the

corresponding social network.

• Second, in the step of feature engineering, we construct novel geographical

features for the community of yelp users, and design a geographical module

for local search and business recommendation.
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• Third, we define a new type of information sharing in a network, the Information

Walk (IW), as well as a high-level network of Information walks. Therefore, we

are able to predict the future direction of every ongoing information walk, detect

the outliers among all information walks, and predict the outcome of the event

along with an information walk.

• Last but not the least, we propose a novel framework to improve the

transparency of personalized recommendation, with customizability and feature

space visualization during network navigation. The proof-of-concept on

Wikipedia pages network gets positive feedback in our initial user study.

Our work described in the previous Chapters suggests the following natural

directions for further research.

The generative hierarchical model could explain the user behaviors well, but the

evaluation metrics talk about the sum of user behaviors in a period. In the future,

a more impactful direction would be an accurate prediction of the time point when

some activity happens.

We construct novel features from a geographical database, a kind of publicly

available data. Once we have diverse kinds of external datasets, it would cost a lot

of time on feature engineering. An autonomous framework of feature engineering on

heterogeneous datasets would be appreciated.

In terms of information walk prediction, we assume that all the ongoing

information walks are independent. However, in real cases, it is difficult to verify that.

For example, if multiple applicants are interviewing with the same company, their

next steps on career paths would be affected by others when the number of opening

positions is limited. Therefore, an advanced model of information flow prediction

should consider multiple information walks together.
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About the framework of a transparent recommender, though we implement user

study and find initial positive results, it would be desired to recruit more users and

deploy the recommender system online, so that we can get a more convincing result.
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Table A.1: P-values for rejecting various Power Laws, assortativity,
self-degree-correlation, reciprocity and clustering coefficient of the national patient
referral network (or average among states) in 2009-2015.
Year 2009 2010 2011 2012 2013 2014 2015

in-degree p-value of
national network Power
Law

1.00 0.99 1.00 1.00 0.93 0.91 0.38

#states in-degree
p-value>0.05

32 37 37 36 36 37 36

Average p-value of
in-degree Power Law
among states

0.4084 0.4084 0.4137 0.4245 0.4423 0.4388 0.4654

out-degree p-value of
national network Power
Law

1.00 1.00 0.99 0.97 0.00 0.97 0.74

#states out-degree
p-value>0.05

39 43 42 37 37 38 40

Average p-value of
out-degree Power Law
among states

0.4545 0.5292 0.5913 0.5303 0.5190 0.4956 0.4484

Average (in, in)
assortativity among
states

-0.1084 -0.1083 -0.1101 -0.1126 -0.1132 -0.1137 -0.1217

Average (out, out)
assortativity among states

-0.1104 -0.1108 -0.1125 -0.1150 -0.1157 -0.1161 -0.1245

Average (in, out)
assortativity among
states

0.0775 0.0752 0.0727 0.0692 0.0662 0.0633 0.0549

Average (out, in)
assortativity among
states

0.0800 0.0775 0.0750 0.0714 0.0684 0.0654 0.0569

State self in/out degree:
average R-squared value

0.9717 0.9715 0.9712 0.9717 0.9710 0.9711 0.9692

State self in/out degree:
average correlation
coefficient

0.9858 0.9856 0.9855 0.9857 0.9853 0.9854 0.9845

State reciprocity: average
R-squared value

0.9074 0.9094 0.9073 0.9053 0.9045 0.9015 0.8927

State reciprocity: average
correlation coefficient

0.9524 0.9535 0.9524 0.9513 0.9509 0.9493 0.9445

global clustering
coefficient of national
network

0.0763 0.0740 0.0727 0.0682 0.0623 0.0609 0.0523

local clustering coefficient
of national network

0.700 0.699 0.698 0.698 0.698 0.699 0.691

E(C) by Erdós-Renyi
Model of national network

1.27e-4 1.23e-4 1.18e-4 1.13e-4 1.06e-4 1.02e-4 7.54e-5
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Table A.2: Feature list of a referral sequence for treatment outcome classification.
Group of Features Features and ID
Network measures
in the dominant
HRR

1:#nodes, 2:#edges, 3:indegree gini coefficient, 4:outdegree gini
coefficient, 5:indegree power law test alpha, 6:outdegree power
law test alpha, 7: diameter, 8:global clustering coefficient, 9:local
clustering coefficient, 10: (in, in) assortativity, 11:self in/out
degree coefficient, 12:referral reciprocity, 13:RVU reciprocity

Referral sequence 14:#nodes, 15:average time gap, 16: time range, 17:indicator
of recurrence, 18: #nodes before recurrence, 19:physician
distribution entropy, 20: PHN distribution entropy, 21:HRR
distribution entropy, 22:average #common connected nodes
between neighbors, 23:#pairs of nodes with reciprocal referrals,
37:#change points, 38:#previous referral sequence in the same
year, 39:distance between the first visited hospital and the end
one, 40:total RVU, 41:month of the first visit, 42:#visited teaching
hospitals, 43:specialty of the key physician, 44:specialty of the
last physician, 45:#visited PHN with negative (in-out) degree
on PHN traffic map, 46:#visited PHN with positive (in-out)
degree on PHN traffic map, 47:sum of (in-out) degree for all PHN
on the referral sequence, 60:indicator of admitted by emergency
department for the first node

Average node
positions on the
referral sequence

24:local clustering coefficient, 25:PageRank, 26:h-index,
27:#sequences which contains the node, 28:#sequences where
the node is the starting one, 29:#sequences where the node is
the end one, 30:index of the first-time occurrence, 31:#sequences
where the node occurs multiple times, 32:#cross-HRR referrals
proposed by the node, 33:#cross-PHN referrals proposed by the
node

Average weights of
edges covered by
the sequence

34:#referrals, 35:RVU, 36:ranking based weight

Last physician
on the referral
sequence

48:RVU, 49:month of visit, 50:local clustering coefficient,
51:PageRank, 52:h-index, 53:#sequences which contains the node,
54:#sequences where the node is the starting one, 55:#sequences
where the node is the end one, 56:average index of the first-time
occurrence, 57:#sequences where the node occurs multiple times,
58:#cross-HRR referrals proposed by the node, 59:#cross-PHN
referrals proposed by the node

Patient history
information

61:age, 62:indicator of HIV, 63:indicator of asthmatic lung disease,
64:indicator of cancer, 65:indicator of dementia, 66:indicator of
diabetes, 67:indicator of liver disease, 68:indicator of chronic
non-asthmatic lung disease, 69:indicator of chronic renal disease
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the spread of influence through a social network. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

137–146. ACM.

[Kimura and Saito, 2006] Kimura, M. and Saito, K. (2006). Tractable models for

information diffusion in social networks. In European Conference on Principles of

Data Mining and Knowledge Discovery, pages 259–271. Springer.
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