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ABSTRACT

Any useful computer system performs communication and any communication must be parsed before

it is computed upon. Given their importance, one might expect parsers to receive a significant share

of attention from the security community. This is, however, not the case: bugs in parsers continue

to account for a surprising portion of reported and exploited vulnerabilities.

In this thesis, I propose a methodology for supporting the development of software that depends

on parsers—such as anything connected to the Internet—to safely support any reasonably designed

protocol: data structures to describe protocol messages; validation routines that check that data

received from the wire conforms to the rules of the protocol; systems that allow a defender to inject

arbitrary, crafted input so as to explore the effectiveness of the parser; and systems that allow for

the observation of the parser code while it is being explored.

Then, I describe principled method of producing parsers that automatically generates the myriad

parser-related software from a description of the protocol. This has many significant benefits: it

makes implementing parsers simpler, easier, and faster; it reduces the trusted computing base to the

description of the protocol and the program that compiles the description to runnable code; and it

allows for easier formal verification of the generated code.

I demonstrate the merits of the proposed methodology by creating a description of the USB

protocol using a domain-specific language (DSL) embedded in Haskell and integrating it with the

FreeBSD operating system. Using the industry-standard umap test-suite, I measure the performance

and efficacy of the generated parser. I show that it is stable, that it is effective at protecting a system

from both accidentally and maliciously malformed input, and that it does not incur unreasonable

overhead.
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Chapter 1

Introduction

Protocols are rules by which two or more entities communicate to accomplish some task. In the

context of computing, these entities are software or hardware and the tasks may be as mundane as

transferring a file between two computers or as complex as many people playing a real-time game.

Protocols such as IP [50] achieve the goal of sending arbitrary data across the Internet; USB [25]

allows a multitude of different devices to plug into the same physical port on a computer; ELF [16]

lets a compiler describe a program in such a way that the kernel can run it; proprietary protocols

enable players to shoot virtual rocket launchers at each other from across the globe. In short, to say

protocols are ubiquitous would run the risk of underselling them.

The protocols used by modern computers are constantly evolving: new ones are being developed

and old ones are being repurposed; it is unrealistic to assume either will ever stop happening. Old

protocols are frequently re-implemented (for example, in embedded systems) and introduce new,

potentially vulnerable artifacts into the wild. At the same time, new protocols bring their own set of

baggage to the security table because with them come new specifications, new implementations, and

therefore new vulnerabilities. Engineers have been developing, implementing, and deploying new

protocols for decades and yet still we see new vulnerabilities and exploits against them (Chapter 2

contains a survey).

1.1 Ubiquity of Ad-Hoc Protocol Parsing

In all protocols, otherwise-meaningless bits are communicated via some medium and meaning must

be applied to them by the receiving entity. In IP, this is the opaque payload carried by the underlying

link layer; in USB, these are the typeless bits flying over the physical wire; in ELF, this is the inert

1



0100 0101 0000 0000
0110 1010 0100 0000
0000 0000 0100 0000
...

Parser
src address = 192.168.0.2
dst address = 192.168.0.1
...

Figure 1.1: A parser takes an untyped, opaque bytestream and imposes meaning on it according to

the protocol specification (in this example, the Internet Protocol [50]) before handing it off to the

kernel for interpretation.

file sitting on disk. The protocol specification defines both the syntax of this communication—the

grouping of individual bits within an otherwise-opaque datastream into distinct, typed fields—as

well as the semantics—how to interpret and respond to the various fields delineated by the syntactic

rules. Figure 1.1 shows a stylized representation of the parser’s job in, e.g., the Internet Protocol [50].

The component responsible for implementing a protocol syntax is called a parser and often sits

directly between the medium carrying the opaque data and the code implementing the communi-

cation semantics. One might be tempted to dismiss parsers as trivial pieces of software that don’t

merit much attention. This is far from the case, however. The parser is the key front-end component

responsible for deriving meaning from input: for applying semantics to raw bits: for guarding the

passage between the untrusted outside world and the vulnerable internals. It’s what takes a stream

of opaque bits from the ether and decides they comprise a 32-bit unsigned big-endian integer or

a stream of null-terminated 8-bit ASCII characters and so on. Put another way, the parser takes

arbitrary, untyped data and imposes on it a type before passing that datum on to the rest of the

system for further processing.

Frequently, the “rest of the system” implicitly trusts the type that the parser has imposed; the

venerable buffer overflow attack exemplifies this trust as well as its fragility. (This perspective,

in fact, applies to most memory corruption attacks [40].) One view of such an attack is that the

vulnerable function assumed the parser was delivering a null-terminated string of length no more

than x when in fact it made no such guarantee. In the case of stack-based buffer overflows, this

allows a nefarious (or incompetent) input-provider to overwrite portions of the stack and disrupt

execution [45]. Such exploits cannot occur when the characteristics of data guaranteed by the parser

match the data-consumer’s expectations about it.

While they are near-mythic at this point, stack-based buffer overflows such as described in

AlephOne’s seminal paper [45] are by no means the only vulnerabilities that would be prevented by

2



mindful implementation of parsers. In 1998, Thomas Ptacek and Timothy Newsham showed that

parsers in TCP/IP stacks of popular operating systems were sufficiently varied and idiosyncratic

in their behavior that it was possible to craft a single packet or packet stream which would be

interpreted in completely different ways by the different hosts [52, 30]. Thus, any system behaving

as a firewall or intrusion-detection system must simulate the behavior of all systems under its

protection, lest the protector inadvertently allow packets through that tickle a vulnerability in

one [55].

SQL injection vulnerabilities [44] are yet another example of the importance of parsers: code

within the application combines user input with preconstructed SQL query fragments under the

assumption that the input contains no single-quotes. It is too easy to skip parsing here—after all,

the input is ASCII text and the query is ASCII text, so what parsing is necessary?—but the input is

implicitly blessed nonetheless and therefore trusted by the query engine. Actively parsing the user

input fixes this class of vulnerability, not least because it forces the developer to explicitly encode

the assumptions the rest of their code is making [48].

All systems that accept input—that is, all even-vaguely useful systems—implicitly or explicitly

include parsers. These parsers verify the correctness of the input before passing it to other com-

ponents that process said input. If the parser is not correct, it will permit incorrect input to pass

through, and the other components will perform incorrect operations. At best, these incorrect oper-

ations waste time; at worst, they allow a clever input-provider to take control of the entire system.

So how can we make parsers better?

1.2 A Better Way

To guide our steps towards producing more-secure parsers, let us consider what is involved in the

code that implements parsing.

First, we need to define the data structures that reflect the structure of the protocol messages.

An instance of such a data structure is, in fact, the result of parsing, as shown in Figure 1.1.

Furthermore, the consumer of the parsed data (be it the kernel, in the case of, e.g., IP or USB;

or a userland program in the case of an application-level protocol) needs some way to refer to the

various parsed fields. Since the overwhelming majority of kernel code remains C, collecting all those

fields together in an instance of a C struct is the natural solution. Additionally, a C struct is the

easiest basis from which to create a C++, Java, or Python object should the data consumer prefer

a different format.

3



pass in quick on em0 proto tcp from any to any port 22 to 10.0.1.6

pass out quick on rl0 proto tcp from any to any port 80

pass in log on em0 proto {tcp ,udp} from any to any

Figure 1.2: Policies written for the pf IP firewall. Note that they include both a description of the

data using protocol-specific terminology (i.e., protocol type, port number, IP address) as well as an

action (e.g., “pass in”) to take if the description matches.

With types and corresponding data structure defined, we then need code that performs the

actual parsing: it must read in a bytestream or a fixed-size frame and produce an instance of the

protocol-message data structure. It should verify that the fields of the data structure conform to the

requirements laid out in the protocol specification. If the input violates the rules of the protocol,

the parser should report an error. Otherwise, the parser should return a well-formed member of the

given type.

In addition to ensuring conformance to the protocol specification, ideally any parser would also

support the ability to apply a user-specified filtering policy to incoming data, to reject certain

inputs known to be troublesome. The canonical instance of such an ability is an IP firewall such

as NetFilter [3] or pf [10], which allow a system administrator to describe the kinds of IP packets

that should and should not be allowed passage. This may be a surprising entrant on the “need” list,

but it shouldn’t be: if decades of observing the security of communication protocols has taught us

anything, it is to expect the unexpected. Baking-in the ability to respond to vulnerability disclosures

by deploying a new policy rather than deploying an entirely new patched kernel makes defending

vulnerable systems infinitely more practical.

Given such a filtering policy, then, we need to enforce it. At some point in the parsing process,

the parser needs to compare the input data against the user policy and, if the policy matches, take

the prescribed action. (Filtering policies frequently are of the form “take such-and-such an action

if the input matches such-and-such a pattern”. Examples of policies written for the pf firewall are

shown in Figure 1.2.) The language used to specify user-defined policies should closely mirror the

underlying protocol so as to make both writing and understanding the policy easier for mere humans.

With these components in hand, one might think our task is done. It is not. In addition to being

able to parse data and enforce policy, we must be able to test the system. Without the ability to

test it, we can have little or no confidence in its correctness under benign circumstances, let alone

its behavior when targeted by evildoers. We need two specific tools to fulfill this need.

First, we need the ability to craft and inject arbitrary traffic into the parser. This task is
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somewhat complicated by the fact that these parsers are often going to be running inside the kernel.

Given that many of the data sources whose parsers need to be tested will be hardware-based (e.g.,

network interface controllers, USB devices, Thunderbolt devices), hardware might be required for

injection. Buying a bunch of USB devices from your local electronics store isn’t sufficient because

(ideally) those devices will attempt to conform to the protocol specification. We also need to create

and inject data that doesn’t conform to the specification and verify that the parser correctly rejects

it.

Second, we need to be able to monitor the behavior of the parser while it is performing its

task. That is, the ability to debug the parser should be built into itself. Once again our task is

complicated by the fact that this code will often be running inside the kernel: we must balance the

need for efficiency with the need for transparency. Fortunately, there exist systems that balance

these requirements quite well, which I describe later.

Thus, to summarize, we need:

• type definitions that represent protocol primitives (i.e., messages)—practically speaking, for

kernel code, these take the form of C structs;

• code to parse raw binary data into the aforementioned data structures (which must also rec-

ognize when raw binary data fails to conform to rules regarding well-formed messages within

the protocol, and reject it);

• a way for users to specify protocol-specific policy that is orthogonal to the syntactic correctness

of the protocol itself (i.e., firewall rules);

• a way to enforce this user-defined filtering policy (which requires knowing where in the afore-

mentioned code to place the hooks that enforce user-defined policy);

• a way to craft and inject arbitrary data, so as to test an implementation; and

• a way to observe the code as it handles the injected data, so as to locate and fix bugs—an

instrumentation framework that exposes control flow within affected subsystems of the kernel.

With these tools in our pocket, we can proceed with relative confidence that our parser is, if

not secure, at least rooted in principled development practices, flexible to unexpected needs, and

suited to debugging in the face of misbehavior. This claim is intentionally weak: why should anyone

believe the code I happen to write is any more secure than other code written by someone else? The

answer is: they shouldn’t.
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Figure 1.3: Workflow of a DSL-based parser generator. Given a description of the protocol language

written in the domain-specific language, the parser generator produces the parser code.

Fortunately, besides the empirical evaluation against a suite of known vulnerability triggers, two

separate methods exist to instill confidence in the security of such code: automagic generation of

parsers (i.e., “parser generators”) and formal verification. I will discuss each of these in turn.

1.3 Automagic Generation

As shown above, parsers and related tools are an important part of the trusted computing base.

One strategy to improve security in general is to reduce the size of the trusted computing base such

that it’s feasible for a (small) set of people to manually audit. To that end, efforts have arisen

that attempt to minimize the amount of code related to parsers, many resulting in domain-specific

languages (DSLs) to describe protocols and parser generators to generate the actual parsing code.

The idea is that the DSL protocol description and the parser generator—which is essentially a

compiler from the DSL to, e.g., C—will individually be simple enough to audit. Figure 1.3 shows a

stylized rendition of this workflow.

A domain-specific language is, as the name implies, a language designed to address a particular

need. In contrast to general programming languages like C and Python, domain-specific languages

are much narrower in scope, with both smaller specifications and smaller compilers. Additionally,

domain-specific languages often need not be Turing-complete, which suggests that automating their

verification may be more tractable [62]. For the purposes of this dissertation, a domain-specific

language for protocol analysis provides a way to declaratively—as opposed to procedurally—describe

the messages and state machine(s) for a given protocol as well as a mechanism to translate that

description into executable code that parses messages of that protocol. In short, a language and a

compiler for it.

1.3.1 Prior Work: DSL-based Parser Generators

This dissertation is not the first to use a domain-specific language to generate parsers. The classic

example is yacc [34], which historically was used to generate parsers for programming language
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source code rather than messages in a wire protocol. Given a grammar describing the programming

language, yacc produces an LALR parser for that language, which can be augmented with code to

execute when particular rules are matched.

DSLs have also been used in the realm of more traditional communication protocols. In 1998,

Vern Paxson introduced the Bro [49] intrusion detection system (IDS), one of whose primary features

is a domain-specific language for describing TCP/IP traffic. Its intent was (and continues to be) to

run on a standalone machine on a network, examining all traffic for suspicious patterns. As such,

it is not integrated with the running kernel and it is optimized for applying a variety of acceptable

patterns to a given message rather than verifying the correctness of a single message in the context

of a single machine. (Bro was, incidentally, inspired by an observation similar to the one attributed

to Ptacek and Newsham in Section 1.1.).

More recently, GAPA [6] advertises itself as a “second-generation generic application-level pro-

tocol analyzer”. While its intention is slightly orthogonal to the task of parsing protocol traffic for

kernel consumption—it’s targeted at rapidly creating vulnerability signatures to incorporate into

userland intrusion-detection systems—GAPA has some lessons to teach. First, a quick, intuitive

description language is important to encourage adoption. Second, while they originally intended for

vulnerability detection, they realized that the ability to clearly and concisely describe protocol mes-

sages was useful in other areas, as well. They specifically mention tcpdump [33] and Wireshark [15]

(née Ethereal), but the lesson applies even further than they claim: why not use this power to

improve the kernel itself?

PADS [24] comes from the programming-languages research community rather than the systems

or security communities, but has much the same idea as the other projects described here, with one

significant difference: it is intended for parsing data that does not necessarily follow the strict rules

of a protocol specification. The authors found themselves needing to parse data that frequently

deviated from a normal, expected, easily-describable pattern, and therefore designed a DSL that

produced parsers that were resilient to these deviations. This desideratum lies in stark contrast

to the other systems described here, which exist precisely to ensure protocol traffic conforms to a

standard. I explore the significance of this shortly.

To round out our mini-survey, Packet Types [39] is perhaps the closest in spirit to my work. The

authors recognize that the task of parsing can be equated to the idea of testing whether a given

message is a valid member of a particular type, where a sufficiently descriptive specification of the

type can ensure the correctness of the message. Additionally, the authors draw explicit inspiration

from functional programming languages such as ML, which is similar to my work’s inspiration from
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Haskell. Packet Types, however, does not attempt to integrate with existing operating systems,

though they claim it would likely be possible.

Additional research that bears mention includes Shield [63] and binpac [47], both of which use

domain-specific languages to generate parsers for wire protocols. Their contributions are superseded

by the aforementioned tools, however.

The domain-specific languages and associated systems surveyed here, while not an exhaustive

list, are representative of the state of the art within the systems and security communities. They

do, however, have two significant shortcomings. First, all of the systems are intended to be run as

userland applications, independent of running kernels. In the case of an intrusion detection system,

this is not necessarily a fatal flaw (though defense in depth—i.e., validating protocol messages both

at a network-wide IDS and at each individual host—is a Good Thing). When considering protocols

like USB, however, in which devices are plugged directly into hosts, one cannot feasibly offload

protocol analysis to a separate machine.

The other drawback of these systems is that, while they all feature extensive testing, none of

them offer guarantees or proofs of correctness. Given the importance of parsers as described earlier,

this is an unfortunate omission. Ideally, parsers would be subject to formal verification (described

below, in Section 1.4). Before delving into that world, however, let us consider another way to

specify a domain-specific language, one that does not require inventing a brand new language.

1.3.2 Embedded DSLs

The aforementioned systems created DSLs and their associated compilers from scratch. An alterna-

tive is to use an existing, possibly general-purpose, language and its compiler to achieve the same

goal, enhancing and extending them as necessary. This approach is called an embedded domain-

specific language (eDSL), because the domain-specific features are grafted onto (i.e., embedded into)

another language and its compiler. Due to their already-declaratory form, functional programming

languages are especially popular bases for eDSLs. Additionally, given the observation above re-

garding the job of the parser being to annotate incoming data with eloquent type information, a

functional programming language that provides a rich type system is ideal. Both of these desiderata

scream for a Haskell-like language.

There exist many examples of embedded domain-specific languages, and many specifically using

Haskell. For instance, Parsec [37] is a library that provides a DSL for defining parser-combinators.

It differs from the work in this thesis in that it attempts to be a general-purpose parsing engine, and

8



it does not produce code that can be natively integrated into a production kernel. Diagrams [23] is

a Haskell-based eDSL for creating vector graphics.

Wang used Haskell as the basis of her Protege system [64, 66], which is similar to the work

in this thesis in that it embeds a domain-specific language for describing networking protocols and

generates parser code from. It differs, however, in that its primary target is embedded (i.e., hardware)

systems, it does not attempt to support user-written policies or injection, and it does not make any

claims about correctness beyond those derived from being an eDSL-based system. Furthermore,

the protocol used in Protege’s proof of concept—Modbus—is an entirely different domain to the

protocol I used for my proof of concept: USB. That said, my work does not handle layering and

encapsulation, and can take inspiration from Protege’s implementation of same.

The hypothesis, then, is that we could embed a parser-generator DSL in Haskell to produce the

various code artifacts described in Section 1.2. Therefore, to audit our system, we need only review

the DSL description of the protocol in question and the Haskell code that “compiles” the DSL to

C. We will have thus reduced the size of the trusted computing base, made the job of auditing the

code involved in our parser much more tractable, and hence emerge with much more confidence in

the security of our parser.

This is a significant win, but we can go one step further.

1.4 Formal Verification & Complete Mediation

For many years, the systems and security research communities have been using domain-specific

languages (DSLs) to produce protocol parsers for use in operating system kernels, firewalls, and

intrusion detection systems [6, 65, 24, 39]. These systems reduce the trusted computing base (TCB)

of protocol parsers in the sense that, if one trusts the parser generator to behave as it claims, one

need only ensure the correctness of the more-concise DSL description of the protocol. If one trusts

the parser generator to behave as it claims. Casting no aspersions whatsoever on its authors, one

would be remiss in tacitly trusting in the correctness of any software without formal proof to that

effect.

Such proofs are the purview of the software verification community, which generally has a repu-

tation for avoiding low-level systems code. The NICTA group in Australia recently demonstrated,

however, the feasibility of producing a fully functional, fully verified, fully performant operating sys-

tem kernel, l4.verified [35]. This project used a combination of hand-written Haskell, hand-written

C, and hand-written proofs for the Isabelle proof-checking environment to verify security properties
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of the resultant kernel. Other researchers in the verification community have also turned their at-

tention to low-level code (as evidenced by, e.g., RockSalt [42] and Idris [7]), but it is far from the

norm.

Therefore, on the one hand we have domain-specific languages feeding parser generators to ease

the creation of parsers and on the other we have mechanisms to prove the correctness of low-level

systems code. It is the concerted opinion of this author that these two worlds should merge. To

that end, this dissertation presents a domain-specific language for describing protocols, one whose

compiler produces not only the code to parse the described protocol, but also the model to facilitate

verifying the correctness of the code produced.

Beyond verifying that the parser correctly parses protocol messages, we must also make sure

that every message received by the system is evaluated by the parser. This is the notion of complete

mediation and is distinct from formal verification in that the latter can only make claims about how

it processes the messages it actually sees. Both static and dynamic analysis can be used to ensure

a system exhibits complete mediation; I survey some of those now.

Static analysis is a technique in which inert code (source code or compiled machine code) is

examined for runtime properties—in this case, complete mediation. Zhang et al [67] used CQUAL

to determine whether the hooks provided by the Linux Security Modules framework really guard

every avenue by which certain vital kernel data structures are accessed. CMV [56] uses static analysis

to verify that Java bytecode programs exhibit complete mediation relative to system-level resources

provided by the Java Virtual Machine.

In the realm of dynamic analysis, which analyzes running programs, Klee [12] uses symbolic

execution to explore possible execution paths of a program. Given that it tests exhaustively by

design, Klee is guaranteed to test for complete mediation, though its scaling properties leave much

to be desired. Though admittedly less comprehensive, an empirical method to determine whether a

system exhibits complete mediation is to instrument the system with hooks at the important places,

send a great deal of crafted data at the system, and verify that the hooks intercept all the data.

Any demonstrable example of an input bypassing the hooks would disprove complete mediation;

of course, lack of such examples is heartening though not conclusive. This is the purview of fuzz-

testing, which has been widely adopted by the software industry as a means of vulnerability testing.

As I said, this is less comprehensive, but it can be easier to execute and its merits are apparent in

the broad adoption of fuzzing techniques for exploring system security.
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1.5 Practical Matters

The preceding sections outline a number of desired security properties for parsers (and, more gen-

erally, protocol stacks): specific technical artifacts whose code is both automagically generated and

amenable to formal verification. The primary contribution of this dissertation is conclusive evidence

that these are feasible in the context of a production-level operating system. In the following chap-

ters, I describe the parser construction methodology and the various technical artifacts united by

this methodology that I have produced to this end. But first, a brief description of the protocol I

chose for my case study (USB) and the operating system with which I chose to integrate (FreeBSD).

1.5.1 Universal Serial Bus

Most security research involving parsing focusses on traditional networking interfaces such as Ether-

net and TCP/IP. The Universal Serial Bus (USB), which most users take for granted as being used

for keyboards, mice, and thumbdrives, was similarly taken more or less for granted by the security

community—until about 2010 when our and other researchers’ results demonstrated that vulnera-

bilities in USB implementations could be easily and effectively developed [8, 22, 17, 38]. The code

that implements the USB protocol runs with the same kernel privileges as the code that implements

TCP/IP, although exploitation in the case of USB requires physical access.

Not just that, but the very “universal” nature of USB makes it inherently more difficult to secure:

the protocol is explicitly intended to support arbitrary devices. Like the TCP/IP stack, then, the

USB protocol is layered such that arbitrary application-level protocols can be transmitted over the

USB. The scary difference between the two, however, is that the host-side code that handles the

application-level protocol runs within the kernel.

Therefore, a new kernel device driver is required to support a new USB device. Not only do

device drivers run within the kernel (and hence with full kernel privileges) but they happen to

exhibit surprisingly high vulnerability rates [14]. The large variety of USB devices induces the

creation of a large variety of associated device drivers. It is highly unlikely that these drivers have

all received the same degree of exercise (and, by extension, auditing) as, for example, the USB

keyboard driver. It is thus imprudent to believe that the collection of USB device drivers that ship

with a given kernel is free of vulnerabilities. This is unfortunate, but not necessarily fatal: how many

instances of obscure devices actually exist that can take advantage of these potentially-vulnerable

drivers? It turns out not to matter.

The USB protocol begins with a process called enumeration, in which the host queries the device
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for its identity, so that the host can associate the correct application-level device driver with it.

With a customized device, an attacker can tweak the enumeration process to identify itself as any

arbitrary device and thus pick precisely which device driver within the kernel to communicate with.

An attacker would presumably target a driver with a known vulnerability; a defender would want to

explore the behavior of drivers with potential vulnerabilities. The data structures exchanged during

enumeration are complex and must be parsed; this is a known source of vulnerabilities [20].

To the best of my knowledge, very little effort has been expended to secure USB. In discussing

this seeming deficit with employees of Microsoft who work in this area, the prevailing notion is that

USB is limited to local attacks and are thus worth less attention than remote attacks to which, e.g.,

the TCP/IP stack is exposed. While this is true, it undersells the insidiousness of USB as an attack

surface. An attacker can walk up to a powered-off machine, turn it on, stick in a USB device, and

immediately have a direct line to the kernel in the form of USB device enumeration.

Two anecdotes provide compelling evidence to support the claim that USB is worth attention.

First: Stuxnet, the malware used to compromise the Iranian nuclear facility at Natanz. Following

sound network defense principles, the uranium enrichment centrifuges were on a physically separate

network from the outside world. That is, an airgap prevented attacks originating on the Internet from

affecting the machines performing the uranium enrichment. Despite this, those protected machines

were compromised; experts are convinced that USB was the vector by which those machines were

infected [36]. Someone plugged a USB device into a machine that was otherwise protected by the

airgap and the infection spread from there.

Second: in March 2013, Microsoft issued a patch for Windows that “could allow elevation of

privilege if an attacker gains access to a system” [19]. CERT is more forthcoming in their description:

“The USB kernel-mode drivers in [many versions of Windows] do not properly handle objects in

memory, which allows physically proximate attackers to execute arbitrary code by connecting a

crafted USB device” [13]. The disclosure goes on to discuss that the vulnerability exists in the code

that handles device enumeration.

These anecdotes are not intended as criticisms of any party involved. Rather, they are evi-

dence that USB is generally underappreciated as an attack vector and hence merits attention. The

tools to deliver such attacks are not figments of our imagination: various USB hacking tools use

the Teensy [61] development board to deliver scripted exploitative payloads via USB. A versatile

open-hardware platform, USB Armory [4] far supersedes these capabilities, adding a full-featured

microprocessor behind a USB interface.

More generally, USB is representative of line-oriented protocols (e.g., transport protocols such
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as Thunderbolt and Fibre Channel; disk protocols such as SCSI) and thus the system I have imple-

mented provides a model for how those protocols might be implemented more securely, as well.

1.5.2 FreeBSD

I chose FreeBSD [51] as the kernel whose USB stack to augment with the aforementioned tools.

FreeBSD is a widely-deployed, high-performance kernel in the UNIX tradition, with a well-deserved

reputation for clean, understandable code and carefully-architected subsystems. Integrating with

FreeBSD demonstrates the viability of my approach in the context of a production-quality kernel

(i.e., not just an academic toy).

1.6 Summary of Contributions

Thus far, I described the irreplaceable role protocols play in modern computing systems and the role

parsers play in their implementation. I introduced the idea of using domain-specific languages to

generate parsers, with the goal of reducing the trusted computing base to the DSL specification of

the protocol and the DSL compiler. I contrasted the DSL approach with that of formal verification

and argued that the two can (and should) be considered complementary strategies to producing

trustworthy parsers.

In light of this, the contributions of this dissertation are as follows.

I developed a methodology for designing and implementing secure parsers and successfully applied

it to the USB protocol in a production kernel. I empirically demonstrated that the case-study

implementation is stable, effective in mediating malicious and non-standard inputs, and applied

an industry-standard test suite to it. Due to their method of construction—autogeneration from

type definitions of protocol messages and their elements—my USB parser/firewall is amenable to the

same kind of automated verification that produced the fully formally-verified seL4 microkernel. I do,

however, relegate such verification to future work as that effort is beyond the scope of a one-person

project.

These contributions are presented in this dissertation as follows. First, I present (above) a

detailed checklist of the components that ought to be implemented when supporting a new protocol

(Section 1.2). Second, I present the tools I wrote to fulfill the needs of USB injection (Chapter 3) and

inspection of a running USB stack (Chapter 4). Third, I present a case study I performed wherein I

automagically generated a front-end parser for the USB protocol and integrated it with FreeBSD’s

production USB stack (Chapter 5). Finally, I empirically evaluate the security and performance of
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my implementation using an industry-standard USB test suite (Chapter 6), demonstrating that it

succeeded on all tests. In each chapter, I suggest by whom and where in the process of implementing

a protocol the steps described therein should be performed.

In short, I demonstrate that it is feasible to construct parser generators whose products parse

real-world protocols, are amenable to machine verification, integrate cleanly with existing operating

systems, and are sufficiently performant to make a compelling case for their use. My study demon-

strates that a similar approach can and therefore should be used in all security-critical systems.
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Chapter 2

Overview of USB: Protocol and

Vulnerabilities

This chapter provides an introduction to the USB protocol from the perspective of someone wishing

to explore the attack surface presented by a host with working USB ports. Following the description

of the protocol itself, I review the most comprehensive study to date of USB vulnerabilities, produced

by the NCC Group in 2013 [20], which includes a classification of vulnerability types. Then I examine

all USB-related vulnerabilities reported in the National Vulnerability Database [59] and attempt to

place these vulnerabilities in the classification scheme proposed by the NCC work. The ultimate

intention is, in later chapters, to show how the USB parser/firewall I produced can guard against

these classes.

2.1 The Protocol

When a USB device is plugged into a host, the operating system running on that host communicates

with it by sending requests and receiving responses. In the majority of circumstances, all communi-

cation is initiated by the host in the form of polling. (Low-level timing considerations are handled

directly in the USB controller hardware and are below the level of abstraction I focus on in this

work.)

When a device is initially plugged in, the host must query it to determine its nature—whether

it is, e.g., a keyboard, a mouse, a MIDI device, or a printer. This initial conversation between host

and device is referred to as enumeration and happens for every device. In addition to determining
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Host: 80 06 00 01 00 00 12 00

Device: 12 01 00 02 00 00 00 40 1E 04 02 04 00 01 01 02 03 01

Figure 2.1: A request from the host for the first 18 bytes of the device descriptor (id 1, byte 4) and

the device’s response.

characteristics of the device such as polling frequency, preferred data transfer size, and power re-

quirements, the host will also decide which kernel device driver to associate with the device when

enumeration is complete. The communication channel that carries the enumeration messages is

separate from application-level communication channels and is retained throughout the connected

lifetime of the device. Once enumeration has finished, however, the associated device driver controls

its own communication channels (called endpoints) to and from the device.

Note that this gives the device significant leverage over the operating system: it gets to pick and

choose precisely which driver to handle its application-level data. In essence, data sent by the device

determines the code paths and control flows that handle data sent henceforth. If an old, poorly

maintained, buggy (i.e., vulnerable) driver is still shipped with an operating system, one could use

a custom USB hardware device to select it during the enumeration process and exploit it.

Note also that plugging a USB device into the machine gives an immediate communication

channel direct to the kernel. Even following enumeration, most application-level USB drivers still

run in kernel mode (though this is changing: see Microsoft’s User Mode Driver Framework [18]) as

well. Despite the direct line to the soft, defenseless innards of the operating system, I know of no

framework—prior to mine presented here—that defends against attacks by this vector.

Returning to enumeration, most of the messages that comprise this process are descriptors that

contain various parameters of the device in question. Figure 2.1 shows a request for a descriptor

sent from the host to a device and the response containing the descriptor itself. In this example, the

fourth byte of the host’s requests identifies the descriptor being requested (in this case, the “device”

descriptor) and the seventh byte indicates the amount of data the host would like to receive back

(in this case, 0x12 = 18 bytes).

Then, in the response, the first byte indicates the total number of bytes sent by the device.

This presents a classic opportunity for an exploitable bug. If the host does not verify that the

received data is in fact 18 bytes long (in this case), then the host runs the risk of either underflowing

or overflowing a kernel buffer. (The infamous Heartbleed [46] vulnerability is an example of an

underflowed buffer and overflowed buffer examples are legion [45, 53].)
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My work in this thesis focusses entirely on the enumeration phase of the USB protocol. Some

might consider that limiting but, as we will see, this phase can harbor a surprisingly large number

of bugs.

2.2 USB As a Gateway to the Kernel

The previous section covers enumeration but not application-level protocols. Given that the nature

of USB enables a device to pick and choose precisely which driver within the kernel to exchange

application-level data with, this is a notable omission. Allow me to address that.

Like the TCP/IP family of networking protocols, USB is layered : it allows data from one protocol

to be encapsulated inside another. This is, in fact, precisely how USB supports such a wide variety

of devices: once enumeration is complete, the active part of the USB protocol steps aside and mostly

just ensures the delivery of application-level data between a collection of host and device endpoints

through codepaths designated during enumeration. Since many USB devices implement application-

level protocols that have been natively implemented in past (e.g., SCSI, audio, keyboards) this often

provides a direct codepath to parts of the kernel outside the USB stack itself.

The work we presented at the Workshop on Embedded System Security in 2012 [8] explored the

reachability of kernel logic from the USB interface with a focus on the storage subsystem, down

to the granularity of basic blocks. We found that a USB device could access essentially the entire

FreeBSD storage subsystem, which is particularly notable because so many other aspects of the

system depend on disks. Furthermore, this is only the storage subsystem. We conjectured that

our results could extrapolate to the many subsystems in the kernel proper likely touched by USB

devices, including printing, networking, and human-interface devices.

Therefore, the fact that so many codepaths in the kernel are accessible via USB only increases

the importance of correctly parsing the data that arrives from untrusted devices. It is a crucial

boundary to ensuring the security of running systems.

2.3 Vulnerabilities

In 2013, Andy Davis of the NCC Group wrote a test suite, umap, to comprehensively explore the

behavior of operating systems in the face of unexpected input received during USB enumeration. He

published his results in an aptly-named technical report, Lessons learned from 50 bugs: Common

USB driver vulnerabilities [20], which I summarize here. It should be noted that umap builds on the
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injection framework I constructed as preparatory work for this thesis, which I describe in Chapter 3.

Thus, my initial work on this thesis enabled the creation of an industry-standard security testing

suite.

Using special-purpose hardware driven by Python scripts, he emulated a variety of USB devices

being plugged into a target host and controlled every aspect of the data sent from these devices to the

host during each enumeration phase. His scripts caused the emulated devices to send intentionally

malformed data to the host while he observed how the host responded—a crash indicated that the

host does not correctly handle the malformed data. He tested a large variety of malformations and

produced the following ontology of bugs.

Unspecified Denial of Service, in which the driver or host machine usually crashes, but

not in a way that is exploitable by an attacker. This class includes null-pointer dereferences and

out-of-bounds reads. Davis does not consider these security-related bugs in the context of USB

drivers.

Buffer overflows, in which bounds are not adequately checked prior to memory operations.

As an example, Davis described a Linux driver that allocates 80 bytes for the contents of a string

descriptor; but the string descriptor can be up to 252 bytes long. Thus, when a string descriptor

longer than 80 bytes arrives, the remaining data overwrites other kernel memory, which is certainly

a bug and quite possibly exploitable.

Integer overflows and other length-related bugs, in which arithmetic performed on num-

bers provided by the device can lead to unintentional memory allocations. Consider the bug described

in the previous paragraph: the logical solution would be to read in the length of the descriptor (an

8-bit value), allocate the appropriate amount of memory, and then copy the string into that memory.

If, however, any arithmetic is performed on the length, an attacker could cause the length to overflow

past 255 and cause less memory than necessary to be allocated. Then, when the string is copied,

it could again overwrite existing data structures. Davis identifies instances of this happening in

hub descriptors, configuration descriptors, endpoint descriptors, HID descriptors, image class data

transfers, and printer class data transfers.

Format string bugs, in which user-controlled input is used as the format string in calls to the

printf family of functions. Historically, this allowed an attacker to write to arbitrary locations in

memory using the “%n” format specifier. While this specifier has been widely deprecated, many

compilers still support it. (In fact, Kees Cook demonstrated just such an attack using a custom

USB device in 2012 [17].)

Logic errors, in which the operating system incorrectly handles a given input. As Davis points
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out, these are implementation-specific because the logic of driver code often varies greatly between

operating systems. Some such logic error result in memory corruption when an 8-bit field is set

to 0xFF, where the protocol specification only expects values between 0 and 127. In this case, the

operating system is incorrectly handling unexpected input.

2.3.1 National Vulnerability Database (CVEs)

A kind of “ground truth” of vulnerabilities in deployed software is captured in the National Vul-

nerability Database. Vulnerability disclosures, dubbed “CVEs” (Common Vulnerabilities and Ex-

posures), are reported and assigned on the basis of particular products and technologies found to

be vulnerable. The CVE system does not attempt to classify vulnerabilities. Recently, an attempt

to provide an ontology of the underlying causes for CVEs has been made in the form of the Com-

mon Weakness Enumeration (CWE) system [58]. For our purposes, however, the NCC classification

described above is more suitable, being targeted specifically to USB.

Between January 2005 and December 2015, exactly 100 of the vulnerabilities reported to the

NVD contained the string “usb”. I surveyed all 100 of these vulnerabilities and placed each in one

of the five categories identified by Davis. I use the result of this survey 1 in Chapter 6 to gauge the

effectiveness of the USB firewall I created based on the distribution of bugs between classes. Not

surprisingly, the bugs mitigated by proper parsing form a significant subset.

2.4 Realization

While a world in which every protocol designer, implementer, and user is intimately aware of both

the details of the protocol and existing bugs in various implementations would be fantastic in the

sense of being wonderful, it is also fantastic in the sense of being unrealistic. At the very least,

however, the designer and implementer (both client- and host-side) should have such knowledge.

Additionally, implementation maintainers should remain abreast of security disclosures relative to

the implementations they administer.

1The raw results are in Appendix A.
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Chapter 3

Injection

“Security won’t get better until tools for practical exploration of the attack surface are

made available.” (Joshua Wright, 2011) [28]

The first piece of my research plan was a framework for injecting arbitrary, crafted frames into

USB.

Despite the security benefits promised by formal verification, the ability to empirically evaluate

the security of deployed system remains vital; this ability rests on being able to craft and inject arbi-

trary traffic. For starters, no fully-verified systems have been deployed in any meaningful quantity.

Additionally, an enormous number of unverified systems exist in the wild whose security we need to

be able to analyze.

Additionally, the benefits espoused by the formal verification community are, perhaps, not as

widely-applicable as we might like to think. To see why, consider that formal verification attempts to

prove that certain properties of code are maintained (e.g., that execution proceeds linearly from in-

struction to instruction except in the case of explicit, intended branches). These statement of formal

correctness are only useful if we are able to completely enumerate all relevant security properties.

For the most generic software models, the task may, in fact, be impossible [54].

As a side-note, symbolic execution is a complementary approach to formal verification that

attempts to explore how a system behaves in the face of all possible inputs. The state of the art in

this area, Klee [12], is effective for a wide variety of software, but it suffers from scalability issues

due to the massive state-space explosion incurred by branch-heavy code [11].

Due to these concerns, many security practitioners feel that we cannot trust the security of large-

scale systems without thorough probing of their attack surface. This notion is embodied by the quote
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Figure 3.1: The Facedancer board (version 10).

above, sometimes referred to as Wright’s Principle. This dissertation accepts this assertion: namely,

that the ability to inject arbitrary data into that system is crucial. While commercial solutions to

inject arbitrary bits onto a USB exist (e.g., MQP Packet-Master USB-500 [43]), it was not until

Travis Goodspeed produced the Facedancer [27] that this capability was accessible to a widespread

audience.

3.1 Facedancer

The Facedancer platform—the board designed by Travis Goodspeed in collaboration with Sergey

Bratus, with software contributed by me—is a custom PCB based on the GoodFET, a general-

purpose, open-source JTAG adapter. As seen in Figure 3.1, it connects to both a host and a target

(victim). The host sees the connected Facedancer as a standard USB FDDI (serial) device which

can be controlled using a simple datagram-based protocol, whereas the target sees whatever USB

device the host chooses to emulate.

This emulation is driven by commands received by the Facedancer over the serial line. A ded-

icated FDDI chip passes commands received on to the Texas Instruments MSP430 microcontroller

that serves as the main computational brains of the board and speaks the generic GoodFET serial

protocol. Commands that request sending or receiving USB frames to or from the target are passed

over an SPI bus to the MAX3421 USB controller chip [31], which is connected to the target-facing

USB type-A port.

The MAX3421 handles much of the low-level, time-sensitive aspects of the USB protocol—for

instance, responding with NAKs while the host-side code is composing a response to a request sent

by the target machine over the USB. The presence of the MAX3421 chip thus allows the host to
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USBDevice

+-> USBConfiguration

| +-> USBInterface

| | +-> USBEndpoint

| | +-> USBEndpoint

| +-> USBInterface

| +-> USBEndpoint

| +-> USBEndpoint

+-> USBConfiguration

+-> USBInterface

+-> USBEndpoint

+-> USBEndpoint

+-> USBEndpoint

Figure 3.2: The USB hierarchy as implemented in the host-side Facedancer stack. This figure de-

scribes a single USB device that supports two distinct configurations, the first consisting of two

interfaces, each with two endpoints, and the second consisting of a single interface with three end-

points.

focus on the content of its responses rather than, e.g., timing issues on the bus.

3.2 Host-side Software

The Facedancer comes with a host-side Python library for emulating USB devices. As such projects

are wont to do, however, it evolved to meet the needs of debugging in-development hardware until the

hardware platform stabilized. The original code was thus poorly organized and poorly documented.

Furthermore, it did not reflect the structure of the USB protocol: in short, it was difficult to adapt

to arbitrary uses, which was the main purpose of the project to begin with. Therefore, I wrote a

brand-new host-side software stack for the Facedancer from scratch.

3.2.1 USB Component Hierarchy

My code follows the USB hierarchy of concepts with the intention that it be easier to understand and

modify. An example instance of this hierarchy is shown in Figure 3.2. This hierarchy captures the

notion that a single, physical USB device may have multiple configurations (i.e., sets of interfaces it

may present to a host), each of which may have multiple interfaces, each of which may have multiple

endpoints. These terms follow the established USB vocabulary.

Perhaps confusingly, the interface—in USB terminology—is what encapsulates the functionality

of, e.g., a mouse or a keyboard. The notion of a device, on the other hand, is the physically-connected
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object, which may present itself to a host as multiple logical devices. (Think of a USB keyboard

with a trackpad: it connects to the host via a single cable, but the host recognizes it as two logical

devices—a keyboard and a mouse. In this example, the thing that plugs in is a device whereas

the keyboard and mouse are interfaces.) The operating-system implication of this division is that

separate interfaces on a single (USB) device may be associated with different (kernel) device drivers.

This separation has been used by a number of production designs, such as SanDisk’s U3 technology

and related DRM schemes.

In USB, endpoints are channels of communication, somewhat analogous to ports in TCP and

UDP. (For additional analogies between USB and TCP/IP concepts, see Table 3.1, duplicated from

our WESS paper [8]; further details may be found there.) They allow multiplexing communication

over the single USB cable. Their primary use is to segregate device-level control messages from

application data; the former uses endpoint 0 whereas the latter may use one or more of the remaining

255 interface-specific endpoints.

3.2.2 Enumeration

When a USB device is first connected to a host, the host and device carry out a process called

enumeration, in which the former interrogates the latter as to its capabilites. This conversation

consists of descriptors sent from the device to the host which describe all aspects of its behavior:

configurations, interfaces, endpoints, strings, etc.

My code cleanly delineates between the logic that implements enumeration and that which im-

plements application-level control. As such, it is easy to customize specific aspects of the emulated

device. Instead of the raw bit-banging typical in prototypes, the new stack cleanly delineates the

various functionality in a class hierarchy that mirrors the hierarchy of USB itself. Therefore, to

customize aspects of a particular endpoint, one need only focus on the USBEndpoint instance that

implements the functionality in question.

This is not to say that the new stack doesn’t support bit-banging! A combination of callback

functions and member variables allows arbitrary code to handle any aspect of the emulated-device-

to-host communication, so a potential fuzz-tester is welcome to override the default functionality in

any way he or she sees fit. One benefit of the class structure mirroring the structure of the USB

protocol, however, is that finding the code to override is much easier. Instead of having to dig

through code that manually assembles hard-coded binary strings to find where the configuration

descriptor is created, one need only override the get descriptor method of the USBConfiguration
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USB Ethernet Assumption Violation Attack Use

Transfer one round-trip,

maybe NAK’d

Intended device will re-

ply to the transfer

non-compliant

controller

hijack session,

change state under

nose of host

Transaction one set of trans-

fers, all but the

last NAK’d

host controller com-

plies with USB spec on

transactions

hijack session

on disconnect

use of trusted ses-

sion context

Packet packet fragment implicit length of con-

catenated frames will

matfh explicit length

of transaction

non-compliant

device

memory corrup-

tion, info leak

Controller Ethernet card n/a n/a n/a

Bus D+/D- pair electrically legal sig-

nals, but in realize

those widely outside of

spec are accepted

non-compliant

controller

damage frames for

session hijack, jam-

ming

Table 3.1: Analogous features between Ethernet networks—which we have much experience

securing—and USB infrastructure. (Reproduced from the paper that presented this work at the

Workshop on Embedded Systems Security [8].)
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class.

As a result, creating a new emulated device or modifying an existing one is quicker, simpler, and

more intuitive. It was gratifying to find this code become the basis for the industry-standard test

suite, umap.

3.3 Reference Emulations

Using the library described in the previous section, I implemented programs that emulate a USB

keyboard, a USB mass storage device, and a USB FTDI (serial) device.

For each, I created a new class that derived from the USBInterface class, in which I defined

the static parameters of the device (e.g., number and type of endpoints, manufacturer and product

strings). When this class is instantiated, the library code takes care of marshalling and sending the

various descriptors during USB enumeration: no customization of device initialization is necessary.

It just works.

Once enumeration is complete, the emulated device will need to handle incoming requests

from the target machine. These requests are handled entirely by a single function within the

USBInterface class. Therefore, to customize the behavior of the emulated device, one need only

customize this particular function. Thus, the author of an emulated USB device is insulated from

the complication of the USB protocol itself and is left to focus on the device-level protocol. (To wit:

the source file that implements the USB FTDI device, USBFtdi.py, is entirely composed of code

that deals with serial requests. The only USB-specific parts are those that define parameters of the

device to be sent during the enumeration phase.)

This design benefits a programmer seeking to implement a well-behaving device as well as one

seeking to implement a misbehaving device, for the purpose of probing the security of a host’s USB

stack. In this case, the programmer need only derive a new instance of the class which contains

the functionality he wishes to customize and override the appropriate function. For instance, if a

programmer wanted to explore how a host handles malformed configuration descriptors, he or she

would derive from USBConfiguration and override the get descriptor function of his new class.

Then, when the target machine asks the emulated device for its configuration descriptor, it is sent

a descriptor produced by the customzed code rather than the default, well-formed descriptor.

25



3.4 Code

All of the code described in this chapter is available in the public GoodFET repository on github:

https://github.com/travisgoodspeed/goodfet, under the “client” subdirectory.

The library code described in Section 3.2 is in the USB*.py files.

Code that implements the logic of emulated devices described in Section 3.3 is in USBKeyboard.py,

USBFtdi.py, and USBMassStorage.py.

Executables to run these emulated devices are in the facedancer-*.py files.

3.5 Realization

As illustrated by the quote that opens this chapter, the ability to craft and inject arbitrary traffic

is vital to producing implementations whose security we can trust. All implementations, therefore,

should be tested with such tools. Fortunately, because injection may (and likely should) happen

external to the protocol implementation itself, injection tools can be developed separately from, e.g.,

operating system kernels and client hardware.

The most appropriate point in the protocol development pipeline where injection tools could

be implemented is in parallel with an operating-system agnostic reference implementation, which is

usually produced by the group developing the protocol itself. Failing that, unfortunately, there is

no single, obvious party, which is why we have seen the independent security community taking the

task on itself, in the form of third-party injection tools such as the Facedancer.
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Chapter 4

Inspection & Instrumentation

This chapter describes the instrumentation framework I designed, built, and applied to the USB

subsystem of the FreeBSD kernel. This framework had two goals: both to understand the existing

structure of the USB stack and to evaluate the effectiveness of my parser/firewall. The former goal

was interesting in its own right, but more importantly, it provided the insight necessary to integrate

my USB parser/firewall with FreeBSD’s USB stack. The latter was necessary for demonstrating the

efficacy of my implementation.

Injecting custom-crafted data, as described in the previous chapter, is vital for exploring the

security of systems. It does not, however, directly allow for the improvement of those systems

because the feedback is usually not sufficiently specific to inform debugging, vulnerability mitigation,

or vulnerability development efforts. A systems engineer needs to know precisely which code handles

the data and how so that when crafted data causes runtime errors, the offending code can be found

and fixed.

Mitigation plays an important practical role in operational security: specifically, in addition to

fixing bugs—which a user might wish to protect against before the vendor ships a fixing patch—one

might wish to implement user-defined policies on data flowing through the kernel. (Note that this

is separate from but complementary to checking that data flowing through the kernel conforms to

the protocol specification. As an example, one might wish to implement a policy that allows only

HID devices like mice and keyboards to be connected via USB.) Where in the flow of data through

the kernel should such policies be enforced? More specifically, where in the source code should

enforcement hooks be placed?

The DTRACE [57] system available on FreeBSD and Solaris pioneered the very sort of fine-
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grained observation of live systems that would achieve this goal. (SystemTap on Linux was inspired

by DTRACE and fulfills a similar need.)

Unfortunately, even though DTRACE provides more insight into running systems, and with more

granularity, than has previously been available, it didn’t provide all the information necessary to

guide debugging and enforcement efforts. Specifically, its Function Boundary Testing probes were

unreliable; not only that, but they only fired when a function was called or returned: they did not

communicate the flow of control within a function. When considering kernel functions that may be

hundreds of lines long, this is a significant gap in observation.

Therefore, I implemented a set of custom, static DTRACE probes for FreeBSD that trace ex-

ecution within its USB stack at the basic-block level. Additionally, I implemented a set of scripts

that visualize these traces, showing the interaction between components of FreeBSD’s USB stack,

at the level of both functions and source files. These tools have a number of benefits: they provide

a heretofore-unavailable view of control flow within the kernel, they help readers of the kernel code

understand how the various components fit together (which can be useful to both kernel newbies

and grizzled veterans alike), and they guide the placement of policy-enforcement hooks such that

they can be most effective.

This work was presented at the Workshop on Embedded Systems Security in 2012 [8] and is

summarized below.

4.1 Instrumentation

DTRACE is an instrumentation framework for monitoring running FreeBSD and Solaris systems.

As such, it provides a large number of built-in probes that report on everything from system call

invocations to disk I/O patterns to system clock behavior. They do not, however, include probes

that let us trace the execution of kernel code at the basic-block level, which is necessary for the

debugging and hook-placement tasks described above.

Fortunately, DTRACE allows one to create custom sets of probes: thus, I created the usb bb

probeset and defined the following probes within it:

• MY FUNC ENTER(filename, function name) at the beginning of every function.

• MY FUNC RETURN(filename, function name) at every point from which a function might re-

turn.
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#!/usr/sbin/dtrace -qs

usb_bb:::enter,

usb_bb:::return

{

printf("%s/%s (%d) %s %s %s %d\n", curthread->td_proc->p_comm,

curthread->td_name, curthread->td_tid, probemod, probefunc,

probename, arg0);

}

Figure 4.1: Example script, written in D, that enables custom DTRACE probes MY BB ENTER and

MY BB RETURN; prints a message when execution reaches any of those points.

• MY BB START(filename, function name, index) at the beginning of every basic block, where

index uniquely identifies each basic block within the function.

• MY BB FINISH(filename, function name, index) at the end of every basic block, where

index matches the identifier of the associated MY BB START probe point.

• MY MUX(filename, label) at every point where a control-flow decision is made based on an

input value—in practice, this ended up being mostly function-pointer calls.

I manually added these probes to a local copy of the FreeBSD kernel source code. Table 4.1

summarizes the extent of these modifications within its USB stack.

probe qty event

MY FUNC ENTER(file, func) 204 upon function entry

MY FUNC RETURN(file, func) 356 upon function exit

MY BB START(file, func, n) 1235 upon starting basic block n in a given function

MY BB FINISH(file, func, n) 1235 upon finishing basic block n

MY MUX(label) 30 immediately prior to invocation of a callback

Table 4.1: Summary of static probes in our instrumentation framework.

Once these probes are placed in the kernel, they are quiescent until activated by a script writ-

ten in a special-purpose language called D. For example, the program in Figure 4.1 activates the

MY BB ENTER and MY BB RETURN probes and prints a message when execution reaches any of them.

When this script is run from the shell (with root privileges), it prints out one line per probe encoun-

tered and exits when the user presses Control-C.
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In the course of my instrumentation, I implemented many D scripts; descriptions of the notable

scripts follow.

• bb-count.d counts the number of times each instrumented basic-block executes.

• bb-trace.d prints a properly-indented message when a basic block is entered or left.

• mux-trace.d prints a message when a mux-point is reached, indicating the value of the data

that caused the choice of subsequent execution path.

• cam-trace.d traces the execution of storage subsystem operations within the USB stack. I

used this to help understand the structure and behavior of interactions between the generic

FreeBSD disk layer and the USB mass storage device driver. (CAM stands for Common Access

Method, a FreeBSD abstraction for interfacing with storage devices.)

Of these, the most interesting is bb-trace.d. Running it while performing USB-related ac-

tivities results in a guide to how those activites are processed within the kernel. Figure 4.2

shows an example output. This output begins with a call to usb callback proc in kernel thread

100036. In the zeroth basic block of that function, usb command wrapper is called, which sees ex-

ecution of its zeroth, third, fourth, fifth, sixth, and eighth basic blocks. This pattern continues

until umass t bbb command callback calls usbd xfer softc which immediately returns, followed

by a call to usbd xfer state which also immediately returns. Upon returning, execution within

umass t bbb command callback resumes in the second basic block.

This record can be related back to the actual instrumented source code, thus allowing the observer

to follow along in (somewhat) real time. Note that following along at this level of granularity is not

possible with the default set of DTRACE probes on FreeBSD (and even the function-level granularity

provided by the FBT probes is unreliable).

While undoubtedly interesting, the raw output of, e.g., bb-trace.d is less immediately useful.

I wrote a collection of Python, awk, and shell scripts to process this raw data into a more useful

format. (Another benefit to post-processing is to reduce the number of cycles required to process

probes firing in real-time: adding more intelligence to the D scripts causes probes to be dropped.)

The most interesting of these scripts is indent-bb-trace.py, which takes as input a basic-block

trace such as the one shown in Figure 4.2 and produces an indented trace as shown in Figure 4.3.
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100036 usb_callback_proc enter 0

100036 usb_command_wrapper enter 0 3 4 5 6 8

100036 usbd_callback_wrapper enter 0 4 5 13

100036 umass_t_bbb_command_callback enter 0

100036 usbd_xfer_softc enter 0

100036 usbd_xfer_softc return

100036 usbd_xfer_state enter 0

100036 usbd_xfer_state return

100036 umass_t_bbb_command_callback in 2 3

100036 usbd_xfer_get_frame enter 0

100036 usbd_xfer_get_frame return

100036 usbd_copy_in enter 0 1

100036 usbd_get_page enter 0 1 2 3 6

100036 usbd_get_page return

100036 usbd_copy_in in 2 3

100036 usbd_copy_in return

Figure 4.2: Output from the bb-trace.d DTRACE script, showing the basic blocks executed in

each function.

-> usb_callback_proc 0

-> usb_command_wrapper 0 3 4 5 6 8

-> usbd_callback_wrapper 0 4 5 13

-> umass_t_bbb_command_callback 0

-> usbd_xfer_softc 0

-> usbd_xfer_state 0

umass_t_bbb_command_callback 2 3

-> usbd_xfer_get_frame 0

-> usbd_copy_in 0 1

-> usbd_get_page 0 1 2 3 6

usbd_copy_in 2 3

<- usbd_copy_in

Figure 4.3: Indented basic-block trace. (The underlying data is the same as in Figure 4.2.)
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4.2 Experimental Results

My enhancement of the FreeBSD DTRACE dynamic probe system allows the user to formulate and

test hypotheses regarding reachability of specific parts of code—down to the granularity of basic

blocks—by specific USB inputs. To the best of my knowledge, this granularity has previously only

been available in static analysis tools such as IDA Pro [29], which are unsuitable for analysis of

running systems. The fine-grained instrumentation described in the previous section provides a

great deal of insight into the code being executed inside the kernel. What can we do with this

insight?

4.2.1 Measuring Code Coverage

While testing code thoroughly is a worthy goal, all too frequently code is shipped that has not

undergone sufficiently rigorous examination. When deployed, many pieces of software are implicitly

tested by users interacting with their systems performing everyday tasks. In the best-case scenario,

upon discovering erroneous behavior, a user will file a detailed bug report allowing the code’s author

to fix the bug.

This informal testing can be effective, but it is far from complete. The instrumentation framework

described above can be used to measure how incomplete it really is. This achieves a tangible security

benefit: knowing the well-tested (even if informally) code paths allows one to concentrate code

auditing efforts on the less-used (and therefore less informally-tested) code paths. By virtue of

undergoing less exercise, these latter paths are more likely to harbor potentially-exploitable bugs.

I used the bb-count.d probe script described above to gather the number of times each basic

block in FreeBSD’s USB stack was executed. I then inserted a USB thumbdrive (which uses the

umass driver within the USB stack), read a single block of data, wrote a single block of data, and

ejected the drive. Finally, I terminated the probe script. These actions exercised the normal code

path for USB device enumeration, USB mass storage device initialization, read and write interaction

between the USB stack and the FreeBSD storage subsystem, USB mass storage device finalization,

and USB device removal.

By process of elimination, then, we can deduce the abnormal code path. To that end, Figure 4.4

shows the number of basic blocks exercised (and not exercised) per file in FreeBSD’s USB stack

during the experiment described above. I did not see any variation in this data over multiple

runs; but variation would certainly be cause for concern! It would indicate that, despite inducing

what should be a completely deterministic sequence of code events, some aspect of the system is
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Figure 4.4: Lines of code exercised per-file during a USB thumbdrive insertion, read, write, and

removal.

introducing irregularity: a potential malicious actor [26].

4.2.2 Guiding Hook Placement

A more specific use of the basic-block traces is to identify where in the data-processing control flow

would be most advantageous to place enforcement hooks. That is, the function traces produced by

the framework described in this chapter are caused by activity happening on the USB. If we want

to make sure that said activity follows the rules of the protocol and/or conforms with a user-defined

policy, we need to examine it. Code that implements this examination must be called at some point

in the control flow revealed by these traces. But where?

This is a Goldilocks game of finding a place in the code that all USB events traverse. Ideally,

for efficiency reasons, we want the enforcement hooks invoked no more than once per event. On the

other hand, we need the enforcement hooks invoked at least once per event, otherwise enforcement

will miss events and lose its power. The basic-block traces described in this chapter provide precisely

the data necessary to discern where to put the enforcement hooks. These are described in detail

in Section 5.5 along with the rest of the work involved in integrating the enforcement system into

FreeBSD.
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4.2.3 Showing Inter-component Interactions

Finally, I used the traces produced by my instrumentation of FreeBSD’s USB stack to generate

graphs of the control flow between components within the stack. The source code is divided into

separate files by function (e.g., the controller interface is in controller/ehci.c, request handling

is in usb request.c, DMA operations are in usb busdma.c); therefore, I chose source files as a

reasonable approximation of “component”. The resulting graph is shown in Figure 4.5.
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4.2.4 Summary

In this chapter, I describe how I instrumented the FreeBSD USB stack using DTRACE probes.

I used this instrumentation to map the basic blocks within the stack that are exercised during

normal operating conditions; by extension, I identified the basic blocks that don’t get exercised,

which therefore might be good places to focus a security audit. These efforts come together in my

empirical evaluation of my parser/firewall’s efficacy at stopping malicious inputs.

I also foreshadowed how I would use the results of the instrumentation to inform the placement

of enforcement hooks that validate USB frames as they flow between host and device. Lastly, I

present diagrams that describe the various inter-component interactions within the USB stack.

4.2.5 Realization

The instrumentation I describe in this chapter is part and parcel with the in-kernel implementation

of the protocol. As such, the appropriate party to implement it is the kernel maintainers. We have

seen this in the DTRACE system in FreeBSD; Solaris and its derivatives are similarly equipped.

Linux has a similar framework called SystemTap. Microsoft Windows has a variety of monitoring

systems built in [32]. All that remains, therefore, is for an enterprising kernel maintainer to write

the code, which is itself fairly straightforward (though potentially voluminous).
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Chapter 5

Generation

In Section 1.2, I offered a programme of code artifacts necessary to implement support for a protocol

and claimed that, given a specification of the protocol in question, this code could be automagically

generated. I intentionally eschew the term “automatically” because it does not encompass the

structural qualities of the resulting code; rather, I use the word “automag ically” to mean that the

code exhibits additional properties that make it amenable to further automatic processing, such as

formal verification. The distinction is not a trivial one; for example, without substantial effort on

behalf of the programmer, the outputs of yacc and bison are likely not formally verifiable.

In preceding chapters, I describe my efforts to manually implement components that inject crafted

USB data onto the bus and provide a view of the code touched by the injected data. This chapter

describes the centerpiece of the programme, the autogeneration framework; the previous pieces are

merely needed to support and test it. I describe what a protocol specification entails, how the code

is generated, and how it is integrated into a production operating system kernel.

I claim that a great deal of code—in fact, much of the code that handles a protocol within

the kernel—can be generated automagically from a specification of the protocol. Consequently, the

ad-hoc code that performs these operations can be replaced in actual operating-system kernels and

protocol stacks with generated code without appreciable loss of efficiency and with significant gains

in security (e.g., ability to mitigate malicious inputs). I present a case study that demonstrates how

this works for USB.

Specifically, I claim the data structure(s) that hold protocol messages, the code that parses

messages from the wire into these data structures and verifies their contents, functions that access

fields within the data structure, and functions that print the contents of a message in human-readable
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Figure 5.1: Given a protocol specification, shown in the middle, we can automagically generate the

code required to implement support for that protocol, shown in the leaves.

format can all be generated. Figure 5.1 shows a diagram of the code that is generated from the

protocol specification.

I begin with a description of the protocol-definition language I embedded into Haskell. Following

that, I show how a portion of the USB protocol is defined using this language, specifically the

GET DESCRIPTOR request message sent from the device to the host during enumeration. I extrapolate

on that definition to describe the code generated for the entire set of messages and close with a

description of how I integrated this generated code into the FreeBSD kernel.

Note that the definitions and generated code I describe in this chapter are a result of my efforts

related to USB. They are, however, directly relevant to any protocol for which one wishes to

implement parsers (though, admittedly, they are more amenable to binary protocols like TCP/IP

rather than text protocols like SMTP and HTTP). My intent is to provide the foundation upon which

myriad other parsers can be built and, most importantly, integrated with their existing stacks,

replacing notoriously vulnerable ad-hoc implementations [9]. For this reason, in what follows I

describe the construction of my USB parser in most generic terms, only using protocol-specific

terminology when such is specific to USB (as in the case of USB enumeration).

5.1 Protocol Definition

I define a Protocol to be a set of Messages. Each Message consists of a name, a set of Fields, and

potentially a data stage of variable length. (Figure 5.2 shows the definition of a Message using
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data Message = Message MessageName [Field] DataLen

type MessageName = String

Figure 5.2: Specification of a Message within a protocol. A Message is defined by a name (a String),

a list of Fields, and a data length specifier.

the domain-specific language.) As simple as it appears, this definition describes every message

exchanged during USB enumeration, dubbed “control messages”. Following enumeration, however,

most communication is application-specific and supporting such protocols using this framework

reduces to the task of creating Message variables corresponding to the application-specific messages.

Control messages still flow between device and host even after enumeration is complete, however, as

they negotiate features like flow control and isochronous transfers.

The first value in a Message is a character string used for identification purposes. Following the

name is a list of Fields that make up the Message (how to specify names, types, etc. for these fields

is discussed below). Fields are assumed to be ordered and contiguous within the Message; should

the protocol specify empty space or padding, one would need to specify an explicit Field reflecting

those characteristics.

Let us express these and further relationships between the elements in a message in a grammar

that, at the same time, is the Haskell definition of the types within the protocol DSL. Message

and field names are thus Haskell type constructors; the entire DSL is thus a runnable definition

and is therefore subject to the Haskell type-checking framework, which is an effective form of static

verification [41].

Each Field in a Message consists of a name and a size, as well as an indication of whether

its contents are literal or variable. (The definition of the Field type is shown in Figure 5.3.) Like

Message, a Field incorporates a character string used to identify it. The size of the field is either 8 or

16 bits—this covers all messages exchanged during USB enumeration and could easily be expanded

to support the needs of other protocols, even those requiring bit-granularity.

The last field indicates whether the field is literal or variable. Many protocols specify an exact

sequence of bits or bytes to appear in certain places: for instance, IPv4 requires that the first 4

bits of an IP packet be 0100, indicating the version of IP to which the packet conforms. Likewise,

USB requires that, e.g., GET DESCRIPTOR request messages have a RequestType field of 0x80 and a

Request value of 6. These would be specified as Literal fields, along with the value they require.

Alternatively, some fields are not precisely specified and instead must be available to higher-level
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data Field = Field FieldName FieldSize FieldValue

type FieldName = String

data FieldSize = Uint8

| Uint16

data FieldValue = Literal Int

| Variable

Figure 5.3: Specification of a Field within a Message. A Field is defined by a name (a String), a size

(in this case, 8 or 16 bits), and an indication of whether its value is variable or fixed

data DataLen = NoData

| Bytes Int

| Ref FieldName

Figure 5.4: Specification of the length of the data stage of a Message. The length can be zero, a

fixed number of bytes, or a number of bytes given in one of the fields of the Message.

code that, e.g., changes state within the kernel upon the receipt of such a message. Examples of

this include the destination port number in TCP and the index of the descriptor being requested

by a USB GET DESCRIPTOR request message. These would be specified as Variable fields so that the

appropriate code can be produced.

The list of Fields is of fixed size and the Fields themselves are of fixed size; thus, the entire

Message described so far is of fixed size. These fields may be followed by a variable-sized data stage:

the size may be zero, a fixed size, or of a size given by one of the fields. The definition of the DataLen

type is shown in Figure 5.4.

Many messages in the USB protocol communicate no data, and therefore use the NoData con-

structor for this field. Some messages include a fixed amount of data following the header, in which

case they use the “Bytes” constructor, specifying the number of bytes as the argument. Lastly, some

messages (of which the response to the GET DESCRIPTOR request is one) specify the length in one of

the Fields, in which case the “Ref” constructor is used. If the length is specified in the wLength

field, the DataLen constructor would appear as Ref "wLength".

Note that while the DataLen construct fulfills the needs of USB, it also immediately supports

protocols like IP and SCSI that have a similar structure. The latter (and many other protocol

besides) feature headers comprised of fixed-size fields followed by a variable-sized payload or data

field. This syntactic simplicity indicates the data modeling approach is likely generally applicable.
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getDescriptorRequest :: Message

getDescriptorRequest = Message "GET_DESCRIPTOR req"

[ Field "request_type" Uint8 (Literal 0x80)

, Field "request" Uint8 (Literal 6)

, Field "desc_type" Uint8 Variable

, Field "desc_index" Uint8 Variable

, Field "language_id" Uint16 Variable

, Field "desc_length" Uint16 Variable

]

NoData

Figure 5.5: Description of USB protocol’s GET DESCRIPTOR request message, written in the domain-

specific language.

5.1.1 Example: GET DESCRIPTOR request message

As an example, consider the GET DESCRIPTOR request message, whose specification is shown in

Figure 5.5. The first parameter specifies the name (which will be used in a number of places in the

generated code). Following that are six fields: four 8-bit unsigned integers and two 16-bit unsigned

integers. The first two fields have literal values whereas the final four are marked as variable, to be

interpreted above the parsing layer. Finally, this message does not include any trailing data.

The GET DESCRIPTOR message exercises most of the message-specification features discussed

above—fields of different sizes, of both literal and variable contents, as well as a null data stage—but

not all. The fixed-length data stage is used in the GET STATUS response, GET CONFIGURATION re-

sponse, and SYNCH FRAME messages. The variable-length data stage is used in a number of messages,

many of which are closely related to other messages.

5.1.2 Specifying New Messages from Old Messages

Many protocols include related pairs of messages; think ICMP echo request and reply, DNS request

and reply, and so on. The USB protocol does, as well; the GET DESCRIPTOR request message shown

above is the request half of such a pair. For our protocol syntax specification to be complete, we

need to specify the format of the response, but it seems wasteful and potentially error-prone to

specify the message entirely from scratch.

For USB, many of these request/response pairs differ only in that the response includes a data

stage and the request does not. Therefore, I created a Haskell function, withData that takes a

Message instance, gives it a new name and a new data stage specification, and produces a new

Message. Figure 5.6 shows how I used this function to specify the GET DESCRIPTOR response message.
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getDescriptorResponse :: Message

getDescriptorResponse = withData getDescriptorRequest

"GET_DESCRIPTOR response"

(Ref "desc_length ")

Figure 5.6: Code to derive the GET DESCRIPTOR response from the associated request message, using

the domain-specific language.

While the withData function is no doubt useful, it is most certainly specific to USB. The

general lesson here is not, however, that the framework I’ve created is inextricably tied to USB;

rather, this demonstrates the power of an embedded domain-specific language. Because the protocol-

specification language is really just Haskell, we have at our fingertips all the tools that Haskell

provides, which let us quickly, easily, and—most importantly—reliably produce specifications of

derived messages. Were we left to specify these messages by hand in entirety, we run the risk of

introducing typos and inconsistencies, both of which are a breeding ground for vulnerabilities.

5.2 Generating the Code

As shown pictorially in Figure 5.1, we can use the message definitions described in Section 5.1 to

produce other code pertaining to those messages. These various code artifacts are described in the

following subsections. All generation code is written in Haskell.

5.2.1 Generating the Data Structure

First and foremost, we need a data structure to represent each message. This structure can (and

likely should) be used both in the kernel proper as well as the parsing component. Additionally,

it could be used in programs that inject protocol data such as the Facedancer and its associated

software described in Chapter 3 as well as programs such as tcpdump that analyze protocol traces.

Figure 5.7 shows the structure definition generated from the GET DESCRIPTOR response message

shown in Figure 5.6. (This example shows the response rather than the request because the presence

of a data stage in the response exposes a particular implementation quirk that merits mention.)

Defining fields for fixed-size types is straightforward: the Uint8 and Uint16 of the definition from

Figure 5.5 become uint8 t and uint16 t, which are types supplied by standard system headers.

The only deviation from this pattern is the data member.

For the optional data stage, I have chosen to represent it as a single byte in the structure.
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struct get_descriptor_req_msg {

uint8_t request_type;

uint8_t request;

uint8_t desc_type;

uint8_t desc_index;

uint16_t language_id;

uint16_t desc_length;

uint8_t data;

};

Figure 5.7: Generated C structure for the GET DESCRIPTOR request message.

Should the kernel, application, or parser wish to access the contents of the data stage, they need to

do so using the address of the data member. This is potentially fraught with peril as undisciplined

pointer operations are a significant source of security vulnerabilities. Therefore, I have also generated

accessor functions (described in Section 5.2.3) that unify the method of access and therefore reduce

the potential for misuse.

5.2.2 Generating the Parser/Verifier

The primary purpose of the parser/verifier function is to ensure that the raw bits received over

the wire (metaphorical or otherwise) conform to the protocol specification. It must check both

the contents of the individual fields where applicable as well as aspects of the entire frame—most

significantly, its length, so as to avoid vulnerabilities such as Heartbleed [46]. The generated parser

function for the GET DESCRIPTOR request message is shown in Figure 5.8.

Some things in this function are worthy of note. First, many of the fields are not examined: this

is reasonable because the contents of those fields either do not affect the validity of the message or

their validity is only verifiable given more information about the state of the connection. In short,

this function is concerned with message syntax, not semantics.

For instance, the desc index field of a GET DESCRIPTOR response message should match the

desc index field of the initial GET DESCRIPTOR request, but the parser cannot know such things

without maintaining significant application-specific state. Such state is more the purview of a

separate component that verifies the validity of sequence of messages rather than each individual

message in the sequence; this work is focussed solidly on the latter problem. A similar separation

exists in the NetFilter architecture, where keeping track of state is relegated to distinct code such

as ConnTrack, which keeps track of stateful protocols such as TCP. The state tracked may be exact

as per protocol specification or, as in the case of TCP, approximated.
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struct get_descriptor_req_msg *

validate_get_descriptor_req_msg(char *frame , int framelen)

{

struct get_descriptor_req_msg *m =

(struct get_descriptor_req_msg *) frame;

if(m == NULL) return NULL;

if(framelen < 1 + 1 + 1 + 1 + 2 + 2 + 0) return NULL;

if(m->request_type != 128) return NULL;

if(m->request != 6) return NULL;

/* accept m->desc_type as -is */

/* accept m->desc_index as -is */

/* accept m->language_id as -is */

/* accept m->desc_length as -is */

return m;

}

Figure 5.8: Generated verification function for the GET DESCRIPTOR request message. (Constant-

folding in the compiler will optimize away the tacky addition.)

#define get_get_descriptor_req_msg_desc_type(m) (m->desc_type)

#define get_get_descriptor_req_msg_desc_index(m) (m->desc_index)

#define get_get_descriptor_req_msg_language_id(m) (m->language_id)

#define get_get_descriptor_req_msg_desc_length(m) (m->desc_length)

#define get_get_descriptor_req_msg_GET_DESCRIPTOR_data(m) (&m->data)

Figure 5.9: Generated C accessors for the GET DESCRIPTOR request message. (The duplicate “get”

substring is not a typo: the first a verb, the second is part of the noun.)

5.2.3 Generating Accessor Functions

While the data members of structures generated by the code described in Section 5.2.1 can be used

to access the individual fields of a message, there are advantages to using discrete accessor functions,

and compiler tricks can make them just as efficient as direct access methods. Figure 5.9 shows the

accessor functions for the GET DESCRIPTOR request message.

The usability of these accessor macros could be improved by implementing them as functions

instead, which would allow the compiler to provide more meaningful error messages. The type of

the parameter m would then be specified (whereas in a macro it is not), thus nominally ensuring

that only the correct type of message has its accessed in this way. (One could imagine a case where

a different kind of message also has a field named desc length, but located in a different place

within the message. The macros do not protect against using an instance of the latter in place of

the former, whereas a function would.) Such functions should probably be marked as inline so
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void

print_get_descriptor_req_msg(struct get_descriptor_req_msg *m)

{

log(LOG_INFO , "usb_fw: GET_DESCRIPTOR req , desc_type =%d,"

"desc_index =%d,language_id =%d, desc_length =%d\n",

m->desc_type , m->desc_index , m->language_id ,

m->desc_length );

log(LOG_INFO , "usb_fw: data stage=%s\n", bytes_as_hex (&m->data ,

m->desc_length ));

}

Figure 5.10: Generated C function for legibly printing a GET DESCRIPTOR request message.

that the compiler can produce code as efficient as if they were macros.

Another advantage of using accessor functions (macros) like these is that any endianness mod-

ifications can be incorporated into the functions themselves. While this isn’t an issue in USB, it

most certainly is an issue in traditional networking protocols such as the TCP/IP stack. Using only

accessor functions (macros) that have the endianness conversion incorporated could be a benefit.

Admittedly, these names might be unwieldy. The good news is that, being automagically gen-

erated, they can be easily changed. For instance, one could write a function to shorten names and

apply it to all identifiers simultaneously.

5.2.4 Generating the Pretty-Printer Function

We also require the ability to present the details of a message in a user-friendly format. While

perhaps not strictly necessary within the kernel proper, this feature is vital to user-facing tools that

inspect protocol traffic. (For example, a protocol-specific tool analogous to tcpdump for TCP/IP

protocols.) Figure 5.10 shows the generated pretty-printing function for the GET DESCRIPTOR request

message.

Note that each field is correctly formatted according to its type, the literal fields are elided from

the output, and the data stage is outputted as hex, using the previously-verified length. (NB: the

generated function uses the FreeBSD-specific log function and LOG INFO log-level. The reasons for

this are explained in Section 5.5.2.)

5.3 User-Defined Policies

As described in Section 1.2, one of the features we would like in a firewall is the ability to specify

a policy to augment the built-in rules. For instance, imagine a case where a particular USB device
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Reject string_descriptor where length = 42

Reject set_address where address > 127

Figure 5.11: Example user policies for the USB firewall.

driver doesn’t correctly handle a string descriptor with a length of exactly 42. Instead of entirely

disabling support for that device or waiting for a new driver, a system administrator might want to

filter out all USB frames that contain the offending length value.

To fulfill this need, I devised a simple language to describe policies, a parser for that language,

and code that uses the previously-written protocol definition to produce a loadable kernel module

that implements the policy. Currently, the policy in this kernel module is applied after the frame is

validated but before the connection-tracking logic to be described in Section 5.5. (An improvement

to my system would be to allow for more flexible policy-application orderings.) Some example

policies are shown in Figure 5.11.

These policies are, admittedly, not especially eloquent. In particular, they do not take into

account the context in which a message is being sent and are therefore something of a blunt instru-

ment. A subtler and more targeted approach would be to augment a detailed state machine with

such rules, but that is more semantic than syntactic and is beyond the scope of this work. Again,

however, NetFilter shows a possible direction in which modules specified with the policy provide

additional predicates for checking state as needed.

5.4 Protocol: Assemble!

The preceding sections have described the generation of individual chunks of code necessary for

each message of the protocol in question. What remains is to generate all these code chunks for

every message, place them in well-formed source files, and integrate them with the target operating

system.

For the USB protocol proof-of-concept, I defined instances of the Message type for the following

messages (where applicable, related message types are listed together).

• GET STATUS request response

• CLEAR FEATURE and SET FEATURE

• SET ADDRESS
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• GET DESCRIPTOR request

• SET DESCRIPTOR

• GET CONFIGURATION request and response

• SET CONFIGURATION

• GET INTERFACE request and response

• SET INTERFACE

• SYNCH FRAME

I also defined instances of the Message type for the following descriptors. These descriptors are

sent in the data stage of responses to the GET DESCRIPTOR request message defined above.

• device descriptor

• configuration descriptor

• interface descriptor

• endpoint descriptor

• string descriptor

• hid descriptor

• report descriptor

Taken together, these requests, responses, and descriptors encompass all data that flows between

host and device during the USB enumeration process.

The data structure definitions, accessor macros, and function prototypes are generated into a file

called usb messages.h. The validation functions and pretty-printing functions are generated into a

file called usb messages.c. Both of these source files are intended to integrate with any operating

system kernel or application (though a few idiosyncrasies remain: see Section 5.5.2).

5.5 Operation System Integration

This generated code is all well and good, but it needs to get itself into an operating system to make

any difference. I achieve this by means of a thin translation shim, described below, whose design

was guided by the instrumentation described in Chapter 4.
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I chose to integrate with FreeBSD because of its reputation as a widely-deployed, high-performance

kernel with a clean and well-documented design. (After considerable time spent digging through

kernel source code, I concluded this reputation is merited.)

Running the Haskell code on the USB protocol specification results in two files, usb messages.h

and usb messages.c, that implement the various constructs described in this chapter. They are

intended to be as operating-system agnostic as possible (exceptions are discussed in Section 5.5.2).

I separately implemented a FreeBSD kernel module that, when loaded, provides a function that

the mainline USB stack can call to verify a set of frames. This function is primarily responsible for

extracting the relevant fields of the structure FreeBSD uses to describe a USB transfer and calling

an OS-agnostic function with the frame and the extracted fields as parameters. The idea is that

integrating with a new operating system will require one to re-implement only this translation shim

and leave the rest of the validation code intact.

This OS-agnostic code is contained in usb fw.h and usb fw.c, which currently implements a

simple policy in which a response is verified to match the request that instigated it. It is intended

not to demonstrate a complicated, stateful firewall for USB but rather how the primitives provided

by the automagically-generated code can be used to do so.

Table 5.1 summarizes the files involved. The primary takeaway from this table is the significant

discrepancy between manually-written lines of code and automagically-generated lines of code, the

latter of which are far more likely to be correct. This is not because of some magical fairy dust

involved in the autogeneration process, but rather because all of the code is produced in a uniform

fashion. Bugs need only be fixed once in the generation code and all the constructs that are gener-

ated are positively affected. In contrast, fixing a single bug in a manually-written parser does not

guarantee that same bug doesn’t exist in another component that performs a similar operation.

Once the kernel module is loaded, a frame is processed thusly:

1. When execution reaches one of three points in the USB stack, call fbsd hook, giving it the

FreeBSD-specific structure that describes the transfer (which may contain multiple, raw USB

frames). In Section 5.5.1, I describe the method I developed to place these hooks.

2. Within fbsd hook, extract transfer metadata—such as bus number, device address, and end-

point number—from the FreeBSD-specific structure and pass each frame in turn to hook frame

along with the OS-agnosticized metadata.

3. The hook frame function validates the frame, which results in an action (such as accept, drop,

or reject) being passed back to fbsd hook.
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Filename LOC Description

usb messages.h 403 structure definitions, accessor macros definitions, and function

prototypes (auto-generated)

usb messages.c 367 parser functions and pretty-printing functions (auto-generated)

usb fw fbsd.c 105 FreeBSD-specific code, contains fbsd hook function that invokes

OS-agnostic code

usb fw.h 14 definitions for OS-agnostic functions

usb fw.c 71 rudimentary firewall for USB using the auto-generated parser

primitives

Table 5.1: The files, both automagically and manually generated, that comprise the USB validation

proof-of-concept; along with their sizes, measured in lines of code, and a brief description of their

purpose.

4. Finally, fbsd hook returns the action back to the USB stack.

Figure 5.12 shows the path by which a frame is processed by the generated verification framework.

But where are these magical, “appropriate places” whence fbsd hook is called?

5.5.1 Hooks

The method for locating hooks is as follows. Although applied to USB in this chapter, it can be

easily generalized to other protocols.

In particular, given the fbsd hook function described in the previous section, where in the USB

stack proper does it get invoked? The instrumentation described in Chapter 4 revealed that all

frames entering the kernel over USB did so in the usbd callback wrapper function and that all

frames exiting the kernel over USB did so in either the usbd transfer start cb or usbd pipe start

functions. Therefore, it was in those functions that I placed the hooks to call into the firewall. I

evaluate the effectiveness of these placements in the next chapter where I discuss whether my system

fulfills the requirement of complete mediation as described in Section 1.4.

5.5.2 Obstacles to Operating System Independence

This is not to say that the idiosyncrasies introduced by particular operating systems are trivial:

much depends on the coding style of the operating system in question. These idiosyncrasies for
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FreeBSD USB Stack

translation shim
(usb fw fbsd.c)

generated validator
(usb fw.c)

Figure 5.12: When a USB frame arrives or is sent, the FreeBSD USB stack calls the shim function,

fbsd hook, which translates the FreeBSD-formatted USB frame metadata to an OS-agnostic format

before passing it along to the generated parser/validator function. The resulting action is cascaded

back to the kernel.

FreeBSD are described in the following.

The vast majority of the generated code described in the preceding sections is operating-system

agnostic; header files are the primary exception. For instance, the uint8 t type is used frequently,

but the file in which it is defined varies. The FreeBSD kernel uses <sys/types.h>, the Linux

kernel uses <linux/types.h>, and both userlands use <stdint.h>. The generated code currently

supports only FreeBSD with hard-coded header-file inclusions, but this could easily be expanded

to other operating systems either by generating #ifdef/#endif clauses for each or by adding an

abstraction layer that allows the author to specify differences between platforms.

The other operating-system specific code, as foreshadowed in Section 5.2.4, comprises the func-

tions generated to pretty-print the content of messages. As shown in Figure 5.10, these functions

currently use the logging interface exposed by the FreeBSD kernel. There are a few different ways

this could be ported to another operating system. One is by using an OS-specific abstraction layer

as suggested to solve the header-file problem described in the previous paragraph.

My current preference, however, is to re-implement these functions to instead behave like snprintf:

returning a pointer to a string instead of perforning the actual logging itself. One benefit of this

approach is that such code could be used outside the kernel (e.g., in a program like tcpdump that

monitors traffic on a bus and presents it in a user-friendly format). The difficulty is that allocating

memory for such strings inside the kernel can be a delicate affair, and different kernels prefer differ-

ent patterns for doing so. Therefore, it seems like an OS-specific abstraction layer is inevitable, but
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this merits investigation before committing to a particular strategy.

5.6 Putting It All Together

This chapter presents the key component of my programme: the automagic generator that turns

a protocol description written in an embedded domain-specific language into the code ready for

integration into a production operating system as well as specific issues related to such integration.

I created this code for the USB protocol, and my work to integrate this implementation with the

FreeBSD kernel. It now remains to evaluate the resultant system according to the desiderata enu-

merated in Section 1.2; namely, that the resulting system preserves the protocol functionality and

adds the ability to filter out malicious traffic. This is the topic of the next chapter.

5.7 Realization

The mechanisms I outline in this chapter are more involved, complex, and far-reaching than those

in previous chapters and therefore the responsibility for implementing them is more distributed.

The definition of the formal protocol specification itself is best left to the group creating the refer-

ence implementation of the protocol. This group could also implement the code that generates all

the operating-system agnostic functions: the message verifier, accessors, pretty-printers, and user-

defined policy engine. (Should either of these not happen, one strength of the design is that any

entity could produce these components and share them with all interested parties.) Then it is up

to the maintainers of individual operating systems to implement the shim that bridges their kernel

with the generated code.

Finally come the user-defined policies. With support built into the implementations as generated,

the question becomes: who writes the policies and who distributes them? The first point to consider

is that policies could serve multiple purposes. Some organizations could seek to limit the types

of, e.g., USB devices that can be connected to computers under their control, in which case the

orgnization’s IT department would be responsible for devising and distributing their set of preferred

policies. On the other hand, policies that protect against particular vulnerabilites could be written

by the discoverer of the vulnerability or the vendor of the vulnerable component. In either case, the

policy would be distributed via some public mechanism such as the Web or an e-mail list and the

user would be responsible for enabling it on their individual machine.
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Chapter 6

Evaluation

The USB firewall described in the previous chapter is all well and good, but how do we know it

performs as advertised? That is, how do we know that the generated parser is actually effective?

The following questions examine the various angles of effectiveness of a firewall.

1. Is the firewall stable? Does it handle the USB protocol without crashing? Inserting more code

into the kernel runs the risk of adding points of instability that an attacker could exploit to

deny access to the rest of the machine. We must show that the firewall does not crash in the

face of both legitimate and malformed USB traffic.

2. Does the firewall examine every USB frame received by the computer? If there exist avenues

by which frames can reach the kernel innards without being inspected by the firewall, the

firewall is not doing its job. We must show that all frames pass through the policy. (This is

the notion of complete mediation, described in Chapter 1.)

3. In performing its job, does the firewall incur a reasonable amount of overhead? One of the

claims made in Chapter 1 is that the generated code would be sufficiently performant to justify

its inclusion in a production-quality kernel: we must show that.

4. Finally, and most significantly, does the firewall prevent malformed USB frames from entering

the kernel? That is, does the firewall actually do the job it claims to do?

This chapter will answer these questions in the context of the USB firewall I implemented.
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host (Linux) Facedancer target (FreeBSD)

Figure 6.1: Diagram of testing setup. Software (in this case, umap) running on the “testing host”

(left) causes the Facedancer to emulate a variety of USB devices when connected to the “target”

(right).

6.1 Methodology

The primary tool I used to test my USB firewall was umap [21], a USB host security assessment

tool designed to test a broad cross-section of USB devices and, by extension, a broad cross-section

of the USB protocol itself. Written by Andy Davis of NCC Group, it uses the Facedancer hardware

described in Chapter 3 to emulate a wide variety of devices, both well-behaving and otherwise. The

umap application itself is built on top of the software stack I wrote and described in Chapter 3. To

the best of my knowledge, umap represents the state-of-the-art in testing the security of host-side

USB implementations.

The umap test suite contains the largest set of known USB vulnerability triggers. All told, I ran

nearly its 500 different vulnerability triggers against my USB parser/firewall; a finer breakdown of

the tests is shown in Table 6.1.

Figure 6.1 shows the testing setup. The Facedancer, which umap uses to physically inject its

stimuli onto the USB, has two ports: “host” and “target”. The former is connected to a USB port

on the machine controlling the test and the later is connected to a USB port on the machine being

tested. When these connections are made, the host detects a standard USB serial device whereas

the target detects no device at all. Only when software (e.g., umap) is run on the host that causes

the Facedancer to emulate a particular device does the target actually see a device connect. Once

that happens, the software running on the host controls nearly all aspects of the emulated device’s

behavior (exceptions discussed below).

Using this setup, I first identified the drivers supported by both umap and FreeBSD and then I

tested the intersection of those sets.

6.1.1 Identifying testable drivers

The umap software package supports a variety of testing modes. I first ran it in “identification”

mode to determine which devices were supported by the FreeBSD target so that I could focus on
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\$ ./umap.py -P /dev/ttyUSB0 -i

01:01:00 - Audio : Audio control : PR Protocol undefined

** SUPPORTED **

01:02:00 - Audio : Audio streaming : PR Protocol undefined

** SUPPORTED **

02:02:01 - CDC Control : Abstract Control Model : AT commands V.250

02:03: ff - CDC Control : Telephone Control Model : Vendor specific

02:06:00 - CDC Control : Ethernet Networking Control Model : No \

class -specific protocol required

03:00:00 - Human Interface Device : No subclass : None

network socket=False

** SUPPORTED **

06:01:01 - Image : Still image capture device : Bulk -only protocol

07:01:02 - Printer : Default : Bidirectional interface

** SUPPORTED ???**

08:06:50 - Mass Storage : SCSI : BBB

** SUPPORTED **

09:00:00 - Hub : Default : Default

** SUPPORTED **

0a:00:00 - CDC Data : Default : Default

0b:00:00 - Smart Card : Default : Default

Figure 6.2: Output of umap running in identification mode. (Slightly edited to remove umap banner

and long lines.) Of the device classes testable by umap, five are supported in the FreeBSD target:

audio control, audio stream, human interface devices (mice and keyboards), printers, mass storage

(e.g., thumbdrives), and hubs.

these in the remainder of my testing. Figure 6.2 shows the output of this mode.

First and foremost, this output demonstrates that the kernel on the machine being tested did

not ever crash while being probed by umap—despite umap being a tool explicitly designed to cause

such crashes! This is a first step to showing that the firewall is stable in the face of real USB traffic.

Secondly, the output tells us that, of the many device classes supported by umap, six are also

supported by FreeBSD and are therefore available to fuzz: audio control, audio streaming, human

interface devices (e.g., mice and keyboards), printers, mass storage (e.g., thumbdrives), and hubs.

6.1.2 Fuzz-testing individual drivers

With these six device classes in hand, I proceeded to test each individually using umap’s fuzz-testing

feature. This feature causes the Facedancer to emulate a particular device and, as part of the USB
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enumeration phase, send one frame that pushes the bounds of the specification. For instance, where

the kernel might expect to receive an 8-bit field that contains 0x02, umap would perform one test

where it sends 0x00 in this field and another where it sends 0xFF, the idea being to verify that the

kernel safely handles extreme cases.

For each device class, umap supports a large number of such tests: I ran them all. The USB fire-

wall was configured with no user-policy rules; only the generated validation functions were invoked.

Figure 6.3 shows a sample of the output from a single fuzz-testing run. Each line represents a single

test, the nature of which is described on the far right.

I ran into an interesting issue when using umap to test human interface devices (HID, class

03:00:00 from Figure 6.2). The firewall successfully recognizes and rejects umap’s “Configura-

tion bDescriptorType null” test, in which the emulated device sends a configuration descriptor with

the bDescriptorType field set to 0x00. But because this malformed descriptor is silently rejected,

FreeBSD continues to wait for a correct response, eventually timing out. When performed repeat-

edly, this test causes some state within the FreeBSD kernel to become sufficiently out of whack that

no HID device will be successfully recognized, whether it conforms to the protocol or not. This sug-

gests there is a bug within the FreeBSD kernel that allows for a denial-of-service when performing

incomplete enumeration of HID devices. Further umap tests of the HID device class exhibit this

behavior as well, so I elided them from the test suite.

Thus, rather than undermining my methodology, this “failure” in fact highlights a potentially

significant flaw in the underlying operating system which relies on rejection by timeout rather than

rejection by content. While developing this behavior into a proof-of-concept exploit is beyond the

scope of this thesis, the root cause is likely non-trivial. The fact remains, however: my system

discovered this bug.

Table 6.1 summarizes the results of the fuzzing runs: all tests over all five remaining device

classes, totalling 483 different tests and over 6000 frames sent by umap to the FreeBSD target being

tested.

Once again, during all this testing, the firewall stayed stable. This is particularly notable because

these tests are actively probing the dark, dirty corners of device behavior. If the firewall does not

crash under these circumstances, it is highly unlikely that well-behaved devices will cause it to

crash. Therefore, considering that umap is an industry-standard tool for testing the stability of

USB implementations, my testing suggests the firewall is stable for production use.

This claim of stability might seem unreasonable in the face of the HID behavior described at the

beginning of this section. I contend it is eminently reasonable: the firewall itself did the correct thing
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\$ ./umap.py -P /dev/ttyUSB0 -f 01:01:00:A

Fuzzing:

01:01:00 - Audio : Audio control : PR Protocol undefined

** SUPPORTED **

Enumeration phase ...

2015/11/21 19:40:27 Enumeration phase: 0000 - Device_bLength_null

2015/11/21 19:40:34 Enumeration phase: 0001 - Device_bLength_lower

2015/11/21 19:40:41 Enumeration phase: 0002 - Device_bLength_higher

2015/11/21 19:40:48 Enumeration phase: 0003 - Device_bLength_max

2015/11/21 19:40:56 Enumeration phase: 0004 - \

Device_bDescriptorType_null

2015/11/21 19:41:06 Enumeration phase: 0005 - \

Device_bDescriptorType_invalid

2015/11/21 19:41:17 Enumeration phase: 0006 - \

Device_bMaxPacketSize0_null

2015/11/21 19:41:25 Enumeration phase: 0007 - \

Device_bMaxPacketSize0_max

2015/11/21 19:41:32 Enumeration phase: 0008 - \

String_Manufacturer_overflow

2015/11/21 19:41:39 Enumeration phase: 0009 - \

String_Product_overflow

...

Figure 6.3: Sample output from umap fuzzing Audio Control devices. The “A” in the final command-

line argument causes umap to run “all” tests. The umap banner has been removed and the output

has been truncated (full output runs 119 lines and is summarized in Table 6.1).

USB identifier device type tests frames sent

01:01:00 Audio control 94 1873

01:02:00 Audio streaming 94 1873

07:01:02 Printer 131 1735

08:06:50 Mass storage 101 1506

09:00:00 Hub 63 898

total 483 6397

Table 6.1: Data sent by umap fuzz-testing.
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test sent received missed frames

Audio control 1873 1961 0

Audio streaming 1873 1961 0

Printer 1735 1860 0

Mass Storage 1506 1760 0

Hub 898 955 0

Table 6.2: Complete mediation test results. For each test, shows number of USB frames sent by

umap and the number of frames processed by the USB firewall of the machine being tested.

under those circumstances whereas the kernel code being protected failed to do the correct thing

upon rejection of the frame. Note that all frames are rejected using the same procedure: the “error”

field of the USB transfer structure is set to 1. During USB HID device enumeration, the kernel

seems to incorrectly handle this return value; whereas it correctly recovers from all other rejections.

While certainly necessary, this declaration is not sufficient to endorse the firewall entirely. It

remains to show that it is effective at protecting against the evils it claims to deter.

6.2 Complete Mediation

The first step in showing that the firewall protects against such evils is to show that it actively

examines all the data that flows over the bus; that is, that it implements complete mediation.

To empirically test whether every single frame sent by umap is evaluated by the USB firewall, I

configured umap to print a message whenever it sends a frame and I instrumented and configured

the firewall to print a message whenever it evaluates a frame. I configured both to also print the

raw bytes of the frame being sent or evaluated. Then I ran the entire fuzz-testing suite described in

Section 6.1 and gathered the results shown in Table 6.2.

The first two numerical columns tell a bizarre story: how is the firewall receiving more frames

than are being sent? The answer lies in the MAXUSB controller chip that sits on the Facedancer

board itself, which automatically responds to some USB requests without consulting the software

stack. For instance, the Facedancer automatically responds to the SET ADDRESS request and thus

such a request/response pair shows up in the kernel logs on the FreeBSD target being tested, but

the umap log only shows the request being received.

Since I had logged the raw bytes being sent by umap and received by the firewall, I was able to
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Figure 6.4: To capture USB data sent by the Facedancer, I connected the Beagle USB 12 Protocol

Analyzer as a pass-through device between the Facedancer and the FreeBSD target; then I connected

the Analysis port of the Beagle back to the testing host to capture packets.

check the differences in actual data being sent and received. Every single frame sent by umap was

analyzed by the firewall. No exceptions. Some frames were received that the umap software did not

send; those all fell into the category of automatic responses generated by the MAXUSB chip on the

Facedancer board. But not one frame sent by umap evaded the firewall’s oversight.

A More Rigorous Test While these results are encouraging, they are not conclusive. To make

them conclusive, I used a Beagle USB 12 Protocol Analyzer [5] from Total Phase to capture all USB

data sent by umap to the FreeBSD target. The Beagle USB 12 sits between the Facedancer and the

target and mirrors all USB data to the computer connected to its “Analysis” port (see Figure 6.4). I

re-ran the umap fuzz tests for the five device classes shown above and recorded all packets observed

by the Beagle and all packets mediated by the USB firewall on the FreeBSD target.

As in the informal testing described above, there were some discrepancies between the sequence

of USB packets reported by the Beagle and the set of USB packets mediated by the firewall. These

discrepancies fell into two categories:

1. When the host (i.e., the FreeBSD target) queries the device (i.e., the Facedancer) and the latter

responds with a bare acknowledgement, this acknowledgement appears within the kernel as

a message whose contents match the original query. Thus, the firewall will report repeated

messages that mirror the preceding message and the Beagle will report empty messages.

2. Some communications span multiple USB packets. These are reported by the Beagle as sepa-

rate, whereas the USB controller on the FreeBSD host reassembles them before they are passed
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CPU Intel Core i7-4600U

cores 4

clockspeed 2.1 GHz

memory 12 GB

(a) Linux test host.

CPU Intel Core 2 Duo U7300

cores 2

clockspeed 1.3 GHz

memory 3 GB

(b) FreeBSD test target.

Table 6.3: Specifications of machines used for performance testing (Section 6.3).

to the kernel for processing. Thus, the record of USB messages seen by the Beagle sometimes

contains, e.g., three messages whose contents, when concatenated, match the corresponding

single message reported by the firewall.

According to my testing, no other discrepancies exist between USB data seen by the Beagle

protocol analyzer and the USB firewall. In light of this analysis, my testing suggests that the USB

firewall I have integrated into FreeBSD satisfies the complete mediation requirement as laid out at

the beginning of this chapter.

6.3 Performance

In addition to being stable and enforcing complete mediation, the firewall must not incur undue

performance penalties. To measure the additional processing time induced by the presence of the

firewall, I again used the umap fuzz-testing feature. I modified umap to produce as little output

as possible and I turned off all logging in the USB firewall. I then ran each test suite three times,

rebooting between each test. I used the time(1) program to measure the duration of each fuzz testing

run. The specifications of the machines I used for this are shown in Table 6.3; the results for each

set of test suite runs are shown in Table 6.4.

These numbers tell a very strange story. For audio control, audio streaming, and mass storage

devices, the penalty incurred by activating the firewall is minimal, whereas the effect on printers is

moderate and the effect on hubs is significant. Yet it is curious that the disparities are so unevenly

spread among device classes; the abysmal performance of the hub class is particularly worrisome.

I investigated this behavior and found that, when the firewall was disabled, FreeBSD noticed

the erroneous value sent by umap and immediately disconnected the device. By contrast, when I

enabled the firewall, the firewall correctly rejected the erroneous frames, but FreeBSD continued to

poll the device twice more, with one second between each attempt, until it gave up and disconnected
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test disabled enabled impact

Audio control 681 s 690 s 1.3%

Audio streaming 681 s 690 s 1.3%

Printer 459 s 526 s 14.5%

Mass Storage 649 s 668 s 2.9%

Hub 338 s 477 s 41.1%

Table 6.4: Results of USB firewall performance tests. Columns show measured duration of fuzz-

testing suite for each device class, averaged over three runs, first with the firewall disabled, then

with the firewall enabled, and the measured impact of enabling the firewall as a percentage.

the device. This mirrors the situation I discovered with human-interface devices (described in

Section 6.1.2).

It is important to note here that the firewall is doing its job! One could argue that, when the

firewall is disabled, FreeBSD is being overzealous in disconnecting the hub immediately on detecting

an error. Alternatively, one could argue that this highlights the need for a more nuanced interface

between firewall and kernel—that the current firewall is too simplistic in its binary choice of either

accept or reject. This work does not attempt to make philosophical judgments along those lines,

but further research into the “correct” abstraction to present seems worthwhile. We note that these

abstractions come to the forefront due to the integration between the firewall and the underlying

operating system—which exposes non-trivial architectural features.

Common-case Performance The previous section describes the minimal overhead incurred when

the firewall is presented with invalid traffic. One hopes, however, that most of the traffic examined

by the firewall will be benign, therefore I also measured the impact of the firewall on legitimate

traffic. I used the singlestreamread workload from the FileBench benchmark suite [60] to measure

throughput of a USB mass storage device. I ran 5 experiment each with the firewall enabled and

disabled. The results are shown in Table 6.5.

Oddly, FileBench reports that performance is better when the firewall is enabled compared to

when it is disabled. The numbers are so close, however, that there is essentially no difference

between the two, and thus I claim that the automagically-generated USB firewall does not incur an

unreasonable performance penalty in the face of legitimate USB traffic.

As a final point relative to performance, I should point out that none of the generated code is the
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operations ops/sec mb/sec ms/op

Firewall disabled 32520 542 538 1.8

Firewall enabled 32725 543 542 1.8

Table 6.5: Results of running FileBench’s singlestreamread workload on a USB mass storage

device, with the firewall enabled and disabled.

least bit optimized. It could almost certainly be made far more efficient. Acceptable performance is

the goal of this proof-of-concept; exceptional performance can come later.

6.4 Effectiveness

The final criteria by which the effectiveness of the firewall should be judged is whether it successfully

prevents “bad” frames from entering the kernel. But what does “bad” mean in this context? Cer-

tainly, we wish to prevent frames that deviate from the protocol specification, but there are other

circumstances to consider as well. What if the kernel incorrectly handles a frame that is correct

according to the specification? Many of the fuzz tests and known-vulnerability tests performed by

umap test precisely this possibility. Furthermore, what if a system administrator wants to prevent,

e.g., thumbdrives from working on a particular machine?

For example, the USB 2.0 specification decrees that device addresses fall within the range 0–127.

Since this is an 8-bit field, a malicious device could conceivably set it to 255 (one of the umap

tests does so) and the kernel should reject it without blinking an eye. Detecting this deviation

seems outside the realm of the parser because it deals with the contents of the field rather than

its boundaries: the specification says the address is an 8-bit field and the parser is (or should be)

responsible for taking 8 bits and making a number out of them. Is is not, however, out of the realm

of a firewall, nor should it be. In fact, it is precisely the purview of the user-policy feature described

in Section 5.3. Thus, to enforce the condition that all device addresses fall within the correct range,

one could create and enable a user policy including the rule

Reject SET_ADDRESS where address > 127

This policy is clearly a mitigation, not a fix for the particular underlying vulnerability. A fix

would eliminate the vulnerability by inserting the check into the operating system code proper;

replacing the kernel of a running system, however, has significant operational costs—not to mention

the inevitable delay of vendor patch releases. Thus, a mitigation that prevents an exploit payload
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from getting to the vulnerable code has great operational value, even though it does not fix the root

problem itself. Firewalls were invented as precisly such mitigation tools. They were followed by

intrustion-prevention systems (IPS) [2], which continue to evolve to this day.

How, then, can one evaluate the effectiveness of mitigation? While certainly useful, the vulnerability-

trigger-based testing enabled by umap and described earlier in this chapter cannot test every possible

codepath for the absence of bugs. Since no exhaustive description or model of all bugs is possible, we

can only evaluate the effects of a particular mitigation—such as a syntax-based filtering policy—in

terms of what we know about the prevalence of bugs in the wild. A useful mitigation should be

able to address non-trivial classes of these bugs. That is to say, we need some indication of ground

truth with respect to bugs in deployed USB software. For this, we must turn to NIST’s National

Vulnerability Database (NVD), which catalogs disclosed vulnerabilities as “Common Vulnerability

and Exposure” (CVE) records.

My method is as follows. Taking the CVE database as the ground truth of USB vulnerabilities in

the wild, I surveyed all reports from the past 10 years (January 2005 through December 2015) that

contained the string “usb” and classified them according to their likely relation to errors in parsing

syntax. I assume that such vulnerabilities can be mitigated by a syntax-based parser/firewall policy

filter while others are unlikely to be so mitigated. My analysis shows that the mitigated class is

certainly non-trivial and likely dominant.

Therefore, for each of these 100 vulnerabilities, I reviewed its details and attempted to categorize

whether and how the USB protection framework I created could protect against it. This is, admit-

tedly, an imprecise exercise: many of the vulnerability disclosures do not provide sufficient detail

to conclusively deduce their cause, which makes it difficult to make substantive claims about them.

Even the disclosures relatively devoid of details provide some hints, however. Table 6.6 summarizes

the five vulnerability categories I settled on and the vulnerabilities I assigned to each.

6.5 Categories

As I read through the vulnerablity disclosure reports, I assigned each to a category indicating how

the USB protection framework described in this dissertation would affect it. I began with a “yes”

or “no” classification but, as I proceeded, I was able to produce more nuanced classes, eventually

resulting in five different categorizations: unrelated, unclear, mitigated by policy, mitigated by design

pattern, and inherently averted.

Appendix A contains tables that list all vulnerabilities in all categories, their summaries, and a
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Class Count Vulnerabilities

Unrelated 45 CVE-2005-2879 CVE-2005-3055 CVE-2005-4417 CVE-2006-2147

CVE-2006-2936 CVE-2006-6441 CVE-2006-6881 CVE-2007-0734

CVE-2007-0822 CVE-2007-2023 CVE-2007-4785 CVE-2007-5093

CVE-2007-5460 CVE-2008-0708 CVE-2008-0951 CVE-2008-2235

CVE-2008-3150 CVE-2008-3605 CVE-2009-0243 CVE-2009-2834

CVE-2010-0103 CVE-2010-0221 CVE-2010-0222 CVE-2010-0223

CVE-2010-0224 CVE-2010-0225 CVE-2010-0226 CVE-2010-0227

CVE-2010-0228 CVE-2010-0229 CVE-2011-1828 CVE-2012-2693

CVE-2012-6314 CVE-2013-1063 CVE-2013-1774 CVE-2013-3666

CVE-2013-5166 CVE-2014-0860 CVE-2014-2388 CVE-2014-5263

CVE-2014-9596 CVE-2015-1319 CVE-2015-3320 CVE-2015-5960

CVE-2015-6520

Unclear 12 CVE-2005-4788 CVE-2007-3513 CVE-2009-0282 CVE-2010-1140

CVE-2010-3542 CVE-2010-4656 CVE-2011-2295 CVE-2013-0981

CVE-2014-7888 CVE-2014-7893 CVE-2014-7894 CVE-2014-7895

Mitigated by

Policy

27 CVE-2005-2388 CVE-2005-4789 CVE-2006-1368 CVE-2007-0728

CVE-2007-6439 CVE-2008-0718 CVE-2009-2807 CVE-2009-2834

CVE-2010-1460 CVE-2010-4530 CVE-2011-0638 CVE-2011-0639

CVE-2011-0640 CVE-2012-4736 CVE-2013-0923 CVE-2013-1860

CVE-2013-2058 CVE-2013-4541 CVE-2013-5192 CVE-2013-5864

CVE-2014-1287 CVE-2014-3185 CVE-2014-3461 CVE-2014-4115

CVE-2015-1769 CVE-2015-5257 CVE-2015-7833

Mitigated by

Design Pattern

3 CVE-2010-1083 CVE-2010-3298 CVE-2010-4074

Inherently

Averted

14 CVE-2006-2935 CVE-2006-4459 CVE-2006-5972 CVE-2008-4680

CVE-2010-0038 CVE-2010-0297 CVE-2011-0712 CVE-2012-3723

CVE-2012-6053 CVE-2013-1285 CVE-2013-1286 CVE-2013-1287

CVE-2013-3200 CVE-2014-8884

Table 6.6: Classification of USB mentions in CVE incident reports into how they might be affected

by the USB firewall I created.
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justification for their categorization.

Unrelated Almost half of the vulnerabilities turned up by the search only incidentally touched on

USB or didn’t relate to data flowing over the bus. For example, CVE-2015-5960 describes an attack

whereby a user can bypass Firefox OS permissions and access attached USB mass storage devices.

This is not a failure to correctly handle data on the bus, but rather a permissions issue elsewhere in

the kernel. Likewise, CVE-2014-5263 describes a failure to correctly terminate a linked list that just

happened to be in the USB code. Table A.1 summarizes the vulnerabilities I classified as Unrelated.

Unclear I was unable to categorize about 10% of the USB-related vulnerabilities in my search.

CVE-2013-0981, for instance, allows kernel pointers to be modified from userspace, but the disclosure

doesn’t say whether the userspace application can be affected by traffic from the USB device. And

in a shining example of transparency, Oracle declines to specify any details in their vulnerability

“disclosures”, as exemplified by CVE-2011-2295. Table A.2 summarizes the vulnerabilities I classified

as Unclear.

Mitigated by Policy I concluded that nearly one-third of the vulnerabilities could be mitigated

by policy. That is, one could write a policy rule that would prevent the USB traffic that exploits

the bug. For instance, CVE-2015-7833 is tickled “via a nonzero bInterfaceNumber value in a USB

device descriptor”; to prevent such a descriptor from reaching the vulnerable code, one could write

a rule that matches device descriptors with a bInterfaceNumber field of zero and, upon a match,

rejects the device. Another vulnerability, CVE-2013-5192, is triggered when the USB hub controller

in OS X is presented with a request containing a particularly-crafted port number; in this case, one

could write a rule that matches and rejects requests with that port number. Table A.3 summarizes

the vulnerabilities I classified as Mitigated by Policy.

Mitigated by Design Pattern Three vulnerabilities resulted from deviations from sound pro-

gramming practices; when sound practices are encoded once in the autogeneration code, such bugs

disappear everywhere. Instances include failure to properly initialize structure members (CVE-

2010-3298 and CVE-2010-4074) and failure to clear transfer buffers before returning to userspace

(CVE-2010-1083). Table A.4 summarizes the vulnerabilities I classified as Mitigated by Design

Pattern.
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Inherently Averted Finally, almost 15% of the vulnerabilities were due to mistakes in interpret-

ing the structure of the USB messages themselves. Most of these were either buffer overflows that

resulted in arbitrary code execution or memory corruption. In both cases, I assumed (dangerously,

I know) that some field of the USB descriptor indicating a length did not match the actual length of

data provided in the packet. In the generated enforcement code, as long as the original specification

of the message is correct, this cannot happen: if one field specifies the length of another, this is

verified. Table A.5 summarizes the vulnerabilities I classified as Inherently Averted.

6.6 Results

Of all the vulnerabilities I analyzed, the three categories that bear discussion are those that are

inherently averted, those that are mitigated by pattern, and those that are mitigated by policy. I

discuss each in turn.

The inherently-averted vulnerabilities are the most straightforward: by clearly defining the struc-

ture of messages and dependencies between fields (e.g., that the data stage has a length equal to

the value of the “wLength” field) and automagically generating the code to enforce them, an entire

class of vulnerabilities can be avoided. The autogeneration code only needs to be audited once and

all the generated code can be trusted (especially if it is formally verified), whereas the trustworthi-

ness of manually-written code scattered throughout the kernel is anybody’s guess. Furthermore, the

declarative nature of the protocol specification language makes auditing much easier than having to

dig through procedural code, not least because it more directly matches the form of the published

(prose) specification.

My favorite class is the vulnerabilities mitigated by pattern, because here the autogeneration code

enshrines good programming practices into the autogeneration framework and thus ensures their

proliferation. By causing the autogenerated code to always clear buffers beforehand (for example)

then we can depend on buffers to not contain crufty data that might interfere with the computation

at hand. Additionally, should new, better practices be developed, we need only incorporate them into

the autogeneration framework, regenerate and recompile the code, and suddenly every applicable

instance that could be improved, has been improved.

Vulnerabilities mitigated by policy are perhaps the trickiest to appreciate. At first blush, it seems

they are not terribly noteworthy: why is being able to write a policy that protects against a vulner-

ability superior to just fixing the vulnerability itself? The answer lies in practical issues surrounding

patching live systems. Distributing and activating a single policy rule to enable protection is much
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less disruptive than shipping a newly-compiled binary (still less a kernel binary!) containing the fix.

All told, these three classes of vulnerabilities—all of which are addressed, one way or another, by

the autogenerated code presented in this dissertation—make up nearly half of all the USB-related

vulnerabilities I found in my search, even accounting for the fact that many of the “unrelated”

vulnerabilities only coincidentally mentioned USB.

6.7 Summary

This chapter described the results of evaluating my generated parser/firewall in terms of stability,

performance costs, ability to mediate malicious traffic, and potential to mitigate USB bugs in the

wild (based on the available CVE information). My evaluation, conducted with the state-of-the-art

USB security testing suite umap, empirically demonstrates both stability, complete mediation, and

reasonable performance for all vulnerability triggers and trigger classes known to date. Additionally,

an analysis of available CVE information suggests that large non-trivial classes of bugs in the wild

can indeed be mitigated with simple and—importantly—easy to deploy user-defined policies for

the firewall. Notably, these mitigations can be deployed immediately and simply on systems which

integrate such a firewall, in stark contrast to vendor patches which must be written and tested, and

generally require a service interruption to deploy.
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Chapter 7

Conclusion

This thesis described the methodology by which I produced a parser/firewall for the USB protocol

and integrated it with the FreeBSD operating system, as well as the support software I wrote and

explorations I performed leading up to the production of the automagically generated parser/firewall

system.

I began with a presentation of the software I wrote to drive the Facedancer board that enables

the exploration of USB attack surfaces (Chapter 3). This software mirrors the structure of the USB

stack itself and is therefore easier to adapt to new uses, which is a vital feature for exploring attack

surfaces. Additionally, the software I wrote was used as the basis for umap, the industry-standard

test suite for analyzing the security of USB hosts.

Next, I described the instrumentation framework I applied to the USB subsystem of the FreeBSD

kernel (Chapter 4), which allows for observation of a running system at an unprecedented granularity.

I showed how I used this framework to measure what percentage of basic blocks were traversed under

normal system operation, how I used it to identify where to place enforcement hooks, and how to

analyze interactions between software modules.

Then, I presented the methodology I developed to create the USB parser/firewall (Chapter 5).

I began with a description of the protocol written in Haskell and automagically generated the data

structures, validation functions, printing functions, and accessor functions necessary in a parser for

that protocol. I integrated these all into FreeBSD’s existing USB stack with the help of a thin

translation layer—the idea being that integrating with a different operating system would require

only a different translation layer.

I used umap, the comprehensive USB security testing suite, to empirically evaluate the stability,
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peformance, and efficacy of my parser/firewall (Chapter 6). I showed that every frame sent by umap

was evaluated by the firewall, that the firewall never crashed, and that it was able to handle a variety

of user-specified policies. These user policies allow an administrator to respond much more quickly

to security issues in the underlying system than the normal process of waiting for and deploying a

vendor patch. I showed that, through a combination of beneficial design patterns and user policies,

it is likely that a large quantity of known USB bugs are mitigated by my parser/firewall. More

importantly, I showed how these features of my parser/firewall mitigate entire classes of bugs as

delineated by industry-standard testing tools and processes.

7.1 Future Work

There are a number of directions this work could take from here.

First and foremost, I would like to apply the full seL4-style formal verification process to the

autogenerated code. Once that is complete, I would like to work towards getting the code accepted

by the FreeBSD kernel maintainers. Additionally, I would like to perform more rigorous testing

for complete mediation. (Sadly, the Saturn project [1] for Linux does not have a FreeBSD analog;

perhaps that would make a good research project.)

While the Facedancer software framework I wrote is clearly useful—as evidenced by umap built

on it—I would like to investigate the feasibility of autogenerating that as well. The basic-block in-

strumentation I added to the FreeBSD kernel was tedious and screamed for automation: I would like

to build such a feature as a compiler plug-in that inserts basic-block instrumentation automatically.
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Appendix A

CVE Classifications

This appendix contains the results of my USB-related CVE classification. There is one table for

each classification category: unrelated, unclear, mitigated by policy, mitigated by design pattern,

and inherently averted. Each table lists the CVE identifier, the official summary, and the reason I

chose to classify it as I did.

Rather than provide citations for each individual CVE, the reader is referred to the main portal

for the National Vulnerability Database [59], whence once can search for any CVE.

Table A.1: Vulnerabilities classified as Unrelated.

CVE ID Summary Justification

CVE-2010-1460 The IBM BladeCenter with Advanced

Management Module (AMM) firmware be-

fore bpet50g does not properly perform in-

terrupt sharing for USB and iSCSI, which

allows remote attackers to cause a denial of

service (management module reboot) via

TCP packets with malformed application

data.

hardware interrupts are be-

low the level of abstraction of

the firewall/parser

Cont’d
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Table A.1 – Cont’d

CVE ID Summary Justification

CVE-2007-0728 Unspecified vulnerability in Apple Mac OS

X 10.3.9 and 10.4 through 10.4.8 creates

files insecurely while initializing a USB

printer, which allows local users to create

or overwrite arbitrary files.

seems unrelated, unless “lo-

cal user” means “someone

who can insert a potentially-

malicious USB device”, in

which case this could likely be

averted by policy

CVE-2013-0981 The IOUSBDeviceFamily driver in the

USB implementation in the kernel in Ap-

ple iOS before 6.1.3 and Apple TV be-

fore 5.2.1 accesses pipe object pointers that

originated in userspace, which allows local

users to gain privileges via crafted code.

seems related to userland

code rather than data arriv-

ing over USB

CVE-2014-7888 The OLE Point of Sale (OPOS) drivers be-

fore 1.13.003 on HP Point of Sale Win-

dows PCs allow remote attackers to ex-

ecute arbitrary code via vectors involv-

ing OPOSMICR.ocx for PUSB Thermal

Receipt printers, SerialUSB Thermal Re-

ceipt printers, Hybrid POS printers with

MICR, Value PUSB Receipt printers, and

Value Serial/USB Receipt printers, aka

ZDI-CAN-2512.

seems related to other kernel

drivers rather than data ar-

riving over USB

Cont’d
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Table A.1 – Cont’d

CVE ID Summary Justification

CVE-2014-7893 The OLE Point of Sale (OPOS) drivers be-

fore 1.13.003 on HP Point of Sale Win-

dows PCs allow remote attackers to exe-

cute arbitrary code via vectors involving

OPOSCheckScanner.ocx for PUSB Ther-

mal Receipt printers, SerialUSB Thermal

Receipt printers, Hybrid POS printers with

MICR, Value PUSB Receipt printers, and

Value Serial/USB Receipt printers, aka

ZDI-CAN-2507.

seems related to other kernel

drivers rather than data ar-

riving over USB

CVE-2014-7894 The OLE Point of Sale (OPOS) drivers be-

fore 1.13.003 on HP Point of Sale Win-

dows PCs allow remote attackers to exe-

cute arbitrary code via vectors involving

OPOSPOSPrinter.ocx for PUSB Thermal

Receipt printers, SerialUSB Thermal Re-

ceipt printers, Hybrid POS printers with

MICR, Value PUSB Receipt printers, and

Value Serial/USB Receipt printers, aka

ZDI-CAN-2506.

seems related to other kernel

drivers rather than data ar-

riving over USB

Cont’d

71



Table A.1 – Cont’d

CVE ID Summary Justification

CVE-2014-7895 The OLE Point of Sale (OPOS) drivers be-

fore 1.13.003 on HP Point of Sale Win-

dows PCs allow remote attackers to ex-

ecute arbitrary code via vectors involv-

ing OPOSCashDrawer.ocx for PUSB Ther-

mal Receipt printers, SerialUSB Ther-

mal Receipt printers, Hybrid POS printers

with MICR, Value PUSB Receipt print-

ers, Value Serial/USB Receipt printers,

and USB Standard Duty cash drawers, aka

ZDI-CAN-2505.

seems related to other kernel

drivers rather than data ar-

riving over USB

CVE-2005-2879 Advansysperu Software USB Lock Auto-

Protect (AP) 1.5 uses a weak encryption

scheme to encrypt passwords, which allows

local users to gain sensitive information

and bypass USB interface protection.

encryption is orthogonal to

parsing

CVE-2005-3055 Linux kernel 2.6.8 to 2.6.14-rc2 allows lo-

cal users to cause a denial of service (kernel

OOPS) via a userspace process that issues

a USB Request Block (URB) to a USB de-

vice and terminates before the URB is fin-

ished, which leads to a stale pointer refer-

ence.

unrelated to data arriving

over USB

Cont’d
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Table A.1 – Cont’d

CVE ID Summary Justification

CVE-2005-4417 The default configuration of Widcomm

Bluetooth for Windows (BTW) 4.0.1.1500

and earlier, as installed on Belkin

Bluetooth Software 1.4.2 Build 10 and

ANYCOM Blue USB-130-250 Software

4.0.1.1500, and possibly other devices, sets

null Authentication and Authorization val-

ues, which allows remote attackers to send

arbitrary audio and possibly eavesdrop us-

ing the microphone via the Hands Free Au-

dio Gateway and Headset profile.

unrelated to data arriving

over USB

CVE-2006-2147 resmgrd in resmgr for SUSE Linux and

other distributions does not properly han-

dle when access to a USB device is granted

by using “usb:<bus>,<dev>” notation,

which grants access to all USB devices and

allows local users to bypass intended re-

strictions. NOTE: this is a different vul-

nerability than CVE-2005-4788.

unrelated to data arriving

over USB

CVE-2006-2936 The ftdi sio driver (usb/serial/ftdi sio.c) in

Linux kernel 2.6.x up to 2.6.17, and pos-

sibly later versions, allows local users to

cause a denial of service (memory con-

sumption) by writing more data to the se-

rial port than the hardware can handle,

which causes the data to be queued.

unrelated to data arriving

over USB

Cont’d
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CVE ID Summary Justification

CVE-2006-6441 Xerox WorkCentre and WorkCentre

Pro before 12.050.03.000, 13.x be-

fore 13.050.03.000, and 14.x before

14.050.03.000 allows local users to by-

pass security controls and boot Alchemy

via certain alternate boot media, as

demonstrated by a USB thumb drive.

system misconfiguration is

unrelated to data arriving

over USB

CVE-2007-0822 umount, when running with the Linux

2.6.15 kernel on Slackware Linux 10.2, al-

lows local users to trigger a NULL derefer-

ence and application crash by invoking the

program with a pathname for a USB pen

drive that was mounted and then physi-

cally removed, which might allow the users

to obtain sensitive information, including

core file contents.

unrelated to data arriving

over USB

CVE-2007-0734 fsck, as used by the AirPort Disk feature

of the AirPort Extreme Base Station with

802.11n before Firmware Update 7.1, and

by Apple Mac OS X 10.3.9 through 10.4.9,

does not properly enforce password protec-

tion of a USB hard drive, which allows

context-dependent attackers to list arbi-

trary directories or execute arbitrary code,

resulting from memory corruption.

unrelated to data arriving

over USB

Cont’d
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CVE ID Summary Justification

CVE-2007-2023 USB20.dll in Secustick USB flash drive de-

couples the authorization and file access

routines, which allows local users to by-

pass authentication requirements by alter-

ing the return value of the VerifyPassWord

function.

unrelated to data arriving

over USB

CVE-2007-5460 Microsoft ActiveSync 4.1, as used in Win-

dows Mobile 5.0, uses weak encryption

(XOR obfuscation with a fixed key) when

sending the user’s PIN/Password over the

USB connection from the host to the de-

vice, which might make it easier for attack-

ers to decode a PIN/Password obtained by

(1) sniffing or (2) spoofing the docking pro-

cess.

encryption is orthogonal to

parsing

CVE-2015-6520 IPPUSBXD before 1.22 listens on all inter-

faces, which allows remote attackers to ob-

tain access to USB connected printers via

a direct request.

vulnerability is in IP-related

driver, not USB

CVE-2015-1319 The Unity Settings Daemon before

14.04.0+14.04.20150825-0ubuntu2 and

15.04.x before 15.04.1+15.04.20150408-

0ubuntu1.2 does not properly detect if the

screen is locked, which allows physically

proximate attackers to mount remov-

able media while the screen is locked as

demonstrated by inserting a USB thumb

drive.

USB used for POC, vulnera-

bility not related to USB it-

self

Cont’d
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CVE ID Summary Justification

CVE-2015-5960 Mozilla Firefox OS before 2.2 allows phys-

ically proximate attackers to bypass the

pass-code protection mechanism and ac-

cess USB Mass Storage (UMS) media vol-

umes by using the USB interface for a

mount operation.

unrelated to data arriving

over USB

CVE-2015-3320 Lenovo USB Enhanced Performance Key-

board software before 2.0.2.2 includes ac-

tive debugging code in SKHOOKS.DLL,

which allows local users to obtain keypress

information by accessing debug output.

unrelated to data arriving

over USB

CVE-2014-9596 Panasonic Arbitrator Back-End Server

(BES) MK 2.0 VPU before 9.3.1 build

4.08.003.0, when USB Wi-Fi or Direct

LAN is enabled, and MK 3.0 VPU be-

fore 9.3.1 build 5.06.000.0, when Embed-

ded Wi-Fi or Direct LAN is enabled, does

not use encryption, which allows remote

attackers to obtain sensitive information

by sniffing the network for client-server

traffic, as demonstrated by Active Direc-

tory credential information.

encryption is orthogonal to

parsing

CVE-2013-5166 The Bluetooth USB host controller in Ap-

ple Mac OS X before 10.9 prematurely

deletes interfaces, which allows local users

to cause a denial of service (system crash)

via a crafted application.

“crafted application” implies

userland, not USB device

Cont’d
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CVE ID Summary Justification

CVE-2012-4736 The Device Encryption Client component

in Sophos SafeGuard Enterprise 6.0, when

a volume-based encryption policy is en-

abled in conjunction with a user-defined

key, does not properly block use of exFAT

USB flash drives, which makes it easier for

local users to bypass intended access re-

strictions and copy sensitive information to

a drive via multiple removal and reattach

operations.

unrelated to data arriving

over USB

CVE-2013-4541 The usb device post load function in

hw/usb/bus.c in QEMU before 1.7.2

might allow remote attackers to execute

arbitrary code via a crafted savevm

image, related to a negative setup len or

setup index value.

unrelated to data arriving

over USB

CVE-2014-3461 hw/usb/bus.c in QEMU 1.6.2 allows re-

mote attackers to execute arbitrary code

via crafted savevm data, which triggers

a heap-based buffer overflow, related to

“USB post load checks.”

unrelated to data arriving

over USB

Cont’d
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CVE ID Summary Justification

CVE-2007-5093 The disconnect method in the Philips USB

Webcam (pwc) driver in Linux kernel 2.6.x

before 2.6.22.6 “relies on user space to close

the device,” which allows user-assisted lo-

cal attackers to cause a denial of service

(USB subsystem hang and CPU consump-

tion in khubd) by not closing the device af-

ter the disconnect is invoked. NOTE: this

rarely crosses privilege boundaries, unless

the attacker can convince the victim to un-

plug the affected device.

unrelated to data arriving

over USB

CVE-2008-2235 OpenSC before 0.11.5 uses weak permis-

sions (ADMIN file control information of

00) for the 5015 directory on smart cards

and USB crypto tokens running Siemens

CardOS M4, which allows physically prox-

imate attackers to change the PIN.

filesystem permissions are or-

thogonal to parsing

CVE-2008-3605 Unspecified vulnerability in McAfee En-

crypted USB Manager 3.1.0.0, when the

Re-use Threshold for passwords is nonzero,

allows remote attackers to conduct offline

brute force attacks via unknown vectors.

user password reuse policy is

orthogonal to parsing

Cont’d

78



Table A.1 – Cont’d

CVE ID Summary Justification

CVE-2010-0221 Kingston DataTraveler BlackBox (DTBB),

DataTraveler Secure Privacy Edition

(DTSP), and DataTraveler Elite Privacy

Edition (DTEP) USB flash drives validate

passwords with a program running on

the host computer rather than the device

hardware, which allows physically prox-

imate attackers to access the cleartext

drive contents via a modified program.

user password validation is

orthogonal to parsing

CVE-2010-0222 Kingston DataTraveler BlackBox (DTBB),

DataTraveler Secure Privacy Edition

(DTSP), and DataTraveler Elite Privacy

Edition (DTEP) USB flash drives use a

fixed 256-bit key for obtaining access to

the cleartext drive contents, which makes

it easier for physically proximate attackers

to read or modify data by determining

and providing this key.

encryption is orthogonal to

parsing

CVE-2010-0223 Kingston DataTraveler BlackBox (DTBB),

DataTraveler Secure Privacy Edition

(DTSP), and DataTraveler Elite Privacy

Edition (DTEP) USB flash drives do not

prevent password replay attacks, which

allows physically proximate attackers to

access the cleartext drive contents by

providing a key that was captured in a

USB data stream at an earlier time.

authentication is orthogonal

to parsing (though a user pol-

icy might be able to thwart

this particular attack)

Cont’d
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CVE ID Summary Justification

CVE-2010-0224 SanDisk Cruzer Enterprise USB flash

drives validate passwords with a program

running on the host computer rather than

the device hardware, which allows phys-

ically proximate attackers to access the

cleartext drive contents via a modified pro-

gram.

unrelated to data arriving

over USB

CVE-2010-0225 SanDisk Cruzer Enterprise USB flash

drives use a fixed 256-bit key for obtain-

ing access to the cleartext drive contents,

which makes it easier for physically proxi-

mate attackers to read or modify data by

determining and providing this key.

poor encryption implementa-

tions are orthogonal to USB

CVE-2010-0226 SanDisk Cruzer Enterprise USB flash

drives do not prevent password replay at-

tacks, which allows physically proximate

attackers to access the cleartext drive con-

tents by providing a key that was captured

in a USB data stream at an earlier time.

authentication is orthogonal

to parsing (though a user pol-

icy might be able to thwart

this particular attack)

CVE-2008-3150 Directory traversal vulnerability in in-

dex.php in Neutrino Atomic Edition 0.8.4

allows remote attackers to read and mod-

ify files, as demonstrated by manipulating

data/sess.php in (1) usb and (2) del pag

actions. NOTE: this can be leveraged for

code execution by performing an upload

that bypasses the intended access restric-

tions that were implemented in sess.php.

unrelated to data arriving

over USB

Cont’d
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CVE ID Summary Justification

CVE-2010-0227 Verbatim Corporate Secure and Corporate

Secure FIPS Edition USB flash drives vali-

date passwords with a program running on

the host computer rather than the device

hardware, which allows physically proxi-

mate attackers to access the cleartext drive

contents via a modified program.

user authentication is orthog-

onal to USB

CVE-2010-0228 Verbatim Corporate Secure and Corporate

Secure FIPS Edition USB flash drives use

a fixed 256-bit key for obtaining access to

the cleartext drive contents, which makes

it easier for physically proximate attackers

to read or modify data by determining and

providing this key.

encryption is orthogonal to

USB

CVE-2010-0229 Verbatim Corporate Secure and Corporate

Secure FIPS Edition USB flash drives do

not prevent password replay attacks, which

allows physically proximate attackers to

access the cleartext drive contents by pro-

viding a key that was captured in a USB

data stream at an earlier time.

authentication is orthogonal

to USB

Cont’d
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CVE ID Summary Justification

CVE-2014-2388 The Storage and Access service in Black-

Berry OS 10.x before 10.2.1.1925 on Q5,

Q10, Z10, and Z30 devices does not en-

force the password requirement for SMB

filesystem access, which allows context-

dependent attackers to read arbitrary files

via (1) a session over a Wi-Fi network or

(2) a session over a USB connection in De-

velopment Mode.

user authentication is orthog-

onal to USB

CVE-2012-6314 Citrix XenDesktop Virtual Desktop Agent

(VDA) 5.6.x before 5.6.200, when making

changes to the server-side policy that con-

trol USB redirection, does not propagate

changes to the VDA, which allows authen-

ticated users to retain access to the USB

device.

unrelated to data arriving

over USB

CVE-2011-1828 usb-creator-helper in usb-creator before

0.2.28.3 does not enforce intended Poli-

cyKit restrictions, which allows local users

to perform arbitrary unmount operations

via the UnmountFile method in a dbus-

send command.

unrelated to data arriving

over USB

Cont’d
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CVE ID Summary Justification

CVE-2012-2693 libvirt, possibly before 0.9.12, does not

properly assign USB devices to virtual ma-

chines when multiple devices have the same

vendor and product ID, which might cause

the wrong device to be associated with a

guest and might allow local users to access

unintended USB devices.

unrelated to syntax of USB

messages (and USB stack by

design can’t know enough to

handle this)

CVE-2013-3666 The LG Hidden Menu component for An-

droid on the LG Optimus G E973 al-

lows physically proximate attackers to exe-

cute arbitrary commands by entering USB

Debugging mode, using Android Debug

Bridge (adb) to establish a USB con-

nection, dialing 3845#*973#, modifying

the WLAN Test Wi-Fi Ping Test/User

Command tcpdump command string, and

pressing the CANCEL button.

unrelated to data arriving

over USB

CVE-2013-1063 usb-creator 0.2.47 before 0.2.47.1, 0.2.40

before 0.2.40ubuntu2, and 0.2.38 before

0.2.38.2 does not properly use D-Bus for

communication with a polkit authority,

which allows local users to bypass intended

access restrictions by leveraging a Polki-

tUnixProcess PolkitSubject race condition

via a (1) setuid process or (2) pkexec pro-

cess, a related issue to CVE-2013-4288.

unrelated to data arriving

over USB

Cont’d
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CVE ID Summary Justification

CVE-2013-1774 The chase port function in drivers/usb/se-

rial/io ti.c in the Linux kernel before 3.7.4

allows local users to cause a denial of ser-

vice (NULL pointer dereference and sys-

tem crash) via an attempted /dev/ttyUSB

read or write operation on a disconnected

Edgeport USB serial converter.

possibly preventable by de-

sign pattern, but otherwise

an issue of kernel logic unre-

lated to the USB protocol it-

self

CVE-2010-0103 UsbCharger.dll in the Energizer DUO

USB battery charger software con-

tains a backdoor that is implemented

through the Arucer.dll file in the

%WINDIR%\system32 directory, which

allows remote attackers to download

arbitrary programs onto a Windows PC,

and execute these programs, via a request

to TCP port 7777.

unrelated to data arriving

over USB

CVE-2014-0860 The firmware before 3.66E in IBM Blade-

Center Advanced Management Module

(AMM), the firmware before 1.43 in IBM

Integrated Management Module (IMM),

and the firmware before 4.15 in IBM In-

tegrated Management Module II (IMM2)

contains cleartext IPMI credentials, which

allows attackers to execute arbitrary IPMI

commands, and consequently establish a

blade remote-control session, by leveraging

access to (1) the chassis internal network or

(2) the Ethernet-over-USB interface.

poor password security is or-

thogonal to USB
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CVE ID Summary Justification

Table A.2: Vulnerabilities classified as Unclear.

CVE ID Summary Justification

CVE-2008-0718 Unspecified vulnerability in the USB

Mouse STREAMS module (usbms) in Sun

Solaris 9 and 10, when 64-bit mode is en-

abled, allows local users to cause a denial

of service (panic) via unspecified vectors.

not enough detail

CVE-2009-2807 Heap-based buffer overflow in the USB

backend in CUPS in Apple Mac OS X

10.5.8 allows local users to gain privileges

via unspecified vectors.

not enough detail

CVE-2013-0923 The USB Apps API in Google Chrome be-

fore 26.0.1410.43 allows remote attackers

to cause a denial of service (memory cor-

ruption) via unspecified vectors.

not enough detail

CVE-2013-5864 Unspecified vulnerability in Oracle Solaris

10 and 11.1 allows local users to affect

availability via vectors related to USB hub

driver.

not enough detail
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CVE-2013-2058 The host start function in drivers/us-

b/chipidea/host.c in the Linux kernel be-

fore 3.7.4 does not properly support a cer-

tain non-streaming option, which allows lo-

cal users to cause a denial of service (sys-

tem crash) by sending a large amount of

network traffic through a USB/Ethernet

adapter.

firewall could potentially per-

form rate-limiting, but does

not currently

CVE-2014-3185 Multiple buffer overflows in the com-

mand port read callback function in

drivers/usb/serial/whiteheat.c in the

Whiteheat USB Serial Driver in the

Linux kernel before 3.16.2 allow physically

proximate attackers to execute arbitrary

code or cause a denial of service (memory

corruption and system crash) via a crafted

device that provides a large amount of (1)

EHCI or (2) XHCI data associated with a

bulk response.

firewall could potentially per-

form rate-limiting, but does

not currently

CVE-2005-4788 resmgr in SUSE Linux 9.2 and 9.3, and

possibly other distributions, allows local

users to bypass access control rules for USB

devices via “alternate syntax for specifying

USB devices.”

not sure if caused by data

from USB device or not
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CVE-2007-3513 The lcd write function in drivers/usb/mis-

c/usblcd.c in the Linux kernel before

2.6.22-rc7 does not limit the amount of

memory used by a caller, which allows local

users to cause a denial of service (memory

consumption).

not sure if caused by data

from USB device or not

CVE-2009-0282 Integer overflow in Ralink Technology USB

wireless adapter (RT73) 3.08 for Windows,

and other wireless card drivers including

rt2400, rt2500, rt2570, and rt61, allows re-

mote attackers to cause a denial of service

(crash) and possibly execute arbitrary code

via a Probe Request packet with a long

SSID, possibly related to an integer signed-

ness error.

not sure if caused by data at

USB protocol level or appli-

cation level

CVE-2010-1140 The USB service in VMware Workstation

7.0 before 7.0.1 build 227600 and VMware

Player 3.0 before 3.0.1 build 227600 on

Windows might allow host OS users to gain

privileges by placing a Trojan horse pro-

gram at an unspecified location on the host

OS disk.

not sure if triggered by USB

data

CVE-2010-3542 Unspecified vulnerability in Oracle Solaris

8, 9, and 10, and OpenSolaris, allows lo-

cal users to affect confidentiality, related

to USB.

not enough detail
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CVE ID Summary Justification

CVE-2011-2295 Unspecified vulnerability in Oracle So-

laris 8, 9, 10, and 11 Express allows lo-

cal users to affect availability, related to

Driver/USB.

not enough detail

CVE-2007-6439 Wireshark (formerly Ethereal) 0.99.6 al-

lows remote attackers to cause a denial

of service (infinite or large loop) via the

(1) IPv6 or (2) USB dissector, which can

trigger resource consumption or a crash.

NOTE: this identifier originally included

Firebird/Interbase, but it is already cov-

ered by CVE-2007-6116. The DCP ETSI

issue is already covered by CVE-2007-6119.

seems descriptor-related, but

not enough information

Table A.3: Vulnerabilities classified as Mitigated By Policy.

CVE ID Summary Justification

CVE-2006-4459 Integer overflow in AnywhereUSB/5

1.80.00 allows local users to cause a denial

of service (crash) via a 1 byte header size

specified in the USB string descriptor.

user policy: “reject message

where length ¿ x”
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CVE ID Summary Justification

CVE-2012-3723 Apple Mac OS X before 10.7.5 does not

properly handle the bNbrPorts field of a

USB hub descriptor, which allows phys-

ically proximate attackers to execute ar-

bitrary code or cause a denial of service

(memory corruption and system crash) by

attaching a USB device.

user policy: “reject message

where bNbrPorts == bad

value”

CVE-2012-6053 epan/dissectors/packet-usb.c in the USB

dissector in Wireshark 1.6.x before 1.6.12

and 1.8.x before 1.8.4 relies on a length

field to calculate an offset value, which al-

lows remote attackers to cause a denial of

service (infinite loop) via a zero value for

this field.

user policy: “reject message

where length == 0”

CVE-2005-4789 resmgr in SUSE Linux 9.2 and 9.3, and

possibly other distributions, does not prop-

erly enforce class-specific exclude rules in

some situations, which allows local users

to bypass intended access restrictions for

USB devices that set their class ID at the

interface level.

user policy: “Reject inter-

face descriptor where class id

= xyz”
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CVE-2010-4530 Signedness error in ccid serial.c in libccid

in the USB Chip/Smart Card Interface De-

vices (CCID) driver, as used in pcscd in

PCSC-Lite 1.5.3 and possibly other prod-

ucts, allows physically proximate attackers

to execute arbitrary code via a smart card

with a crafted serial number that causes

a negative value to be used in a memcpy

operation, which triggers a buffer overflow.

NOTE: some sources refer to this issue as

an integer overflow.

user policy: “Reject de-

vice descriptor where se-

rial number = xyz”

CVE-2011-0638 Microsoft Windows does not properly warn

the user before enabling additional Hu-

man Interface Device (HID) functionality

over USB, which allows user-assisted at-

tackers to execute arbitrary programs via

crafted USB data, as demonstrated by key-

board and mouse data sent by malware on

a smartphone that the user connected to

the computer.

user policy: “reject message

where data contains abc”
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CVE-2011-0639 Apple Mac OS X does not properly warn

the user before enabling additional Hu-

man Interface Device (HID) functionality

over USB, which allows user-assisted at-

tackers to execute arbitrary programs via

crafted USB data, as demonstrated by key-

board and mouse data sent by malware on

a smartphone that the user connected to

the computer.

user policy: “reject message

where data contains abc”

CVE-2011-0640 The default configuration of udev on Linux

does not warn the user before enabling

additional Human Interface Device (HID)

functionality over USB, which allows user-

assisted attackers to execute arbitrary pro-

grams via crafted USB data, as demon-

strated by keyboard and mouse data sent

by malware on a smartphone that the user

connected to the computer.

user policy: “reject message

where data contains abc”

CVE-2013-1860 Heap-based buffer overflow in

the wdm in callback function in

drivers/usb/class/cdc-wdm.c in the

Linux kernel before 3.8.4 allows physically

proximate attackers to cause a denial of

service (system crash) or possibly execute

arbitrary code via a crafted cdc-wdm USB

device.

not enough detail, but likely

user policy to prevent mali-

cious messages from passing

into kernel
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CVE-2013-5192 The USB hub controller in Apple Mac OS

X before 10.9 allows local users to cause a

denial of service (system crash) via a re-

quest with a crafted (1) port or (2) port

number.

user policy: “reject message

where port == abc”

CVE-2014-1287 USB Host in Apple iOS before 7.1 and Ap-

ple TV before 6.1 allows physically prox-

imate attackers to execute arbitrary code

or cause a denial of service (memory cor-

ruption) via crafted USB messages.

user policy to reject

particularly-crafted mes-

sages

CVE-2015-5257 drivers/usb/serial/whiteheat.c in the

Linux kernel before 4.2.4 allows physically

proximate attackers to cause a denial of

service (NULL pointer dereference and

OOPS) or possibly have unspecified other

impact via a crafted USB device.

user policy to reject

particularly-crafted mes-

sages

CVE-2007-4785 Sony Micro Vault Fingerprint Access Soft-

ware, as distributed with Sony Micro Vault

USM-F USB flash drives, installs a driver

that hides a directory under %WINDIR%,

which might allow remote attackers to by-

pass malware detection by placing files in

this directory.

user policy: “reject de-

vice descriptor where prod-

uct id == 123”
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CVE-2008-0708 HP USB 2.0 Floppy Drive Key product op-

tions (1) 442084-B21 and (2) 442085-B21

for certain HP ProLiant servers contain the

(a) W32.Fakerecy and (b) W32.SillyFDC

worms, which might be launched if the

server does not have up-to-date detection.

user policy: “reject de-

vice descriptor where prod-

uct id == 123”

CVE-2009-2834 IOKit in Apple Mac OS X before 10.6.2

allows local users to modify the firmware

of a (1) USB or (2) Bluetooth keyboard

via unspecified vectors.

user policy to prevent offend-

ing outgoing message (though

firewall does not currently fil-

ter outgoing traffic)

CVE-2014-4115 fastfat.sys (aka the FASTFAT driver) in

the kernel-mode drivers in Microsoft Win-

dows Server 2003 SP2, Vista SP2, and

Server 2008 SP2 does not properly allocate

memory, which allows physically proxi-

mate attackers to execute arbitrary code or

cause a denial of service (reserved-memory

write) by connecting a crafted USB de-

vice, aka “Microsoft Windows Disk Parti-

tion Driver Elevation of Privilege Vulnera-

bility.”

user policy to reject

particularly-crafted mes-

sages

CVE-2015-7833 The usbvision driver in the Linux kernel

package 3.10.0-123.20.1.el7 through 3.10.0-

229.14.1.el7 in Red Hat Enterprise Linux

(RHEL) 7.1 allows physically proximate

attackers to cause a denial of service

(panic) via a nonzero bInterfaceNumber

value in a USB device descriptor.

user policy: “reject de-

vice descriptor where bInter-

faceNumber == 123”
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CVE-2008-0951 Microsoft Windows Vista does not prop-

erly enforce the NoDriveTypeAutoRun

registry value, which allows user-assisted

remote attackers, and possibly physically

proximate attackers, to execute arbitrary

code by inserting a (1) CD-ROM device

or (2) U3-enabled USB device containing

a filesystem with an Autorun.inf file, and

possibly other vectors related to (a) Au-

toRun and (b) AutoPlay actions.

user policy to prevent certain

file requests

CVE-2015-1769 Mount Manager in Microsoft Windows

Vista SP2, Windows Server 2008 SP2 and

R2 SP1, Windows 7 SP1, Windows 8, Win-

dows 8.1, Windows Server 2012 Gold and

R2, Windows RT Gold and 8.1, and Win-

dows 10 mishandles symlinks, which al-

lows physically proximate attackers to exe-

cute arbitrary code by connecting a crafted

USB device, aka “Mount Manager Eleva-

tion of Privilege Vulnerability.”

user policy to prevent certain

file requests
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CVE-2009-0243 Microsoft Windows does not properly en-

force the Autorun and NoDriveTypeAu-

toRun registry values, which allows physi-

cally proximate attackers to execute arbi-

trary code by (1) inserting CD-ROM me-

dia, (2) inserting DVD media, (3) connect-

ing a USB device, and (4) connecting a

Firewire device; (5) allows user-assisted re-

mote attackers to execute arbitrary code

by mapping a network drive; and allows

user-assisted attackers to execute arbitrary

code by clicking on (6) an icon under My

Computer\Devices with Removable Stor-

age and (7) an option in an AutoPlay dia-

log, related to the Autorun.inf file. NOTE:

vectors 1 and 3 on Vista are already cov-

ered by CVE-2008-0951.

user policy to prevent certain

file requests

CVE-2010-4656 The iowarrior write function in drivers/us-

b/misc/iowarrior.c in the Linux kernel be-

fore 2.6.37 does not properly allocate mem-

ory, which might allow local users to trig-

ger a heap-based buffer overflow, and con-

sequently cause a denial of service or gain

privileges, via a long report.

user policy: “reject re-

port descriptor where length

¿ x” or possibly mitigated

by design pattern, in which

memory allocations are made

in a principled fashion
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Table A.4: Vulnerabilities classified as Mitigated By Pattern.

CVE ID Summary Justification

CVE-2010-1083 The processcompl compat function in

drivers/usb/core/devio.c in Linux kernel

2.6.x through 2.6.32, and possibly other

versions, does not clear the transfer buffer

before returning to userspace when a USB

command fails, which might make it eas-

ier for physically proximate attackers to

obtain sensitive information (kernel mem-

ory).

principled buffer use would be

encoded into autogeneration

CVE-2010-4074 The USB subsystem in the Linux kernel

before 2.6.36-rc5 does not properly initial-

ize certain structure members, which al-

lows local users to obtain potentially sen-

sitive information from kernel stack mem-

ory via vectors related to TIOCGICOUNT

ioctl calls, and the (1) mos7720 ioctl func-

tion in drivers/usb/serial/mos7720.c and

(2) mos7840 ioctl function in drivers/us-

b/serial/mos7840.c.

principled buffer use would be

encoded into autogeneration

CVE-2010-3298 The hso get count function in driver-

s/net/usb/hso.c in the Linux kernel before

2.6.36-rc5 does not properly initialize a cer-

tain structure member, which allows local

users to obtain potentially sensitive infor-

mation from kernel stack memory via a TI-

OCGICOUNT ioctl call.

principled buffer use would be

encoded into autogeneration
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CVE-2014-5263 vmstate xhci event in hw/usb/hcd-xhci.c

in QEMU 1.6.0 does not terminate the

list with the VMSTATE END OF LIST

macro, which allows attackers to cause a

denial of service (out-of-bounds access, in-

finite loop, and memory corruption) and

possibly gain privileges via unspecified vec-

tors.

principled data structure use

would be encoded into auto-

generation

Table A.5: Vulnerabilities classified as Inherently Averted.

CVE ID Summary Justification

CVE-2006-2935 The dvd read bca function in the DVD

handling code in drivers/cdrom/cdrom.c in

Linux kernel 2.2.16, and later versions, as-

signs the wrong value to a length variable,

which allows local users to execute arbi-

trary code via a crafted USB Storage de-

vice that triggers a buffer overflow.

length variables are encoded

as strictly dependent on other

values

CVE-2006-5972 Stack-based buffer overflow in

WG111v2.SYS in NetGear WG111v2

wireless adapter (USB) allows remote

attackers to execute arbitrary code via a

long 802.11 beacon request.

frame lengths automatically

enforced given frame specifi-

cation
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CVE-2008-4680 packet-usb.c in the USB dissector in Wire-

shark 0.99.7 through 1.0.3 allows remote

attackers to cause a denial of service (ap-

plication crash or abort) via a malformed

USB Request Block (URB).

malformed data is automati-

cally rejected

CVE-2010-0038 Recovery Mode in Apple iPhone OS 1.0

through 3.1.2, and iPhone OS for iPod

touch 1.1 through 3.1.2, allows physically

proximate attackers to bypass device lock-

ing, and read or modify arbitrary data, via

a USB control message that triggers mem-

ory corruption.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

CVE-2010-0297 Buffer overflow in the

usb host handle control function in

the USB passthrough handling imple-

mentation in usb-linux.c in QEMU before

0.11.1 allows guest OS users to cause a

denial of service (guest OS crash or hang)

or possibly execute arbitrary code on the

host OS via a crafted USB packet.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

Cont’d

98



Table A.5 – Cont’d

CVE ID Summary Justification

CVE-2011-0712 Multiple buffer overflows in the caiaq Na-

tive Instruments USB audio functional-

ity in the Linux kernel before 2.6.38-

rc4-next-20110215 might allow attack-

ers to cause a denial of service or

possibly have unspecified other impact

via a long USB device name, related

to (1) the snd usb caiaq audio init func-

tion in sound/usb/caiaq/audio.c and (2)

the snd usb caiaq midi init function in

sound/usb/caiaq/midi.c.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

CVE-2013-1285 The USB kernel-mode drivers in Microsoft

Windows XP SP2 and SP3, Windows

Server 2003 SP2, Windows Vista SP2,

Windows Server 2008 SP2, R2, and R2

SP1, Windows 7 Gold and SP1, Windows

8, and Windows Server 2012 do not prop-

erly handle objects in memory, which al-

lows physically proximate attackers to exe-

cute arbitrary code by connecting a crafted

USB device, aka “Windows USB Descrip-

tor Vulnerability,” a different vulnerability

than CVE-2013-1286 and CVE-2013-1287.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in
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CVE-2013-1286 The USB kernel-mode drivers in Microsoft

Windows XP SP2 and SP3, Windows

Server 2003 SP2, Windows Vista SP2,

Windows Server 2008 SP2, R2, and R2

SP1, Windows 7 Gold and SP1, Windows

8, and Windows Server 2012 do not prop-

erly handle objects in memory, which al-

lows physically proximate attackers to exe-

cute arbitrary code by connecting a crafted

USB device, aka “Windows USB Descrip-

tor Vulnerability,” a different vulnerability

than CVE-2013-1285 and CVE-2013-1287.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

CVE-2013-1287 The USB kernel-mode drivers in Microsoft

Windows XP SP2 and SP3, Windows

Server 2003 SP2, Windows Vista SP2,

Windows Server 2008 SP2, R2, and R2

SP1, Windows 7 Gold and SP1, Windows

8, and Windows Server 2012 do not prop-

erly handle objects in memory, which al-

lows physically proximate attackers to exe-

cute arbitrary code by connecting a crafted

USB device, aka “Windows USB Descrip-

tor Vulnerability,” a different vulnerability

than CVE-2013-1285 and CVE-2013-1286.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in
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CVE-2013-3200 The USB drivers in the kernel-mode

drivers in Microsoft Windows XP SP2 and

SP3, Windows Server 2003 SP2, Windows

Vista SP2, Windows Server 2008 SP2 and

R2 SP1, Windows 7 SP1, Windows 8, Win-

dows Server 2012, and Windows RT al-

low physically proximate attackers to exe-

cute arbitrary code by connecting a crafted

USB device, aka “Windows USB Descrip-

tor Vulnerability.”

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

CVE-2014-8884 Stack-based buffer overflow in the ttus-

bdecfe dvbs diseqc send master cmd

function in drivers/media/usb/ttusb-

dec/ttusbdecfe.c in the Linux kernel

before 3.17.4 allows local users to cause a

denial of service (system crash) or possibly

gain privileges via a large message length

in an ioctl call.

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

CVE-2005-2388 Buffer overflow in a certain USB driver, as

used on Microsoft Windows, allows attack-

ers to execute arbitrary code.

likely length-related and

therefore likely prevented by

design
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CVE-2006-1368 Buffer overflow in the USB Gadget RNDIS

implementation in the Linux kernel be-

fore 2.6.16 allows remote attackers to cause

a denial of service (kmalloc’d memory

corruption) via a remote NDIS response

to OID GEN SUPPORTED LIST, which

causes memory to be allocated for the re-

ply data but not the reply structure

likely length-related and

therefore likely prevented

by checking packet length,

which is built in

CVE-2006-6881 Buffer overflow in the Get Wep function in

cofvnet.c for ATMEL Linux PCI PCMCIA

USB Drivers drivers 3.4.1.1 corruption al-

lows attackers to execute arbitrary code via

a long name argument.

prevented by checking packet

length, which is built in
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Appendix B

Code

This appendix describes the code I produced for this dissertation. For those keeping track at

home, it amounts to 6410 lines of code (including comments and whitespace), of which 1061 were

automagically generated.

B.1 Injection

As described in Chapter 3, I wrote the software stack that drives the Facedancer USB emulation

board, which has since been used as the basis for industry-leading security-analysis tools such as

umap [21].

I wrote both the library and, to demonstrate its use, a number of sample applications. The

files comprising the library are enumerated in Table B.1 and the applications are enumerated in

Table B.2. As the filenames imply, all code is written in Python.

All the code is available in the public GoodFET repository on github: https://github.com/

travisgoodspeed/goodfet, under the “client” subdirectory.

B.2 Inspection

The instrumentation described in Chapter 4 touched a number of files in the FreeBSD kernel.

Table B.3 shows the extent of the modifications made to each file.

I also wrote a number of scripts to analyze the output of the instrumentation. Those scripts are

described in Table B.4 and are variously Bash, Python, awk, gnuplot, and D (the language used by

DTRACE to manipulate the instrumentation probes).
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filename LOC description

USBClass.py 25 Defines base class (in the object-oriented sense) for defining classes

(in the USB sense) of devices.

USBConfiguration.py 46 Defines base class for describing USB device configurations.

USBDevice.py 360 Defines base class for describing USB devices (as evidence by its

size, the majority of logic is in this class).

USBEndpoint.py 76 Defines base class for describing USB communication endpoints,

analogous to sockets in network programming.

USBInterface.py 98 Defines base class for describing USB interfaces.

USB.py 53 Defines constants used throughout the rest of the library.

USBVendor.py 24 Defines base class for describing USB vendors.

total 682

Table B.1: Files comprising the library I wrote to enable emulating various USB devices using the

Facedancer.

filename LOC description

USBFtdi.py 201 Emulates a USB FTDI (serial) device.

facedancer-ftdi.py 22 Driver program for USBFtdi.py.

USBKeyboard.py 96 Emulates a USB keyboard.

facedancer-keyboard.py 21 Driver program for USBKeyboard.py.

USBMassStorage.py 356 Emulates a USB mass-storage device (e.g., thumbdrive).

facedancer-umass.py 41 Driver program for USBMassStorage.py.

total 737

Table B.2: Applications I wrote to emulate various devices. All build on the libraries listed in

Table B.1.

104



filename LOC

usb busdma.c 269

usb compat linux.c 9

usb dev.c 18

usb device.c 509

usb dynamic.c 6

usb hub.c 121

usb lookup.c 22

usb msctest.c 55

usb parse.c 56

usb pf.c 28

usb process.c 30

usb request.c 304

usb transfer.c 614

usb util.c 43

total 2083

Table B.3: Extent of modifications made to apply instrumentation framework described in Chapter 4.
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bb-count.d 12 D script to count number of basic-blocks executed.

bb-lint.py 163 Python script to verify the placement of instrumentation probes in the

files listed in Table B.3.

bb-perc.sh 97 Shell script that calculates the percentage of basic blocks exercised, by

file, from a given basic-block trace.

bb-trace.d 50 D script to trace functions called and basic blocks executed while a device

is plugged into a particular USB port.

cam-trace.d 87 D script to trace interactions with FreeBSD’s storage subsystem while a

USB mass storage device is plugged into a particular USB port.

cloc-code.sh 18 Counts lines of code, used as input to other scripts.

extract-bb.sh 31 Shell script that extracts and format basic-block information output by

bb-trace.d.

fbt-count.d 12 D script to count functions called in FreeBSD’s USB stack; replaced

unreliable built-in function boundary testing probes.

fbt-trace.d 8 D script to trace functions called.

group-bb-trace.py 54 Python script that groups the basic-block traces according to module.

indent-bb-trace.py 76 Python script that indents a basic-block trace for easier reading (example

output shown in Figure 4.3).

make-graph.py 52 Python script that uses the result of group-bb-trace.py to generate a

graphviz plot of module (file) interactions (example output shown in

Figure 4.5).

mux-trace.d 56 D script to trace execution paths specifically surrounding the invocation

of callback functions.

normalize.awk 9 Awk script to cleanly format the output of other scripts, used as input

to still more scripts.

plot.p 12 Gnuplot script to graph per-function basic-block activity as generated

by other scripts.

total 737

Table B.4: Scripts used to interact with the instrumentation framework described in Chapter 4 and

to process its output.
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makePolicy.hs 10 Driver program to create a loadable policy module from a plain-

text policy description.

msgDriver.hs 10 Driver program to generate the header and source files that com-

prise the USB firewall.

Protocol.hs 238 Library that performs the automagic generation.

USBMessages.hs 279 Contains the USB message definitions.

total 537

Table B.5: Hand-written source files for programs that generate the USB firewall.

filename LOC description

usb messages.h 526 Contains data structure definitions, accessor macros, and function

prototypes.

usb messages.c 535 Contains validator functions and pretty-printing functions.

total 1061

Table B.6: The generated USB firewall source files.

B.3 Generation

The Haskell code I wrote to generated the USB firewall is described in Table B.5. The resulting,

generated code is described in Table B.6. The code I wrote to integrate the generated code with

FreeBSD is described in Table B.7.
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opt usb.h 6 Stub header file necessary to include other kernel-related header

files.

usb conntrack.c 216 Contains the connection-tracking code.

usb conntrack.h 16 Header file for previous.

usb fw.c 94 Contains the code that implements the basic USB firewall.

usb fw fbsd.c 147 FreeBSD-specific shim that acts as a translation layer between the

structures used by FreeBSD to represent USB transfers and the

OS-agnostic USB firewall.

usb fw.h 19 Header file for the OS-agnostic USB firewall code.

util.c 64 Contains utility functions such as bytes as hex, which gives the

contents of an arbitrary chunk of memory as hex.

util.h 12 Header file for previous.

total 573

Table B.7: Hand-written source files that facilitate integration of the USB firewall with FreeBSD.
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