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Abstract

Protein complexes play vital roles in cellular processes within living organisms.

They are formed by interactions between either different proteins (hetero-oligomers)

or identical proteins (homo-oligomers). In order to understand the functions of the

complexes, it is important to know the manner in which they are assembled from the

component subunits and their three dimensional structure. This thesis addresses both

of these questions by developing geometrical and probabilistic methods for analyzing

data from two complementary experiment types: Small Angle Scattering (SAS) and

Nuclear Magnetic Resonance (NMR) spectroscopy. Data from an SAS experiment is

a set of scattering intensities that can give the interatomic probability distributions.

NMR experimental data used in this thesis is set of atom pairs and the maximum dis-

tance between them. From SAS data, this thesis determines the association model of

the complex and intensities through an approach that is robust to noise and contam-

inants in solution. Using NMR data, this thesis computes the complex structure by

using probabilistic inference and geometry of convex shapes. The structure determi-

nation methods are complete, that is they identify all consistent conformations and are

data driven wherein the structures are evaluated separately for consistency to data and

biophysical energy.
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1. INTRODUCTION

Proteins are polymers of amino acids that carry out diverse functions in a living organism.

The function of a protein is determined by its amino acid sequence and three dimensional

structure. The sequence of amino acids in a protein is referred to as its primary structure.

The sequence organizes itself into helices and sheets which are referred to as secondary

structures while the three dimensional shape of a protein is called tertiary structure. Multi-

ple proteins can interact with each other to form protein complexes ( Fig. 1.1). Protein com-

plexes are formed either out of association between identical proteins (homo-oligomers) or

different proteins (hetero-oligomers). Two central problems in studies of protein complexes

are determining the association models and the structure of these complexes. The associ-

ation model of complex formation is given by the association pathway and the association

constants of the pathway. The complex structure is given by the three dimensional atomic

coordinates of the complex.

Solving these are important since the function of a protein-protein complex depends

on the stoichiometry as well as the strength of association between monomers, and the

structures of the monomers and the complexes. Existing approaches to determine asso-

ciation model, fall short of computing a structure. For example techniques like hydro-

gen/deuterium exchange, analytical ultracentrifugation, titration calorimetry can yield in-

formation about the nature of these associations, but are very limited in the structural in-

formation they carry. We therefore use SAS data to compute association model and low

resolution structure for hetero-oligomers. In determining high resolution structure, X-ray

crystallography – the most accurate structure determination method, requires the protein

1



Phospholamban BAF-emerin complex

Fig. 1.1: Two protein complexes in nature: Phospholamban is a symmetric pentamer while
BAF-emerin complex is a hetero-oligomer consisting of a dimer (green, shades of green
denote individual monomers in the dimer) and a monomer (blue).

to be crystallized which can be hard for these complexes due to weak and transient inter-

actions. For computing protein structure of homo-oligomers, therefore, we use data from

NMR experiments.

1.1 Association model

Data from an SAS experiment can be represented as a ”scattering curve” capturing the in-

tensity of scattering by angle of x-rays or neutrons. The scattering curve contains important

information about a protein, including sufficient inter-atomic distance information to allow

the computation of a low resolution structure.

A scattering curve is a series of diffraction intensities measured at various angles. A

solution containing a protein complex contains the subunits and the protein complex as

distinct chemical forms. The scattering curve obtained from such a solution is a linear

combination of the scattering curves of the individual forms. Deconvolving the measured

curve can yield scattering curves of the individual forms at equilibrium, as well as their

mass ratios. This in turn enables the determination of the underlying association model.

In this thesis, methods are presented to find the association model and scattering curves by

iterating over possible association models and scoring them on two metrics: statistical and

2



physical. The model that scores the best is predicted as the correct model.

Statistical metric We want to find the association model and scattering curves of individ-

ual forms for which the reconstructed oligomer scattering curves best fit the experimentally

measured data. We can quantify this distance by χ2 scores that evaluate the fit of the re-

constructed data with the experimental data. The scores can then be used to discriminate

between various models.

Physical metric In determining the quality of an association model, we would like to

strike a balance between the fit of reconstructed data and their physically plausibility. To

evaluate physical plausibility, we define a score that is computed from the scattering curves.

The scattering intensity at zero angle can be computed from a scattering curve. The scat-

tering intensity at zero angle is proportional to the molecular weight of the chemical form.

We use it to to compute a physical score that can be used in conjunction with the statistical

score to evaluate a model and eliminate models that score high on statistical score but are

not physically feasible.

Robust to noise Experimental data contains noise and we do not want it to result in

the selection of an incorrect model. The noise can either be a random noise (e.g. due to

counting error) or a systematic noise (e.g. due to a contaminant).

For random noise, we use a decomposition from linear algebra that filters the data on

the assumption that the measured data is a linear combination of independent curves and

the noise is Gaussian. We then use the denoised data to find the association model.

We consider a contaminant to be a low quantity of either a non-participating monomer

or a homo-oligomeric aggregate. To account for contaminant, we extend the model to

estimate the scattering curves through an optimization procedure.

3



1.2 Homo-oligomeric structure from NMR

In an NMR Nuclear Overhauser Enhancement Spectroscopy (NOESY) experiment, inter-

actions (due to the Nuclear Overhauser Effect or NOE) are obtained for pairs of interacting

nuclei that are close in space. The NOE peaks are represented as distance restraints, giv-

ing lower and upper bounds on distances between the interacting nuclei. Our goal is to

compute the three dimensional structure of the homo-oligomer from a set of NOE distance

restraints. The determination of the structure is complicated by the fact that the restraints

suffer from ambiguit and noise, and only provide distance estimates, consequently more

than one structure can satisfy the data.

This thesis works with symmetrical homo-oligomers - complexes in which the subunits

are arranged symmetrically around an axis. This leads to a lower dimensional representa-

tion of the protein structure but adds an ambiguity in interpretation of distance restraints.

With NMR data as input, the two problems solved in this thesis are NMR structural infer-

ence and structural determination from ambiguous restraints.

NMR distance restraints suffer from noise and sparsity which results in uncertainty in

the determined structures. A Bayesian structural inference approach can quantify the un-

certainty in the resulting structures but computing the moments of distribution accurately

is a hard problem for which at best only heuristics are at place that are unable to give

guarantees. In the special case when an individual subunit’s structure is available and the

inter-subunit distance restraints are known, the symmetric homo-oligomer can be repre-

sented as a four dimensional variable. By using geometric bounds, bounds on probability

mass and expectation are computed with guarantee of accuracy. Ultimately, this enables us

to do inference with guarantees on the computed metrics.

In general, however, the determination of inter-subunit restraints for a given symmetric

homo-oligomer is hard to do and can only work with a small set of homo-oligomers with

a specialized set of experiments. The NMR distance restraints, in almost all cases, are

not classified as inter-subunit or intra-subunit. Structure determination from such data is

4



hard, especially when coupled together with a physical energy function which has a rugged

landscape. This thesis focuses on just the NMR distance restraints, leaving the physical

energy as a possible post-processing step. The problem is still hard, given the exponential

combinations of possible interpretations of the set of restraints. In the second work with

NMR data, we work on computing protein structure from such data. From geometric results

on convex domains of the configuration space, we design an algorithm that does not require

us to compute all possible interpretations of the set of restraints. As a result, we are able to

design an algorithm that gets conformations consistent with the data but is more efficient

than enumeration of all possible interpretations of the data.

Complete Current methods to compute a protein structure that satisfies NOE restraints

rely on heuristic searches that try to find the protein structure that has the lowest energy

according to an pseudo-energy function combining physical energy and restraint terms. It is

not possible to find the global minimum of this function through analytical techniques and

it is hard to tell whether a given point is global minimum. If there is sufficient data available

then we have a highly constrained system that often converges to the global minimum. On

the other hand if the restraints do not yield a tightly constrained system, the searches may

not converge or they can yield a local minimum.

In this thesis, the methods for homo-oligomeric structure determination are complete in

nature. In our work with inferential structure determination, we compute the expectation of

the 3D coordinates of the complex with an error guarantee. We also compute the probability

mass of a given set of configurations correct up to a user defined error cutoff. In our work

in structure determination from ambiguous data, we compute all conformations up to a user

defined resolution.

Data driven Methods to obtain protein structure from NOE data take both data and bio-

physical modeling of the energy to find the best structure. The biophysical model involves

selecting parameters that can bias the final structure. Also, the minimum of the energy

5



function, if found, is through heuristic approaches without any guarantees. By focusing on

obtaining structures from data alone and leaving detailed biophysical modeling as a post

processing step for the end user, we present an objective approach to finding the structures

from NOE data. We incorporate basic biophysical modeling by eliminating structures that

have guaranteed steric clashes.

In our inferential structure determination work, we use geometric and probabilistic ap-

proaches that are used in computing bounds on the probability mass and the expectation

integral. These bounds are useful in the pruning criterion used in the algorithm.

In our work with structure determination from ambiguous NMR data, we used geo-

metrical approaches to characterize the Minkowski sums of convex shapes and their inter-

sections. The intersections between these shapes were used to determine the number of

restraint violations, which was used as a pruning criterion in the algorithm.
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2. STOICHIOMETRIES AND AFFINITIES OF

INTERACTING PROTEINS FROM

CONCENTRATION SERIES OF SOLUTION

SCATTERING DATA: DECOMPOSITION BY LEAST

SQUARES AND QUADRATIC

OPTIMIZATION

Abstract

In studying interacting proteins, complementary insights are provided by analyz-

ing the association model (the stoichiometry and affinity constants of the intermediate

and final complexes) and the quaternary structure of the resulting complexes. Many

current methods for analyzing protein interactions give either a binary answer to the

question of association or at best provide only part of the complete picture. We present

here a method to extract both types of information from x-ray or neutron scattering

data for a series of solutions containing the complex components in different concen-

trations. Our method determines the association pathway and constants, along with

the scattering curves of the individual members of the mixture, so as to best explain

the scattering data for the set of mixtures. The derived curves then enable recon-

struction of the intermediate and final complexes. Using a new analytic method, we

also extend our approach to evaluate the association models and scattering curves in

the presence of contaminants, teseting both a non-participating monomer and a large

homo-oligomeric aggregate. Using simulated solution scattering data for four hetero-

oligomeric complexes with different structures, molecular weights, and association
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models, we demonstrate that our method accurately determines the simulated associ-

ation model and monomer scattering profiles. We also demonstrate that the method

is robust to both random noise and systematic noise from such contaminants, and is

applicable over a large range of weak association constants typical of transient protein-

protein complexes.

2.1 Introduction

In order to gain deeper understanding into the functions and mechanisms of protein-protein

interactions, it is necessary to extend the binary information (interaction or not) provided

by high-throughput techniques, and characterize the stoichiometries, affinities, and three-

dimensional structures of protein complexes. However, experimental methods for detailed

studies of protein complexes typically fall into two separate categories: some (e.g., x-ray

crystallography and NMR spectroscopy) enable structure determination but do not readily

reveal the association model, while others (e.g., H/D exchange [10], analytical ultracen-

trifugation [30], titration calorimetry [62], and composition gradient static light scatter-

ing [3, 26]) enable characterization of the stoichiometry and strength of interaction but

provide no or very limited structural information.

Small-angle scattering in solution (SAS) [15] provides an alternative experimental tech-

nique that we show here to be able to provide simultaneously both structural and associ-

ation information for a complex. Although available for many years, SAS has recently

gained popularity in low-resolution structural studies of protein monomers and tight com-

plexes [7, 55, 57, 58, 64], as it is applicable to proteins of practically any size under phys-

iological conditions, and data can now be collected rapidly at new higher-flux x-ray or

neutron sources. However, its applicability to studies of complexes has been limited due

to the need for a homogeneous and monodisperse sample, rendering it unsuitable for im-

portant weaker-binding complexes (e.g., associated with cellular signaling, which contain

mixtures of the component monomers and intermediate and final complexes). We recently
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described a method for the elucidation of homo-oligomeric complexes from solution scat-

tering data [67], which was rapidly followed by reports of similar numerical approaches

applied to experimental data [5], demonstrating the value of such methods. These meth-

ods, however, were only applied to homo-oligomers and were limited in their ability to

handle systematic noise in the scattering data. Here we extend our earlier method so as to

characterize hetero-oligomeric complexes, and develop a new analytical approach to han-

dle contaminants in the mixtures, thereby yielding a method with potential applicability to

an even broader range of biological systems and experimental conditions.

The method presented here determines the association model (the stoichiometry and

affinity constants of all the association steps) from SAS data for a set of solutions contain-

ing the components of a hetero-oligomer in varying concentrations. (These solutions may

also contain a contaminant, such as a non-participating monomer or homo-oligomeric ag-

gregate.) In addition to the association model, our method accurately reconstructs the scat-

tering curves of all the individual molecular species. These reconstructed curves can form

the basis for low-resolution structural analysis of the intermediate and final complexes.

Scattering from an equilibrium mixture of initial components is a fractional mass-

weighted linear combination of the “pure” scattering from all the molecular species in so-

lution. We first employ low-rank approximation to remove some experimental noise from

the observed mixture data. We then search over possible association models (which define

a set of expected fractional masses for all the species), establishing a least-squares prob-

lem for each. Solution of the least-squares problem yields reconstructions of the “pure”

scattering curves. We evaluate these hypothesized reconstructions for consistency with the

data and with the postulated association model, and select the best model. If no model is

of sufficient quality, we can expand the search to consider association models containing

a contaminant. We have investigated the situation where the contaminant that is either a

non-participating monomer or a homo-oligomeric aggregate of one of the initial compo-

nents, since these represent the most important practical situations where the contaminants
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are less likely to be removed by biochemical means during preparation of the initial com-

ponents. In these cases, the least-squares approach is no longer applicable, so at the cost of

computational time, we employ a convex quadratic program to compute scattering curves

that are consistent with the data and satisfy additional constraints expected of physically

realistic scattering curves.

We demonstrate the effectiveness of our method on simulations of four hetero-oligomer-

ic complexes with different association pathways, association constants, molecular weights,

and three-dimensional structures. Our simulation studies further demonstrate the robust-

ness of our method to both random noise and systematic noise due to contaminants. In all

cases, we are able to infer the correct association pathway and association constants that are

very close to those used in simulation, as well as scattering curves that closely approximate

those of the monomers and oligomers.

2.2 Methods

When several molecules are present in a solution, the observed scattering curve is the mass

fraction-weighted linear combination of the scattering intensities for the individual com-

ponents. Starting with scattering intensities collected from the equilibrium mixtures of a

series of different concentrations of the initial components, our goal is to infer the associa-

tion model along with the underlying scattering curves of the involved molecular species,

including the initial components and intermediate and final complexes. Fig. 2.1 provides

an overview of our approach for an example in which initial components A and B form an

AB complex, with the association constant KAB establishing the fractional amount of each

of these forms at equilibrium. Each molecular species has an underlying scattering curve,

but the association model and underlying scattering curves are unknown (gray shaded box).

At given initial concentrations of A and B, the scattering curve for the equilibrium mixture

is a weighted sum of that for the pureA, pureB, and pureAB, weighted by the equilibrium
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Fig. 2.1: An overview of our method, for an example one-stage system. The associa-
tion model and scattering curves of the various molecular species are unknown. Scattering
curves are collected over a series of different initial concentrations of the components. Each
observed scattering curve is a linear combination of the unknown curves of the different
species, according to the association model and initial concentrations of the components,
plus noise. We systematically search over possible association models; for each, we use a
corresponding low-rank approximation to de-noise the data, and we employ a least-squares
formulation to reconstruct scattering curves of the different species. We evaluate agreement
of each model’s reconstructed curves with the experimental data, and select the best model.
We extend this ideal framework to account for the most problematic possible contaminants
(we have tested non-participating monomers and homo-oligomeric aggregates) by includ-
ing an additional unknown scattering curve and fractional mass, and solving a quadratic
optimization problem for reconstruction.

fractional masses. The experimentally-measured curve (normalized by total mass concen-

tration of the mixture) is then composed from this weighted sum, plus experimental error.

We collect a series of such curves, over a range of initial concentrations of A and B. We

then search over possible association models, considering alternative pathways and values

for the corresponding association constants (here only KAB). When considering a possi-

ble pathway, we hypothesize an associated p, the number of molecular species that should

be present for that model, and can thus extract a corresponding reduced set of scattering

curves with random experimental noise partly removed, suitable for our analysis. When

considering a set of association constants under this pathway, a set of fractional masses is

hypothesized. Using them, we can compute a reconstruction of the underlying curves and
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a corresponding reconstruction of the observed mixture curves. To determine the best as-

sociation model and reconstructed curves, we perform a broad coarse-grid search followed

by a narrow fine-grid search over possible association constants, scoring each for quality

of fit to the observed data and agreement between the scattering curves and proposed stoi-

chiometries of the complexes. We finally return the best pathway and constant, along with

the corresponding reconstructions.

More formally, we represent our input scattering data as an m × n matrix S, with n

columns for the samples at different starting concentrations of the initial A and B compo-

nents, each with m rows for the scattering intensities at a fixed set of m scattering angles.

Each mass concentration normalized scattering curve column in S represents a linear com-

bination of p curves (initial components along with intermediate and product oligomers

each at the standard mass concentration), weighted according to their equilibrium frac-

tional masses. Collecting the curves into an m × p matrix O (one column per molecular

species) and the fractional masses into a p×nmatrix F (one row per set of initial monomer

concentrations), and adding experimental noise E (one value per data point), we obtain

S = OF + E . (2.1)

While S is the observed data, the values in the other matrices are unknown, and our goal

is to infer the association model which detetermines F and set of curves O which together

produce the observed S.

We now detail each of the steps in the following subsections. The presentation is gen-

eralized from that of our homo-oligomeric study [67], and refocused directly on solving

the underlying least-squares problem. We initially assume that only the species in the mod-

eled association are present in the various mixtures. We subsequently show how to modify

the methods to handle potential situations where the presence of a contaminant that is a

non-participating monomer or homo-oligomeric aggregate alters the ideal situation.

12



2.2.1 Low-rank approximation

When considering an association pathway (recall that we will search over the possibilities),

we know the number p of molecular species that are present at equilibrium. Since the

relationship between their mass fractions (and hence between rows of F ) is non-linear, and

since the number of concentrations is greater than the number of molecular species, we

can extract a p-rank approximation Sp. This low-rank approximation Sp is a “de-noised”

version of S (i.e., withE partially removed), containing the appropriate number p of curves

with which to reconstruct the scattering curves according to the association model.

Singular value decomposition (SVD) is a popular technique for low-rank approxima-

tion, and has been employed by us [67] and others [9, 52, 53] in analysis of scattering

data. SVD computes the low-rank approximation with the smallest distance to the in-

put matrix, as measured by the Frobenius norm of the matrix difference, ‖S − Sp‖F =√∑
i,j(S(i, j)− Sp(i, j))2. The SVD of our m × n matrix S is given by S = UΣV T ,

where m×m matrix U and n×n matrix V are orthogonal matrices whose column vectors

are the left and the right singular vectors, and m × n matrix Σ is a diagonal matrix whose

elements are the singular values associated with the corresponding left/right singular vec-

tors. The singular values are in order along the diagonal from largest to smallest, weighting

the contributions from the most to least important singular vectors. To compute the pth

low-rank approximation, we replace with zero the smallest m − p singular values on the

diagonal of Σ to give Σp, and then compute Sp = UΣpV
T .

2.2.2 Reconstruction

When considering a set of association constants for a pathway (recall that we will conduct

a grid search over possible values for the association constants), we can apply standard

association equilibria to compute the resulting equilibrium fractional mass of each of the

p molecular species. We collect these fractional masses into a matrix F̃ (using the tilde to
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indicate that it is our reconstruction of the “true”, unobserved F ). Combining this with the

low-rank approximation Sp in a de-noised version of Eq. 2.1, we compute the least-squares

solution in order to reconstruct scattering curves of the various species:

Õ = SpF̃
† (2.2)

where F̃ † denotes the Moore-Penrose pseudoinverse. This formalization in terms of a p

rank approximation is a generalization of the approach in [67], where using basis vectors

from Singular Value Decomposition was an explicit part of the equations. It clarifies the

role of the decomposition and allows the use of alternative approximation approaches. It

is also different from [5] where PCA is used only to find the number of components in the

solution.

If the least-squares solution Õ has more than 10 percent negative intensity values or

contains negative values in the small scattering angle range considered for Guinier anal-

ysis [12], we consider it to be non-physical, and reject the reconstruction without further

analysis.

We then use Õ to compute S̃, an approximation of the observed scattering curves of

the equilibrium mixtures, by linearly combining the curves of the involved species at the

appropriate fractional masses:

S̃ = ÕF̃ = SpF̃
†F̃ (2.3)

We thus reconstruct the scattering data from the low-rank approximation, consistent with

the hypothesized association model.

2.2.3 Evaluation

To assess an association model, we evaluate how well the reconstructed scattering curves

S̃ match the experimental ones S. We employ the two scoring approaches of our homo-
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oligomeric work [67], customized for hetero-oligomers.

First a χ2 score quantifies the differences over the entire set of scattering curves, weigh-

ted by the estimated error σ(i, j) for each experimental data point:

χ2 =
1

m(n− p)

n∑
j=1

m∑
i=1

(
S(i, j)− S̃(i, j)

σ(i, j)

)2

. (2.4)

The sum of squared differences between points on the reconstructed and original curves

is normalized by m(n − p) degrees of freedom to yield a χ2 score. While there are mn

data points, p of the n degrees of freedom are fixed by the low-rank approximation. We

show that in practice this score approximately equals 1 for the best fit to data with Gaussian

simulated noise.

Second, the Mean Squared Mass Ratio Difference (MSMRD) score calculates whether

the zero-angle intensities match the stoichiometry of the hetero-oligomeric forms. The

scattering intensity at zero angle, estimated by Guinier analysis [12], is proportional to the

molecular weight. Thus for example, we would expect I(0) for species AB, IAB(0), to

equal IA(0) + IB(0), and thus IAB(0)
IA(0)+IB(0)

to be 1. Thus the MSMRD score computes the

average, over the various hetero-oligomeric forms, of the deviations of such ratios from the

ideal value of one. Its expected value is thus zero. For a hetero-oligomer formed from A

and B monomers, we compute the MSMRD as

MSMRD =
1

p− 2

∑
(a,b)∈C

(
1− IAaBb

(0)

a IA(0) + b IB(0)

)2

(2.5)

where C is a set of (a, b) pairs indicating the various AaBb hetero-oligomeric forms, and

IAaBb
(0) represents their zero-angle intensity. For example, if the association model is

A+B → AB, AB +B → AB2, the MSMRD score is given by:

(2.6)MSMRD =
1

2

((
1− IAB(0)

IA(0) + IB(0)

)2
+

(
1− IAB2(0)

IA(0) + 2IB(0)

)2)

These two scores are complementary. The χ2 is global, assessing the overall agreement
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between the reconstruction and the data. However, two related association pathways (with

an appropriate choice of association constants) can generate similar solutions and similar

χ2 values. For example, this can happen with a one-stage association pathway A + B →

AB and the extended two-stage association pathway A + B → AB, A + B → AB2,

with a similar KAB for both cases and a very weak KAB2 for the second (see Results).

This is because Eq. 2.3 can give similar solutions for two different matrices F , as long as

the column space spanned by the fractional matrix is the same. On the other hand, the

MSMRD is very local, ignoring the agreement over most of the curve and focusing on

the zero angle intensity in order to assess the agreement between the independent (and not

directly optimized) expected molecular weights and the stoichiometry. We have found that

considering both χ2 and MSMRD improves the determination of the correct association

model (see Results).

2.2.4 Association model search

We have discussed how to reconstruct and evaluate scattering curves for a given association

model defined by a pathway and corresponding set of association constants. To determine

the best model, we separately reconstruct and evaluate models for a set of plausible path-

ways, over a grid of possible association constants.

The pathways to be considered are chosen based on the set of oligomers that could

possibly be present in the equilibrium mixture. Although potentially infinite, a most likely

set of oligomers can be selected, for example, from an analysis of the zero-angle scattering

or by the radii of gyration of the experimental scattering curves. Then we consider all

pathways that could form complexes with the allowed sets of subunits. For example if

we knew that there were two monomers, A and B, and determined that the final oligomer

had at most three subunits, then we would evaluate the one-stage associations 2A → A2,

2B → B2, and A + B → AB, along with the two-stage associations that extend these
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to yield A2B and AB2. Like other approaches, e.g., analytical ultracentriguation, where

postulated association models are fit to the data, assumptions have to be made for the most

likely models to be assessed.

We perform coarse and fine grid searches over possible values for the association con-

stants. Each association constant is an independent dimension in the grid. Results presented

below use grids covering the range of plausible constants: 10−6 to 1025 for a one-stage as-

sociation and 101 to 1015 for a two-stage association. An initial coarse grid is searched

at integer multiples of the powers of 10 (e.g., 1 × 103, 2 × 103, 3 × 103, . . . , 9 × 103, 1 ×

104, 2 × 104, . . .). For each point (representing one or a pair of association constants), the

curves are reconstructed and evaluated by χ2 and MSMRD, as described above. The con-

stants with the best scores establish a region for a fine grid search, plus or minus one unit

in each dimension, with a spacing of 1% of that of the coarse grid. We only perform fine

grid searches for the models with the best χ2 and MSMRD values from the coarse grid

search and for which the best coarse grid association constants from the χ2 and MSMRD

scores are in sufficient agreement. We finally select the model with the best fine-grid χ2

and MSMRD scores, determining the corresponding pathway, association constants, and

reconstructed curves. In cases where the fine grid search fails to yield an acceptable model,

due to either a high χ2 for the best fine grid point, or large disagreement between the best χ2

and MSMRD fine grid points, the methods in the next section can be employed to account

for contaminants.

2.2.5 Accounting for contaminants

When the scattering data contain a substantial contaminant, we have developed an exten-

sion to our methodology. Since contaminants that are unrelated to the initial components

are generally readily purified by current protein separation methods, we seek to solve bio-

chemical situations that arise most frequently. We focus on cases in which the contaminant
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is either a non-participating monomer or a large homo-oligomeric aggregate of one of the

components.

Let us assume that the contaminant is a non-participating monomer or homo-oligomeric

aggregate of A (the methodology works the same for any component and could be gener-

alized to multiple such contaminants). Note that in our approach, the contributions from

all species in a polydisperse homo-oligomeric aggregate can be accounted for by one com-

bined scattering curve and one total contaminant fraction. Let c be the unknown mass

fraction of A that forms the contaminant. As part of our grid search, we will consider pos-

sible values for c along with those for the association constant(s). Given a hypothesized

value for c and the association constant(s), we must build a fractional mass matrix F̃ for

each, now containing p + 1 rows, with the extra row for the contaminant. In constructing

this matrix, let ai be the initial amount of A in sample i. Then the amount of ai still par-

ticipating in the hypothesized association (rather than in the contaminant) is ai(1− c). We

determine the equilibrium concentrations and thereby masses of the other forms from the

reduced A concentration and the initial concentrations of the other initial component(s).

Unfortunately, the extended F̃ is no longer of full rank in the presence of contami-

nant, as the fractional mass vector for the contaminant is linearly dependent on A. This in

turn implies that there is an infinite set of widely varying least-squares solutions Õ satis-

fying ÕF̃ = Sp. One of these, which we call Õ0, is the solution from our earlier formula

(Eq. 2.2), Õ0 = SpF̃
†. If we use this Õ0 to reconstruct S̃, as in Eq. 2.3, we obtain SpF̃ †F̃ ,

which we call Sp,F̃ . Each least-squares solution Õ produces this same Sp,F̃ and thus cannot

be distinguished by comparison to the data S or the denoised data Sp. This equivalence of

solutions Õ is due to the fact that the set of least-squares solutions is composed of the sum

of Õ0 with an infinite set of matrices of row vectors (that is, adjustments to the scattering

curves) from the null space of F̃ T . Post-multiplication by F̃ then reduces the second matrix

in this sum to zero, resulting in no change to Sp,F̃ .

In summary, there is an infinite number of reconstructions of the pure curves Õ, but each
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produces the same reconstructed data Sp,F̃ . Since we use the reconstructed data to com-

pute χ2 (Eq. 2.4), we can find the best association model (best F̃ ) via coarse and fine grid

searches as before, with an additional dimension of the contaminant fraction in addition to

association constant(s). This approach does not, however, produce correct reconstructed

pure scattering curves and thus also does not give MSMRD values. Therefore, after identi-

fying the best χ2 point (or a set of feasible points for consideration), we must search over

the space of satisfying Õ to reconstruct and evaluate pure scattering curves and identify a

best one.

We have developed a quadratic optimization framework that seeks an Õ that not only

explains the data (which all Õ do equally) but also has properties desirable of physically

realistic scattering curves. In particular, we establish smoothness as our objective function,

and incorporate constraints limiting the sub-optimality of χ2, while also enforcing the ex-

pected decaying exponential trend in the Guinier region of the scattering curves as well as

the expected ratios of I(0) values (as also employed in our MSMRD score). We note that

if the contaminant only involves form A, for example, then the row for B in the fractional

mass matrix is linearly independent from the contaminant and yields a unique least-squares

solution (the same in Õ for any Õ0). Thus after computing Õ0, we remove the row for ini-

tial component B in F̃ and from Sp,F̃ (via its row in F̃ and column in Õ0). For simplicity,

we continue to refer to Õ and F̃ without distinguishing the reduced-parameter versions.

Objective: smoothness. With the available freedom in Õ, there are curves that use wildly

fluctuating values to obtain good χ2 scores upon post-multiplication by F̃ . Since we expect

physical curves to be relatively smooth, we establish as our objective function a discrete

evaluation of smoothness. We construct a finite difference matrix D that, when multiplied

with Õ, approximates the second order derivative at each point on the curve. We then seek

to minimize the total of the squared differences, i.e., the square of the Frobenius norm of
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DÕ.

min
Õ
||DÕ||2F (2.7)

Constraint: χ2 deviation. We seek a reconstruction with the optimal χ2 (as with all the

Õ, satisfying ÕF̃ = Sp,F̃ ), but since the data are noisy, we may sacrifice a little in χ2 score

in order to ensure a feasible optimization problem and do better in terms of smoothness and

other characteristics. We thus impose a constraint that the reconstructed curves are no more

than εfit away from the one that gives the lowest χ2. This tolerance should be set fairly low

to keep the identified curves near the optimal one; for our results, we use 10−3.

(1− εfit)Sp,F̃ ≤ ÕF̃ ≤ (1 + εfit)Sp,F̃ (2.8)

Constraint: non-negativity. Scattering curves are non-negative.

Õ ≥ 0 (2.9)

Constraint: Guinier. Scattering curves exhibit decaying exponential intensity in the

Guinier region [12]. Therefore, we impose a constraint so that curves are non-increasing

(within a tolerance) in the initial Guinier region. To approximate the Guinier region in the

scattering curves in Õ without iterating on Rg values we use qmax = 1.33/Rg [19] and a

fixed Rg = 40. To allow for noise, we enforce this property only to within a tolerance

εGuinier: within the Guinier region, one intensity is no more than (1 + εGuinier) times the in-

tensity at the next lower scattering angle. A reasonable value for εGuinier can be estimated by

examining some pure intensity curves that reconstructed from uncontaminated simulations

with standard noise; we use 2 · 10−2. Note that this value is dependent on the extent of

noise and the spacing of scattering angles. We formulate this constraint with a matrix G

which, when multiplied by Õ, gives the differences between (1 + εGuinier) times a point and
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the next point, for points in the scattering curves in Õ at q < qmax.

GÕ ≥ 0 (2.10)

Constraint: molecular weights. When we are considering a contaminant that is a non-

participating form of A (either monomer or aggregate), we know that its native mass must

be at least that of A, that is MX > MA. Thus the zero angle intensity of its scattering curve

should be at least equal to that of IA(0). Since the extrapolation to obtain I(0) requires

an exponential fit (which would render our system non-linear), we instead use I(qmin), the

intensity at the smallest angle measured.

IX(qmin)− IA(qmin) ≥ 0 (2.11)

where the scattering curves IA and IX (for A and the contaminant X) are particular vectors

of Õ.

Imposing this constraint on I(qmin) instead of I(0) results in negligible error, since,

from the Guinier relationship we have:

IX(qmin)/IA(qmin) = MX/MA exp(−1/3 q2
min(Rg(X)2 −Rg(A)2)) (2.12)

where Rg is the radius of gyration. Given that q2
min is generally quite small (on the order

of 10−6 in experimental data), the difference in radii of gyration is not large enough to

substantially impact the results.

Furthermore, since we have found a unique scattering curve for B, we can use its in-

tensity at qmin to constrain the intensity at qmin of the scattering curve for A and other

forms (excluding the contaminant). We are essentially encoding MSMRD (relative to the

independent form B) as a constraint but for intensities at qmin, instead at zero angle. As

with most other constraints, we use a tolerance to allow for some noise. We have found
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εmsmrd = 0.1 to work well for our tests, but for other data, this tolerance could potentially

be further tightened as long as feasible solutions still result. For the scattering from A (IA)

and every other molecular species AkBl (IAkBl
), we add constraints of the form:

(2.13)(1− εmsmrd)IB(qmin)MA/MB ≤ IA(qmin)
≤ (1 + εmsmrd)IB(qmin)MA/MB

(1− εmsmrd)IB(qmin)(kMA + l MB)/MB ≤ IAkBl
(qmin)

≤ (1 + εmsmrd)IB(qmin)(kMA + l MB)/MB

(2.14)

where again the scattering curves I are particular vectors in Õ.

Solving the system. While we have written the objective and constraints in terms of

Õ and other matrices, we can re-shape these matrices into long vectors (i.e., by stack-

ing columns). The combination of the objective function and constraints yields a convex

quadratic optimization problem that can be solved by numerous solvers. If the quadratic

optimization program is infeasible for a hypothesized association model, we discard that

model. If more than one feasible model were to remain, we could compute MSMRD values

and select the best, but that did not happen in our simulation studies presented below.

2.2.6 Implementation

The methods have been implemented in a platform-independent Python package that is

available upon request. The package calls the IBM ILOG CPLEX optimizer to solve the

system of equations. Our program lets a user search over possible association models based

on specifications provided via the command line or in an input file. The package contains

implementations for both the contaminant-free search and the extension to handle non-

participating monomers and homo-oligomeric contaminants. In addition to the methods

in this paper, it also contains an implementation for homo-oligomeric association models

from our previous work [67].
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To obtain the results presented below, coarse and fine grid searches for a one-stage

model took less than a minute, while searches for a two-stage model took a few minutes on a

single core Intel Xeon 2.50 GHz processor. The three stage searches took a few hours. The

time for contaminant searches was similar to the contaminant-free search being increased

by another dimension.The quadratic program solver usually took less than a minute.

2.3 Results

In order to evaluate the effectiveness of our method in a range of scenarios, we performed

an extensive set of simulation studies, with different association pathways and association

constants, and varying levels of random noise, data resolution, and monomer size. Fig. 2.2

summarizes the complexes used in these studies, and illustrates their crystal structures and

the simulated scattering curves of the monomers and intermediate and final oligomers at a

constant mass concentration. The complex structures were taken from the PDB [4] (pdb ids

indicated), and monomer and intermediate complex structures extracted. The association

models for simulation were not taken from experimental data; instead, we chose them to

challenge the ability of our method to determine the correct model even in the presence of

alternatives that have intermediate and final complexes of similar mass (note the similarity

of initial component masses in the Bovine IFN-gamma and the human growth hormone-

receptor cases). We chose association constants in the middle of a feasible range; however,

we explicitly assessed the impact of the constants in one set of simulations.

We have found that as few as eight different initial concentrations provides a sufficient

set of different scattering curves for subsequent reconstruction, and the results shown are

based on eight for all test cases. The initial concentrations used (Supplementary Tab. 2.5

and Tab. 2.6) are all in the 0.5-5.0 mg/ml range where SAS data is easily collected. They

were chosen so as to yield a diverse set of row vectors (fractional masses) in the fractional

mass matrix F , adequately sampling the space and ensuring that important vectors (scat-
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Bovine IFN-gamma
A+B → AB
KAB = 3.43× 106

A: 14.2 kDa; B: 13.3 kDa

1D9G

Human calcineurin
A+B → AB
KAB = 4.24× 104

A: 43.6 kDa; B: 18.8 kDa

1AUI

BAF-emerin complex
A+B → AB, AB +B → AB2

KAB = 3.21 × 105, KAB2 = 4.23 ×
105

A: 5.7 kDa; B: 10.1 kDa

2ODG

Human growth hormone-receptor
complex
A+B → AB, AB +B → AB2

KAB = 8.43× 105, KAB2 = 6.26× 104

A: 21.0 kDa; B: 22.5 kDa 3HHR

Fig. 2.2: Case studies.
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tering from intermediate and final complexes) are included in the low-rank approximation.

Even so, the equilibrium mixtures are rarely more than 70% of one form. In practice, of

course, F cannot be assessed initially, but we still recommend ensuring that there is a di-

verse set of initial concentrations, with different combinations of low and high monomer

concentrations. In the absence of approximate knowledge of the association constants that

determine F , a first-round analysis can be used to identify a definitive set of initial concen-

trations for which to collect data. We do include pure monomer solutions (only A, only B)

as initial components so as to better characterize them and account for their contributions

to the mixtures. Of course, pure monomers may not be biochemically available, but the

method is not dependent on this and any available components could be used.

The program CRYSOL [56] was used at the default settings to simulate noiseless scat-

tering intensities O from the 3D structures of each initial component and complex. The

noiseless equilibrium mixture intensities were then simply calculated as OF . Noise E was

then added, following the method employed by Williamson et al. [67] to simulate realistic

angle-dependent Gaussian noise based on noise levels observed in experimental samples.

Ten datasets were generated for each example, with different random noise added for each

dataset.

While we studied two one-stage associations and two two-stage associations, we present

detailed results for only one of each and summarize the second, since results were similar

in each category. We first show that our method yields the correct association model on our

initial simulated data, for both one-stage and two-stage examples. We then demonstrate the

robustness of our method to noise, and investigate the range of association constants for

which the method is applicable. Finally, we consider test cases with simulated contamina-

tion and present results from our expanded method that accounts for the contaminant.
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Fig. 2.3: Association constant searches for one Bovine IFN-gamma dataset, for the correct
A + B → AB pathway. The ‘×’ mark on the x-axis indicates the simulated association
constant (3.43× 106).

2.3.1 Baseline simulations

Bovine IFN-gamma (one stage). We first examine the results for one of the 10 simulated

datasets (i.e., one Gaussian noise matrix E), with the correct pathway A + B → AB and

varying the association constants on a coarse grid (Fig. 2.3, left) and fine grid (Fig. 2.3,

right). Both plots show a steep decline in χ2 and MSMRD scores around the simulated

association constant value (3.43×106), with a minimal χ2 of 1.59 at 3.34×106, and minimal

MSMRD of 1.67×10−11 at 3.65×106. The close agreement of these association constants

and high quality of the scores under these complementary metrics gives us confidence in

this solution.

While in an experimental setting we would not have access to the “true” scattering

curves of the various molecular species (O), here we do (from the CRYSOL calculation

on the model components and complexes), and can evaluate how well the reconstructed

curves agree with them (Õ, computed by Eq. 2.2). Fig. 2.4 shows the approximately ran-

dom residuals between the reconstructed and simulated curves, at the association constant

KAB = 3.34 × 106 which yields the best χ2 score. (The apparent deviation from random

residuals seen at higher resolution for component B (Fig. 2.4, middle) was not explained

by deviation between simulated and best χ2 association constant.) To quantify the extent of
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Fig. 2.4: Residuals between pure simulated scattering intensities and reconstructed ones
for Bovine IFN-gamma χ2-optimal association models.

agreement, we compute the median of the absolute relative deviation (MARD), as a percent-

age deviation of the reconstructed curve from the simulated one; a MARD value close to

zero indicates that the reconstructed curve is very close to the original noiseless CRYSOL

curve. MARD scores confirm the agreement illustrated in the figure: A has a MARD of

0.24%, B has 0.16%, and AB has 0.22%, averaged across the ten datasets with differ-

ent simulated noise. Tab. 2.1 summarizes results over all 10 simulated noisy datasets,

comparing the correct pathway with alternatives. The A + B → AB pathway was al-

ways chosen and the average association constant was close to the simulated one with only

small variation between data sets. Only the related two-stage pathways A + B → AB,

AB + B → AB2 and A + B → AB, AB + A → A2B obtained coarse-grid χ2 scores

(averaging 1.62 and 1.55, resp.) competitive with that of the correct model (1.53); the rest

were much worse. Both alternative models extend the correct model with an additional

association of weak affinity, keeping the A + B → AB association as the primary one.

Any additional association hurts the MSMRD scores (1.19 × 10−3 and 8.21 × 10−4, vs.

3.74 × 10−7 for the correct model), as the low angle data do not support an oligomer with

molecular weight corresponding toAB2 or A2B. In addition, while the optimal association

constants for χ2 and MSMRD are very similar for the correct model, the best association

constants by these two metrics are quite different for the alternative ones. Furthermore,

there is not a choice of constants that scores moderately well under both metrics, and the

association constants giving the best χ2 score yield a poor MSMRD score and vice versa.

For pathway A + B → AB, AB + B → AB2, the MSMRD for the association constant

27



with the best χ2 score averages 9.53× 10−2 across the ten datasets, versus an average best

MSMRD of 1.19 × 10−3. On the other hand, the χ2 score for the association constants

with the best MSMRD score is 33.45 on average. These values are more than an order of

magnitude worse than the best χ2 and MSMRD scores for the correct pathway. We find

similar results for the second alternative pathway. Even though the χ2 scores are not good

discriminators, the substantial deterioration in the MSMRD and the disagreement between

MSMRD and χ2 metrics for the alternative models point to the correct A + B → AB

pathway.

BAF-Emerin complex (two stage). Fig. 2.5 shows both χ2 and MSMRD scores on the

coarse and fine grids for the correct A+B → AB, AB +B → AB2 pathway, for one ex-

ample noisy dataset. As in the one-stage case, there are well-defined minima, with the best

association constants yielding much better χ2 and MSMRD scores than nearby alternatives,

at both coarse and fine resolutions. We again see good agreement as to the best association

constants under the two scores: χ2 gives KAB = 3.16 × 105, KAB2 = 4.16 × 105, and

MSMRD gives KAB = 3.27×105, KAB2 = 4.35×105, with the simulated constants being

KAB = 3.21 × 105, KAB2 = 4.23 × 105. Interestingly, under both metrics, the best asso-

ciation constants lie on a diagonal line in which KAB and KAB2 are increasing at a similar

rate, ensuring that if more AB is produced than the data dictate it is also converted to AB2.

While this keeps the fraction of AB relatively constant, the resulting excessive depletion

of A and excessive formation of AB2 yield worse scores at points along the diagonal line

other than the minimum. The reconstructed intensities at the best association constants

are quite similar to the original simulated noiseless ones as illustrated in the residuals (not

shown) and quantified by average MARD values for A: 0.08%, B: 0.08%, AB: 0.15%,

and AB2: 0.06%.

Tab. 2.2 summarizes the results across ten noisy datasets for a set of possible association

pathways. The best χ2 score, averaging 1.17, is obtained by the correct pathway (A+B →
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Fig. 2.5: Association constant searches for one BAF-Emerin complex dataset, for the cor-
rect A + B → AB, AB + B → AB2 pathway. The ‘×’ marks indicate the simulated
association constant (KAB = 3.21 × 105, KAB2 = 4.23 × 105). The white regions in the
coarse grid plots indicate the constants yielding nonphysical scattering curves (those with
substantial negative intensities).
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AB, AB + B → AB2). The next best χ2 scores, averaging 1.28 and 4.49, are obtained by

alternative three-stage pathways that add weak association reactions AB2 + B → AB3 or

AB2 +A→ A2B2 to the correct pathway. As before larger changes in the MSMRD scores

are seen. The first alternative (adding AB3) has an MSMRD score that is almost 104 times

worse than the best MSMRD score. The second alternative (adding A2B2) has an MSMRD

score that is more than 40-fold higher than the best MSMRD score (6.09× 10−5 compared

to 1.33 × 10−6 of the correct pathway). Furthermore, comparing the best χ2 association

constants against the best MSMRD constants in these alternative pathways reveals that

they differ by approximately 102 in K1, 103 in K2, and 104 in K3. Furthermore, as before,

neither alternative pathway has a set of constants that score well under both metrics. Thus

by using χ2 and MSMRD scores together, we can determine the correct pathway.

2.3.2 Robustness to noise

Our simulated datasets include a realistic estimate to Gaussian noise found in experimental

datasets at third generation synchrotron sources [67], but our simulation framework enables
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us to easily assess how robust our method is to much noisier data. As one example, we

generated ten noisy datasets for the one-stage Bovine IFN-gamma with the resolution-

dependent Gaussian noise scaled up by a factor of two. The correct A+B → AB pathway

was still the clear winner in all the datasets. It achieved a very good fine-grid χ2 score

(an average of 1.23 across 10 datasets, compared to 1.00 with the standard noise) at a

nearly-correct association constant (3.35 × 106, the same as with the standard noise, and

near the simulated value of 3.43 × 106). It also achieved a good fine-grid MSMRD score

(3.41× 10−11, compared to 1.46× 10−14), with a good association constant (3.86× 106).

We then tested the performance of our method over a range of noise levels, increasing

the Gaussian width up to 5-fold, generating 10 datasets for each noise level. We assessed

the results in terms of identification of the association constant as well as reconstruction of

the underlying scattering curves of the monomers and oligomers. For association constants,

we assess the error with the absolute difference between the base 10 logs of the correctK∗AB

and the inferred KAB, i.e., | log10K
∗
AB − log10KAB|. For scattering curves, our evaluation

is the median absolute relative deviation (MARD) discussed above. Fig. 2.6 illustrates

these error measures with respect to increasing noise (averaged over the ten datasets for

each level). The figure shows that as the noise increases our best fine grid points and

reconstructions gradually become further away from the correct ones. Even at 5x noise, the

errors in asssociation constants remain acceptable, approaching 10% (averaged across ten

datasets), while the MARD values remain under 1% (0.6% for A, 0.7% for B, and 0.3%

for AB averaged across ten datasets). Thus we conclude that the method is indeed robust

to such random noise. Robustness to some aspects of systematic noise (contamination with

non-participating molecules) is discussed below.
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2.3.3 Robustness across ranges of association constants

The ability of our method to recover the contribution from a particular species depends on

that species making a non-negligible contribution to the mixture scattering data. That in

turn depends on the association constants. Our simulations used physiologically reasonable

constants, selected to ensure non-negligible quantities of each molecular species at equi-

librium. However, since there is a wide range of reasonable values for weak association,

we conducted a set of one- and two-stage simulations with varying association constant

pairs to assess the range of values suitable for our method. For each association constant

of pair of association consetants, we compared the simulated value with the best χ2 con-

stants (results with MSMRD are similar and not shown). Absolute log differences were

used to assess the differences between simulated and inferred values. For two association

constants, we evaluated the Euclidean distance:

√
(log10K

∗
AB − log10KAB)2 + (log10K

∗
AB2
− log10KAB2)

2

Fig. 2.7 shows the error over the range of association constant(s). For the one-stage

Bovine IFN-gamme, our method works best for values of KAB between 102 to 108. For

the two-stage BAF-Emerin complex, our method works best for most combinations over a

broad range of KAB values between 101 and 1011 and KAB2 values between 102 and 109.

Poor scores for the one-stage association at low and high KAB values can be attributed to

near-zero fractional masses of initial or final components at those extremes. Likewise, for

the two-stage association, poor scores for lowKAB values can be attributed to the near zero

fractional mass of AB (and hence AB2) in such cases. The error is also large with high

KAB2 values due to the very small amount of AB remaining at equilibrium.
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2.3.4 Robustness to monomers and complex size and shape

We also studied the performance of our method on two other complexes that are quite

different in molecular weight and structure from the two that have been discussed so far.

While the main one-stage study, Bovine IFN-gamma, has monomers that are relatively

small and close in molecular weight (14.2 and 13.3 kDa), our additional study, human

calcineurin, has monomers that are larger and have very different molecular weights (43.6

and 18.8 kDa) and shapes. The main two stage study, BAF-Emerin complex, has monomers

with weights 5.7 and 10.1 kDa while the additional HGH-receptor complex had monomers

with weights 21.0 and 22.5 kDa and different shapes.

In both cases, our method inferred the correct pathway and association constants and

reconstructed scattering curves that are very similar to the simulated ones. For the one-stage

human calcineurin (Supplementary Tab. 2.7), the χ2 value averaged 1.10 over ten simulated

datasets, with association constants averaging 4.24× 104 (which was the simulated value).

The resulting MARDs for the best χ2 association constant averaged 0.24% for A, 0.16%

for B, and 0.22% for AB. As in our initial one-stage study, an alternative two-stage model

yielding bothAB andAB2 scored well by χ2 (1.28), but poorly by MSMRD (1.06×10−3),

with substantial disagreement on best association constants (KAB = 4.30 × 104, KAB2 =

5.35× 102 for χ2 and KAB = 3.00× 104, KAB2 = 5.10× 102 for MSMRD). The χ2 score

at the best MSMRD point and the MSMRD score at the best χ2 point were also worse.

Several other pathways scored moderately well by χ2, but all of these could be eliminated

by evaluating the MSMRD scores and the disagreement between best association constants.

Similarly good results were seen for the HGH-receptor complex (Supplementary

Tab. 2.8). The lowest χ2 was on average 0.98 at association constants averaging KAB =

8.43 × 105, KAB2 = 6.26 × 104 (which were the simulated values). The average MARDs

across ten datasets at the lowest χ2 points were 0.08% for A, 0.09% for B, 0.10% for AB,

and 0.10% for AB2. Alternative models that extend the correct two-stage pathway with

AB2 + A → A2B2 or AB2 + B → AB3 third stages also have low χ2 scores (1.38 and
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1.33, respectively), but poorer MSMRD scores and large disagreement on best association

constants.

2.3.5 Contaminated data

A frequent problem in the analysis of associating systems is the presence of “incompetent

protein” contaminants, either monomer protein which behaves similarly to ideal material

during purification but which does not participate in associations, or oligomers that do

not dissociate (irreversible aggregate) [69]. In both cases the protein appears in the initial

concentrations but not in any complex. For example, we found in our previous work on

homo-oligomers that the addition of 2% of another oligomeric form would lead to large χ2

values and incorrect association constants and reconstructions [67].

To test the robustness of our method to such contaminants, we used a non-participating

fraction of monomer A as a contaminant in our one-stage Bovine IFN-gamma. We also

used a non-participating A13 aggregate in our two-stage BAF-Emerin complex, using a

single aggregated form to represent the total possible contribution from multiple aggregated

forms. To construct an A13 structure for this simulation, we repeatedly docked copies of A

together with GRAMM-X [59]. Scattering curves from all forms were again simulated with

CRYSOL. We simulated data with off-grid values of .0047, .0113, and .0231 contaminant

mass fraction in the initial mass of A, using the same association constants as before. Ten

datasets were generated for each case with different random Gaussian noise.

We first performed our regular coarse- and fine-grid searches on the simulated data with

contaminants, assuming as in previous sections the absence of any contaminant (Supple-

mentary Tab. 2.9 and 2.10). All of the alternative (incorrect) association pathways were

immediately eliminated due to high χ2 or inconsistency between best χ2 and best MSMRD

(not shown).

Using the correct association pathway for Bovine IFN-gamma, the χ2 values increase

37



monotonically with contaminant fraction. As expected, in the presence of a nonparticipat-

ing monomer, the apparent association constants also shift towards smaller values. When

the contaminant fraction increases to .0231 the χ2 score has more than doubled and indi-

cates a clear problem in the analysis. The MSMRD scores have also increased significantly

(although these scores do not have a standard baseline to reference).

The behavior of the BAF-emerin complex is similar. χ2 scores also increase monotoni-

cally with contaminant fractions. The behavior of the MSMRD score is more variable, per-

haps because the A13 contaminant used here has an outsized effect on the I(0) values. For

the .0231 contaminant fraction, even the coarse grid search is unable to identify the nearest

grid point. Here again, a significantly increased χ2 and disagreement between best χ2 and

best MSMRD association constants indicates problems for the .0113 and .0231 contami-

nant fractions. Here the increasing presence of the A13 contaminant shifts the association

constants to larger values forming more of the larger complexes.

In both cases the presence (or suspicion) of an incorrect analysis (particularly the dis-

agreement between best χ2 and best MSMRD values) would signal the need for a more

sophisticated analysis. We have developed a convex quadratic optimization method specif-

ically to deal with problems arising from non-participating contaminants.

We performed grid searches extended to include contaminant fraction for all cases. The

coarse contaminant fraction grid dimension ranged from 0 to 0.1 by steps of 0.01. Fine grid

searches (including contaminant fraction) were then performed for all pathways with a χ2

value for the extended coarse grid search within 1.0 of the best χ2 pathway (note that the

MSMRD cannot be used to assess the quality of these searches because scattering curves

are only generated upon applying the quadratic optimization). The fine contaminant grid

then ranged from the point below the identified coarse grid contaminant fraction to that

above it, with a step size of 0.001. The grid searches were performed considering either

an A or B homo-oligomeric contaminant (but not both). Optimized scattering intensities

were then computed for the best χ2 fine grid association constants by solving the quadratic
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program with constraints and parameter values as presented in Methods.

Tab. 2.3 summarizes fine grid contaminant search results. For the one-stage Bovine

IFN-gamma contaminanted with non-participating A, three pathways passed the χ2 cut

off: the correct model and the same two alternatives that were found in the baseline stud-

ies. While it is hard to distinguish the three based solely on χ2, the intensity reconstruction

optimization procedure found no feasible solution for the alternative models, but success-

fully yielded scattering curves for the correct model, in all 10 datasets. For the two-stage

BAF-Emerin complex contaminated with the A13 aggregate, only the correct model passed

the χ2 filter, and its intensity reconstruction optimization was successful. For both cases

and at all contaminant levels, the identified fine grid association constants and contaminant

fractions are close to the simulated values (Bovine IFN-gamma K1 = 3.43 × 106; BAF-

Emerin complex: K1 = 3.21× 105 and K2 = 4.23× 105) and, for the higher contaminant

fractions, notably closer than the values obtained in the contaminant-free searches.

Scattering intensities optimized using the quadratic program (labeled OPT) were com-

pared with simulated intensities (labeled TRUE) and those computed by least squares (la-

beled LSQ) visually (Fig. 2.8) and by calculating MARD (Tab. 2.4). Here the quadratic

program is consistently successful. MARD scores are substantially improved for the opti-

mized reconstructions, with the greatest improvement at the higher contaminant fractions,

although even the lower ones benefitted, presumably as a result of the added constraints.

Examining the scattering curve reveals that the greatest deviations from simulated and the

greatest improvement come at small q values. We note that IB is an independent vector in

the intensity matrix, and thus MARDs are the same for the two methods. We found that

the reconstructed scattering curve for the contaminating molecule (not shown) was not a

close approximation to the true curve, probably due to the extremely small fraction of the

contaminant in the solution.

As a final test, we did contaminant grid searches on uncontaminated data (.0000 entries

in Tables 2.3 and 2.4). This approach did not perform as well as the contaminant-free
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Tab. 2.4: MARDs (%) for contaminated reconstructions.

Contam method IA IB IAB IAB2

Bovine IFN-gamma

.0000
LSQ 0.83±0.2 0.28±0.2 0.41±0.1 -
OPT 0.27±0.1 0.24±0.1 0.22±0.1 -

.0047
LSQ 0.53±0.1

0.17±0.0
0.17±0.0 -

OPT 0.20±0.0 0.09±0.0 -

.0113
LSQ 1.13±0.1

0.16±0.0
0.34±0.0 -

OPT 0.42±0.0 0.14±0.0 -

.0231
LSQ 2.28±0.1

0.17±0.0
0.69±0.0 -

OPT 0.83±0.0 0.29±0.0 -

BAF-Emerin complex

.0000
LSQ 0.08±0.0 0.64±0.1 0.20±0.0 0.20±0.0
OPT Unfeasible

.0047
LSQ 2.32±0.0

0.08±0.0
0.85±0.0 0.56±0.0

OPT 1.91±0.0 0.77±0.1 0.53±0.0

.0113
LSQ 4.45±0.1

0.08±0.0
0.90±0.1 0.42±0.1

OPT 2.41±0.2 0.56±0.1 0.27±0.1

.0231
LSQ 8.72±0.1

0.08±0.0
1.41±0.1 0.60±0.1

OPT 1.31±0.1 0.31±0.1 0.21±0.0
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Fig. 2.8: Simulated intensities compared with reconstructed ones computed by the
quadratic program (opt) and the initial least squares Õ0 (lsq), for one .0231 contaminant
fraction dataset of Bovine IFN-gamma (left) and BAF-Emerin complex (right). The IB
reconstruction, which is independent of contaminant, is not shown.
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Fig. 2.9: Reconstructed pure monomer intensity from a monomer-tetramer-octamer asso-
ciation contaminated with 16-mer. IA (Williamson) is computed using the original grid
search without contaminant fraction and subsequent intensity reconstruction as in [67].

search on uncontaminated data. As expected, fitting the additional contaminant parameter

has driven the association constants somewhat away from their best values.

2.3.6 Application of contaminant methods to homo-oligomers

Contamination with aggregates proved to be a problem for our earlier method for char-

acterizing homo-oligomers [67]. Thus we performed our contaminant search and recon-

struction on the case studied there: octameric purE from E. coli (PDB id 1QCZ) [38],

under a monomer-tetramer-octamer association with a 2% mass fraction of a 16-mer as a

contaminant. The best association constants resulting from our contaminant search were

K12 = 4.00 × 1012, K23 = 1.25 × 101, close to the simulated association constants

K12 = 2.87 × 1012, K23 = 1.29 × 101; although the identified contaminant fraction was

higher than simulated, at 6.6%. The association model found by the previous method [67]

wasK12 = 3.46×1012,K23 = 1.00×101, also close to the simulated association constants.

However, our reconstructed monomer scattering curve is much better than the previous one,

whose χ2 is four times worse. The optimized monomer intensity curve is much closer to

the simulated curve than that computed by least squares (after a contaminant search), and

that found without contaminant search (as in [67]), especially at low q (Fig. 2.9). As we
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can see, contaminant search plus the quadratic program reconstruction produce a curve that

closely approximates the true one, while the contaminant-free and least squares reconstruc-

tions introduce substantial error. We note again that the least squares curve is just one of

the infinitely many satisfying solutions, and thus it is not too surprising that it is actually

much worse. The curves for tetramer and octamer are not plotted since for both methods

they are extremely similar to the true curves. These results demonstrate that our method

can also be profitably applied to homo-oligomers in the presence of contaminants.

2.4 Discussion

We have presented a method to infer an association model (pathway and association con-

stants), along with the underlying scattering curves of the initial components and interme-

diate and final complexes, from solution scattering data for a set of equilibrium mixtures

undergoing hetero-association with different initial component concentrations. Our method

searches over possible association models and contaminant fractions, solving for the recon-

structions of the underlying scattering curves by a least squares method in the absense of

“incompetent protein” contaminants or by a convex quadratic program in their presence.

The model and scattering curves are evaluated in terms of how well they can then recon-

struct de-noised input data. We use two complementary scores, a χ2 to assess the overall

fit between the data and the association model combined with reconstructed scattering,

and the MSMRD to assess the consistency between the association model stoichiometry

and the reconstructed scattering. The convex quadratic program provides an optimization-

based method for the difficult problem of reconstructing the underlying scattering curves

in the presence of either non-participating monomers or irreversible aggregates.

In a variety of simulated test cases covering one- and two-stage association pathways,

our approach correctly determined the pathway, accurately estimated the association con-

stants with generally less than 2% error, and accurately reconstructed the scattering curves
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to within an average deviation of less than 0.25%. While such accuracy cannot be expected

for all experimental scattering data, the potential for such accurate evaluation exists in the

most favorable cases. The good accuracy for reconstructing the scattering curve bodes well

for the application of 3D structural modeling based on the reconstructed scattering curves.

We found that the χ2 and MSMRD were effective as complementary metrics. Cases where

an alternative model with an extra association step obtained a fairly good χ2 value could

be ruled out by a greater MSMRD and inconsistency between the best scoring association

constants under one metric vs. the other. We also found our method to be amenable to a

range of association constants, Gaussian noise levels, different complex sizes and shapes,

and contaminants.

The range of association constants that were found acceptable for our method (Fig. 2.7)

compares well with the range of 104 to 109 routinely available from analytical ultracen-

trifugation [31] while also revealing the molecular weight of each complex (via I(0) cal-

culations) calibrated by the molecular weights of the initial components. At the same time

the SAS method provides complex scattering curves that can serve as the basis for 3D

reconstruction. In addition, this range of affinities is explored with the same fixed set of

initial concentrations used in the earlier simulation. The initial concentrations could also be

adjusted upwards to explore weaker interactions (limited by the solubility of the proteins)

and downwards to explore stronger ones (limited by the strength of observed scattering).

We note that the strongest beam lines at third generation sources can generate an accu-

rate scattering profile at concentrations as low as 0.05 mg/ml (Williamson and Friedman,

unpublished results).

At realistic contaminant levels, our method was able to reconstruct the scattering curves

quite accurately, a result not possible by previous methods that assumed an absence of con-

taminants. While by no means perfect, the objective and set of constraints we have chosen

yield good solutions in practice. Smoothness is taken as the primary objective, and the

potential for over-smoothing is mitigated by a counterbalancing constraint from the χ2
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constraint. Other constraints could potentially be incorporated in order to encode shape

characteristics and relationships between the different forms. We are not able to adequately

determine the exact contaminant fraction or its scattering curve, but the incorporation of ad-

ditional constraints could help. Extensions to other forms of contamination and systematic

noise may be amenable to analogous techniques.

In our test cases, we included pure A and pure B as two of our samples. This suggests

an alternative strategy to use the intensity curves of these pure samples to reduce the num-

ber of unknowns (removing known intensity column vectors for A and B in Õ) from our

computations. However, when contaminants are present, there may be no such thing as a

“pure” sample. Likewise, our approach works with a self-associating system which does

not contain pure monomers at the lowest concentration. We have shown that even without

pure A and pure B in the input, we can obtain the correct model as long as the samples

are diverse enough. We were able to do this successfully for two of the test cases where

additional samples at other concentrations replaced the pure samples.
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2.5 Supplementary Material for

“Stoichiometries and affinities of interacting proteins from con-

centration series of solution scattering data: Decomposition by

least squares and quadratic optimization”

The supplementary material includes tables for the initial concentrations (one-stage in

Tab. 2.5 and two-stage in Tab. 2.6), the complete results for the additional test cases (Human

calcineurin in Tab. 2.7 and HGH-receptor complex in Tab. 2.8), and the results of running

our contaminant-free searches on data containing a simulated contaminant (Tab. 2.9 and

Tab. 2.10).
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Tab. 2.10: Mean MARDs (%) for the best fine grid points resulting from contaminant-free
searches for varying levels of contaminant.

Contam % IA IB IAB IAB2

Bovine IFN-gamma, A+B → AB
0.47 0.23 8.10 3.77 -
1.13 0.45 8.10 3.77 -
2.31 0.94 7.90 3.74 -

BAF-Emerin complex, A+B → AB, AB +B → AB2

0.47 1.33 33.13 23.94 27.93
1.13 3.25 33.15 23.92 28.02
2.31 6.57 33.13 23.83 27.98

52



3. NMR STRUCTURAL INFERENCE OF SYMMETRIC

HOMO-OLIGOMERS

H. Chandola, A. K. Yan, S. Potluri, B. R. Donald and C. Bailey-Kellogg. NMR structural

inference of symmetric homo-oligomers. J. Comp. Biol., 12:1757–1775, 2011.

Abstract

Symmetric homo-oligomers represent a majority of proteins, and determining their

structures helps elucidate important biological processes including ion transport, sig-

nal transduction, and transcriptional regulation. In order to account for the noise and

sparsity in the distance restraints used in NMR structure determination of cyclic (Cn)

symmetric homo-oligomers, and the resulting uncertainty in the determined structures,

we develop a Bayesian structural inference approach. In contrast to traditional NMR

structure determination methods, which identify a small set of low-energy conforma-

tions, the inferential approach characterizes the entire posterior distribution of con-

formations. Unfortunately, traditional stochastic techniques for inference may under-

sample the rugged landscape of the posterior, missing important contributions from

high-quality individual conformations and not accounting for the possible aggregate

effects on inferred quantities from numerous unsampled conformations. However,

by exploiting the geometry of symmetric homo-oligomers, we develop an algorithm

that provides provable guarantees for the posterior distribution and the inferred mean

atomic coordinates. Using experimental restraints for three proteins, we demonstrate

that our approach is able to objectively characterize the structural diversity supported

by the data. By simulating spurious and missing restraints, we further demonstrate

that our approach is robust, degrading smoothly with noise and sparsity.
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3.1 Introduction ∗

Protein structure determination by nuclear magnetic resonance (NMR) spectroscopy pro-

vides insights into functional mechanisms, dynamics, and interactions of proteins in solu-

tion. Traditionally, NMR structure determination has been formulated as an optimization

problem [6,20,21], seeking a minimum-energy structure according to a potential that evalu-

ates both agreement with experimental data (e.g., distance restraints) and biophysical qual-

ity according to an empirical molecular mechanics energy function. Because traditional

methods typically employ heuristic optimization methods, they are subject to the problem

of only finding local minima. As a result, traditional methods are repeated many times in

the hope that the global optimum is captured in the ensemble of generated structures. Iden-

tification of an optimum is especially difficult in cases where the data are noisy, sparse,

and/or ambiguous. While the computed ensemble illustrates structural variability, it does

not provide an objective measure of the uncertainty in atomic coordinates, because different

members of the ensemble may have different likelihoods. In addition, the traditional NMR

ensemble does not provide guarantees that all plausible solutions have been discovered.

In contrast to optimization-based approaches, Nilges and co-workers [48] cast protein

structure determination by NMR as a statistical inference problem, inferential structure

determination (or structural inference), in which the goal is to compute the posterior distri-

bution of plausible structures. The posterior captures both the satisfaction of restraints (as a

likelihood) and biophysical modeling terms (as a prior). The inferential approach provides

an objective measure of confidence and is not focused on trying to find a single “optimal”

solution (or ensemble of solutions that are optimal in different runs). Nilges and co-workers

developed a sampling-based method to perform structural inference for monomers, and ap-

plied it to characterize the posterior distribution of the 59-residue Fyn SH3 domain, given

154 NOE restraints [48].
∗Abbreviations used: NMR: Nuclear Magnetic Resonance, NOE: nuclear Overhauser effect, RMSD: root-

mean-square deviation, SCS: symmetry configuration space, SO(3): Special Orthogonal Group, vdW: van der
Waals
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We develop here an algorithm that performs structural inference for symmetric homo-

oligomers—protein complexes comprised of identical subunits (monomer proteins) ar-

ranged symmetrically. Symmetric homo-oligomers are a valuable target since they make

up a majority of proteins [18]; they play pivotal roles in important biological processes

including ion transport and regulation, signal transduction, and transcriptional regulation.

Experimentally, it is possible to distinguish intra-subunit restraints (distance restraints be-

tween atoms within a subunit) from inter-subunit ones (distance restraints between atoms

in different subunits) by isotopic labeling strategies and X-filtered NOESY experiments

[24,32,63,71]. As a result of this, the complex structure determination can proceed by first

determining the subunit structure as it exists in complex, and then computing the oligomeric

assembly [43,50,65]. Our problem (Fig. 3.1) is thus to compute the posterior distribution of

homo-oligomeric complex structures given the subunit structure, by evaluating their con-

sistency with experimental data and their packing quality. Having computed the posterior

distribution over complex structures, we also infer other quantities of interest, namely the

means and variances of atomic coordinates.

Our inference algorithm characterizes the entire posterior distribution of a homo-

oligomeric complex structure, to within user-specified thresholds on allowed error in com-

puting the posterior over structures and the mean atomic coordinates. Error guarantees

are possible due to our focus on symmetric homo-oligomers, whose complex structures

can be specified in terms of their symmetry axes, enabling us to employ a four degree-of-

freedom representation which we call the symmetry configuration space (SCS). We build

upon our earlier work on searching symmetry configuration spaces [44, 46], but this paper

represents a significant extension in order to support inference and compute error bounds,

which account for experimental noise and uncertainty. Our algorithmic approach, hierar-

chical subdivision with error guarantees, stands in contrast to sampling techniques, such

as the replica-exchange MCMC algorithm employed by Nilges and co-workers [22, 48],

which may under-sample the high-dimensional and very rugged posterior distribution of a
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Fig. 3.1: Structural inference of symmetric homo-oligomers. Given a subunit structure
and set of inter-subunit distance restraints, we compute the posterior distribution over all
possible complex structures, represented in terms of a configuration space of symmetry
axes. The posterior distribution evaluates the quality (depicted via color and thickness)
of the satisfaction of the restraints and the packing of the subunits. By integrating over
the posterior distribution over axes (and thereby structures) we obtain means and variances
for atomic coordinates, depicted as a sausage plot (thicker implying greater variance). In
the homo-dimer shown here, we fix one subunit and evaluate possible axes and thereby
positions of the other subunit.

monomer, and does not characterize (or place bounds on) the error in inferred quantities.

Unlike sampling methods, we account for both the individual and aggregate effects of leav-

ing out possible conformations. That is, by applying provable bounds on the error of the

posterior (including the underlying normalization constant), we ensure that we have not

missed any high quality conformations or a large number of lower quality conformations,

either of which could result in incorrect inferences.

3.2 Methods

As mentioned in the Introduction, the subunit structure as it exists in complex can be ob-

tained prior to complex structure determination [43, 50, 65]. Thus, we are given the sub-

unit structure (Euclidean coordinates pi for each atom i) and a set of n distance restraints
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Fig. 3.2: Symmetry configuration space (SCS). (a) Each structure is defined by a point
(a, t) ∈ S2 × R2 in the configuration space of symmetry axes. Each subunit is depicted
by a cylinder; the structure is obtained by rotating the fixed subunit (shaded cylinder) by
the angle of symmetry around the symmetry axis (line). A distance restraint is shown
between an atom at position p on the fixed subunit and one at position q′ on the adjacent
subunit. (b) An SCS cell C ⊂ S2 × R2 defines a set of symmetry axes (green region)
and thereby a corresponding set of structures. We can bound the possible positions q′ over
these structures.

R = {r1, . . . , rn} (each specifying an atomic pair and allowed distances). We assume here

that the oligomeric number has also been previously determined (e.g., from ultracentrifu-

gation), but see Potluri et al. [44] for a discussion of how to score possible oligomeric

states based on how well the restraints fit as well as empirical energy functions. If we fix

the position of the initial subunit structure, then the homo-oligomeric complex structure

is completely specified by the symmetry axis (Fig. 3.2(a)). We focus on cyclic symmetry

Cn, in which we position at the origin one fixed subunit, and obtain the complex structure

by rotating the fixed subunit structure around the symmetry axis c to generate the other

subunit(s). Thus the symmetry axis c, can be used to parametrize all possible oligomer

structures.

We compute the posterior distribution p(c | R) over oligomer structures in terms of

the symmetry axis c. Given the posterior, we also infer the expectation E(qij | R) and

variance var(qij | R) of the atomic coordinates qij for each atom i in each rotated subunit

j. (See again Fig. 3.1.) Unfortunately, the posterior distribution is difficult to compute
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and to integrate analytically, and in cases of sparse and noisy data, sampling methods may

get trapped in local minima and may miss important contributions to the posterior, either

individually or in aggregate. In contrast, we approximate the integral with a discrete sum

over cells defining contiguous sets of axes at a resolution that is sufficiently fine to consider

the axes as making a uniform contribution. While there are too many such cells to simply

enumerate all of them, we recognize that many have a sufficiently small posterior that they

can be safely ignored without impacting our inferences. Thus we develop a hierarchical

subdivision algorithm (Fig. 3.3) to find the high-quality cells and provide guarantees on

the resulting error introduced due to eliminating other cells. The algorithm also obeys

restrictions on the allowed error in expected atomic coordinates inferred from the cells it

returns.

We first summarize our earlier work on representing and computing with a configura-

tion space representation of symmetry axes (Sec. 3.2.1). We then present our inferential

framework based on this representation (Sec. 3.2.2), our error bounds (Sec. 3.2.3), and our

hierarchical subdivision algorithm for computing the posterior and performing the infer-

ence (Sec. 3.2.4).

3.2.1 Symmetry configuration space

For cyclic symmetry, Cn, the symmetry is completely specified by a line representing its

axis. The line representing the symmetry axis can be specified by the position where it

intersects the xy plane at (x, y), relative to the fixed subunit at the origin, and its orientation

(θ, φ), relative to the major axis of the fixed subunit which we orient along the z-axis. Thus

all possible axes belong to a symmetry configuration space (SCS), S2 × R2 [44], with

orientations from the two-sphere S2 and translations from the xy plane R2. See Fig. 3.2(a).

Given a symmetry axis c = (a, t) ∈ S2 × R2 and an angle of rotation α = 2πj/m for

subunit j ∈ {1, . . . , (m − 1)} (treating the 0th subunit as the fixed one), we compute the
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Fig. 3.3: Hierarchical subdivision of SCS. The 4-dimensional SCS is depicted as two 2D
regions, a sphere representing the orientation space S2 and a rectangle representing the
translation space R2. We compute a bound for the best posterior of a configuration in the
cell (shaded red for high posterior to blue for low posterior), and recursively subdivide
cells. Ultimately (bottom left of the tree) we find cells representative of structures with
high posterior, and can eliminate cells (right side of the tree) guaranteed to have a total
probability mass less than a user-specified cutoff.

coordinates q′ for an atom in a rotated subunit from corresponding coordinates q for the

same atom in the fixed subunit:

q′ = T (c,q, α) = Ra(α)(q− t) + t (3.1)

where Ra(α) ∈ SO(3) is a rotation by α radians around the unit vector a.

In our algorithm for computing the posterior, we consider simultaneously a set of axes

in a cell of the SCS (Fig. 3.2(b)). An SCS cell is given by the Cartesian product of the

individual lengths in each of the four dimensions [xl, xh]× [yl, yh]× [θl, θh]× [φl, φh]. Note

that the SCS cell represents a continuously infinite set of structures. We previously derived

a geometric bound, using convex hulls and/or axis-aligned bounding boxes, for the possible

coordinates q′ under rotation by α around an axis c in a cell C [44].

q′ ∈ B(C,q, α) (3.2)
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We can use this geometric bound on the rotated positions to evaluate feasibility of a

distance restraint within a cell. Consider distance restraint ri on the distances between

positions pi and q′i, where the first atom is in the fixed subunit and the second in the

neighboring subunit in the cyclic symmetry, rotated by 2π/m for oligomeric number m.

We geometrically bound the minimum l(C) and maximum u(C) distances between these

positions under rotations around axes c ∈ C:

li(C) ≤ min
c∈C
‖pi − T (c,qi, α)‖ ≥ ui(C) (3.3)

For the geometric computations giving these bounds, we refer the reader to Potluri et

al. [44], in particular the subsection “Bound from SCS” in the Methods. In Sec. 3.2.3,

we apply these bounds to derive upper and lower bounds on the posterior p(c | R).

3.2.2 Inferential framework

We develop here a Bayesian model for the posterior distribution over axes p(c | R), along

with expectations and variances of atomic coordinates. Our basic framework is like that

of Nilges and co-workers [40]. However, our formulation exploits the symmetry in the

problem and thus expresses the distribution in terms of the four-dimensional symmetry

configuration space.

To compute posterior p(c | R), we apply Bayes’ rule and integrate out a nuisance pa-

rameter σ that is independent of c and encodes the error in the system including both exper-

imental noise and systematic effects such as internal dynamics [33] and spin diffusion [36].

p(c | R) =

∫
p(c, σ | R) dσ (3.4)

∝
∫
p(R | c, σ) p(c) p(σ) dσ (3.5)

In the following sections we individually examine the various factors: likelihood p(R | c, σ)
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and priors p(c) and p(σ). We then consider how to properly integrate over the configuration

space and infer quantities in the conformation space.

Restraints likelihood p(R | c, σ)

The distance restraints R are conditionally independent given the structure (defined by c):

p(R | c, σ) =
n∏
i=1

p(ri | c, σ) (3.6)

To evaluate a single restraint ri, we adopt the log-normal distribution advocated by

Nilges and co-workers [23, 47] as a better representation of the errors in NOE distances

and NMR data than the traditional flat-bottom harmonic well (FBHW). The FBHW suffers

from problems including subjectiveness associated with fixing the bounds for the well [41];

the log-normal more gracefully degrades and we integrate out its variance parameter σ.

Furthermore, the log-normal is non-negative and multiplicative.

Thus given a symmetry axis c and variance σ, the inter-subunit NOE restraint ri has a

log-normal likelihood over the observed distances between atoms in the restraint:

p(ri | c, σ) =
1√

2πσdi
exp

(
− 1

2σ2
log2 gi(c)

)
, (3.7)

where, to abbreviate subsequent equations, we define gi(c) for cell c and restraint i as the

ratio between the desired and actual distances for the restrained pair of atoms:

gi(c) =
di

‖pi − T (c,qi, 2π/m)‖
. (3.8)

The position pi is on the fixed subunit and q′i is taken on the neighboring subunit (obtained

by rotating position qi in the fixed subunit by 2π/m).
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Prior p(σ)

The log-normal variance σ is a classical example of a nuisance parameter. Thus its prior is

derived through Jeffrey’s method of maximizing Fisher’s information index [25]:

p(σ) = 1/σ . (3.9)

Prior p(c)

Laplace postulated [27] that in the absence of sufficient reason, each point in the param-

eter space should be assigned a uniform prior. We follow the same rule and assign equal

probability to those symmetry axes that yield structures without steric clashes. In order to

produce a data-driven inferential approach, we currently use a weak prior, only distinguish-

ing whether or not a structure has steric clashes.

p(c) =

 0, if complex structure has steric clash

1, otherwise.
(3.10)

If desired, a stronger prior, incorporating energy evaluation based on a molecular mechanics

force field, could instead be employed.

Sec. 3.2.2 below details how to appropriately define (and integrate) such a probability

distribution over the SCS parameterization.
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Marginalizing over σ

Since σ denotes the experimental and systematic error, we can integrate over all possible

values of σ to eliminate it:

p(c | R) =

∫ ∞
0

p(c, σ | R) dσ

∝ p(c)

∫ ∞
0

σ−(n+1) exp

(
− 1

2σ2

n∑
i=1

log2 gi(c)

)
dσ

∝ p(c)

(
n∑
i=1

log2 gi(c)

)−n/2
. (3.11)

The integral is obtained by substituting for 1
2σ2

∑n
i=1 log2 gi(c) and multiplying the numer-

ator and denominator by 2n/2−1 /
∑

log2 gi(c). This yields a gamma function expressed

as an integral. Since the gamma function is in terms of n, a constant, we drop it in the

proportionality of Eq. 3.11.

Probability distributions in SCS

While our symmetry configuration space representation greatly reduces the degrees of free-

dom and thus leads to a better characterization of the posterior (including error bounds),

it also complicates the inferential process, since the quantities of interest are in the con-

formation space. Our posterior probabilities are integrals over the SCS, which we have

parameterized as described in Sec. 3.2.1. If one does not use an appropriate volume el-

ement, then integrating over this parameterization is likely to introduce bias due to the

non-uniform sampling density of the parameterization.

Intuitively, the problem is similar to defining a uniform distribution on a sphere. Simply

taking uniform intervals in θ and φ of spherical coordinates does not work, since it over-

represents the poles. This overrepresentation of poles is an arbitrary bias introduced by

the particular parameterization used (i.e., spherical coordinates). To remove the bias of the

parameterization, we need to define a mathematical area element. Likewise, to integrate
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over a sphere, a Jacobian is employed to account for the coordinate transformation. In the

case of the sphere, the surface area is the invariant volume defining the uniform distribution.

Returning to symmetry axes and building upon this analogy, integrating with respect

to SCS volume (dx dy dθ dφ) would result in a different probability measure upon trans-

lation/rotation of the same portion of the space. To perform probabilistic inference, the

probability density must be integrated with respect to a volume that is invariant to these

Euclidean transformations. It has been shown that this invariant volume is well-defined

and is completely determined (up to a constant factor) by requiring integrals of probability

density to be invariant under change of coordinate frames. Such an invariant infinitesi-

mal volume is defined in many classical texts on the subject of stochastic and geometrical

probability (e.g., Moran and Kendall [39, p. 20], [49]). Applying that approach with SCS

parameters gives an infinitesimal invariant volume dµ:

dµ = | cos θ | sin θ dθ dφ dx dy (3.12)

where dµ is a function of c which is specified by (θ, φ, x, y). Thus to integrate over the

SCS, we do so with respect to dµ instead of the four SCS parameters, thereby correctly

distributing the probability density over the axes.

Posterior p(c | R)

Finally, to define the posterior probability, we divide Eq. 3.11 by normalization factor Z:

p(c | R) =
1

Z
p(c)

(
n∑
i=1

log2 gi(c)

)−n/2
(3.13)

where

Z =

∫
Ω

p(c)

(
n∑
i=1

log2 gi(c)

)−n/2
dµ (3.14)
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Ω denotes the SCS and, as discussed above, the integration is with respect to the invariant

volume dµ (Eq. 3.12).

Inference using posterior

Given the posterior (Eq. 3.13), we compute the mean atomic coordinates and their vari-

ances, integrating over the posterior density for the symmetry axis according to the trans-

formation yielding rotated subunits (Eq. 3.1):

E(q′ | R) =

∫
Ω

q′ p(c | R) dµ (3.15)

var(q′ | R) =

∫
Ω

(q′ − E(q′))T (q′ − E(q′)) p(c | R) dµ , (3.16)

where q′ = T (c,q, α), Ω is again the SCS and dµ the invariant volume. var is the covari-

ance matrix since q′ is a vector but we are only interested in the variance of the components

of the vector with themselves and hence we only compute the diagonal elements of the

matrix and we use the term ’variances’ in Sec. 3.3 for the sum of the diagonal elements in

this matrix.

3.2.3 Error bounds

The previous section gave a statistical framework for the posterior distribution over axes

in the SCS (and thereby, complex structures), along with expected atomic coordinates and

variances in them. The following section will develop a hierarchical subdivision algorithm

to compute the distribution and integrate over it. This section establishes error guarantees

that will be used by that algorithm, taking advantage of the structure of the configuration

space to go beyond sampling-based methods in providing such guarantees. We leverage ge-

ometric bounds [44] to bound the individual factors of the posterior distribution in Eq. 3.13.

This lets us compute upper and lower bounds to the unnormalized probability density in-
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side a cell. Since the normalization factor Z in Eq. 3.14 is the sum of the unnormalized

density over entire space, we obtain upper and lower bounds on Z from bounds on the

unnormalized density. The upper and lower bounds on the posterior density, when used

with non-negativity of the integrand, give upper and lower bounds for the total posterior

probability integral within a cell. These bounds on cells are then used in conjunction with

the triangle inequality to obtain bounds on the error in inferred mean atomic coordinates if

these cells are eliminated.

SCS Cell Volume

The invariant volume for a cell is given by the integral of the infinitesimal invariant volume

(Eq. 3.12). If cos θ is positive in the range [θl, θh], then we have:

∫
C

dµ =

∫
C

| cos θ | sin θ dθ dφ dx dy

= [− 1

2
cos2 θ]θh,φh,xh,yh

θl,φl,xl,yl

=
1

2
(cos2 θl − cos2 θh)(φh − φl)(xh − xl)(yh − yl) (3.17)

If cos θ is negative in the range [θl, θh], then there is a negative sign in front of the

integral in Eq. 3.17. If cos θ changes signs in this range, we split the integral accordingly

and evaluate each part.

Upper bound on the posterior within a cell

Let us first compute an upper bound on the value of p(c | R) (Eq. 3.13) for an axis c in

an SCS cell C (a contiguous set of axes; see again Fig. 3.2(b)). To do so, we compute

upper bounds on the terms in the numerator and a lower bound on the normalization factor

in the denominator. The normalization factor is the integral of the numerator and can be

expressed (Eq. 3.19) as sum of the probability masses in SCS cells by breaking the integral.

Thus, to compute the lower bound on the normalization factor, we also have to compute the
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lower bound on the probability mass in each SCS cell, which is the term in the numerator.

∀c ∈ C : p(c | R) ≤ 1

Zl
max
c∈C

p(c) max
c∈C

(
n∑
i=1

log2 gi(c)

)−n/2
(3.18)

Z ≥ Zl =
∑
C∈Ω

min
c∈C

p(c) min
c∈C

(
n∑
i=1

log2 gi(c)

)−n/2 ∫
C

dµ (3.19)

To compute these, we need both lower and upper bounds on p(c) as well as the restraint

likelihood sum
(∑n

i=1 log2 gi(c)
)−n/2.

Recall that our structural prior p(c) captures whether or not there is a steric clash. Thus

the upper and lower bound on p(c) within a cell C are set to 0 if the geometric bound

B(C,q, α) (Eq. 3.2) for the position q′ of at least one rotated atom falls within the van

der Waals envelope of the fixed subunit, guaranteeing a steric clash. Likewise, both of the

bounds are 1 if the bound on q′ is outside the vdW envelope for all rotated atoms, so that

no axis will cause any steric clash. If neither of these two cases hold, then the lower bound

for p(c) for c ∈ C is 0 and the upper bound is 1.

The upper and lower bounds on the restraint likelihood sum can be written in terms of

the lower and upper bounds respectively of the individual log terms.

max
c∈C

(
n∑
i=1

log2 gi(c)

)−n/2
≤

(
n∑
i=1

min
c∈C

log2 gi(c)

)−n/2
(3.20)

min
c∈C

(
n∑
i=1

log2 gi(c)

)−n/2
≥

(
n∑
i=1

max
c∈C

log2 gi(c)

)−n/2
(3.21)

Since log2 is a convex function with a global minimum at 1, log2 gi(c) increases on

both sides of gi(c) = 1. From the definition of gi (Eq. 3.8), this happens when ‖pi −

T (c,qi, α)‖ = di. Employing the lower bounds li(C) and upper bounds ui(C) on ‖pi −
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T (c,qi, α)‖ over c ∈ C and Eq. 3.3, we can write the bounds for the log terms as:

min
c∈C

log2 gi(c) =

 0, if li(C) ≤ ‖pi − T (c,qi, α)‖ ≤ ui(C)

min
(

log2 di

li(C)
, log2 di

ui(C)

)
, otherwise

(3.22)

max
c∈C

log2 gi(c) = max
c∈C

(
log2 di

li(C)
, log2 di

ui(C)

)
(3.23)

Note that we have computed lower bounds on the individual probability terms in Eq. 3.18.

This enables us to define the lower bound on the unnormalized probability density ρ that

we use in Sec. 3.2.4. The lower bound can be written as:

∀c ∈ C : ρ(c | R) ≥ min
c∈C

p(c) min
c∈C

(
n∑
i=1

log2 gi(c)

)−n/2
(3.24)

A sum of this bound over cells is the lower bound on the normalization factor.

Error bound on eliminated probability mass

We can derive an upper bound on the probability mass of an eliminated cell by using the

upper bound on the posterior that was derived in Eq. 3.18. The upper bound on the posterior

can be written as:

P (C | R) =

∫
C

p(c | R) dµ

≤
(

max
c∈C

p(c | R)

)∫
C

dµ (3.25)

Error bounds on expected structure

When we omit a portion of the SCS in computing expected atomic coordinates, we intro-

duce error into our characterization of the structure. We define the structural error as the

average of the errors in the individual backbone atom positions. Thus to bound the error

from omitting part of the SCS, we must compute the effect on the expected coordinates of
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each atom (Eq. 3.15).

In the derivations that follow we represent the unnormalized conditional probability

density by ρ that we introduced in Sec. 3.2.3. Thus:

ρ(c | R) = p(c)

(
n∑
i=1

log2 g(c,qi, α)

)−n/2
(3.26)

Suppose we leave out cell C in the computation of the expectation. We define the

resulting error for a single atomic position q as:

δ(C,q) =
∥∥∥∫Ω

T (c,q, α) ρ(c | R) dµ∫
Ω
ρ(c | R) dµ

−

∫
Ω\C T (c,q, α) ρ(c | R) dµ∫

Ω\C ρ(c | R) dµ

∥∥∥ (3.27)

We can write the integrals in the first term of Eq. 3.27 as sums of integrals over C

and the rest of the SCS. Through simple algebra, we can cancel a few terms. Then by

applying the triangle inequality and using non-negativity of the integrand, we can derive

the following inequality:

δ(C,q)

≤
‖E( T (c,q, α) | R)‖max

c∈C
ρ(c | R)

∫
C

dµ + max
c∈C
‖ T (c,q, α)‖max

c∈C
ρ(c | R)

∫
C

dµ∫
Ω\C ρ(c | R) dµ

(3.28)

The algorithm we present in the next section will compute the denominator. The ge-

ometric bounds (Eq. 3.2) give the maximum atomic coordinates for q′ = T (c,q, α),

and we have already derived bounds for all the probabilistic terms except the expectation

‖E( T (c,q, α) | R)‖, which we can write as:

‖E( T (c,q, α) | R)‖ =
‖
∫

Ω
T (c,q, α) ρ(c | R) dµ‖

Z
(3.29)

In this equation, we already have a lower bound on Z. The integral over Ω can be

broken into the integral over C and that over Ω\C. Applying the triangle inequality on this
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sum, along with the inequality on the norm of an integral for a non-negative integrand, we

can derive:

(3.30)

∥∥∥∫
Ω

T (c,q, α) ρ(c | R) dµ
∥∥∥ ≤ max

c∈C
‖ T (c,q, α)‖max

c∈C
ρ(c | R)

∫
C

dµ

+
∥∥∥∫

Ω\C
T (c,q, α) ρ(c | R) dµ

∥∥∥
Our algorithm will provide the integral over Ω\C, and we have already discussed

bounds for the other terms. Combining these bounds and equations, and substituting into

Eq. 3.28 gives us the final inequality for the error in expectation:

δ(C,q) ≤ 1∫
Ω\C ρ(c | R) dµ

(
max
c∈C
‖ T (c,q, α)‖max

c∈C
ρ(c | R)

∫
C

dµ+ (3.31)

maxc∈C ρ(c | R)
∫
C

dµ

Zl
·
(

max
c∈C
‖ T (c,q, α)‖max

c∈C
ρ(c | R)

∫
C

dµ+∥∥∥∫
Ω\C
T (c,q, α) ρ(c | R) dµ

∥∥∥))

From the bounds for a cell C we can derive bounds for a set C of cells, replacing the

integral over C with a sum of integrals over C ∈ C:

∥∥∥∫
C
T (c,q, α) ρ(c | R) dµ

∥∥∥ =
∥∥∥∑
C∈C

∫
C

T (c,q, α) ρ(c | R) dµ
∥∥∥

≤
∑
C∈C

∥∥∥∫
C

T (c,q, α) ρ(c | R) dµ
∥∥∥ (3.32)

The upper bound in Eq. 3.28 can be rewritten in terms of the individual cells by using

Eq. 3.32.

3.2.4 Hierarchical subdivision algorithm

To compute the posterior distribution, along with expectations and variances in atomic

coordinates, we develop a hierarchical subdivision algorithm. The algorithm is illustrated in
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Algorithm 1 Hierarchical subdivision algorithm
Input: C0: initial set of cells from feasible region of S2 × R2

Input: R: set of distance restraints
Input: ζ0: maximum pruned probability mass
Output: P : posterior distribution, a set of (cell, posterior) pairs
P ← ∅
C ← C0 // cells for the next level
ζ ← ζ0 // remaining allowed error
Zl ← lower bound on Z for C0 // Eq. 3.19
while C is not empty do // expand the next level
V ←

∑
C∈C

∫
C

dµ // invariant volume, Eq. 3.17
C ′ ← ∅ // cells for the next level
for C ∈ C do
u← upper bound on P (C | R) using current Zl // Eq. 3.25,Eq. 3.18
if u < (ζ/V )

∫
C

dµ then // prune cell
ζ ← ζ − u

else if C is small enough then // accept cell
p← ρ(c | R)

∫
C

dµ for the centroid c of C // unnormalized Eq. 3.13
add to P the pair (C, p)

else
subdivide C into C1 and C2

C ′ ← C ′ ∪ {C1, C2}
// Update Zl for subdivision, using ρmin from Eq. 3.24
Z l ← Z l − ρmin(C | R)

∫
C

dµ+ ρmin(C1 | R)
∫
C1

dµ+ ρmin(C2 | R)
∫
C2

dµ
end if

end for
end while

Fig. 3.3, and pseudocode is provided in Alg. 1. While we also used hierarchical subdivision

in our earlier approach [44], the algorithm here is structured so as to support structural

inference with error guarantees.

We start with a set C0 of cells covering the region of interest in the SCS. While the entire

SCS is the Cartesian product of the state space of the four random variables: x ∈ [−∞,∞],

y ∈ [−∞,∞], θ ∈ [0, π] and φ ∈ [0, 2π], we can truncate the probability density to zero

beyond a finite range of x and y values [44]. We select such x and y boundaries of the

finite range so that a homo-oligomer that has a symmetry axis with x, y beyond this xy

patch would be biophysically unfeasible for most θ, φ. This results from our choice for the

z axis as the principal axis of the fixed subunit, along with the fact that protein complexes
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are packed together, rather than floating loosely in space. If we encounter homo-oligomers

that have axes that are nearly parallel to the xy-plane, and hence have x, y outside our

finite range, then we can change our translation parameters to either {y, z} or {x, z} by

considering each and choosing the one that does not have this problem.

The algorithm proceeds level-by-level through a hierarchical subdivision of the input

cells. At a given level, each cell is considered independently of the rest. There are three

possibilities for a cell under consideration: it can be safely pruned according to our error

bounds, it is small enough to be considered a leaf (it is “accepted”), or it is partitioned into

two smaller cells for the next level. The process continues until reaching a level at which

no cell needs to be subdivided.

We prune cells when our error bounds allow us to determine that ignoring them will

have a “small enough” effect on the results. To make this determination, we maintain two

global quantities. One quantity is Zl, the lower bound on the normalization constant, by

which we evaluate the relative amount of posterior mass in a cell vs. other cells (used in

upper-bounding the cell’s contribution). We start with the value for the initial cells, from

Eq. 3.19, and each time we split a cell, we subtract out the parent cell’s contribution and

add in the children’s contributions to Zl. The other quantity, ζ , is the remaining amount of

probability mass we can still prune. We start with a user-specified maximum value ζ0, and

each time we prune a cell, we reduce the remaining prunable mass by the upper bound on

the probability mass in that cell. Given the current values of these quantities and the bound

on the probability mass contribution of a cell (Eq. 3.25), we can safely prune that cell if

its contribution is no more than ζ multiplied by the fraction of the total invariant volume

(Eq. 3.17) that it occupies.

We consider a cell to be accepted (a leaf node) when the structures it represents are very

similar. We employ our previous approach of evaluating this by computing average back-

bone RMSD among the structures represented by the corners of the cell, and terminating

when that average is within a threshold t0 (e.g., 1 Å) [44].
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To subdivide a cell, we split one of the dimensions in half, employing the heuristic

from our earlier method [44] (“Branching” in Methods). Intuitively, the goal is for restraint

violations to be concentrated in one of the children, resulting in a low (potentially prunable)

posterior.

Our pruning focuses on ensuring that we have sufficient probability mass represented

in the posterior. In addition, we also want to ensure that we limit the error in expected

atomic coordinates. We check this after the search is complete. We compute the error in

expectation due to the pruned cells (Sec. 3.2.3). If this error is guaranteed to be less than

a user-specified threshold ε on the allowed error, the algorithm is finished. Otherwise we

must run it with a tighter ζ so that we eliminate less probability mass. In practice, we have

not needed to do that; the ζ restriction is strong enough to ensure small enough error in

expected atomic coordinates.

The breadth-first structure of this algorithm allows us to implement the algorithm in par-

allel on a cluster. To fully use the capacity of the compute cluster and to start with tighter

bounds, we initialize C0 to be a uniformly sampled grid of 217 cells. Our implementation

uses Apache Hadoop (http://hadoop.apache.org), an open source implementa-

tion of Map/Reduce [11], which provides a framework for parallelizing the code, taking

care of machine failure, scheduling jobs, and partitioning the data.

3.3 Results

We tested our approach on three protein complexes for which intra-subunit and inter-

subunit NOEs had been separated and subunit structures determined from the intra-subunit

NOEs. The homo-dimeric topological specificity domain of E. coli MinE [28] has 50

residues per subunit with 183 inter-subunit NOE restraints, the homo-trimeric coiled-coil

domain of chicken cartilage matrix protein (CCMP) [68] has 47 residues per subunit and 49

inter-subunit NOE restraints and a transmembrane peptide of Glycophorin A (GpA trans-
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MinE CCMP GpA transmembrane peptide

Fig. 3.4: Reference structures (cyan) and inter-subunit distance restraints (black) for MinE
(183 restraints), CCMP (49) and GpA transmembrane peptide (6). For CCMP, restraints
are only shown between chains A and B, to avoid clutter.

membrane peptide) [35] has 40 residues per subunit with 6 inter-subunit NOE restraints.

We obtained reference ensembles (20 members each) of structures deposited in the protein

databank (PDB) [4]—MinE: pdb id 1EV0; CCMP: pdb id 1AQ5; GpA transmembrane

peptide: pdb id 1AFO. We took as the reference structures the member of each ensemble

identified by the authors to be the best representative, and used for the subunit structure

the first chain of the reference structure. We obtained the inter-subunit NOEs and assigned

chemical shifts from the BioMagResBank (BMRB) [51]. The restraints are fairly well-

dispersed in the structures (Fig. 3.4), except for the GpA transmembrane peptide, which

has only six restraints, all between the lower halves of its two helices.

We set our expectation error threshold ε to 0.3 Å, maximum pruned probability mass

threshold ζ to 0.1, and our acceptable cell threshold τ to 1 Å. The hierarchical decompo-

sition algorithm took 10–36 hours on a 30 node cluster, with the slowest time for CCMP

when using only 16 of the original 49 restraints.

3.3.1 Posterior

The hierarchical decomposition for MinE produced a set of 35,000 accepted cells, with

a total volume of 1.81 Å2-rad2 out of the original 1257 Å2-rad2. Note that these and all
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subsequent SCS volumes are with respect to our invariant volume dµ, and thus indepen-

dent of the coordinate frame. The top row of Fig. 3.5(top row) plots both the log posterior

probabilities of these cells (top left), in decreasing order and the translation and orientation

components of the accepted cells, colored by log posterior (top middle/right). We sim-

ply show the “raw” unnormalized log posteriors, though our bound on the normalization

constant in fact permits us to normalize them to within an error bound. The maximum a

posteriori (MAP) cell has an unnormalized log posterior of −246. The probabilities drop

steeply after the MAP up to the 1500th cell (first black square on the plot), which has a

posterior of −300 and a backbone RMSD to the MAP of 0.8 Å. In general, these first cells

span a small portion of the configuration space (0.1 Å2-rad2) and represent similar struc-

tures (0.9 Å average backbone RMSD from the MAP, over ten samples drawn from this

region). After that there is a steady decrease in the posterior for the next 32,000 cells (be-

tween the two black squares in the plot), when we reach a posterior of−410 before another

sharp drop-off leading down to cells that were pruned. Compared to the highest-posterior

cells, the middle-range ones (posteriors between−300 and−410) are spread out in the SCS

(1.5 Å2-rad2) and have greater structural diversity (2.2 Å average backbone RMSD from

the MAP over ten samples in the region).

The posterior has a fairly sharp peak, and the high-posterior axes are aggregated in

terms of translation and orientation. We compared these results against the structures

in the reference ensemble. The MAP structure is very similar to the reference ensemble

(Fig. 3.6(left)), with a backbone RMSD of 0.5 Å from the closest member of the ensemble.

The members of the reference ensemble are highlighted in Fig. 3.5: marks on the x-axis

of the posterior distribution and outlines for containing cells in the translation/orientation

plots. All the reference axes are also found by our inference algorithm. The reference axes

have fairly high posteriors, though clearly there are numerous solutions determined by the

inference algorithm that are similar or better. Of course, the actual posterior value depends

on the scoring system; the point is that a 20-member ensemble greatly underestimates the
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GpA transmembrane peptide
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Fig. 3.5: Posterior distributions. (left) Unnormalized log posterior for accepted cells. Red
points on the x-axis indicate posteriors computed for members of the reference ensem-
bles. (right) Projections of SCS onto translation and orientation components, colored by
posterior (different scales for different proteins). Cells containing reference structures are
outlined in green. Since many cells can share their translations or orientations with other
cells, the color of a translation or orientation is shown colored according to the highest
posterior cell in that region. For CCMP, π was added to θ for display purposes (to bring
together equivalent cells).
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MinE CCMP GpA transmembrane peptide

Fig. 3.6: MAP structures (cyan) superimposed with closest member of reference ensembles
(blue).

generally acceptable variation in conformations (as represented by axes).

We also compared our results against those obtained from our earlier “binary” ap-

proach [44], which checks only whether or not each restraint is satisfied. Again, the new

method identifies all axes found by the earlier algorithm, along with many more. The bi-

nary approach is sensitive to restraint violation, and does not adequately represent the space

when allowing for that. For example, in MinE the cell centered at (2.19, 1.56, 1.29, 5.29)

is rejected by the binary approach since 22 restraints out of 183 are violated. However, this

cell is kept by the inference approach since its posterior is still sufficiently high, as 18 of

the violations are all less than 1 Å and the other 4 are less than 1.5 Å. In fact, the cell con-

taining this axis has a log posterior of -311.7 and is in the top ten percent of the accepted

cells according to its posterior.

For CCMP, our algorithm accepted≈ 106 cells, with a total volume of 43.8 Å2-rad2 out

of 2513 Å2-rad2. Fig. 3.5(middle row) shows the posterior and the translation/orientation

components for the cells. The log posterior decreases fairly smoothly from the MAP

(−98.4) for 2.7 × 105 cells, to an inflection point (first black square on the plot) at a pos-

terior of −118, and then again for another 7.5× 105 cells before dropping sharply (second

black square) for the final 2.7 × 103 accepted cells. Unlike with MinE, the high-posterior

cells are fairly dispersed in the SCS and in conformation space. The volume occupied by
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cells from the MAP to the inflection point is 4.4 Å2-rad2 with an average backbone RMSD

to the MAP of 4.9 Å over ten random samples drawn from this region, while the cells after

the inflection point comprise the majority of the volume (39.3 Å2-rad2) with an average

backbone RMSD of 8.9 Å over ten random samples in the region.

In comparison to the closest member in the reference ensemble, the MAP structure has a

backbone RMSD of 1.5 Å (Fig. 3.6 (middle)). The maximum backbone RMSD is between

the backbone Cαs at the base of the helices of the two structures. As with MinE, our method

identifies with a high posterior all structures in the reference ensemble (highlighted in the

figure). The orientation components of high posterior cells in CCMP are grouped into two

clusters. These two groups contain axes that are similar but point in opposite directions.

Hence, the structures with highest probability in both groups are very close, but chain B

superimposes on chain C of the other and vice versa to yield a backbone backbone RMSD

of 2.5 Å. Like in earlier cases, our method also finds those axes identified by the binary

algorithm.

For GpA transmembrane peptide, the algorithm accepted ≈ 107 cells which had a total

volume of 954.9 Å2-rad2 out of 1257 Å2-rad2. This was the least pruning of all the three

proteins and it can be attributed to its having only six inter-subunit NOE restraints. Fig. 3.5

(bottom row) plots the posterior, again with the reference ensemble highlighted. The form

of the posterior curve is very similar to what we saw for the other proteins: a small set

of cells with a high posterior (from −5.7 for the MAP), followed by a significant drop in

the posterior (down to −13.4 at the first black square after 5.0 × 104 cells, and a smooth

degradation (−20.2 at the second black square after 1.4× 107 cells). The volume occupied

by the cells from the MAP to the first square is 3.4 Å2-rad2 while the cells between the

first and second black square constituted the majority of the volume (885.5 Å2-rad2). The

cells constituting the drop off after the second cell occupy a volume of 66.0 Å2-rad2. The

ten random samples drawn from the volume occupied by cells from the MAP to the first

square have an average backbone RMSD of 2.4 Å from the closest member of the reference

79



ensemble. The rest of the volume is occupied by cells with high backbone RMSDs (average

of 9.8 Å in ten random samples from the region). While the translation and orientation

projections in Fig. 3.5(bottom row) display a trend like those for the other proteins, the

small number of restraints leads to a relatively small amount of pruning and a large number

of low posterior cells.

3.3.2 Inferred means and variances

The means and variances obtained by the inferential approach are directly reflective of the

ensemble that fits the data. This is in contrast to the means and variances that one may

compute from the top twenty structures obtained from SA/MD methods which are only

within the discrete set of top structures. Note that a “centroid” of an ensemble is different

from the actual mean, in that the mean allows for differentially weighted contributions.

Furthermore, the mean must be with respect to the entire space and not just a selected set;

it is “unbiased” in that sense. In our method, the mean is computed to within a bound on

the possible error from the “true” mean structure.

Fig. 3.7 shows “sausage plot” representations of the means and standard deviations

(square roots of computed variances) of atomic coordinates inferred by our method. For

MinE, the mean structure has backbone RMSD 0.45 Å from the reference structure and

0.03 Å from our MAP estimate. Since there are 183 restraints, the structure is quite con-

strained, and standard deviations range only from 0 to 0.37 Å along the backbone, with

an average of 0.11 Å. For CCMP, the mean structure has a backbone RMSD of 1.7 Å

from the closest member of the reference ensemble and 0.5 Å from the MAP. The stan-

dard deviations of backbone Cα atoms range from 0 to 4.62 with a mean of 1.44 Å. The

“loosest” parts are at the tips of the helices. While there is a restraint that reaches there

(Fig. 3.4(middle)), the structural uncertainty results from an interplay among all the re-

straints, and there is apparently not sufficient reinforcement to fully pin down the structure
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MinE CCMP

GpA transmembrane peptide

Fig. 3.7: Inferred means and standard deviations in atomic coordinates, represented as
sausage plots. The fixed subunit is shown in blue with a zero standard deviation. The color
and thickness of the adjacent subunit represent the standard deviation in the positions of
the backbone atoms. Note that the standard deviations are on different scales for different
proteins.

there. Finally, Fig. 3.7(right) shows the sausage plot for GpA transmembrane peptide. The

standard deviations of backbone Cα atoms range from 0 to 15.45 Å with a mean of 4.33

Å. The MAP structure for GpA transmembrane peptide has a backbone RMSD of 0.83 Å

with the closest member of the reference ensemble (Fig. 3.6(right)). The backbone RMSD

of the computed mean structure with the closest member of the reference ensemble is 1.7

Å. The lower half of the helices in GpA transmembrane peptide are more tightly restrained

through the six NOE restraints shown in Fig. 3.4(right). Therefore this part of the helix in

the second subunit shows the least variance.
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3.3.3 Robustness to missing restraints

We studied the robustness of our method to missing data. For MinE, we selected restraint

subsets of sizes 91, 49, and 35 from the original 183 (≈ 50, 25 and 20%), randomly choos-

ing the restraints from the entire set. We generated 5 such datasets for each number of

restraints. Similarly, for CCMP we generated random subsets of sizes 27 and 16 from the

original 49 (≈ 50 and 30%). We did not perform this test for GpA transmembrane peptide

since it already has only 6 restraints. For each subsampled dataset, we first evaluated the

volume of the pruned portion of the SCS, to see how many more conformations would be

consistent with the reduced restraint set. We then compared the mean and MAP structures

for the reduced set with those for the original, to evaluate the effects on these representa-

tive structures. Finally, we compared the variances in the atomic coordinates, to assess the

increase in structural uncertainty.

Tab. 3.1 summarizes the trends over the different restraint sets. For MinE, even with

only 35 of the 183 restraints, almost 99% of the volume is still pruned, suggesting that the

posterior distribution is close to zero for most of the SCS. The various backbone RMSDs

are also relatively small, as sufficient constraint remains to yield structures much like those

with the full set of restraints. Since, the reference ensembles contains the structures that

have the highest likelihood of occurrence, the backbone RMSDs of these structures to the

MAP are in general smaller than those to the mean. For CCMP, the amount of pruning falls

off more sharply, and the backbone RMSD values increase more. This is largely due to

the fact that the absolute number of restraints is much smaller. To compute the expectation

within the error tolerance we must include a larger number of cells.

With fewer restraints, more cells contribute a significant probability mass. Fig. 3.8

illustrates the expansion in accepted SCS with fewer cells; a similar trend is observed for

CCMP. The volume of 1.81 Å2-rad2 with 183 restraints expands to 2.44 Å2-rad2 with 91,

4.33 Å2-rad2 with 48, and 9.23 Å2-rad2 with 35 (means taken across 10 datasets). Due to

algorithmic pruning choices, some (low posterior) cells accepted with more restraints may
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Protein Restraints Pruned% RMSD1 RMSD2 RMSD3 RMSD4

MinE 183 99.8 0.0 0.5 0.0 0.5
91 99.8±0.01 0.2±0.16 0.5±0.03 0.2±0.10 0.5±0.09
49 99.6±0.08 0.4±0.09 0.4±0.09 0.5±0.20 0.5±0.28
35 99.3±0.18 0.8±0.42 0.9±0.50 0.7±0.38 0.9±0.47

CCMP 49 97.8 0.00 1.5 0.0 1.8
27 91.4±1.32 0.3±0.24 1.4±0.20 1.3±0.90 2.7±0.86
16 68.6±4.42 0.6±0.28 1.6±0.36 1.3±0.51 2.6±0.64

Tab. 3.1: Effects of missing restraints on inference. Pruned%: percentage of SCS vol-
ume pruned; RMSD1: reduced-restraint MAP vs. full-restaint MAP; RMSD2: reduced-
restraint MAP vs. reference ensemble; RMSD3: reduced-restraint mean vs. full-restraint
mean; RMSD4: reduced-restraint mean vs. reference ensemble. All RMSDs are computed
with backbone atoms. The RMSD to closest structure in reference ensemble is shown.
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Fig. 3.8: Translation and orientation parameters of accepted MinE cells for different subsets
of restraints (one dataset for each number of restraints). Colored cells are those eliminated
with more restraints but not with fewer restraints.

actually be rejected with fewer restraints, though we found very few cells with a volume less

than 0.25 Å2-rad2 to have this opposite trend. Fig. 3.9 plots the mean atomic variances for

the Cα atoms, under the different random sets of restraints. While creating the random sets

of restraints, we did not ensure that the sets with smaller number of restraints are subsets

of those with larger number of restraints (except for the full restraint set). However, the

trends in the plots in Fig. 3.9 show that the atoms with large variances essentially remain

the same across different sets of restraints. By taking out restraints, many low posterior

axes no longer have a negligible posterior and therefore the variance increases. The highest

variance in CCMP is at the tips of the helices, as shown in red in its sausage plot (Fig. 3.7
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(middle)).

These results suggest that our approach degrades smoothly with data sparsity, appropri-

ately representing and evaluating the increasing uncertainty in the resulting conformations.

3.3.4 Robustness to noise

We evaluated the robustness of the inference approach to experimental noise, including

both uncertainty in the distance (exceeding the specified bounds) and spurious restraints.

We call both scenarios “noisy” restraints, recognizing that while experimental restraints

already include some padding to allow for uncertainty in distance estimation, algorithms

must also be able to handle violations. We simulated noise in a manner that reflects realistic

systematic structural variation and uncertainty, instead of simply adding random noise. In

addition to the representative structure whose first chain we used as our input subunit, the

deposited NMR ensemble contains a number of other structures. We simulated restraints

(identifying pairs of protons within 6 Å) from another member of the ensemble, and iden-

tified those that were violated in the representative structure. With respect to the reference

structure, some of these “noisy” restraints have small violations and some are significantly

violated. For the MinE dimer, model 9 was the most different (3.7 Å backbone RMSD)
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from the reference structure. It yielded 24 noisy restraints, 16 violated by more than 1 Å

and two by as much as 19 Å. For the CCMP trimer, model 4 was the most different (6.6 Å),

and yielded 8 noisy restraints (1 violated by more than 30 Å). We formed sets of augmented

restraints by combining our experimental restraints with these noisy restraints.

We re-ran our inference algorithm with these noisy datasets. For MinE, it accepted

128,000 cells covering 4.4 Å2-rad2, compared to 1.8 Å2-rad2 without the noise. Even with

the noisy data, the accepted cells still include those representing the reference ensemble and

40% of the original cells. This then yields increased uncertainty in conformation space;

the MAP has a backbone RMSD of 2.3 Å from the original and 2.5 Å from the closest

structure in reference ensemble, and a mean 2.2 Å from the original and 2.4 Å from the

closest structure in the reference ensemble.

For CCMP, our algorithm accepted 7 × 105 cells covering 24.2 Å2-rad2, compared to

43.8 Å2-rad2 in the original. These solutions include the reference ensemble and 60% of

the original cells. The MAP remain essentially the same, with an backbone RMSD of 0.0

Å from the original and 1.5 from the reference, and similarly the mean has a backbone

RMSD of only 0.3 Å from the original and 2.0 Å from the reference.

All noisy restraints for MinE are concentrated in the upper and lower loops of the dimer

where there are no existing non-noisy restraints. Therefore, the addition of noisy restraints

results in higher posteriors for the axes representing structures with the noisy restraints

satisfied in those loop regions. On the other hand, for CCMP the added noisy restraints

are all in the middle of the helices where there are non-noisy restraints. The structures in

which the noisy restraints are satisfied tend to violate these non-noisy restraints, which out-

number them. Hence the noisy restraints do not impact the eventual posterior distribution

in CCMP to the extent observed for MinE.

Our original binary algorithm [44] would fail with this set of noisy restraints since they

are inconsistent and the algorithm eliminates a cell if even one NOE is violated. There-

fore, we had extended that approach, in the context of NOE assignment, to handle a fixed
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maximum number of violations (denoted by δ) [46]. We tested the extended approach on

our current datasets. We found that for the augmented MinE dataset, no solutions were

obtained when δ was set at less than 15. As we increased δ from 15 to 20, the average

backbone RMSD to the reference structure increased from 0.59 Å to 0.75 Å and the non-

overlapping volume increased from 0 Å2-rad2 to 0.021 Å2-rad2 (compared to 0.70 Å and

0.0004 Å2-rad2 by the inference approach). With CCMP, we needed δ ≥ 4 to find any

solutions; as δ increased from 4 to 9, the average backbone RMSD increased 0.92 Å to

0.99 Å and the non-overlapping volume increased from 0.0001 Å2-rad2 to 0.0081 Å2-rad2

(compared to 0.98 Å and 0.0001 Å2-rad2 by inference).

Our inference approach is robust to noise: there is no need for a maximum number of

restraint violations; it degrades smoothly. It also appropriately accounts for the influence

of noisy data on the resulting structures, via the weighted integration.

3.4 Conclusion

We have developed an approach that performs structural inference for symmetric homo-

oligomers. By working with a configuration space representation and employing a hierar-

chical subdivision algorithm, our approach gives error guarantees on the resulting posterior

and inferred expectations in atomic coordinates. The method provides a probability mea-

sure for sets of conformations, allowing for an objective assessment of the information

content in the data and the resulting constraint on the plausible structures. It can then

evaluate the resulting uncertainty in atomic coordinates.

In our case study applications, we have found that in addition to all the structures found

by previous methods, our method also identifies other diverse structures with high posterior

probabilities. That is, our probabilistic restraint evaluation and complete characterization of

the posterior distribution enables identification of structures that are missed when employ-

ing either binary restraint violation testing or stochastic sampling of low-energy conforma-
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tions. In particular, the set of twenty reference structures deposited in the PDB suffers from

the problem of under-sampling the conformation space. Furthermore, the inferred atomic

means provide a more accurate characterization of the structural uncertainty than a simple

superposition of an ensemble of low-energy representatives.

As NOESY experiments are subject to noisy and missing data, the input set of distance

restraints may include some distance restraints that are violated to a small extent (even af-

ter padding) or completely spurious, and may not include some correct distance restraints.

Our approach takes into account such sources of uncertainty and degrades smoothly. With

simulated missing data, most of the originally accepted cells were still accepted, and con-

sequently the MAP and mean structures were not very different from those obtained with

the full set of restraints. We simulated noisy restraints, we found similar robustness, with

results similar to those obtained from the original set of restraints.

Our approach currently evaluates structural quality only in terms of steric clash, rather

than in terms of finer-grained molecular mechanics modeling. The posterior is driven by

restraint satisfaction, and the prior only prunes structures that display serious steric clashes.

This leads to a “data-driven” search for and evaluation of structures, with conclusions re-

garding structural uncertainty based mainly on the experimental data. We were able to use

a binary structural prior since, as in our previous work [44], we assumed that the subunit

structure was fixed (solved as it exists in complex, from the intra-subunit subset of the

NMR data). While we previously performed energy minimization on the side-chains as a

post-processing step, that is not as appropriate here, since that would affect the probabilities

and error cutoffs, and thus our inference moments would no longer be provably accurate.

The posteriors obtained here essentially “flatten out” the possible side-chain conformations

for a backbone, and the distribution that we compute should therefore be interpreted as the

posterior over backbones rather over complete homo-oligomeric structures including side-

chains.

In future work, we would like to better account for biophysical plausibility by incorpo-
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rating a Boltzmann prior representing molecular modeling energies. The key challenge is

to efficiently and tightly bound such a prior over an SCS cell. This is analogous to the move

from energy minimization after pruning rotamers with Dead-End Elimination (DEE) [13],

which loses the global minimum energy guarantee of DEE, to minimized-DEE [17], which

accounts for possible energy minimization when considering pruning and thus regains the

provable guarantee.
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4. SIMULTANEOUS DETERMINATION OF SUBUNIT

AND COMPLEX STRUCTURES OF SYMMETRIC

HOMO-OLIGOMERS

FROM AMBIGUOUS NMR DATA

Abstract

Determining the structures of symmetric homo-oligomers provides critical insights

into their roles in numerous vital cellular processes. Structure determination by nu-

clear magnetic resonance spectroscopy typically pieces together a structure based pri-

marily on interatomic distance restraints, but for symmetric homo-oligomers each re-

straint may involve atoms in the same subunit or in different subunits, as the different

homo-oligomeric “copies” of each atom are indistinguishable without special exper-

imental approaches. This paper presents a novel method that simultaneously deter-

mines the structure of the individual subunits and their arrangement into a complex

structure, so as to best satisfy the distance restraints under a consistent (but partial)

disambiguation. Recognizing that there are likely to be multiple good solutions to this

complex problem, our method provides a guarantee of completeness to within a user-

specified resolution, generating representative backbone structures for the secondary

structure elements, such that any structure that satisfies sufficiently many experimen-

tal restraints is sufficiently close to a representative. Our method employs a branch-

and-bound algorithm to search a configuration space representation of the subunit and

complex structure, identifying regions containing the structures that are most consis-

tent with the data. We apply our method to three test cases with experimental data and
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demonstrate that it can handle the difficult configuration space search problem and

substantial ambiguity, effectively pruning the configuration spaces and characterizing

the actual diversity of structures supported by the data.

4.1 Introduction

Symmetric homo-oligomers are comprised of subunits that are identical in sequence and

highly similar in structure and are arranged symmetrically; we study here cyclic sym-

metry, in which the subunits are placed like spokes on a wheel (Fig. 4.1). Symmetric

homo-oligomers are thought to make up a majority of proteins; they play important roles

in biological processes that include ion transport and regulation, signal transduction, and

transcriptional regulation [18]. They are therefore a valuable target for structural studies,

and nuclear magnetic resonance spectroscopy (NMR) provides the ability to analyze their

structures and dynamics in solution.

Nuclear Overhauser Enhancement Spectroscopy (NOESY), which measures through-

space interactions, provides the main source of structural information in standard NMR pro-

tocols. Nuclear Overhauser Effect (NOE) intensities are converted into distance restraints

and assigned to pairs of protons, giving upper bounds on their interatomic distances. NOE

distance restraints are typically used to frame NMR structure determination as an optimiza-

tion problem combining biophysical modeling terms with pseudo-energy encodings of the

restraints [6, 20, 21]. Statistical inference techniques have also been developed to combine

modeling and experimental terms and characterize the resulting posterior distributions of

structures [8, 48].

In a symmetric homo-oligomer, the high structural similarity of the subunits yields

highly similar chemical environments for their atoms, rendering an atom in one subunit

indistinguishable from the corresponding atom in another subunit under standard NMR

experiments. Consequently, an NOE may involve two atoms in the same subunit or in two
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Fig. 4.1: Symmetric homo-oligomer (B. subtilis anti-TRAP trimer, pdb id 2ko8) with am-
biguous interpretation of a distance restraint: intra-subunit (red), “clockwise” (yellow), and
“counter-clockwise” (black).

different subunits (with multiple pairs of subunits possible for symmetry higher than two)

or both, with no inherent means to resolve this ambiguity (Fig. 4.1). Some experimental

strategies have been devised to separate intra- vs. inter-subunit restraints [24, 32, 63, 71],

but they are difficult and have met with limited success.

The problem of determining the structure of a symmetric homo-oligomer from am-

biguous NOEs was formulated by Nilges and coworkers following the standard NMR ap-

proach of optimizing a pseudo-energy function combining biophysical modeling terms and

symmetry-enforcing restraints [42]. A simulated annealing protocol is employed to opti-

mize the pseudo-energy, initially considering both intra- and inter-subunit interpretations

for the restraints. After a round of optimization, the intra- vs. inter-subunit interpretations

are reassessed; those that are inconsistent with the identified structures are eliminated. An-

other round of optimization is then initialized from the structures and reduced set of re-

straint disambiguations. The process is repeated in order to identify mutually consistent

structures and disambiguations. This approach, called ARIA, has been used to determine a

number of symmetric homo-oligomeric structures from ambiguous NOE data (see aria.

pasteur.fr/aria-links/pdb-structures-calculated-using-aria),

and has continued to expand in functionality, e.g., incorporating additional types of re-

straints such as RDC. The method, however, fails to give any assurances on the correctness
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of the obtained structures or to account for the possibility of missing structures. There

are no guarantees that the heuristics to escape local minima will work, or that the greedy

selections of disambiguations will lead to the native structures.

An alternative approach is based on Rosetta [54]. It first computes monomer structures

that satisfy chemical shifts and backbone NOEs; critically, it requires these NOEs already

to have been assigned to specific atoms, with intra- vs. inter-subunit ambiguity resolved. It

then constructs a complex structure by docking the monomers subject to a symmetric con-

straint, while also incorporating RDC-derived orientational constraints. Energy refinement

is subsequently performed to generate final structures. This method is clearly susceptible to

being trapped in local minima by the two-stage process, as well as by the use of stochastic

search methods in each stage.

In order to correctly and completely characterize the diversity of structures consis-

tent with the data, we present here a method that employs a branch-and-bound search

over a configuration space representation of the subunit and complex structures. The ap-

proach builds on our earlier work in structure determination of symmetric homo-oligomers

[8,14,44], which handled special cases where special experimental techniques successfully

resolved the intra- vs. inter-subunit ambiguity. The method presented here goes signifi-

cantly further, simultaneously determining the subunit structure and the arrangement of the

subunits into a complex structure, while partially disambiguating the intra- vs. inter-subunit

interpretations of the input NOE distance restraints. Since multiple structures may be con-

sistent with the data, we provide a guarantee of completeness to within a user-specified

resolution: our method generates a set of representative structures such that any other struc-

ture that is sufficiently consistent with the data has a sufficiently similar representative. As

we discuss further below, we determine just the backbone structure within secondary struc-

ture elements (SSEs), though the resulting SSE-based structures could readily be used as

inputs for loop closure algorithms using additional experimental data [60], with side-chain

packing and energy minimization algorithms then employed to obtain the best full confor-

92



mations.

4.2 Methods

Our overall goal is to take as input a protein sequence and experimental NMR data, and

produce as output the complex structure. We leverage earlier work on determination of SSE

backbone structures from residual dipolar coupling (RDC) data: RDC-Panda [70] employs

a tree-based search algorithm to find sequences of backbone torsion angles in the SSEs that

best explain the experimental RDC data. The RDC data also allows determination of the

orientation (but not position) of the symmetry axis (uniquely for 3-fold and higher, one of

the three eigenvectors of the Saupe Matrix for 2-fold) [2].

Thus we focus here on the problem in which the input includes the SSE backbone

structures, the symmetry axis orientation, and a set of ambiguous NOE distance restraints,

and the output is a structure placing the SSE backbone structures relative to each other

and to the symmetry axis (Fig. 4.2), thereby generating the subunit and complex structure.

As discussed in the introduction, there is not likely to be a unique such structure best

satisfying the restraints, so the output is actually a set of representatives, such that any

other structure satisfying a sufficient number of restraints is sufficiently similar. We define

“sufficiently similar” in terms of root mean squared distance (RMSD), and a “sufficient

number of restraints” relative to the best solution. Thus our method can be seen as complete

to within a user-specified resolution, and does not suffer from problems of myopia, local

minima, and so forth.

We first detail the representation of the structure and restraints, including the various

types of ambiguity. Then we develop methods to assess entire cells within the configu-

ration space for consistency with the restraints under the ambiguous interpretations and to

assess the uniformity of structures within the cells. Finally we develop a branch-and-bound

algorithm and postprocessing analysis to identify the representative structures.
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Fig. 4.2: Configuration space representation for simultaneous determination of subunit and
complex structure of symmetric homo-oligomers. The backbone SSE structures and sym-
metry axis orientation are determined from RDC data, so our problem is to place the SSEs
relative to each other and to the symmetry axis based on ambiguous NOE distance re-
straints. The configuration space is parameterized by placing the center of one “fixed” SSE
at the origin, and specifying the 3D translations si of the centers of the other SSEs, as well
as the position t of the intersection of the symmetry axis with the x-y plane (its orientation
a is precomputed). Specifying the si then generates a subunit structure (here cyan), while
rotating it around the axis (a, t) generates a complex structure (here a dimer, with the sec-
ond subunit in red). In assessing restraints, we also use the distances kij of atom j in SSE i
to the center of the SSE. For side-chain atoms, this requires determination of the side-chain
conformation, which we choose from a set of rotamers.

4.2.1 Representation

As summarized in Fig. 4.2, we place the global origin at the center of mass of the backbone

atoms of one of the SSEs (the “fixed” SSE, #0) in one of the subunits (the “fixed” subunit,

#0). These choices are arbitrary in terms of experimental information. The center of mass

of the ith SSE is then expressed as a 3D vector si, with s0 = 0. The position of the

symmetry axis is specified by the translation t of its intersection with the x-y plane; its

orientation a is known.

The coordinates of the atom j within SSE i are specified by translation kij from the

SSE center. For backbone atoms, the translation is fixed, but for side-chain atoms, they

depend on the side-chain conformation, which in turn is restrained by the data and guided
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to avoid steric clash. We adopt a rotamer-based representation of side-chain conformations,

allowing them to vary over discrete sets of low-energy representations mined from experi-

mental structures. Our results are based on the “penultimate rotamer library” [34], but the

method can use any such rotamer library. The side-chain translation vector for atom j in

SSE i is thus a member of a set Kij precomputed from the rotamer library. For simplicity

of notation, we also use such a set, containing a single member, for backbone atoms.

Putting together these parameters, we have a set Qrij of possibilities for the coordinates

qrij of atom qrij , atom j in SSE i and subunit r:

Q0ij = {si + kij |kij ∈ Kij} (4.1)

Qrij = {Ra(α)(q0ij − t) + t | q0ij ∈ Q0ij} r > 0 (4.2)

where Ra(α) is a three dimensional rotation by angle α around axis a, where α = r2π/c

for c subunits.

The parameters t and si (i ∈ {1, . . . ,m−1}) define the backbone structure of a subunit

withm SSEs; determining them is our goal. We call their possible values, in R2×(R3)m−1,

the Symmetry Configuration Space (SCS). The side-chain rotamers are useful in assessing

restraint satisfaction and avoiding steric clash, but need not be (and indeed likely are not)

completely determined.

The NOE restraints are expressed in terms of norm inequalities on interatomic dis-

tances. In our representation, the restraint (p, q, δ), indicating that atoms p and q must be

within distance δ, becomes:

∃ p ∈ P, q ∈ Q s.t. ‖p− q‖ ≤ δ (4.3)

where P and Q are sets of atom positions for atoms p and q respectively and ‖ · ‖ is the

Euclidean distance. With respect to our representation, we know the atom and SSE indices

of p and q; if we also knew the subunit indices, then P andQwould be determined as one of
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Fig. 4.3: The four orientations possible for an example SSE (residues 72–81) in MinE. The
orientations are, in order: original, rotation by 180 degrees around x, around y, and around
z.

the Qrij . The fact that we do not know which subunits are involved in each restraint is the

key confounding factor in simultaneous determination of subunit and complex structure.

Let us consider how to represent this ambiguity regarding the interpretation of a re-

straint: is it within a single subunit (“intra”) or between two subunits (“inter”), and if be-

tween two, which two. We note that experimentally the restraints are “mirrored”—an intra

restraint is satisfied in all subunits, and an inter restraint is satisfied in all pairs of subunits

the same spacing apart around the cycle. (This is why the choice of fixed subunit doesn’t

matter.) In our approach, we consider all such interpretations. Only if the interatomic dis-

tance is too large in all interpretations (Eq. 4.3) do we consider the restraint to be violated.

Thus we essentially express ambiguity as a logical OR over the interpretations.

There is likewise ambiguity in the side-chain conformation—we do not know which

rotameric conformation is correct. For this ambiguity, we likewise use a logical OR to

express the fact that, as long as some pair of rotamers places the atoms within δ, the restraint

is not considered violated.

One final source of ambiguity in our representation actually comes with the input SSE

backbone structures, each of which is subject to a 180 degree rotation around each of the

axes in a manner that yields 4 images of the structure, called “orientations” [70] (Fig. 4.3).

We do not directly represent this ambiguity, but instead simply solve for each combination

independently.
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4.2.2 Cell-based restraint analysis

The configuration space gives a compact representation for all possible structures; our goal

is to find within it representatives for all structures that are sufficiently consistent with the

data. To consider the feasible region in SCS, let us for a moment ignore the various sources

of ambiguity. The SCS-to-Euclidean conversion (Eq. 4.1 and 4.2) is a linear transformation,

and each distance restraint (Eq. 4.3) specifies a ball in Euclidean space. The pseudoinverse

of the transformation (which is indeed of rank 3) transforms the feasible ball to an ellipsoid

in SCS. A feasible configuration is the ellipsoid crossed with the the null space, which

makes it an infinite-length cylinder with an ellipsoidal cross-section. Thus we need to

compute the intersections of these cylinders. Once we incorporate the ambiguity, however,

we would have to compute an exponential number of such intersections.

Thus instead of trying to exactly compute the feasible portion of the configuration

space, we subdivide the space into regions containing relatively similar structures and eval-

uate the discretized regions. In particular, we use a cell-based representation of config-

uration space regions, where a “cell” is an axis-aligned box T × S1 × . . . Sm−1 with T

an axis-aligned rectangle in R2 containing the symmetry axis translations and Si an axis-

aligned cuboid in R3 containing the translations of SSE i. In evaluating a cell, we want to

know how many restraints its various structures satisfy.

First let us bound the positions of the atoms. Recall that Eq. 4.1 and 4.2 define the

possible positions based on specific choices for t and si; kij is constant when assessing

a particular rotamer. Our cell representation allows t and si to range across axis-aligned

boxes T and Si. Thus for an atom in the fixed subunit, extending Eq. 4.1 over si ∈ Si

simply displaces the box Si by the vector kij . For an atom in another subunit, Eq. 4.2,
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when expanded out, becomes:

Qrij = {Ra(α)(si + kij − t) + t | t ∈ T, si ∈ Si}

= {Ra(α)(si − t) + t +Rakij | t ∈ T, si ∈ Si} (4.4)

Again, recognizing that T and Si are boxes, we can see that this is a linear transformation of

a Minkowski difference of two convex polyhedra, another convex polyhedron. We compute

the extreme points of this polyhedron by ranging t and si over only the corners of T and

Si.

So for any backbone atom, we bound the possible positions, over the whole cell, with

a convex polyhedron. For side-chain atoms, we have sets of polyhedra over the different

rotameric-defined positions (translating by kij), and we employ an OR as described above.

The bound of atomic coordinates over a cell then enables us to assess steric clash, along

with satisfaction of a restraint over all conformations defined by a cell.

Steric clash. The square of the distance between two atoms is a convex function, and

thus its maximum is achieved at a pair of extremal points of the atoms’ bounding polyhedra.

We test each such pair (23×23 for intra and 23×23×22 for inter). If the maximum distance

is less than 1.5 Å, we can infer that all structures in the cell exhibit steric clash for that atom

pair. For efficiency, we only test pairs of atoms involved in NOEs.

Completely satisfied. If the maximum distance (as described for steric clash) between

a pair of atoms in an NOE restraint is less than the NOE distance, the restraint is satisfied

for every structure in the cell.

Completely violated. A restraint cannot be satisfied unless some pair of points, one for

each atom’s bounding polyhedron, is within the NOE distance. Thus we simply compute

the shortest inter-polyhedral distance, and consider the restraint to be violated for every

structure in the cell if that distance exceeds the threshold.

While these tests allow us to evaluate the two extreme cases for each restraint, the
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overall quality of a structure rests on satisfaction of multiple restraints simultaneously. In

contrast, with these tests the point used to evaluate one restraint may be different from that

used for another restraint. Unfortunately an ability to exactly assess simultaneous satis-

faction of an arbitrary set of restraints would also give us the ability to perform side-chain

packing, an NP-hard problem [1]. Thus we develop an algorithm for limited simultaneous

restraint satisfaction, correctly bounding the true evaluation that would be produced by a

full assessment.

The algorithm is described formally in Alg. 2. We form position-specific sets such

that Ri contains all restraints in which some atom from residue i participates. (Since each

restraint has two atoms, it can appear in two such sets.) We work from N terminus to C ter-

minus. When considering residue i, we examine each of its possible rotamers, identifying

the one (a) that supports the satisfaction of the most restraints. (We don’t allow a restraint

to be considered satisfied for both its different residues.) To do so, for each remaining re-

straint involving an atom from residue i, we consider all possible rotamers b for the other

atom, and evaluate the resulting interatomic distance over the given cell. Here function d

computes Euclidean distance after applying the configuration space transformation for pa-

rameters c and using the intra-SSE distance vectors k for rotamers a and b, as in Eq. 4.1 and

4.2. After identifying the best such rotamer, we add to our list all the restraints it satisfies,

and continue.

The resulting estimate of satisfied restraints is loose since when considering a residue

position, only the rotamers for that position are necessarily used consistently over the re-

straints involving that position, while the rotamers for the other atoms in the restraints are

unconstrained. We can show by induction that it is a correct overestimate.

Theorem 4.2.1. The size of set S at iteration i of Alg. 2 is an overestimate of the size of the

optimal set of restraints from R1 ∪ . . . ∪ Ri that can be satisfied when choosing for each

position 1 through i a unique rotamer.
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Algorithm 2 Simultaneous restraint satisfaction bound
Input: Sets Ri (1 ≤ i ≤ n) of restraints with at least one atom from residue i
Input: Sets Ai (1 ≤ i ≤ n) of rotamers for residue i
Input: Cell C.
Output: |S|: bound on number of satisfied restraints
S ← ∅
for i = 1→ n do
U ← Ri\S
a← arg max

a∈Ai

|{(p, q, δ) ∈ U | ∃ b ∈ Aresi(q), c ∈ C s.t. d(p, q; a, b, c) ≤ δ}|
S ← S ∪ {(p, q, δ) ∈ U | ∃ b ∈ Aresi(q), c ∈ C s.t. d(p, q; a, b, c) ≤ δ}

end for

Proof. Let the set computed by our algorithm be denoted by Xi and the optimal set (with a

unique rotamer per position) by Oi. The proof is by induction. For the base case i = 1, our

algorithm finds the maximum number of satisfied restraints using any rotamer at position

1, an overestimate of the actual number which would restrict the other side of the restraint;

i.e., |Xi| ≥ |Oi|.

For the inductive step we will prove that if our hypothesis holds for i, i.e., |Xi| ≥

|Oi|, then it also holds for i + 1. Assume for contradiction |Xi+1| < |Oi+1|. Let O′i be

Oi+1 ∩ (R1 ∪ . . . ∪ Ri); note that it might be completely different from Oi. Let ∆i+1 =

Ri+1\(R1 ∪ . . . ∪ Ri) be the new restraints involving only positions i + 1 and higher. We

have two possibilities:

1. |O′i| > |Oi|. This immediately contradicts the optimality of Oi.

2. |O′i| ≤ |Oi| ≤ |Xi|. Then for |Oi+1| > |Xi+1|, it must be that |Oi+1 ∩ ∆i+1| >

|Xi+1 ∩ ∆i+1|. But since ∆i+1 includes only restraints between residues i + 1 and

higher and the rotamer consistency requirement of our algorithm only applies to i+1,

any restraint added to O′i for Oi+! can also be added to Xi for Xi+1. Thus |Oi+1 ∩

∆i+1| ≤ |Xi+1 ∩∆i+1|, a contradiction.

In either case we derive a contradiction, so it must be that |Xi+1| = |Oi+1|, and the induc-

tion carries through.
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As a corollary, when it terminates at i = n, Alg. 2 produces an overestimate of the size

of the optimal set of consistently satisfied restraints.

4.2.3 Cell structural uniformity assessment

In searching the configuration space, we need to be able to determine whether or a cell

represents a more-or-less uniform set of structures. We adopt the criterion here that all

structures must be within a user-specified RMSD to each other. We now develop an esti-

mate for the maximum RMSD between structures within a cell, without having to convert

the continuous set in configuration space to conformation space.

First let us consider the distance between a particular structure and any other structure

in the cell, as follows. Given a point x, at particular t and si (for i ranging over the SSEs),

define function gx(y) as the square of the RMSD to the fixed x from another point y in the

cell, at t+∆t and si+∆si. For an atom in the fixed subunit, its contribution to the squared

distance is ‖(si + kij) − (si + ∆si + kij)‖2 = ‖∆si‖2. For an atom in another subunit (at

defined rotation angle α), the squared distance is similarly

SD = ‖(Ra(α)(si + kij − t) + t)−

(Ra(α)((si + ∆si) + kij − (t + ∆t)) + (t + ∆t))‖2

= ‖Ra(α)(∆si −∆t) + ∆t‖2

=
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) ∆si
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2

(4.5)

Note that the quantities are independent of individual atom coordinates, so the total con-

tribution is proportional to the number of atoms. Let ni be the number of atoms in SSE
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i (from 1 to m − 1, omitting fixed SSE number 0). Let zk be the matrix norm in Eq. 4.5

for subunit k (from 1 to c− 1, omitting fixed subunit 0); it is given by the highest singular

value in the matrix. Now we can compute an upper bound on gx(y) as

gx(y) ≤ 1

c
∑m−1

i=1 ni

m−1∑
i=1

ni

‖∆si‖2 +
c−1∑
k=1

z2
k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ∆si

∆t


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2 (4.6)

Let ux(y) denote this upper bound. We now show that we can bound gx(y) for any two

points in a cell by ua(b) for corner points a and b.

Proposition 4.2.2. For a cell C, maxx∈C maxy∈C ux(y) = ua(b) for a pair a,b of corner

points of C.

Proof. Assume for contradiction that the maximum is at some d and e in C, one or both

of which is not a corner, and that this value is strictly greater than the values between all

pairs of corners. First let us consider ud(x), for x ∈ C. This is a convex function, since

it is a sum of convex functions. Therefore, its maximum is attained at one of the corners

of C, say a; thus ud(a) ≥ ud(e). Now let us consider ua(x), also a convex function, with

maximum at some corner b of C. Thus ua(b) ≥ ua(d). Since ua(d) = ud(a) and we

showed that ud(a) ≥ ud(e), it follows that ua(b) ≥ ud(e), which is a contradiction.

By inspection we can determine that the lower corner (with smallest value for each

element) and upper corner (with largest for each) yield the largest u, as they provide the

maximal ‖∆t‖ and ‖∆si‖. Thus to assess cell uniformity, we evaluate Eq. 4.6 at the lower

and upper corners.

4.2.4 Search algorithm

We now develop a branch-and-bound search algorithm that hierarchically subdivides the

SCS, using the cell-based evaluations to assess restraint satisfaction within the cells and
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to identify terminal cells that need not be further divided. Ultimately the search identifies

cells that satisfy the most restraints and that have sufficiently uniform structures. Some of

the cells might be similar to each other, so a clustering process yields the final set, from

which are generated representatives for all structure sufficiently consistent with the data.

The search is initialized with a cell that is a cross product of Si and T that are sufficiently

large to contain all SCS points that could satisfy the restraints. The SSE with the most

restraints to others is established as the origin, and the symmetry axis is taken as the z

axis to restrict how far away the subunits can be situated. Initially each restraint could be

interpreted as either intra or inter. However, we can eliminate some of the intra possibilities

prior to beginning the search, by identifying pairs of atoms in the same SSE (and thus

independent of SCS choices) that cannot be within the NOE distance under any choice of

rotamers. Restraints for such pairs must be considered as inter only. This preprocessing

does not change the results, but reduces the size of the search space that must be explicitly

considered and the number of tests that must be performed during the search.

The search maintains a priority queue of cells and associated viable restraint interpreta-

tions. Priority is determined by the number of violated restraints in a cell. The search also

maintains a cutoff τ of the fewest violated restraints by any terminal cell.

When a cell is removed from the priority queue, it is subdivided along its longest di-

mension. The child cells are assessed for structural uniformity and for restraint satisfaction,

as follows:

• Cells that are sufficiently uniform (we use a threshold of 1 Å RMSD for our results)

are considered terminal and tested by Alg. 2 for restraint satisfaction, updating τ

when appropriate.

• Cells that are sufficiently small (we use a threshold of 2 Å in each dimension) are

tested for complete satisfaction (the expense of the test is not justified for larger

cells). If the number of restraints that aren’t completely satisfied is at most τ , then

the cell appears good but not sufficiently uniform. Thus we repeatedly subdivide it
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until the subcells are sufficiently uniform. We consider them terminal and continue

as above.

• Other cells are tested for complete violation. If more than τ many restraints are

completely violated, the cell is pruned. Otherwise it is added to the priority queue.

Upon termination, we reevaluate the terminal cells, ordered by the number of violations,

against the final τ . Those having fewer violations than the final τ are tested for steric

clash within the structure represented by the cell center. Those that pass are considered

accepted cells. The accepted cells are clustered to reduce redundancy while still ensuring

that all satisfying structures are represented by a sufficiently close solution. The clustering

is performed using the Euclidean distance metric on a KD-Tree constructed from the cell

centers. The RMSD upper bound used to assess structural uniformity in the cell (Sec. 4.2.3)

also enables us to use Euclidean distances on SCS points after scaling the coordinates

appropriately.

Representative structures are generated from the centers of the final clustered cells. For

each cell center, an individual subunit is generated from the SSE translations; the complex

is then generating by rotating around the translated symmetry axis m− 1 times.

4.3 Results

We applied our approach to three test cases with experimental NOE restraints: (1) MinE

[29] (PDB id 1EV0), a dimer with one α-helix and two β-strands restrained by 1109 NOEs

(926 intra + 183 inter); (2) B. subtilis Anti-TRAP (PDB id 2KO8), a trimer with one α-

helix and two β-strands (along with a third that is unrestrained and thus not considered

here) restrained by 863 NOEs (378 intra + 485 inter); (3) the cytoplasmic domain structure

of BM2 proton channel from influenza B virus [66] (PDB id 2KJ1), a tetramer with two

α-helices restrained by 400 NOEs (340 intra + 60 inter). NOEs were obtained from the

BioMagResBank (BMRB) [61] and the intra vs. inter resolution was ignored. We used
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the deposited SSE backbone structures and axis orientation, since these proteins lacked

the RDC data necessary to determine them by RDC-Panda. The RMSD cut-off for cell

uniformity was set to 1 Å and the initial maximum NOE restraint violation τ was set to ten

percent of the total number of restraints.

We first determined which restraints supported only an inter interpretation, as the in-

volved atoms were in the same SSE but no rotamer choice could place them close enough.

For MinE, 104 restraints were classified as inter, all consistent with the deposited interpre-

tation. For Anti-TRAP, 173 restraints were classified as inter, but 60 of them were actually

intra according to the deposited interpretation. For BM2, 8 restraints were classified as

inter, 4 of which were actually intra. The misclassifications were due to the use of discrete

rotamers, which did not come sufficiently close; possible fixes include relaxing the distance

threshold or using rotamer “voxels” [16]. Note that while the preprocessing forced some

incorrect interpretations, they are due to the geometric model and the same interpretations

would ultimately have resulted from the search algorithm; the preprocessing is simply a

time-saving measure.

We now characterize our results in terms of the identified feasible region of the config-

uration space and the structures contained within it. We show that, even with significant

intra vs. inter ambiguity and a large, complex configuration space, the algorithm is able to

identify compact feasible regions most consistent with the data. We also show that the re-

sulting structures identified by our method capture the variability in the deposited ones. We

further show that ours are substantially more diverse than those in the deposited ensemble,

though we recognize that by focusing just on the SSEs, our results overestimate the struc-

tures consistent with the data (as NOEs and packing with loops could further constrain the

allowable conformations).
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Fig. 4.4: Accepted SCS cells for the test cases. (top) The translation of the x–y intersec-
tion of the symmetry axis. (middle, bottom) The translation of the non-fixed SSEs. For
MinE, one β-strand is fixed while the other β-strand (middle) and the α-helix (bottom)
are translated. For Anti-TRAP, the α-helix is fixed and the β-strands (middle and bottom)
translated. For BM2, one α-helix is fixed and the other (middle) translated.

4.3.1 Configuration space search

The configuration space search yields a set of accepted cells representing the feasible re-

gions; each cell specifies the 2D translation of the symmetry axis relative to the fixed sub-

unit (T ) and the 3D translation of each SSE relative to the fixed SSE (Si). Recall that we do

the search independently for each set of SSE orientations Fig. 4.3. Fig. 4.4 illustrates the

accepted cells for the most populated orientation set (i.e., the one with the largest volume)

for each of our three test cases. Note that while the different components of the cells are

displayed separately, not all combinations of these components are accepted.

For MinE, eight of the sixteen SSE orientation combinations led to accepted cells. The

two most populated combinations were nearly equal in number and different from the de-

posited structure. The first combination (34% of the remaining volume) had the sheet
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rotated around z axis and the second (33% of the remaining volume) had both beta strand

and alpha helix rotated around the z axis. The combination of the deposited structure

contained 13% of the remaining volume, as did another combination with the alpha he-

lix rotated around the z axis. We later discuss the resulting conformations, but wanted to

point out here that the differences in orientations in the configuration space indeed lead to

differences in conformations; e.g., the average RMSD for samples in the two most pop-

ulated orientation sets was 4.6 Å with a maximum of 12.8 Å. The remaining volume of

the translational component of the symmetry axis was 2 × 10−5 that of the initial volume.

The symmetry axis was highly constrained by inter-subunit restraints. For the SSEs, the

relative volumes of the translational components were 1 × 10−5 for SSE 1 and 2 × 10−4

for SSE 2. The β-strand was restrained to the fixed SSE by 237 NOEs, yielding a rela-

tively restricted remaining translational component (10 Å3). The α-helix, in contrast, was

relatively unrestrained, with only 26 NOEs to the fixed SSE, resulting in much more trans-

lational uncertainty (32 Å3). There are no intra restraints between the two non-fixed SSEs

and the inter restraints are therefore valuable in pinning down the structure.

There were accepted cells for five of the sixteen possible SSE orientation combinations

for Anti-TRAP; the most populated combination (72% of the remaining volume) was the

same as in the deposited structure while the other combinations produced relatively few

cells. The second most populated combination (14%) was the combination in which the

beta strand (residues 9-11) is rotated around the z axis. The axis translation component

volume for the largest orientation combination was 2×10−3 that of the total volume, while

the SSE translation volumes were 2 × 10−4 and 1 × 10−4 those of the originals. There

was much more uncertainty in the position of the symmetry axis here, compared to MinE,

due to significantly fewer unambiguous inter-subunit restraints characterized during the

preprocessing. There was also substantial uncertainty in the translations of the SSEs, 89 and

104 Å3, as various combinations of ambiguous assignments of different restraints allowed

the cells to escape pruning. Interestingly, SSE 2’s translation cells fell into two distinct
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groups, with the second SSE much further away from the fixed one in one than in the other.

For BM2 only one SSE orientation combination, that in the deposited structure, pro-

duced accepted cells. 7 × 10−4 of the symmetry axis translation volume was accepted,

while 1× 10−5 of the SSE translation volume remained. Though there are only four inter-

subunit restraints between the fixed SSE in each subunit, the axis translation was tightly

characterized (7 Å2), and likewise the two restraints from SSE 1 to the fixed SSE sufficed

to reduce its translational uncertainty to 47 Å3. The NOEs acted in concert with backbone

steric clash to drastically prune the configuration space.

4.3.2 Example structures

To illustrate the diversity of structures represented by the final accepted SCS cells, we

performed agglomerative clustering on all of the cells (from all orientation combinations)

and selected an example from each of the most distinct groups. See Fig. 4.5.

MinE. The top level of the dendrogram represents an RMSD of 10 Å, indicating sub-

stantial diversity in the structures. However, chopping the tree into 8 clusters yields com-

pact groups, each with no more than 1.5 Å RMSD among its members. Fig. 4.5(top)

illustrates one sample from each cluster. Between these samples, the non-fixed alpha helix

for the first subunit had an RMSD up to 24 Å, while the beta sheet had an RMSD up to 16

Å.

Anti-TRAP. The accepted cells yielded much more similar structures, with a maximum

RMSD at the top of the dendrogram of 4 Å. There are only three clusters that have a maxi-

mum RMSD of 3.5 Å in structures within them. The example structures in Fig. 4.5(middle)

illustrate this relative uniformity of identified representatives. The SSE 2a had the most

variance between these samples, as much as 23 Å.

BM2. This structure was the best determined, with an RMSD of only 0.7 Å at the top

of the dendrogram, resulting from the relatively compact set of accepted cells. The six
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MinE

Anti-TRAP

BM2

Fig. 4.5: Diverse example structures from satisfying SCS cells. The SSEs are labeled 0a,
1b etc., where the number indexes the SSE and the character the subunit (e.g., 0a is the
fixed SSE in the first subunit).
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MinE (0.94 Å) Anti-TRAP (0.36 Å) BM2 (3.29 Å)

Fig. 4.6: Superpositions of lowest-energy deposited structure (red) and closest representa-
tive from our search (blue). Parenthesized numbers are RMSDs.

example structures from the top-most clusters (Fig. 4.5, bottom) emphasize this point.

4.3.3 Comparison to structures from previous methods

The structures identified by our method represent the deposited structures well. Fig. 4.6

shows that for MinE, the minimum-energy deposited structure is 0.94 Å away from the

closest member in our ensemble. Similarly, the minimum-energy deposited structure for

Anti-TRAP is represented by one representative with only 0.36 Å RMSD. On the other

hand, BM2’s representative is 3.29 Å RMSD, larger than we would have expected. How-

ever, the deposited structure violates ten restraints, whereas our ensemble was comprised

of structures violating only one restraint. Relaxing the allowed number of violations would

have enabled us to find the deposited structure (along with many others violating more

restraints than those we found with the tight restriction).

Going beyond the lowest energy structures in the deposited samples, we can see that

each deposited structure is represented by one of ours about as well as the lowest-energy

one is (Fig. 4.7, top). However, our structures capture much more diversity (Fig. 4.7, bot-

tom), as some of them are quite different from their most similar counterpart among the

deposited structures. Of course, the feasible region we obtain is an overestimate of the true

feasible region, since we have relaxed the evaluation of consistency of constraints individ-

ually (via bounds) and simultaneously, are using a cell-based discretization of the space,
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Fig. 4.7: RMSDs between deposited structures (in order within the pdb file) and those
identified by our search. (top) The closest of ours to the minimum energy structure in the
deposited ensemble. (bottom) The closest deposited structure to each of our models (in
order of RMSD).

and are focused just on the SSE structures (which would be further filtered by restraints to

and packing with loops). A complete protocol for structure determination could proceed

from this point by incorporating loops and refining in conformation space.

4.4 Conclusion

We have developed an approach to fully account for intra vs. intersubunit ambiguity in NOE

data for symmetric homo-oligomers, simultaneously determining the subunit and complex

structures most consistent with the data. In contrast to search approaches that are heuristic

in nature and can get trapped in local minima, our approach partitions a configuration space

that represents all possible structures, using a set of restraint satisfaction tests to identify the

regions that best satisfy the data. This search procedure enables us to provide guarantees

on the results, namely that any structure sufficiently consistent with the data is sufficiently

close to one of the identified representatives. We demonstrated with three test cases that
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the approach effectively prunes the search space and identifies diverse structures consistent

with the data. In future work, we can take into account additional ambiguities, including

NOE assignment (similar to [45]), as well as multiple possible symmetry axes [37].
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5. SUMMARY AND FUTURE WORK

This thesis has developed methods that are able to determine the association model from in-

put solution scattering data and symmetric homo-oligomer structure from NOE restraints.

The method for determining the association model from SAS data was (1) robust to noise

and (2) robust to the presence of contaminants. The structure determination methods were

(1) complete in identifying all conformations (within a similarity threshold) that were con-

sistent with NOE restraints (2) data driven in that we kept solutions that satisfied the data

without having steric clashes and did not model the biophysical energy of the structures.

5.1 Future work

Association model In our work with contaminants in the association model, we incorpo-

rate constraints for non-negativity and best fit to the data while optimizing for the smooth-

ness of the curve. Such formulation, can at times lead to non physical scattering curves

getting obtained and we may end up with infeasible optimization problems. Future work

should incorporate algebraic approximations of a physical scattering curve that can retain

the convex nature of the optimization problem.

Another possibility in improving the method is to use heuristics like simulated anneal-

ing when doing searches in three dimensions. This can lead to faster runtimes of the method

because grid searches in dimensions greater than two are slow.
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Homo-oligomeric structure from NMR In the structural inference work on symmetric

homo-oligomers, we chose a weak prior that was uniform for all structures exhibiting no

steric clash. We would like to, however, better account for biophysical plausibility by incor-

porating a Boltzmann prior that represents molecular modeling energies. Bounding such

a prior and then using it in the framework that we created, however, remains a significant

challenge. One can pick energy functions that are more coarse grained but can be bounded

and fit in the inferential structure determination framework that we developed.

In the work with structure determination from ambiguous NOE restraints, the thesis

computed the symmetry axis and used it in a branch and bound algorithm. In order to

make the method more robust to experimental noise, orientations can be sampled from a

distribution centered at the computed axis instead of picking just one axis. This would

make it less sensitive to noisy RDC data. During branching, instead of splitting a cell into

two equal halves, better heuristics can be used to split it into two unequal halves. One with

higher probability of satisfaction and the other with lesser.
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