
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

3-1-2013

Security-Policy Analysis with eXtended Unix Tools Security-Policy Analysis with eXtended Unix Tools

Gabriel A. Weaver
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Weaver, Gabriel A., "Security-Policy Analysis with eXtended Unix Tools" (2013). Dartmouth College Ph.D
Dissertations. 38.
https://digitalcommons.dartmouth.edu/dissertations/38

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/38?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Security-Policy Analysis with eXtended Unix Tools
Dartmouth Computer Science Technical Report TR2013-728

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Gabriel A. Weaver

DARTMOUTH COLLEGE

Hanover, New Hampshire

March, 2013

Examining Committee:

(chair) Sean W. Smith, Ph.D.

Rakesh B. Bobba, Ph.D.

Thomas H. Cormen, Ph.D.

M. Douglas McIlroy, Ph.D.

Daniel Rockmore, Ph.D.

F. Jon Kull, Ph.D.

Dean of Graduate Studies

Abstract

During our fieldwork with real-world organizations—including those in Public Key

Infrastructure (PKI), network configuration management, and the electrical power

grid—we repeatedly noticed that security policies and related security artifacts are

hard to manage. We observed three core limitations of security policy analysis that

contribute to this difficulty. First, there is a gap between policy languages and the

tools available to practitioners. Traditional Unix text-processing tools are useful,

but practitioners cannot use these tools to operate on the high-level languages in

which security policies are expressed and implemented. Second, practitioners cannot

process policy at multiple levels of abstraction but they need this capability because

many high-level languages encode hierarchical object models. Finally, practitioners

need feedback to be able to measure how security policies and policy artifacts that

implement those policies change over time.

We designed and built our eXtended Unix tools (XUTools) to address these lim-

itations of security policy analysis. First, our XUTools operate upon context-free

languages so that they can operate upon the hierarchical object models of high-level

policy languages. Second, our XUTools operate on parse trees so that practitioners

can process and analyze texts at multiple levels of abstraction. Finally, our XUTools

enable new computational experiments on multi-versioned structured texts and our

tools allow practitioners to measure security policies and how they change over time.

Just as programmers use high-level languages to program more efficiently, so can

practitioners use these tools to analyze texts relative to a high-level language.

Throughout the historical transmission of text, people have identified meaningful

substrings of text and categorized them into groups such as sentences, pages, lines,

function blocks, and books to name a few. Our research interprets these useful struc-

tures as different context-free languages by which we can analyze text. XUTools are

already in demand by practitioners in a variety of domains and articles on our re-

search have been featured in various news outlets that include ComputerWorld, CIO

Magazine, Communications of the ACM, and Slashdot.

ii

Acknowledgments

Although the rewards are great, the pursuit of a Ph.D is a perilous path fraught with

untold dangers. While I cannot possibly enumerate everyone who has prepared and

helped me on this journey, I do want to thank my family, friends, colleagues, and

funders.

I could not have possibly gotten to this point without the support of my family. I

want to thank my father for teaching me about hard work and discipline through our

nightly father and son games of catch and gardening sessions. I want to thank my

mom for reading to me continuously from the time I was born and for cooking such

excellent food. I want to thank my brother and sister, Mike and Peach for taking care

of their little brother through all of the emotional rollercoasters of the experience and

for reminding me that there was more to life than school.

I’ve been blessed with many friends through the years so rather than listing them

all, I want to list a few of the people that have impacted my life the most the past

few years. First, I want to thank Jim and his wife Abby. Jim is a steadfast man

of exemplary character and has supported me from the moment I moved out of our

apartment at 433 Cambridge Street. He helped me move, visited me, and kept me sane

when I reached my breaking point (on several occasions). He has found his equal in

his wife, Abby (a.k.a. Dr. Wow). I want to thank Alison Babeu and her husband Alex

for their dry, witty sense of humor, for keeping me in line, and for driving 2.5 hours

from Boston just to walk their dog and treat me to dinner. They are steadfast friends

and make a killer mexican dinner. I want to thank Kate MacInnes for introducing

me to running distances all over the hills of New Hampshire and Vermont. I’ll always

remember our great runs. I want to thank Nick Foti. Nick and I both took classes at

Tufts and we started graduate school at Dartmouth in the same year. He’s a serious

mathematician and a great person with whom to eat lunch or walk around Occum

Pond. Finally, I want to thank Janna Genereaux and her family for welcoming me

into their home during the final few months of graduate school. I’ll always remember

their generosity, kindness, and warmth.

If I live to be 90 I will have spent one-third of my life in school. Therefore, I

would be remiss if I didn’t thank the teachers who prepared me for graduate school.

I want to thank my Pre-K teacher Mrs. Manso at St. James for creating Science

Discovery Camp. In addition to providing me with a captive lunchtime audience

for my harmonica playing, science discovery camp taught me the value of hands-on

science experiments. I want to thank Ernest Dodge, my high-school English and Latin

iii

teacher for introducing me to the value of a Classical education and to value logic,

reason, and memorization. It is because of Mr. Dodge that I was able to navigate my

father’s hospitalization with some sanity. I want to thank Neel Smith, an archaeologist

and Professor of Classics at Holy Cross. When everyone else thought I was crazy,

Neel encouraged me to combine my love of the Classics and Mathematics and allowed

me to do an independent study on the diagrams of Euclid and Theodosius. Later on,

he, along with Harvard’s Center for Hellenic Studies, allowed me to pursue a once-in-

a-lifetime opportunity: to digitize diagrams for the Archimedes Palimpsest Project.

Finally, I want to thank Greg Crane, a Professor of Classics at Tufts University, for

allowing me to continue my research in the domain of Classics and Mathematics for

three years after graduating from Holy Cross.

During my time at Dartmouth, I was fortunate enough to work with a great set

of colleagues. I want to thank Sergey and Anya, who found me without an advisor

and suggested that I think about security and its ties to natural-language processing.

Once I was in the PKI/Trust lab, I met many great people including Scout, Bx,

Chrisil, and Jason that could empathize with the plight of the Ph.D student. I want

to thank Suzanne Thompson, a woman who tirelessly worked to provide a high-quality

summer camps for students interested in computers and society. She is a pleasure to

work with and a fabulous person. I also want to thank colleagues at the Institute for

Security, Technology, and Society. In particular, I want to thank Tom Candon, who

offered countless words of encouragement and handfuls of candy.

My thesis research was only possible because of the support of domain experts. I

want to thank Scott Rea for teaching me about the value of large families, character,

and planning a trip to Europe before actually going. I will always remember our

adventure in the Milan train station and its many armored police vehicles and shady

characters. I also want to thank Edmond Rogers for his direction on network configu-

ration management in the power grid and his continuing support and friendship since

I have moved to Illinois. Although extremely loud, his actions speak even louder and

are a testament to his character.

I want to thank my thesis committee for helping me to pursue an unconventional

thesis topic. Thanks to Rakesh Bobba for agreeing to be on my thesis committee and

continuing to give me guidance at Illinois. Thanks to Tom Cormen for insisting upon

a more formal foundation for my tools at my proposal. I will always remember Tom’s

stories about hockey, baseball, and barbeque. Thanks to Doug McIlroy, a true Unix

god, for his countless suggestions and continued enthusiasm for XUTools. Thanks to

Dan Rockmore for his interest in applying XUTools to data mining and legislation

iv

even when few others saw their potential.

Most importantly, I want to thank my advisor Sean W. Smith. Sean is a man

of character and he stood by me through thick and thin. Even when my research

ideas were shaky and my future uncertain, he provided guidance to see me through. I

can’t thank Sean enough for funding my research, especially when others questioned

whether it was Computer Science. It is difficult to state just how much Sean has

positively impacted my life and he continues to do so even after my defense.

Finally, I want to thank my funding sources for making my research possible. The

National Science Foundation, Google, and the Department of Energy all made this

thesis possible. The views and conclusions of this thesis do not necessarily represent

the views of the sponsors.

v

Contents

1 Introduction 1

1.1 Problem Scenarios . 2

1.1.1 Real-World Security Domains 2

1.1.2 Limitations of Security Policy Analysis 5

1.2 This Thesis . 7

1.2.1 Theory for Structured Text 7

1.2.2 Why and How to Use XUTools 7

1.2.3 Design and Implementation of XUTools 8

1.2.4 Evaluation . 8

1.2.5 Application . 9

1.2.6 Future Work . 9

1.2.7 Conclusions and Appendices 10

2 Problem Scenarios 11

2.1 X.509 Public Key Infrastructure Policies 12

2.1.1 Policy Comparison . 12

2.1.2 Drawbacks of Current Approaches 15

2.1.3 Limitations of PKI Policy Analysis 16

2.1.4 Section Summary . 19

2.2 Network Configuration Management 19

2.2.1 Summarize and Measure Change 20

2.2.2 Drawbacks of Current Approaches 21

2.2.3 Limitations of Summarizing and Measuring Change 24

2.2.4 Section Summary . 26

2.3 Electrical Power Grid . 26

2.3.1 Change Control and Baseline Configuration Development . . . 28

2.3.2 Drawbacks of Current Approaches 29

vi

2.3.3 Limitations of Change Control and Baseline-Configuration De-

velopment . 30

2.3.4 Section Summary . 34

2.4 Conclusions . 34

3 Theory 35

3.1 Theoretical Background . 36

3.1.1 Language Theory . 36

3.1.2 Parsing . 45

3.1.3 Security Policy Corpora as Data Types 47

3.1.4 Section Summary . 52

3.2 How We Address Limitations of Security-

Policy Analysis . 52

3.2.1 Policy Gap Problem . 52

3.2.2 Granularity of Reference Problem 54

3.2.3 Policy Discovery Needs Problem 56

3.3 Conclusions . 57

4 Why and How to Use XUTools 58

4.1 XUTools and Real-World Use Cases 58

4.1.1 XUGrep . 58

4.1.2 XUWc . 65

4.1.3 XUDiff . 69

4.2 Conclusions . 75

5 Design and Implementation of XUTools 76

5.1 Design Requirements . 76

5.1.1 Tools Gap Problem . 77

5.1.2 Granularity of Reference Problem 78

5.1.3 Policy Discovery Needs Problem 78

5.2 XUTools Internals . 79

5.2.1 XUGrep Internals . 79

5.2.2 XUWc Internals . 85

5.2.3 XUDiff Internals . 88

5.2.4 Grammar Library . 90

5.2.5 xupath . 92

5.3 Conclusions . 98

vii

6 General Evaluation of XUTools 99

6.1 XUGrep . 99

6.1.1 Evaluation—Qualitative . 99

6.1.2 Evaluation—Quantitative . 100

6.1.3 Related Work . 102

6.2 XUWc . 103

6.2.1 Evaluation—Qualitative . 104

6.2.2 Evaluation—Quantitative . 104

6.2.3 Related Work . 105

6.3 XUDiff . 106

6.3.1 Evaluation—Qualitative . 106

6.3.2 Evaluation—Quantitative . 107

6.3.3 Related Work . 107

6.4 Grammar Library . 108

6.5 Conclusions . 109

7 Application of XUTools to Network Configuration Management 110

7.1 Introduction . 110

7.2 XUTools Capabilities for Network Configuration Management 112

7.2.1 Inventory of Network Security Primitives 112

7.2.2 Similarity of Network Security Primitives 116

7.2.3 Usage of Network Security Primitives 123

7.2.4 Evolution of Network Security Primitives 128

7.2.5 Section Summary . 130

7.3 Evaluation . 131

7.3.1 General Feedback from Practitioners 132

7.3.2 Related Work . 134

7.3.3 Capability-Specific Evaluation 136

7.4 Conclusions . 140

8 Future Work 141

8.1 Ongoing Research . 141

8.1.1 Application of XUTools to X.509 PKI 141

8.1.2 Application of XUTools to Terms of Service Policies 144

8.1.3 Application of XUTools to the Power Grid Data

Avalanche . 146

8.2 Additional Problem Scenarios . 149

viii

8.2.1 Healthcare Information Technology 149

8.2.2 Legislation and Litigation . 153

8.2.3 Operating Systems and Trusted Hardware 154

8.3 Additional XUTools Extensions . 155

8.3.1 Version Control . 155

8.3.2 Grammar Library . 156

8.3.3 Distributed Parsing . 156

8.3.4 Distance Metrics for XUDiff 156

8.3.5 Current XUTools: . 158

8.3.6 New XUTools . 158

8.3.7 A GUI for XUTools . 159

8.4 Conclusions . 161

9 Conclusions 162

A Pre-XUTools PKI Policy Analysis Tools 164

A.1 PKI Policy Repository . 164

A.1.1 Security Policy Analysis Problems Addressed 165

A.1.2 Design and Implementation 167

A.1.3 Evaluation . 167

A.2 Policy Builder . 168

A.2.1 Security Policy Analysis Problems Addressed 168

A.2.2 Design and Implementation 169

A.2.3 Evaluation . 169

A.3 Policy Mapper . 170

A.3.1 Security Policy Analysis Problems Addressed 170

A.3.2 Design and Implementation 170

A.3.3 Evaluation . 170

A.4 Vertical Variance Reporter . 172

A.4.1 Security Policy Analysis Problems Addressed 172

A.4.2 Design and Implementation 172

A.4.3 Evaluation . 173

A.5 Policy Encoding Toolchain . 173

A.6 Conclusions . 174

B PyParsing Internals 175

B.1 PyParsing and Recursive Descent Parsers 176

ix

B.1.1 Interpretation Functions . 176

B.1.2 Parser Combinators . 179

B.1.3 Combinators and Recursive-Descent Parsers 183

B.2 Evaluation of Recursive Descent Parsers 186

B.2.1 Evaluation—Implementation Complexity 186

B.2.2 Evaluation—Recognition Power 189

B.2.3 Evaluation—Usability and Portability 189

B.2.4 Alternative Parsing Algorithms 190

B.3 Implementation and Evaluation of Scan String 191

B.4 Conclusions . 193

x

List of Tables

5.1 Sizes of grammars used by our XUTools 92

5.2 Types of nodes in a xupath parse tree 97

7.1 An inventory of object groups and access-control lists across the Dart-

mouth network . 116

7.2 Similarity of ACLs in the Dartmouth Network 121

7.3 Evolution of number of object groups in Dartmouth network 129

7.4 Evolution of number of ACLs in Dartmouth network 130

7.5 Evolution of number of ACLs used in Dartmouth network 131

8.1 Multiversioned corpus of EUGridPMA security policies 143

8.2 Multiversioned corpus of terms of service and privacy policies 146

B.1 Examples of tokens for TEI-XML . 178

B.2 Example of a parser for a TEI-XML head element 185

xi

List of Figures

3.1 Definition of string . 37

3.2 Definition of language . 37

3.3 Definition of recognizer . 39

3.4 Classes of languages . 40

3.5 Definition of context-free grammar and parser 43

3.6 Definition of parse tree . 46

3.7 Equivalence classes of strings . 48

3.8 Parsing as an operation on strings . 49

3.9 String and tree edit distance . 51

3.10 Language classes of XUTools . 53

3.11 Levels of abstraction of a parse tree 55

3.12 Security policy change trends . 56

4.1 Usage of xugrep . 59

4.2 Example Cisco IOS configuration file 60

4.3 Using xugrep to process network configuration files 61

4.4 Example C source files . 62

4.5 Using xugrep to process C source files 63

4.6 Usage of xuwc . 66

4.7 Example of multi-versioned Cisco IOS configuration file 67

4.8 Using xuwc to process network configuration files 68

4.9 Usage of xudiff . 70

4.10 Using xudiff to compare network configuration files 72

4.11 Using xudiff to compare network configuration files with varying cost

functions . 73

5.1 Step 1 of how xugrep extracts lines per network interface 80

5.2 Step 2 of how xugrep extracts lines per network interface 81

5.3 Step 3 of how xugrep extracts lines per network interface 81

xii

5.4 How xugrep reports matches at multiple levels of abstraction 82

5.5 xugrep algorithm internals . 83

5.6 xugrep algorithm implementation . 84

5.7 Step 1 of how xuwc counts lines per network interface 86

5.8 Step 2 of how xuwc counts lines per network interface 86

5.9 Step 3 of how xuwc counts lines per network interface 87

5.10 How xudiff compares two network device configurations 89

5.11 Example Apache server configuration file 94

5.12 Implementation of xupath parse tree 96

6.1 Using xugrep to process NVD-XML 101

7.1 Using XUTools to inventory network security primitives 115

7.2 Step 1 of first method to compare similarity of ACLs 117

7.3 Step 2 of first method to compare similarity of ACLs 118

7.4 Similarity of Object Groups in the Dartmouth Network 122

7.5 Detailed view of Object Group cluster 123

7.6 Using xudiff to view clustered Object Group differences 124

7.7 Using xuwc to count total number of ACLs in the Dartmouth core

network . 125

7.8 A pipeline to count number of unique ACLs applied to a network interface127

A.1 Semantic gap within PKI policy audit 166

A.2 Our PKI Policy Repository . 166

B.1 Definintion of interpretation function 177

B.2 The Or combinator . 180

B.3 A PyParsing grammar for security policies encoded in TEI-XML . . . 181

B.5 The And combinator . 181

B.4 Fragment of a CPS encoded in TEI-XML 182

B.6 Call graph of an grammar written with parser combinators 184

B.7 An alternative TEI-XML grammar to demonstrate backtracking . . . 187

B.8 Part 1 of an example to demonstrate backtracking in recursive-descent

parsers . 187

B.9 Part 2 of an example to demonstrate backtracking in recursive-descent

parsers . 188

xiii

Chapter 1

Introduction

Security policies are fundamental to the traditional notion of security. Traditional

Orange-Book security methods formalize Discretionary Access Control (DAC) and

Mandatory Access Control (MAC) policies with lattices and matrices [76]. In the

real-world, however, practitioners work with a broader definition of security policy—

a set of rules designed to keep a system in a good state [120]. The terms rules, system

and good mean different things in different domains. For example, in an enterprise,

the rules may take the form of a natural-language legal document designed to ensure

the availability and correctness of an authentication system. Alternatively, the rules

of a security policy might be expressed as a configuration file designed to ensure

proper access to network resources.

Researchers have placed less emphasis, however, on how to help humans produce

and maintain security policies. In addition, practitioners must also produce and

maintain security policy artifacts such as configuration files and logs, that implement

and reflect security posture.

1

1.1 Problem Scenarios

During our fieldwork, we observed that the term security policy means different things

to practitioners within different domains. We describe our fieldwork in three real-

world security domains in Chapter 2. We define what the term security policy means

within the context of each domain. Current approaches to analyze security poli-

cies and related policy artifacts suffer from several drawbacks and this makes policy

management inefficient, inconsistent, and difficult in general. These drawbacks are

symptoms of three core limitations of security policy analysis that repeatedly appear

in a variety of domains.

• Policy Gap Problem: There is a capability gap between traditional text-processing

tools (e.g. grep,diff) and the policy languages we encountered during our field-

work.

• Granularity of Reference Problem: Practitioners need to be able to process texts

on multiple levels of abstraction and currently they cannot.

• Policy Discovery Needs Problem: Practitioners need feedback so that they can

measure properties of security policies and how they change.

We now introduce three security domains in which we observed these limitations

of security-policy analysis.

1.1.1 Real-World Security Domains

X.509 Public Key Infrastructure (PKI):

In the domain of X.509 Public Key Infrastructure (PKI), practitioners specify and

implement security policies via Certificate Policies (CPs) and Certification Practices

Statements (CPSs) respectively. These natural-language legal documents govern how

2

practitioners create, maintain, and revoke PKI certificates—digital documents that

encode associations between a public key and one or more attributes. The Internet

Engineering Task Force (IETF) Request for Comment (RFC) 2527 and 3647 define a

standard format for these policies [27,28].

Failure to properly manage CPs and CPSs has real consequences that may result

in improper access, for example to classified U.S. Federal government facilities or

information. X.509 is the basis for Personal Identity Verification (PIV) cards that

authorize physical access to Federal facilities including the Nuclear Regulatory Com-

mission and the State Department. The level of assurance associated with a certificate

depends upon the contents of the security policy. Mismanagement of policies can have

serious consequences. For example if a commerical CA such as DigiCert produced a

CP/CPS that adhered to the CA/Browser (CAB) Forum’s Baseline Requirements,

then that policy would be a pivotal attribute to ensure that it was included in pop-

ular browsers and operating systems [15]. If, however, the commercial CA updated

their CP/CPS so that they were no longer compliant that level of assurance, then

they would be rejected from those browsers and operating systems, and this would

dissuade anyone from trusting them.1

Network Configuration Management

For a network administrator or auditor, the term security policy refers to a configura-

tion file for a network device. In the taxonomy of our broader research, however, we

view these files as security policy artifacts because they implement rules given by a

high-level security policy. These high-level policies are written to satisfy compliance

standards such as ISO/IEC 27001 [66] or NERC CIP [88]. Network administra-

tors must routinely change the configuration of their network to accomodate new

1Scott Rea called this scenario “business suicide” for a commercial CA. Scott Rea was the Senior
PKI Architect for Dartmouth College and he is currently a Senior PKI Architect at DigiCert. He
also was a founding member and is the current Vice Chair of The Americas Grid Policy Management
Authority (TAGPMA) [104]

3

services and keep the network secure and compliant with regulations. If network ad-

ministrators don’t update their policies, then their networks are vulnerable to new

threats. Network operators consider network configuration files to be the “most ac-

curate source of records of changes” [125,126].

Failure to properly manage network configurations has significant consequences,

which include network outages. When a network administrator updates a security

policy and changes network device configurations, he can introduce misconfigura-

tions. Misconfigurations cause most network outages according to a study by Op-

penheimer [92]. For example, a major outage of Amazon’s Elastic Compute Cloud

(Amazon EC2) in July 2011 was caused by operator misconfiguration [13].

Electrical Power Grid

In the domain of the electrical power grid, the term security policy may refer to North

American Electric Reliability Corporation’s Critical Infrastructure Protection (NERC

CIP) regulatory guidelines or to a configuration file for an Intelligent Electronic De-

vice (IED). One example of an IED is a relay, a device that protects electrical

equipment from overload via a breaker. Newer relays are controlled via an ethernet-

based protocol and so must be configured correctly or else expensive equipment can

be damaged.

Power system control networks must comply with NERC CIP regulations. The

consequences of failing to fulfill these provisions are severe. According to one industry

expert who has performed audits at a major utility, fines scale up to 1.5 million dollars

per day of violation retroactive to the beginning of the offense.

As the smart grid grows, more devices will be deployed to sense and control

the state of the electrical power grid. Another kind of device on a power control

network is a Remote Terminal Unit (RTU). RTUs present information to operators.

The networks upon which these devices sit, their access-control policies, and the

4

logs they generate all govern the security posture of the organization involved. Poor

configuration may lead to cyber-physical attacks or power outages. Some say that

civilization as we know it will last 14 at most days without electrical power.2

1.1.2 Limitations of Security Policy Analysis

The Policy Gap Problem, Granularity of Reference Problem, and Policy Discovery

Needs Problem make security policies hard to manage in each of the domains men-

tioned above.

Policy Gap Problem

There is a gap between the tools available to practitioners and the languages practi-

tioners use to represent security policies and security policy artifacts. For example,

in X.509 PKI, a Certificate Authority (CA) creates, maintains, and revokes certifi-

cates. An experienced enterprise CA officer estimated that it takes him 80–120 hours

to compare two Certificate Policy (CP) or Certification Practices Statement (CPS)

documents.3 Policy comparision takes a week or more of man hours because policy

analysts operate on PKI policies by their reference structure (defined in RFC 2527

or RFC 3647). Other representations of policy such as PDF, however, are organized

by page. The page-centric organization of PDF viewers, combined with the complex-

ity of parsing the PDF format [113, 144] imposes a semantic gap that forces policy

operations to be largely manual. Consequently, analysts must manually translate, in

their heads, between policy page numbers and a reference structure.

2Conversations with Edmond Rogers. Edmond Rogers used to secure the power-control network
of a major Investor Owned Utility (IOU). He currently serves as the utility expert on the DOE-
funded TCIPG project.

3Conversations with Scott Rea.

5

Granularity of Reference Problem

Practitioners need to be able to process policies at multiple levels of abstraction

and currently cannot. For example, network configurations are expressed at many

different layers of abstraction. Network configuration files may be grouped according

to network topology (core, wireless, etc), routers may define various virtual Local

Area Networks (LANs), and even router configurations themselves are written in

a hierarchical language. Unfortunately, current tools do not allow practitioners to

process policies or their artifacts at arbitrary levels of abstraction.

Policy Discovery Needs Problem

Practitioners and security researchers need feedback to understand trends in how

security policies change over time. Security systems are deployed within dynamic

environments. New vulnerabilities, new features, and new technologies are all reasons

why policies must evolve. In software engineering, Lehman denotes such a system as

e-type: a system embedded in the real-world and whose correctness depends upon the

“usability and relevance of its output in a changing world” [77].

If practitioners don’t update their security policies, then their systems are vulner-

able to attack. If practitioners do update their security policies, however, they may

introduce misconfigurations.

A recent conversation with an auditor of power control systems revealed that many

utilities and auditors have no way to even know what normal is when it comes to the

configuration of control-system networks or devices on those networks.4 Feedback

on how security policies change over time would help auditors and administrators

understand what normal looks like and how their security posture changes.

4Conversation with Bryan Fite at TCIPG Industry Day, 2013. Bryan Fite is a Security Port-
folio Manager at British Telecommunications (BT). In addition, he runs the DAY-CON security
summit [37] as well as PacketWars, an information warfare simulation [93].

6

1.2 This Thesis

We now discuss the organization of the remainder of this thesis. Each subsection

corresponds to a different thesis chapter.

1.2.1 Theory for Structured Text

During our fieldwork, we observed that in general, many of the policies and asso-

ciated artifacts that we encountered—whether expressed in markup, configuration,

or programming languages—were structured texts. Our approach to security policy

analysis relies upon our observation that we can leverage formal language theory to

analyze a wide variety of security policies. We will review formal language theory

and other theoretical components of our approach in Chapter 3. Later, we apply

this theoretical toolbox to directly address our three limitations of security policy

analysis.

First, we hypothesize that the gap between policy languages and tools available

to practitioners exists because traditional text-processing tools compute on regular

languages that cannot recognize the hierarchical object models in which security

policies and their artifacts often are written and represented.

Second, we observe that context-free grammars recognize languages of strings with

arbitrarily deep hierarchies and that parse trees for these strings provide a natural

formalism to process multiple layers of abstraction.

Finally, we use our theoretical toolbox to enable practitioners to measure how

security policies change over time.

1.2.2 Why and How to Use XUTools

Our eXtended Unix Tools (XUTools) enable practitioners to extract (xugrep), count

(xuwc), and compare (xudiff) texts in terms of their hierarchical syntactic structure.

7

In Chapter 4, for each of these tools, we describe their usage, motivate their design

with a selection of use cases, and provide specific examples of how to use each tool

to address a usage scenario. Some of these use cases come directly from the three,

aforementioned security domains. Other uses for our tools however, come from system

administratrs, auditors, and developers who became interested in our tools after our

LISA 2011 poster was featured on Slashdot [107].

1.2.3 Design and Implementation of XUTools

Our XUTools address the three core limitations of security policy analysis. Chapter 5

explains the design and implementation of XUTools in more detail. First, we explain

how we designed our tools to directly address the Policy Gap Problem, Granularity

of Reference Problem, and Policy Discovery Needs Problem. We then describe the

implementation of each of our XUTools; we provide a detailed example of how our

tool works, a description of the tool’s underlying algorithm, and a discussion of its

implementation.

1.2.4 Evaluation

We evaluated our XUTools quantitatively and qualitatively. The quantitative evalua-

tion includes the worst-case time complexity of our tools, implementation details such

as lines of code and test coverage, and the performance of our tools. The qualitative

evaluation consists of anecdotal feedback on our tools from real-world practitioners

and a discussion of how our research improves upon current approaches. More infor-

mation about our evaluation may be found in Chapter 6.

8

1.2.5 Application

We applied XUTools so that network administrators and auditors can answer practical

questions about the evolving security posture of their network. Our XUTools-enabled

capabilities directly address the problem scenarios discussed in Chapter 2 and demon-

strate how we can use our toolset to formalize real-world textual analyses used by

practitioners.

Specifically, real-world network administrators on college campuses as well as audi-

tors of electrical power control networks require the ability to summarize and measure

changes to router configuration files. Longitudinal analyses of network configuration

files can help identify misconfigurations (a source of outages) and provide evidence for

compliance during audit. We used our XUTools to quantify the evolution of network

security primitives on the Dartmouth College campus from 2005-2009. Practitioners

can create an inventory of network security primitives, measure the similarity be-

tween objects in that inventory, see how those primitives are used, and then measure

the evolution of the network through time. As a result, network administrators and

auditors alike can use our tools to analyze how a network changes at a variety of

levels of abstraction. More information may be found in Chapter 7.

1.2.6 Future Work

We can extend our work in several directions. Chapter 8 proposes new problem

scenarios, extensions to our XUTools that also extend our theoretical toolbox, and

pilot studies that apply XUTools to enterprise security policies and to other aspects

of the smart grid.

9

1.2.7 Conclusions and Appendices

In Chapter 9 we conclude. At the back of the thesis we provide several appendices.

Appendix A motivates, describes, and evaluates our non-XUTools based solutions to

the three core limitations of policy analysis in the context of PKI. In Appendix B,

we provide additional details about the PyParsing library that our XUTools uses to

define recursive-descent parsers.

10

Chapter 2

Problem Scenarios

The term security policy means different things to practitioners within different do-

mains. In this chapter, we describe observations from our fieldwork in three real-world

security domains. For each domain, we define what the term security policy means.

We observed that policy management is inefficient, inconsistent, and generally dif-

ficult. These policy management issues are symptoms of three core limitations of

security policy analysis that repeatedly manifest themselves in a variety of domains.

Recall our three core limitations introduced in Chapter 1.

• Policy Gap Problem: There is a gap between the tools available to practitioners

and the languages practitioners use to represent security policies and security

policy artifacts.

• Granularity of Reference Problem: Practitioners need to be able to process

policies at multiple levels of abstraction and currently they cannot.

• Policy Discovery Needs Problem: Practitioners and security researchers need

feedback so that they can measure properties of security policies and how they

change.

11

2.1 X.509 Public Key Infrastructure Policies

X.509 PKI certificates are created, maintained, and revoked by a Certificate Authority

(CA), who attests to the validity of associations between a public key and one or more

attributes. When these attributes serve to identify a person, machine, or organization,

certificates may be used to authenticate a user to a computer system or even to grant

a person physical access to facilities.

In X.509 PKI the term security policy refers to Certificate Policies (CPs) and Cer-

tification Practices Statements (CPSs) respectively. An organization’s CP contains

the set of expectations that define that organization’s notion of a trustworthy public

key certificate, the certificate’s level of assurance, and how that certificate may be

used. The CPS states how a CA actually implements a CP. RFC 2527 and RFC

3647 define a framework to facilitate policy creation and comparison [27,28].

Our Fieldwork: Throughout our research on X.509 PKI, we worked closely with

Scott Rea, the former Senior PKI Architect for Dartmouth College and a Senior PKI

Architect at DigiCert. Through Scott, we were able to observe PKI audits and present

our work at meetings of the Federal PKI Policy Authority (FPKIPA), the European

Union Grid Policy Management Authority (EuGridPMA), and The Americas Grid

Policy Management Authority (TAGPMA).

2.1.1 Policy Comparison

For CAs and policy analysts, policy comparision is an important part of three X.509

processes and failing to perform these processes well has serious consequences.

PKI Compliance Audit: PKI compliance audits verify that an organization’s

CPs and CPSs are consistent with a baseline framework of requirements via policy

comparison. Policy comparison requires the analyst to compare sections of one policy

12

with the corresponding sections in another. In theory, these sections should match,

but in practice often they do not and they may be moved or missing. Policy com-

parision is required to map these high-level compliance criteria to the actual CP and

CPS documents.

The importance of compliance audit is recognized across a variety of industries.

In the financial services industry, compliance audits evaluate PKIs with respect to

security, availability, processing integrity, confidentiality, and privacy. ISO 21188

specifies a framework that evolved from WebTrust and ANSI X9.79 [73]. Audits for

WebTrust compliance should occur every 6 months [52].

PKI compliance audits ensure that actual observed practices are consistent with

the practices stated in a CPS. Failure to pass a compliance audit may result in

regulatory fines and result in a loss of the ability to service restricted or closed markets

(such as the Department of Defense (DoD) contract market).

IGTF Accreditation: Researchers that use computational grids employ many

thousands of distributed nodes to solve complex computational problems by sharing

resources. Since these resources are valuable, access is limited based on the requested

resource and the user’s identity. Each grid provides secure authentication of both its

users and its applications in order to enforce resource limits [94].

The International Grid Trust Federation (IGTF) develops standards for certifi-

cates used to authentication to e-Science production infrastructures. The IGTF

accreditation process compares a member CA’s security policy against a baseline

Authentication Profile (AP). An AP specifies legal and technical requirements for

certificates used to authenticate to an e-Science grid.

The IGTF accreditation process is important because it ensures the consistency

of authentication standards across a distributed architecture (e-Science grids). To

implement the accreditation process, the IGTF pairs prospective member CAs with

13

volunteer member CAs. During accreditation, the prospective member CA sends a

draft CP to other members for comments and asks the volunteer members to review

the policy in detail. The prospective member CA eventually presents this CP, along

with recommendations from reviewers, at a meeting for the IGTF to approve or defer

immediately.

If the IGTF accredits a non-compliant organization or denies accreditation to

someone who is compliant, the consequences are severe. In the former case, if non-

compliance at the time of accreditation is exposed, the IGTF as a whole is exposed

to legal risk. In the latter case, if the IGTF bans a noncompliant organization, that

organization’s researchers lose access to high-performance grid computing resources

that may be vital to research.

Policy Mapping to Bridge PKIs: Bridge CAs, though not themselves anchors of

trust, establish relationships with different PKIs by comparing their policies against a

set of baseline requirements. Once a baseline relationship has been established, users

from different PKIs can decide whether to accept one another’s certificates.

Bridges exist to mediate trust in several areas that include the pharmaceutical

industry (through Signatures and Authentication for Everyone-BioPharma (SAFE-

BioPharma)), the U.S. Federal government (through the Federal PKI Policy Authority

(FPKIPA)), the aerospace and defense industry (CertiPath), and higher education

(through the Research and Higher Education Bridge CA (REBCA)) [1].

In order to create PKI bridges, the bridge CA must map policies between member

PKIs. When a new organization wishes to join a bridge, the bridge CA compares

the candidate organization’s CP to its own. If suitable, the bridge CA will sign the

certificate of the candidate organization’s trust root.

14

2.1.2 Drawbacks of Current Approaches

The process by which CAs and analysts compare policies makes it expensive for

grids, bridges, and organizations to review processes in a timely and frequent manner.

Although policy comparison is a fundamental operation required to create bridge PKIs

and to accredit grid member organizations, it remans a manual, subjective process,

making it inefficient and difficult to perform consistently. To evaluate the similarity

of two CPs, CAs compare the policies line-by-line. For a person with extensive

experience, this can take 80–120 hours depending upon whether the two policies were

written according to the same IETF standard. Compliance audits, accreditation

procedures, and policy mapping decisions are difficult to reproduce because they are

highly dependent upon auditors’ individual observations. Were an auditor to try to

reproduce an audit, the conditions under which the original audit occurred might be

extremely difficult or impossible to reproduce.

Even if the data for these X.509 processes were reproducible, the data would only

capture the state of the organization at a single point in time. Organizations are

dynamic, changing entities. Audits rely upon the past as the sole indicator of current

and future performance.

Within the identity management literature, researchers have proposed several dif-

ferent approaches that address aspects of the policy comparision problem. We will

now discuss relevant research in policy formalization, retrieval, creation, and evalua-

tion.

SAML [17] and XACML [86] formalize authentication and authorization policies

in XML. Chadwick et al. developed various XML-based Role-Based Access Control

(RBAC) authorization policies so that domain administrators and users can manage

their own resources [21,65].

Previous work in certificate policy formalization focuses less on human-readable,

machine-actionable representations of policy. Blaze et al. [10], Mendes et al. [83],

15

and Grimm et al. [57] all use ASN.1 to model properties inferred from the policy’s

source text. Others such as Casola et al. [18, 19], have developed data-centric XML

representations, suitable for machines. These representations, however, are not suit-

able because human analysts cannot readily understand their meaning [57]. Work by

Jensen [69] encodes the reference scheme of a certificate policy using DocBook [138].

For policy retrieval, Blaze et al. created PolicyMaker, a tool that lets practitioners

query policy actions using a database-like syntax [10]. Trcek et al. propose a DNS-like

system to reference sets of security requirements [132].

No tools have been built to help with PKI policy creation. Klobucar et al., how-

ever, have stated the need for machine-assisted policy creation [72]. Furthermore, we

note that during our collaborations, a mechanism to build policy was desired by both

Motorola as well as by DigiCert.

Finally, the identity management research community has done some work in

policy evaluation. Ball, Chadwick et al. have built systems to compute a trust index

from XML-formatted CPS documents [5]. In addition, researchers at Trinity College,

Dublin have thought about provisions of CP/CPS documents that are technically

enforceable. O’Callaghan presented a suite of unit tests to measure the validity of a

certificate relative to a policy [90].

2.1.3 Limitations of PKI Policy Analysis

At the start of this chapter, we introduced three core limitations of security policy

management. We now reconsider each of these limitations in the context of the current

approaches to PKI policy comparison.

Policy Gap Problem: There is a gap between traditional text-processing tools

and the languages used in security policies.

In current practice, policy analysts operate on PKI policies by their reference

16

structure (defined in RFC 2527 and RFC 3647), but machine representations of policy

such as PDF are organized by page. The page-based representation of policy imposes a

semantic gap that forces policy operations to be largely manual because analysts must

manually translate, in their heads, between policy page numbers and the reference

structure.

PDFs may be built with bookmarks that are oriented to sections and subsections

(the reference structure) of PKI policies, but PDF readers remain page-centric in

their display of the text. Furthermore, the complexity of parsing this format not

only gives PDF a large attack surface [144], but this complexity also prevents other

services, such as braillers from easily processing text in PDF format [113].

The identity-management literature also exhibits symptoms of the gap between

text-processing tools and the languages used in security policies.

There is a gap between policy formalization techniques in the literature and the

ability to represent policy in a manner that supports policy decisions in real-world

settings. Although the FPKIPA Technical Specification recommends writing CP and

CPSs in a natural language, alternative representations of policies in the literature

contradict this recommendation [46]. Data-centric XML, matrices, and ASN.1 require

a person to read the source text and fit their interpretation of that text to a data for-

mat. Other literature agrees that the representations mentioned above are unsuitable

for relying parties—practitioners and programs that use PKI certificates—to easily

understand the meaning of a policy [18,57].

Granularity of Reference Problem: Practitioners need to be able to process

policies at multiple levels of abstraction and they currently cannot.

Although RFC 2527 and RFC 3647 define a hierarchical set of provisions, certificate-

policy extensions for PKI reference only the entire document [63]. In order to address

this need, the IGTF is creating one statement certificate policies: CPs that contain a

17

single provision.1

Operational PKIs must keep many layers of policy synchronized across standard

policy formats, across multiple organizations, or between specification and implemen-

tation of policy. For example, analysts may want to update or compare a policy in

2527 format with a policy in 3647 format. In order to do this, policy analysts must

be able to process CPs and CPSs in terms of individual provisions rather than entire

passages. Similarly, the IGTF needs to be able to synchronize PKI policies across

multiple Policy Management Authorities (PMAs) that include the Asia Pacific Grid

Policy Management Authority (APGridPMA), the European Union Grid PMA (EU-

GridPMA), and The Americas Grid PMA (TAGPMA).

Policy Discovery Needs Problem: PKI security policy analysts and CAs need to

be able to measure security policies to get feedback as to how individual organizations

as well as higher-level bridges and grid federations change over time.

The timelines over which written policy and actual practice change are not in

sync under current policy analysis practices. Policy evaluation in PKI compliance

audit, grid accreditation, and bridge creation occurs infrequently and is inconsistent.

Although compliance audits like WebTrust are supposed to occur every 6 months, in

practice, audits usually happen much less frequently. In contrast, actual organiza-

tional practices can change more frequently than every 6 months.2 When the IGTF

changes an AP, members have 6 months to demonstrate that they are compliant with

the new profile. Certificate Authorities that create and review policy want to know

whether policy changes really do percolate through the federation in a timely manner

and when they occur. Furthermore, diligent organizations who keep their policies

current pose a challenge to bridge CAs who must manually map a member CP to the

bridge baseline policy. Finally, when the policy of the bridge CA changes, the bridge

1In contrast, the IGTF could allow certificates to reference individual sections of a CP.
2Conversations with Scott Rea.

18

CA wants to be able to determine whether the current CPs of member organizations

satisfy the new policy.

2.1.4 Section Summary

To Certificate Authorities and analysts in X.509 PKI, the term security policy refers

to a natural-language legal document that specifies the creation, maintenance, and

revocation of PKI certificates. PKI certificates are important and may be used for

physical access to facilities or authentication to vast e-Science infrastructures. The

level of assurance associated with a certificate depends upon the contents of a security

policy.

Policy comparison is vital to determine the level of assurance of the certificates

produced by a CA. PKI Compliance Audit, IGTF Accreditation, and Policy Mapping

to Bridge PKIs all are X.509 processes by which analysts and CAs evaluate assurance

relative to a set of baseline requirements. When a CA fails to perform any of these

processes well, he exposes his organization to serious consequences that may include

“business suicide”.3

Despite the importance of these processes, there are drawbacks to the currently-

practiced policy comparison process that are symptoms of the limitations of security

policy analysis.

2.2 Network Configuration Management

Network administrators must write configuration files for network devices to imple-

ment new services such as Voice Over IP (VOIP), or satisfy compliance or regulatory

goals such as those defined by ISO 27001 [66] or NERC CIP [88]. If network admin-

istrators do not update configuration files, then organizations are either unable to

3Conversations with Scott Rea.

19

leverage new network capabilities or vulnerable to known attacks. If network admin-

istrators do update network device configurations, however, then they may introduce

configuration errors. Many network outages, including Amazon’s EC2 outage in 2011,

are due to configuration errors [13, 92]

Our Fieldwork: During our research in network configuration management, we

consulted with Paul Schmidt, a Senior Network Engineer at Dartmouth. Paul gave

us access to five years of network device configuration files. We also consulted the

expert opinion of Edmond Rogers, who secured electrical power control networks for

a major Investor Owned Utility (IOU).

2.2.1 Summarize and Measure Change

Network administrators and auditors need to be able to summarize and measure

change in network configuration files to maintain and evaluate the security of a net-

work.

Network administrators must be able to summarize and measure changes to a

network because network administrators must routinely change the configuration of

their network to accommodate new services and keep the network secure. The ability

to measure changes is important because network auditors (for example in power-

system control networks) may want logs to understand security posture. The ability

to summarize changes is important because roles in router access-control policies may

drift over time or be copied and renamed.

The consequences of not having tools to summarize and measure changes to a net-

work are significant for administrators and auditors. Inadequate change and configu-

ration management can increase risk of vulnerability [58] and decrease practitioners’

ability to debug network misconfigurations. Misconfigurations can lead to network

outages [92], exfiltration of data, or inappropriate access to network resources. If the

20

misconfigured network is a power control network, then network outages can lead to

power outages.

2.2.2 Drawbacks of Current Approaches

Network administrators currently use tools such as the Really Awesome New Cisco

configuration Differ (RANCID) to track which parts of a network configuration have

changed [103]. Whenever a change is made to the running configuration of a router,

RANCID automatically saves the old configuration in a version-control system and

the network administrator provides a brief explanation of why the change was made.

A line-based differencing tool generates an edit script and RANCID emails this script,

along with a practitioner-provided explanation of the change, to all other adminis-

trators of that network.

RANCID is helpful, but the way in which it records changes hides the big pic-

ture. Practitioners cannot see how the network is changing nor can they quickly

find changes that are relevant to a network administrator or an auditor. Although

an administrator may receive a bug report that a network service started to be-

have strangely a few months ago, he cannot efficiently pinpoint what in the network

changed. Instead, RANCID allows the practitioner to determine only which lines of

configuration changed during those months.

In other words, administrators suffer because the change logs captured by RAN-

CID are not easily turned into usable information to understand or measure network

evolution.

Currently, utilities use change management products such as ChangeGear [22]

and Remedy [106]. These products provide a ticketing system to document changes.

These systems do not provide a mechanism to compare the contents of configuration

files, nor do they allow one to measure how network primitives have changed. As such,

these systems are only as good as the change documentation that the administrator

21

writes.

The quality of changes reported by a user may vary significantly. Writing change

logs is time consuming, manual, and error-prone and the relevance of change logs

may change over time. Although a network administrator might write change com-

ments carefully, in three months those comments may no longer be helpful or relevant

to another administrator or auditor. Practitioners often fail to write useful change

documentation. Plonka et al. made this observation during their study of network

configuration files and found that in a campus network, top commit comments in-

cluded “initial revision”, “asdf”, and “test”. They observed similar behavior in a

service-provider network [98].

Recent findings from software engineering validate our concerns about the insuf-

ficiency of changelogs. In 2010, Israeli and Feitelson [67] looked at the evolution of

the Linux kernel and argued for code-based measurements for software versus surveys

and logs. They cite a study by Chen et al. that compares change logs for three soft-

ware products and their corresponding changed source code; this study showed that

80% of the changes were not logged [24]. Another example comes from a 2007 study

by Fluri et al. which looked at three open-source systems and how comments and

code co-evolved. They found that newly-added code barely gets considered despite

its considerable growth rate [43].

Splunk, a highly-scalable indexing engine, does allow practitioners to get a big-

picture view of how data changes over time [121]. Splunk indexes changed configura-

tion files so that administrators can search the data and construct search queries to

identify events that reflect risky changes [122]. These search queries can then serve

as alerts to the administrator. Splunk does not index information according to struc-

tures in a high-level language however, but instead tries to extract key/value pairs

via regular expressions. One can then use these keys to refine searches within their

organization’s data.

22

Within the network configuration management literature, researchers have pro-

posed several different ways to summarize and measure change. Two approaches that

we will now discuss are longitudinal studies and metrics on router configuration files.

There are several papers in the literature that perform longitudinal studies on

network configurations [25,71,98,125,126]. Sung et al. define blocks and superblocks

to study correlated changes across router configurations [126]. Sun et al. look at the

evolution of Virtual Local Area Network (VLAN) design to design algorithms that

help practitioners design and refactor VLANs [125].

Plonka et al. studied the evolution of router configurations using the stanza for

campus and server-provider networks over the period of 5 and 10 years respec-

tively [98].

Kim et al. recently did a very complete longitudinal study of the evolution of

router configurations, firewalls, and switches on two campuses over five years. They

looked at the frequency of configuration updates, and identified correlated changes

among other things [71].

Researchers also have proposed metrics on router configuration files. In their Net-

worked Systems Design and Implementation (NSDI) 2009 paper, Benson et al. present

complexity models and metrics to describe network complexity in a manner that ab-

stracts away details of the underlying configuration language [8]. First, they present

referential complexity, which captures dependencies between routing configuration

components that may or may not span multiple devices. Second, they introduce a

way to automatically identify roles within routers, and argue that the more roles

a router supports, the more difficult a router is to configure. Finally, they present

inherent complexity that quantifies the impact of the reachability and access-control

policies on network complexity [8].

23

2.2.3 Limitations of Summarizing and Measuring Change

We now consider each of the core limitations of policy analysis in the context of

summarizing and measuring change within network configurations.

Policy Gap Problem: There is a gap between high-level language constructs used

by network administrators and the low-level lines upon which their tools operate.

For example, consider Cisco’s Internetwork Operating System (Cisco IOS)’s include

command.4 The include command lets practitioners sift through router files in terms

of lines even though the Cisco IOS language is hierarchical by design. Alternatively,

the RANCID tool only reports comparisons in terms of lines, a low-level language

construct.

Line numbers are not the best choice to measure change between multiple versions

of network configurations. Practitioners need tools to quantify change in terms of the

hierarchical structure of network device configuration languages (such as Cisco IOS)

in order to understand trends in how a network changed. Line numbers are highly

volatile between multiple versions of a file.

RANCID may report meaningless changes that add noise to changelogs. For

example, if one permutes five lines in a block of a configuration file, then RANCID

will report it as 5 deletions and 5 insertions regardless of whether the behavior of the

configuration is unchanged.

Granularity of Reference Problem: Network administrators and auditors need

to be able to process policies at multiple levels of abstraction and they currently

cannot.

Traditional Unix diff, upon which RANCID is based, may contribute to unnec-

essarily long edit scripts when it expresses a change at the level of the line. Consider

4Conversations with Enno Rey. Enno Rey is a managing director and founder of ERNW, a
German security company that runs the TROOPERS security conference [131].

24

an example from Cisco IOS in which a revision could be expressed as deleting and

then inserting lines or inserting and deleting a single interface block. The latter is

more meaningful and also reduces the amount of change information through which

a practitioner must wade.

Policy Discovery Needs Problem: Network administrators and auditors need

feedback on how network security policies and related security artifacts change over

time. Administrators also need to identify specific changes that cause bad behavior.

Lim et al. noted that “top-down security policy models are too rigid to cope with

changes in dynamic operational environments” [79]. Furthermore Sun et al. note that

the frequency and complexity of configuration changes (due to the addition of new

hosts, movement, reorganization of departments and personnel, revision of security

policies, and upgrading routing hardware) makes the overall process of redesigning

and reconfiguring enterprise networks error-prone [125].

In a top-down approach to network security policy, an organization’s security ex-

pert (perhaps a Chief Information Security Officer (CISO)) specifies an organization’s

security-policy controls and network administrators implement those controls within

a configuration language. Practitioners need the capability to measure a network’s

actual security posture from a set of network configurations. The NetAPT [89] tool

provides a bottom-up approach to policy. Practitioners use NetAPT to formally verify

the reachability constraints of a network topology inferred from firewall configuration

files. Our research is complementary because it allows practitioners to measure net-

work security properties other than reachability. Bottom-up approaches to policy

close the feedback loop so that practitioners can measure security posture. This feed-

back will enable practitioners to cope with dynamic environments and continually

understand how their networks change.

25

2.2.4 Section Summary

To network administrators and network auditors, the term security policy refers to a

network device configuration that specifies the security posture of a network. Network

administrators must routinely update network configurations to accommodate new

services and keep the network secure and compliant.

The security policy analysis task of change summarization and measurement is

essential in order for administrators to maintain and for auditors to evaluate the

security of a network. Insufficient change control and configuration management

increases the risk of misconfigurations and makes networks harder to debug [58].

Misconfigurations lead to network outages [92]. The Amazon EC2 outage of July

2011 [13] cost $5600 per minute [62]. When the network is a power-control network

or a hospital network, a network outage may even result in civil unrest or the loss of

life.

Despite the importance of change summarization and measurement, there are

drawbacks to the currently-practiced comparison process such as insufficient change

logs. These drawbacks are symptoms of the three core limitations of policy analysis

introduced in Chapter 1.

2.3 Electrical Power Grid

In the domain of the electrical power grid, the term security policy may refer to North

American Electric Reliability Corporation’s Critical Infrastructure Protection (NERC

CIP) regulatory guidelines or to a security primitive in a configuration language for

an Intelligent Electronic Device (IED) [88].

The smart grid will increase the stability and reliability of the grid overall with

vast numbers of cyber components but these cyber components also have the potential

to increase the attack surface of the grid.

26

The smart grid is already large and complex and as we add more devices to

the internet, utilities and auditors must be aware of security. The power grid has

been called the “world’s biggest machine” by engineers and is part of the “greatest

engineering achievement of the 20th century” [87]. Even a high-level view of the

smart grid shows a great deal of complexity [58].

If we look at just the customer domain in 2010 there were approximately 160

million residences in the US [102] and only 18 million smart meters deployed in

2012 [4]. This discrepancy between the number of residences and the number of

smart meters indicates that there are many more smart meters that will be deployed

in the future. Furthermore, there were 250 million registered cars in 2010 [85] and as

more cars become electric, we will see an increasing number of devices on the smart

grid. For example, car batteries may be used to store electricity and the power grid

will need to be smart in order to coordinate vehicle charging with other electrical

loads.

Similarly, if we consider just one Investor Owned Utility (IOU) studied in 2009

at Idaho National Laboratories [6], we can see that one IOU was in charge of 200

substations and 1,000,000 residential customers. During the 2012 Trustworthy Cyber

Infrastructure for the Power Grid (TCIPG) Industry Day, I spoke with an individual

that worked with an IOU of 700 substations and 5,000,000 residential customers.

In the future, the number of devices on the smart grid will increase and each of

these devices will produce an avalanche of disparate data because these devices need

to be configured, send and recieve data via a variety of protocols, and log information.

Our Fieldwork: Throughout our research in the power grid, we routinely consulted

with Edmond Rogers. Edmond Rogers used to secure the power-control network of a

major Investor Owned Utility (IOU). He currently serves as the utility expert on the

DOE-funded TCIPG project. In addition, we actively sought feedback from our work

27

from academia and industry when we demonstrated our work at TCIPG Industry Day,

and presented a poster at the DOE Smart Grid Cybersecurity Information Exchange.

2.3.1 Change Control and Baseline Configuration Develop-

ment

For utility administrators and auditors, change control and baseline configuration

development are important processes that have serious consequences if these processes

are done poorly.

Power system control networks must comply with NERC CIP regulations and

those regulations require utilities to meet change control and configuration manage-

ment requirements. Specifically NERC CIP-005-4a R5.2 requires responsible entities

to update documentation within 30 days of a change to the network [88]. This ensures

that documentation reflects the actual configuration of the power system network.

CIP 003-4 R6 requires utilities to “establish and document a process of change con-

trol and configuration management to add, modify, replace, or remove Critical Cyber

Asset hardware or software, and document all entity or vendor-related changes to

hardware and software components of Critical Cyber Assets pursuant to the change

control process” [88].

The NERC CIP regulations also require utilities to develop baseline configurations.

Specifically NERC CIP 010-1 R1.1 requires utilities to develop a baseline configura-

tion of devices on their control networks that includes information such as “physical

location, OS(s) and versions, any commercially available application software (and

version), any custom software and scripts installed, logical network accessible ports,

and security-patch levels” [88].

The consequences of insufficient change control and baseline configuration devel-

opment are significant, especially as the number of devices on the smart grid increases.

In general, the consequences of failing to fulfill NERC CIP regulations are severe and

28

scale up to $1.5 million for every day of the violation. In addition to financial conse-

quences, failure to comply implies a lack of basic and sound security controls. A lack

of sound security controls makes the control network vulnerable to cyber attacks and

their consequences, which include power outages.5

The consequences of insufficient change control and baseline configuration devel-

opment will increase with the number of devices on the smart grid. According to the

NISTIR Guidelines for Smart-Grid Cyber Security, “increasing the complexity of the

grid could introduce vulnerabilities and increase exposure to potential attackers and

unintentional errors” [58]. This observation is consistent with the network configu-

ration management; Benson et al. note that complexity of a network increases with

maintenance and changes to configurations [8].

2.3.2 Drawbacks of Current Approaches

As mentioned in our previous section, utilities use tools such as RANCID to monitor

changes to Cisco IOS devices. These devices may include switches, firewalls, and

routers. Utilities also use tools such as TripWire [91] to monitor changes to a variety

of general-purpose computers on the network. For example, Remote Terminal Units

(RTUs) allow practitioners to visualize information that comes from various IEDs are

general-purpose computers. The commercial TripWire product monitors changes to

a set of file attributes and couples this with a line-based diff tool. TripWire stores

hashes of software to be monitored and reports when the stored hash and periodically-

recomputed hash differ. This technology, however, only informs utilities whether a

change occurred, not how the software changed.

Utilities use tools such as ChangeGear [22] and Remedy [106] to record changes

to devices on a control systems network. These products do not provide a mechanism

to compare the contents of files, nor do they automatically document how the file

5Conversations with Edmond Rogers.

29

was changed. Instead, these change ticketing systems rely upon humans to create

changelogs. As we saw in the last section, changelogs are insufficient because they

are error prone and time consuming to write.

There are not many tools available to help practitioners to develop and compare

baseline configurations. During conversations with a utility expert, we learned that

many utilities use spreadsheets to manually document baseline configurations of sys-

tems (such as version number and software installed).6

2.3.3 Limitations of Change Control and Baseline-Configuration

Development

We now demonstrate how the drawbacks of change control and baseline-configuration

developement are symptoms of our three core limitations of security policy (and secu-

rity artifact) analysis. In the process, we will also align each of these core limitations

with the Roadmap to Achieve Energy Delivery Systems Cybersecurity, a strategic

framework for smart grid cybersecurity produced by the Obama Administration [7].

For the remainder of this thesis, we will refer to this strategic framework as Roadmap.

Policy Gap Problem: The current state of the practice in change control and

configuration management suffers from a gap between the languages in which security

policy artifacts are represented and the tools available to process those artifacts.

In the previous subsection, we discussed how current approaches to change control

allow utilities to monitor whether control network devices have changed but not how

those devices changed. Furthermore, change documentation relies upon ticketing

systems that require users to manually report changes and this is a slow, manual, and

error-prone process. Additionally, utilities employing state of the practice techniques

in baseline configuration currently use spreadsheets to document systems.

6Conversations with Edmond Rogers.

30

Unfortunately, these manual approaches will not scale. In the future, the number

of devices on the smart grid will increase and each of these devices will entail an

avalanche of disparate data because these devices need to be configured, send and

receive data, and log information.

In the context of the power grid, data formats and protocols such as the Common

Information Model (CIM) [33], Cisco IOS, Energy Systems Provider Interface XML

(ESPI-XML) [41], GOOSE messages, Substation Configuration Language (SCL) [64],

and Windows Registries all encode hierarchical object models.

In order to understand how devices on a control network have changed and in

order to baseline security policy in a scalable manner, practitioners need tools that

can process the variety of disparate data in terms of hierarchical object models. Prac-

titioners currently lack such tools. In fact, the 2011 Roadmap states that a barrier to

assess and monitor risk in the smart grid is the inability to provide “actionable infor-

mation about security posture from vast quantities of disparate data from a variety

of sources and levels of granularity” [7].

Granularity of Reference Problem: The previous quote from the Roadmap also

recognizes the need to be able to process data at multiple levels of granularity. The

drawbacks of change control and baseline configuration development discussed above

are symptoms of the need to be able to process policy artifacts at multiple levels of

abstraction.

Practitioners need to be able to process policy artifacts at multiple levels of ab-

straction because policy artifacts are encoded in hierarchical object models. For ex-

ample, Cisco IOS is a hierarchically structured network-device configuration language

that contains primitives for Access-Control Lists (ACLs), roles—logical groupings of

users, devices, or protocols (in Cisco IOS roles are encoded as object groups). In

addition, the International Electrotechnical Commission (IEC) 61850 standard de-

31

fines Substation Configuration Language (SCL) which can be used to define an IED’s

state and capabilities such as access-control settings and available communications

interfaces. [64].

Current change-detection control systems such as TripWire [91] are only able to

determine whether and not how a file has changed because they operate on file system

objects. In order to determine how and where a file has changed, practitioner tools

need to be able to process policy artifacts at multiple levels of abstraction. Using

this capability, an administrator could set up a rule to alert users when an ACL on a

network device changed and to ignore changes to network interfaces.

The ability to process policy artifacts at multiple levels of abstraction can also

address the shortcomings of change control systems. Practitioners would not have to

rely on manually-generated changelogs and reports if they could rely on tools that

automatically detected and summarized changes to devices at an appropriate level of

abstraction. In addition, this capability does not require utilities to store changel-

ogs, which can be prone to log injection and record falsification [58]. Furthermore,

changelog storage space can be reduced by reporting changes at different levels of

abstraction; for example, adding a new role in an IED’s access-control policy can be

reported as the addition of single security primitive (such as a role) rather than as

the addition of 10 lines.

The current approaches to create and compare baseline configurations are ineffi-

cient and will not scale even though this capability is required by NERC CIP 010-1.

If practitioners use spreadsheets to record changes to devices on a control network,

practitioners must create logs manually. We have already mentioned that manually-

created changelogs are insufficient in the domains of network configuration manage-

ment and software engineering. In addition, a majority of power control systems

use Windows and NERC CIP regulations were written for Windows-based control

systems. Windows Registries encode most of the pieces of information required for

32

a baseline configuration in a hierarchically-structured set of key/value pairs. Cur-

rently, practitioners cannot operate on individual components of these registries even

though they would like to. At the 2012 TCIPG Industry Day, a scientist at Honey-

well lamented that he had to use a line-based diff to compare hierarchically-structured

Windows Registries.7

Policy Discovery Needs Problem: The NERC CIP requirements for change

control and configuration management and for baseline-configuration creation and

comparison point to the need for feedback on how the security posture of power

control networks changes. Utilities and auditors need the ability to measure big-

picture trends in power system control networks. Utilities and auditors alike also

need the capability to pinpoint specific changes that are outliers within those trends.

As described by one auditor and penetration tester, utilities and auditors need the

ability to measure normal—current methods do not allow them to know what normal

is.8

Currently practiced techniques to detect and document changes rely on processes

that are too coarse to allow practitioners to measure change at the desired level of

abstraction and too manual to perform audits on a more frequent basis [58].

The drawbacks of current business processes to satisfy these NERC CIP require-

ments can be addressed by a feedback loop for security policy that relies on the ability

to measure how configuration files change at multiple levels of granularity. This vi-

sion is consistent with the 2012 Smart Grid Program Overview by the director of the

Smart Grid and Cyber-Physical Systems Program office who called for “new measure-

ment methods and models to sense, control, and optimize the grid’s new operational

paradigm” [4].

7Conversation with S. Rajagopalan. S. Rajagopalan is a scientist at Honeywell.
8Conversation with Bryan Fite at TCIPG Industry Day, 2012.

33

2.3.4 Section Summary

To utility administrators and auditors, the term security policy may refer to NERC

CIP regulatory guidelines or a security primitive in the configuration language of a

device on the power grid.

The NERC CIP provisions for change control and configuration management and

baseline configuration creation and comparison are important operations on secu-

rity policy artifacts that can have significant and even severe consequences if done

improperly.

Despite the importance of these processes, the current practices to satisfy these

NERC CIP provisions rely on processes that measure changes to policy artifacts at

either a very low level (the line) or a very high level (the file or network). Furthermore,

many of the change management approaches rely upon manual documentation, which

is error-prone and will only become less reliable as the number of devices on the smart

grid increases.

2.4 Conclusions

The term security policy can mean many different things to practitioners in a variety

of domains that include identity management, network configuration management,

and the electrical power grid. Failure to manage security policies has severe con-

sequences that can include inappropriate access to sensitive information, network

outages. We have seen that regardless of the domain, security policies may be viewed

as a structured text. Many of the drawbacks of current practices to analyze policies

or associated security artifacts are symptoms of the Policy Gap Problem, Granular-

ity of Reference Problem, and Policy Discovery Needs Problem. The next chapter

introduces several concepts from language theory, parsing, and discrete mathematics

to address these limitations and formalize the notion of structured text.

34

Chapter 3

Theory

We can directly address our three core limitations of security policy analysis with

concepts from language theory, parsing, and discrete mathematics. In this chapter,

we provide background information to explain these concepts and relate them to our

core limitations.

The first section of this chapter is a quick introduction to basic concepts from

language theory, parsing, and discrete mathematics so that the thesis is self-contained.

More experienced readers may skip ahead to the second section. For a full treatment

of the topics, readers should consult a textbook such as Sipser [115] for language

theory, a book on compilers for parsing [2], and a book on discrete mathematics for

a discussion of sets and set operations [108].

In the second section of this chapter, we will demonstrate how we can apply

these concepts from computer science and mathematics to formalize text processing

and thereby address our three core limitations of security policy analysis (1) the gap

between tools and policy languages, (2) the inability to process policy at multiple

levels of abstraction, and (3) the need for a feedback loop to measure security policy

evolution.

35

3.1 Theoretical Background

In order to formalize security policy analysis, we first must understand the languages

in which security policies and associated policy artifacts are written. Therefore, we

begin with a definition of language.

3.1.1 Language Theory

Language theory builds on the notion of a set: an unordered collection of objects or

elements. The elements contained within a set are unique. A set is nonempty if it

contains one or more elements. If there are exactly n distinct elements in the set S

where n is a nonnegative integer, then S is a finite set and n is the cardinality of S.

Language theory defines an alphabet as any nonempty finite set. The elements of an

alphabet are called symbols.

Language theory also builds on the notion of a sequence: an ordered collection

of elements in a set. In contrast to a set, elements in a sequence do not have to be

unique. In language-theory, a string is a sequence of symbols over an alphabet. The

length of a string w, written as |w|, is the number of symbols it contains. A string of

length zero is called the empty string, and is written as ε [115]. Figure 3.1 illustrates

how “Doubleday” satisfies the properties of a string over the English alphabet. The

length of the string “Doubleday” is 9 symbols.

A language is a set whose elements are strings over some fixed alphabet. For

example, both the empty set ∅ and the set containing the empty string ε are languages.

Consider the collection of last names of people in the Baseball Hall of Fame. Figure 3.2

illustrates this language.1 We note that two players with the same last name are

represented by a single element in this language since language elements are unique.

In this language the string “MacPhail” represents both Larry and Lee MacPhail, the

only father-son pairing in the Hall of Fame [101].

1Unless otherwise noted, the sets in our figures do not depict exact cardinalities.

36

D
ou
bl
ed
ay

D
o
u
b
le

d
a
y

1
2

3
4

5
6

7
8

9
F
ig
u
re

3
.1
:

A
st

ri
n

g
is

a
se

q
u

en
ce

o
f

sy
m

b
ol

s
ta

ke
n

fr
om

so
m

e

a
lp

h
a
b

et
.

T
h

e
st

ri
n

g
D

o
u

bl
ed

a
y

in
th

is
ex

am
p

le
is

a
se

q
u

en
ce

o
f

sy
m

b
o
ls

fr
o
m

th
e

E
n

gl
is

h
al

p
h

ab
et

or
d

er
ed

fr
om

le
ft

to
ri

gh
t

(r
ea

d
in

g
o
rd

er
).

C
ob
b

D
ou
bl
ed
ay

st
rin
g

F
ig
u
re

3
.2
:

A
la

n
gu

a
ge

is
a

se
t

of
st

ri
n

gs
.

T
h

is
fi

gu
re

il
lu

st
ra

te
s

th
e

la
n

gu
ag

e
of

la
st

n
am

es
of

p
eo

p
le

in
th

e
B

as
eb

al
l

H
al

l
of

F
am

e.

37

Languages can be more complex than sets of single words. We can use languages

to group strings with common structure. For example, the language of properly-

nested parentheses contains the elements “([])”, and “{[]([])}[{}]”, but not “(]”. Also,

consider the language of sentences that consist solely of a one-word noun, followed by

the verb are, followed by a one-word adjective and a period. Strings in this second

language include “Bears are fierce.” and “Trampolines are fun.” but not “The Bears

are fierce.” and not “Trampolines are fun to eat.”. Even more interesting, we can

use languages to represent non-textual structures such as DNA.

A prerequisite of textual analysis is the ability to recognize whether a string (at

some level of abstraction) belongs to a language or not. For example, a network

administrator may be interested in the set of roles defined by a firewall’s access-control

policy. The set of strings that represent roles is a language in the language-theoretic

sense.

However, textual analysis also requires practitioners to understand the properties

of strings within languages and how they relate to other languages. For example, we

may be interested in all boys’ names that begin with a letter in the first half of the

alphabet and who are currently first-year undergraduates at Dartmouth. The former

criterion is a property of strings in the set of boys names and the latter criterion

requires us to relate the language of boys’ names to the language of class years in

the Dartmouth College roster. We can formalize this aspect of textual analysis with

the notion of a datatype or type which combines a set with operations that can be

performed on elements contained by that set. For textual analysis, we can define a

set of operations appropriate for a language.

In computer science, we construct computational machines, called recognizers,

that accept or reject a string as being an element of a language. Figure 3.3 illustrates

a recognizer. Since a recognizer is a computational machine, there is a nice connec-

tion between the complexity of the language and the complexity of the machine. In

38

fact, language theory categorizes languages into different classes depending upon the

type of computational engine required to recognize the language. Figure 3.4 relates

language complexity to machine complexity for two language classes: regular and

context-free languages.

recognizer

C o b b

input output

FT

Figure 3.3: A recognizer for a language is a computational machine that outputs true or

false if an input string is in the language or not. The string Cobb is in the language of

last names in the Baseball Hall of Fame.

Regular Languages

The set of credit-card numbers, phone numbers, IP addresses, email addreses are

all regular languages. A language is regular if it can be recognized using a regular

expression. Regular expressions are a notation through which recognizers of languages

can be defined. The formal definition of regular expression over some alphabet Σ

consists of the following three rules:

• ε is a regular expression whose language is {ε}, the set containing the empty

string.

• If a ∈ Σ, then a is a regular expression whose language is {a}, the set containing

the string a.

39

R
eg

ul
ar

C
on

te
xt

-F
re

e

la
ng

ua
ge

...

st
at

e
co

nt
ro

l

S
m

i
t

h

in
pu

t
re

ad
er

in
pu

t
ou

tp
utF

T

st
at

e
co

nt
ro

l

(
[

D
]

)

in
pu

t
re

ad
er

in
pu

t
ou

tp
utF

T

([
st

ac
k

U
se

 fi
ni

te
 a

ut
om

at
a

to
 re

co
gn

iz
e

re
gu

la
r l

an
gu

ag
es

.

U
se

 p
us

hd
ow

n
au

to
m

at
a

to
 re

co
gn

iz
e

co
nt

ex
t-f

re
e

la
ng

ua
ge

s.

re
co

gn
iz

er

F
ig
u
re

3
.4
:

L
an

gu
a
ge

th
eo

ry
ca

te
g
o
ri

ze
s

la
n

gu
ag

es
in

to
d

iff
er

en
t

cl
as

se
s

d
ep

en
d

in
g

u
p

on
th

e
co

m
p

le
x
it

y
of

th
e

re
co

gn
iz

er
.

In
th

is
d

ia
gr

am

w
e

se
e

sc
h

em
at

ic
s

fo
r

a
fi

n
it

e
a
u

to
m

a
to

n
an

d
a

p
u

sh
d
o
w

n
a
u

to
m

a
to

n
th

at
re

co
gn

iz
e

re
gu

la
r

an
d

co
n
te

x
t-

fr
ee

la
n

gu
ag

es
re

sp
ec

ti
v
el

y.
A

p
u

sh
d
o
w

n
a
u

to
m

a
to

n
is

a
fi

n
it

e
a
u

to
m

at
on

w
it

h
a

st
a
ck

.
T

h
er

ef
or

e,
a

p
u

sh
d

ow
n

au
to

m
at

on
ca

n
d

o
w

h
at

ev
er

a
fi

n
it

e
au

to
m

at
on

ca
n

d
o,

a
n

d
m

o
re

(a
lt

h
o
u

gh
it

’s
n

ot
a
lw

ay
s

tr
u

e
th

at
ad

d
in

g
fe

at
u

re
s

to
a

m
ac

h
in

e
in

cr
ea

se
s

it
s

re
co

gn
it

io
n

p
ow

er
).

R
ea

d
er

s
w

h
o

w
an

t
to

le
ar

n

m
or

e
a
b

o
u

t
th

e
d

et
ai

ls
of

th
es

e
m

a
ch

in
es

sh
ou

ld
co

n
su

lt
a

la
n

gu
ag

e-
th

eo
ry

te
x
tb

o
ok

.
W

e
b

as
e

ou
r

d
ia

gr
am

s
of

th
es

e
m

ac
h

in
es

on
th

e

p
re

se
n
ta

ti
o
n

in
S

ip
se

r’
s

b
o
ok

[1
15

].

40

• If r and s are regular expressions whose languages are L(r) and L(s) then we

can define the following languages:

1. (r)|(s) is a regular expression whose language is L(r) ∪ L(s)

2. (r)(s) is a regular expression whose language is L(r)L(s)

3. (r)∗ is a regular expression whose language is (L(r))∗

4. (r) is a regular expression whose language is L(r)

We can convert a regular expression into a computational engine called a finite

automaton. If a language cannot be described by a regular expression, then it is not

a regular language.

Benefits and Limitations: Regular expressions are relatively simple to write and

as such, are useful for practitioners that want to extract a regular language from

some input text. In fact, the utility of grep and sed one-liners stems from the ability

for practitioners to construct finite automata quickly and easily with the notation of

regular expressions. For example, the regular expression live free | die denotes the

language that contains only two strings: “live free” and “die”.

Unfortunately, regular expressions do not recognize all the kinds of languages

that practitioners might want to process in the real world. One limitation of regular

expressions is that they cannot solve the parentheses-matching problem: recognize

the language of strings with properly-nested parentheses. The parentheses-matching

problem shows up frequently in the real-world. For example, both natural-language

documents as well as programming languages have hierarchical data models that can

contain recursively-nested blocks of text.

Context-Free Languages

The set of context-free languages, in contrast to regular languages, include languages

that possess a recursive or hierarchical structure. We call these languages context

41

free because their elements are generated by substituting strings for variables called

nonterminals regardless of the context in which those nonterminals occur. A language

is context free if it can be generated using a context-free grammar. Context-free

grammars are a mathematical formalism to specify recursive or hierarchical structure.

More formally, a context-free grammar consists of terminals, nonterminals, a start

symbol, and productions.

• Terminals are the basic symbols from which strings are formed. The three

terminals of grammar G in Figure 3.5 are c, o, and b respectively.

• Nonterminals are syntactic variables that denote sets of strings; one of these

nonterminals is called the start symbol. As mentioned above, we call these

languages context-free because we can substitute strings for nonterminals re-

gardless of the context in which the nonterminal appears.2 In Figure 3.5, the

grammar G consists of three nonterminals S, O, and B.

• A grammar’s start symbol is a unique nonterminal whose language is the lan-

guage defined by the grammar. In Figure 3.5, the S nonterminal is the start

symbol.

• Productions of a grammar specify rewrite rules to transform a nonterminal into

a string of nonterminals and terminals. If the grammar is in Chomsky Normal

Form (CNF), the resultant string may not contain the start symbol and the

rule S → ε is in the grammar. Each of the nonterminals in Figure 3.5 has a

production and the rule S → ε is implicit in the grammar for this example.

Pushdown automata are computational engines that recognize input strings with

arbitrarily-deep hierarchical structure. A pushdown automaton extends a finite au-

tomaton by adding a stack. The stack adds additional memory to the machine with

2 This property motivates context-sensitive languages in which nonterminal substitution depends
on its context. Context-sensitive languages require an even more powerful recognizer.

42

pa
rs

er
 fo

r
la

ng
ua

ge
 o

f
gr

am
m

ar
 G

c
o

b
b

in
pu

t

ou
tp

ut

gr
am

m
ar

 G
S O

B

cO
B

O

o
| o

Bb
 |

b

F
ig
u
re

3
.5
:

A
co

n
te

xt
-f

re
e

gr
a
m

m
a
r

co
n

si
st

s
of

a
se

t
of

te
rm

in
al

s
(c

,
o,

b)
,

n
on

te
rm

in
al

s
(S

,
O

,
B

),
an

d
p

ro
d

u
ct

io
n

s
th

at
sp

ec
if

y
h

ow

to
re

w
ri

te
n
o
n
te

rm
in

al
s

as
st

ri
n

gs
.

A
pa

rs
er

re
co

gn
iz

es
th

e
la

n
gu

ag
e

of
a

gr
am

m
ar

b
y

tr
y
in

g
to

p
ro

d
u

ce
a

p
ar

se
tr

ee
fo

r
an

in
p
u

t
st

ri
n

g.

T
h

e
st

ri
n

g
is

in
th

e
la

n
gu

ag
e

of
th

e
g
ra

m
m

ar
if

th
e

p
ar

se
r

ca
n

p
ro

d
u

ce
a

p
ar

se
tr

ee
fo

r
th

e
st

ri
n

g.
T

h
e

p
ar

se
tr

ee
in

th
is

fi
gu

re
is

sh
ow

n

in
m

or
e

d
et

ai
l

in
F

ig
u

re
3.

6.

43

the specific purpose of keeping track of where the current input symbol is with respect

to the hierarchical structure of the input already processed. In Figure 3.4, we see that

the pushdown automaton is currently processing the D symbol and has already seen

the first two open parenthesis. The stack reader therefore points to the level of the

hierarchy in which D resides.

Benefits and Limitations It is no coincidence that practitioners often need to

recognize recursive or hierarchical structures in configuration and programming lan-

guages because the syntax of many programming languages was traditionally spec-

ified via context-free grammars. In addition, as languages evolve and acquire new

constructs, grammatical descriptions of languages can be extended easily. Finally, all

regular languages are also context free and so we can express regular languages via a

grammar as well.

Although context-free grammars are able to specify a proper superset of lan-

guages specified by regular expressions, they still suffer from several limitations. First,

context-free grammars traditionally are harder to write and so are more commonly

seen in compiler construction than in text-processing toolchains despite the increase

in high-level languages.

A second limitation of context-free grammars is that they do not recognize all

the languages that we may encounter in the real world or even in real-world secu-

rity policies. As mentioned in a previous footnote, context-sensitive languages are

a proper subset of context-free languages and require an even more powerful recog-

nizer. For example, the full Cisco IOS language is context sensitive [16]. Despite this,

a meaningful subset of a context-sensitive language may be recognized via regular and

context-free grammars. Another example of a language that cannot be recognized by

a context-free grammar is an abstraction of the problem of checking that the number

of formal parameters in a function definition matches the number of parameters to a

44

call to that function [2].

3.1.2 Parsing

In compiler construction, a parser is a software module that recognizes whether a

given string is in the language of that grammar and determines its grammatical

derivation. In fact, some (but not all) parsing models closely mimic the architecture of

a pushdown automaton and explicitly maintain a stack of grammar symbols applied.

Given an input string and a grammar that specifies a language, a parser attempts to

construct a parse tree. If the parse tree can be constructed, then the input string is

in the language of the grammar. Otherwise, the input string is not in the language of

the grammar. Figure 3.5 illustrates a parser that recognizes the language of grammar

G.

A tree T consists of a set of nodes and each vertex may have zero or more children.

A parse tree is a rooted, ordered tree that encodes the application of the productions

in a grammar that are required to produce or derive a string in the language of that

grammar from the grammar’s start symbol. Figure 3.6 diagrams a parse tree for the

input cobb parsed with respect to grammar G.

If a node v is a child of another node p, then we call p the parent of v. There are 8

nodes in the tree of Figure 3.6. In Figure 3.6, node 7 is a child of node 8 and node 7

is the parent of nodes 5 and 6. Nodes that share the same parent are called siblings.

Nodes that have no children are called the leaves of a tree. In our running parse-tree

example, the leaves of the tree correspond to terminals of the grammar G.

Often, a particular node of a tree may be designated as the root, the node which

has no parent. When T is a parse tree, the root is labeled with the start symbol of

the grammar.

If v is a node in a tree, we can define a subtree Tv by taking v as the root.3 In

3We will later overload this notation to refer to parse tree Tw of a string w when parsed with

45

c

o b

b

S

O B

B

1

2

3

4

5 6

7

8

Figure 3.6: A parse tree is a rooted, ordered tree that encodes the application of productions

in a grammar required to produce an input string. This diagram illustrates the parse tree

for the input cobb. Informally, G specifies the language of strings made of one c followed by

one or more o’s and then one or more b’s.

practice, the leaves of a parse subtree correspond to substrings in the language of the

subtree root v’s production. Furthermore, we can view these substrings as belonging

to a language. This language has a grammar whose start production is S ′ → X. S ′ is

the new start symbol and X is the nonterminal with which v is labeled. For example,

node 3 in Figure 3.6 is the root of the of substring of all o’s in the input string while

node 7 is the root of the substring of all b’s in the input string.

If the children of each node are ordered, then we call T an ordered tree. Since

each non-leaf node (interior node) in the parse tree is labeled by some nonterminal,

the children of the node are ordered, from left to right, by symbols in the right side

of the production by which A was replaced to derive the parse tree [2]. For example,

Figure 3.6 node 7 is labeled with production B and the children of node 7 are ordered

according to the production B → Bb.

A grammar is ambiguous when it generates more than one parse tree for a given

respect to a grammar.

46

string. For some parsing purposes, ambiguity is undesirable and so different rules

allow one to narrow down the set of possible parses to a single parse tree.

3.1.3 Security Policy Corpora as Data Types

In Chapter 2 we observed that security policies and related policy artifacts are ex-

pressed in a variety of formats ranging from natural-language legal documents written

according to RFC 2527 or 3647, to configuration files written in Cisco IOS, to IED ca-

pabilities encoded in the IEC 61850 Substation Configuration Language (SCL). Each

of these sets of files forms a corpus, a collection of texts that policy analysts want to

analyze.

We formally represent a corpus as a datatype, a language paired with a set of

operations whose operands are strings in that language. For the purpose of our

research, the set of RFC 3647 policies, the set of configuration files written in Cisco

IOS, or the set of IED capabilities written in SCL are three languages upon which we

may define different string operations.

In our research, these string operations may implement traditional set operations

such as element equality or union. Element equality is interesting because different

implementations of equality allow us to partition a language into equivalence classes.

A partition of a set S is a collection of disjoint, nonempty subsets of a set S so that

they have S as their union. Figure 3.7 illustrates two ways that we could define

equality.

We may define string operations that allow us to either extract other datatypes

according to a data format’s hierarchical object model or to encode a practitioner’s

analysis technique. Figure 3.8 illustrates how we may use a parse operation to extract

the set of roles contained within a set of Cisco IOS network configurations. Each

element in the input set is the contents of a network configuration file (a string). For

each string element in the input set, we scan the string to extract all occurrences of

47

C
er

tifi
ca

te
 P

ol
ic

ie
s

in
 th

e
In

te
rn

at
io

na
l G

rid
 T

ru
st

 F
ed

er
at

io
n

(IG
TF

)
IG

TF
 C

er
tifi

ca
te

 P
ol

ic
ie

s
G

ro
up

ed
 b

y
C

er
tifi

ca
te

 A
ut

ho
rit

y
(C

A)
IG

TF
 C

er
tifi

ca
te

 P
ol

ic
ie

s
G

ro
up

ed
 b

y
R

ef
er

en
ce

 S
tru

ct
ur

e

1.
 In

tro
du

ct
io

n.
..

C
ER

N
 C

A
R

FC
 3

64
7

R
FC

 2
52

7

 C
A

-S
pe

ci
fic

 S

tr
uc

tu
re

s

F
ig
u
re

3
.7
:

B
y

d
efi

n
in

g
th

e
eq

u
a
li

ty
op

er
at

io
n

on
st

ri
n

gs
in

a
la

n
gu

ag
e

in
d

iff
er

en
t

w
ay

s,
w

e
ca

n
pa

rt
it

io
n

a
la

n
gu

ag
e

in
to

d
iff

er
en

t

eq
u

iv
a
le

n
ce

cl
a
ss

es
.

F
o
r

ex
am

p
le

,
w

e
co

u
ld

d
efi

n
e

tw
o

st
ri

n
gs

ov
er

th
e

E
n

gl
is

h
al

p
h

ab
et

to
b

e
eq

u
a
l

if
th

ey
w

er
e

id
en

ti
ca

l
af

te
r

w
e

co
n
ve

rt
ed

th
e

ch
ar

ac
te

rs
to

lo
w

er
ca

se
a
n

d
st

ri
p

p
ed

st
op

w
or

d
s

su
ch

as
th

e
an

d
a
n

d
.

In
th

is
fi

gu
re

,
w

e
d

efi
n

e
th

e
eq

u
al

it
y

of
P

K
I

p
ol

ic
ie

s

fr
om

th
e

In
te

rn
a
ti

o
n

a
l

G
ri

d
T

ru
st

F
ed

er
at

io
n

(I
G

T
F

)
in

tw
o

d
iff

er
en

t
w

ay
s.

F
ir

st
,

tw
o

p
ol

ic
ie

s
ar

e
eq

u
al

if
th

ey
w

er
e

w
ri

tt
en

b
y

th
e

sa
m

e

C
er

ti
fi

ca
te

A
u

th
o
ri

ty
.

In
th

e
se

co
n

d
ex

a
m

p
le

,
tw

o
p

ol
ic

ie
s

ar
e

eq
u

al
if

th
ey

b
ot

h
h

av
e

id
en

ti
ca

l
se

q
u

en
ce

s
of

se
ct

io
n

h
ea

d
er

s.
S

ta
n

d
ar

d

se
ct

io
n

h
ea

d
er

s
a
re

d
efi

n
ed

in
R

F
C

25
2
7

an
d

R
F

C
36

47
.

48

ho
st

na
m

e:
Pr

im
ar

yE
M

S.
..

N
et

w
or

k
C

on
fig

ur
at

io
ns

N
et

w
or

k
Ac

ce
ss

-C
on

tro
l R

ol
es

ob
je

ct
-g

ro
up

 n
et

w
or

k
...

ob
je

ct
 g

ro
up

s
pa

rs
ed

 fr
om

Pr
im

ar
yE

M
S

pa
rs
e

F
ig
u
re

3
.8
:

W
e

ca
n

u
se

th
e

pa
rs

e
o
p

er
at

io
n

to
ex

tr
ac

t
an

d
an

al
y
ze

h
ig

h
-l

ev
el

la
n

gu
ag

e
co

n
st

ru
ct

s.
G

iv
en

a
se

t
of

n
et

w
or

k
d

ev
ic

e

co
n

fi
gu

ra
ti

o
n

s,
w

e
ca

n
p

ar
se

ev
er

y
st

ri
n

g
el

em
en

t
in

th
e

se
t

to
ex

tr
ac

t
al

l
o
cc

u
rr

en
ce

s
of

an
ob

je
ct

gr
ou

p
.

O
b

je
ct

gr
ou

p
s

ar
e

si
m

il
ar

to

ro
le

s
in

a
n

ac
ce

ss
-c

on
tr

o
l

p
o
li

cy
.

T
h
is

fi
gu

re
sh

ow
s

th
at

th
e

P
ri

m
ar

y
E

M
S

fi
re

w
al

l
co

n
fi

gu
ra

ti
on

d
efi

n
es

tw
o

ro
le

s.

49

a role definition. Alternatively, given the same set of network configurations, we may

choose to issue the parse command to extract the set of roles that contain a particular

device or protocol, and thus encode a practitioner’s role analysis technique.

Finally, we may define string operations in a manner that allows us to compare

strings in a language via simple counting or actual distance metrics.

In order to compare strings in a language via simple counting we could define

a function whose domain is the strings in the language and whose domain is the

number of lines contained in each string. This function would allow us to count the

number of lines within a security primitive such as a role. This simple approach would

help auditors pinpoint complicated configurations and administrators identify where

it might be necessary to refactor the policy.

Alternatively, we could use string and tree distance metrics to measure the distance

between strings in a language and parse trees in context-free languages. One distance

metric that we use for string and trees is edit distance.

The edit distance between two strings s1 and s2 is the minimum number of edit op-

erations necessary to transform s1 into s2. Traditional string edit distance algorithms

use delete, insert, and substitute as their edit operations. A sequence of edit oper-

ations used to transform s1 into s2 is called the edit script. For example, the string

edit distance between the strings cobb and cob is 1 character because by deleting a

single character b, we transform the former into the latter.

The edit distance between two trees is the minimum number of edit operations

necessary to transform one tree to another. The edit operations that we consider

consist of deleting, changing, and appending tree nodes. Again, a sequence of edit

operations between the two trees is called an edit script. Figure 3.9 illustrates that we

can apply tree edit distance to the parse trees of strings in a context-free language.

In the example depicted, the tree edit distance between the parse trees for cobb and

cob, Tcobb and Tcob respectively, is 2 tree nodes. The distance is 2 rather than 1

50

c

o
b

b

S O
B

B

1

23

45
6

7

8

c

o
b

S O
B

1

23

45

6

st
rin

g_
ed

it_
di

st
an

ce
(c

ob
b,

 c
ob

) =
 1

c o b
bc o b

su
bs

tit
ut

e,
 c

os
t 0

su
bs

tit
ut

e,
 c

os
t 0

su
bs

tit
ut

e,
 c

os
t 0

de
le

te
, c

os
t 1

tre
e_

ed
it_

di
st

an
ce

(T
co

b
, T

co
bb

) =
 2

un
m

ap
pe

d
no

de
s

4
an

d
5

ar
e

de
le

te
d

F
ig
u
re

3
.9
:

W
e

ca
n

a
p

p
ly

tr
ee

ed
it

d
is

ta
n

ce
to

th
e

p
ar

se
tr

ee
s

of
st

ri
n

gs
in

a
co

n
te

x
t-

fr
ee

la
n

gu
ag

e.
In

th
is

m
an

n
er

w
e

ac
co

u
n
t

fo
r

ch
a
n

g
es

to
th

e
st

ri
n

g
as

w
el

l
as

ch
an

ge
s

to
th

e
la

n
gu

ag
e

st
ru

ct
u

re
s

in
th

e
gr

am
m

ar
b
y

w
h

ic
h

th
e

st
ri

n
g

w
as

ge
n

er
at

ed
.

In
th

is
ex

am
p

le
,

w
e

se
e

th
at

th
e

st
ri

n
g

ed
it

d
is

ta
n

ce
o
f

co
bb

an
d

co
b

is
1.

In
co

n
tr

as
t,

th
e

tr
ee

ed
it

d
is

ta
n

ce
of

th
e

p
ar

se
tr

ee
s

fo
r

th
es

e
tw

o
st

ri
n

gs
(T

co
bb

an
d
T
co
b

re
sp

ec
ti

ve
ly

),
is

2.

51

because we apply one fewer production in the derivation for cob than the derivation

for cobb and we delete a leaf vertex for terminal b. In contrast to string edit distance,

tree edit distance allows us to compare two strings relative to structures defined in a

context-free grammar. When productions align with the specification of constructs in

a high-level language (such as function definitions), a tree edit distance metric allows

us to compare two strings in terms of these language constructs rather than the order

of symbols in a string.

3.1.4 Section Summary

This section introduced concepts from language theory, parsing, and discrete mathe-

matics that we use to both formalize security policy analysis (and text processing in

general) as well as to directly address three core limitations of security policy analysis.

3.2 How We Address Limitations of Security-

Policy Analysis

We will now demonstrate how we can use the concepts from theoretical computer

science and mathematics introduced in the previous section in order to address our

three core limitations of security policy analysis.

3.2.1 Policy Gap Problem

Figure 3.10 illustrates the gap between traditional text-processing tools and the lan-

guages used in security policies.

Many of the languages used in security policies are written in hierarchical object

models. Hierarchical object models may contain recursion or arbitrarily deep hierar-

chies. For example PKI policies written in RFC 2527 and 3647 have a hierarchical

52

R
eg

ul
ar

La
ng

ua
ge

s

M
or

e
C

om
pl

ex
La

ng
ua

ge
s

(s
uc

h
as

 c
on

te
xt

-fr
ee

)

la
ng

ua
ge

La
ng

ua
ge

 th
eo

ry
 c

at
eg

or
iz

es
 la

ng
ua

ge
s

in
to

 d
iff

er
en

t c
la

ss
es

 d
ep

en
di

ng
 u

po
n

th
e

co
m

pl
ex

ity
 o

f t
he

 re
co

gn
iz

er
.

XM
L

C

C
is

co
 IO

S
C

IM

YA
M

L

Ja
va

Pe
rl

ch
ar

ac
te

rslin
es fie

ld
s

by
te

s

C
IM

D
iff

C
oc

ci
ne

lle
sg

re
p

xm
llin

t
XY

D
iff

ot
he

r t
ex

t-p
ro

ce
ss

in
g

to
ol

s

cu
t

ca
t

cs
pl

it
di

ff
gr

ep

U
ni

x
te

xt
-p

ro
ce

ss
in

g
to

ol
s

he
ad

ta
il

un
iq

w
c

JS
O

N

F
ig
u
re

3
.1
0
:

A
lt

h
o
u

gh
m

a
n
y

h
ig

h
-l

ev
el

la
n

gu
ag

e
co

n
st

ru
ct

s
u

se
d

b
y

p
ra

ct
it

io
n

er
s

ar
e

n
on

-r
eg

u
la

r,
tr

ad
it

io
n

al
U
n
i
x

te
x
t-

p
ro

ce
ss

in
g

to
o
ls

o
p

er
a
te

o
n

re
g
u

la
r

la
n

g
u

a
g
es

.
W

h
il

e
sp

ec
ia

li
ze

d
to

ol
s

d
o

ex
is

t
to

op
er

at
e

on
ot

h
er

la
n

gu
ag

es
,

th
ey

la
ck

th
e

ge
n

er
al

it
y

of
U
n
i
x

te
x
t-

p
ro

ce
ss

in
g

to
o
ls

.
O

u
r

X
U

T
o
ol

s
ge

n
er

al
iz

es
tr

ad
it

io
n

al
U
n
i
x

te
x
t-

p
ro

ce
ss

in
g

to
ol

s
to

a
b

ro
ad

er
cl

as
s

of
la

n
gu

ag
es

an
d

th
is

en
ab

le
s

u
s

to
p

ro
ce

ss
an

d
a
n

a
ly

ze
m

an
y

m
o
re

h
ig

h
-l

ev
el

co
n

st
ru

ct
s.

53

set of provisions, configuration languages used for Cisco and Juniper devices have a

hierarchical command language, and many data formats in the smart grid ranging

from CIM, to IEC 61850’s SCL and GOOSE have hierarchical object models.

Therefore, in order to process texts in terms of these models, tools need to be able

to solve the parentheses-matching problem. We need to extend the class of languages

that traditional Unix text-processing tools process beyond regular languages.

3.2.2 Granularity of Reference Problem

Grammars give us a natural way to formalize languages with hierarchical structure

and this structure allows us to process a text at multiple levels of abstraction. Parse

subtrees encode different ways to interpret a text with respect to the grammar whose

start production is the production applied at the subtree root.

Natural-language legal documents (such as RFC 3647 PKI policies) illustrate this

point. Figure 3.11 illustrates that if we write a grammar that aligns a parse tree

with document structure, parse subtrees correspond to the entire policy, sections,

and subsections.

A practitioner may interpret the same input text with respect to many different

languages. For example, a network administrator may be interested in the set of

interfaces defined on a router whereas an auditor of that same router may be interested

in ACLs. Furthermore, these languages do not necessarily have to be in the same

grammar.

In our research, we use parsing as a mechanism for practitioners to programmat-

ically operate upon different interpretations of a source text where those interpreta-

tions correspond to languages defined in a context-free grammar.

54

se
ct
io
n

tit
le

su
bs
ec
tio
n

su
bs
ec
tio
n

tit
le

pa
ra
gr
ap
h

su
bs
ub
se
ct
io
n

su
bs
ub
se
ct
io
n

1
.

I
n

t
r
o
d
u
c
t
i
o
n

...

pa
ra
gr
ap
h

...
Se
ct
io
ns

Su
bs
ec
tio
ns

Su
bs
ub
se
ct
io
ns

Se
ct

io
n

1
Su

bs
ec

tio
n

1.
1

Su
bs

ub
se

ct
io

n
1.

2.
2

F
ig
u
re

3
.1
1
:

W
e

ca
n

in
te

rp
re

t
a

p
ar

se
tr

ee
at

m
u

lt
ip

le
le

v
el

s
of

ab
st

ra
ct

io
n

.
H

er
e,

w
e

sh
ow

h
ow

a
gr

am
m

ar
w

it
h

p
ro

d
u

ct
io

n
s

fo
r

se
ct

io
n

s,
su

b
se

ct
io

n
s,

a
n

d
su

b
su

b
se

ct
io

n
s

m
ay

b
e

u
se

d
to

an
al

y
ze

a
P

K
I

p
ol

ic
y

w
it

h
re

sp
ec

t
to

la
n

gu
ag

es
of

se
ct

io
n

s,
su

b
se

ct
io

n
s,

or

su
b

su
b

se
ct

io
n

s.

55

v1

v3v2

distance

time

Evolution of CERN Certificate Policies

v1 v2

v3

CERN Certificate Policies

Figure 3.12: We can use string and tree edit distance metrics to measure trends in how

security policies change over time. In this figure, we see that very little changed between

versions 1 and 2 of the CERN Certificate Policy but that many changes occurred between

versions 2 and 3.

3.2.3 Policy Discovery Needs Problem

If we view security policies and artifacts as strings in a language, then we can define

operations upon these security primitives that give practitioners feedback for security

policy.

During our research, we observed that we can use simple measures such as counting

as well as string and tree distance metrics in order to compare and measure security

primitives. When we have a language that contains multiple versions of the same

policy artifacts, we can use distance metrics to measure how these artifacts evolve.

Figure 3.12 illustrates that an EUGridPMA policy accreditation committee could

measure how much a CA’s policy has changed over time. The committee could

extract the set of versioned PKI policies written by the CA under review, order those

policies into a sequence by time, and then measure the distance between consecutive

versions.

We should note that distance metrics between security primitives allow us to

measure trends in the evolution of security and could eventually produce a geometry

for structured text.

56

3.3 Conclusions

We introduced several concepts from language theory, parsing, and discrete mathe-

matics in order to address the three core limitations of security policy analysis. In

order to address the tools gap problem, we need to extend traditional text-processing

tools from regular languages to context-free languages that can accommodate hi-

erarchical object models found in modern policy formats. In order to address the

granularity of reference problem, we can use parsing and parse trees as a mechanism

to process text with respect to different languages at a variety of levels of abstrac-

tion. Finally, to address the policy discovery needs problem, we can use basic counting

measures as well as string and tree distance metrics to quantify security-policy evolu-

tion. In the next chapter, we apply these theoretical underpinnings and employ our

libxutools to solve real-world problems in network configuration management.

57

Chapter 4

Why and How to Use XUTools

In this chapter, we motivate our XUTools in the context of several real-world use

cases and demonstrate how to use our tools.

4.1 XUTools and Real-World Use Cases

We now motivate each of our current XUTools (xugrep, xuwc, and xudiff) with

real-world use cases that reveal some shortcomings of traditional Unix text-processing

tools. We then provide detailed instructions of how to use our tools to solve problems

related to network configuration management. Later, in Chapter 7, we apply our

approach to give auditors new, practical capabilities to measure the security posture

of their networks.

4.1.1 XUGrep

Traditional Unix grep extracts all lines in a file that contain a substring that match

a regular expression.

xugrep generalizes the class of languages that we can practically extract in one

command from regular to context free. Figure 4.1 shows the command-line syntax.

58

xugrep reports all strings in the input files that satisfy an xupath query. At a high-

level an xupath consists of a sequence of references to language structures for xugrep

to extract. The role of xupaths will become more apparent in the examples to follow.

Finally, when present, the --R2=LE option causes xugrep to output a table where

each row contains a match for the xupath query.

xugrep [--R2=LE] <xupath> <input_file>+

xugrep usage

Figure 4.1: Our xugrep reports all strings that satisfy the xupath within the context of the

input files. The --R2=LE option reports a table of matches in which each row corresponds

to a match for the xupath query.

.

During the design of xugrep, practitioners from several domains suggested use

cases for this tool. We now motivate xugrep with some of these real-world examples.

Network Configuration Management

The prevalence of multi-line, nested-block-structured formats in network configura-

tion management has left a capability gap for traditional tools. The configuration

languages for Cisco and Juniper network devices for example, are both hierarchically-

structured languages. Figure 4.2 shows a fragment of a Cisco IOS configuration file

in which two network interfaces are defined.

59

interface Loopback0
 description really cool description
 ip address 333.444.1.185 255.255.255.255
 no ip unreachables
 ip pim sparse-dense-mode
 crypto map azalea
!
interface GigabitEthernet4/2
 description Core Network
 ip address 444.555.2.543 255.255.255.240
 ip access-group outbound_filter in
 ip access-group inbound_filter out
 no ip redirects
 no ip unreachables
 no ip proxy-arp
!

router.v1.example

Figure 4.2: Cisco IOS has a hierarchically-structured configuration syntax. This fragment

consists of two interface blocks which contain five and seven lines respectively.

Currently, if practitioners want to extract interfaces from a Cisco IOS router

configuration file, they may craft an invocation for sed

sed -n ’/^interface

ATM0/,/^!/\{/^\!d;p;\}’ router.v1.ios

In contrast, with xugrep practitioners only have to type

xugrep --R2=LE ’//ios:interface’ router.v1.ios

Figure 4.3 shows the output of xugrep for the above command. Given the input

file router.v1.ios, the xupath query (//ios:interface) tells xugrep to extract all

interface blocks.

More formally, xugrep extracts all strings in the language of the interface pro-

duction in the Cisco IOS grammar (ios). xugrep outputs a table where each row

corresponds to a match. The first column contains the file within which the match

60

b
a
s
h
-
i
o
s
-
e
x
1
$

x
u
g
r
e
p

-
-
R
2
=
L
E

"
/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

F
I
L
E

I
O
S
:
I
N
T
E
R
F
A
C
E

T
E
X
T

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

L
o
o
p
b
a
c
k
0

i
n
t
e
r
f
a
c
e

L
o
o
p
b
a
c
k
0
\
n

d
e
s
c
r
i
p
t
i
o
n

r
e
a
l
l
y

c
o
o
l

d
e
s
c
r
i
p
t
i
o
n
\
n

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
1
8
5

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s
\
n

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s
\
n

i
p

p
i
m

s
p
a
r
s
e
-
d
e
n
s
e
-
m
o
d
e
\
n

c
r
y
p
t
o

m
a
p

a
z
a
l
e
a
\
n
!

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

i
n
t
e
r
f
a
c
e

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2
\
n

d
e
s
c
r
i
p
t
i
o
n

C
o
r
e

N
e
t
w
o
r
k
\
n

i
p

a
d
d
r
e
s
s

4
4
4
.
5
5
5
.
2
.
5
4
3

2
5
5
.
2
5
5
.
2
5
5
.
2
4
0

\
n

i
p

a
c
c
e
s
s
-
g
r
o
u
p

o
u
t
b
o
u
n
d
_
f
i
l
t
e
r

i
n
\
n

i
p

a
c
c
e
s
s
-
g
r
o
u
p

i
n
b
o
u
n
d
_
f
i
l
t
e
r

o
u
t
\
n

n
o

i
p

r
e
d
i
r
e
c
t
s
\
n

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s
\
n

n
o

i
p

p
r
o
x
y
-
a
r
p
\
n
!

b
a
s
h
-
i
o
s
-
e
x
2
$

x
u
g
r
e
p

"
/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

i
n
t
e
r
f
a
c
e

L
o
o
p
b
a
c
k
0

d
e
s
c
r
i
p
t
i
o
n

r
e
a
l
l
y

c
o
o
l

d
e
s
c
r
i
p
t
i
o
n

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
1
8
5

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

i
p

p
i
m

s
p
a
r
s
e
-
d
e
n
s
e
-
m
o
d
e

c
r
y
p
t
o

m
a
p

a
z
a
l
e
a

! i
n
t
e
r
f
a
c
e

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

d
e
s
c
r
i
p
t
i
o
n

C
o
r
e

N
e
t
w
o
r
k

i
p

a
d
d
r
e
s
s

4
4
4
.
5
5
5
.
2
.
5
4
3

2
5
5
.
2
5
5
.
2
5
5
.
2
4
0

i
p

a
c
c
e
s
s
-
g
r
o
u
p

o
u
t
b
o
u
n
d
_
f
i
l
t
e
r

i
n

i
p

a
c
c
e
s
s
-
g
r
o
u
p

i
n
b
o
u
n
d
_
f
i
l
t
e
r

o
u
t

n
o

i
p

r
e
d
i
r
e
c
t
s

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

n
o

i
p

p
r
o
x
y
-
a
r
p

!xu
gr

ep
 C

is
co

 IO
S

ex
am

pl
es

F
ig
u
re

4
.3
:

P
ra

ct
it

io
n

er
s

m
ay

u
se

x
u
g
r
e
p

to
ex

tr
ac

t
h

ig
h

-l
ev

el
la

n
gu

ag
e

co
n

st
ru

ct
s

su
ch

as
in

te
rf

ac
es

.
T

h
es

e
tw

o
ex

am
p

le
in

vo
ca

ti
on

s

d
em

o
n

st
ra

te
tw

o
p

o
ss

ib
le

u
sa

ge
sc

en
ar

io
s

d
ep

en
d

in
g

u
p

on
w

h
et

h
er

ex
tr

ac
te

d
b

lo
ck

s
sh

ou
ld

b
e

d
is

p
la

y
ed

on
a

si
n

gl
e

li
n

e
or

n
ot

.

61

occurred, the second column holds the name of the interface, and the final column

contains the block with escaped newlines.

C Source Code

Practitioners may want to be able to recognize (and thereby extract) all C function

blocks in a file. As stated by one person on Slashdot following our LISA 2011 poster

presentation, “it would be nice to be able to grep for a function name as a function

name and not get back any usage of that text as a variable or embedded in a string,

or a comment” [107, 142]1. Furthermore, practitioners may also want to extract

function blocks or calls to a particular function relative to the function in which it

occurs. Figure 4.4 shows a simple C source file in which five functions are defined.

int
putstr(char *s)
{
 while(*s) {
 putchar(*s++);
 }
}

int
fac(int n)
{
 if (n == 0) {
 return 1;
 } else {
 return n*fac(n-1);
 }
}

c.v1.example
// Comment on putn right here.
int
putn(int n)
{
 if (9 < n){
 putn(n / 10);
 }
 putchar((n%10) + '0');
}

int
facpr(int n)
{
 putstr("factorial ");
 putn(n);
 putstr(" = ");
 putn(fac(n));
 putstr("\n");
}

int
main()
{
 int i;
 i = 0;
 while(i < 10){
 facpr(i++);
 }
 return 0;
}

Figure 4.4: The C programming language uses matching parentheses to specify blocks for

a variety of constructs that include functions and conditional statements. The example file

in this figure contains five function definitions.

Traditional grep cannot handle these use cases because it requires us to solve the

parentheses-matching problem. We need a tool that can recognize blocks in order to

extract function blocks or function calls within a function block.

1Thanks to Tanktalus for the Slashdot post.

62

b
a
s
h
-
c
-
e
x
1
$

g
r
e
p

-
n

"
p
u
t
n
"

c
.
v
1
.
e
x
a
m
p
l
e

2
0
:
/
/

C
o
m
m
e
n
t

o
n

p
u
t
n

r
i
g
h
t

h
e
r
e

2
2
:
p
u
t
n
(
i
n
t

n
)

2
5
:

p
u
t
n
(
n

/

1
0
)
;

3
0
:
/
/

F
a
c
p
r

c
a
l
l
s

p
u
t
n

F
Y
I

3
5
:

p
u
t
n
(
n
)
;

3
7
:

p
u
t
n
(
f
a
c
(
n
)
)
;

b
a
s
h
-
c
-
e
x
2
$

x
u
g
r
e
p

-
-
R
2
=
L
E

"
/
/
c
s
p
e
c
:
f
u
n
c
t
i
o
n
"

c
.
v
1
.
e
x
a
m
p
l
e

F
I
L
E

C
S
P
E
C
:
F
U
N
C
T
I
O
N

T
E
X
T

c
.
v
1
.
e
x
a
m
p
l
e

p
u
t
s
t
r

i
n
t
\
n
p
u
t
s
t
r
(
c
h
a
r

*
s
)
\
n
{
\
n

w
h
i
l
e
(
*
s
)

{
\
n

p
u
t
c
h
a
r
(
*
s
+
+
)
;
\
n

}
\
n
}

c
.
v
1
.
e
x
a
m
p
l
e

f
a
c

i
n
t
\
n
f
a
c
(
i
n
t

n
)
\
n
{
\
n

i
f

(
n

=
=

0
)
{
\
n

r
e
t
u
r
n

1
;
\
n

}

e
l
s
e

{
\
n

r
e
t
u
r
n

n
*
f
a
c
(
n
-
1
)
;

\
n

}
\
n
}

c
.
v
1
.
e
x
a
m
p
l
e

p
u
t
n

i
n
t
\
n
p
u
t
n
(
i
n
t

n
)
\
n
{
\
n

i
f
(
9

<

n
)

{
\
n

p
u
t
n
(
n

/

1
0
)
;
\
n

}
\
n

p
u
t
c
h
a
r
(
(
n
%
1
0
)

+

'
0
'
)
;
\
n
}

c
.
v
1
.
e
x
a
m
p
l
e

f
a
c
p
r

i
n
t
\
n
f
a
c
p
r
(
i
n
t

n
)
\
n
{
\
n

p
u
t
s
t
r
(
"
f
a
c
t
o
r
i
a
l

"
)
;
\
n

p
u
t
n
(
n
)
;
\
n

p
u
t
s
t
r
(
"

=

"
)
;
\
n

p
u
t
n
(
f
a
c
(
n
)
)
;
\
n

p
u
t
s
t
r
(
"
\
n
"
)
;
\
n
}

c
.
v
1
.
e
x
a
m
p
l
e

m
a
i
n

i
n
t
\
n
m
a
i
n
(
)
\
n
{
\
n

i
n
t

i
;
\
n

i
=
0
;
\
n

w
h
i
l
e
(
i

<

1
0
)
{
\
n

f
a
c
p
r
(
i
+
+
)
;
\
n

}
\
n

r
e
t
u
r
n

0
;
\
n
}

b
a
s
h
-
c
-
e
x
3
$

x
u
g
r
e
p

-
-
R
2
=
L
E

"
/
/
c
s
p
e
c
:
f
u
n
c
t
i
o
n
/
b
u
i
l
t
i
n
:
l
i
n
e
[
r
e
:
t
e
s
t
s
u
b
t
r
e
e
(
'
p
u
t
n
'
,
'
e
'
)
]
"

c
.
v
1
.
e
x
a
m
p
l
e

F
I
L
E

C
S
P
E
C
:
F
U
N
C
T
I
O
N

B
U
I
L
T
I
N
:
L
I
N
E

T
E
X
T

c
.
v
1
.
e
x
a
m
p
l
e

p
u
t
n

2

p
u
t
n
(
i
n
t

n
)

c
.
v
1
.
e
x
a
m
p
l
e

p
u
t
n

5

p
u
t
n
(
n

/

1
0
)
;

c
.
v
1
.
e
x
a
m
p
l
e

f
a
c
p
r

5

p
u
t
n
(
n
)
;

c
.
v
1
.
e
x
a
m
p
l
e

f
a
c
p
r

7

p
u
t
n
(
f
a
c
(
n
)
)
;

gr
ep

 a
nd

 x
ug

re
p

C
 e

xa
m

pl
es

F
ig
u
re

4
.5
:

T
h

e
C

p
ro

gr
am

m
in

g
la

n
g
u

ag
e

co
n
ta

in
s

p
ar

en
th

es
is

-d
el

im
it

ed
b

lo
ck

s
of

co
d

e
n

es
te

d
at

ar
b

it
ra

ry
d

ep
th

s.
T

h
e

fi
rs

t
ex

am
p

le

(b
a
s
h
-
c
-
e
x
1
)

sh
ow

s
h

ow
g
r
e
p

m
ay

b
e

u
se

d
to

ex
tr

ac
t

o
cc

u
rr

en
ce

s
of

fu
n

ct
io

n
n

am
es

.
H

ow
ev

er
,

p
ra

ct
it

io
n

er
s

m
ay

al
so

w
an

t
to

ex
tr

ac
t

fu
n

ct
io

n
b

lo
ck

s
(b
a
s
h
-
c
-
e
x
2
)

or
li

n
es

re
la

ti
ve

to
fu

n
ct

io
n

b
lo

ck
s

(b
a
s
h
-
c
-
e
x
3
)

an
d

th
es

e
ar

e
b

ot
h

h
an

d
le

d
b
y
x
u
g
r
e
p
.

63

The first example of Figure 4.5 (bash-c-ex1) shows that grep does not distinguish

between comments and calls within function blocks when we extract lines that contain

putn from the input of Figure 4.4.

Function blocks are not regular because brackets close C functions but those func-

tions may contain other kinds of blocks (such as if-statements) which are similarly

delimeted by parentheses. Without parentheses-matching, the closing brackets for

these constructs are ambiguous.

The second example of Figure 4.5 (bash-c-ex2) shows how we can use xugrep to

extract all function blocks from the input file shown in Figure 4.4. Given the input

file, c.v1.example, the xupath query tells xugrep to extract all strings that are in

the language of the function production in the C grammar (cspec). The --R2=LE

flag outputs a table of matches. Each row in the table contains three columns, the

name of the file processed, the label of the function block extracted, and the contents

of the function block (with newlines escaped).

The third example of Figure 4.5 (bash-c-ex3) shows a more involved query with

xugrep that extracts all lines that contain putn within the context of a function block.

Given the input file c.v1.example, the xupath query tells xugrep to first extract all

function blocks (specified by the function production in the grammar for C (cspec).

Then, having extracted the functions, the next step in the xupath (each step is

separated by the / delimiter) tells xugrep to extract each line within the function.

Finally, the predicate [re:testsubtree(’putn’,’e’)] tells xugrep to only output

lines that contain the string putn. Again, the --R2=LE flag outputs matches in a table

where each row is a match. The first column reports the file from which matches were

extracted. The second and third columns report the function name and line number

for each match. The final column contains the match.

64

NVD-XML:

Practitioners at the RedHat Security Response Team wanted a way to process the

XML feed for the National Vulnerability Database (NVD).2 Specifically, they wanted

to know how many NVD entries contained the string cpe:/a:redhat, the vulner-

ability score of these entries, and how many XML elements in the feed contain

cpe:/a:redhat.

Traditional grep cannot handle this use case because it requires us to solve the

parentheses-matching problem. This limitation motivates the capability to be able

to report matches with respect to a given context.

In contrast, xugrep that can handle strings in context-free languages because

when we extract XML elements, we must asociate opening and closing tags. Mul-

tiple XML elements may share the same closing tag, and XML elements may be

nested arbitrarily deep. Therefore, we need parentheses matching to recognize XML

elements. Moreover, we need a grep that can report matches with respect to the

contexts defined within the NVD-XML vocabulary. (Although xmllint’s shell-mode

grep certainly provides one solution, it is not general enough to deal with languages

other than XML [145]. We will compare xmllint to our own tools in more detail in

Chapter 6.)

4.1.2 XUWc

As stated by the Unix man pages, traditional wc counts the number of words, lines,

characters, or bytes contained in each input file or standard input [110].

xuwc generalizes wc to count strings in context-free languages and to report those

counts relative to language-specific constructs. Figure 4.6 shows the command-line

syntax for xuwc.

2http://nvd.nist.gov/download.cfm#CVE_FEED

65

http://nvd.nist.gov/download.cfm#CVE_FEED

xuwc [--count=<grammar:production>]
 [--context=<grammar:production>]
 <xupath> <input_file>+

xuwc usage

Figure 4.6: Given an xupath and a set of files, xuwc will count all matches in the result

corpus.

We now discuss some real-world examples that motivate xuwc.

Network Configuration Management

Network administrators configure and maintain networks via language-specific con-

structs, such as interfaces, and they would like to be able to get statistics about their

configuration files in terms of these constructs. Administrators might like to measure

the number of interfaces per router, or even the number of lines or bytes per interface.

For example, one network administrator at Dartmouth Computing Services wanted

to know how many campus router interfaces use a particular Virtual Local Area Net-

work (VLAN). Figure 4.7 shows two versions of the same Cisco IOS configuration file

that we will use in our running examples.

Traditional wc cannot handle this use case. Currently, wc lets practitioners count

the number of bytes, characters, lines, or words within a file. Administrators and

auditors can use wc to calculate lines of configuration associated with a network

device.

Figure 4.8, Example 1 (bash-ios-ex1) shows how an administrator can count the

number of lines in a configuration file and example two (bash-ios-ex2) shows how

to estimate the number of interfaces in a configuration by pipelining the output of

grep into wc. In the first example, wc takes two files as input (router.v1.example

and router.v2.example) and the -l flag that tells wc to output the number of lines

in each file as well as the total number of lines. In the second example, we can

66

interface Loopback0
 description really cool description
 ip address 333.444.1.185 255.255.255.255
 no ip unreachables
 ip pim sparse-dense-mode
 crypto map azalea
!
interface GigabitEthernet4/2
 description Core Network
 ip address 444.555.2.543 255.255.255.240
 ip access-group outbound_filter in
 ip access-group inbound_filter out
 no ip redirects
 no ip unreachables
 no ip proxy-arp
!

router.v1.example
interface Loopback0
 description really cool description
 ip address 333.444.1.581 255.255.255.255
 no ip unreachables
 ip pim sparse-dense-mode
 crypto map daffodil
!
interface GigabitEthernet4/2
 description Core Network
 ip address 444.555.2.543 255.255.255.240
 ip access-group outbound_filter in
 no ip redirects
 no ip unreachables
 no ip proxy-arp
 ip flow ingress
!

router.v2.example

Figure 4.7: Network administrators want to count the number of high-level language con-

structs within a set of files. For example, administrators may want to compare two versions

of a configuration file by counting language structures at different levels of abstraction.

extract the number of interface commands at the start of an interface block via

the regular expression interface. Since grep outputs one line per match, and each

match corresponds to an interface, we can pipe the output to wc -l to count the

number of interfaces in a file.

Example 3 (bash-ios-ex3) in Figure 4.8 illustrates how practitioners can use xuwc

to directly count the number of interfaces in network device configurations. In the

previous example, we could indirectly count the number of interfaces by counting the

number of times an interface block was opened. Unlike grep pipelined with wc, xuwc

can count structures in a context-free language. Given input files router.v1.example

and router.v2.example the xupath //ios:interface tells xuwc to output the num-

ber of interface blocks in both input files.

We could make wc partially-aware of context-free languages by piping the output

of xugrep to wc. For example, we could use our xugrep to extract the interfaces in

the configuration in document order and escape the newlines in each block (via the

--R2=LE option). Each line in xugrep’s output would correspond to an interface in

the configuration files. We could then redirect this output to wc -l to count the

67

b
a
s
h
-
i
o
s
-
e
x
1
$

w
c

-
l

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

5
0

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

4
9

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

9
9

t
o
t
a
l

b
a
s
h
-
i
o
s
-
e
x
2
$

g
r
e
p

"
^
i
n
t
e
r
f
a
c
e
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

|

w
c

-
l

4 b
a
s
h
-
i
o
s
-
e
x
3
$

x
u
w
c

"
/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

C
O
U
N
T

C
O
U
N
T

U
N
I
T

C
O
N
T
E
X
T

2

i
o
s
:
i
n
t
e
r
f
a
c
e

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

2

i
o
s
:
i
n
t
e
r
f
a
c
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

2

I
O
S
:
I
N
T
E
R
F
A
C
E

2

F
I
L
E

T
O
T
A
L

b
a
s
h
-
i
o
s
-
e
x
4
$

x
u
w
c

"
/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
/
b
u
i
l
t
i
n
:
l
i
n
e
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

C
O
U
N
T

C
O
U
N
T

U
N
I
T

C
O
N
T
E
X
T

1
6

b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

1
6

b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

3
2

B
U
I
L
T
I
N
:
L
I
N
E

2

F
I
L
E

T
O
T
A
L

b
a
s
h
-
i
o
s
-
e
x
5
$

x
u
w
c

-
-
c
o
n
t
e
x
t
=
i
o
s
:
i
n
t
e
r
f
a
c
e

"
/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
/
b
u
i
l
t
i
n
:
l
i
n
e
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

C
O
U
N
T

C
O
U
N
T

U
N
I
T

C
O
N
T
E
X
T

7

b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e
,
L
o
o
p
b
a
c
k
0

9

b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e
,
G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

7

b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e
,
L
o
o
p
b
a
c
k
0

9

b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e
,
G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

3
2

B
U
I
L
T
I
N
:
L
I
N
E

4

I
O
S
:
I
N
T
E
R
F
A
C
E

T
O
T
A
L

w
c

an
d

xu
w

c
C

is
co

 IO
S

ex
am

pl
es

F
ig
u
re

4
.8
:

N
et

w
o
rk

a
d

m
in

is
tr

a
to

rs
an

d
au

d
it

or
s

m
ig

h
t

u
se

w
c

an
d
g
r
e
p

to
co

u
n
t

h
ig

h
-l

ev
el

st
ru

ct
u

re
s

w
it

h
in

a
fi

le
b

u
t
x
u
w
c

le
ts

p
ra

ct
it

io
n

er
s

co
u

n
t

re
la

ti
ve

to
n

o
n

-fi
le

co
n
te

x
ts

.

68

number of lines. Since lines correspond to interfaces, wc would give us the number of

interfaces in the configuration files.

A pipeline of xugrep and wc does not allow practitioners to easily count struc-

tures relative to a non-file context. For example, wc always reports the number of

bytes, characters, lines, or words in the context of the input files. Practitioners may

want to count structures that can’t be recognized by a regular expression and re-

port those counts relative to a non-file context. Examples 4 and 5 in Figure 4.8

demonstrate how to use xuwc to count the number of lines per interface and report

results in two different ways. Given our two example router input files, the xupath

//ios:interface/builtin:line tells xuwc to count the number of lines contained

within each interface. In Example 4, xuwc outputs the number of lines per interface

in the context of the entire file. In contrast, Example 5 uses the --context flag so

that xuwcoutputs counts in the context of interfaces. For example, we can see that

the GigabitEthernet4/2 interface in router.v1.example contains 9 lines.

4.1.3 XUDiff

Traditional Unix diff computes an edit script between two files in terms of their

lines. diff outputs an edit script that describes how to transform the sequence of

lines in the first file into the sequence of lines in the second file via a sequence of edit

operations (delete, insert, substitute) [39]. All of these edit operations are performed

upon lines in the context of the entire file.

While traditional diff lets practitioners compare files in terms of the line, our

xudiff allows practitioners to compare files in terms of higher-level language con-

structs specified by a context-free grammar. Figure 4.9 shows the command-line

syntax for diff and xudiff respectively.

69

xudiff [--cost=<cost_fn>] <xupath> <input_file1> <input_file2>

xudiff usage

Figure 4.9: Our xudiff compares two files in terms of the parse trees generated by

applying an xupath to each file. An optimal edit-cost function affects the choice among

competing matches.

We designed xudiff with real-world use cases in mind. We now motivate xudiff

with a few of those usage scenarios.

Document-Centric XML

A wide variety of documents ranging from webpages, to office documents, to digitized

texts are encoded according to some XML schema. Practitioners may want to com-

pare versions of these documents in terms of elements of that schema. For example,

a security analyst may want to compare versions of security policies in terms of sec-

tions, or subsections. Although tools exist to compare XML documents [30, 145], we

offer a general-purpose solution for a wider variety of structured texts.

Network Configuration Management

Current tools such as the Really Awesome New Cisco config Differ (RANCID) [103]

let network administrators view changes to router configuration files in terms of lines.

However, administrators may want to view changes in the context of other structures

defined by Cisco IOS. Alternatively, network administrators may want to compare

configurations when they migrate services to different routers.

If a network administrator moves a network interface for a router configuration

file, then a line-based edit script for the router configurations may report the change

as 8 inserts and 8 deletes. However, an edit script that reports changes in terms of

interfaces terms of interfaces (“interface X moved”) might be more readable and less

70

computationally intensive.

Example 1 (bash-ios-ex1) of Figure 4.10 shows the edit script when an admin-

istrator runs diff on the two files in Figure 4.7. The diff command takes two input

files and outputs the line-level differences between them. In the resultant output, we

see that the ip address was changed (the IP address 333.444.1.185 was changed to

333.444.1.581). The crypto map azalea line was changed to crypto map daffodil.

The ip access-group inbound filter out line was deleted and ip flow ingress

was inserted.

Practitioners, however, may want to be able to summarize changes between two

configuration files at arbitrary levels of abstraction as represented by the Cisco IOS

language. Traditional diff cannot handle this use case because it requires us both to

solve the parentheses-matching problem, and to process and report changes relative

to the context encoded by the parse tree.

Although the full Cisco IOS grammar is context-sensitive, meaningful subsets of

the grammar, such as interface blocks and other nested blocks, are context-free [16].

Before we can compare interface blocks, we need to be able to easily extract them.

In this use case, we are interested in how the sequence of interface blocks changed

between two versions of a router configuration file. If we wanted only to understand

how the sequence of lines or sequence of interfaces changed, then we could use our

xugrep to extract the interfaces or lines in document order, escape the newlines in

each block, and pipe the sequence of interfaces or lines into diff.

However, we want to understand how the lines in a configuration change with

respect to the contexts defined by the Cisco IOS language. We want to report changes

in terms of the entire configuration file or even in terms of individual interfaces.

Examples 2-4 in Figure 4.10 and Figure 4.11 illustrate how we can use xudiff to

report changes at different levels of abstraction.

Example 2 (bash-ios-ex2) shows how practitioners can pipeline xudiff with

71

b
a
s
h
-
i
o
s
-
e
x
1
$

d
i
f
f

-
u

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

-
-
-

d
a
t
a
/
t
e
s
t
/
c
i
s
c
o
_
i
o
s
/
r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

2
0
1
3
-
0
1
-
0
4

0
7
:
0
0
:
5
3
.
0
0
0
0
0
0
0
0
0

-
0
6
0
0

+
+
+

d
a
t
a
/
t
e
s
t
/
c
i
s
c
o
_
i
o
s
/
r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

2
0
1
2
-
1
2
-
1
6

0
0
:
2
9
:
4
4
.
0
0
0
0
0
0
0
0
0

-
0
6
0
0

@
@

-
1
,
1
6

+
1
,
1
6

@
@

i
n
t
e
r
f
a
c
e

L
o
o
p
b
a
c
k
0

d
e
s
c
r
i
p
t
i
o
n

r
e
a
l
l
y

c
o
o
l

d
e
s
c
r
i
p
t
i
o
n

-

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
1
8
5

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s

+

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
5
8
1

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

i
p

p
i
m

s
p
a
r
s
e
-
d
e
n
s
e
-
m
o
d
e

-

c
r
y
p
t
o

m
a
p

a
z
a
l
e
a

+

c
r
y
p
t
o

m
a
p

d
a
f
f
o
d
i
l

!

i
n
t
e
r
f
a
c
e

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

d
e
s
c
r
i
p
t
i
o
n

C
o
r
e

N
e
t
w
o
r
k

i
p

a
d
d
r
e
s
s

4
4
4
.
5
5
5
.
2
.
5
4
3

2
5
5
.
2
5
5
.
2
5
5
.
2
4
0

i
p

a
c
c
e
s
s
-
g
r
o
u
p

o
u
t
b
o
u
n
d
_
f
i
l
t
e
r

i
n

-

i
p

a
c
c
e
s
s
-
g
r
o
u
p

i
n
b
o
u
n
d
_
f
i
l
t
e
r

o
u
t

n
o

i
p

r
e
d
i
r
e
c
t
s

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

n
o

i
p

p
r
o
x
y
-
a
r
p

+

i
p

f
l
o
w

i
n
g
r
e
s
s

! b
a
s
h
-
i
o
s
-
e
x
2
$

x
u
d
i
f
f

"
/
/
i
o
s
:
c
o
n
f
i
g
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

|

e
g
r
e
p

"
i
o
s
:
c
o
n
f
i
g
"

U

4

0

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

=
=
=
>

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

b
a
s
h
-
i
o
s
-
e
x
3
$

x
u
d
i
f
f

"
/
/
i
o
s
:
c
o
n
f
i
g
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

|

e
g
r
e
p

"
i
o
s
:
c
o
n
f
i
g
"

U

4

0

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

=
=
=
>

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

U

2

0

L
o
o
p
b
a
c
k
0

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

=
=
=
>

L
o
o
p
b
a
c
k
0

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

U

2

0

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

=
=
=
>

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

di
ff

an
d

xu
di

ff
IO

S
ex

am
pl

es

F
ig
u
re

4
.1
0
:

O
u

r
x
u
d
i
f
f

co
m

p
ar

es
tw

o
fi

le
s

in
te

rm
s

of
th

ei
r

p
ar

se
tr

ee
s

an
d

so
p

ra
ct

it
io

n
er

s
m

ay
v
ie

w
ch

an
ge

s
at

m
u

lt
ip

le
le

ve
ls

of

a
b

st
ra

ct
io

n
.

In
co

n
tr

a
st

,
d
i
f
f

op
er

a
te

s
on

on
e

le
ve

l
of

ab
st

ra
ct

io
n

,
th

e
li

n
e.

72

b
a
s
h
-
i
o
s
-
e
x
4
$

x
u
d
i
f
f

"
/
/
i
o
s
:
c
o
n
f
i
g
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

U

4

0

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

=
=
=
>

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

U

2

0

L
o
o
p
b
a
c
k
0

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

=
=
=
>

L
o
o
p
b
a
c
k
0

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

U

0

0

d
e
s
c
r
i
p
t
i
o
n

r
e
a
l
l
y

c
o
o
l

d
e
s
c
r
i
p
t
i
o
n

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

d
e
s
c
r
i
p
t
i
o
n

r
e
a
l
l
y

c
o
o
l

d
e
s
c
r
i
p
t
i
o
n

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

1

1

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
1
8
5

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
5
8
1

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
\

s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

0

0

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

0

0

i
p

p
i
m

s
p
a
r
s
e
-
d
e
n
s
e
-
m
o
d
e

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

i
p

p
i
m

s
p
a
r
s
e
-
d
e
n
s
e
-
m
o
d
e

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

1

1

c
r
y
p
t
o

m
a
p

a
z
a
l
e
a

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

c
r
y
p
t
o

m
a
p

d
a
f
f
o
d
i
l

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

2

0

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

=
=
=
>

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

U

0

0

d
e
s
c
r
i
p
t
i
o
n

C
o
r
e

N
e
t
w
o
r
k

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

d
e
s
c
r
i
p
t
i
o
n

C
o
r
e

N
e
t
w
o
r
k

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

0

0

i
p

a
d
d
r
e
s
s

4
4
4
.
5
5
5
.
2
.
5
4
3

2
5
5
.
2
5
5
.
2
5
5
.
2
4
0

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

i
p

a
d
d
r
e
s
s

4
4
4
.
5
5
5
.
2
.
5
4
3

2
5
5
.
2
5
5
.
2
5
5
.
2
4
0

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

0

0

i
p

a
c
c
e
s
s
-
g
r
o
u
p

o
u
t
b
o
u
n
d
_
f
i
l
t
e
r

i
n

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

i
p

a
c
c
e
s
s
-
g
r
o
u
p

o
u
t
b
o
u
n
d
_
f
i
l
t
e
r

i
n

(
b
u
i
l
t
i
n
:
l
i
n
e
)

D

1

1

i
p

a
c
c
e
s
s
-
g
r
o
u
p

i
n
b
o
u
n
d
_
f
i
l
t
e
r

o
u
t

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

^

U

0

0

n
o

i
p

r
e
d
i
r
e
c
t
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

n
o

i
p

r
e
d
i
r
e
c
t
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

0

0

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

n
o

i
p

u
n
r
e
a
c
h
a
b
l
e
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

U

0

0

n
o

i
p

p
r
o
x
y
-
a
r
p

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

n
o

i
p

p
r
o
x
y
-
a
r
p

(
b
u
i
l
t
i
n
:
l
i
n
e
)

I

2

1

^

=
=
=
>

i
p

f
l
o
w

i
n
g
r
e
s
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

b
a
s
h
-
i
o
s
-
e
x
5
$

x
u
d
i
f
f

-
-
c
o
s
t
_
f
n
=
w
o
r
d
_
e
d
i
s
t
_
c
o
s
t

"
/
/
i
o
s
:
c
o
n
f
i
g
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

|

e
g
r
e
p

"
i
o
s
:
i
n
t
e
r
f
a
c
e
|
i
o
s
:
c
o
n
f
i
g
"

U

9

0

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

=
=
=
>

r
o
o
t

(
i
o
s
:
c
o
n
f
i
g
)

U

2

0

L
o
o
p
b
a
c
k
0

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

=
=
=
>

L
o
o
p
b
a
c
k
0

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

U

7

0

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

=
=
=
>

G
i
g
a
b
i
t
E
t
h
e
r
n
e
t
4
/
2

(
i
o
s
:
i
n
t
e
r
f
a
c
e
)

b
a
s
h
-
i
o
s
-
e
x
6
$

x
u
d
i
f
f

-
-
c
o
s
t
_
f
n
=
c
h
a
r
_
e
d
i
s
t
_
c
o
s
t

"
/
/
i
o
s
:
c
o
n
f
i
g
"

r
o
u
t
e
r
.
v
1
.
e
x
a
m
p
l
e

r
o
u
t
e
r
.
v
2
.
e
x
a
m
p
l
e

|

a
w
k

'
$
3

<

5

{
p
r
i
n
t

$
0
;
}
'

|

a
w
k

'
$
3

>

0

{

p
r
i
n
t

$
0
;
}
'

U

2

2

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
1
8
5

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

=
=
=
>

i
p

a
d
d
r
e
s
s

3
3
3
.
4
4
4
.
1
.
5
8
1

2
5
5
.
2
5
5
.
2
5
5
.
2
5
5

n
o

i
p

r
e
d
i
r
e
c
t
s

(
b
u
i
l
t
i
n
:
l
i
n
e
)

xu
di

ff
IO

S
ex

am
pl

es

F
ig
u
re

4
.1
1
:

In
th

is
F

ig
u

re
,

w
e

se
e

m
or

e
ex

am
p

le
s

of
x
u
d
i
f
f

in
ac

ti
on

.
S

p
ec

ifi
ca

ll
y,

w
e

se
e

th
e

ab
il

it
y

to
sp

ec
if

y
a

co
st

fu
n

ct
io

n
b

et
w

ee
n

p
ar

se
tr

ee
n

o
d

es
.

A
s

a
re

su
lt

,
w

e
ca

n
is

ol
at

e
ch

an
ge

s
th

at
ar

e
v
er

y
su

b
tl

e
w

it
h

in
m

u
lt

ip
le

ve
rs

io
n

s
of

th
e

co
n

fi
gu

ra
ti

on
fi

le
s.

73

egrep to get a summary of changes to the entire router configuration. Given two input

files and the xupath of ios:config, xudiff parses both files relative to the grammar

production for a Cisco IOS configuration file and then compares the resultant parse

trees with a tree edit distance algorithm (we introduced tree edit distance algorithms

in Chapter 3). We then use egrep to extract the portion of the edit script that

applies to the entire configuration file. If we read the output, we see that the subtree

for the entire router.v1.example was updated (U) to the subtree for the entire

router.v2.example. The cost of updating the root nodes for both configurations’

parse trees was 0, but the accumulated cost of updating the nodes within each parse

tree was 4. By default, xudiff assigns a unit cost to delete, insert, or update a node

in a parse tree.

If practitioners want to understand changes to the configuration file in terms of

interfaces, then they can modify the egrep command to extract lines in the edit

script that correspond to interface blocks. The modified pipeline in Example 3

(bash-ios-ex3) shows that the Loopback0 interface as well as the GigabitEthernet4/2

interface blocks were modified. Each of those blocks corresponds to a subtree in the

parse trees for the input files. The cost to modify the root node of each interface’s

subtree was 0, but the overall cost was 2 per interface.

Alternatively, practitioners may want to view all changes, Example 4 (bash-ios-ex4)

shows the entire edit script. One thing that we might notice is that an IP address and

a single word were updated in the Loopback0 interface but that a line was deleted

and inserted in the GigabitEthernet4/2 interface. Our edit script in Example 3

however, reported the same amount of changes in both interface blocks (2 nodes per

interface subtree). xudiff allows practitioners to use different edit costs so as to

bring out changes below the level of individual parse tree nodes.

In Example 5 (bash-ios-ex5) xudiff uses the --cost fn flag to compare parse

tree node labels using word edit distance. As a result, we can see that in terms

74

of words, GigabitEthernet4/2 changed much more (7 words) than Loopback0 (2

words).

Finally, practitioners may want to find changes between versions of a file that are

very subtle, perhaps differing by just a few characters. Example 6 (bash-ios-ex6)

shows how to use xudiffwith a character-based cost function combined with awk, to

filter out nodes in the parse tree whose labels changed by 1–4 characters.

4.2 Conclusions

Our XUTools to address practical use cases that current text-processing tools can not.

During the design process of our tools, we spoke with system administrators, audi-

tors, and developers to understand the full spectrum of use cases for Unix tools that

operate on context-free languages. Although our approach has a language-theoretic

foundation, we hope that this chapter has demonstrated the practical implications

for XUTools. In the next chapter (Chapter 5), we will describe the design and imple-

mentation of our XUTools.

75

Chapter 5

Design and Implementation of

XUTools

The security problems we encountered in the fieldwork of Chapter 2 reduce to the

need to efficiently manipulate and analyze structured text—like Unix did years ago,

but for a broader class of languages. We designed XUTools to extend the class of

languages upon which practitioners can practically compute.

In the first section of this chapter, we reinterpret each of the three core limitations

of security policy analysis as design requirements for text-processing tools and sketch

how our XUTools meet those requirements.

In the second section of this chapter, we describe the implementation of XUTools.

5.1 Design Requirements

The three core limitations of security policy analysis suggest design requirements for

XUTools.

76

5.1.1 Tools Gap Problem

We designed our text-processing tools to address the capability gap between tradi-

tional text-processing tools and the policy languages we encountered during our field-

work. Traditional Unix tools primarily operate on regular languages–sets of strings

that are in the language of a regular expression. If a string is in the language of a

regular expression, then we say that the string matches that regular expression. Unix

tools also operate by splitting an input string wherever a match occurs. Consider the

following examples:

1. We can use a regular expression to match characters in an input string. Ac-

cording to the grep man page, these are the most fundamental expressions

because they are the building blocks upon which other regular expressions are

built [56]. The Portable Operating System Interface for uniX (POSIX) defines

certain classes (or sets) of characters that are routinely used to build expres-

sions [99]. These character classes include alphanumeric characters, lower case

characters, punctuation, and whitespace.

2. We can use regular expressions to process a sequence of elements separated by

a character called a delimiter. For example, we can view the contents of an

input file as a sequence of lines. The delimiter for elements in this sequence is

the newline character. We can write a simple regular expression to search for

all matches of the newline character in the input string. The strings of text

between matches correspond to lines.

3. We can use regular expressions to process fields in a Comma-Separated Value

(CSV) file. CSV files encode tabular data where each row corresponds to a line.

Lines consist of a sequence of fields that are delimited by a comma. We can use

regular expressions to iterate through items in this table in row-major order.

First, we can extract the lines in the manner described in the previous bullet.

77

For each line, we can search for all matches of the comma character and the

strings of text between matches correspond to fields.

When lines and files correspond to meaningful constructs in markup, configura-

tion, and programming languages, traditional Unix tools work well. For example,

each line of an Apache web server’s log file corresponds to an HTTP request received

by the server.

Many file formats found in markup, configuration, and programming languages

use hierarchical object models. Hierarchical object models may contain arbitrarily

deep hierarchies. Our xugrep, xuwc, and xudiff allow practitioners to extract, count,

and compare texts in terms of these hierarchical object models and thereby address

the Tools Gap Problem.

5.1.2 Granularity of Reference Problem

Second, practitioners need to be able to process texts on multiple levels of abstraction.

In Chapter 3, we observed that grammars and parse trees give us a natural way to

formalize languages with hierarchical structures that correspond to different levels of

abstraction. Therefore, we designed our XUTools to operate upon parse trees.1

5.1.3 Policy Discovery Needs Problem

Third and finally, practitioners need to measure security policies and how they change.

Therefore, formalized policy analysis techniques in terms of the datatype operations

discussed in Chapter 3. Our xuwc and xudiff tools both allow practitioners to count

and compare evolving security primitives using measures such as counting high-level

1We should note that in addition to “eXtended Unix”, we also chose the xu prefix from the
Ancient Greek word ξυλον, denoting “tree” or “staff”. We find the former sense of the word
especially appropriate for the second design requirement given that XUTools operate on parse trees
and process texts relative to languages with hierarchical structure.

78

structures as well as string and tree distance metrics.2

5.2 XUTools Internals

We now discuss the internals of our XUTools. For each tool we will provide a detailed

working example and then discuss that tool’s algorithm and implementation.

5.2.1 XUGrep Internals

As mentioned in Chapter 4, xugrep reports all strings in the input files that satisfy

an xupath query. We now explain how xugrep works in detail.

Working Example

We now provide a detailed example of how xugrep extracts high-level language con-

structs from one or more input files. We focus on a call to xugrep that extracts

all lines contained within each interface block from the configuration file shown in

Figure 4.2 of Chapter 4.

As described in Chapter 4, xugrep takes one or more input files and a xupath as

input and extracts all strings in the language of the xupath. In Figure 5.1 we see

that xugrep first parses the xupath into a xupath parse tree using a grammar that

specifies xupath. xugrep interprets an xupath as a tree that encodes an iterative

querying process, a xupath query tree. The query tree root’s children correspond to

the contents of each input file. We view the leaf nodes of the query tree as a corpus, or

a set of strings in the language at the leaf-level of the query tree. Here, the leaf-level

corresponds to all strings in the language of the ios:config production.

Our xugrep processes a query via a postorder traversal of the xupath parse tree.

2We should note that the sense of the word ξυλον as “staff” is appropriate for this third design
requirement libxutools support administrators and auditors by automating currently-manual analysis
techniques, allowing them to focus on higher-level change trends and more complicated analyses.

79

xugrep //ios:interface/builtin:line router.v1.example

NEXT_STEPS

PATH

PRODUCTION

STEP

2

8

73

1 PREDICATE

PRODUCTION

STEP

5

6

4 PREDICATE

xupath parse tree

current corpus

xupath query tree

IOS:CONFIG

Figure 5.1: In the command above, we invoke xugrep on a router configuration file

to extract all lines contained within interfaces. Specifically, xugrep parses the xupath

(//ios:interface/builtin:line into a xupath parse tree. In addition, xugrep initializes a

xupath query tree and a corpus.

During the traversal when a node corresponding to a production has been reached,

xugrep extracts all strings in the language of that production name from the (old)

corpus. Figure 5.2 shows that when xugrep reaches node 1 in the xupath parse tree,

that it extracts all strings in the language of the ios:interface production from the

(old) corpus. These matching strings are then used to construct the next level of the

xupath query tree and the leaves of this tree form the (new) current corpus. Figure 5.3

shows a similar process to extract the lines contained within each interface. Once the

entire xupath parse tree has been traversed, xugrep outputs the current corpus.

We should note however, that the structure of the xupath query tree and its

vertices, allow us to report the result set relative to different levels of context. Specif-

ically, we can report the elements in the result set relative to the entire input corpus

by outputting the labels of the tree vertices on the path from the result corpus element

to the tree root.

Traditional grep reports matching lines relative to the context of the file in which

the match was found. In contrast, our xugrep reports matching corpus elements

80

x
u
g
r
e
p

/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
/
b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
1
.
i
o
s

2

8

7
3

1

5

6

4

xu
pa

th
 p

ar
se

 tr
ee

xu
pa

th
 q

ue
ry

 tr
ee

IO
S:

C
O

N
FI

G

IO
S:

IN
TE

R
FA

C
E

IO
S:

IN
TE

R
FA

C
E

cu
rre

nt
 c

or
pu

s
ol

d
co

rp
us

F
ig
u
re

5
.2
:

T
o

ex
tr

a
ct

a
ll

st
ri

n
g
s

in
th

e
la

n
gu

ag
e

of
th

e
x
u
-

p
at

h
x
u
g
r
e
p

tr
av

er
se

s
th

e
x
u

p
at

h
p

ar
se

tr
ee

in
p

os
to

rd
er

.
W

h
en

x
u
g
r
e
p

ar
ri

ve
s

at
a

n
o
d

e
fo

r
a

p
ro

d
u

ct
io

n
(i
o
s
:
i
n
t
e
r
f
a
c
e
),

x
u
g
r
e
p

ex
tr

ac
ts

a
ll

st
ri

n
gs

in
th

e
la

n
gu

ag
e

of
th

at
p

ro
d

u
ct

io
n

fr
o
m

th
e

cu
rr

en
t

co
rp

u
s.

T
h

e
re

su
lt

s
ar

e
u

se
d

to
in

st
an

ti
at

e
a

n
ew

co
rp

u
s

w
h

os
e

el
em

en
ts

co
rr

es
p

o
n

d
to

th
e

le
af

-l
ev

el
of

th
e

x
u

p
at

h

q
u

er
y

tr
ee

.

x
u
g
r
e
p

/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
/
b
u
i
l
t
i
n
:
l
i
n
e

r
o
u
t
e
r
.
v
1
.
i
o
s

2

8

7
3

1

5

6

4

xu
pa

th
 p

ar
se

 tr
ee

xu
pa

th
 q

ue
ry

 tr
ee

IO
S:

C
O

N
FI

G

IO
S:

IN
TE

R
FA

C
E

IO
S:

IN
TE

R
FA

C
E

LI
N

E
LI

N
E

LI
N

E
LI

N
E

...
...

cu
rre

nt
 c

or
pu

s
ol

d
co

rp
us

F
ig
u
re

5
.3
:

W
h

en
x
u
g
r
e
p

v
is

it
s

an
ot

h
er

n
o
d

e
in

th
e

x
u

p
at

h
p

ar
se

tr
ee

th
at

co
rr

es
p

on
d

s
to

a
p

ro
d

u
ct

io
n

,
it

ag
ai

n
ex

tr
ac

ts
st

ri
n

gs
in

th
e

la
n

gu
ag

e
of

th
e

p
ro

d
u

ct
io

n
fr

om
th

e
(o

ld
)

co
rp

u
s.

In
th

is

ex
am

p
le

,
w

e
se

e
h

ow
x
u
g
r
e
p

ex
tr

ac
ts

li
n

es
fr

om
a

co
rp

u
s

of
in

te
r-

fa
ce

s.
A

ft
er

th
e

x
u

p
at

h
p

ar
se

tr
ee

h
as

b
ee

n
co

m
p

le
te

ly
tr

av
er

se
d

,

x
u
g
r
e
p

ou
tp

u
ts

th
e

co
n
te

n
ts

of
th

e
cu

rr
en

t
co

rp
u

s.

81

relative to a subtree of our xupath query tree. Figure 5.4 illustrates how we may

report matching lines relative to the interfaces and router configuration files in which

they are contained.

Level 1: Input Corpus
(files)

Level 2: Cisco IOS Interfaces

...

Level 3: Output Corpus
(lines)

router.v1.example <router.v2.example, GigabitEthernet4/2, 7>

IOS:INTERFACE

BUILTIN:LINE

FILE

language_name: FILE
label: router.v2.example
text: interface … !

language_name: IOS:INTERFACE
label: GigabitEthernet4/2
text: interface GigabitEthernet4/2…!

language_name: BUILTIN:LINE
label: 7
text: no ip proxy-arp

IOS:INTERFACE

BUILTIN:LINE

...

BUILTIN:LINE BUILTIN:LINE

...

IOS:INTERFACE

BUILTIN:LINE

FILE

IOS:INTERFACE

BUILTIN:LINE

...

BUILTIN:LINE BUILTIN:LINE

<router.v1.example, GigabitEthernet4/2>

<Loopback0, 2>

Figure 5.4: We may report matches that satisfy an xupath query in terms of surrounding

high-level language structures. In this figure, we show that we can report matching lines

relative to the interfaces and router configuration files in which they are contained.

Algorithm

We implement xugrep’s interpretation of xupath as follows. We use the input files to

instantiate a result corpus that comprises a set of elements whose contents correspond

to the file contents. xugrep outputs a result corpus that contains the corpus elements

whose substrings satisfy the xupath query.

We then parse the xupath query. We perform a postorder traversal of the xupath

parse tree. Since the vertices of XUTools parse trees are corpus elements, we check

the language name of each vertex as we traverse.

82

GRAMMAR_PRODUCTION

STEP

PREDICATE

NEXT_STEPS

Input Corpus (files)

Vertex 1: Cisco IOS Interfaces

Vertex 4: Output Corpus (lines)

router.v1.example

GigabitEthernet4/2

7

PATH

GRAMMAR_PRODUCTION

STEP

PREDICATE

language_name: GRAMMAR_PRODUCTION
text: ios:interface

language_name: GRAMMAR_PRODUCTION
text: builtin:line

1

4

xugrep //ios:interface/builtin:line router.v1.example router.v2.example

Figure 5.5: xugrep iteratively constructs a result corpus by a postorder traversal of the

xupath parse tree. The first and second language names, correspond to the second and

third levels of the xupath query tree shown in Figure 5.1.

If the value of the language name field is grammar production, then we re-

trieve the string associated with that corpus element (the value of the text field. For

example in Figure 5.5, at the first node, the grammar production is ios:interface

whereas it is builtin:line at the fourth node (in postorder). When we encounter a

node that represents a grammar production, we use scan string on every ele-

ment in our result corpus to generate a new result corpus whose elements correspond

to strings in the desired language (interfaces or lines in Figure 5.5).

Alternatively, if the language name is predicate, then we can filter the result

corpus for elements that satisfy the predicate condition.

After completing the postorder traversal of the xupath parse tree, we output the

result corpus. Currently, we report the path from the result corpus element to the

xupath query tree root.

83

<
"in

t\n
pu

ts
tr(

ch
ar

 *s
)\n

{ …
 }"

,

"in
t\n

fa
c(

in
t n

)\n
{ …

 }"
,

"in

t\n
pu

tn
(in

t n
)\n

{ …
 }"

,

"in
t\n

fa
cp

r(i
nt

 n
)\n

{ …
 }"

,

"in
t\n

m
ai

n(
)\n

{ …
 }"

 >

6
N

EX
T_

ST
EP

S

7
 P

AT
H

1
G

R
AM

M
AR

_P
R

O
D

U
C

TI
O

N

5
ST

EP

4
PR

ED
IC

AT
E

la
ng

ua
ge

_n
am

e:
 G

R
AM

M
AR

_P
R

O
D

U
C

TI
O

N
te

xt
:

cs
pe

c:
fu

nc
tio

n

x
u
g
r
e
p

-
1

/
/
c
s
p
e
c
:
f
u
n
c
t
i
o
n
[
r
e
:
t
e
s
t
s
u
b
t
r
e
e
(
'
f
a
c
p
r
'
,
'
g
i
'
)
]

e
x
a
m
p
l
e
.
v
1
.
c

3
N

EX
T_

ST
EP

S
2

R
EG

U
LA

R
_E

XP
R

ES
SI

O
N

la
ng

ua
ge

_n
am

e:
 R

EG
U

LA
R

_E
XP

R
ES

SI
O

N
te

xt
:

fa
cp

r

re
su

lt
lis

t
re

su
lt

la
ng

ua
ge

 n
am

es
po

si
tio

n

1

la
be

l-v
al

ue
 p

at
hs

<
 <

ex
am

pl
e.

v1
.c

, p
ut

st
r>

,

 <
ex

am
pl

e.
v1

.c
, f

ac
>,

 <

ex
am

pl
e.

v1
.c

, p
ut

n>
,

 <

ex
am

pl
e.

v1
.c

, f
ac

pr
>,

 <

ex
am

pl
e.

v1
.c

, m
ai

n>
 >

<
FI

LE
, c

sp
ec

:fu
nc

tio
n>

0
<

"in
t\n

pu
ts

tr…
re

tu
rn

0;
\n

}"
>

<
<e

xa
m

pl
e.

v1
.c

>
>

<F
IL

E>

<
"in

t\n
fa

cp
r(i

nt
 n

)\n
{ …

 }"
,

"in

t\n
m

ai
n(

)\n
{ …

 }"
 >

2
- 7

<
 <

ex
am

pl
e.

v1
.c

, f
ac

pr
>,

 <

ex
am

pl
e.

v1
.c

, m
ai

n>
 >

<
FI

LE
, c

sp
ec

:fu
nc

tio
n>

F
ig
u
re

5
.6
:

T
h

is
fi

g
u

re
sh

ow
s

h
ow

x
u
g
r
e
p

co
n

st
ru

ct
s

an
re

p
or

t
as

it
tr

av
er

se
s

th
e

in
p

u
t

x
u

p
at

h
’s

p
ar

se
tr

ee
.
x
u
g
r
e
p

b
eg

in
s

(a
t

st
ep

0)

b
y

p
la

ci
n

g
th

e
in

p
u

t
fi

le
s

co
n
te

n
ts

in
to

a
re

su
lt

li
st

,
th

e
fi
le

n
am

es
in

to
th

e
la

b
el

-v
al

u
e

p
at

h
s

li
st

,
an

d
th

e
F

IL
E

co
n

st
an

t
in

to
th

e
li

st
of

re
su

lt
la

n
gu

a
ge

n
am

es
.

A
t

st
ep

1,
x
u
g
r
e
p

u
se

s
th

e
p
a
r
s
e

op
er

at
io

n
(i

n
tr

o
d

u
ce

d
in

C
h

ap
te

r
3)

to
ex

tr
ac

t
al

l
st

ri
n

gs
in

th
e

la
n

gu
ag

e
of

th
e

p
ro

d
u

ct
io

n
re

fe
re

n
ce

d
b
y

c
sp

e
c
:f

u
n
c
t
io

n
.

T
h

e
ex

tr
ac

te
d

st
ri

n
gs

fo
rm

th
e

n
ew

re
su

lt
li

st
an

d
th

e
la

b
el

-v
al

u
e

p
at

h
s

ar
e

ex
te

n
d

ed
to

in
cl

u
d

e
th

e
l
a
b
e
l

va
lu

es
fo

r
th

e
n

ew
st

ri
n

gs
.

F
in

al
ly

,
at

st
ep

2,
th

e
re

su
lt

li
st

is
fi

lt
er

ed
so

th
at

on
ly

en
tr

ie
s

th
at

co
n
ta

in
th

e
st

ri
n

g
fa

cp
r

re
m

ai
n

.

84

Implementation

We currently implement xugrep as a postorder traversal of the supplied xupath’s

parse tree. As we traverse this tree, we construct an xugrep report that contains

(1) a result list of strings that satisfy the currently-processed xupath query, (2) a

list of label-value paths for each of the strings, and (3) a list of language names that

specifies the language associated with each element in a label-value path. Figure 5.6

illustrates how the xugrep generates the report as it walks the parse tree.

We implemented xugrep in Python using a functional programming style. We

have one xugrep report update function for every type of xupath parse tree node:

grammar production, path, predicate, regular expression, and

next steps. Our current implementation of xugrep is 191 lines.

5.2.2 XUWc Internals

In Chapter 4 we saw how one could use xuwc to count high-level language constructs

and report counts relative to non-file contexts. In this section, we will explain how

xuwc works.

Working Examples

In the following working examples, we explain in detail how xuwc works. In general,

xuwc uses a xupath query tree to report counts. More information about the xupath

query tree may be found in the previous subsection on xugrep.

85

IOS:INTERFACE

IOS:CONFIG

IOS:INTERFACE

IOS:CONFIG

IOS:INTERFACE IOS:INTERFACE

router.v1.example router.v2.example

xuwc //ios:interface router.v1.example router.v2.example

Figure 5.7: In the example above, we use xuwc to count the number of Cisco IOS interfaces

within two configuration files. xuwc counts the number of interfaces (leaves in the xupath

query tree) per file subtree (outlined in grey). Therefore, xuwc reports 2 interfaces in

router.v1.example and 2 interfaces in router.v2.example.

IOS:INTERFACE

IOS:CONFIG

IOS:INTERFACE

...

LINE LINE
...

LINE LINE

IOS:INTERFACE

IOS:CONFIG

IOS:INTERFACE

...

LINE LINE
...

LINE LINE

router.v1.example router.v2.example

xuwc //ios:interface/builtin:line router.v1.example router.v2.example

Figure 5.8: In this example, we can use xuwc to count the number of lines per Cisco IOS

interface. Again, we see that xuwc will report the number of lines per file by counting the

number of leaves per file subtree within the xupath query tree.

xuwc reports the number of high-level language constructs in the language of the

xupath within each input file. Given a set of input files and a xupath, xuwc by default

will count the number of leaves within each file subtree of the xupath query parse tree.

Figure 5.7 illustrates this use case. When xuwc is invoked on two router configuration

files with the xupath //ios:interface, xuwc reports the number of interface leaves

per file subtree. In this example, two interfaces are extracted from each of the two

86

router configuration files. Figure 5.8 shows how xuwc can report the total number of

lines that belong to network interfaces using a similar procedure as in Figure 5.7.

IOS:INTERFACE

FILE

IOS:INTERFACE

...

LINE LINE
...

LINE LINE

router.v1.example

IOS:INTERFACE

FILE

IOS:INTERFACE

...

LINE LINE
...

LINE LINE

router.v2.example

xuwc --context=ios:interface //ios:interface/builtin:line
 router.v1.example router.v2.example

Figure 5.9: We can use xuwc to report counts relative to other high-level language con-

structs within a file. For example, by setting the --context flag to ios:interface, xuwc

will report the number of line leaves per interface subtree.

In Chapter 4, we mentioned that xuwc allows practitioners to report counts relative

to non-file contexts via the --context flag. In Figure 5.9, xuwc once again constructs

a xupath query tree, but reports the number of leaves per ios:interface subtree

rather than by file subtree (the default).

Algorithm

We currently implement xuwc’s interpretation of an xupath by processing the result

corpus output by xugrep.

If the --count parameter is unspecified and the --context parameter is unspeci-

fied, then we return the number of results for each FILE subtree of the xupath query

parse tree.

If the --count parameter is unspecified and the --context parameter is specified,

then we partition the result set according to the subtrees rooted at the level of the

context language, and return the number of results for each subtree.

87

If the --count parameter is specified and the --context parameter is unspecified,

then we count the number of bytes, words, or characters per element in the result set

and return the number of results for each FILE subtree of the xupath query parse

tree.

If the --count parameter is specified and the --context parameter is specified,

then we partition the result set according to the subtrees rooted at the level of the

context language, count the number of strings in the language of the value of the

--count parameter, and return the counts for each subtree.

In Chapter 6, we describe the implementation and evaluation of xuwc.

Implementation

We currently implement xuwc by processing an xugrep report for the input. First,

we call xugrep on the xupath and input files to obtain an xugrep report.

We implemented xuwc in Python. The method that implements our algorithm in

Chapter 5 is 96 lines. The total number of lines for the xuwc is 166 lines.

5.2.3 XUDiff Internals

Chapter 4 showed that xudiff compares two files in terms of high-level language

structures that are specified by a context-free grammar. We will now describe how

xudiff does this comparison.

Working Example

Figure 5.10 shows how xudiff works. Given two input files (in this case router

configuration files), xudiff parses the contents of those files relative to the production

in the xupath (ios:config). Once the parse trees have been produced, xudiff uses

the Zhang and Shasha tree edit distance algorithm to compute a matching between

the two trees. Unmatched nodes in the parse tree of the first configuration file are

88

reported as deletions, while unmatched nodes in the second configuration files are

insertions. Finally, updates may be reported when the labels of matched nodes differ.

The example in Figure 5.10 shows that there are updates within the subtrees for the

Loopback0 interface blocks.

xudiff.py //ios:config router.v1.example router.v2.example

parser for
Cisco IOS

router.v1.example

Loopback0

v1

GigabitEthernet4/2

parser for
Cisco IOS

router.v2.example

Loopback0

v2

GigabitEthernet4/2

Figure 5.10: Practitioners may use xudiff to compare two network device configurations

in terms of structures in a configuration language. In the example above, we see how xudiff

compares the two router configuration files shown in Chapter 4. xudiff parses both input

files relative to the production for Cisco IOS configuration files (ios:config). xudiff then

uses the Zhang Shasha Tree Edit Distance algorithm to compute a matching between the

two trees. Unmatched nodes (in grey) in the first tree are deleted and unmatched nodes in

the second parse tree are inserted. The grey dotted line between the subtrees for Loopback0

indicates updated content within that subtree.

Algorithm

Our xudiff tool uses Zhang and Shasha’s tree edit distance algorithm [151]. One

nice property of this algorithm is that the tree edit distance is a metric, if the cost

function is also a metric. More details about this algorithm may be found in the

Zhang’s dissertation [150].

89

Implementation

We have implemented the Zhang and Shasha tree edit distance algorithm [151]. This

tree-edit distance is the basis for the xudiff tool.

We can currently compute edit scripts for parse trees in TEI-XML, Cisco IOS,

and C. Our Python implementation of the algorithm is 254 lines.

5.2.4 Grammar Library

When a practitioner writes a regular expression or a context-free grammar, that

practitioner specifies a computational machine to recognize a language. Although

practitioners might not currently be able to write context-free grammars as quickly as

they would write regular expressions, our strategy is to provide a library of grammars

that satisfy a broad range of use cases.

We designed our grammar library to isolate references to language constructs from

the encoding of those constructs much as an abstract data type separates a reference

to an operation from that operation’s implementation. We represent these constructs

as a language name. Practitioners already isolate language constructs from their

encoding naturally: CAs reference sections and subsections of policy, and network

administrators reference interfaces.3 C developers, in order to use a library function

in their own code, must know the name, purpose, and calling sequence of that function

but not its implementation. Similarly, users of our grammar library need to know

the name and purpose of the construct upon which they want to operate, but not

its specification as a context-free grammar production, to process that construct via

XUTools.

We designed XUTools to operate in terms of references to language constructs

because the way in which people reference information remains relatively stable but

the manner in which people encode information changes with technology. Consider

3Thanks to Dartmouth-Lake Sunapee Linux Users Group (DLSLUG) members for their feedback.

90

the historical transmission of text in which books and lines of Homer’s Odyssey mi-

grated from manuscripts, to books, to digital formats. Although the physical media

and encoding of the text changed, the high-level constructs of book and line survived.

In software engineering, the principle of an Abstract Data Type (ADT) echoes this

philosophy—although an ADT’s implementation may change over time, the interface

to that implementation remains stable.

PyParsing Grammar Library

We currently implement a grammar library for XUTools with the PyParsing frame-

work. More information about the grammar library may be found at the XUTools

website http://www.xutools.net/.

• XML Vocabularies : We have currently implemented small grammars for NVD-

XML and TEI-XML.

• Cisco IOS : We have implemented a grammar for a subset of Cisco IOS.

• xupath: We have implemented a grammar to parse xupaths based upon Za-

zueta’s Micro XPath grammar [149].

• C : We are using McGuire’s subset-C parser as a proof-of-concept for simple C

source files [81].

• builtin: We have a builtin grammar for commonly-used, general-purpose con-

structs such as lines.

Table 5.1 illustrates the current sizes of grammars used by our XUTools. The table

lists the grammar, the number of productions specified by the grammar, the number

of productions in that grammar that we reference as language names, and the number

of lines in the grammar. We note that the PyParsing API constructs a parser using a

syntax that resembles a BNF grammar. As such, the number of lines also reflects the

91

http://www.xutools.net/

number of lines necessary to implement the equivalent of a recursive-descent parser

for the languages upon which each grammar is based.

grammar number of
productions

number of
languages

number of
lines

NVD-XML 6 3 8
TEI-XML 19 8 26

31 10 61
C 26 1 55

XPath 11 0 28
Builtin 1 1 2

Cisco IOS

Table 5.1: The sizes of the grammars used by our XUTools in terms of total number

of productions, productions that we reference as language names with our XUTools, and

number of lines to encode the grammar.

.

Since PyParsing productions specify functions that perform lexical and syntactic

analysis, the productions listed above contain token definitions as well as grammar

productions. More information about PyParsing may be found in Appendix B.

Parse Trees

Our XUTools were designed to operate on parse trees. Currently, we represent each

vertex of a parse tree with a Python dictionary. Specifically, the dictionary for each

parse tree node contains a key for the instance variables in a corpus element. In

addition, each node dictionary has a children key that indexes a list of children that

are ordered as specified by the right hand side of the nonterminal production.

5.2.5 xupath

Our goal for xupath was to implement a powerful and general-purpose querying syntax

for structured texts, including but not limited to XML. Our intent is for practitioners

to use this syntax to extract a corpus of language constructs that they want to

92

process. For example, in Chapter 3, Figure 3.11, we showed how to extract corpora

of sections, subsections, and subsubsections from a parse tree for a PKI policy. We

can reference these various corpora using the following xupaths: ///tei:section,

//tei:subsection, and //tei:subsubsection respectively. Later in this chapter,

we will see more complicated examples of the xupath syntax.

Our xupath provides the necessary syntax for our XUTools to match strings in

the language of a context-free grammar and to describe the context in which process-

ing and reporting should occur. We observed that the XPath Query language [147]

performs this function for XML documents. Therefore, we use an XPath-like syntax

to express our queries on texts.

Practitioners want to process structured file formats besides XML, such as Cisco

IOS, C, and JSON. Additionally, practitioners want to process formats that are in

between traditional line-based formats and XML. In Figure 5.11 below, we see that

configuration blocks—known as directives—may be nested arbitrarily and that blocks

that correspond to modules may define their own configuration syntax. The contents

of the log config module in Figure 5.11 has a specialized syntax to describe the for-

mat of logs. We can use xupath to query a corpus composed of varied formats because

xupath syntax lets us compose references to constructs in a variety of languages.

Specification

An xupath query consists of a sequence of references to language constructs (each

represented as a language name in the libxutools grammar library). Consider the

following three examples in which we describe the query and how the xupath syntax

expresses that query.

First, we can express the set of Cisco IOS interface blocks relative to an input

corpus via the xupath /ios:interface. This xupath consists of a sequence of one

language construct, the interface blocks as defined by Cisco IOS.

93

<
D
i
r
e
c
t
o
r
y

"
/
L
i
b
r
a
r
y
/
W
e
b
S
e
r
v
e
r
/
D
o
c
u
m
e
n
t
s
"
>

O
p
t
i
o
n
s

I
n
d
e
x
e
s

F
o
l
l
o
w
S
y
m
L
i
n
k
s

M
u
l
t
i
V
i
e
w
s

A
l
l
o
w
O
v
e
r
r
i
d
e

N
o
n
e

O
r
d
e
r

a
l
l
o
w
,

d
e
n
y

A
l
l
o
w

f
r
o
m

a
l
l

<
/
D
i
r
e
c
t
o
r
y
>

L
o
g
L
e
v
e
l

w
a
r
n

<
I
f
M
o
d
u
l
e

l
o
g
_
c
o
n
f
i
g
_
m
o
d
u
l
e
>

L
o
g
F
o
r
m
a
t

"
%
h

%
l

%
u

%
t

\
"
%
r
\
"

%
>
s

%
b

\
"
%
{
R
e
f
e
r
e
r
}
i
\
"

\
"
%
{
U
s
e
r
-
A
g
e
n
t
}
i
\
"
"

c
o
m
b
i
n
e
d

L
o
g
F
o
r
m
a
t

"
%
v

%
h

%
l

%
u

%
t

\
"
%
r
\
"

%
>
s

%
b

\
"
%
{
R
e
f
e
r
e
r
}
i
\
"

\
"
%
{
U
s
e
r
-
A
g
e
n
t
}
i
\
"
"

c
o
m
b
i
n
e
d
v
h
o
s
t

L
o
g
F
o
r
m
a
t

"
%
h

%
l

%
u

%
t

\
"
%
r
\
"

%
>
s

%
b
"

c
o
m
m
o
n

L
o
g
F
o
r
m
a
t

"
%
v

%
h

%
l

%
u

%
t

\
"
%
r
\
"

%
>
s

%
b
"

c
o
m
m
o
n
v
h
o
s
t

<
I
f
M
o
d
u
l
e

l
o
g
i
o
_
m
o
d
u
l
e
>

#

Y
o
u

n
e
e
d

t
o

e
n
a
b
l
e

m
o
d
_
l
o
g
i
o
.
c

t
o

u
s
e

%
I

a
n
d

%
O

L
o
g
F
o
r
m
a
t

"
%
h

%
l

%
u

%
t

\
"
%
r
\
"

%
>
s

%
b

\
"
%
{
R
e
f
e
r
e
r
}
i
\
"

\
"
%
{
U
s
e
r
-
A
g
e
n
t
}
i
\
"

%
I

%
O
"

c
o
m
b
i
n
e
d
i
o

<
/
I
f
M
o
d
u
l
e
>

<
/
I
f
M
o
d
u
l
e
>

Ap
ac

he
 s

er
ve

r c
on

fig
ur

at
io

n
ex

am
pl

e

F
ig
u
re

5
.1
1
:

T
h

e
fo

rm
at

of
co

n
fi

g
u

ra
ti

on
fi

le
s

fo
r

th
e

A
p

ac
h

e
se

rv
er

b
le

n
d
s

a
X

M
L

-l
ik

e
sy

n
ta

x
w

it
h

a
tr

ad
it

io
n

al
li

n
e-

b
as

ed
co

n
fi

gu
-

ra
ti

o
n

.
C

o
n

fi
gu

ra
ti

o
n

in
fo

rm
at

io
n

fo
r

A
p
ac

h
e

se
rv

er
m

o
d

u
le

s
is

co
n
ta

in
ed

in
I
f
M
o
d
u
l
e

el
em

en
ts

w
h

ic
h

re
se

m
b

le
X

M
L

.
D

u
e

to
m

o
d

u
le

d
ep

en
d

en
ci

es
,

th
es

e
co

n
fi

gu
ra

ti
o
n

b
lo

ck
s

m
ay

b
e

n
es

te
d

.
F

or
ex

am
p

le
th

e
l
o
g
c
o
n
f
i
g
m
o
d
u
l
e

co
n
ta

in
s

th
e
l
o
g
i
o
m
o
d
u
l
e
.

F
u

rt
h

er
m

or
e,

a
m

o
d

u
le

m
ay

sp
ec

if
y

it
s

ow
n

co
n

fi
gu

ra
ti

on
sy

n
ta

x
.

In
th

is
fi
gu

re
w

e
se

e
th

at
th

e
l
o
g
c
o
n
f
i
g
m
o
d
u
l
e

h
as

a
sy

n
ta

x
to

sp
ec

if
y

a
lo

g

fo
rm

at
.

W
e

d
es

ig
n

ed
x
u

p
a
th

to
ac

co
m

m
o
d

at
e

re
fe

re
n

ce
s

to
fo

rm
at

s
in

be
tw

ee
n

X
M

L
an

d
tr

ad
it

io
n

al
co

n
fi

gu
ra

ti
on

fo
rm

at
s.

94

Second, we can also use predicates to filter the set of Cisco IOS interface blocks

to those that contain an access group security primitive.

//ios:interface [re testsubtree(’access-group’)].

Third, we can also use xupath to query a corpus in terms of constructs from

several different languages. For example, we can express the set of lines contained

within a C function as //cspec:function/builtin:line. Later in this chapter, we

will describe in more detail the grammars and language constructs that are currently

available in our grammar library.

Implementation

Since the xupath syntax is based upon XPath, we implemented xupath in Python as

a modified MicroXPath [149] grammar ported to PyParsing [82]. Given an xupath

query, our grammar generates a parse tree. Figure 5.12 shows an example parse tree.

Our grammar generates a parse tree of six types of nodes shown in Table 5.2. We use

the language name field to denote node type. xupath parse trees are implemented

using Python dictionaries.

95

G
R

AM
M

AR
_P

R
O

D
U

C
TI

O
NST

EP

PR
ED

IC
AT

E

N
EX

T_
ST

EP
S

PA
TH

G
R

AM
M

AR
_P

R
O

D
U

C
TI

O
NST

EP

PR
ED

IC
AT

E

la
ng

ua
ge

_n
am

e:
 G

R
AM

M
AR

_P
R

O
D

U
C

TI
O

N
te

xt
:

cs
pe

c:
fu

nc
tio

n

la
ng

ua
ge

_n
am

e:
 G

R
AM

M
AR

_P
R

O
D

U
C

TI
O

N
te

xt
:

bu
ilt

in
:li

ne

/
/
c
s
p
e
c
:
f
u
n
c
t
i
o
n
/
b
u
i
l
t
i
n
:
l
i
n
e
[
r
e
:
t
e
s
t
s
u
b
t
r
e
e
(
'
m
a
l
l
o
c
'
,
'
g
i
'
)
] N

EX
T_

ST
EP

S
R

EG
U

LA
R

_E
XP

R
ES

SI
O

N

la
ng

ua
ge

_n
am

e:
 R

EG
U

LA
R

_E
XP

R
ES

SI
O

N
te

xt
:

m
al

lo
c

F
ig
u
re

5
.1
2
:

W
e

im
p

le
m

en
te

d
ou

r
x
u

p
at

h
sy

n
ta

x
as

a
m

o
d

ifi
ed

M
ic

ro
X

P
at

h
[1

49
]

gr
am

m
ar

.
T

h
is

gr
am

m
ar

p
ro

d
u

ce
s

a
p

ar
se

tr
ee

w
it

h

si
x

ty
p

es
of

n
o
d

es
ex

p
la

in
ed

in
T

a
b

le
5
.2

.

96

no
de

 ty
pe

"t
ex

t"
 fi

el
d

va
lu

e
de

sc
rip

tio
n

N
od

es
 in

 a
n

XU
Pa

th
 P

ar
se

 T
re

e

PA
TH

n/
a

th
e

xu
pa

th
 p

ar
se

 tr
ee

 ro
ot

ST
EP

A
re

fe
re

nc
e

to
 a

 la
ng

ua
ge

 c
on

st
ru

ct
 p

ai
re

d
w

ith
 z

er
o

or
 m

or
e

pr
ed

ic
at

es
.

Fo
r e

xa
m

pl
e

io
s:

in
te

rfa
ce

is

 a
 la

ng
ua

ge
 c

on
st

ru
ct

 w
ith

 n
o

pr
ed

ic
at

es
 w

hi
le

 c
sp

ec
:fu

nc
tio

n[
 re

_t
es

ts
ub

tre
e(

''m
al

lo
c',

'g
i')

]
ha

s
a

la
ng

ua
ge

 c
on

st
ru

ct
 a

nd
 a

 p
re

di
ca

te
.

XU
Pa

th
 s

te
ps

 a
re

 d
el

im
ite

d
by

 '/
'.

n/
a

G
R

AM
M

AR
_

PR
O

D
U

C
TI

O
N

th
e

na
m

e
of

 th
e

la
ng

ua
ge

co

ns
tru

ct
 to

 a
pp

ly
 to

 th
e

cu
rre

nt
 re

su
lt

se
t

A
re

fe
re

nc
e

to
 a

 la
ng

ua
ge

 c
on

st
ru

ct
.

Fo
r e

xa
m

pl
e

io
s:

in
te

rfa
ce

, t
ei

:s
ec

tio
n,

 a
nd

 c
sp

ec
:fu

nc
tio

n
ar

e
al

l p
os

si
bl

e
va

lu
es

 b
ec

au
se

 th
ey

 a
re

 la
ng

ua
ge

 n
am

es
 th

at
 re

fe
re

nc
e

a
gr

am
m

ar
 p

ro
du

ct
io

n.

R
EG

U
LA

R
_

EX
PR

ES
SI

O
N

a
re

gu
la

r e
xp

re
ss

io
n

by
 w

hi
ch

to

 fi
lte

r t
he

 c
ur

re
nt

 re
su

lt
se

t.
A

re
gu

la
r e

xp
re

ss
io

n,
 fo

r e
xa

m
pl

e
'm

al
lo

c'.
 W

he
n

ap
pl

ie
d,

 th
e

re
su

lt
se

t c
on

ta
in

s
on

ly
 s

tri
ng

s
th

at

co
nt

ai
n

a
su

bs
tri

ng
 th

at
 m

at
ch

es
 th

e
re

gu
la

r e
xp

re
ss

io
n.

N
EX

T_
ST

EP
S

n/
a

A
lis

t o
f s

te
ps

 to
 a

pp
ly

 to
 th

e
re

su
lt

se
t.

 T
he

 li
st

 in
 le

ft-
to

-ri
gh

t o
rd

er
 a

cc
or

di
ng

 to
 h

ow
 th

e
st

ep
s

ap
pe

ar
 in

 th
e

XU
Pa

th
.

PR
ED

IC
AT

E
n/

a
A

re
gu

la
r e

xp
re

ss
io

n
pa

ire
d

w
ith

 a
 li

st
 o

f s
te

ps
 to

 a
pp

ly
 n

ex
t.

 A
 p

re
di

ca
te

 a
pp

ea
rs

 w
ith

in
 s

qu
ar

e
br

ac
ke

ts
 in

 th
e

XU
Pa

th
 (

fo
r e

xa
m

pl
e

[r
e_

te
st

su
bt

re
e(

'm
al

lo
c',

'g
i')

])

T
a
b
le

5
.2
:

O
u

r
x
u

p
at

h
gr

am
m

ar
ge

n
er

at
es

a
p

ar
se

tr
ee

of
si

x
ty

p
es

of
n

o
d

es
th

at
w

e
d

es
cr

ib
e

h
er

e.
T

h
e

ex
am

p
le

s
in

th
is

ta
b

le
re

fe
re

n
ce

F
ig

u
re

5.
12

.

97

5.3 Conclusions

In this chapter, we reinterpreted each of the three core limitations of security pol-

icy analysis as design requirements for text-processing tools and sketched how our

XUTools modules meet those requirements. In the second section, we described the

purpose, design, and behavior of each of our XUTools modules. In the next chapter

(Chapter 6), we evaluate our XUTools in general. In Chapter 7, we will evaluate a

specific application of XUTools that gives both network administrators and auditors

new, practical capabilities to measure the security posture of their networks.

98

Chapter 6

General Evaluation of XUTools

In this chapter, we evaluate our XUTools. For each of our tools, we discuss any

practitioner feedback or related work.

6.1 XUGrep

Our xugrep generalizes grep; xugrep extracts all strings in a set of files that match

a xupath.

6.1.1 Evaluation—Qualitative

In Chapters 2 and 5 we motivated xugrep with several real-world use cases. We now

briefly discuss how xugrep satisfied the use cases in Chapter 5.

Our first xugrep use case was inspired by practitioners at the RedHat Security

Response Team. They wanted a way to parse and query XML feeds of the National

Vulnerability Database (NVD-XML). During our discussion of xupath, we said that

xmllint could satisfy this use case. However, our xugrep tool operates on a more

general class of languages. We extended xugrep to operate on NVD-XML feeds so

that one could extract the vulnerability scores of all NVD entries that contain the

99

string cpe:/a:redhat. Figure 6.1 shows some example output.

Our second xugrep use case allows practitioners to extract blocks of C code and

is based upon discussions we had with practitioners at the LISA 2011 poster session

as well as the subsequent discussions on Slashdot [107,142].

6.1.2 Evaluation—Quantitative

We implemented xugrep as a postorder traversal of the xupath parse tree and so

this takes linear time in the number of nodes in the xupath query. For the ex-

amples we have considered in this paper, an xupath query resolves to a handful of

nodes. Nonetheless, when we visit a node whose production name is of type gram-

mar production or regular expression, we must perform the parse operation

on the current result corpus (introduced in Chapter 3). We iterate through each

corpus element in our query result set and scan the element’s text field for matches.

We scan the element’s text field with PyParsing’s scan string method.

As mentioned in Appendix B, the scan string method takes O(n2) time and

O(n) space when packrat parsing is enabled (exponential time and linear space when

disabled). At every step of the xupath we may apply the scan string method at

most twice. Therefore, given a xupath of k steps, where the largest corpus produced

by xugrep has at most m corpus elements per step, and it takes O(n2) time to process

each corpus element, then xugrep takes O(kmn2) time. However, we note that k (the

number of steps in a xupath) is usually much less than n (the maximum number of

characters in corpus element’s text field). Therefore, xugrep may take O(mn2) time

in the worst case. If at each step of the xupath, at each element of that step’s corpus,

PyParsing reuses space, then the xugrep should only use linear space in the size of

the input string (measured in characters).

Our implementation of xugrep is 191 lines of Python. This is small enough to

quickly port to other languages if desired. Furthermore, we have 438 lines of unit

100

b
a
s
h
$

x
u
g
r
e
p

-
1

"
/
/
n
v
d
:
e
n
t
r
y
[
r
e
:
t
e
s
t
s
u
b
t
r
e
e
(
'
c
p
e
:
/
a
:
r
e
d
h
a
t
'
,
'
g
i
'
)
]
/
n
v
d
:
s
c
o
r
e
"

n
v
d
c
v
e
-
2
.
0
-
2
0
1
2
.
x
m
l

F
I
L
E

N
V
D
:
E
N
T
R
Y

N
V
D
:
S
C
O
R
E

T
E
X
T

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
0
8
1
8

1

<
c
v
s
s
:
s
c
o
r
e
>
5
.
0
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
1
1
0
6

1

<
c
v
s
s
:
s
c
o
r
e
>
1
.
9
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
1
1
5
4

1

<
c
v
s
s
:
s
c
o
r
e
>
4
.
3
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
1
1
6
7

1

<
c
v
s
s
:
s
c
o
r
e
>
4
.
6
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
2
1
1
0

1

<
c
v
s
s
:
s
c
o
r
e
>
7
.
5
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
2
3
3
3

1

<
c
v
s
s
:
s
c
o
r
e
>
6
.
8
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
2
3
7
7

1

<
c
v
s
s
:
s
c
o
r
e
>
3
.
3
<
/
c
v
s
s
:
s
c
o
r
e
>

n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
2
6
6
2

1

<
c
v
s
s
:
s
c
o
r
e
>
4
.
3
<
/
c
v
s
s
:
s
c
o
r
e
>

… n
v
d
c
v
e
-
2
_
0
-
2
0
1
2
.
x
m
l

C
V
E
-
2
0
1
2
-
4
5
4
0

1

<
c
v
s
s
:
s
c
o
r
e
>
6
.
8
<
/
c
v
s
s
:
s
c
o
r
e
>

xu
gr

ep
 N

VD
-X

M
L

ex
am

pl
e

F
ig
u
re

6
.1
:

W
e

ca
n

u
se

x
u
g
r
e
p

to
ex

tr
ac

t
th

e
v
u

ln
er

ab
il

it
y

sc
or

es
of

en
tr

ie
s

in
th

e
N

at
io

n
al

V
u

ln
er

ab
il

it
y

D
at

ab
as

e
th

at
m

en
ti

on

c
p
e
:
/
a
:
r
e
d
h
a
t
.

T
h

is
d

ir
ec

tl
y

ad
d

re
ss

es
a

u
se

ca
se

sc
en

ar
io

th
at

w
e

re
ce

iv
ed

in
em

ai
l

fr
om

th
e

R
ed

H
at

S
ec

u
ri

ty
R

es
p

on
se

T
ea

m
.

101

tests for this tool that validate behavior for example queries for subsets of TEI-XML,

NVD-XML, Cisco IOS, and C.

6.1.3 Related Work

Industry

Currently, there are a variety of tools available to extract regions of text based upon

their structure. The closest tool we have found to our design of xugrep is sgrep [68].

sgrep is suitable for querying structured document formats like mail, RTF, LaTeX,

HTML, or SGML. Currently, an SGML/XML/HTML scanner is available but it does

not produce a parse tree. Moreover, sgrep does not allow one to specify the context

in which to report matches. Nonetheless, the querying model of sgrep is worth paying

attention to.

If one is processing XML, XSLT [70] may be used to transform and extract infor-

mation based upon the structure of the XML. We have already mentioned libxml2’s

xmllint [145] and its corresponding shell for traversing a document tree. Further-

more xmlstarlet has been around for a while and can also be used to search in XML

files [60].

Cisco IOS provides several commands for extracting configuration files. For ex-

ample, the include (and exclude) commands enable network administrators to find

all lines in a configuration file that match (and don’t match) a string. Cisco IOS also

supports regular expressions and other mechanisms such as begin to get to the first

interface in the configuration [29]. In contrast, our xugrep enables practitioners to

extract matches in the context of arbitrary Cisco IOS constructs.

Windows Powershell has a Where-Object Cmdlet that allows queries on the prop-

erties of an object. An object may be created from a source file by casting it as a

type (such as XML) [100].

Pike’s structural regular expressions allow users to write a program to refine

102

matches based on successive applications of regular expressions [97]. Our approach is

different because we extract matches based upon whether a string is in the language

of the supplied grammar.

Augeas [80] is similar in spirit to our tools as it focuses on ways to configure Linux

via an API that manipulates abstract syntax trees. This library includes a canonical

tree representation, and path expressions for querying such trees. The goals of Augeas

and XUTools are complimentary, Augeas provides an API to manipulate configuration

files safely and XUTools extends existing text-processing tools so that practitioners

can operate and analyze a variety of texts in terms of their high-level structures.

Academia

Although Grunschlag has built a context-free grep [59], this classroom tool only ex-

tracts matches with respect to individual lines. Coccinelle [31] is a semantic grep for

C. In contrast, we want our tool to have a general architecture for several languages

used by system administrators.

As noted in Chapters 2 and 5, our xudiff complements research in network con-

figuration management. For example, Sun et al. argue that the block is the right level

of abstraction for making sense of network configurations across multiple languages.

Despite this, however, they only look at correlated changes in network configurations

in Cisco [125]. Similarly, Plonka et al. look at stanzas in their work [98].

6.2 XUWc

As discussed in Chapter 5, our xuwc generalizes wc to count the number or size of

strings in an xupath result set relative to some context.

103

6.2.1 Evaluation—Qualitative

In Chapter 2 and 5 we motivated xuwc with a variety of use cases involving Cisco

IOS. In Chapter 7 we will see how xuwc satisfies these use cases so that practitioners

can understand how network configurations evolve.

Additionally, xuwc may also be useful to look at code complexity over time. Just

as we look at the evolution of network configuration complexity, we can start to look

at the number of lines per function or even the number of functions per module over

the entire lifetime of software.

6.2.2 Evaluation—Quantitative

We implemented xuwc as a routine to process the xupath query result set returned by

xugrep. Therefore, the time-complexity of xuwc includes that of xugrep. If xugrep

returns a result set of m elements, then xuwc must either count each of the elements

in the result set exactly once or scan the text field of each of the elements in the

result set exactly once. This depends upon whether the --context or --count flags

have been specified. We consider the four cases of the xuwc algorithm (discussed in

Chapter 5).

If neither --count nor --context flags have been specified, then xuwc counts the

number of elements in the result set relative to the files from which the corpus element

text fields were extracted. It takes constant time to check the label-value path

stored in the corpus element (or xugrep report) to determine the file name. There

are m corpus elements so xuwc takes O(m) time in this case.

If the --count parameter is unspecified and the --context parameter is specified,

then we must return the number of results for each context subtree. Again, it takes

constant time to determine the appropriate subtree for a corpus element from its

label-value path. There are m corpus elements so xuwc takes O(m) time in this

case as well.

104

If the --count parameter is specified, then regardless of the --context parameter,

we must count the number of bytes, words, or characters per corpus element in

the result set and return the number of results relative to the appropriate context.

We’ve already seen that it takes constant time to determine the context subtree in

which to report results, therefore we need to account for the time to count bytes,

words, or characters per corpus element. In our evaluation of the Parser interface

(in Appendix B, we explain that the scan string method takes O(n2) with packrat

parsing and O(n) space with packrat parsing enabled for an input string of length n.

Therefore, given m corpus elements and at most O(n2) language-construct extraction

time per element, the worse-case time complexity is O(mn2) for xuwc. Again, if we

assume that scan string reuses space, then the space complexity for xuwc is O(n).

Therefore, the worst-case complexity for xuwc is O(mn2) time and O(n) space.

Our Python implementation of xuwc is currently 96 lines. We have 408 lines of

unit tests for this tool that cover examples in TEI-XML, NVD-XML, Cisco IOS, and

C.

6.2.3 Related Work

Academia

The general implication of xuwc is that it will allow practitioners to easily compute

statistics about structures within a corpus of files in language-specific units of mea-

sure. We were unable to find prior work that attempts to generalize wc.

Industry

There are a number of word count tools used every day in word processors such as

Word and emacs. These allow practitioners to count words, lines, and characters

within a file.

There are also several programming-language utilities to compute source-code

105

metrics. The Metrics plugin for Eclipse allows one to count the number of packages,

methods, lines of code, Java interfaces, and lines of code per method within a set

of source files [84]. Vil provides metrics, visualization, and queries for C#, .NET,

and VisualBasic.NET and can count methods per class and lines of code [135]. Code

Analyzer is a GPL’d Java application for C, C++, Java, assembly, and HTML and

it can calculate the ratio of comments to code, the lines of code, whitespace and even

user-defined metrics [32].

Finally, Windows Powershell has a nice CmdLet called Measure-Object that allows

people to gather statistics about an object [100].

6.3 XUDiff

The xudiff tool generalizes diff to compare two files (or the contents of two files)

in terms of higher-level language constructs specified by productions in a context-free

grammar.

6.3.1 Evaluation—Qualitative

Chapters 2 and 5 both motivate xudiff with RANCID changelogs as well as the

need to understand changes to document-centric XML. We address the former use

case when we show examples of the xudiff CLI in Chapter 5 as well as discuss how

to measure the similarity of network security primitives in Chapter 7. We address the

latter use cases when we talk about pilot studies in X.509 PKI and terms of service

policies in Chapter 8.

We should note that one benefit of xudiff is the ability for practitioners to choose

the right level of abstraction with which to summarize a change. For example, a

developer could generate a high-level edit script by reporting changes in the context of

functions or modules. In contrast, if an implementation of an API method changed,

106

then perhaps the developer would want to generate an edit script that describes

changes in terms of lines within interfaces. We think that it would be interesting to

measure to what extent we can reduce the size of an edit script by expressing changes

in terms of different levels of abstraction. Understanding the size requirements for

edit scripts at different levels of abstraction would have practical benefit for people

that store change logs as evidence for audit. We leave exercise as potential future

work.

6.3.2 Evaluation—Quantitative

Our xudiff design relies upon the Zhang and Shasha algorithm to compute edit

scripts. The time complexity for this algorithm is

O(|T1| ∗ |T2| ∗min(depth(T1), leaves(T1)) ∗min(depth(T2), leaves(T2))) and its space

complexity is O(|T1| ∗ |T2|) [151]. In these formulas, |T1| is the number of nodes in

the first tree and |T2| is the number of nodes in the second tree.

Our Python implementation of Zhang and Shasha’s algorithm is currently 254

lines. We have 563 lines of unit tests for this algorithm that tests every iteration of

the example instance given in the Zhang and Shasha paper as well as an additional

example based upon our TEI-XML dataset.

6.3.3 Related Work

Industry

The SmartDifferencer, produced by Semantic Designs, compares source code in a

variety of programming languages in terms of edit operations based on language-

specific constructs [38]. Unfortunately, the SmartDifferencer is proprietary. Finally,

TkDiff [129], available for Windows, improves upon line-based units of comparison

by highlighting character differences within a changed line.

107

Academia

The various components of our hierarchical diff tool use and improve upon the state-

of-the-art in computer science. Computing changes between two trees is an instance

of the tree diffing problem and has been studied by theoretical computer science [9].

Researchers have investigated algorithms such as subtree hashing, and even using

XML IDs to align subtrees between two versions of a structured document and gen-

erate an edit script [23,30]. Zhang and Shasha [151] provide a very simple algorithm

for solving edit distance between trees that we currently use in xudiff.

Furthermore Tekli et al. in a comprehensive 2009 review of XML similarity note

that a future research direction in the field woiuld be to explore similarity methods

that compare “not only the skeletons of XML documents . . . but also their information

content” [127]. Other researchers have looked at techniques to compare CIM-XML for

compliance [109], XML trees for version control [3], and Puppet network configuration

files based upon their abstract syntax trees [134]. Recently, our poster that proposed

XUTools [142] was cited in the context of differential forensic analysis [49].

6.4 Grammar Library

We designed our grammar library to isolate references to language constructs from

the encoding of those constructs much as an abstract data type separates a reference

to an operation from that operation’s implementation. Our XUTools operate in

terms of references to these language constructs because the way in which people

reference information remains relatively stable but the manner in which people encode

information changes with technology.

Anecdotal Feedback: We have presented our research at several different venues

and practitioners have expressed concerns over the usability of our XUTools based

108

on how much knowledge a practitioner must have about data formats. For example,

one reviewer at LISA 2012 stated that there is a debate in the system administration

community as to whether XML should ever be read by a sysadmin. The reviewer

went on to say that it is not easy to set up a search of a text when it requires a deep

understanding of where things are in XML.1

Our grammar library interface directly addresses these concerns because practi-

tioners do not have to understand how language constructs are encoded, but only

which language constructs they want to use to analyze a text.

Some of our grammars such as Cisco IOS and TEI-XML were handwritten, while

others, such as C, were adapted from extant work. We realize that the utility of our

tools depends heavily upon the kinds of languages for which a xutools-friendly gram-

mar exists. Therefore, our ongoing work on this problem considers two additional

strategies beyond a handwritten grammar library based on feedback from practition-

ers and people in academia.

6.5 Conclusions

This chapter provided a general evaluation of our XUTools. Our qualitative evalua-

tion demonstrated that our XUTools address the use cases discussed in Chapters 2

and 5. Where appropriate, this qualitative evaluation also included feedback from

practitioners about our tools. Our quantitative feedback included the worst-case

time and space complexity of our tools as well as test coverage. Finally, we evaluated

our XUTools with respect to tools available in industry and academic research. In the

next chapter, we will evaluate our XUTools against a specific use scenario: network

configuration management.

1Conversations with reviewer 8D for our LISA 2012 paper.

109

Chapter 7

Application of XUTools to

Network Configuration

Management

We now evaluate our XUTools within the domain of network configuration manage-

ment. We draw examples from enterprise networks as well as control networks in the

electrical power grid. In Section 7.1, we briefly summarize the security policy analysis

problems faced by network administrators and auditors.

In Section 7.2, we demonstrate that XUTools gives practitioners practical capa-

bilities by enabling new computational experiments on structured texts.

Finally, Section 7.3 evaluates the novelty and utility of these capabilities by briefly

reviewing related work and reporting anecdotal feedback that we received from real-

world network administrators and auditors after we demonstrated these capabilities.

7.1 Introduction

Network administrators as well as network auditors, both in the enterprise and in

power control networks, require the ability to summarize and measure changes to a

110

network. Network administrators must update configuration files in order to imple-

ment new services and to maintain security and compliance. If administrators don’t

update their configurations, then their networks may become less useful, vulnerable

to attack, or non-compliant. Otherwise, if administrators do update their configura-

tions, then they may introduce errors that lead to major network outages.

The work in this chapter directly addresses the three core limitations of security-

policy analysis as they appear in the domains of network configuration management

and power control networks. We discussed both of these problem domains in Chap-

ter 2. In both domains, there is a need to be able to efficiently summarize and measure

change to network configurations.

Our XUTools enable network administrators and auditors to answer practical

questions about the evolving security posture of their network by addressing these

limitations. Practitioners may use these tools to summarize and quantify changes to

summarize and quantify changes to security primitives at various levels of abstraction

within a network over time. This allows practitioners to see the big picture as well as

to pinpoint specific changes that may cause bad behavior. Network administrators

and auditors may use these same capabilities to gather evidence for other kinds of

changes during network compliance audit.

In this chapter, we use XUTools to measure the evolution of access-control lists and

roles within the Dartmouth College network from 2005-2009.1 We note that although

we focus on Access Control Lists (ACLs) and roles (object groups in Cisco IOS), we

could just as easily apply similar analyses to other high-level language constructs.

1We obtained this dataset from Paul Schmidt at Dartmouth Computing Services. The years 2005-
2009 were the most convenient for him to give me because they were all in the same version-control
system.

111

7.2 XUTools Capabilities for Network Configura-

tion Management

Our XUTools enables new computational experiments on structured texts, the results

of which give practitioners capabilities that address our three core limitations of

security policy analysis. For example, our XUTools-based capabilities can answer the

following questions which are of practical importance to network administrators and

auditors in the field.

• What are the object groups and ACLs in a set of network devices and how many

of each are there?

• How similar are the object groups and ACLs in a set of network devices?

• Which ACLs are actually used in a network and where are they used?

• How do the answers to the previous three questions change over time?

The answer to each of the preceding questions is important for network admin-

istrators and auditors alike. We discuss each question in its own section. For each

question we will describe its importance, our experimental set-up to answer the ques-

tion, the results of our experiment, and our interpretation of the results.

7.2.1 Inventory of Network Security Primitives

Network administrators and auditors both need to understand which object groups

and access-control lists are configured on a network.

The terminology Cisco chose for their access-control security primitives overlaps

with terminology from traditional access-control literature. Therefore, we will briefly

relate Cisco IOS terminology to the traditional access-control terminology found in

the literature.

112

Access-control rules are traditionally expressed as a matrix whose rows are sub-

jects and whose columns are objects. As stated by Smith and Marchesini, a subject

S corresponds to an entity that performs an action and may be a user or a program.

An object O corresponds to an entity that is acted upon and may be a directory or

file. An entry in this matrix (S,O), contains rights that subject S may perform upon

object O. Example rights include the ability to read or write to a file object [120].

Traditionally, an access-control list represents the information in the access-control

matrix in column-major order—each object has a list of which subjects may act upon

it [34].

For our purposes, a Cisco IOS access-control list specifies which devices, IP ad-

dresses, and protocols may access a network interface. A network interface is the point

of connection between a network device and other parts of the network. A Cisco IOS

ACL is applied to a network interface (an object in traditional terminology) and lists

which devices, IP addresses, and protocols (subjects in traditional terminology) may

act upon it.

In very large networks however, the number of entries in an ACL may reach

hundreds of lines [34]. Furthermore, entries in an ACL may change and this puts

a burden on network administrators. In order to reduce this burden and simplify

ACL configuration, Cisco IOS introduced object groups that allow administrators to

classify users, devices, or protocols into groups. These groups may then be referenced

to define an ACL.

The Cisco IOS terminology can be confusing because Cisco IOS object groups

specify a set of entities that are subjects or objects under traditional access-control

terminology. When viewed as subjects, Cisco IOS object groups are analogous to

roles in Role-Based Access Control (RBAC). For example, an administrator may

use an object group to restrict a group of user machines (Cisco IOS object group

as traditional access-control subject) to a set of applications that run on a specific

113

port on a specific set of servers (Cisco IOS object group as traditional access-contol

object).

Network security evolves because organizations and the environments in which

they are based change. Therefore, it is useful for an administrator or an auditor to

be able to extract the object groups and ACLs that are defined on a network at a

given point in time. A version-control repository combined with our XUTools gives

practitioners this capability.

Set-up

Figure 7.1 illustrates how we implement this capability. Given a set of network

devices, such as the set of routers and switches in the core or wireless networks, we

define two corpora: the set of object groups and the set of access-control lists. We

calculate the size of each object group and access control list in terms of the number

of lines. Our xuwc allows us to perform this calculation because it enables us to count

the number of lines in an occurrence of a language construct such as an object group

or an ACL. In contrast, traditional wc lets practitoners count lines but only in the

context of the entire input file. (We note that alternatively, we could define size by

counting a construct besides line and we discuss alternative measures of size later in

Section 7.3.) Finally, we report the total number of elements in each corpus, statistics

about the size of each element (minimum, average, and maximum), and the top 10

largest elements.

Results and Interpretation

We performed the above analysis on the latest versions of the border, core, edge, voip,

and wireless networks. Table 7.1 summarizes our results below.

114

In
pu

t C
or

pu
s

(D
ar

tm
ou

th
 C

or
e

D
ev

ic
es

)
St

ep
 1

:
Ex

tra
ct

 R
ol

es

ou
ts

id
e.

et
na

1-
cf

w
.d

ar
tm

ou
th

.e
du

si
ze

 (l
in

es
)

ro
le

2

la
ng

ua
ge

_n
am

e:
 F

IL
E

la
be

l:
 o

ut
si

de
.e

tn
a1

-c
fw

.d
ar

tm
ou

th
.e

du
te

xt
:

!R
AN

C
ID

-C
O

N
TE

N
T-

TY
PE

: c
is

co
...

la
ng

ua
ge

_n
am

e:
 I

O
S:

O
BJ

EC
T_

G
R

O
U

P
la

be
l:

 ju
ni

pe
r_

vp
n_

db
a_

ac
ce

ss
te

xt
:

ob
je

ct
-g

ro
up

 n
et

w
or

k
ju

ni
pe

r_
vp

n.
..

de
vi

ce

be
rry

1-
cr

t..
.

vf
_a

m
in

o_
...

14
ou

ts
id

e.
et

na
1.

..
ju

ni
pe

r_
vp

n.
..

21
ou

ts
id

e.
sw

itc
h.

..
ph

on
e_

ac
ce

ss

...
St

ep
 2

:
So

rt
R

ol
es

 b
y

Si
ze

F
ig
u
re

7
.1
:

G
iv

en
a
n

in
p

u
t

co
rp

u
s

o
f

co
n

fi
gu

ra
ti

on
fi

le
s,

w
e

ex
tr

ac
t

se
cu

ri
ty

p
ri

m
it

iv
es

su
ch

as
ro

le
,

co
m

p
u

te
th

e
si

ze
of

ea
ch

ro
le

,
an

d

re
p

or
t

o
u

r
re

su
lt

s.

115

ACLs in the Dartmouth Network Circa 2009
size (min/avg/max)numbernetwork

border 18 2/31.0/80
core 64

Object Groups in the Dartmouth Network Circa 2009
size (min/avg/max)numbernetwork

border 0 0/0/0
core 124 2/4.0/21

2/7.0/39
edge 8

edge 0 0/0/0

2/5.0/10
voip 1506

voip 0 0/0/0

2/5.0/10
wireless 0

wireless 0 0/0/0

0/0/0

Table 7.1: We used our XUTools library to inventory the object groups and access-control

lists across the Dartmouth network. We can see that all of the Object Groups are defined

in the core network, while the largest ACLs are in the border.

Our results pinpoint which object groups and ACLs are the largest. For example,

we know that the object groups are exclusively defined in the core network. In

contrast, ACLs are defined throughout the network with the most being in the voip

network, but the largest being in the border network. We can then use this information

to look at the largest ACLs and see why they are so large.

7.2.2 Similarity of Network Security Primitives

Once we have the number and size of object groups and access-control lists on different

parts of the network, we can start to compare them. Object groups group users,

devices, or protocols. ACLs filter traffic into and out of an interface or VLAN and

do so by referencing object groups.

Although Cisco designed object group-based ACLs to simplify management they

can still grow large. Furthermore, object groups themselves may be defined or re-

defined over time. Object groups are similar to roles in Role-Based Access Control

(RBAC) and may drift or be copied and renamed. (In our lab’s fieldwork with a very

116

large banking corporation, we found that just managing the roles can be an imprac-

tical problem and coming up with the right set of roles is infeasible [114].) Therefore,

we employ clustering in order to try to make sense of which object groups and ACLs

are most similar to one another. Again, the XUTools library gives us this capability.

Set-up

We employed two methods to investigate the similarity of ACLs and object groups: a

size/name-based approach based on the results from Experiment 1 and a graph-based

clustering approach.

First Approach: In the first approach, we compared ACLs from Experiment 1

whose sizes and names were roughly similar. To perform this comparison, we ex-

tracted and compared the appropriate ACLs using our XUTools. Figures 7.2 and 7.3

illustrate this process. The first figure shows two ACLs that have similar names and

line counts (Pharmacy-POS-out and Pharmacy-POS-in respectively). The second fig-

ure shows the result of comparing these two ACLs using xudiff with different cost

functions.

size (lines)ACL

2

device

berry1-crt... vf_amino_...

10ropeferry1-crt Pharmacy-POS-out

...

39berry1-crt VoIP_Call_Managers

10ropeferry1-crt Pharmacy-POS-in

...

Figure 7.2: We used the inventories of ACLs from our first experiment to find similarly-

named ACLs that we can compare. In this example, we see that Pharmacy-POS-out and

Pharmacy-POS-in are similarly named and the same number of lines long.

117

xu
di

ff
co

m
pa

ris
on

s
b
a
s
h
-
i
o
s
-
e
x
1
$

x
u
d
i
f
f

"
/
/
i
o
s
:
a
c
c
e
s
s
L
i
s
t
"

r
o
p
e
f
e
r
r
y
1
-
c
r
t
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
P
h
a
r
m
a
c
y
-
P
O
S
-
i
n

r
o
p
e
f
e
r
r
y
1
-
c
r
t
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t

O
P
E
R
A
T
I
O
N

T
O
T
A
L

C
O
S
T

C
O
S
T

M
A
P
P
I
N
G

U
p
d
a
t
e

7
.
0

1
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n

(
I
O
S
:
A
C
C
E
S
S
_
L
I
S
T
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t

(
I
O
S
:
A
C
C
E
S
S
_
L
I
S
T
)

… U
p
d
a
t
e

3
.
0

1
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

h
o
s
t

1
2
7
.
1
7
0
.
1
7
.
4

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
2
9
.
1
7
0
.
1
7
.
4

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

U
p
d
a
t
e

2
.
0

1
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

h
o
s
t

1
2
7
.
1
7
0
.
1
6
.
4

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
2
9
.
1
7
0
.
1
6
.
4

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

U
p
d
a
t
e

1
.
0

1
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n
,

r
e
m
a
r
k

d
n
s

f
o
r

p
h
a
r
m
a
c
y
-
p
o
s

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t
,

r
e
m
a
r
k

d
n
s

r
e
s
p
o
n
s
e

f
o
r

p
h
a
r
m
a
c
y
-
p
o
s

(
B
U
I
L
T
I
N
:
L
I
N
E
)

b
a
s
h
-
i
o
s
-
e
x
2
$

x
u
d
i
f
f

-
-
c
o
s
t
=
t
e
x
t
_
w
o
r
d
_
e
d
i
s
t

"
/
/
i
o
s
:
a
c
c
e
s
s
L
i
s
t
"

r
o
p
e
f
e
r
r
y
1
-
c
r
t
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
P
h
a
r
m
a
c
y
-
P
O
S
-
i
n

r
o
p
e
f
e
r
r
y
1
-
c
r
t
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t

O
P
E
R
A
T
I
O
N

T
O
T
A
L

C
O
S
T

C
O
S
T

M
A
P
P
I
N
G

U
p
d
a
t
e

1
8
.
0

1
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n

(
I
O
S
:
A
C
C
E
S
S
_
L
I
S
T
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t

(
I
O
S
:
A
C
C
E
S
S
_
L
I
S
T
)

… U
p
d
a
t
e

5
.
0

2
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

h
o
s
t

1
2
7
.
1
7
0
.
1
7
.
4

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
2
9
.
1
7
0
.
1
7
.
4

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

U
p
d
a
t
e

3
.
0

2
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

h
o
s
t

1
2
7
.
1
7
0
.
1
6
.
4

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t
,

p
e
r
m
i
t

u
d
p

h
o
s
t

1
2
9
.
1
7
0
.
1
6
.
4

h
o
s
t

1
0
.
6
4
.
1
0
4
.
5

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

U
p
d
a
t
e

1
.
0

1
.
0

P
h
a
r
m
a
c
y
-
P
O
S
-
i
n
,

r
e
m
a
r
k

d
n
s

f
o
r

p
h
a
r
m
a
c
y
-
p
o
s

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

P
h
a
r
m
a
c
y
-
P
O
S
-
o
u
t
,

r
e
m
a
r
k

d
n
s

r
e
s
p
o
n
s
e

f
o
r

p
h
a
r
m
a
c
y
-
p
o
s

(
B
U
I
L
T
I
N
:
L
I
N
E
)

F
ig
u
re

7
.3
:

A
ft

er
id

en
ti

fy
in

g
si

m
il

ar
ly

-n
am

ed
A

C
L

s,
w

e
ca

n
co

m
p

ar
e

th
em

u
si

n
g

ou
r
x
u
d
i
f
f
.

W
h

en
w

e
v
ie

w
ed

th
e

ed
it

sc
ri

p
t

u
si

n
g

a

w
o
rd

-b
as

ed
co

st
fu

n
ct

io
n

,
w

e
n

o
ti

ce
d

th
at

th
e

IP
ad

d
re

ss
es

w
er

e
fl

ip
p

ed
an

d
sl

ig
h
tl

y
m

o
d

ifi
ed

in
th

e
p
e
r
m
i
t
u
d
p

li
n

es
.

T
h

is
m

ak
es

se
n

se

gi
ve

n
th

at
o
n

e
A

C
L

lo
ok

s
to

p
er

m
it

ou
tb

ou
n

d
U

D
P

tr
affi

c,
w

h
il

e
th

e
ot

h
er

p
er

m
it

s
in

b
ou

n
d

U
D

P
tr

affi
c.

118

Second Approach: In the second approach, we clustered object groups and ACLs

based on the editing distance between their parse trees. Given a set of routers (the

core network for example), we constructed the corpus of Object Groups and the

corpus of ACLs as in the first experiment.

We processed each corpus to construct a similarity graph (G = (V,E)) where our

vertices (V) are a set of corpus elements such as object groups or ACLs. The set of

edges (E) corresponds to pairs of corpus elements and we weight these edges by a

similarity function. Our similarity function s maps a pair of corpus elements (xi and

xj) to the interval [0, 1] ∈ R. The closer s(xi, xj) is to 1, then the more similar the

corpus elements are to one another. In order to see which pairs of corpus elements

are the most similar, we remove all edges that have weight less than a similarity

threshold [136].

For example, we can construct a similarity graph for the set of roles in a router

configuration using the corpus of roles as our set of data points and a normalized tree

edit distance as our similarity function. Specifically, we defined the normalized tree

edit-distance between two data points xi and xj to be the minimum number of nodes

required to transform the parse tree for xi into the parse tree for xj where inserts,

deletions, and updates all have cost 1 (unit cost metric). We normalize this distance

by the maximum number of nodes in the parse trees for xi and xj.

In this experiment, we connected all points that are at least 60% similar (in terms

of parse tree nodes) but not identical. We note that filtering edges by a threshold

allows us to “dial-in” the degree of similarity that we want between parse trees.

Results and Interpretation

We performed the above analysis on both object groups and ACLs. We focus on the

ACLs in our first approach and object groups in our second. This is because object

groups are not named similarly and so we actually cannot employ a size/name-based

119

approach to compare object groups.

First Approach: Since the ACLs in the border and core networks sometimes have

similar names, we used our inventory of ACLs from Experiment 1 to determine which

ACLs to compare. We compared the ACLs in the border network that were the

largest and therefore, we hypothesized, more complicated to maintain. For the core

network, we compared ACLs with similar names. Table 7.2 shows our results.

Using our xudiff, we can determine exactly where two similarly-named ACLs

differ (if at all). The identically-named large border ACLs on border1-rt and

border2-rt were identical. We detected differences, however, in the ACLs on the core

routers. For example on etna1-crt, the 23-line ACLs to SN3407 and to SN3407 2

differed by a remark and permit ip command. The 10-line Pharmacy-POS-out and

Pharmacy-POS-in differed by 7 lines, but by only 18 words. Upon closer inspection,

we noted that IPs were flipped and slightly modified in the permit commands as

expected for in and out filters.

Second Approach: As mentioned before, a name-based approach to compare Ob-

ject Groups did not work because the names of the Object Groups we inventoried

in Experiment 1 were quite different. Therefore, we clustered Object Groups by a

measure based on tree editing distance. Figure 7.4 shows our results. We note that

after trying a variety of percentages, the graph that had an edge for parse trees at

least 60% similar was the one that balanced meaningful similarity with good-sized

clusters.

120

AC
Ls

 in
 th

e
D

ar
tm

ou
th

 N
et

w
or

k
C

irc
a

20
09

ro
ut

er
/A

C
L2

 (s
iz

e)

border core

ro
ut

er
/A

C
L

1
(s

iz
e)

di
st

an
ce

co
m

m
en

ts
bo

rd
er

1-
rt/

fro
m

_I
1_

fil
te

r (
76

)
bo

rd
er

2-
rt/

fro
m

_I
1_

fil
te

r (
76

)
0

lin
es

id
en

tic
al

bo
rd

er
1-

rt/
to

_b
or

de
r_

fil
te

r (
42

)
bo

rd
er

2-
rt/

to
_b

or
de

r_
fil

te
r (

42
)

0
lin

es
id

en
tic

al
bo

rd
er

1-
rt/

to
_c

am
pu

s_
fil

te
r2

 (4
8)

bo
rd

er
2-

rt/
to

_c
am

pu
s_

fil
te

r2
 (4

8)
0

lin
es

id
en

tic
al

et
na

1-
cr

t/t
o_

SN
34

07
_2

 (2
3)

et
na

1-
cr

t/t
o_

SN
34

07
 (2

3)
3

lin
es

na
m

e
up

da
te

, r
em

ar
k

up
da

te
, n

ew
 'p

er
m

it
ip

'
ro

pe
fe

rry
1-

cr
t/P

ha
rm

ac
y-

PO
S-

ou
t (

10
)

ro
pe

fe
rry

1-
cr

t/P
ha

rm
ac

y-
PO

S-
in

 (1
0)

7
lin

es
di

ff
to

o
co

ar
se

ro
pe

fe
rry

1-
cr

t/P
ha

rm
ac

y-
PO

S-
ou

t (
10

)
ro

pe
fe

rry
1-

cr
t/P

ha
rm

ac
y-

PO
S-

in
 (1

0)
18

 w
or

ds
IP

 a
dd

re
ss

es
 'fl

ip
pe

d'
 o

n
pe

rm
its

be
rry

1-
cr

t/D
L1

50
_o

ut
 (6

)
be

rry
1-

cr
t/C

L1
50

_o
ut

2
(7

)
1

lin
e

ne
w

 'p
er

m
it

ip
'

be
rry

1-
cr

t/D
L1

50
_o

ut
2

(7
)

sw
itc

hr
oo

m
1-

cr
t/C

L1
50

_o
ut

2
(7

)
0

lin
es

id
en

tic
al

T
a
b
le

7
.2
:

W
e

co
m

p
a
re

d
A

C
L

s
in

th
e

bo
rd

er
an

d
co

re
n

et
w

or
k
s

b
as

ed
u

p
on

n
am

e
an

d
si

ze
-s

im
il

ar
it

y
v
ia

ou
r

A
C

L
in

v
en

to
ry

fr
om

E
x
p

er
im

en
t

1.
W

e
ob

se
rv

e
th

a
t

ve
rs

io
n

s
of

th
e

la
rg

e
bo

rd
er

A
C

L
s

w
er

e
id

en
ti

ca
l.

W
e

al
so

n
ot

e
th

at
in

co
m

p
ar

in
g

th
e

P
h
a
rm

a
cy

A
C

L
s

in
co

re
,

w
e

d
et

ec
te

d
a

“
fl

ip
p

in
g
”

of
IP

ad
d

re
ss

es
.

121

< outside.berry1-cfw.dartmouth.edu,
 db_access_from_web >

< outside.berry1-cfw.dartmouth.edu,
 db_access_from_apps >

< outside.berry1-cfw.dartmouth.edu,
 video_malabo >

< outside.berry1-cfw.dartmouth.edu,
 dartmouth_subnets >

< outside.switchroom1-cfw.dartmouth.edu,
 dartmouth_subnets >

< outside.etna1-cfw.dartmouth.edu,
 dartmouth_subnets >

< outside.berry1-cfw.dartmouth.edu,
 smtp_servers >

< outside.etna1-cfw.dartmouth.edu,
 mailhubaccess-healthservers >

< outside.berry1-cfw.dartmouth.edu,
 mailhubaccess-healthservers >

< outside.etna1-cfw.dartmouth.edu,
 vpnaccess-healthservers >

< outside.berry1-cfw.dartmouth.edu,
 vpnaccess-healthservers >

< outside.etna1-cfw.dartmouth.edu,
 teamquest_ports >

< outside.berry1-cfw.dartmouth.edu,
 teamquest >

Figure 7.4: We clustered Object Groups by tree edit distance within the Dartmouth 2009

core network. Out of 124 Object Groups, we obtained 113 clusters. Edges between a pair

of vertices indicate that the corresponding Object Groups are at least 60% similar. This

figure shows a few of the clusters.

The edges in Figure 7.4 identify pairs of object groups that are only slightly

different (and not identical). In Figure 7.5 we see that the two, very differently

named Object Groups mailhubaccess-healthservers and smtp servers are quite

similar in their content. Figure 7.6 shows xudiff commands that correspond to the

edges in this graph and highlights the ability to use our tools to drill down from a

big-picture view of the network to lower-level details.

122

< outside.berry1-cfw.dartmouth.edu,
 smtp_servers >

< outside.etna1-cfw.dartmouth.edu,
 mailhubaccess-healthservers >

< outside.berry1-cfw.dartmouth.edu,
 mailhubaccess-healthservers >

language_name: IOS:OBJECT_GROUP
label: mailhubaccess-healthservers
text:
object-group network mailhubaccess-healthservers
 network-object host 129.170.16.122
 network-object host 129.170.17.107

language_name: IOS:OBJECT_GROUP
label: smtp_servers
text:
object-group network smtp_servers
 network-object host 129.170.16.122
 network-object host 129.170.17.107

language_name: IOS:OBJECT_GROUP
label: mailhubaccess-healthservers
text:
object-group network mailhubaccess-healthservers
 network-object host 129.170.16.122
 network-object host 129.170.17.107

0.66 similar (bash-edge1)

0.66 similar (bash-edge2)

Figure 7.5: This sample cluster, taken from Figure 7.4 highlights that two roles, although

named differently, may still have similar content. This shows that we can use our XUTools

to help practitioners measure the similarity of roles within a network.

In addition, other edges yielded interesting but small changes. For example, con-

sider the object groups named vpnaccess-healthservers on the routers outside.-

etna1 and outside.berry1. This pair showed up with a similarity threshold of

at least 80% similarity. There was a 1 line change in the 4 line object group in

which a network-object reference was changed from juniper vpn tech services

to juniper vpn tech services etoken and an IP address changed. The pairing

teamquest ports and teamquest on outside.etna1 and outside.berry1 had 1

line different, a single port object. This pair showed up with a similarity threshold

of at least 70%.

7.2.3 Usage of Network Security Primitives

Although Experiment 1 demonstrated how we can use XUTools to inventory the

defined network-security primitives, practitioners also find it helpful to know which

primitives are used and where.

123

xu
di

ff
co

m
pa

ris
on

s
b
a
s
h
-
i
o
s
-
e
x
1
$

x
u
d
i
f
f

"
/
/
i
o
s
:
o
b
j
e
c
t
G
r
o
u
p
"

o
u
t
s
i
d
e
.
e
t
n
a
1
-
c
f
w
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s

o
u
t
s
i
d
e
.
b
e
r
r
y
1
-
c
f
w
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
s
m
t
p
_
s
e
r
v
e
r
s

O
P
E
R
A
T
I
O
N

T
O
T
A
L

C
O
S
T

C
O
S
T

M
A
P
P
I
N
G

U
p
d
a
t
e

1
.
0

1
.
0

m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s

(
I
O
S
:
O
B
J
E
C
T
_
G
R
O
U
P
)

-
>

s
m
t
p
_
s
e
r
v
e
r
s

(
I
O
S
:
O
B
J
E
C
T
_
G
R
O
U
P
)

U
p
d
a
t
e

0
.
0

0
.
0

m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

s
m
t
p
_
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

U
p
d
a
t
e

0
.
0

0
.
0

m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

s
m
t
p
_
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

b
a
s
h
-
i
o
s
-
e
x
2
$

x
u
d
i
f
f

"
/
/
i
o
s
:
o
b
j
e
c
t
G
r
o
u
p
"

o
u
t
s
i
d
e
.
b
e
r
r
y
1
-
c
f
w
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
s
m
t
p
_
s
e
r
v
e
r
s

o
u
t
s
i
d
e
.
b
e
r
r
y
1
-
c
f
w
.
d
a
r
t
m
o
u
t
h
.
e
d
u
.
m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s

O
P
E
R
A
T
I
O
N

T
O
T
A
L

C
O
S
T

C
O
S
T

M
A
P
P
I
N
G

U
p
d
a
t
e

1
.
0

1
.
0

s
m
t
p
_
s
e
r
v
e
r
s

(
I
O
S
:
O
B
J
E
C
T
_
G
R
O
U
P
)

-
>

m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s

(
I
O
S
:
O
B
J
E
C
T
_
G
R
O
U
P
)

U
p
d
a
t
e

0
.
0

0
.
0

s
m
t
p
_
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

U
p
d
a
t
e

0
.
0

0
.
0

s
m
t
p
_
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

-
>

m
a
i
l
h
u
b
a
c
c
e
s
s
-
h
e
a
l
t
h
s
e
r
v
e
r
s
,

n
e
t
w
o
r
k
-
o
b
j
e
c
t

…

(
B
U
I
L
T
I
N
:
L
I
N
E
)

F
ig
u
re

7
.6
:

T
h

is
fi

g
u

re
sh

ow
s

th
e

ab
il

it
y

to
d
ri

ll
d
o
w

n
w

it
h

in
th

e
si

m
il

ar
it

y
gr

ap
h

sh
ow

n
in

F
ig

u
re

7.
5

an
d

se
e

h
ow

ac
tu

al
co

rp
u

s

el
em

en
ts

d
iff

er
v
ia

ou
r
x
u
d
i
f
f
.

124

Set-up

We used xuwc and xugrep to understand how many and which ACLs from Dart-

mouth’s core network are applied to all interface and class-map commands. Specif-

ically, we looked at usage of ACLs in the Dartmouth core network as of June 1, 2009.

bash-ios-ex1$ xuwc "//ios:accessList" core.2009/configs/*.edu

Input Corpus
(Dartmouth Core Devices)

Output Corpus
(Defined ACLs)

ropeferry1-crt.dartmouth.edu

language_name: FILE
label: ropeferry1-crt.dartmouth.edu
text: !RANCID-CONTENT-TYPE: cisco...

language_name: IOS:ACCESS_LIST
label: Pharmacy-POS-in
text:
ip access-list extended Pharmacy-POS-in
 remark dns for pharmacy-pos
 permit udp host 10.64.104.5 host .,,

Figure 7.7: We used our xuwc to determine the number of access lists that were defined

in the Dartmouth core network devices as of June 1, 2009. xuwc takes the configurations of

Dartmouth core network devices (core.2009/configs/*.edu) as input. This input, shown

as a set of corpus elements on the left, is processed by xuwc to count the number of ACLs

(ios:accessList) within each router. The dotted line in the output set shows those ACLs

that were defined on the ropeferry1-crt.dartmouth.edu router. The boxes pointing to

individual corpus elements, show the values of the CorpusElement fields.

Figure 7.7 illustrates how we used xuwc (or xugrep) to compute how many (or

which) ACLs were defined in the Dartmouth Core Network as of the summer of 2009.

Figure 7.8 shows how we used xugrep to compute how many (and which) unique

ACLs are applied to all interface commands.2 We used xugrep to extract the ip

2Please see Section 7.3 for a discussion on why we could not use xuwc.

125

access-group commands contained within each interface over all network devices in

core. This was accomplished by invoking xugrep with a xupath of //ios:interface/-

ios:accessGroup. This argument tells xugrep to extract all access group com-

mands within any interface blocks. We then piped this output into sort and uniq

to determined the unique ACL names. We performed a similar analysis to determine

how many unique ACLs were used within Cisco IOS class-maps.

Results and Interpretation

We found that there are 21 ACLs applied to interfaces in the core ip access-group

commands. Compare this to Experiment 1, in which there were 64 ACLs in total. By

invoking the same pipeline with an xupath of //ios:classMap/ios:accessGroup,

we found that there is one ACL applied to class-maps in the core.

These results are interesting to network administrators and auditors because they

now have a way to understand how many of the ACLs that were defined in the

Dartmouth core network are actually used. This is an important capability because

administrators or auditors can focus in on those ACLs when debugging the behavior

of the network’s access-control policy.

Furthermore, this capability may give administrators the ability to understand

which ACLs may be removed from a policy because they are no longer in use. This

can help reduce network complexity that occurs when administrators are afraid to

remove configurations that might be important. As mentioned before, Benson et

al. note that complexity of a network increases with maintenance and changes to

configurations [8]. These results let administrators know that only 21 out of 64

defined ACLs are actually applied to a network interface and our results pinpoint

how access-control policy implementations could be simplified by removing unused

ACLs.

126

b
a
s
h
-
i
o
s
-
e
x
2
$

x
u
g
r
e
p

-
R
E
=
L
E

"
/
/
i
o
s
:
i
n
t
e
r
f
a
c
e
/
i
o
s
:
a
c
c
e
s
s
G
r
o
u
p
"

c
o
r
e
.
2
0
0
9
/
c
o
n
f
i
g
s
/
*
.
e
d
u

|

c
u
t

-
f

3

|

s
o
r
t

|

u
n
i
q

-
c

|

s
o
r
t

St
ep

 1
:

In
pu

t C
or

pu
s

(D
ar

tm
ou

th
 C

or
e

D
ev

ic
es

)
St

ep
 3

:
XU

G
re

p
O

ut
pu

t C
or

pu
s

(A
C

Ls
 A

pp
lie

d
to

 C
or

e
In

te
rfa

ce
s)

ro
pe

fe
rr

y1
-c

rt
.d

ar
tm

ou
th

.e
du

la
ng

ua
ge

_n
am

e:
 F

IL
E

la
be

l:
 ro

pe
fe

rr
y1

-c
rt

.d
ar

tm
ou

th
.e

du
te

xt
:

!R
AN

C
ID

-C
O

N
TE

N
T-

TY
PE

: c
is

co
...

la
ng

ua
ge

_n
am

e:
 I

O
S:

IN
TE

R
FA

C
E

la
be

l:
 V

la
n2

42
5

te
xt

:
in

te
rfa

ce
 V

la
n2

42
5

 d
es

cr
ip

tio
n

Ph
ar

m
ac

y
PO

S
Sy

st
em

 i
p

ad
dr

es
s

10
.6

4.
10

4.
1

25
5.

25
5.

25
5.

24
0

 i
p

ac
ce

ss
-g

ro
up

 P
ha

rm
ac

y-
PO

S-
in

 in
 … !

St
ep

 2
:

In
te

rm
ed

ia
te

 C
or

pu
s

(D
ar

tm
ou

th
 C

or
e

In
te

rfa
ce

s)

la
ng

ua
ge

_n
am

e:
 I

O
S:

AC
C

ES
S_

G
R

O
U

P
la

be
l:

 P
ha

rm
ac

y-
PO

S-
in

te
xt

:
ip

 a
cc

es
s-

gr
ou

p
Ph

ar
m

ac
y-

PO
S-

in
 in

<
ro

pe
fe

rr
y1

-c
rt

.d
ar

tm
ou

th
.e

du
,

Vl

an
24

25
,

Ph

ar
m

ac
y-

PO
S-

in
 >

St
ep

 4
:

O
ut

pu
t C

or
pu

s
(U

ni
qu

e
AC

Ls
 A

pp
lie

d
to

 C
or

e
In

te
rfa

ce
s)

la
ng

ua
ge

_n
am

e:
 I

O
S:

AC
C

ES
S_

G
R

O
U

P
la

be
l:

 P
ha

rm
ac

y-
PO

S-
in

te
xt

:
ip

 a
cc

es
s-

gr
ou

p
Ph

ar
m

ac
y-

PO
S-

in
 in

<
ro

pe
fe

rr
y1

-c
rt

.d
ar

tm
ou

th
.e

du
,

Vl

an
24

25
,

Ph

ar
m

ac
y-

PO
S-

in
 >

F
ig
u
re

7
.8
:

W
e

u
se

d
x
u
g
r
e
p

to
d

et
er

m
in

e
th

e
u

n
iq

u
e

n
u

m
b

er
of

ac
ce

ss
li

st
s

th
at

w
er

e
ap

p
li

ed
to

a
n

et
w

or
k

in
te

rf
ac

e
in

th
e

D
ar

tm
ou

th

C
or

e
n

et
w

or
k

a
s

o
f

J
u

n
e

1
,

2
0
09

.
G

iv
en

a
se

t
of

in
p

u
t

fi
le

s
c
o
r
e
.
2
0
0
9
/
c
o
n
f
i
g
s
/
*
.
e
d
u
,
x
u
g
r
e
p

in
st

an
ti

at
es

an
in

p
u

t
co

rp
u

s
an

d
fi

rs
t

ex
tr

ac
ts

a
se

t
o
f

in
te

rf
ac

es
(i

o
s:

in
t
e
r
fa

c
e

).
x
u
g
r
e
p

th
en

ex
tr

ac
ts

o
cc

u
rr

en
ce

s
of

th
e
a
c
c
e
s
s
-
g
r
o
u
p

co
m

m
an

d
(i

o
s:

a
c
c
e
ss

G
r
o
u
p

)
fr

om

th
e

se
t

o
f

in
te

rf
ac

es
.

A
cc

es
s

g
ro

u
p

s
a
p

p
ly

A
C

L
s

to
in

te
rf

ac
es

.
x
u
g
r
e
p

ou
tp

u
ts

on
e

li
n

e
p

er
ac

ce
ss

gr
ou

p
(v

ia
th

e
-
-
R
2
=
L
E

op
ti

on
)

w
e

re
d

ir
ec

t
th

is
o
u

tp
u

t
in

to
a

U
n

ix
p

ip
el

in
e

to
ca

lc
u

la
te

th
e

u
n

iq
u

e
A

C
L

s
th

at
w

er
e

ap
p

li
ed

to
th

e
in

p
u

t
ro

u
te

rs
’

in
te

rf
ac

es
an

d
so

rt
th

em

le
x
ic

og
ra

p
h

ic
a
ll

y.

127

7.2.4 Evolution of Network Security Primitives

Network administrators and auditors alike both need to understand how the security

of a network evolves. In the following experiment, we apply our capabilities from the

first three experiments to measure the evolution of the Dartmouth College network

from 2005 to 2009. The specific properties that we measure include changes to (1) our

inventory of object groups and access-control lists, (2) our similarity graphs of object

groups and ACLs, and (3) our report on the usage of ACLs in interface commands.

Set-up

In order to run this experiment, we used the CVS repository provided by Dartmouth

Computing Services to create five corpora of network device configurations. The first

(second, third, fourth, fifth) corpus contained the core network device configurations

as of June 1, 2005 (2006, 2007, 2008, 2009). We then ran each of our previous three

experiments on the corpora. We view these five corpora as a multiversioned corpus.

Results and Interpretation

We now present the results of how our inventory of object groups and access-control

lists, our similarity graphs of object groups and ACLs, and our report on ACL usage

evolved.

Evolution of Object Group and ACL Inventories: Table 7.3 shows the evo-

lution of the number of object groups and ACLs within the Dartmouth core network

from 2005 to 2009.

Table 7.3 shows us that object groups only started to be defined within the Dart-

mouth Core in 2008. In addition, the average number of ACLs has steadily hovered

at around 7, but the number of ACLs themselves has more than tripled in 5 years.

128

ACLs in the Dartmouth Core: 2005-2009
size (min/avg/max)numberyear

2005 18 2/6.0/39
2006 34

Object Groups in the Dartmouth Core: 2005-2009
size (min/avg/max)numberyear

2005 0 0/0/0
2006 0 0/0/0

2/8.0/80
2007 39

2007 0 0/0/0

2/7.0/39
2008 52

2008 6 2/4.0/6

2/6.0/39
2009 64

2009 117 2/4.0/21

2/7.0/39

Table 7.3: From 2005 to 2009, the number of object groups increased from 0 to 117 with

the largest being 21 lines. In addition the number of ACLs increased from 18 to 64.

Evolution of Similarity Graphs of Object Groups and ACLs Table 7.4 shows

the evolution of the similarity graphs for object groups and ACLs within the Dart-

mouth core network from 2005 to 2009. As mentioned before, an edge between two

object groups or ACLs indicates that the parse trees of those constructs are at least

60% similar via tree editing distance metric. In this manner, we literally measure

security policy evolution.

Table 7.4 shows us that although the number of ACLs increased more than 3

times in 5 years, the number of ACLs that were structurally similar hovered between

2 and 10. This indicates that most ACLs are less than 60% structurally similar to

one another. Given this, network administrators must have tools to keep track of lots

of small ACLs that are on average 7 lines long according to our 2009 inventory of

ACLs.

129

Object Groups in the Dartmouth Core: 2005-2009
clustersnumberyear

2005 0
2006 0
2007 0
2008 6
2009 117

3-clusters 2-clusters
0 0 0

unclustered
0

0 0 0 0
0 0 0 0
0 0 0 0

100 4 9 87

ACLs in the Dartmouth Core: 2005-2009
clustersnumberyear

2005 18
2006 34
2007 39
2008 52
2009 64

3-clusters 2-clusters
17 0 1

unclustered
16

31 0 3 28
36 0 3 33
49 0 3 46
58 2 2 54

Table 7.4: From 2005 to 2009, we see that the number of ACLs increased from 18 to 64

but that the number of ACLs that are structurally similar has remained relatively stable

since 2006 when there were only 34 ACLs defined in the core network.

Evolution of ACL Usage: Table 7.5 shows the evolution of the number of unique

ACLs in the core network that were used on interfaces in the core network.

In Table 7.5 we see that the number of unique ACLs within an interface com-

mand remained relatively stable even though the number of ACLs more than tripled.

Furthermore, there was only one ACL within a class-map command. In other words,

even though there are many ACLs defined in the core network, a relatively small pro-

portion are utilized in interfaces. More precisely, a relatively small proportion of

ACLs are applied to interfaces using the ip access-group syntax.

7.2.5 Section Summary

This section demonstrated how XUTools enables new computational experiments on

structured texts whose results give practitioners new capabilities. Furthermore, these

new capabilities directly address the core limitations of change summarization and

measurement in network configuration management that we observed in our fieldwork.

130

ACLs Used in the Dartmouth Core: 2005-2009
interfacesnumberyear

2005 18
2006 34
2007 39
2008 52
2009 64

class-map
6 0

14 1
19 1
20 1
21 1

Table 7.5: From 2005 to 2009, the number of ACLs defined in the core increased more

than threefold while the number of unique ACLs applied within an interface command

remained relatively stable.

7.3 Evaluation

In this section, we evaluate the novelty and utility of these capabilities by report-

ing anecdotal feedback that we received from real-world network administrators and

auditors after we demonstrated these capabilities.

The goal of this chapter is to demonstrate that our XUTools gives system adminis-

trators and auditors practical capabilities by enabling new computational experiments

on structured texts. We enabled these new experiments by directly addressing the

three core limitations of security policy analysis that we introduced in Chapter 2.3

3Furthermore, these limitations are closely aligned with research barriers to national strategic
research goals for smart grid control networks.

131

• There is a gap between the tools available to system administrators (RANCID,

Cisco IOS include) and the languages they use to represent security policy

artifacts (Tool Gap Problem).

• Network administrators and auditors need to be able to process policies at mul-

tiple levels of abstraction and they currently cannot (Granularity of Reference

Problem).

• Practitioners need a feedback loop for network security policies and artifacts so

that they can understand how their network evolves (Policy Discovery Needs

Problem).

7.3.1 General Feedback from Practitioners

The majority of system administrators and auditors with whom we spoke were from

the domain of the power grid. Despite this, however, many of these individuals

have a general knowledge of network system administration and audit. We demon-

strated these capabilities during the 2012 TCIPG Industry Day in the form of a video

demonstration that played during breaks, a poster session in the evening, and a live

presentation to the TCIPG EAB. The video of our demonstration of these capabilities

may be found at http://youtu.be/onaM_MS6PRg.

Capabilities Interface: Shortly after we agreed to give a demonstration of our

XUTools based capabilities, researchers pointed out that a Command-Line Interface

(CLI) would not provide an interesing demonstration, nor would a CLI be usable by

many auditors. In order to address this limitation, we developed a visualization layer

for our first capability, inventory network security primitives. We will discuss this

visualization layer in more depth in Chapter 8.

132

http://youtu.be/onaM_MS6PRg

Feedback from Edmond Rogers

We originally developed these capabilities in response to the recommendations of

Edmond Rogers, a utility expert who maintained power-system control networks for

a living. For years, Edmond had to keep a major utility’s corporate and power-control

computer networks secure. If there was an incident, he would have lost his job and

people would lose electric power. Therefore, we take his advice very seriously and

this is why he is the “utility expert” for TCIPG. In addition, Edmond participates

in several audits of power-control system networks per year.

First, Edmond thought the capability to be able to inventory and measure the

similarity between security primitives on Cisco IOS devices was useful and could save

auditors a lot of time. In particular, he said that many times “similar devices have

object group structures that are meant to be identical across the enterprise” and that

the tools could show subtle changes in these structures. In Section 7.2, we already

demonstrated the ability to find subtle changes in near-identical structures using a

similarity graph.

In addition, Edmond thought that our first capability, the ability to inventory secu-

rity primitives, could be useful to actually measure the interplay between a network’s

attack surface and VPN and ACL settings. In the experiment sketch he provided,

this process would involve measuring the attack surface, grouping network devices

according to the size of ACLs that they contain (via our first and second capabili-

ties), and then highighting atomic differences that may differentiate one ACL from

similar ACLs (via xudiff). In this manner, one could use XUTools to systematically

explore the relationship between attack surface and ACL configuration.

Feedback from Bryan Fite:

Bryan Fite is a Security Portfolio Manager at British Telecommunications (BT). In

addition, he runs the DAY-CON security summit [37] and PacketWars, an informa-

133

tion warfare simulation [93]. When I spoke with Bryan about our XUTools-based

capabilities, he thought that the abilities to inventory the number and size of security

primitives and to measure properties of these primitives over time were useful capa-

bilities. These capabilities are useful because the auditors and administrators that

Bryan encounters when he’s on an audit currently don’t have an easy way to know

what their “normal” security posture looks like. In other words, Bryan echoed the

need for a feedback loop for security posture. When we demonstrated our tools to

Bryan during a break, he wondered whether there was an interface between our tools

and change management systems like ChangeGear [22] or Remedy [106]. Currently,

there is no such interface; we consider his suggestion potential future work.

Feedback from Himanshu Khurana:

Himanshu Khurana is a senior technical manager for the Integrated Security Tech-

nologies section at Honeywell Automation and Control Systems Research Labs. He

serves on the TCIPG EAB. He saw our demonstration of the ability to inventory net-

work security primitives and our description of how we can measure security primitive

evolution. After the demonstration, he asked how our system compares to Splunk, a

highly-scalable indexing engine [121]. Although Splunk allows practitioners to search

a variety of information by extracting or learning key/value pairs, it does so via reg-

ular expressions. In contrast, XUTools can be used to index information for search

in terms of structures in a context-free language.

7.3.2 Related Work

We now evaluate our capabilities in light of the current approaches to summarize and

measure change within network configuration files. We discussed these approaches

earlier in Chapter 2. For the sake of clarity, we evaluate our capabilities relative to

both the current state of the practice–techniques and procedures currently employed

134

in production network environments–and the current state of the art–methods that

researchers have developed to improve change summarization and measurement.

State of the Practice: Network administrators use the Really Awesome New Cisco

configuration Differ (RANCID) to track how network device configurations change.

RANCID is helpful, but because it records changes in terms of lines, practitioners

cannot see the big picture as to how the network is changing.

In order to see the big picture, practitioners may use change-management products

such as ChangeGear [22] and Remedy [106] that are ticketing systems. However, they

rely upon manual documentation to record changes.

Finally, information indexing systems such as Splunk [121] do allow practitioners

to get a big-picture view of how data changes over time. Practitioners can teach

Splunk how to extract fields from their data using the Interactive Field Extractor, by

specifying templates, or by parsing XML element/element value pairs, but in all of

these cases the structures reduce to key/value pairs matched via regular expressions.

Splunk’s indexing capability is limited however because many high-level languages

have context-free structures and some have language constructs that are even more

general.

Our XUTools-enabled capabilities improve upon the state of the practice and

measure the evolution of network security primitives over time. Practitioners can

see the big picture and avoid manual documentation as the trusted source of change

documentation.4

State of the Art: Our parse-tree based model of Cisco IOS provides a more gen-

eral, theoretical framework for the stanza-based (blocks at the top indentation level

of Cisco IOS) analyses by Plonka and Sung [98, 126]. Our XUTools approach pro-

vides a library of operations on context-free structures in general that is backed by

4In Chapter 2 we saw that manual changelogs often are insufficient and unreliable.

135

language-theoretic underpinnings. Furthermore, our approach uses tools that are

freely available and these tools and approaches should generalize to other types of

network configurations and logs that contain high-level, context-free structures (such

as Juniper router configurations).

Plonka et al. studied the evolution of router configurations and concluded that

future services built for configuring network devices would be “well-advised to cater

specifically” to the management of interface stanzas [98]. Our capabilities heed this

advice in that they help practitioners to manage the ACLs associated with interfaces.

Kim et al. recently did a very complete longitudinal study of the evolution of

router configurations, firewalls, and switches on two campuses over five years. They

looked at the frequency of configuration updates, and identified correlated changes

among other things [71]. Our approach is complementary, for our parse-tree based

approach allows one to view network evolution at a variety of levels of abstraction

ranging from the file and device-level views of Kim et al. down to the changes to a

specific ACL, object group, or interface.

In their NSDI 2009 paper, Benson et al. present complexity metrics to describe

network complexity in a manner that abstracts away details of the underlying configu-

ration language [8]. Our investigations are based upon tools designed for practitioners

and auditors alike to run on their own networks. These investigations do not abstract

away the details of the configuration language, but performs a change analysis in

terms of the structures defined by the configuration language. We argue that this

makes for a more intuitive interpretation of results.

7.3.3 Capability-Specific Evaluation

We now discuss some specific evaluation points regarding our first three capabilities.

136

Inventory of Network Security Primitives

The first capability directly addresses the gap between the high-level languages in

which network configuration files are written and the low-level languages (lines, key-

value pairs, files) on which tools available to practitioners operate. In addition, this

capability allows practitioners to operate on language constructs in terms of multiple

levels of abstraction. An inventory of network security primitives allows practition-

ers to quickly drill down through the hierarchical organization of the network and

configuration language and identify important network security primitives.

We need to accommodate other, more sophisticated measures of importance than

the line-count based approach suggested by our utility expert. For example, at a

recent demonstration of our tools to practitioners in the power grid, one person won-

dered whether it would be possible to count the number of IP addresses that are

associated with an ACL. Since IP addresses may be represented using a subnet syn-

tax (for example 0/24) or listed one at a time, we would want a special counting

function to perform this kind of analysis.

Similarity of Network Security Primitives

The second capability directly addresses all three core limitations of security policy

analysis.

Our first approach was to find similarly-named ACLs within our ACL inventory

and then compare those ACLs using our xudiff. This allows administrators to

discover slight variations in similarly-configured ACLs. We observe that the manual

nature of our approach could be improved by using string metrics to find similarly-

named security primitives automatically.

Our second approach successfully detected roles that had very different names but

were quite similar. More generally, however, the second capability demonstrates the

practical application of clustering as an operation on strings in a language. We now

137

evaluate the similarity measure, as well as the construction of the similarity graph.

Given a set of roles as our data points, we constructed a similarity matrix using a

similarity measure based on the Zhang and Shasha tree edit distance. We now describe

our similarity measure between corpus elements. For a pair of corpus elements xi and

xj, we parse the value of their text fields into parse trees Ti and Tj. We then compute

the tree edit distance between these two trees using the unit cost metric for node edit

operations. Finally, we normalize the tree edit distance by the maximum number

of nodes in either of the two parse trees (max(|Ti|, |Tj|)). This similarity measure is

not a distance metric. Nonetheless, our measure does allow us to cluster language

constructs in a manner that favors elements with a similar number of nodes in their

parse trees.

In contrast, we could develop a similarity function that is a metric but the metric

we considered would not cluster elements whose parse trees have a small number of

nodes. If we normalized the tree edit distance between Ti and Tj by the number of

nodes in the largest parse tree of the corpus, then we would have a similarity metric.

Unfortunately this metric does not produce the clusters that we want.

For example, assume that corpus elements xi and xj are object groups with dif-

ferent names, but matching content. As a result of their close similarity, their cor-

responding parse trees, Ti and Tj, have an tree edit distance of (1). Also assume

that each of these parse trees consist of 4 nodes. These are realistic assumptions.

In Table 7.3, we see that on average, there were 4 lines per Object Groups in the

Dartmouth Core network as of June 1, 2009. By the same table, the largest parse

tree in the corpus of roles has 21 lines.

If we normalized the tree edit distance (1) for Ti and Tj by the size of the largest

parse tree (21) in the whole corpus, we would get a similarity score of approximately

0.05. Even though xi and xj are the same except for their names, they would not

be included in the similarity graph because 0.05 is much less than our similarity

138

threshold (0.6) for edges. We chose this threshold empirically. We generated clusters

using thresholds that divided the interval from 0 to 1 into tenths (0.1, 0.2,. . . 0.9).

We then chose the threshold based on which of the clusters captured useful similarity

measures without making the graph too sparse or dense.

We should note that the similarity-graph approach to clustering elements in a

corpus sets the foundation for more sophisticated clustering algorithms such as spec-

tral clustering. The similarity-threshold approach we described above, if rephrased

in terms of a dissimilarity measure, is the ε neighborhood approach to constructing a

similarity graph [136]. Furthermore, the similarity graph we describe in the example

above has multiscale structure and there exist methods that take into account the

“heterogeneity of local edge weight distributions” [45]. We leave this as potential

future work.

Usage of Network Security Primitives

Our third capability allows practitioners to measure which of the defined security

primitives are actually used. Specifically, we measured how many unique ACLs were

actually applied to network interfaces and class-maps. We also noticed that, over

time, the number of unique ACLs applied within an interface remained relatively

stable even though the number of ACLs more than tripled. During this experiment,

however, we noticed two limitations of our approach.

First, we can use xuwc to count the total number of ACLs applied to a network

interface, but we cannot use xuwc to count the number of unique ACLs applied to

a network interface. In order to get the unique ACLs, we had to use xugrep in

concert with traditional Unix tools such as uniq. We can pipeline our XUTools with

traditional Unix tools because xugrep can output corpus elements to lines via the

-1 option. We consider this limitation of xuwc to be acceptable however, because wc

also cannot count the number of unique bytes, words, lines, or characters in a set of

139

input files.

Second, we noted in our results that we measured the number of ACLs applied

to interfaces using the ip access-group syntax. There is another command used in

Cisco IOS to apply an ACL to an interface but this command occurs outside the scope

of the interface block. In the ip access-group syntax, the hierarchical structure of

the command syntax encoded the application of an ACL to its containing interface.

In this other syntax, the relationship between applied ACL and interface is no longer

encoded in the parse tree. Certainly, we could craft a XUTools based script to parse

out these commands, but this highlights that our tools are at their best when they

operate on relations encoded by the parse tree edges.

7.4 Conclusions

Network administrators and auditors can use XUTools to understand changes to Cisco

IOS constructs such as object groups, ACLs, and interfaces at a variety of levels of

abstraction that range from an entire network down to a single IP addresss. Although

our approach has a language-theoretic foundation, the practical implications of our

tools means that practitioners can inventory, measure similarity, and see the usage

of high-level language constructs in network configuration files. Finally, since these

language constructs have names that persist across multiple versions of a configuration

file, we can use those constucts as units of analysis to quantify network evolution.

140

Chapter 8

Future Work

This chapter introduces several potential future research directions that build directly

upon our XUTools. Section 8.1 describes our ongoing efforts to apply XUTools to

the domains of X.509 PKI, terms of service policies, and the electrical power grid.

In Section 8.2 we introduce several new application domains that would broaden the

applicability of XUTools. Finally, we propose several extensions to XUTools and our

theoretical toolbox for structured text analysis.

8.1 Ongoing Research

In this section we describe ongoing research that applies XUTools to the domains of

X.509 PKI, terms of service policies, and the electrical power grid.

8.1.1 Application of XUTools to X.509 PKI

PKI policy analysis and management, by its very nature, tries to understand changes

to security policies across time at a variety of levels of abstraction. XUTools enables

practitioners to measure security policy evolution directly from security policies and

security policy artifacts.

141

As discussed in Chapter 2, security policy comparison is a fundamental oper-

ation in several X.509 PKI processes that include PKI Compliance Audit, IGTF

Accreditation, and Policy Mapping to Bridge PKIs. Although policy comparison is a

fundamental operation in all of these important X.509 processes, it remains a man-

ual, subjective process and these drawbacks make it inconsistent. Compliance audits,

accreditation procedures, and policy mapping decisions are difficult to reproduce be-

cause they are so dependent upon auditors’ individual observations.

Problems with PKI Policy Comparison

In Chapter 2, we described three core limitations of security policy analysis that

negatively impact the PKI policy comparison process. First, there is a gap between

the traditional text-processing tools (Adobe Acrobat Reader, Microsoft Word’s Track

Changes) and the languages used in security policies (RFC 2527 and 3647) and this

gap forces policy operations to be largely manual. Second, practitioners lack tools to

process policies on multiple levels of abstraction ranging from large global federations,

to individual organizations, to Certificate Policies (CPs) and provisions within those

CPs. Finally, practitioners lack a feedback loop by which they can measure security

policies and how they evolve. For example, when the IGTF changes an Authentica-

tion Profile (AP), member organizations have 6 months to re-certify that they are

compliant with the new profile and volunteers must perform this manual verification.

Results from one of our previously-published pilot studies [139] suggest that the

changelog-based IGTF accreditation process is insufficient to measure how policies

change through time. For example, our previous study of 13 International Grid Trust

Federation (IGTF) member organizations revealed 5 organizations with at least one

reported change in their changelogs for which there was no actual change in the policy.

Out of a total of 178 reported changes, 9 of those changes corresponded to no actual

change. Of the 94 of 178 changes that claimed a major change, we found 5 that

142

were logged but never performed [139]. Current practice does not suffice for effective

management.

Our Ongoing Studies

Our pilot study for this ongoing research focused on IGTF Accreditation. Recall

from Chapter 2 that the IGTF sets standards for PKI certificates used to authenti-

cate to different grids worldwide and these standards are documented in an Authen-

tication Profile (AP). The IGTF consists of three member organizations, the Euro-

pean Union Grid Policy Management Authority (EUGridPMA), the Asia-Pacific Grid

Policy Management Authority (APGridPMA), and The Americas Grid Policy Man-

agement Authority (TAGPMA). These policy management authorities set their own

standards for member Certificate Authorities (CAs) in a manner that is consistent

with the IGTFs standards.

In our ongoing research, we are exploring ways to measure security policy evolution

using our XUTools. As a proof-of-concept, we selected a set of 4 EUGridPMA CAs

from our PKI Policy Repository, a multiversioned corpus of roughly 200 CP/CPSs

that we assembled.1 More information about our PKI Policy Repository may be

found in Appendix A. Table 8.1 summarizes the number of versions recorded of each

CA’s policy and the date ranges they span.

versions recorded

date range
recorded

AIST
EUGridPMA CP/CPSs

CALG UKeSci ArMes

6

9/04 -
9/09

7

3/07 -
1/09

8

7/02 -
11/07

7

3/04 -
6/09

Table 8.1: We selected a set of 4 CAs from the EUGridPMA from our PKI Policy Reposi-

tory. For each of the policies in our corpus, the table shows the number of versions recorded

and the date range spanned by these versions.

1See http://pkipolicy.appspot.com/.

143

http://pkipolicy.appspot.com/

Our hypothesis (as with network configuration) is that CAs and analysts will

benefit from high-level languages for textual analysis. In this research we want to use

XUTools to measure the evolution of IGTF CP/CPS policies. As a result of this work,

we have developed a new cost metric for tree node edit operations that incorporates

parse-tree specific information (the production associated with a node) to produce a

matching that is better suited to our notion of similarity than the unit cost metric

provided by Zhang and Shasha [151].

8.1.2 Application of XUTools to Terms of Service Policies

An important part of evaluating a web-based service is to understand its terms and

conditions. Terms and conditions are described in a service’s terms of service agree-

ment. Casual readers, however, often agre to the terms without reading them. Despite

this, enterprises as well as individual consumers need to be able to compare terms of

service for web-based services [96].

Enterprise-level cloud customers need to be able to compare different cloud provider

offers in order to decide which services are consistent with their requirements. For

example, in a 2010 IEEE Security and Privacy article, Pauley describes a methodol-

ogy to compare the security policies of various cloud providers [96]. Furthermore, the

European Network and Information Security Agency (ENISA) did a cloud comput-

ing risk assessment and stated that customers need to be able to compare different

provider offers in order to decide which services are consistent with their require-

ments [20].

Individual consumers of cloud services should also be able to compare terms of

service quickly and reliably to comprehend the risks of using a service. The Electronic

Frontier Foundation (EFF) recognizes the importance of understanding changes to

security policies and so built a policy comparison tool, the TOSBack [130]. Google

also provides a way to compare archived versions of their security policies.

144

Problems with Terms-of-Service Policy Comprehension

The current, mainstream mechanisms that companies use to inform users of their

terms of service are problematic with serious consequences. Very recently, an article

in TechCrunch appeared that quipped “I agree to the terms of service” has long been

called the “biggest lie on the internet” [42]. A new project called TOS;DR reports

manual summaries of terms-of-service agreements so that users have more choice.

Terms-of-service agreements can have real legal consequences; in October 2012, a

court ruled that Zappos’ terms of service was completely invalid for not forcing its

customers to click through and agree to them. In addition, Zappos’ terms say that it

can change the agreement at any time and the courts have invalidated contracts on

this basis before [128].

Changes to policy matter. In March 2012, Google changed its privacy policy so

that private data collected via one Google service can be shared with its other services

such as YouTube, Gmail, and Blogger [53]. The EU justice commissioner, however,

believed that those changes violated European law.

Our Ongoing Studies

We propose to use XUTools to help enterprise and consumer-level customers compare

terms of service policies and understand how they change. For example, customers

could agree to some version of a terms of service contract and after that time, they

could agree (or even disagree) with changes to that policy.2 A customer interested in

how Facebook shares third party information could also just look at changes to that

particular section of policy.

In ongoing research, we want to explore how to measure terms-of-service policy

evolution directly using XUTools. As a proof-of-concept, we downloaded 24 versions of

the Facebook policy recorded by EFF’s TOSBack between May 5, 2006 and Decmber

2Thanks to Dan Rockmore.

145

23, 2010. For breadth, we have conducted pilot studies on three kinds of terms-of-

service policies: privacy policies, music terms-of-service policies, and cable terms-of-

service policies. More information about this corpus may be found in Table 8.2.

Apple
Privacy Policies
EFF Facebook Gmail

7

6/07 -
6/10

3

2/09 -
6/11

24

5/06 -
12/10

4

3/09 -
2/10

versions recorded

date range
recorded

Table 8.2: We selected a set of four multi-versioned privacy policies recorded by the EFF

Terms of Service tracker. For each of the policies in our corpus, the table shows the number

of versions recorded and the date range spanned by these versions.

Our hypothesis is that service consumers will benefit from using high-level lan-

guages for textual analysis. Already, we have used our XUTools to identify November

19, 2009 as a major event in the evolution of Facebook privacy policy. In fact, the

Wikipedia article “Criticism of Facebook” has an entire subsection devoted to this

event. The article states that in November 2009, Facebook’s newly proposed privacy

policy were protested and even caused the Office of the Privacy Commissioner of

Canada to launch an investigation into Facebook’s privacy policies [36]. This initial

study suggests that XUTools change measures seem to be able to pinpoint important

events in the big picture history of a terms-of-service policy. Moreover, we can use

the xudiff to drill down and find specific policy changes.

8.1.3 Application of XUTools to the Power Grid Data

Avalanche

As discussed in Chapter 2, the smart grid will increase the stability and reliability of

the grid overall with vast numbers of cyber components and many of these components

will generate data. The smart grid of today is already large, serving roughly 160

million residences in the United States and non-residential customers as well. At the

146

2012 TCIPG Industry day, one gentleman said that he worked for an Investor Owned

Utility (IOU) that have 700 substations and 7 million residential customers. Today

and in the future, the smart grid has and will have a large number of devices that

will need to be configured and produce and log data.

Failure to manage this data has real consequences. As noted by NISTIR 7628,

“increasing the complexity of the grid could introduce vulnerabilities and increase

exposure to potential attackers and unintentional errors” [58].

High-Level Research Challenges

As discussed in Chapter 2, high-level research challenges for smart grid cybersecurity

stated by the DOE and NIST directly align with our three core limitations of security

policy analysis.

First, the Roadmap says that practitioners need the capability of being able to

operate on “vast quantites of disparate data from a variety of sources”. We designed

our XUTools to operate on a vareity of data formats in terms of their hierarchical

object models and many of the new smart grid data formats have a hierarchical object

model.

Second, the Roadmap also says that practitioners need the capability of being

able to operate on data at a variety of levels of granularity. Our XUTools represent

hierarchical structure as parse trees and in Chapter 3, we discussed how parse trees

allow us to process text at multiple levels of abstraction.

Third, the program director of the Smart Grid and Cyber-Physical Systems Pro-

gram office stated in his Smart Grid Program Overview that we need new measure-

ment methods and models for the smart grid [4]. We designed XUTools to be able to

measure properties of texts and how those properties change over time.

147

Our Ongoing Studies

We now present a few potential applications of XUTools in the domain of the electrical

power grid. This work was already presented to the External Advisory Board of

our Trustworthy Cyber Infrastructure for the Power Grid project and we will be

presenting this work to funders in Washington D.C. in the near future.3 We first

discuss capabilities from Chapter 7 and how they specifically address needs of the

electrical power domain. We then conclude with several additional research directions.

Inventory of Network Security Primitives: XUTools processes data at multiple

levels of granularity to pinpoint complex network security primitives. The demon-

stration dataset for this capability was an artificial but realistic collection of net-

work configurations from a major Investor-Owned Utility (IOU). The data was con-

structed based upon the topology observed in this utility’s network. The IP addresses

were anonymized and some hosts were removed. Specifically, we want to be able to

inventory the security primitives and pinpoint important primitives. This capabil-

ity, developed in Chapter 7, addresses several vulnerabilities and regulations in the

power domain. If done efficiently, we save auditors time and reduce audit cost (NI-

STIR 6.2.3.1).4 When performed to catalog roles—groupings of users, devices, and

protocols—defined in access-control policies, we make roles easier to manage (NIS-

TIR 7.3.23) [58]. Finally, this capability helps to address the need for better baseline

configuration development and comparison (CIP 010-1) [88].5

3For a video of our presentation, please go to http://youtu.be/onaM_MS6PRg.
4The National Institute of Standards and Technology Interagency Report (NISTIR) discusses

guidelines for smart grid cybersecurity. This three-volume report includes a high-level architectural
overview of the smart grid and enumerates threats to its security [58].

5The North American Reliability Corporation (NERC) developed a set of security standards
for Critical Infrastructure Protection (CIP). These guidelines, while not regulations, capture the
best practice in basic security controls for the smart grid today according to Jeff Dagle at Pacific
Northwest National Laboratory (PNNL).

148

http://youtu.be/onaM_MS6PRg

Evolution of Security Primitives: Our XUTools measure how security primitives

change. We want to be able to generate changelogs directly from router configura-

tions and measure how network configurations have changed over time. As discussed

in Chapter 2, writing changelogs is a time-consuming, error-prone process. The rele-

vance of logs may change over time and auditors may want information at a different

level of abstraction than utilities. Utilities and auditors also may want to measure

how security primitives have changed to measure both how and how frequently roles

change in an access-control policy. These capabilities address several vulnerabilities

and regulations that include “Inadequate Change and Configuration Management”

(NISTIR 6.2.2.5), audit log forging, and several NERC CIP requirements [58].

We designed XUTools to operate on hierarchical object models in general, how-

ever, and there are several other possible applications of these tools to the smart

grid. For example, we could use XUTools to compute a common communications

interface in substations by defining equivalence classes between corpus elements in

the Common Information Model (CIM) and IEC 61850 languages or by comparing

IED Configuration Descriptions (ICDs) as defined by IEC 61850.

8.2 Additional Problem Scenarios

Our XUTools have applications far beyond the domains we discussed in Chapter 2.

In this section, we will motivate new research in three new problem domains that

could benefit from XUTools.

8.2.1 Healthcare Information Technology

Information Technology (IT) plays an increasingly important role within health-

care delivery. For example, hospitals are increasingly deploying Electronic Medi-

cal Records (EMRs) in order to improve patient care and administrative tasks by

149

making health records easier to maintain and supplement clinician’s decision-making

processes via Clinical Decision Support (CDS).

In practice, however, these high-level goals for EMR systems are accompanied

by usability issues after a system is deployed. For example, patient records may be

corrupted by copy-and-pasted content. In addition, CDS systems bombard clinicans

with too many warnings and options to be useful.6 The task faced by clinicians is to be

able to analyze and manage these corpora of messy medical data. The consequences

of failing to properly manage patient data includes misdiagnosis and even patient

death.

Limitations of Textual Analysis

In fact, many of the current problems with EMR are symptoms of our three core

limitations of textual analysis. First, there is a gap between existing EMR systems

and the workflows used by clinicians. Second, clinicians need to be able to reference

and analyze EMRs on multiple levels of abstraction. Finally, clinicians need to be

able to measure properties of medical records and how those properties change over

time.

Gap Between EMRs and Clinical Workflows: Clinicians want to be able to

determine how they organize and communicate data to one another and they can’t

due to EMR homogeneity. This homogeneity leads to problems due to unmapped

reality. Clinicians communicate with one another using one mental model, but when

they map that model into a commercial IT product, problems due to system language

being too coarse or fine-grained relative to their mental models occur [119].

6Email with Sean W. Smith and Ross Koppel. Sean W. Smith is my advisor and I owe him
vast quantities of beer at the very least. Ross Koppel is an Adjunct Professor of Sociology at
the University of Pennsylvania. His research interests primarily focus on healthcare information
technology and its use in clinical environments. He has recently co-authored a book on this topic:
First, Do Less Harm: Confronting the Inconvenient Problems of Patient Safety [74].

150

Hospital data and workflows are inherently heterogeneous and yet commercial

medical products push homogeneity. Hospital data and workflows are inherently het-

erogeneous from the level of the state in which the hospital is located, to the hospital

organization, to the departments in which clinicians are located, to the individual

patients which they see.

At the level of the state, legislation varies. For example, DHMC must accommo-

date patients from both New Hampshire and Vermont who have varied right to their

information. In New Hampshire, medical information contained in medical records

is deemed the property of the patient under Title X of the NH Patients’ Bill of

Rights [124].

At the level of the hospital, workflows and procedures vary. The head of medical

informatics at one local hospital stated that in medicine, if you understand how one

hospital works, then you understand how one hospital works.

At the level of the departments in which clinicians operate, birthing, and cancer

treatment areas all have different procedures and characteristics unique to the services

that they perform to care for the patient.

At the level of the individual doctor and patient, there are unique circumstances

that affect how data is recorded. For example, a patient may have a mild form of a

disease but that disease is recorded as being much worse so that insurance covers the

condition. In contrast, a patient may have a horrible disease, but the doctor records

the disease as something more mild in order to prevent embarrassment.

In contrast to this heterogeneity, however, the DHMC uses an EHR product that

accounts for 40% of the EHR records in the United States. Heterogeneity, although a

characteristic of the medical environment, is a second thought in these products; cus-

tomization may be purchased after the base installation. This is backwards and leads

to problems. Geer’s IT monoculture argument outlines implications of heterogeneity

for security [51].

151

Medical Records have Multiple Levels of Abstraction: Clinicians write and

interpret medical records at multiple levels of abstraction. Clinicians often must fill

out fields in an EMR system with a drop-down menu of valid field values. Unfortu-

nately, the level of abstraction at which these menu options are expressed, may not

be appropriate for every clinician. A story related by Ross Koppel underscores this

point. A doctor suspects that one of his patients has stomach cancer and so wants

to refer the patient to a specialist. In order to refer the patient to a specialist, the

doctor must scroll through a list of “scores” of different stomach cancers and pick

one. The stomach cancer options are too specific and so the doctor must select one

of the options (but probably the incorrect specific diagnosis) [74].

Clinicians Need to Measure Evolving Medical Records: Finally, clinicians

want to be able to measure and operate upon medical records and how they change

through time but currently cannot.

First, clinicians want to be able to measure properties of medical records. For

example, patient records may be corrupted by massive copy-and-paste and clinicians

want to be able to pinpoint where this occurred.

Second, clinicians want to be able to measure and analyze how medical records

evolve. The head of informatics at a local hospital thought that the timeline approach

to medical data that Google Wave offered was a very compelling view of an EHR [55].

Timelines are appealing to practitioners because medical workflows and patient care

inherently unfold over time. Furthermore, if EMRs are going to deliver on the ability

to statistically evaluate medical procedures in terms of patient outcomes, clinicians

will need the ability to measure the evolution of patient care from EMRs.

152

Summary

Although hospital data and workflows are inherently heterogeneous, commercially-

available EMRs push homogeneity and this leads to problems that threaten patient

safety and make clinicians’ jobs harder. Clinicians solve problems everyday by creat-

ing their own language to specify the relevant details and abstract away the irrelevant

details of a problem. Unfortunately, modern EMRs do not allow clinicians to express

these unique approaches in a way that we can systematically process. XUTools can

implement several new capabilities that help practitioners create and process medical

information at multiple levels of granularity, and pinpoint copy-and-pasted informa-

tion as a source of potential corruption or reinterpretation.

8.2.2 Legislation and Litigation

Lawyers and legislators must understand how legal documents change. Since many

people simultaneously edit these documents, it becomes practically infeasible to man-

ually detect changes between versions. Additionally, both the size of the law and the

restrictions on the time provided to read the legal document make understanding how

legislation changes practically impossible.

We have seen an example of this quite recently in which the Supreme Court was

unable to even read the Patient Protection and Affordable Care Act to determine

whether it was constitutional or not [123]. Furthermore, when we looked at the first

and second-level table of contents of this bill, the tables of contents were inconsistent.

In other words, the structure of the bill was not even valid. This example indicates

that we need new methods to help legislators write and evaluate law.

Already we have received feedback on applying our XUTools to this domain from

several practitioners. Jon Orwant, who is in charge of Google Books, is particularly

interested in our research and visualizations of legislation. Furthermore Dan Rock-

more and his colleague Michael Livermore, a lawyer at NYU’s Institute for Policy

153

Integrity are both interested in ways to measure the evolution of legal documents.

The volatile nature of these documents, combined with their size, pose challenges

that make legal documents a logical next step that builds upon our work on X.509

PKI policy analysis.

8.2.3 Operating Systems and Trusted Hardware

Several different aspects of Operating Systems might benefit from a XUTools-based

approach. We discuss how problems in memory management and trends in research

are symptoms of the three core limitations of textual analysis.

First, there is a gap between the low-level units used by traditional memory man-

agement schemes and the high-level data structures that applications use. We see

this in Language-Theoretic Security (LangSec), a research group based out of our lab

at Dartmouth that hypothesizes that system vulnerabilities are consequences of ad

hoc-programming of input handlers [12]. One direction of LangSec research is that

there is a gap between the paging system used by the operating system and the lan-

guage of the Application Binary Interface (ABI). The semantic gap has consequences

that include the inability to enforce meaningful memory protections.7

Second, in memory management there is a need to be able to reference and operate

on regions of memory at a variety of levels of granularity. Research into new paging

schemes such as Mondrian Memory attest to this need [143].

Third, systems need to be able to measure different constructs within memory

and how they evolve. Consider trusted boot’s Trusted Platform Module (TPM).

During trusted boot, hashes of software binaries (memory images) are used to evaluate

whether or not an image is trustworthy [118]. As we noted before in our discussion of

TripWire, hashing images ensures integrity but it does not indicate how software has

changed. A XUTools-based approach might be able to not only determine whether

7This is ongoing work in the TrustLab and is partially funded by a grant from Intel.

154

software has changed, but how it has changed. For example, by aligning a Merkle

tree with a parse tree structure one could determine which parts of a configuration

(and maybe even a binary) changed without having to know its contents. A literature

review would need to be done in this area to determine novelty.

Furthermore, the ability to measure different constructs within memory and how

those constructs evolve has applications to memory forensics. Our work was already

cited in the context of this topic in a paper by Garfinkel et al. [49].

8.3 Additional XUTools Extensions

We now motivate several extensions to our XUTools. Several of these extensions

require new theoretical tools. We organize the discussion by XUTools modules.

8.3.1 Version Control

If we can extend our XUTools to instantiate corpora from version-control systems,

then we could measure and analyze how high-level languages evolves in the real-world.

For example, if we used xudiff as a difference engine for version-controlled con-

figuration files, then we could provide useful debugging information to a system ad-

ministrator when used in concert with bug reports.8 In essence, xudiff would give

us an easy way to identify the most volatile language constructs within a set of con-

figuration files and this is a useful tool for debugging. A workshop at LISA 2011,

Teaching System Administration, stated that the parts of the system that break down

historically are the first places that administrators should look for bugs. Our tools

would allow practitioners to pinpoint the regions of configuration that were changed

when the bugs were first reported. We also think such an application of our tools

would help organizations understand legacy networks acquired via mergers.

8Feedback from Dartmouth Lake-Sunapee Linux Users Group (DLSLUG).

155

8.3.2 Grammar Library

The utility of our XUTools depends on the availability of grammars for languages in

which practitioners are interested. One way to increase the size of our grammar library

is to write a conversion tool from languages used to specify grammars.9 This strategy

would allow us to reuse work done to write grammars for traditional parsers such as

Yacc and ANTLR, cutting-edge configuration tools like Augeas, and grammars for

XML vocabularies such as XSD and RELAX-NG [80,95,105,146,148].

Finally, practitioners might be able to parse a text written in one language using a

grammar for a very similar language. For example, the emacs editing mode for bash

highlights Perl syntax reasonably well. This approximate matching strategy could be

a mechanism for XUTools to handle languages for which there is no grammar in the

grammar library.10

8.3.3 Distributed Parsing

One future direction could be to consider distributed parsing algorithms. Professor

Bill McKeeman had done research in this area previously and it would allow our

XUTools to handle larger data sets.

8.3.4 Distance Metrics for XUDiff

In the future, we want to broaden XUTools to include distance metrics beyond simple

string and tree edit distances. In fact, there are several theoretical tools from machine

learning and information retrieval that we can apply to measure similarity between

corpus elements.

Traditional approaches in information retrieval use distributional similarity to

measure distance between documents. The documents often are defined in terms of

9Thank you Tom Cormen
10Thanks to David Lang and Nicolai Plum at the LISA 2011 poster session.

156

physical schemes such as number of words, lines, or pages. The documents are then

processed into a vector of frequencies in which every element in the vector corresponds

to a document token (a word or lemma). These document vectors are then clustered

based upon simple vector distance metrics (Euclidean distance for example) [111].

Recently, distributional similarity with context has appeared in leading compu-

tational linguisitics journals [40, 112, 133]. Their approaches, however, do not think

about context in terms of a language (in the language-theoretic sense), but in terms

of window-based context words or simple phrases.

In a XUTools-based approach, we compute document vectors for every string in

a high-level language (such as sections or subsections). This approach allows us to

apply machine-learning and information-retrieval techniques to a set of vectors that is

in one-to-one correspondance with a high-level language. We argue that this could be

a novel direction for thinking about distributional similarity in context where context

is defined according to a language-theoretic notion of language. We define context in

this manner so that context corresponds to high-level language constructs found in

structured corpora.

Our initial work on this approach in the Classics attests to the validity of this

claim. We applied this approach to some initial analyses of Homeric Scholia and

published our results [117]. These results arguably changed 200-year old assumptions

about the source of the scholia. This work used simple k-means and hierarchical

clustering algorithms.

More recently, we used spectral clustering on document vectors that we extracted

from a corpus of sections of IGTF PKI policies. The notion of context here, was

defined as the language of sections across multiple versions of policies by the same

CA.

Specifically, we chose policies from 5 different CAs. Each CA had between six and

eight different versions of a policy and we analyzed the sections within those policies.

157

We computed an epsilon neighborhood graph as well as a disparity graph based on the

similarity matrix computed between document vectors where a document corresponds

to a section of policy. This initial work showed that there was indeed structure in the

clusters that was worth exploring.

In addition, we might explore how the output of distributional similarity algo-

rithms vary when we cluster document vectors of varying levels of abstraction. For

example, we could explore and formalize how the clustering of IGTF PKI sections

relates to the clustering of subsections.

8.3.5 Current XUTools:

We could think of head and tail as extensions of xugrep in which we only report

structures within a given range of nodes within parse trees. Traditional grep has an

--invert-match option, the analogue of which in xugrep would also be quite useful.

During our discussions with practitioners in the electrical power grid, many have

expressed interest in the scalability of our tools. Both grep and wc are eminently

parallel problems. In fact grep is an example used by the Apache Hadoop, a frame-

work to run applications on large clusters of commodity hardware [61]. We could

imagine distributing xugrep or xuwc according to subtrees of the xupath query tree.

Furthermore, the Zhang and Shasha tree edit distance algorithm that we employ, has

a parallel variant that we could use to implement a parallel xudiff.

8.3.6 New XUTools

Other practitioners have expressed the desire to be able to edit texts in terms of

high-level structures. For example, a context-free sed or some other kind of struc-

tural editor. In fact, one practitioner has offered to help us design a xupath-based

structural editor.11 Before proceeding, we would need to survey the literature regard-

11Thanks to Mauricio Antunes.

158

ing structural editors.

Still, others have expressed the desire for a sort that operates on multiple levels of

abstraction. In our earlier work we demonstrated how one could our xugrep combined

with traditional sort to extract and sort data structures. A xusort, however, would

sort data structures in place. One could imagine a radix-sort like functionality where

instead of progressively sorting numbers according to place value, one could sort

structures according to level of containment. The details of this, however, would

need to be thought out more carefully.

8.3.7 A GUI for XUTools

Our interactions with power utilities and auditors have illustrated the necessity of a

Graphical User Interface (GUI) for our XUTools. These practitioners do not want to

be bothered with running command-line scripts, rather, they want a nice front end.

We currently have two ideas for GUIs based upon XUTools.

Matlab for Textual Analysis: We have begun to explore the metaphor of Mat-

lab for textual analysis. Just as researchers use Matlab in order to perform various

numerical analyses, so could researchers use XUTools to perform textual analyses.

We have begun to prototype this interface as a web application using Python Cher-

ryPy [26]. We demonstrated this visualization layer to the External Advisory Board

(EAB) of our Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project.

Currently, we have a visual interface for the first auditing capability that we demon-

strated to the TCIPG EAB. The visual interface allows auditors and administrators

to pinpoint important security primitives within a power control network.

A Visual Structural Editor: Another GUI is a visual layer to the structural

editor that we previously mentioned. The observation from which this visualization

originates is that both forms and natural-language documents consist of field, value

159

pairs. In a form, fields have a type and the values are usually quite short. For example,

an EMR may consist of a field for systolic and diastolic blood pressure, and the values

of those fields may be validated against this type. In a natural-language document

such as RFC 3647 or the outline for this thesis, we can think of each section and

subsection within the text as a field, and the values as the contents of those passages.

By viewing form and natural-language document in this manner, we can allow

practitioners to construct documents, not in terms of pages, but in terms of structure.

Our visual structural editor has applications to several problem scenarios because

it reinvents word processing.12 For brevity, we consider healthcare IT and operating

systems.

First, the visual structural editor would address the gap between homogeneous

EMRs and heterogenous workflows within the hospital. A hospital-wide EMR docu-

ment schema could serve as the baseline for patient records, but individual clinics and

doctors could modify this structure as needed and adapt content along a continuum

of form-fielded data or unstructured text. For example, doctors in a clinic may decide

to begin recording certain classes of information according to their own schema.

Second, our editor could provide a new interface into OS filesystems. OS filesys-

tems currently rely upon directory structures for users to organize their information

contained in files. A structural editor that allows people to author their own in-

formation hierarchies would enable people to arbitrarily organize their information

at different levels of granularity and attach appropriate permissions to this data (if

backed by the better memory trapping we discussed previously).

Finally, we could extend this visual editor with services based upon our libxutools.

Just as we currently use word count, spell-check, or change tracking in traditional

editors, so could we apply other services to process texts within our editor.

For example, we could provide a structural heat map that allows users to see where

12This statement is deliberately provocative.

160

and how much a document has changed as it was revised.13 In one scenario, a legislator

might need to quickly understand 11th-hour revisions to a bill. The legislator runs

our tool over the document, and seconds later views the text as a sequence of sections

with entries highlighted using a color gradient. For example, dark red highlighting

might indicate more changes, while a light red color could indicate fewer changes.

The legislator searches for all occurrences of a phrase in which she is interested and

has results imposed over the sections. She sees that there is lots of change in a section

with many search results and so drills-down to view a heatmap for the subsections.

8.4 Conclusions

In this chapter, we gave a preview of currently-ongoing research in the domains of

X.509 PKI, terms of service policies, and the electrical power grid. In addition, we

introduced many new possible avenues for XUTools as part of a broader research

program to reconceive how people create, maintain, and analyze structured text.

Finally, we discussed extensions to our existing codebase and theoretical toolbox to

analyze structured text.

13According to Doug McIlroy, a similar visualization was provided for SCCS source code data at
Bell Laboratory. The visualization, however, required manual annotation of the source code.

161

Chapter 9

Conclusions

Security policies define sets of rules that are designed to keep a system in a good

state. Just as the words system and good can mean a variety of things in different

domains, so can the term security policy have different meanings to practitioners.

During our fieldwork, we observed that security policies and artifacts that imple-

ment those policies come in a variety of different formats. Furthermore, these policy

formats differed from Traditional Orange-Book formalizations that used lattices and

matrices [76]. In practice, a security policy may be specified and implemented in

a variety of formats that include natural-language legal documents, network device

configurations, protocol messages, and system logs.

We observed that despite the variety of security policies that we encountered,

many of these policies may be viewed as structured texts. We then related a variety

of problems in a number of domains to three core limitations of security-policy analysis

(1) the Tools Gap Problem, (2) the Granularity of Reference Problem, and (3) the

Policy Discovery Needs Problem. (More information may be found in Chapter 2

which discusses our fieldwork, the security problems we encountered, and relates

these problems to the three core limitations of security policy analysis.)

It appeared to us that we could help practitioners create and maintain policy

162

by formalizing security policy analysis with concepts from language theory, parsing,

and discrete mathematics. We focused on formalisms that let us address our three

core limitations of policy analysis. (More information on our theoretical toolbox for

textual analysis may be found in Chapter 3.)

We then used these theoretical concepts to inform the design of XUTools. (More

information about the design, implementation, and evaluation of XUTools may be

found in Chapters 5 and 6.)

Our XUTools allow practitioners to process a broader class of languages than

traditional Unix tools. Structured-text file formats transcend the limited syntactic

capability of traditional Unix text-processing tools. We have designed and built

XUTools, specifically xugrep, xuwc, and xudiff, to process texts in language-specific

constructs.

Our applications of XUTools to network configuration management (Chapter 7),

to enterprise security policies, and the elecrical power grid (Chapter 8) demonstrate

that high-level language constructs may be used as units of measurement to mea-

sure properties of language constructs and quantify their evolution. Although our

approach has a language-theoretic foundation, the practical implications of our tools

means that practitioners can inventory, measure similarity, and see the usage of high-

level language constructs in a variety of security policies. Finally, since many of these

language constructs have names that persist across multiple versions of text, we can

measure the evolution of security primitives through time.

Text is a sequence of characters and the early manuscripts reflected this. The

earliest Ancient Greek sources did not even have punctuation. Over time, people

started to identify meaningful substrings cand called them function blocks, headers,

paragraphs, sentences, lines, pages, and books. We view these structures as languages

in the language-theoretic sense; our XUTools process and analyze texts with respect

to these languages just as people have been doing manually for thousands of years.

163

Appendix A

Pre-XUTools PKI Policy Analysis

Tools

Before XUTools, we designed several other tools that helped practitioners by address-

ing the three core limitations of security policy analysis we introduced in Chapter 2.

In this chapter, we will describe the design, implementation, and evaluation of these

other tools.

Prior to XUTools, our research focused mainly on PKI policy analysis. During

that time period, we prototyped several tools that addressed the gap between high-

level language constructs used by policy analysts, allow practitioners to process texts

on multiple levels of abstraction, and measure policy evolution. The sections of this

chapter, describe the design, implementation, and evaluation of some of these other

tools. We present the tools in the order in which they were originally developed.

A.1 PKI Policy Repository

We built the PKI Policy Repository so that we had access to a real-world dataset

of versioned PKI Certificate Policies (CPs) and Certification Practices Statements

(CPSs). Our repository, available at http://pkipolicy.appspot.com/ contains

164

http://pkipolicy.appspot.com/

roughly 200 versioned policies from the International Grid Trust Federation (IGTF).

The policies were converted from PDF into Text Encoding Initiative XML (TEI-

XML) via our policy-encoding toolchain. We will describe this tool later in Section A.5.

TEI-XML is a standard to represent texts in digital form [14]. Like previous efforts

to encode policies using XML [18,19], we model a security policy as a tree.1 Given a

policy’s text, we mark up only its reference scheme, the outline of provisions defined

in Section 6 of RFC 2527 or 3647 [27,28]. This results in a policy representation that

is both machine-actionable and human-readable.

A.1.1 Security Policy Analysis Problems Addressed

The PKI policy repository addresses the first two core limitations of security policy

analysis.

First, our PKI Policy Repository bridges the gap between high-level languages

used by analysts and the low-level languages upon which their tools operate. Fig-

ures A.1 and A.2 illustrate our point. In Chapter 2, we reported that although policy

analysts operate on PKI policies in terms of their RFC 2527 or RFC 3647 reference

structure, machine representations of policy such as PDF and Word documents are

organized by page. This imposes a semantic gap that forces policy operations to be

largely manual.2 In contrast, our PKI Policy Repository allows analysts to retrieve

passages of policy in terms of the RFC 2527 or RFC 3647 reference structure.

Second, our PKI Policy Repository allows practitioners to retrieve and thereby

operate on security policies at a variety of levels of abstraction ranging from the

entire document to individual sections, subsections, or even paragraphs of policy.

1Our approach was inspired by current approaches to digitize Classical texts [35,116].
2Although PDFs may be built with bookmarks that are oriented to sections and subsections a

gap still exists. See our discussion in Chapter 2.

165

CA
Website

CA
Website

CA
Website

CA
Website

PDF

1

2

3

4

Cyberspace

1

1.1

1.2

1.3

Page
Number

Section
Number

P
o
l
i
c
y

T
e
x
t

Comparison

Humanspace

Mapping

Figure A.1: Policy analysts operate on PKI policies by their reference structure, but

machine representations of policy such as PDF and Word are written and operated on in

terms of pages. This imposes a semantic gap and forces policy operations to be largely

manual.

CTS Policy
Repository

TEI-XML

Cyberspace

1

1.1

1.2

1.3

Section
Number

P
o
l
i
c
y

T
e
x
t

Comparison

Humanspace

Mapping

Figure A.2: Our representation of policy is machine-actionable but still human-readable

as a legal document. Since our policies are machine actionable, we can encode analyses

and thereby produce more reliable data for X.509 processes.

166

A.1.2 Design and Implementation

Our PKI Policy Repository is based on our prior work with Harvard’s Center for

Hellenic Studies and the College of the Holy Cross to develop the Canonical Text

Services (CTS) protocol to reference and retrieve Homeric texts by their reference

structure [116]. The CTS protocol uses HTTP to provide a simple REST-XML web

service to retrieve canonically cited texts. Users or applications can retrieve sections

of a policy by supplying a Canonical Text Services Uniform Resource Name (CTS-

URN) and other HTTP request parameters.

Our PKI Policy Repository implements the CTS protocol using the Google Ap-

pEngine Python framework [54].

A.1.3 Evaluation

When we presented our PKI Policy Repository to practitioners at the FPKIPA, EU-

GridPMA, and TAGPMA, many analysts agreed that a policy repository was desir-

able to find and maintain policies and could streamline X.509 processes. Nonetheless,

practitioners did express some concerns.

Some practitioners were concerned about the time it took to convert policies into

our TEI-XML encoding. Certainly, they could see benefit once the policy was en-

coded, but the encoding process itself could be expensive. For example, to convert

a PDF policy into TEI-XML, used to take us 4-6 hours of copying and pasting.

Although some CA’s already had an XML format for their policies, others were

concerned about how long it would take to move a policy from PDF format into

TEI-XML. In response to practitioners’ concerns about excessive encoding time, we

developed the Policy Encoding Toolchain.

In addition, practitioners were also concerned about the variation in section and

subsection headings of PKI policies that roughly followed RFC 2527 or 3647 formats.

In the real-world, headers might be relocated and paired with a different passage

167

reference. Analysts urged us to generalize our approach to handle header relocation.

In response to practitioner concerns about variation in CP/CPS structure at the

FPKIPA, we developed the Vertical Variance Reporter and eventually xudiff to

detect the relocation of provisions.

We note that the data in our PKI Policy Repository may have value beyond the

domain of identity management. Our repository is a corpus of versioned texts that

discuss similar topics in slightly different language. The data is labeled by a standard

reference scheme and might be useful for development of machine-learning algorithms

for polysemy or for information retrieval algorithms that require a structured data

source.3

A.2 Policy Builder

Our Policy Builder helps CAs to create new policies from a repository of extant,

already accredited policies. In actual practice, a new certificate policy may be created

when a CA wants to join a federation or bridge. CAs typically copy and paste passages

of old policy into their new policy and selectively edit a few words and phrases as

needed. The more similar the new, derivative certificate policy is to older, already

accepted policies, the greater the chances for the new policy to be accepted. Under

these circumstances, policy creation is quickly followed by policy review.

A.2.1 Security Policy Analysis Problems Addressed

Our Policy Builder attempts to address first two core limitations of security policy

analysis. First, our Policy Builder closes the gap between machine-actionable content

and the high-level langauges used by policy analysts by allowing practitioners to

compose policy in terms of meaningful units of policy. Second, our Policy Builder

3Conversations with Dan Rockmore.

168

allows practitioners to import policy statements at a variety of levels of granularity

ranging from sections, to subsections, to individual paragraphs if desired.

While Klobucar et al. have stated the need for machine-assisted policy cre-

ation [72], no tools have been built to fill this need and non have emerged that

consider policy creation as a means to streamline policy review.

A.2.2 Design and Implementation

Our Policy Builder fills the need for machine-assisted policy creation while facilitating

the review and evaluation of newly-created policies. Rather than copying and pasting

policy statements from PDFs, as is the current CA practice, Policy Builder imports

policy content directly from CPs in one or more PKI Policy Repositories. More

specifically, the Policy Builder initializes an empty document template as defined in

RFC 3647 and populates it with corresponding content from selected policies.

Policy content currently includes assertions, or security requirements qualified by

MUST, SHOULD, or other adjectives from RFC 2119 that indicate significance [11].

Rather than copying and pasting content, policy assertions are imported into the new

document by simply clicking on them. Once a document is built to satisfaction, the

CA may serialize policy to XML, PDF, or HTML. Since each assertion includes a

CTS-URN to its source policy, CAs can see how many security requirements they

imported from bridge or grid-approved CPs. Similarly, reviewers may process the

XML and filter original content from reused content.

A.2.3 Evaluation

Our Policy Builder received a fair amount of attention by practitioners. Most notably,

at IDTrust 2010, a group from Motorola was interested in our Policy Builder as their

group had thought of a similar tool but had not developed it as far as we had.4

4RIP Motorola.

169

A.3 Policy Mapper

Our Policy Mapper takes an RFC 2527 certificate policy and transforms it into an

RFC 3647 structure using a mapping defined in Section 7 of RFC 3647 [28]. Originally,

Policy Mapper was part of our Policy Reporter tool. Since policy analysts and CAs

were most interested in our policy mapping feature, we will only discuss the Policy

Mapper in this thesis. More information on our Policy Reporter may be found in our

EuroPKI 2009 paper [140].

A.3.1 Security Policy Analysis Problems Addressed

Our Policy Mapper addresses our first core limitation of security policy analysis be-

cause it closes the gap between the language that practitioners use to analyze policy

and the languages that practitioner tools can process.

A.3.2 Design and Implementation

Given a reference to a PKI policy, the Policy Mapper queries one or more PKI Policy

Repositories to retrieve the policy in RFC 2527 format. Once the policy has been

imported, the policy mapper instantiates a blank RFC 3647 policy and maps the

RFC 2527 sections into the appropriate portions of the template.

A.3.3 Evaluation

To evaluate the Policy Mapper, we timed how long it took to automatically map

the set of provisions of an RFC 2527 policy into the RFC 3647 structure. For this

experiment we assumed that the policies being mapped were readily available on disk

in PDF format for the manual case and were in the PKI Policy Repository as TEI-

XML in the automated case. In addition, we used a highly-experienced certificate

authority operator so that we could compare our approach to the fastest manual times

170

possible.5

We used the mapping defined in RFC 3647 and in three time trials the Policy

Mapper completed the mapping in 50, 39, and 35 seconds respectively.

These results highlight the benefits of tools that can process the same high-level

units as practitioners. In under one minute, provisions from one section of a certificate

policy were automatically mapped. Our experienced CA estimated that mapping a

policy from 2527 to 3647 format requires 20% more effort than a direct mapping

between 3647 CPs. Considering that the average mapping takes 80-120 hours for

an experienced CA, although the comparison is not exact, we claim that our results

indicate a significant time savings in policy mapping. This claim was supported by

practitioners at Protiviti and Digicert who repeatedly asked us to run our Policy

Mapper on RFC 2527 documents.

We also want to note that in preparation for the experiment, automation of the

mapping process immediately revealed an error in RFC 3647’s mapping matrix: Sec-

tion 2.1 in 2527 format maps to Section 2.6.4 in 3647 format. A closer look at RFC

3647, Section 6 revealed that Section 2.6.4 does not exist in the outline of provisions!

Automatic mapping allows one to easily change a mapping and rerun the process as

frequently as desired. Our approach also increases the transparency of the mapping

process because generated RFC 3647 policies contain references to the source RFC

2527 provisions from which they are mapped. Finally, automatic policy mapping is

easily reproduced; generated policies can be compared to other policies by loading

them into the PKI Policy Repository. It took roughly 1 minute to load a policy into

the repository depending upon the size of the CP/CPS.

5Thanks to Scott Rea.

171

A.4 Vertical Variance Reporter

Our Vertical Variance Reporter computed a mapping from the table of contents of

one policy to the table of contents of another policy. The term vertical variance comes

from Classical scholarship and describes how the reference structure of two versions

of a text vary.

A.4.1 Security Policy Analysis Problems Addressed

We designed the Vertical Variance Reporter to address the practitioner community’s

concern over policy variation. After presenting our PKI Policy Repository, Policy

Builder, and Policy Mapper to several IGTF PMAs and the FPKIPA, practitioners

urged us to think about policy variation because in the real world, headers may be

relocated, renamed, or paired with a different passage. Analysts encouraged us to

generalize our approach to at least handle the relocation of headers.

A.4.2 Design and Implementation

Our Vertical Variance Reporter compares every provision in a baseline policy (that

contains n provisions) to every provision in a policy under consideration (that contains

m provisions) to produce an n ×m matrix. Entry (i, j) in this matrix contains the

value of the Levenshtein distance metric between the provision header i in the first

policy and provision header j in the second policy.6 Our tool processes the resultant

matrix to report a mapping that classifies policy sections as matched, relocated, or

unmapped.

6The Levenshtein distance metric is a string edit distance metric with insert, delete, and update
operations.

172

A.4.3 Evaluation

To evaluate our Vertical Variance Reporter, we chose 10 policies from our PKI Policy

Repository. Overall, we found that most policies in our test corpus followed the

standard format described in RFC 2527 and 3647. The Federal Bridge Certificate

Authority (FBCA) CP was an exception as it contained 28 non-standard provisions

that were all below the subsection level. For example, Section 6.2.3.4 is found in

FBCA CP but is not found in RFC 3647. If one considers only sections, subsections,

and subsubsections, then we successfully identify between 97.8% and 100% of all

actual provisions. We should note that these are our results from our final experiment

and that more details are available in our 2010 IDTrust paper [141].

A.5 Policy Encoding Toolchain

We developed the Policy Encoding Toolchain to address the practitioner community’s

concern about the time it takes to convert a PKI policy to TEI-XML. During work on

our EuroPKI 2009 paper, we found that we could convert a PDF policy to TEI-XML

in 4-6 hours by copying and pasting content manually. Our Policy Encoding Toolchain

reduces the time it takes to convert text-based PDF policies to our TEI-XML format.

We use three steps to encode a PDF policy with our Policy Encoding Toolchain.

First we use Google Docs to generate Google’s OCR HTML output for a given PDF

policy. Second we parse this HTML to generate a TEI-XML encoding as well as CSS

styling information. Finally, we generate a high-quality, human-readable view of the

policy that faithfully recreates the typography seen in Google’s OCR HTML.

We recently repurposed this keychain for our pilot studies of terms of service

policies described in Chapter 8. We were able to adapt this tool to encode multiple

versions of terms of service policies from a wide variety of service providers that

included Apple, Facebook, and Comcast.

173

A.6 Conclusions

In this Chapter, we discussed the purpose, design, and evaluation of several non-

XUTools tools that we developed to address the core limitations of PKI policy anal-

ysis. We note that our XUTools provides a more general framework to implement

similar services. This chapter represents a subset of the most promising tools that we

published in our EuroPKI 2009 and IDTrust 2010 papers [140,141]. For more details,

please consult those sources.

174

Appendix B

PyParsing Internals

XUTools currently uses the PyParsing library [82]. The PyParsing library uses a

top-down parsing algorithm, an algorithm that attempts to construct a parse tree for

the input by starting at the root and building the tree in preorder [2].1

The PyParsing library uses higher-order functions called parser combinators to de-

fine the equivalent of a recursive-descent parser (with backtracking) for a context-free

grammar. The functional programming term higher-order function refers to a function

that takes one or more functions as input and outputs a function. Parser combina-

tors are higher-order functions that take recognizers called interpretation functions

as input and return another interpretation function.

In this chapter, we first provide background for recursive-descent parsers imple-

mented via parser combinators. We then evaluate these parsers. Finally, we conclude

with the implementation and evaluation of the scan string method which is central

to our xugrep algorithm.

1In contrast, a bottom-up parsing algorithm attempts to construct a parse tree for the input by
starting at the leaves and building the tree in postorder.

175

B.1 PyParsing and Recursive Descent Parsers

We will now discuss how parser combinators may be used to construct the equiva-

lent of a recursive-descent parser and specifically how the PyParsing library imple-

ments these concepts. We base our discussion on Wadler’s presentation of the former

topic [137]. Therefore, we will first define interpretation functions, and describe how

PyParsing implements several of these functions. We will then define several parser

combinators and describe their implementation in PyParsing. Finally, we will walk

through an example (based on our corpus of PKI policies encoded in TEI-XML) that

shows how parser combinators implement the equivalent of a recursive-descent parser

when they process an input string.

B.1.1 Interpretation Functions

An interpretation function is a function that recognizes strings in a language. As

shown in Figure B.1, given an input string w, an interpretation function f returns a

list of results. If the input string is not in the language of the recognizer implemented

by the interpretation function, then the list is empty. Otherwise, the list contains

pairs of values derived from consumed input (such as tokens or a parse tree), and the

remainder of unconsumed input (tail w). Each pair in the list represents a successful

interpretation of w with respect to the language recognized by f . For example, the

interpretation function for an ambiguous grammar may return a list of results with

several interpretations.

176

interpretation
function f for
language L

input string
w

tail wvalue
,

An interpretation function

()

Figure B.1: An interpretation function implements a recognizer for language. Given an

input string w it returns a list of results. If the list is empty, then there is no prefix of w that

is in the language of the interpretation function. If the list is non-empty, then it contains

a list of successful interpretations of w. Each interpretation consists of a value (a list of

tokens or a parse tree derived from a prefix of w) and the tail of w that was unconsumed

by f .

In the context of parsing, interpretation functions may be defined to recognize

a variety of languages traditionally associated with lexical and syntactic analysis.

Traditionally programs with structured input first divide the input into meaningful

units (lexical analysis) and then discover the relationship among those units (syntactic

analysis) [78]. We will discuss lexical analysis now and syntactic analysis during our

discussion of parser combinators.

In traditional compiler construction, lexical analysis transforms the input sequence

of characters into a sequence of tokens. A token is a name that references a set of

strings that follow a rule called a pattern associated with the token. The pattern

matches each string in the set. A lexeme is a character subsequence in the input

stream that is matched by the pattern for the token [2].2 Table B.1 provides examples

of tokens, lexemes, and patterns for TEI-XML.

2This prose closely follows the pedagogy of Aho, Sethi, Ullman section 3.1.

177

Tokens for TEI-XML Grammar Fragment
token sample lexemes informal description of pattern

div_start (end)
<tei:div>, <tei:div type="section">,
<tei:div type="subsection">,
<tei:div color="orange">, (</tei:div>)

start (end) of a division of text

paragraph_start (end) <tei:p> (</tei:p>) start (end) of paragraph

subsection_start <tei:div type="subsection"> start of a subsection of text

section_start <tei:div type="section"> start of a section of text

head_start (end) <tei:head> (</tei:head>) start (end) of a passage header

Table B.1: Each row in this table gives an example of a token, examples of strings in

the language of the pattern associated with the token, and an informal description of the

pattern. Lexical analyzers specify these patterns using regular expressions. Alternatively,

we may write interpretation functions that recognize these languages.

Lexical analyzers specify token patterns using regular expressions but we may

also write interpretation functions that recognize these languages. For example,

in order to recognize the div start token, we can write an interpretation function

that looks for the “<” character, followed by the string “tei:div” and zero or more

key/value attribute pairs, and terminated by the “>” character. In fact, PyParsing’s

pyparsing.makeXMLTags method constructs an interpretation function that does ex-

actly what we just described.

PyParsing provides a number of additional methods and classes to construct in-

terpretation functions that are traditionally associated with lexical analysis. The

pyparsing.Literal class constructs an interpretation function to exactly match a

specified string. The pyparsing.Word class constructs an interpretation function to

match a word composed of allowed character sets (such as digits and alphanumerical

characters). The pyparsing.Keyword class constructs an interpretation function to

match a string as a language keyword. Finally the pyparsing.Empty class constructs

an interpretation function that will always match as it implements the empty token.

178

B.1.2 Parser Combinators

A parser combinator is a high-order function that takes interpretation functions as

input and returns another interpretation function. These combinator functions are

often designed to model the form of a BNF grammar so that “the parser/interpreter

explicitly expresses the grammar interpreted” [48]. For example, we will see that the

Or combinator may be expressed as the | operator in PyParsing’s syntax.

Parser combinators allow one to express relations among meaningful units of text

recognized by interpretation functions. The discovery of relationships between mean-

ingful units of text is the goal of traditional syntactic analysis—the meaningful units

are tokens and the relations among those units are encoded by a parse tree.3 The

parse tree reflects the relationships among terminals (tokens) and nonterminals in a

grammar. In the previous section we described how to construct interpretation func-

tions for the former. We now discuss how to construct interpretation functions for

the latter by means of parser combinators.

Although a variety of combinators may be defined, we will discuss the Or and

And combinators because the syntax of these combinators reflects BNF form in Py-

Parsing’s grammar syntax.

Figure B.2 illustrates the behavior of the Or combinator [137]. Given an inter-

pretation function f1 for the language L1 and an interpretation function f2 for the

language L2, the Or combinator returns an interpretation function f3 for the language

L1 ∪ L2.
4

3Indeed, the edges of the parse tree are a relation in the mathematical sense. The ordering of
child nodes within a parse tree is another important relation for syntactic analysis, however.

4We note that context-free languages are closed under the union operation—if L1 and L2 are
both context-free, then their union L1 ∪ L2 is context-free.

179

interpretation
function f1 for
language L1

interpretation
function f2 for
language L2

interpretation
function f3 for

language L1 U L2
"Or"

Combinator

The "Or" Combinator

Figure B.2: Or combinator takes two interpretation functions f1 and f2 as input. Interpre-

tation functions f1 and f2 recognize languages L1 and L2 respectively. The Or combinator

constructs an interpretation function f3 that recognizes the language L3 = L1∪L2. The Py-

Parsing syntax expresses the construction of f3 as f1|f2; this syntax is designed to resemble

a BNF grammar.

In Figure B.3, we use the Or combinator to construct a recognizer for the language

of subsection content (subsection content) in PKI policies encoded with TEI-

XML.

Figure B.5 illustrates the behavior of the And combinator [137]. This combinator

may also be expressed as a binary operator on two interpretation functions f1 and

f2 that recognize languages L1 and L2 respectively. The And combinator creates a

recognizer, implemented as an interpretation function, that recognizes the language

L1 ◦ L2. In other words, it recognizes the language of strings that consist of a string

prefix in L1 followed by a substring in L2.
5

5Again, we note that the context-free languages are closed under the concatenation operation. If
L1 and L2 are both context-free, then their concatenation L1 ◦ L2 is also context-free.

180

token definitions
div_start, div_end = makeXMLTags("tei:div")
head_start, head_end = makeXMLTags("tei:head")
paragraph_start, paragraph_end = makeXMLTags("tei:p")
subsection_start = copy(div_start).setParseAction(withAttribute(type="subsection"))
section_start = copy(div_start).setParseAction(withAttribute(type="section"))

CFG for TEI-XML
HEAD_CONTENT = SkipTo(MatchFirst(head_end))
HEAD = head_start + HEAD_CONTENT + head_end

PARAGRAPH_CONTENT = SkipTo(MatchFirst(paragraph_end))
PARAGRAPH = paragraph_start + PARAGRAPH_CONTENT + paragraph_end

DIV = Forward()
DIV_CONTENT = HEAD | PARAGRAPH | DIV
DIV = nestedExpr(div_start, div_end, content = DIV_CONTENT)

SUBSECTION_CONTENT = HEAD | PARAGRAPH | DIV
SUBSECTION = subsection_start + ZeroOrMore(SUBSECTION_CONTENT) + div_end

SECTION_CONTENT = HEAD | PARAGRAPH | DIV
SECTION = section_start + ZeroOrMore(SECTION_CONTENT) + div_end

PyParsing Grammar Fragment for TEI-XML

Figure B.3: The PyParsing API uses parser combinators so that input tokenization and

syntactic analysis may be expressed using code that resembles a traditional grammar. This

figure shows a grammar fragment for the dialect of TEI-XML Sections in which our X.509

TEI-XML policies are encoded. Productions that correspond to tokens traditionally rec-

ognized during lexical analysis are in bold. Figure B.4 presents a portion of policy in the

language of this grammar.

interpretation
function f1 for
language L1

interpretation
function f2 for
language L2

interpretation
function f3 for

language L1 o L2
"And"

Combinator

The "And" Combinator

Figure B.5: The And combinator may be viewed as a binary operator + that recognizes

strings in the language of the concatenation of its two input recognizers f1 and f2. Specifi-

cally, given two interpretation functions f1 and f2 as input, the And combinator constructs

an interpretation function f3 that recognizes the language L3 = L1 ◦ L2.181

6
TE

C
H

N
IC

A
L

SE
C

U
R

IT
Y

C
O

N
TR

O
LS

Th
e

re
qu

ire
m

en
ts

 fo
r t

ec
hn

ic
al

 s
ec

ur
ity

 m
ea

su
re

s
of

 a
 C

A
or

 R
A

ar
e

de
te

rm
in

ed
 b

y
th

e
ty

pe
s

of
 s

er
vi

ce
s

of
fe

re
d.

 T
he

 p
re

ci
se

 le
ve

l o
f

se
cu

rit
y…

6.
1

K
EY

 P
A

IR
 G

EN
ER

AT
IO

N
 A

N
D

 IN
ST

A
LL

AT
IO

N
6.

1.
1

K
EY

 P
A

IR
 G

EN
ER

AT
IO

N
Ke

y
pa

irs
 fo

r t
he

 G
rid

-C
A

ar
e

ge
ne

ra
te

d
on

 a
 d

ed
ic

at
ed

 IT
 s

ys
te

m

un
eq

ui
pp

ed
 w

ith
 n

et
w

or
ki

ng
 c

ap
ab

ilit
y

or
 d

ire
ct

ly
 w

ith
in

 a
 H

ar
dw

ar
e

Se
cu

rit
y

M
od

ul
e

(H
SM

).
6.

1.
1.

1
H

SM
 R

EQ
U

IR
EM

EN
TS

Th
e

ke
ys

 a
re

 s
to

re
d

on
ly

 o
n

ex
te

rn
al

 d
at

a
st

or
ag

e
m

ed
ia

 a
nd

 a
re

pr

ot
ec

te
d

by
 a

 P
IN

 o
r w

he
n

ge
ne

ra
te

d
w

ith
in

 a
 H

SM
 th

e
ke

ys
 a

re

pr
ot

ec
te

d
by

 th
e

H
SM

.

6.
1.

2
PR

IV
AT

E
K

EY
 D

EL
IV

ER
Y

TO
 S

U
B

SC
R

IB
ER

N
o

cr
yp

to
gr

ap
hi

c
ke

y
pa

irs
 a

re
 g

en
er

at
ed

 fo
r s

ub
sc

rib
er

s
…Sa

m
pl

e
TE

I-X
M

L
PK

I C
PS

 S
ec

tio
n

(B
as

ed
 o

n
IG

TF
 D

FN
-G

rid
G

er
m

an
y

C
PS

 v
er

si
on

 1
.4

)
hu

m
an

-r
ea

da
bl

e
TE

I-X
M

L
en

co
di

ng

<t
ei

:d
iv

 ty
pe

="
se

ct
io

n"
 n

="
6"

>
 <

te
i:h

ea
d>

TE
C

H
N

IC
A

L
SE

C
U

R
IT

Y
C

O
N

TR
O

LS
</

te
i:h

ea
d>

 <
te

i:p
>T

he
 re

qu
ire

m
en

ts
 fo

r t
ec

hn
ic

al
 s

ec
ur

ity
 m

ea
su

re
s

of
 a

 C
A

or
 R

A
ar

e
de

te
rm

in
ed

 b
y

th
e

ty
pe

s
of

 s
er

vi
ce

s
of

fe
re

d.
 T

he
 p

re
ci

se
 le

ve
l o

f
se

cu
rit

y
...

</
te

i:p
>

 <
te

i:d
iv

 ty
pe

="
su

bs
ec

tio
n"

 n
="

1"
>

 <

te
i:h

ea
d>

K
EY

 P
A

IR
 G

EN
ER

AT
IO

N
 A

N
D

 IN
ST

A
LL

AT
IO

N
</

te
i:h

ea
d>

 <

te
i:d

iv
 ty

pe
="

su
bs

ub
se

ct
io

n"
 n

="
1"

>

<t

ei
:h

ea
d>

K
EY

 P
A

IR
 G

EN
ER

AT
IO

N
</

te
i:h

ea
d>

<t
ei

:p
>K

ey
 p

ai
rs

 fo
r t

he
 G

rid
-C

A
ar

e
ge

ne
ra

te
d

on
 a

 d
ed

ic
at

ed
 IT

sy

st
em

 u
ne

qu
ip

pe
d

w
ith

 n
et

w
or

ki
ng

 c
ap

ab
ilit

y
or

 d
ire

ct
ly

 w
ith

in
 a

H

ar
dw

ar
e

Se
cu

rit
y

M
od

ul
e

(H
SM

).<
/te

i:p
>

 <
te

i:d
iv

 ty
pe

="
su

bs
ub

su
bs

ec
tio

n"
 n

="
1"

>

<t

ei
:h

ea
d>

H
SM

 R
EQ

U
IR

EM
EN

TS
</

te
i:h

ea
d>

<t

ei
:p

>T
he

 k
ey

s
ar

e
st

or
ed

 o
nl

y
on

 e
xt

er
na

l d
at

a
st

or
ag

e
m

ed
ia

an

d
ar

e
pr

ot
ec

te
d

by
 a

 P
IN

 o
r w

he
n

ge
ne

ra
te

d
w

ith
in

 a
 H

SM
 th

e
ke

ys

ar
e

pr
ot

ec
te

d
by

 th
e

H
SM

.<
/te

i:p
>

 <
/te

i:d
iv

>

 <

/te
i:d

iv
>

 <
te

i:d
iv

 ty
pe

="
su

bs
ub

se
ct

io
n"

 n
="

2"
>

<t
ei

:h
ea

d>
PR

IV
AT

E
K

EY
 D

EL
IV

ER
Y

TO
 S

U
B

SC
R

IB
ER

</
te

i:h
ea

d>

<t

ei
:p

>N
o

cr
yp

to
gr

ap
hi

c
ke

y
pa

irs
 a

re
 g

en
er

at
ed

 fo
r s

ub
sc

rib
er

s.
</

te
i:p

>

 <
/te

i:d
iv

>
... <

/te
i:d

iv
>

</
te

i:d
iv

>

F
ig
u
re

B
.4
:

T
h

is
fi

g
u

re
sh

ow
s

a
p

or
ti

on
of

a
C

er
ti

fi
ca

ti
on

P
ra

ct
ic

es
S

ta
te

m
en

t
(C

P
S

)
an

d
it

s
en

co
d

in
g

in
T

E
I-

X
M

L
,

an
X

M
L

d
ia

le
ct

th
at

w
e

u
se

d
to

en
co

d
e

n
a
tu

ra
l-

la
n

g
u

ag
e

se
cu

ri
ty

p
ol

ic
ie

s.
T

h
e

p
ol

ic
y

sh
ow

n
on

th
e

le
ft

co
n

si
st

s
of

on
e

se
ct

io
n

(T
ec

h
n

ic
al

S
ec

u
ri

ty

C
o
n
tr

o
ls

),
on

e
su

b
se

ct
io

n
(K

ey
P

a
ir

G
en

er
at

io
n

an
d

In
st

al
la

ti
on

),
tw

o
su

b
su

b
se

ct
io

n
s

(K
ey

P
ai

r
G

en
er

at
io

n
an

d
P

ri
va

te
K

ey
D

el
iv

er
y

to

S
u

b
sc

ri
b

er
)

a
n

d
on

e
su

b
su

b
su

b
se

ct
io

n
(H

S
M

R
eq

u
ir

em
en

ts
).

O
n

th
e

ri
gh

t,
w

e
se

e
ea

ch
of

th
e

co
rr

es
p

on
d

in
g

se
ct

io
n

s
en

co
d

ed
as

n
es

te
d

t
e
i
:
d
i
v

el
em

en
ts

a
n

d
th

e
h

ea
d

er
s

ar
e

h
ig

h
li

gh
te

d
in

b
ol

d
fo

r
re

ad
ab

il
it

y.
T

h
e

p
or

ti
on

of
p

ol
ic

y
sh

ow
n

is
in

th
e

la
n

gu
ag

e
of

th
e

gr
am

m
ar

in
F

ig
u

re
B

.3
.

182

In Figure B.3, we use the And combinator to construct a recognizer for the lan-

guage of sections encoded with TEI-XML. We use the PyParsing syntax to specify an

interpretation function for subsections and this syntax resembles a grammar produc-

tion in BNF form. According to this definition, a section consists of a subsection

start tag (section start), followed by zero or more content strings, followed by an end

tag (div end). We use the And combinator to construct an interpretation function

for this language.

B.1.3 Combinators and Recursive-Descent Parsers

As mentioned earlier, we can use parser combinators to define the equivalent of a

recursive-descent parser (with backtracking) for a context-free grammar. We just ex-

plained how the And and Or combinators may be used to construct an interpretation

function for sections encoded in TEI-XML. The syntax for this construction closely

aligns with the syntax for a production in a BNF grammar. When we call the in-

terpretation function for a production on an input string w, the resultant call graph

aligns with the series of calls made by a recursive-descent parser.

As mentioned earlier, recursive-descent parsers attempt to construct a parse tree

for an input string w by starting at the root and building the parse tree in preorder.

Recall from Chapter 3 that an interior node v of a parse tree is labeled by a nonter-

minal and the children of v are ordered, from left to right, by symbols in the right

side of the nonterminal’s production that was applied to derive the tree.

Figure B.6 illustrates how the head production in Figure B.3 specifies an in-

terpreter function that, when called on an input w, implements a recursive-descent

parser. A step-by-step description of the call sequence is described in Table B.2.

183

HEAD

 w = "<tei:head>TECHNICAL SECURITY CONTROLS</tei:head>"

head_start HEAD_CONTENT head_end

S

1.call

2.call
2.ret 3.call 3.ret 4.call

4.ret

1.ret

S

Interpretation Function Call Graph

1

head_start

HEAD

2 HEAD_CONTENT3 head_end4

Parse Tree for Input w

Figure B.6: When we call an interpretation function constructed using parser combinators,

the resultant call graph implements a recursive-descent parser. Here, we see that the parse

tree for input w is built in preorder. Furthermore, the stack for this recognizer is implicitly

represented as the activation stack for the interpretation function calls shown in the Step

column in Table B.2. The step-by-step description of this process is available in Table B.2.

184

St
ep

C
al

l G
ra

ph
 D

es
cr

ip
tio

n
Pa

rs
e

Tr
ee

 D
es

cr
ip

tio
n

1.
ca

ll
C

al
l t

he
 in

te
rp

re
ta

tio
n

fu
nc

tio
n

fo
r t

he
 fi

rs
t (

an
d

on
ly

)
H

EA
D

 p
ro

du
ct

io
n

w
ith

 in
pu

t w
.

Ad
d

a
ch

ild
 n

od
e

to
 th

e
pa

rs
e

tre
e

ro
ot

.
Se

t t
he

 la
ng

ua
ge

na

m
e

fie
ld

 o
f t

he
 c

hi
ld

 n
od

e
to

 "H
EA

D
".

2.
ca

ll
C

al
l t

he
 in

te
rp

re
ta

tio
n

fu
nc

tio
n

fo
r t

he
 h

ea
d_

st
ar

t
la

ng
ua

ge
 w

ith
 in

pu
t w

.
Ad

d
a

ch
ild

 n
od

e
to

 th
e

pa
rs

e
tre

e
ro

ot
.

Se
t t

he
 la

ng
ua

ge

na
m

e
fie

ld
 o

f t
he

 c
hi

ld
 n

od
e

to
 "h

ea
d_

st
ar

t".

2.
re

tu
rn

Th
e

in
te

rp
re

ta
tio

n
fu

nc
tio

n
fo

r t
he

 h
ea

d_
st

ar
t l

an
gu

ag
e

re
tu

rn
s

[(
"<

te
i:h

ea
d>

",
"T

EC
H

N
IC

AL
…

</
te

i:h
ea

d>
")

].
Se

t t
he

 v
al

ue
 o

f n
od

e
2'

s
te

xt
 fi

el
d

to
 "t

ei
:h

ea
d"

.

3.
ca

ll
C

al
l t

he
 in

te
rp

re
ta

tio
n

fu
nc

tio
n

fo
r H

EA
D

_C
O

N
TE

N
T

la
ng

ua
ge

 w
ith

 in
pu

t w
2

=
"T

EC
H

N
IC

AL
…

</
te

i:h
ea

d>
".

Ad
d

a
se

co
nd

 c
hi

ld
 n

od
e

to
 th

e
pa

rs
e

tre
e

ro
ot

.
Se

t t
he

la

ng
ua

ge
 n

am
e

fie
ld

 o
f t

he
 c

hi
ld

 n
od

e
to

 "h
ea

d_
co

nt
en

t".

3.
re

tu
rn

Th
e

in
te

rp
re

ta
tio

n
fu

nc
tio

n
fo

r H
EA

D
_C

O
N

TE
N

T
la

ng
ua

ge
 re

tu
rn

s
[(

"T
EC

H
N

IC
AL

…
C

O
N

TR
O

LS
",

"<
/

te
i:h

ea
d>

")
].

Se
t t

he
 v

al
ue

 o
f n

od
e

3'
s

te
xt

 fi
el

d
to

 "T
EC

H
N

IC
AL

…
C

O
N

TR
O

LS
".

4.
ca

ll
C

al
l i

nt
er

pr
et

at
io

n
fu

nc
tio

n
fo

r h
ea

d_
en

d
la

ng
ua

ge
 w

ith

in
pu

t w
3

=
"<

/te
i:h

ea
d>

".

4.
re

tu
rn

Th
e

in
te

rp
re

ta
tio

n
fu

nc
tio

n
fo

r H
EA

D
 re

tu
rn

s
a

lis
t o

f t
he

fir

st
 e

le
m

en
t i

n
th

e
tu

pl
es

 re
tu

rn
ed

 fr
om

 c
al

ls
 2

-4
.

[(

 [
 "<

te
i:h

ea
d>

",

 "T
EC

H
N

IC
AL

…
C

O
N

TR
O

LS
",

 "<

/te
i:h

ea
d>

"
]

, [
]

)]
.

1.
re

tu
rn

Th
e

in
te

rp
re

ta
tio

n
fu

nc
tio

n
fo

r t
he

 h
ea

d_
en

d
la

ng
ua

ge

re
tu

rn
s

[("
</

te
i:h

ea
d>

",
[])

].

0
C

al
l t

he
 in

te
rp

re
ta

tio
n

fu
nc

tio
n

fo
r t

he
 s

ta
rt

pr
od

uc
tio

n
S.

W

e
au

gm
en

t t
he

 g
ra

m
m

ar
 w

ith
 a

 s
ta

rt
sy

m
bo

l s
o

th
at

 th
e

st
ar

t p
ro

du
ct

io
n

is
 g

ua
ra

nt
ee

d
no

t t
o

re
fe

r t
o

its
el

f.

Ad
d

a
ch

ild
 n

od
e

to
 th

e
pa

rs
e

tre
e

ro
ot

.

Ad
d

a
th

ird
 c

hi
ld

 n
od

e
to

 th
e

pa
rs

e
tre

e
ro

ot
.

Se
t t

he

la
ng

ua
ge

 n
am

e
fie

ld
 o

f t
he

 c
hi

ld
 n

od
e

to
 "h

ea
d_

en
d"

.

Se
t t

he
 v

al
ue

 o
f n

od
e

4'
s

te
xt

 fi
el

d
to

 "<
/te

i:h
ea

d>
".

Se
t t

he
 v

al
ue

 o
f n

od
e

1'
s

te
xt

 fi
el

d
to

"<

te
i:h

ea
d>

TE
C

H
N

IC
AL

…
C

O
N

TR
O

LS
</

te
i:h

ea
d>

".

T
a
b
le

B
.2
:

T
h

e
en

tr
ie

s
in

th
is

ta
b

le
sh

ow
h

ow
th

e
in

te
rp

re
ta

ti
on

fu
n

ct
io

n
fo

r
th

e
h
ea

d
p

ro
d

u
ct

io
n

,
sp

ec
ifi

ed
in

F
ig

u
re

B
.3

,
im

p
le

m
en

ts

a
re

cu
rs

iv
e-

d
es

ce
n
t

p
ar

se
r

w
h

en
in

vo
ke

d
on

an
in

p
u

t.
W

e
n

ot
e

th
at

w
e

au
gm

en
t

th
e

gr
am

m
ar

w
it

h
a

st
ar

t
sy

m
b

ol
so

th
at

th
e

st
ar

t

p
ro

d
u

ct
io

n
d

o
es

n
ot

re
fe

r
to

it
se

lf
,

th
u

s
k
ee

p
in

g
th

e
gr

am
m

ar
in

C
h

om
sk

y
n

or
m

al
fo

rm
.

F
or

m
or

e
in

fo
rm

at
io

n
ab

ou
t

C
h

om
sk

y
n

or
m

al

fo
rm

,
co

n
su

lt
[1

15
].

185

B.2 Evaluation of Recursive Descent Parsers

We now evaluate our PyParsing recursive-descent parsers in terms of implementation

complexity, recognition power, usability and portability, and against other parsing

algorithms.

B.2.1 Evaluation—Implementation Complexity

First, we discuss the time and space complexity of our recursive-descent parser im-

plemented via PyParsing.

Time Complexity: In the worst case, a recursive-descent parser may require back-

tracking. Backtracking occurs when the parser must make repeated scans of the input.

For example, consider Figures B.8 and B.9. In this example, we have modified the

grammar of Figure B.3 to include an alternative encoding of TEI header content by

adding another production (head content2). Figure B.7 shows the modifications

to the grammar.

Figure B.8 shows that when we apply our recursive-descent parser to the input

string w, the parser tries the first head production listed, and successfully matches

the opening header tag (head start). The parser then applies the head content2

production and the interpretation function for the word technical succeeds. Unfor-

tunately, the interpretation function for the word controls fails because the uncon-

sumed input string contains the word security. Therefore, the head content2

production also fails as does the first head production.

186

HEAD_CONTENT2 = Word("TECHNICAL") + Word("CONTROLS")
HEAD_CONTENT = SkipTo(MatchFirst(head_end))
HEAD = head_start + HEAD_CONTENT_2 + head_end
 | head_start + HEAD_CONTENT + head_end

PyParsing Grammar Fragment for TEI-XML Headers

Figure B.7: We modified the grammar in Figure B.3 to include an alternative encoding of

TEI header content. We use this grammar in Figures B.8 and B.9 to illustrate backtracking.

HEAD_CONTENT2

HEAD

head_start

S

1.call

2.call
2.ret

1.ret

S

Interpretation Function Call Graph

1 HEAD

head_start2

Parse Tree for Input w

Recursive-Descent Parsing Process with First Production for HEAD

HEAD_CONTENT3

3.call 3.ret

4.call
4.ret

Word("TECHNICAL")

5.call 5.ret

Word("TECHNICAL")4 Word("CONTROLS")5Word("CONTROLS")

Figure B.8: Given an input string w, a recursive descent parser may repeatedly scan

the same input string as it tries alternative productions for a nonterminal. This figure

shows a recursive-descent parser that must backtrack after the interpretation function for

the word controls fails. Therefore, the parser must backtrack. Repeated calls to the

same interpretation function with the same input string make recursive-descent parsers

with backtracking run in exponential time. In this example, the head start interpretation

function is called twice on the input string w.

187

HEAD

S

1.call 1.ret

S

Interpretation Function Call Graph

1 HEAD

Parse Tree for Input w

head_start

2.call

head_start2

 Parsing Process Backtracks and Continues with Second HEAD Production

Figure B.9: The parsing process from Figure B.8 continues with the next head produc-

tion. Repeated calls to the same interpretation function with the same input string make

recursive-descent parsers with backtracking run in exponential time. In this example, the

head start interpretation function is called twice on the input string w.

Figure B.9 shows that the parsing process backtracks and continues with the

second head production. A parser that must backtrack requires exponential time in

the number of symbols of input in the worst case. This can occur because of repeated

calls to the same interpretation function given the same input string. For example,

in Figures B.8 and B.9 we can see that the head start interpretation function is

called twice on the input string w, once for every execution of head. (Specifically,

this can take O(kn) time for an LL(k) grammar and an input of length n.) In

order to address this exponential time, a packrat parser uses memoization to store

the results of invoking an interpretation function on an input string [44]. A packrat

parser runs in O(n) time given an input string of length n. The PyParsing library

enables packrat parsing via the pyparsing.enablePackrat method. We note that

the packrat parser resolves ambiguous text in favor of the first alternative, and thus

188

changes the interpretation of the grammar.

Space Complexity: A packrat parser requires linear space in the worst case (O(n))

to store the results of an interpretation function on an input string w that is n

symbolss long. The results of an interpretation function are uniquely determined by

the prefix it consumes. If the input string is length n, then there are n + 1 possible

suffixes used in the recursive calls to a production’s interpretation function (including

w and the empty string). Therefore, since the number of interpretation functions is

constant, and there are n+ 1 possible results per interpretation function, the packrat

parser takes O(n) space to store intermediate parsing results [44].

B.2.2 Evaluation—Recognition Power

Recursive-descent parsers only operate on LL(k) grammars. An LL grammar is a

grammar that can be parsed by scanning the input from left to right (the first L),

and by constructing a leftmost derivation (the second L).6 Finally, the k means that

the parser needs to only look at most k symbols ahead to determine which production

to apply [2]. An LL(k) grammar may not be ambiguous, nor can it have left-recursion.

A left-recursive grammar can cause a recursive-descent parser to enter an infinite loop.

Nonetheless, Frost et al. recently showed that one can construct parser combina-

tors for ambiguous, left-recursive grammars. The usability of such grammars we leave

to potential future work [47].

B.2.3 Evaluation—Usability and Portability

PyParsing’s specification of recursive-descent parsers allows one to construct a parser

in a syntax that closely resembles defining a grammar. In general, recursive-descent

parsers are easy to implement because they reflect closely the structure of a grammar.

6A parser computes a leftmost derivation if during the parsing process, the parser applies a
production to the leftmost nonterminal in the current derivation.

189

This makes for very readable parser code and for an open-source project like XUTools

this makes our parser interface more accessible to people that are interested in working

on the project’s source.

On the other hand, the PyParsing syntax is still an API, and we currently do not

distinguish between the specification of a grammar and the construction of a parser

for the language of that grammar. As a result, our “grammars” contain PyParsing-

specific methods and this reduces the overall portability of our grammars. Since our

grammar specifications are currently tied to the PyParsing library, we cannot use

the grammars that we have written with a future, non-Python implementation of

XUTools.

B.2.4 Alternative Parsing Algorithms

Although parser combinators allow us to easily construct recursive-descent parsers

that use linear time and space if memoization is enabled, we may want to consider

bottom-up parsing algorithms such as LR parsers. We leave this as potential future

work, but discuss a few points on LR parsers here.

Recognition Power and Complexity: LR(k) parsers scan the input from left to

right (the L), and construct a rightmost derivation (the R) by scanning at most k

input symbols ahead. Aho, Sethi, and Ullman state that typical language constructs

can usually be expressed using grammar that can be recognized with an LR parser [2].

An LR(k) parser may not be ambiguous, but it can be left-recursive.

Even though LR(1) parsers are difficult to implement by hand, parser-generators

such Yacc [148] can generate a LR(1) parser directly from a grammar using the

Lookahead-LR (LALR) construction. In addition, techniques such as association rules

accommodate ambiguity within an LR parser even though an ambiguous grammar is

not an LR(1) grammar [2].

190

Usability and Portability: Although LR parsers may be generated from a gram-

mar, writing an LR grammar to generate such a parser can be difficult. In order to

interpret parser error messages, the grammar writer must understand the LALR algo-

rithm and this is less intuitive than understanding recursive-descent parsing. In fact,

the GCC C++ parser was changed from LALR to recursive-descent parsers because

the LALR error messages were difficult to interpret [50,75].

If we were to use an LALR parser, then we could not expect end users to be

able to write small grammars to use with XUTools. In contrast, the relation between

recursive-descent parsers and a grammar specification is more easily understood with

parser combinators. Furthermore, packrat parsers run in O(n) time and consume

O(n) space and, according to Ford [44], packrat parsers can recognize any language

by an LL(k) or LR(k) grammar.

B.3 Implementation and Evaluation of Scan String

In Chapter 5 we mentioned the scan string method. The scan string method takes

string as input and a language name for a production in a context-free grammar and

outputs all non-overlapping substrings that are in that language.

Currently, we implement this method with the pyparsing.scan string method.

We note that the pyparsing.scan string method does report overlapping matches

if the overlap flag is set.

The pyparsing.scan string method operates on a string of characters (as op-

posed to tokens) because PyParsing interpretation functions parse language con-

structs that are traditionally viewed as tokens as well as higher-level constructs re-

served for syntactic analysis.

Given an input string w and an interpretation function for a language construct,

the pyparsing.scan string method initializes a location variable (loc) to 0. The

191

location variable holds the index for the start of the input string w′ for the interpre-

tation function.

Recall from the previous subsection that an interpretation function takes the input

w′ and tries to construct a derivation for a prefix of w′. The interpretation function

returns a list of pairs that represent possible interpretations of w′ and each pair con-

tains a value (it could be a derivation) along with the tail of w′ that was unconsumed

by the interpretation function. This is an important point because traditional parsers

take an input w′ (where symbols are tokens, not characters) and try to construct a

derivation for w′ in its entirety. If a traditional parser cannot construct a derivation

for all of w′ then, the parse fails.

Since interpretation functions can construct derivations for prefixes of an input

string w′, the scan string method need only keep track of the index for the start of

w′. The scan string method repeatedly calls the appropriate interpretation function

on input strings w′. If w′ has a prefix in the language of the interpretation function,

then the loc counter is incremented by the length of the consumed input. Otherwise

the loc counter is incremented by 1. Either way, a string w′, starting at index

loc in w, is ready to be interpreted. In the worst case, the method invokes the

interpretation function once for every character in w and constructs O(n) strings as

input to the interpretation function. As discussed above, the interpretation function

is equivalent to a recursive-descent parser if packrat mode is turned off. In this

case, scan string takes exponential time. If packrat mode is turned on, then the

interpretation function takes time linear in the input and so scan string interprets

O(n) strings, and it takes O(n) time per interpretation. Therefore, with packrat

mode, scan string takes O(n2) time.

Furthermore, each string that scan string gives to an interpretation function

as input is at most n characters long. If I assume that packrat mode reuses the

same memory space every time that it invokes the interpretation function f , then

192

the space complexity of scan string is linear since there are a constant number of

interpretation functions that f may invoke and there are at most n+1 possible results

per invoked interpretation function.

Comparision Against Scan String with Traditional Parsers

We now describe the worst-case analysis of a scan string method with a traditional

parser. As mentioned in the previous passage, traditional parsers take an input string

and try to construct a derivation. A traditional parser fails if the input string is not

in the language of the parser’s grammar.

To scan a string w using a traditional parsing algorithm, we need to consider

the beginning and the end of substrings of w′ because a traxditional parser finds

derivations if and only if w′ is in the language of the parser’s grammar.

Therefore, a scan string algorithm that uses a traditional parser must index the

start and end positions of w′ within the input string w. There are O(n2) such sub-

strings in a string of length n. Therefore, in the worst case, a scan string algorithm

can take cubic time in the length of the input w (in tokens) when the parsing algo-

rithm takes linear time. Again, if we assume that the parsing algorithm reuses space

between invocations, then the space complexity of the scan string algorithm with

traditional parsers is the space complexity of the traditional parser.

B.4 Conclusions

In this chapter, we gave a detailed description of a how we use PyParsing’s parser

combinators to implement a recursive-descent parser for XUTools. We then concluded

that although other parsing algorithms may be available, parser-combinators provide

a usable interface for users of our XUTools to specify their own parsers for small,

lightweight grammars.

193

Bibliography

[1] 4BF - Four Bridges Forum, 2009. Retrieved May 29, 2009 from http://www.

the4bf.com/.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, Reading, Massachusetts, 1988.

[3] Apel, S., Liebig, J., Lengauer, C., Kastner, C., and Cook, W. R.

Semistructured merge in revision control systems. In Proceedings of the Fourth

International Workshop on Variability Modeling of Software Intensive Systems

(VaMoS 2010) (January 2010), University of Duisburg-Essen, pp. 13–20.

[4] Arnold, G. NIST Smart Grid Program Overview, March 2012. Retrieved

November 28, 2012 from http://www.nist.gov/smartgrid/upload/Smart_

Grid_Program_Review_overview_-_arnold_-_draft1.pdf.

[5] Ball, E., Chadwick, D., and Basden, A. The implementation of a system

for evaluating trust in a PKI environment. Trust in the Network Economy,

Evolaris 2, unknown (unknown 2003), 263–279.

[6] Barnes, K., and Johnson, B. National SCADA test bed substation automa-

tion evaluation report. Tech. Rep. 15321, Idaho National Laboratory (INL), INL

Critical Infrastructure Protection/Resiliance Center, Idaho Falls, Idaho 83415,

October 2009.

194

http://www.the4bf.com/
http://www.the4bf.com/
http://www.nist.gov/smartgrid/upload/Smart_Grid_Program_Review_overview_-_arnold_-_draft1.pdf
http://www.nist.gov/smartgrid/upload/Smart_Grid_Program_Review_overview_-_arnold_-_draft1.pdf

[7] Batz, D., Brenton, J., Dunn, D., Williams, G., Clark, P., Elwart,

S., Goff, E., Harrell, B., Hawk, C., Henrie, M., Kenchington, H.,

Maughan, D., Kaiser, L., and Norton, D. Roadmap to achieve energy

delivery systems cybersecurity. Tech. rep., Department of Homeland Security,

Cyber Security R&D Center, 333 Ravenswood Avenue, Menlo Park, CA 94025,

September 2011.

[8] Benson, T., Akella, A., and Maltz, D. Unraveling the complexity of

network management. In Proceedings of the 6th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI ’09) (April 2009), USENIX

Association, pp. 335–348.

[9] Bille, P. A survey on tree edit distance and related problems. Theoretical

Computer Science 337, unknown (June 2005), unknown.

[10] Blaze, M., Feigenbaum, J., and Lacy, J. Decentralized trust manage-

ment. In Proceedings of the 1996 IEEE Symposium on Security and Privacy

(SP 1996) (May 1996), IEEE, pp. 164–173.

[11] Bradner, S. IETF RFC 2119: Key words for use in RFCs to indicate require-

ment levels, March 1997.

[12] Bratus, S., Locasto, M. E., Patterson, M. L., Sassaman, L., and

Shubina, A. Exploit programming: From buffer overflows to weird machines

and theory of computation. USENIX ;login: (December 2011), 13–21.

[13] Bright, P. Amazon’s lengthy cloud outage shows the danger of complexity.

ArsTechnica (April 2012). Retrieved September 19, 2012 from http://goo.

gl/z2nPq.

[14] Burnard, L., and Bauman, S. TEI P5: Guidelines for Electronic Text

Encoding and Interchange, 5 ed., 2007.

195

http://goo.gl/z2nPq
http://goo.gl/z2nPq

[15] Extended Validation SSL Certificates—The Certification Authority/Browser

Forum, 2012. Retrieved December 3, 2012 from https://www.cabforum.org.

[16] Caldwell, D., Lee, S., and Mandelbaum, Y. Adaptive parsing of router

configuration languages. In Internet Network Management Workshop, 2008.

(INM 2008) (October 2008), IEEE, pp. 1–6.

[17] Cantor, S., Kemp, J., Philpott, R., and Maler, E. Assertions and

protocols for the OASIS Security Assertion Markup Language (SAML), 2005.

[18] Casola, V., Mazzeo, A., Mazzocca, N., and Rak, M. An innovative

policy-based cross certification methodology for public key infrastructures. In

Proceedings of the 2nd European PKI Workshop (EuroPKI 2005) (June and

July 2005), EuroPKI, pp. 100–117.

[19] Casola, V., Mazzeo, A., Mazzocca, N., and Vittorini, V. Policy for-

malization to combine separate systems into larger connected network of trust.

In Proceedings of the IFIP TC6 / WG6.2 & WG6.7 Conference on Network

Control and Engineering for QoS, Security and Mobility (Net-Con 2002) (Oc-

tober 2002), IFIP, pp. 425–411.

[20] Catteddu, D., and Hogben, G. Cloud computing: Benefits, risks, and

recommendations for information security, 2009.

[21] Chadwick, D., and Otenko, A. RBAC policies in XML for X.509 based

privilege management. In Proceedings of IFIP TC11 17th International Con-

ference On Information Security (SEC’ 2002) (May 2002), Kluwer Academic,

pp. 39–53.

[22] SunView Software, ChangeGear. Retrieved February 3, 2012 from http://www.

sunviewsoftware.com/.

196

https://www.cabforum.org
http://www.sunviewsoftware.com/
http://www.sunviewsoftware.com/

[23] Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom,

J. Change detection in hierarchically structured information. In Proceedings

of the 1996 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’96) (June 1996), ACM, pp. 493–504.

[24] Chen, K., Schach, S. R., Yu, L., Offutt, J., and Heller, G. Z. Open-

source change logs. Empirical Software Engineering 9, 3 (September 2004),

197–210.

[25] Chen, X., Mao, Z. M., and Van der Merwe, J. Towards automated

network management: Network operations using dynamic views. In Proceedings

of the 2007 SIGCOMM Workshop on Internet Network Management (INM ’07)

(August 2007), ACM, pp. 242–247.

[26] CherryPy – A Minimalist Python Web Framework, 2011. Retrieved November

28, 2012 from http://www.cherrypy.org.

[27] Chokhani, S., and Ford, W. IETF RFC 2527: Internet X.509 Public Key

Infrastructure Certificate Policy and Certification Practices Framework, March

1999.

[28] Chokhani, S., Ford, W., Sabett, R., Merrill, C., and Wu, S. IETF

RFC 3647: Internet X.509 Public Key Infrastructure Certificate Policy and

Certification Practices Framework, November 2003.

[29] Cisco IOS configuration fundamentals command reference. Retrieved September

19, 2012 from http://www.cisco.com/en/US/docs/ios/12_1/configfun/

command/reference/frd1001.html.

[30] Cobéna, G., Abiteboul, S., and Marian, A. Detecting changes in XML

documents. In Proceedings of the 18th International Conference on Data Engi-

neering (February and March 2002), IEEE, pp. 41–52.

197

http://www.cherrypy.org
http://www.cisco.com/en/US/docs/ios/12_1/configfun/command/reference/frd1001.html
http://www.cisco.com/en/US/docs/ios/12_1/configfun/command/reference/frd1001.html

[31] Coccinelle: A program matching and transformation tool for systems code,

2011. Retrieved November 11, 2011 from http://coccinelle.lip6.fr/.

[32] Codeanalyzer. Retrieved May 17, 2012 from http://sourceforge.net/

projects/codeanalyze-gpl/.

[33] Common Information Model (CIM)/ energy management. Tech. Rep. 61970-

1, International Electrotechnical Commission IEC, December 2007. Available

on November 23, 2012 from http://webstore.iec.ch/webstore/webstore.

nsf/ArtNum_PK/35316.

[34] Configuring IP Access Lists, December 2007. Retrieved December

7, 2012 from http://www.cisco.com/en/US/products/sw/secursw/ps1018/

products_tech_note09186a00800a5b9a.shtml.

[35] Crane, G. The Perseus digital library, 2009. Retrieved May 29, 2009 from

http://www.perseus.tufts.edu/hopper/.

[36] Criticism of Facebook. Wikipedia (2012). Retrieved November 28, 2012 from

http://en.wikipedia.org/wiki/Criticism_of_Facebook.

[37] DAY-CON: Dayton Security Summit, 2012. Retrieved November 28, 2012 from

http://day-con.org/.

[38] Designs, S. Semantic designs: Smart differencer tool. Retrieved May 16, 2012

from http://www.semdesigns.com/Products/SmartDifferencer/.

[39] diff(1) Manual Page, September 1993. Retrieved May 17, 2012.

[40] Dinu, G., and Lapata, M. Measuring distributional similarity in context.

In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP 2010) (Stroudsburg, PA, USA, 2010), Association

for Computational Linguistics, pp. 1162–1172.

198

http://coccinelle.lip6.fr/
http://sourceforge.net/projects/codeanalyze-gpl/
http://sourceforge.net/projects/codeanalyze-gpl/
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/35316
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/35316
http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_tech_note09186a00800a5b9a.shtml
http://www.cisco.com/en/US/products/sw/secursw/ps1018/products_tech_note09186a00800a5b9a.shtml
http://www.perseus.tufts.edu/hopper/
http://en.wikipedia.org/wiki/Criticism_of_Facebook
http://day-con.org/
http://www.semdesigns.com/Products/SmartDifferencer/

[41] Energy Services Provider Interface (ESPI). Tech. Rep. REQ.21, North Amer-

ican Energy Standards Board (NAESB), 2010. Retrieved November 23, 2012

from http://www.naesb.org/ESPI_Standards.asp.

[42] Finley, K. Putting an end to the biggest lie on the internet. TechCrunch

(August 2012). Retrieved November 29, 2012 from http://techcrunch.com/

2012/08/13/putting-an-end-to-the-biggest-lie-on-the-internet/.

[43] Fluri, B., Wursch, M., and Gall, H. C. Do code and comments co-

evolve? on the relation between source code and comment changes. In Pro-

ceedings of the 14th Working Conference on Reverse Engineering (WCRE ’07)

(October 2007), IEEE Computer Society, pp. 70–79.

[44] Ford, B. Packrat parsing: A practical linear-time algorithm with backtrack-

ing. Master’s thesis, Massachusetts Institute of Technology (MIT), 32 Vassar

Street, Cambridge MA 02139, 2002.

[45] Foti, N., Hughes, J. M., and Rockmore, D. N. Nonparametric sparsifi-

cation of complex multiscale networks. PLoS ONE 6 (February 2011).

[46] IDManagement.gov—Criteria and Methodology, 2012. Retrieved De-

cember 5, 2012 from http://idmanagement.gov/pages.cfm/page/

Criteria-and-Methodology.

[47] Frost, R., Hafiz, R., and Callaghan, P. Parser combinators for ambigu-

ous left-recursive grammars. Practical Aspects of Declarative Languages (2008),

167–181.

[48] Frost, R., and Launchbury, J. Constructing natural language interpreters

in a lazy functional language. The Computer Journal 32, 2 (1989), 108–121.

199

http://www.naesb.org/ESPI_Standards.asp
http://techcrunch.com/2012/08/13/putting-an-end-to-the-biggest-lie-on-the-internet/
http://techcrunch.com/2012/08/13/putting-an-end-to-the-biggest-lie-on-the-internet/
http://idmanagement.gov/pages.cfm/page/Criteria-and-Methodology
http://idmanagement.gov/pages.cfm/page/Criteria-and-Methodology

[49] Garfinkel, S., Nelson, A. J., and Young, J. A general strategy for

differential forensic analysis. In Proceedings of the 12th Conference on Digital

Research Forensics (DFRWS ’12) (August 2012), ACM, pp. 550–559.

[50] GCC 3.4 Release Series—Changes, New Features, and Fixes—GNU Project—

Free Software Foundation (FSF), 2012. Retrieved December 9, 2012 from http:

//gcc.gnu.org/gcc-3.4/changes.html.

[51] Geer, D. Monoculture on the back of the envelope. USENIX login; 30, 6

(2005), 6–8.

[52] Gold, B. WEBTrust / Client FAQ, 1997-2004. Retrieved May 29, 2009 from

http://www.webtrust.net/faq-client.shtml.

[53] Google privacy changes in break of EU law. BBC News (March

2012). Retrieved November 29, 2012 from http://www.bbc.co.uk/news/

technology-17205754.

[54] Google appengine, 2011. Retrieved November 4, 2011 from http://code.

google.com/appengine/.

[55] Apache Wave - Welcome to Apache Wave (Incubating), 2012. Retrieved Novem-

ber 28, 2012 from http://incubator.apache.org/wave/.

[56] grep(1) Manual Page, January 2002. Retrieved May 17, 2012.

[57] Grimm, R., and Hetschold, T. Security policies in OSI-management ex-

periences from the DeTeBerkom project BMSec. In Proceedings of JENC6:

Bringing the World to the Desktop (May 1995), unknown, p. unknown.

[58] Group, T. S. G. I. P. C. S. W. Guidelines for smart grid cyber security.

Tech. Rep. 7628, National Institute of Standards and Technology (NIST), 100

Bureau Drive, Stop 1070, Gaithersburg, MD 20899, August 2010.

200

http://gcc.gnu.org/gcc-3.4/changes.html
http://gcc.gnu.org/gcc-3.4/changes.html
http://www.webtrust.net/faq-client.shtml
http://www.bbc.co.uk/news/technology-17205754
http://www.bbc.co.uk/news/technology-17205754
http://code.google.com/appengine/
http://code.google.com/appengine/
http://incubator.apache.org/wave/

[59] Grunschlag, Z. cfgrep - context free grammar egrep variant, 2011. Retrieved

November 11, 2011 from http://www.cs.columbia.edu/~zeph/software/

cfgrep/.

[60] Grushinskiy, M. XMLStarlet command line XML toolkit, 2002. Retrieved

May 15, 2012 from http://xmlstar.sourceforge.net/.

[61] Welcome to Apache Hadoop!, 2012. Retrieved November 28, 2012 from http:

//hadoop.apache.org/.

[62] Harris, C. IT downtime costs $26.5 billion in lost revenue. In-

formationWeek (May 2011). Retrieved November 23, 2012 from

http://www.informationweek.com/storage/disaster-recovery/

it-downtime-costs-265-billion-in-lost-re/229625441.

[63] Housley, R., and Polk, T. Planning for PKI: Best Practices Guide for

Deploying Public Key Infrastructure. Wiley Computing Publishing, New York,

NY, 2001.

[64] Substation automation. Tech. Rep. 61850-1, International Electrotechnical

Commission IEC, April 2003. Available on November 23, 2012 from http:

//webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/30525.

[65] Inglesant, P., Sasse, M. A., Chadwick, D., and Shi, L. L. Expressions

of expertness: The virtuous circle of natural language for access control pol-

icy specification. In Proceedings of the 4th Symposium on Usable Privacy and

Security (SOUPS ’08) (July 2008), ACM, pp. 77–88.

[66] ISO/IEC 27001:2005 information technology – security techniques – information

security management systems – requirements, 2008.

201

http://www.cs.columbia.edu/~zeph/software/cfgrep/
http://www.cs.columbia.edu/~zeph/software/cfgrep/
http://xmlstar.sourceforge.net/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.informationweek.com/storage/disaster-recovery/it-downtime-costs-265-billion-in-lost-re/229625441
http://www.informationweek.com/storage/disaster-recovery/it-downtime-costs-265-billion-in-lost-re/229625441
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/30525
http://webstore.iec.ch/webstore/webstore.nsf/ArtNum_PK/30525

[67] Israeli, A., and Feitelson, D. G. The linux kernel as a case study in

software evolution. Journal of Systems Software 83, 3 (March 2010), 485–501.

[68] Jaakkola, J., and Kilpelainen, P. Using sgrep for querying structured

text files. In Proceedings of SGML Finland 1996 (November 1996).

[69] Jensen, J. Presentation for the CAOPS-IGTF session, March 2009.

[70] Kay, M. XSL transformations (XSLT) version 2.0, 2002.

[71] Kim, H., Benson, T., Akella, A., and Feamster, N. The evolution of

network configuration: A tale of two campuses. In Proceedings of the Internet

Measurement Conference (IMC 2011) (November 2011), ACM, pp. 499–512.

[72] Klobučar, T., and Jerman-Blažič, B. A formalisation and evaluation of

certificate policies. Computer Communications 22, 12 (July 1999), 1104–1110.

[73] Koorn, R., van Walsem, P., and Lundin, M. Auditing and cer-

tification of a public key infrastructure. ICASA Journal 5 (2002).

http://www.isaca.org/Journal/Past-Issues/2002/Volume-5/Pages/

Auditing-and-Certification-of-a-Public-Key-Infrastructure.aspx.

[74] Koppel, R., and Gordon, S. First, Do Less Harm: Confronting the Incon-

venient Problems of Patient Safety. ILR Press, 2012.

[75] LALR Parser. Wikipedia (2012). Retrieved December 9, 2012 from http:

//en.wikipedia.org/wiki/LALR_parser.

[76] Latham, D. Department of Defense Trusted Computer System Evaluation

Criteria. Department of Defense, 1986.

[77] Lehman, M. Programs, life cycles, and laws of software evolution. Proceedings

of the IEEE 68, 9 (September 1980), 1060–1076.

202

http://www.isaca.org/Journal/Past-Issues/2002/Volume-5/Pages/Auditing-and-Certification-of-a-Public-Key-Infrastructure.aspx
http://www.isaca.org/Journal/Past-Issues/2002/Volume-5/Pages/Auditing-and-Certification-of-a-Public-Key-Infrastructure.aspx
http://en.wikipedia.org/wiki/LALR_parser
http://en.wikipedia.org/wiki/LALR_parser

[78] Levine, J. R., Mason, T., and Brown, D. lex & yacc. O’Reilly, Cambridge,

Massachusetts, 1992.

[79] Lim, Y. T., Cheng, P.-C., Rohatgi, P., and Clark, J. A. Dynamic se-

curity policy learning. In Proceedings of the 1st ACM Workshop on Information

Security Governance (WISG ’09) (November 2009), ACM, pp. 39–48.

[80] Lutterkort, D. Augeas—a configuration API. In Proceedings of the Linux

Symposium (July 2008), pp. 47–56.

[81] McGuire, P. Subset C parser (BNF taken from the 1996 international ob-

fuscated C code contest). Retrieved May 16, 2012 from http://pyparsing.

wikispaces.com/file/view/oc.py.

[82] McGuire, P. pyparsing, 2012. Retrieved September 19, 2012 from http:

//pyparsing.wikispaces.com.

[83] Mendes, S., and Huitema, C. A new approach to the X.509 framework:

Allowing a global authentication infrastructure without a global trust model. In

Proceedings of the 1st Symposium on Network and Distributed System Security

(NDSS ’95) (February 1995), ISOC, pp. 172–189.

[84] Metrics 1.3.6. Retrieved May 17, 2012 from http://metrics.sourceforge.

net/.

[85] Moore, W. H. National transportation statistics. Tech. rep., U.S. Department

of Transportation, April 2012. Section B, Table 11-1. Retrieved December 3,

2012 from http://www.bts.gov/publications/national_transportation_

statistics/html/table_01_11.html.

[86] eXtensible Access Control Markup Language (XACML), 2005.

203

http://pyparsing.wikispaces.com/file/view/oc.py
http://pyparsing.wikispaces.com/file/view/oc.py
http://pyparsing.wikispaces.com
http://pyparsing.wikispaces.com
http://metrics.sourceforge.net/
http://metrics.sourceforge.net/
http://www.bts.gov/publications/national_transportation_statistics/html/table_01_11.html
http://www.bts.gov/publications/national_transportation_statistics/html/table_01_11.html

[87] Greatest engineering achievements of the 20th century, 2003. Retrieved Novem-

ber 23, 2012 from http://www.greatachievements.org/.

[88] NERC CIP reliability standards, 2012. Retrieved November 11, 2011 from

http://www.nerc.com/page.php?cid=2|20.

[89] NetAPT Access Policy Tool, 2012. Retrieved September 19, 2012 from https:

//www.perform.csl.illinois.edu/netapt/index.html.

[90] O’Callaghan, D. Automated Certificate Checks, January 2009. Presented

at the 15th EUGrid PMA.

[91] Open Source Tripwire. Retrieved February 3, 2012 from http://sourceforge.

net/projects/tripwire/.

[92] Oppenheimer, D., Ganapathi, A., and Patterson, D. Why do internet

services fail, and what can be done about it? In Proceedings of the 4th USENIX

Symposium on Internet Technologies and Systems (USITS ’03) (March 2003),

USENIX Association, p. unknown.

[93] Information Warfare Simulation — PacketWars, 2012. Retrieved November 28,

2012 from http://packetwars.com/.

[94] Pala, M., Cholia, S., Rea, S. A., and Smith, S. W. Extending PKI

interoperability in computational grids. In Proceedings of the 8th IEEE Inter-

national Symposium on Cluster Computing and the Grid (CCGRID ’08) (May

2008), IEEE Computer Society, pp. 645–650.

[95] Parr, T. ANTLR parser generator. Retrieved May 17, 2012 from http:

//www.antlr.org/.

[96] Pauley, W. A. Cloud provider transparency: An empirical evaluation. IEEE

Security and Privacy 8, 6 (Nov.–Dec. 2010), 32–39.

204

http://www.greatachievements.org/
http://www.nerc.com/page.php?cid=2|20
https://www.perform.csl.illinois.edu/netapt/index.html
https://www.perform.csl.illinois.edu/netapt/index.html
http://sourceforge.net/projects/tripwire/
http://sourceforge.net/projects/tripwire/
http://packetwars.com/
http://www.antlr.org/
http://www.antlr.org/

[97] Pike, R. Structural regular expressions. Retrieved December 10, 2012 from

http://doc.cat-v.org/bell_labs/structural_regexps/.

[98] Plonka, D., and Tack, A. J. An analysis of network configuration artifacts.

In The 23rd Conference on Large Installation System Administration (LISA ’09)

(November 2009), USENIX Association.

[99] 1003.1-2008—IEEE Standard for Information Technology—Portable Operat-

ing System Interface (posix(r)). Retrieved December 7, 2012 from http:

//standards.ieee.org/findstds/standard/1003.1-2008.html.

[100] Windows PowerShell. Retrieved February 3, 2012 from http://technet.

microsoft.com/en-us/library/bb978526.aspx.

[101] Press, A. Lee MacPhail dies at 95 in Florida. ESPN MLB (November

2012). Retrieved December 3, 2012 from http://espn.go.com/mlb/story/

_/id/8611020/lee-macphail-hall-famer-ex-al-president-dies-95.

[102] Public power annual directory & statistical report. Tech. rep.,

American Public Power Association (APPA), May 2012. Retrieved

November 23, 2012 from http://www.publicpower.org/files/PDFs/

USElectricUtilityIndustryStatistics.pdf.

[103] RANCID - Really Awesone New Cisco Config Differ, 2010. Retrieved December

1, 2010 from http://www.shrubbery.net/rancid/.

[104] Rea, S. DigiCert Management Bios: Scott Rea. Retrieved December 3, 2012

from http://www.digicert.com/news/bios-scott-rea.htm.

[105] RELAX NG home page. Retrieved May 17, 2012 from http://www.relaxng.

org/.

205

http://doc.cat-v.org/bell_labs/structural_regexps/
http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://technet.microsoft.com/en-us/library/bb978526.aspx
http://technet.microsoft.com/en-us/library/bb978526.aspx
http://espn.go.com/mlb/story/_/id/8611020/lee-macphail-hall-famer-ex-al-president-dies-95
http://espn.go.com/mlb/story/_/id/8611020/lee-macphail-hall-famer-ex-al-president-dies-95
http://www.publicpower.org/files/PDFs/USElectricUtilityIndustryStatistics.pdf
http://www.publicpower.org/files/PDFs/USElectricUtilityIndustryStatistics.pdf
http://www.shrubbery.net/rancid/
http://www.digicert.com/news/bios-scott-rea.htm
http://www.relaxng.org/
http://www.relaxng.org/

[106] BMC Remedy IT Service Management. Retrieved February 3, 2012 from http:

//www.bmc.com/solutions/itsm/it-service-management.html.

[107] Researchers expanding diff, grep Unix Tools, 2011. Retrieved May

17, 2012 from http://tech.slashdot.org/story/11/12/08/185217/

researchers-expanding-diff-grep-unix-tools.

[108] Rosen, K. H. Discrete Mathematics and Its Applications. McGraw-Hill Col-

lege, 2006.

[109] Routray, R., and Nadgowda, S. CIMDIFF: Advanced difference tracking

tool for CIM compliant devices. In Proceedings of the 23rd Conference on Large

Installation System Administration (LISA ’09) (October and November 2009),

USENIX Association, p. unknown.

[110] Rubin, P., and MacKenzie, D. wc(1) Manual Page, October 2004. Re-

trieved May 16, 2012.

[111] Salton, G., Wong, A., and Yang, C.-S. A vector-space model for auto-

matic indexing. Communications of the ACM 18, 11 (1975), 613–620.

[112] Séaghdha, D. O., and Korhonen, A. Probabilistic models of similarity in

syntactic context. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP 2011) (Stroudsburg, PA, USA, 2011),

Association for Computational Linguistics, pp. 1047–1057.

[113] Shubina, A. Accessibility and Security or: How I Learned to Stop Worrying

and Love the Halting Problem. In Proceedings of the 2012 Dartmouth Computer

Science Research Symposium (CSRS 2012) (September 2012).

[114] Sinclair, S., Smith, S. W., Trudeau, S., Johnson, M., and Portera,

A. Information risk in financial institutions: Field study and research roadmap.

206

http://www.bmc.com/solutions/itsm/it-service-management.html
http://www.bmc.com/solutions/itsm/it-service-management.html
http://tech.slashdot.org/story/11/12/08/185217/researchers-expanding-diff-grep-unix-tools
http://tech.slashdot.org/story/11/12/08/185217/researchers-expanding-diff-grep-unix-tools

In Proceedings of 3rd International Workshop on Enterprise Applications and

Services in the Finance Industry (FinanceCom2007) (December 2008), pp. 165–

180.

[115] Sipser, M. Introduction to the Theory of Computation. Thomson Course

Technology, Boston, Massachusetts, 2006.

[116] Smith, D. N. Canonical Text Services (CTS), 2009. Retrieved May 29, 2009

from http://cts3.sourceforge.net/.

[117] Smith, D. N., and Weaver, G. A. Applying domain knowledge from struc-

tured citation formats to text and data mining: Examples using the CITE

architecture. In Proceedings of Text Mining Services TMS Conference (March

2009), Common Language Resources and Technology Infrastructure (CLARIN),

p. unknown.

[118] Smith, S. W. Trusted Computing Platforms. Springer, 2005.

[119] Smith, S. W., and Koppel, R. Healthcare information technology’s rel-

ativity problems: A typology of how mental models, reality and HIT differ.

Submitted for Publication (2012).

[120] Smith, S. W., and Marchesini, J. The Craft of System Security. Addison-

Wesley, Boston, Massachusetts, 2008.

[121] Operational Intelligence, Log Management, Application Management, Enter-

prise Security and Compliance — Splunk, 2012. Retrieved November 28, 2012

from http://www.splunk.com/.

[122] Change Management—Network Change Control and IT Configuration Man-

agement Process — Splunk. Retrieved November 28, 2012 from http://www.

splunk.com/view/change-monitoring/SP-CAAACP2.

207

http://cts3.sourceforge.net/
http://www.splunk.com/
http://www.splunk.com/view/change-monitoring/SP-CAAACP2
http://www.splunk.com/view/change-monitoring/SP-CAAACP2

[123] Staff, P. Justices to lawyers: Don’t make us read the law. Politico (March

2012). Retrieved November 28, 2012 from http://www.politico.com/news/

stories/0312/74601.html.

[124] State of New Hampshire Residential Care and Health Facility Licensing Pa-

tients’ Bill of Rights Section 151:21. Retrieved November 28, 2012 from

http://www.dartmouth.edu/~health/docs/PatientBillOfRights.pdf.

[125] Sun, X., Sung, Y. W., Krothapalli, S., and Rao, S. A systematic

approach for evolving VLAN designs. In Proceedings of the 29th IEEE Con-

ference on Computer Communications (INFOCOM 2010) (March 2010), IEEE

Computer Society, pp. 1–9.

[126] Sung, Y.-w. E., Rao, S., Sen, S., and Leggett, S. Extracting network-

wide correlated changes from longitudinal configuration data. In Proceedings

of the 10th Passive and Active Measurement Conference (PAM 2009) (April

2009), unknown, pp. 111–121.

[127] Tekli, J., Chbeir, R., and Yetongnon, K. An overview on XML sim-

ilarity: Background, current trends and future directions. Computer Science

Review 3, 3 (August 2009), 151–173.

[128] Thomas, O. Almost every website on the planet could be in le-

gal jeopardy, thanks to zappos. Business Insider (October 2012).

Retrieved December 7, 2012 from http://www.businessinsider.com/

zappos-terms-of-service-ruled-invalid-2012-10.

[129] TkDiff. Retrieved February 3, 2012 from http://tkdiff.sourceforge.net/.

[130] TOSBack — The Terms-Of-Service Tracker, 2012. Retrieved Sunday, February

12, 2012 from http://www.tosback.org/timeline.php.

208

http://www.politico.com/news/stories/0312/74601.html
http://www.politico.com/news/stories/0312/74601.html
http://www.dartmouth.edu/~health/docs/PatientBillOfRights.pdf
http://www.businessinsider.com/zappos-terms-of-service-ruled-invalid-2012-10
http://www.businessinsider.com/zappos-terms-of-service-ruled-invalid-2012-10
http://tkdiff.sourceforge.net/
http://www.tosback.org/timeline.php

[131] The IT Security Conference—Troopers, 2012. Retrieved December 3, 2012 from

http://www.troopers.de.

[132] Trček, D., Jerman-Blažič, B., and Pavešić, N. Security policy space

definition and structuring. Computer Standards & Interfaces 18, 2 (March

1996), 191–195.

[133] Van de Cruys, T., Poibeau, T., and Korhonen, A. Latent vector weight-

ing for word meaning in context. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (2011), EMNLP ’11, Association for

Computational Linguistics, pp. 1012–1022.

[134] Vanbrabant, B., Joris, P., and Wouter, J. Integrated management

of network and security devices in it infrastructures. In The 25th Confer-

ence on Large Installation System Administration (LISA ’11) (December 2011),

USENIX Association, p. unknown.

[135] Vil. Retrieved May 17, 2012 from http://www.1bot.com/.

[136] Von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing

17, 4 (2007), 395–416.

[137] Wadler, P. How to Replace Failure by a List of Successes. In Proceedings of A

Conference on Functional Programming Languages and Computer Architecture

(New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 113–128.

[138] Walsh, N., and Muellner, L. DocBook: The definitive guide, July 1999.

[139] Weaver, G. A., Foti, N., Bratus, S., Rockmore, D., and Smith,

S. W. Using hierarchical change mining to manage network security policy

evolution. In Proceedings of the 11th USENIX Conference on Hot Topics in

209

http://www.troopers.de
http://www.1bot.com/

Management of Internet, Cloud, and Enterprise Networks and Services (Ho-

tICE 2011) (March–April 2011), USENIX Association, p. unknown.

[140] Weaver, G. A., Rea, S., and Smith, S. A computational framework for

certificate policy operations. In Proceedings of the 6th European PKI Workshop

(EuroPKI 2009) (September 2009), EuroPKI, pp. 17–33.

[141] Weaver, G. A., Rea, S., and Smith, S. W. Computational techniques for

increasing PKI policy comprehension by human analysts. In Proceedings of the

9th Symposium on Identity and Trust on the Internet (IDTrust 2010) (April

2010), Internet 2, pp. 51–62.

[142] Weaver, G. A., and Smith, S. W. Context-free grep and hierarchical diff

(poster). In Proceedings of the 25th Large Installation System Administration

Conference (LISA ’11) (December 2011), USENIX Association, p. unknown.

[143] Witchel, E., Cates, J., and Asanović, K. Mondrian memory protection.

In Proceedings of the 10th international conference on Architectural support for

programming languages and operating systems (New York, NY, USA, 2002),

ASPLOS-X, ACM, pp. 304–316.

[144] Wolf, J. OMG WTF PDF: What you didn’t know about Acrobat. In Pro-

ceedings of the 27th Chaos Communication Congress (27C3) (December 2010).

[145] xmllint. Retrieved May 16, 2012 from http://xmlsoft.org/xmllint.html.

[146] W3C XML Schema. Retrieved May 17, 2012 from http://www.w3.org/XML/

Schema.

[147] XML Path language (XPath), 1999. Retrieved May 15, 2012 from http://www.

w3.org/TR/xpath/.

210

http://xmlsoft.org/xmllint.html
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

[148] The LEX and YACC Page. Retrieved May 17, 2012 from http://dinosaur.

compilertools.net/.

[149] Zazueta, J. Micro XPath grammar translation into ANTLR. Re-

trieved May 16, 2012 from http://www.antlr.org/grammar/1210113624040/

MicroXPath.g.

[150] Zhang, K. The editing distance between trees: algorithms and applications.

PhD thesis, New York University (NYU), New York, USA, 1989.

[151] Zhang, K., and Shasha, D. Simple fast algorithms for the editing distance

between trees and related problems. SIAM Jounal of Computing 18, 6 (Decem-

ber 1989), 1245–1262.

211

http://dinosaur.compilertools.net/
http://dinosaur.compilertools.net/
http://www.antlr.org/grammar/1210113624040/MicroXPath.g
http://www.antlr.org/grammar/1210113624040/MicroXPath.g

	Security-Policy Analysis with eXtended Unix Tools
	Recommended Citation

	1 Introduction
	1.1 Problem Scenarios
	1.1.1 Real-World Security Domains
	1.1.2 Limitations of Security Policy Analysis

	1.2 This Thesis
	1.2.1 Theory for Structured Text
	1.2.2 Why and How to Use XUTools
	1.2.3 Design and Implementation of XUTools
	1.2.4 Evaluation
	1.2.5 Application
	1.2.6 Future Work
	1.2.7 Conclusions and Appendices

	2 Problem Scenarios
	2.1 X.509 Public Key Infrastructure Policies
	2.1.1 Policy Comparison
	2.1.2 Drawbacks of Current Approaches
	2.1.3 Limitations of PKI Policy Analysis
	2.1.4 Section Summary

	2.2 Network Configuration Management
	2.2.1 Summarize and Measure Change
	2.2.2 Drawbacks of Current Approaches
	2.2.3 Limitations of Summarizing and Measuring Change
	2.2.4 Section Summary

	2.3 Electrical Power Grid
	2.3.1 Change Control and Baseline Configuration Development
	2.3.2 Drawbacks of Current Approaches
	2.3.3 Limitations of Change Control and Baseline-Configuration Development
	2.3.4 Section Summary

	2.4 Conclusions

	3 Theory
	3.1 Theoretical Background
	3.1.1 Language Theory
	3.1.2 Parsing
	3.1.3 Security Policy Corpora as Data Types
	3.1.4 Section Summary

	3.2 How We Address Limitations of Security-Policy Analysis
	3.2.1 Policy Gap Problem
	3.2.2 Granularity of Reference Problem
	3.2.3 Policy Discovery Needs Problem

	3.3 Conclusions

	4 Why and How to Use XUTools
	4.1 XUTools and Real-World Use Cases
	4.1.1 XUGrep
	4.1.2 XUWc
	4.1.3 XUDiff

	4.2 Conclusions

	5 Design and Implementation of XUTools
	5.1 Design Requirements
	5.1.1 Tools Gap Problem
	5.1.2 Granularity of Reference Problem
	5.1.3 Policy Discovery Needs Problem

	5.2 XUTools Internals
	5.2.1 XUGrep Internals
	5.2.2 XUWc Internals
	5.2.3 XUDiff Internals
	5.2.4 Grammar Library
	5.2.5 xupath

	5.3 Conclusions

	6 General Evaluation of XUTools
	6.1 XUGrep
	6.1.1 Evaluation—Qualitative
	6.1.2 Evaluation—Quantitative
	6.1.3 Related Work

	6.2 XUWc
	6.2.1 Evaluation—Qualitative
	6.2.2 Evaluation—Quantitative
	6.2.3 Related Work

	6.3 XUDiff
	6.3.1 Evaluation—Qualitative
	6.3.2 Evaluation—Quantitative
	6.3.3 Related Work

	6.4 Grammar Library
	6.5 Conclusions

	7 Application of XUTools to Network Configuration Management
	7.1 Introduction
	7.2 XUTools Capabilities for Network Configuration Management
	7.2.1 Inventory of Network Security Primitives
	7.2.2 Similarity of Network Security Primitives
	7.2.3 Usage of Network Security Primitives
	7.2.4 Evolution of Network Security Primitives
	7.2.5 Section Summary

	7.3 Evaluation
	7.3.1 General Feedback from Practitioners
	7.3.2 Related Work
	7.3.3 Capability-Specific Evaluation

	7.4 Conclusions

	8 Future Work
	8.1 Ongoing Research
	8.1.1 Application of XUTools to X.509 PKI
	8.1.2 Application of XUTools to Terms of Service Policies
	8.1.3 Application of XUTools to the Power Grid Data Avalanche

	8.2 Additional Problem Scenarios
	8.2.1 Healthcare Information Technology
	8.2.2 Legislation and Litigation
	8.2.3 Operating Systems and Trusted Hardware

	8.3 Additional XUTools Extensions
	8.3.1 Version Control
	8.3.2 Grammar Library
	8.3.3 Distributed Parsing
	8.3.4 Distance Metrics for XUDiff
	8.3.5 Current XUTools:
	8.3.6 New XUTools
	8.3.7 A GUI for XUTools

	8.4 Conclusions

	9 Conclusions
	A Pre-XUTools PKI Policy Analysis Tools
	A.1 PKI Policy Repository
	A.1.1 Security Policy Analysis Problems Addressed
	A.1.2 Design and Implementation
	A.1.3 Evaluation

	A.2 Policy Builder
	A.2.1 Security Policy Analysis Problems Addressed
	A.2.2 Design and Implementation
	A.2.3 Evaluation

	A.3 Policy Mapper
	A.3.1 Security Policy Analysis Problems Addressed
	A.3.2 Design and Implementation
	A.3.3 Evaluation

	A.4 Vertical Variance Reporter
	A.4.1 Security Policy Analysis Problems Addressed
	A.4.2 Design and Implementation
	A.4.3 Evaluation

	A.5 Policy Encoding Toolchain
	A.6 Conclusions

	B PyParsing Internals
	B.1 PyParsing and Recursive Descent Parsers
	B.1.1 Interpretation Functions
	B.1.2 Parser Combinators
	B.1.3 Combinators and Recursive-Descent Parsers

	B.2 Evaluation of Recursive Descent Parsers
	B.2.1 Evaluation—Implementation Complexity
	B.2.2 Evaluation—Recognition Power
	B.2.3 Evaluation—Usability and Portability
	B.2.4 Alternative Parsing Algorithms

	B.3 Implementation and Evaluation of Scan String
	B.4 Conclusions

