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Abstract

Applications that operate on datasets which are too big to fitin main memory, known in the literature

as external-memoryor out-of-coreapplications, store their data on one or more disks. Several

of these applications make multiple passes over the data, where each pass reads data from disk,

operates on it, and writes data back to disk. Compared with anin-memory operation, a disk-I/O

operation takes orders of magnitude (�100,000 times) longer; that is, disk-I/O is ahigh-latency

operation. Out-of-core algorithms often run on a distributed-memory cluster to take advantage

of a cluster’s computing power, memory, disk space, and bandwidth. By doing so, however, they

introduce another high-latency operation: interprocessor communication. Efficient implementations

of these algorithms access data in blocks to amortize the cost of a single data transfer over the disk

or the network, and they introduce asynchrony to overlap high-latency operations and computations.

FG, short for Asynchronous Buffered Computation Design andEngineering Framework Gen-

erator, is a programming framework that helps to mitigate latency in out-of-core programs that run

on distributed-memory clusters. An FG program is composed of a pipeline of stages operating

on buffers. FG runs the stages asynchronously so that stagesperforming high-latency operations

can overlap their work with other stages. FG supplies the code to create a pipeline, synchronize

the stages, and manage data buffers; the user provides a straightforward function, containing only

synchronous calls, for each stage.

In this thesis, we use FG to tackle latency and exploit the available parallelism in out-of-core

and distributed-memory programs. We show how FG helps us design out-of-core programs and

think about parallel computing in general using three instances: an out-of-core, distribution-based

sorting program; an implementation of external-memory suffix arrays; and a scientific-computing

application called the fast Gauss transform. FG’s interaction with these real-world programs is sym-
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biotic: FG enables efficient implementations of these programs, and the design of the first two of

these programs pointed us toward further extensions for FG.Today’s era of multicore machines

compels us to harness all opportunities for parallelism that are available in a program, and so in the

latter two applications, we combine FG’s multithreading capabilities with the routines that OpenMP

offers for in-core parallelism. In the fast Gauss transformapplication, we use this strategy to realize

an up to 20-fold performance improvement compared with an alternate fast Gauss transform im-

plementation. In addition, we use our experience with designing programs in FG to provide some

suggestions for the next version of FG.
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Chapter 1

Introduction

1.1 Latency

The termlatencyis defined as the time between when an operation starts and when it completes. Let

us look at some aspects of latency through an example based oncooking. Suppose you want to cook

vegetable stir-fried rice for 20 people for a potluck event.Although you volunteer enthusiastically,

you later realize that you don’t have a stockpot large enoughto get the job done. After the initial

panic, you calmly analyze the task at hand, and you conclude that 7.5 cups of raw rice will be

sufficient. With a two-cup rice cooker at your disposal, you will need just four iterations. You also

realize that you have a good medley of frozen vegetables for the dish and a skillet large enough so

that you can prepare enough vegetables for one iteration. Inthe 30 minutes that you know it will

take for the rice to cook in each iteration, you grab the rightamount of vegetables for this much

rice from the freezer and wash them in two minutes, and you take another 10–12 minutes to prepare

them. After four such iterations, your job is done. In the above example, cooking rice takes a long

time to finish, i.e., it is a high-latency operation, whereasgathering the vegetables and preparing

them takes much less time, and so we can characterize them as low-latency operations.

We can make two more observations from the above example. First, although you did not have a

stockpot large enough to handle all the cooking at once, you had enough resources to break down the

problem and still finish the job in a reasonable amount of time. Second, you realized that cooking

rice and preparing vegetables require independent resources, which let you overlap these operations

so that the low-latency operations hid behind the high-latency operation. Surely, performing the
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operations sequentially would have taken much longer.

1.2 Latency and parallel computing

As in everyday life, high-latency and low-latency operations occur frequently in the computing

world. Mitigating the effects of high-latency operations,along with exploiting the available par-

allelism in a program are the central themes of this thesis. First, let us look at the high-latency

operations that we might come across in a computer program. In out-of-coreapplications, the input

datasets are too big to fit in main memory; therefore, data reside on one or more disks.1 Access-

ing data from disk takes approximately 10 milliseconds to complete, which seems fairly fast, until

we compare this time with the 100 nanoseconds (approximately) that it takes to fetch data from

main memory. Because a disk access takes about 100,000 timeslonger than a main-memory access,

we characterize disk I/O as a high-latency operation and a main-memory access as a low-latency

operation.

Often, out-of-core applications work on datasets that are too big to fit on the hard disk of a

single machine. In such situations, these applications take advantage of the computation and disk

resources offered by the nodes of a distributed-memory cluster. Distributing the data and com-

putation across the nodes of a distributed-memory cluster usually introduces another high-latency

operation: interprocessor communication, which typically takes 1–10 milliseconds to complete. Be-

cause each node of a distributed-memory cluster has its own disk and its own memory, the nodes

can work concurrently on distinct pieces of data, i.e., we can parallelize the computation across

the nodes. In addition to distributed-memory parallelism,today’s era of multicore machines and

parallel-computing libraries also allows program designers to leverage the in-core parallelism in-

herent in an application.

1.3 Tackling latency

From our previous discussions, we can appreciate that we must reduce the effect of high-latency op-

erations in a program to achieve an efficient implementation. Implementors of out-of-core programs

often employ three techniques to reduce the effect of latency on their implementation.

1Out-of-core applications are also known as external-memory applications in the literature.
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1. Access data in blocks,2 where the block size is small relative to the total input size, but large

relative to an individual data element. Usually, the block size is such that many blocks can

fit in main memory. In our example, we cook two cups of rice at a time and not just one

grain. Similarly, during a disk access, we read or write a block that is many kilobytes (or even

megabytes) in size instead of a single data element. Using block accesses, we can amortize

the cost of transferring data from disk to memory. Likewise,during interprocessor communi-

cation, we transfer data in blocks from one node’s memory to another node’s memory.

2. Design algorithms to minimize the number of disk accessesor network transfers. See the

survey by Vitter [56], for example, which describes many out-of-core algorithms that access

data in blocks while minimizing the number of such accesses.Indeed, the Parallel Disk Model

by Vitter and Shriver [57] is dedicated to the design of such algorithms.

3. Overlap disk I/O and interprocessor communication with computation. Usually, when a pro-

cess accesses the disk or the network, it blocks3 and yields the CPU so that the CPU is free to

perform other operations. Hence, we can overlap disk I/O andinterprocessor communication

with in-memory computation.

In order to overlap operations, we introduce asynchrony in our program, either by introducing

asynchronous I/O and communication operations in a single-threaded program or by having multiple

threads in our program, with each thread running a synchronous function. In the first case, we have

to statically schedule the high-latency operations so thatthey overlap with computation operations,

whereas in a multithreaded program, the operating system dynamically schedules the threads so that

when a thread blocks, the OS runs another thread that is readyto run. Both of these approaches are

cumbersome and error-prone to program, and the peripheral code—often termedglue—required to

introduce asynchrony and access data in blocks is usually unrelated to the underlying application.

2The word “block” can serve both as a noun, where it means a chunk, and as a verb, where it means to stall. Unfor-
tunately, both grammatical forms of the word bear relevanceto our work; the intended meaning of an occurrence will,
however, be clear from its context. In this particular case,we mean a chunk.

3And here, we mean to stall.
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1.4 Using FG to tackle latency

In this thesis, we will use FG [14, 18], a programming framework for pipeline-structured programs,

to mitigate the effects of latency in out-of-core programs.Chapter 2 describes the features of FG

in detail, but in short, FG provides the code to introduce asynchrony and manage data blocks.

Programmers use FG to model their out-of-core applicationsas a pipeline of software stages, where

the programmer writes a simple, synchronous function for each stage. FG runs each stage of the

pipeline in its own thread, thus introducing asynchrony, and it provides methods to circulate buffers

to hold data through the pipeline. In a nutshell, FG providesthe glue, leaving the tasks more relevant

to the actual application to the programmer. Initial paperson FG [14, 18] suggest that FG makes it

faster, simpler, and more efficient to implement parallel programs.

We will look at how FG helps us design out-of-core programs and think about parallel comput-

ing in general using three instances: an out-of-core, distribution-based sorting program; an imple-

mentation of external-memory suffix arrays; and a scientific-computing application called the fast

Gauss transform.

We have implemented an out-of-core, distribution-based sorting program using FG, which we

nickname “dsort.” Until dsort, all programs written using FG could be implemented efficiently

with a single pipeline on each node of a cluster. As Chapter 3 will detail, dsort exhibits disk I/O

and interprocessor communication patterns that vary basedon the input dataset. In particular, we

observed that in dsort, nodes might send and receive data at different rates during interprocessor

communication, and that a stage might consume data from different streams at varying rates and it

might produce data at some other rate. Dsort’s design requirements helped us introduce two new

pipeline structures in FG, disjoint pipelines and intersecting pipelines, to handle the situations that

we just described. Chapter 3 will show how these new pipelinestructures made it simpler to design

and implement dsort, while being efficient in practice. We could have programmed dsort using

a single, linear pipeline, but doing so would have left a substantial portion of the asynchronous

programming burden on the user, which is against FG’s principles. Furthermore, the stage functions

would have been unwieldy to program, which made us realize that FG’s design at the time was

insufficient for implementing dsort.

FG works well for out-of-core sorting in a shared-memory setting, too. Our implementa-
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tion of out-of-core sorting in shared-memory using FG outperforms an implementation that uses

STXXL [20, 22], which is a library for out-of-core programs.

Disjoint and intersecting pipelines worked well for dsort,but we wondered whether the utility

of these pipeline structures would end with dsort. Our doubts were quelled when we implemented

external-memory suffix arrays [29, 41] using FG. Suffix arrays are useful in pattern matching, text

compression, and computational biology. Not only did we useintersecting pipelines extensively

in this project, but we were also able to combine pipelines inmore innovative ways than we did

for dsort. We were able to efficiently tackle latency using inventive FG pipeline structures in this

external-memory algorithm. With FG taking care of the heavy-duty multithreaded code under the

hood, we had to write code only specific to the application. The algorithm that we used for con-

structing external-memory suffix arrays is a recursive algorithm, the first such attempt using FG.

The suffix-array algorithm that we used was designed to work on a single machine so that we did

not require any interprocessor communication, but we performed almost 2 terabytes of I/O for a 4-

gigabyte input size. In addition to handling disk I/O efficiently and multithreading the code using

FG, we parallelized the in-memory computations to utilize all the available cores in the underlying

machine. We used OpenMP and the parallel library from libstdc++ [40] for in-core parallelism.

This project also pointed us to an extension for FG, and it revealed how some existing FG features

might be redundant. Chapter 4 covers these points in more detail.

The fast Gauss transform (FGT) [27, 28] approximates ann-element sum atm target locations

in O.m C n/ time instead of theO.mn/ time required for exact computation. The fields of com-

putational physics and computational finance, for example,are interested in such computations. Of

the two available methods for computing the fast Gauss transform that we came across, we have

implemented the algorithm using one technique, both in shared-memory and distributed-memory

settings. The main challenge in the shared-memory implementation, which does not use FG, was

to identify ways to reuse costly mathematical computationsand to locate parallel regions in the

algorithm. The distributed-memory implementation requires interprocessor communication, and so

we used FG to overlap communication with computation, in addition to applying the strategies that

we used in our shared-memory implementation. As in our suffix-array implementation, we were

able to use OpenMP parallel regions in our stage functions for in-core parallelism. We also used

FORTRAN-based BLAS routines [7] for some vector computations. FG’s generic design allowed
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us to combine multithreading with OpenMP and FORTRAN-basedroutines to speed up the run-

ning time by factors of up to 20 compared with an alternate FGTimplementation. This project

showed how we can also use FG stages as a signaling mechanism.Chapter 5 elaborates on our

implementation of the fast Gauss transform.

1.5 Contributions of this thesis

This thesis uses the FG programming framework to overlap high-latency operations with other

operations in out-of-core and distributed-memory applications. Although FG provides all the code

for multithreading an application, the onus of identifyingthe available parallelism in an application

and coming up with a good pipeline design in FG lies with us.

1. While designing an out-of-core, distribution-based sorting program using FG (nicknamed

“dsort”), we identified ways to advance FG from supporting just single, linear pipelines to

multiple disjoint pipelines and multiple pipelines that intersect at a common stage. Using

these new pipeline structures, we were able to implement dsort efficiently, despite its disad-

vantages of having dynamic I/O and communication patterns.

2. Our implementation of out-of-core sorting in a shared-memory setting using FG is faster

by 9.6%–16.3% (approximately) compared with an STXXL -based implementation.

3. Our implementation of external-memory suffix arrays exercised FG’s intersecting pipelines

in ways that had never been attempted before. The complex FG pipeline structures that we

designed for this algorithm also performed well. For the first time, we implemented a recur-

sive algorithm using FG, and we used OpenMP along with FG to fully utilize all the cores of

a multicore machine.

4. We have implemented the fast Gauss transform in a distributed-memory setting that uses

FG to overlap communication with computation. In this project, we used FORTRAN-based

BLAS routines for vector computation, and we used OpenMP to leverage the in-core par-

allelism offered by the algorithm. We saw speedups in running time by factors of up to 20

compared with an alternate FGT implementation.
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5. We have used our experience in designing out-of-core programs using FG to extend FG with

additional pipeline structures. We have also identified some FG features that might be redun-

dant, and thus can be removed from the next version of FG.
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Chapter 2

FG Introduction

In this chapter, we recap the challenges of an out-of-core program, followed by a description of the

FG programming environment. After elaborating on the basiccomponents of an FG program, this

chapter continues with some additional structural and programming features that FG provides.

2.1 Birth of FG

The survey by Vitter [56] covers a number of external-memoryor out-of-core applications. The

input datasets of these applications are too big to fit in the main memory of a single computer and

sometimes even that of many computers. Therefore, data resides on one or more disks. Several of

these algorithms make multiple passes over the data, where each pass usually involves reading data

from disk to memory, performing some computation on it, and writing the results of the computation

back from memory to disk. If the data is distributed across the nodes of a distributed-memory

cluster, a pass might also require interprocessor communication amid disk-I/O and computation

operations. As we saw in the previous chapter, both disk I/O and interprocessor communication

are high-latency operations, which can strongly influence the overall running time. In order to

mitigate the effects of high-latency operations, implementors of out-of-core applications resort to

two coding techniques. First, they access data in blocks to amortize the cost of a single disk I/O

or interprocessor communication operation. Second, they introduce asynchrony to overlap high-

latency operations with other operations.

The two common ways to introduce asynchrony—using asynchronous I/O and communication
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operations in a single-threaded application, and multithreading an application—are both cumber-

some and error-prone to program. Furthermore, the glue, which denotes the peripheral code re-

quired to introduce asynchrony and access data in blocks, isusually unrelated to the underlying

application. We note, however, that for the most part, the glue code is reusable across different

applications.

A closer look at some programs for permuting, sorting, and FFTs for out-of-core data [12, 15,

16] that use either of the asynchronous approaches reveals that many external-memory algorithms

share yet another property: that of a pipeline. A single passin these algorithms exhibits a pipeline

structure, and operating this pipeline on a different data block each time (to exhaust the input)

completes the pass. Although the pipeline for a sorting program differs from that for a permuting

program, the code that sets up and runs the pipeline for one program will work for the other pro-

gram after a few minor changes. These observations helped incrafting FG [14] as a programming

environment for applications that fit the pipeline model, thus relieving programmers of the burden

of writing the glue.

2.2 FG basics

An FG program is composed of a pipeline of stages, each of which is mapped to a user-defined

stage functionwritten in C or C++. Because FG maps each stage to its own thread, the stages can

run asynchronously to overlap high-latency operations with other operations. Since FG handles the

asynchrony, a stage function need only be a straightforwardone, containing synchronous calls. The

user also specifies the number and size of buffers that shouldcirculate through the pipeline; these

buffers are referred to aspipeline buffers. Ideally, the buffer size should be the same as the block

size in outer levels of memory hierarchy. FG takes care of actually creating the buffers, directing

them through the pipeline, and ultimately destroying them.

To aid in the smooth running of a pipeline, FG adds two stages,a source stage at the start and

a sink stage at the end, to every pipeline, as shown in Figure 2.1. The source stage emits buffers to

the first user-defined stage in the pipeline, starting a newroundwith each emission; FG associates a

round number, starting from0, with each buffer. An FG stageacceptsa buffer from its predecessor

when it needs a buffer to work on; similarly, a stageconveysa buffer to its successor when it is done
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stage 1 stage 2 stage 3 sinksource

Figure 2.1: A standard FG pipeline comprising a source, a sink, and threeother stages. Each black rectangle
represents a buffer. Where a buffer appears inside a stage, the stage is currently working on that buffer.
Buffers in queues appear below the arrows between stages. The arrow from the sink to the source represents
how buffers are recycled.

working on the buffer. When a buffer reaches the sink, it is recycled back to the source stage to be

reused in the pipeline with a new round number. The last buffer to go through a pipeline is called

thecaboose, indicated by a flag. FG shuts down the pipeline when the caboose reaches the sink.

Although we have been referring to buffers traversing a pipeline, it is actuallythumbnailsthat

go through a pipeline. A thumbnail contains a pointer to the actual buffer, among other useful

information such as the round number and the caboose flag. FG maintains two queues, an incoming

queue and an outgoing queue, of thumbnails per stage. FG completes anaccept thumbnail call

from a stage by dequeuing the stage’s incoming queue; the call blocks if a stage’s incoming queue

is empty. Similarly, during aconvey thumbnail call from a stage, FG enqueues a thumbnail in

the stage’s outgoing queue. The enqueue operation on a queueof thumbnails never blocks because

each queue is big enough to hold the number of buffers that wasspecified by the user.

If the user knows beforehand the number of rounds for which the pipeline should run, she can

specify this number during pipeline setup. For example, a program that reads and processes a

1 GB file using buffers of size 1 MB will need exactly 1024 rounds to finish; the source stage will,

therefore, set the caboose on the buffer with round number 1023. Sometimes, however, the user

might know when to finish the program only at run time. Going back to our previous example, if we

do not know the size of the input file beforehand, we would not be able to set the number of rounds

on the pipeline. The stage that reads data into a buffer wouldbe capable of identifying the last buffer

when it reads the end of file marker. Therefore, the caboose might need to be set by stages other

than the source stage. In order to accommodate such situations, FG provides a method that sets the

caboose flag on a thumbnail; that is, the caboose can be set on the fly in FG.

FG maps each stage to its own thread via calls to POSIX pthreads [31]. Although the user does

not make explicitpthread create calls, she does provide the functions that the threads call.

Without FG, the burden of spawning threads, running them as apipeline, and finally destroying
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stage3FG_forkstage1 stage6FG_join

stage5

source sink

stage2

stage4

Figure 2.2: An example of FG’s fork-join pipeline structure. FG does notspawn the stages named FGfork
and FGjoin; the stages are shown only for illustrative purposes. During pipeline setup, the user informs FG
that the pipeline should fork at stage1 and join at stage6 using specific FG calls. Buffers and sink-to-source
connections are not shown in this figure.

them would be on the programmer; this work would be in addition to that of managing buffers.

With FG, a user can concentrate on the specifics of the application without having to worry about

writing the cumbersome and error-prone glue. A paper by Davidson and Cormen [14] elaborates on

the details of this section and also shows the results of using FG for some out-of-core programs.

2.3 Additional FG features

Using FG, we can deviate from the linear pipeline structure and create pipelines with forks and

joins. We can even create pipelines to represent a DAG structure or a macro [14, 18].

The fork-join construct in FG, shown in Figure 2.2, allows a pipeline to split at one stage and

merge later. FG feeds the multiple successors of a forked stage in a round-robin manner; the user

can specify the order, first-come first-served (default) or round-robin, in which a stage should accept

from its multiple predecessors.

FG allows pipelines wherein a stage may convey its buffers toany other stage, rather than to only

its linear successor, as illustrated in Figure 2.3, provided that the structure of the pipeline represents

a DAG. The user need not tell FG in advance of the stage jumps that she intends to make; a stage

can decide where to send a buffer on the fly. A stage can, therefore, convey a buffer directly to the

sink instead of making the buffer go through the remaining stages in the pipeline. A user might

want to convey a buffer to the sink if she decides that it does not contain useful data to work on.

In a subsequent chapter, we shall see that FG also allows disjoint, intersecting, and virtual

pipelines. How these structures came about and why they are useful will be clearer in the context

of the material presented therein. An outline of FG is incomplete without a mention of these types

of pipelines, however. The FG tutorial [13] also discusses macros, hard barriers, and soft barriers.
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stage 1 stage 2 stage 3source sinkstage 4

buffer being conveyed to the sink

Figure 2.3: A DAG pipeline structure in FG. Stage1 can decide at run time whether it wants to convey a
buffer to stage2 or stage3; the figure also illustrates how a stage might decide to convey a buffer to the sink
stage. The thicker, gray arrows represent decisions taken at run time; the user need not inform FG of the stage
jumps in advance.

An FG macrois usually composed of several stages and is similar to a subroutine in a program. A

hard barrier splits a pipeline into two mini-pipelines by making sure that one part of a pipeline runs

completely before the other part. A stage is designated asoft barrier if it must accept more than one

buffer per round to complete its work.

In addition to these structural features that help with program design, FG provides some features

that help during program implementation. Sometimes, a stage might require temporary space to

carry out its work. Consider a stage function that permutes the contents of the incoming data

buffer; if the permutation is not done in-place, the stage needs another buffer to store the results

of the permutation. One approach for the user is to allocate memory at the beginning of the stage

function, carry out the stage function using this memory as extra space, copy the results of the

permutation from the user-allocated memory to the pipelinebuffer, and finally deallocate the user-

acquired memory before conveying the thumbnail. That is, this approach involves extra copying.

The other approach is for the user to utilize FG’sauxiliary thumbnailsthat have been designed

expressly for the purpose of providing temporary space to stages that cannot carry out their work in-

place. During pipeline setup, the user can specify the number of auxiliary buffers that she anticipates

using in her program; FG creates a pool with that many auxiliary thumbnails, which are in addition

to the pipeline thumbnails. FG destroys the auxiliary buffers during pipeline shutdown. Auxiliary

buffers are always as big as the pipeline buffers, and a stageis free to accept as many auxiliary

buffers as it might require. As we saw in our example, the finalresult of a computation might end

up in the auxiliary buffer, whereas it is the pipeline buffers that travel from one stage to the next. FG

aids in ensuring that correct data flows to the next stage by providing a method to swap the buffer

pointers of a pipeline and auxiliary thumbnail. After swapping the buffers, a stage can convey the
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same pipeline thumbnail that it accepted. The swap method, made possible by FG’s thumbnail

design, saves the user from having to copy the contents from the auxiliary buffer to the pipeline

buffer. That is, auxiliary thumbnails are convenient and efficient to use.

The prototype of an FG stage function allowsstage parametersfor information from outside

to enter the pipeline. For example, a user can open an input file before setting up the pipeline and

pass the file pointer as a stage parameter to the read stage function. FG also providesthumbnail

parametersto enable control information to flow from one stage to the other; thumbnail parameters

exist as part of the thumbnail.
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Chapter 3

Dsort: Out-of-Core Distribution-Based

Sorting Using FG

In this chapter, we present the design and implementation ofour out-of-core, distribution-based,

sorting program on a distributed-memory cluster, nicknamed “dsort,” using FG. To lay a foundation

for dsort, we begin with the general idea behind distribution-based sorting. Dsort begins with a

sampling step followed by two passes; the descriptions of each of the two passes will introduce

us to new pipeline structures in FG. In pass 1, we will learn about disjoint pipelines in FG, and

pass 2 will acquaint us with FG’s intersecting and virtual pipeline structures. These structures have

a cause-effect relationship with dsort; we conceived of these extensions to FG while designing dsort,

and these structures, in turn, enabled a much cleaner designof dsort than would have been possible

earlier.

3.1 Distribution-based sorting

Distribution-based algorithms form one of the major paradigms for out-of-core sorting, along with

merging-based and oblivious algorithms. A distribution-based sorting algorithm for out-of-core

data usually comprises three or four steps. The input, containing N keys, resides onP nodes of a

distributed-memory cluster. The first step samples the input data to selectP �1 keys, calledsplitters.

Based on the splitter values, the second step partitions theinput intoP sets,S0; S1; : : : ; SP �1, such

that all keys in setSi are less than or equal to all keys in setSiC1; seti resides on the disk of nodei .
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The third step sorts each partition, and the fourth step, if implemented, load-balances the output

among theP nodes of the cluster. Because the I/O and communication patterns generated by a

distribution-based algorithm vary depending on the data tobe sorted, an implementation should be

robust against inputs that can lead to badly skewed patternsof these high-latency operations.

3.2 Dsort

We have implemented dsort in three passes. Pass 0 samples theinput and selects splitters, which

pass 1 uses to partition the input. At the end of pass 1, each node contains several sorted runs. Pass 2

merges the sorted runs to create a single sorted sequence, and it also performs load balancing and

creates striped output. We assume that the input containsN records,1 distributed onP nodes of a

cluster.

By “striped output,” we mean that it appears in the order as defined in the Parallel Disk Model

[57]. The records reside in fixed-size blocks, which are assigned in round-robin order to the disks in

the cluster. If each node has one disk and the block size isB, the firstB records reside on node 0’s

disk, the nextB records on node 1’s disk, and so on; a block on nodeP � 1 is followed by a block

on node 0.

3.2.1 Pass 0: Selecting splitters

The preprocessing step selects a set ofP � 1 key values, known assplitters, which are used by

pass 1 to partition the input. We find the splitters using the technique ofoversampling, as done by

Blelloch et al. [8] and by Seshadri and Naughton [45]. From among itsN=P records, each node

selects a uniform random sample of sizes; the parameters is known as theoversampling ratio,

and the records that form the sample are calledcandidates. Each node then sends the set of itss

candidates to node 0, which collects thesP candidates and sorts them locally. TheP � 1 final

splitters are the records at rankss; 2s; : : : ; .P � 1/s in the sorted list of candidates. Node 0 then

broadcasts theP � 1 splitters to all other nodes.

This method of selecting splitters works fairly well if the input keys are nicely distributed, but

it can lead to unbalanced partition sizes if the input keys lie within a small range. In the worst

1A record consists of a key along with satellite data.
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scenario, all input keys might be equal, causing a single node to sort allN records, which the node

might not be able to handle. In order to ensure mostly balanced partition sizes for all types of inputs,

we extend each candidate’s key with two additional fields: the number of the node (0 toP � 1) that

the candidate comes from, and the candidate’s offset (0 toN=P � 1) within the node. With these

extensions, all keys are unique. During pass 1, we extend each record’s key in the same manner and

decide the record’s destination node by comparing its extended key with the splitters. The original

keys are extended only to decide a record’s partition duringpasses 0 and 1; the extended parts are

discarded immediately after the decision has been made, so that only the original parts of the record

are ever stored in a buffer or on disk.

3.2.2 Pass 1: Partitioning and creating sorted runs

Pass 1 partitions theN input records intoP partitions using the splitters that have just been selected

and broadcast. Because thei th partition, fori D 0; 1; : : : ; P �1, belongs to nodei , pass 1 distributes

the records to their destination nodes using interprocessor communication. Each node stores its

partition, as several runs of sorted data, on disk.

Prior to envisioning the idea of disjoint pipelines in FG, wehad intended for each node to run a

copy2 of the pipeline structure shown in Figure 3.1, to complete pass 1. Assuming that a buffer can

hold ˇ records, FG would run the pipeline forN=Pˇ rounds on each node. Below, we outline the

work of each stage, per round, in the pipeline.

Read stage:Accept a buffer3 from the source stage, reaďrecords from the disk into the buffer,

and convey the buffer.

Permute stage: Accept a buffer from the read stage and use the splitters to permute the buffer’s

records into an auxiliary buffer, such that all records belonging to the same partition appear

contiguously in the auxiliary buffer. Note that partition sizes may vary. Convey the buffer

after swapping it with the auxiliary buffer.

2Running “a copy of the pipeline on each node” means that each node runs an instance of an FG pipeline using its
own copy of the FG library. On any node, FG is cognizant only ofthe pipeline running on that node; FG, in and of itself,
cannot communicate between pipelines running on differentnodes. A user can, however, communicate data between
pipelines running on different nodes if she implements a stage to participate in interprocessor communication, using,for
example, calls to Message Passing Interface (MPI) functions.

3Recall that a stage actually accepts and conveys a thumbnail, which in turn, contains a pointer to the buffer. For the
sake of convenience, we say that a stage accepts a buffer.
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communicatepermuteread sinkwritesortsource

node 0

communicatepermuteread sinkwritesortsource

node 1

Figure 3.1: The pipeline structure for implementing dsort pass 1 using asingle linear pipeline. The dashed
arrows between the communicate stages indicate interprocessor communication. The figure shows a copy of
the pipeline on two nodes only for illustration purposes; ingeneral, there can be any number of nodes, each
running a copy of the above pipeline.

Communicate stage:After accepting a buffer from the permute stage, this stage distributes the

records in each partition to their target node, and it also collects the records destined for the

node that it is running on.

In order to distribute the partitions to their respective destinations, this stage sends two sets

of P messages. In the first set, this stage sends, to each node, thenumber of records that it

should expect in this round from this node. The stage then sends all the records that it has

belonging to partitioni to nodei , for all i D 0; 1; : : : ; P � 1. This stage also receives data

into the buffer until the buffer is full, before conveying the buffer to the next stage.

Sort stage: Accept a buffer from the previous stage, sort the elements inthe buffer, and convey the

buffer.

Write stage: Accept a buffer containing sorted records and write it to disk; convey the buffer to the

sink stage.

Therefore, at the end of pass 1, each node contains sorted runs of all records that belong to its

partition.

Let us now see why the linear pipeline model proved to be insufficient for pass 1 to run smoothly,

some of our initial attempts at a solution, and how FG’s disjoint pipelines contributed to a much

cleaner implementation. In the discussion that follows, wewill address the issues in the context of

nodei , and in one round, sayr , of the pipeline running on nodei .

In the linear pipeline above, the communicate stage acts as both a sender and a receiver. As
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a sender, the stagealwaysdistributes a buffer’s worth of records in each round. As a receiver,

however, the stage might need to collect more or less than a buffer’s worth of data in each round.

How much data the stage receives in a round depends solely on the input data that is currently being

processed over all theP nodes.

Suppose that, in a round, the communicate stage receives fewer thanˇ records; the stage can

then proceed in one of two ways: either convey the partially filled buffer, or wait for the buffer to

fill up before conveying it. Because the buffer that the communicate stage conveys will ultimately

be written to disk, conveying partially filled buffers is inefficient. It is, therefore, beneficial for the

stage to wait for the buffer to fill up. The next set of messages,4 however, might send more records

to nodei than the remaining capacity of the buffer. That is, in the same round, we might also have

to prepare for the communicate stage to receive more than a buffer’s worth of records.

If the communicate stage receives more thanˇ records in a round, it can store the firstˇ records

in the buffer that the stage accepted. The stage must, however, find extra buffers to stow away the

remaining5 records, and it must also ensure that these buffers get conveyed to the sort stage. One

immediate thought was to solve the problem using FG’s auxiliary buffers, because auxiliary buffers

offer extra storage, and a stage can accept as many auxiliarybuffers as it needs. Just being able

to store the received data is not enough, however; we must also be able to convey all the auxiliary

buffers that we accept. Using auxiliary buffers was not a viable solution for us for two reasons: first,

we can swap at most one auxiliary buffer with the incoming buffer, and second, we would not want

to swap the incoming buffer because it, too, contains received data.

Because FG already provided auxiliary buffers, we came up with the idea of introducing

Pipeline/Auxiliary Transform buffers, or PAT buffers, in FG. PAT buffers, as their name suggests,

would be capable of acting both as pipeline and auxiliary buffers.6 That is, after using up the pipeline

buffer that came in, a stage could accept multiple PAT buffers in a round as auxiliary buffers, but

convey each of them as a pipeline buffer to the next stage.

PAT buffers offered a solution to the conveying problem thatauxiliary buffers posed, but not

without introducing a few problems of their own. Because these buffers get injected in the middle

4Presumably, some of the other nodes were able to proceed to the next round; nodei , however, is still stuck in roundr .
5In the worst case, the communicate stage on a node might receive Pˇ records.
6Elena Davidson also observed that the name was the same as theandrogyne character “Pat” in old Saturday Night

Live sketches.
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of the pipeline, they do not carry round numbers,7 which is a hindrance to stages that use the

round-number information in their implementation. For example, the read and write stages use the

round number to determine the file offset for reading and writing. One might argue that a stage

that accepts PAT buffers—the communicate stage in dsort, for example—could coordinate with the

source stage to assign successive round numbers to buffers.By virtue of the coordination, however,

the round numbers emitted by the source stage need not necessarily be consecutive, leading to

gaps in file offsets calculated by the read stage. In order to ensure that both the source stage and

the communicate stage emit consecutive round numbers,8 we could probably make the two stages

use separate counters for round numbers. Now, although the input file on a node will be read

completely, we run the risk of FG shutting down the pipeline prematurely. By “prematurely,” we

mean that FG might shut down the pipeline before a node has finished writing its output. Let us

explore why. Given that our linear pipeline was set to run forN=.Pˇ) rounds, the buffer with round

numberN=.Pˇ/ � 1 is the caboose. Even in the last round, the communicate stagemight accept

PAT buffers and convey them after the caboose buffer, which will reach the sink stage before the

others. Thus, when the sink stage sees the caboose, it is possible that some PAT buffers are still

being processed by the sort or write stages. FG would, however, shut down the pipeline, oblivious

to the buffers that follow the caboose buffer. Therefore, PAT buffers provided a flawed solution.

From the above discussion, we notice that what is essentially required is that in each round, a

stage should be able to send data at a different rate than at which it receives data. Restricted by

FG’s single linear pipeline model, we tried to handle the sending and receiving in a single stage,

which was clearly not ideal. If we could “split” the pipelineinto two pipelines at the communicate

stage, as shown in Figure 3.2, and run these pipelines concurrently, each node would be able to send

and receive data at different rates. Based on these observations, FG was extended to providedisjoint

pipelinesthat can run independently, but concurrently, on each node.A user can now create multiple

linear pipelines and pass these pipelines to FG’spipeline manager, which takes care of running the

pipelines and shutting them down later. Each pipeline can beset to run for a different number of

rounds than the other pipelines, and it can have its own number and sizes of buffers. Although the

pipelines run concurrently on each node, each pipeline can run at its own speed, independent of the

7Only the source stage assigns round numbers to buffers.
8Note that, because the round numbers generated by the communicate stage affect the offset in the output file, we

must ensure that these round numbers, too, are consecutive.
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sortreceive sinkwritesource
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Figure 3.2: Disjoint pipelines that were run in each node for implementing dsort pass 1 using FG. As before,
a copy of the pipelines runs in as many nodes as required, though the figure shows only two nodes. Although
the two pipelines run concurrently on a node, each pipeline can be set to have a different number and sizes of
buffers and it can progress independently of the other pipeline. The dashed arrows represent interprocessor
communication; on each node, the speed of the send and receive pipelines is determined in part by the amount
of data sent and received.

other pipelines.

In dsort pass 1, we used the pipeline structures shown in Figure 3.2; we set both pipelines to

have the same buffer size. On each node, the “send pipeline” ran long enough to exhaust the input

on the node, and the “receive pipeline” ran until all recordsreached their destination node and were

written to disk. The stage functions for the read, permute, sort, and write stages are the same as

in the single linear pipeline case, except that the permute stage extends each record’s key with the

node number and record number in order to decide the record’starget node. The send stage, as its

name suggests, participates in the sending part of the communication; we use MPI for interprocessor

communication. In each round, the send stage sends two sets of P messages as before; it tags the

messages in the first set as COUNTMSG, and those in the second set as DATAMSG. In the last

round, the send stage sends an extra set ofP messages (one to each node, including itself), each

tagged as a CABOOSEMSG; the send pipeline on a node uses these messages to informall the

receive pipelines to not expect any more data from that node.

The receive stage takes care of receiving the records that fall in the node’s partition. After re-

ceiving the data that arrives by interprocessor communication into a pre-allocated temporary buffer,

we copy the data from the temporary buffer into a pipeline buffer. When the pipeline buffer fills up

(which could possibly be after several receive calls), we convey it to the next stage. Upon seeing
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theP th message tagged as a CABOOSEMSG, the receive stage sets the caboose on the pipeline

buffer that it is currently using, and conveys the buffer to the sort stage.

3.2.3 Pass 2: Merging sorted runs and creating striped output

On each node, pass 2 merges the sorted runs that were created in pass 1, and it load-balances the

output. As we did for pass 1, we first describe our initial attempt at implementing pass 2 using FG,

and then elaborate upon how the intersecting and virtual pipeline structures in FG led to a much

cleaner design and implementation.

Although our method of selecting splitters, combined with our key-extension trick, works quite

well, some nodes are still bound to end up with more records intheir partition than others after

pass 1. That is, we were faced with the same problem of uneven send and receive rates among

nodes during the final load-balancing in pass 2. We now know that FG’s disjoint pipelines can

handle this situation well. The only missing piece, of course, is merging the sorted runs, for which

we decided at first to use a single stage, resulting in the pipeline structures as shown in Figure 3.3.

In these pipelines, the send, receive, and write stages workin the same manner as they did in pass 1.

The merge stage, however, was to both read and merge sorted runs. Why did we not have a separate

stage for reading the sorted runs? Note that the merge stage requires a block fromeachsorted run,

at all times, in order to be able to create merged output. Thatis, when the merge stage exhausts a

block from sorted runj , it cannot proceed until the next block from sorted runj has been read. The

order in which blocks from various sorted runs will be consumed on a node are not predetermined.

Therefore, the read stage (if there were one) would not know in advance the file offset from where

to read data. Although the read stage could read an initial block from each sorted run and pass

these blocks to the merge stage, it would need constant feedback from the merge stage to know

which succeeding blocks to read. Because only the merge stage knows which data it needs next,

we decided to delegate the responsibilities of reading blocks of sorted runs from disk, and merging

them, to the same stage.

Again, limited by FG’s existing pipeline structures, we hadto combine a high-latency operation

(reading sorted runs), and a computation operation (merging sorted runs) in a single stage, which

affects performance. There seemed to be one promising solution for decoupling the two operations:

in addition to the pipelines shown in the earlier figure, haveas many pipelines as the number of
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Figure 3.3: Pipeline structures illustrating our first attempt at implementing dsort pass 2 using FG. Disjoint
pipelines proved useful for the load-balancing phase of pass 2. The merge stage, however, was overbur-
dened with both reading and merging of sorted runs. As before, the dashed arrows represent interprocessor
communication.
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Figure 3.4: Our vision for pipeline structures for dsort pass 2 to disband the reading and merging of sorted
runs. In this figure, there are as many vertical pipelines as the numbers of sorted runs after pass 1. The
merge stage is, therefore, common tos C 1 pipelines. As we shall soon see, FG’s intersecting pipelines made
it possible for a stage to be part of more than one pipeline.

sorted runs, with each pipeline consisting of a read stage feeding into the merge stage. That is,

assuming that there ares sorted runs, the merge stage would be common tos C 1 pipelines, as

shown in Figure 3.4. If FG could support such a design, the read stage in each of the “vertical

pipelines” could take care of reading a block from the respective sorted run and then feeding the

queue that sits between it and the merge stage. Let us name thevertical pipelines asp1, p2,. . . ,

ps, starting from the left, and let us denote the pipeline consisting of the merge and send stages

aspsC1. The merge stage would then operate as follows: in the first round ofpsC1, the merge stage

would accept a buffer containing a small portion of a sorted run from each of the vertical pipelines,

and it would also accept a buffer from the source stage ofpsC1 to store merged data. After the

merge stage is finished with the last record in the buffer thatit accepted frompj (corresponding to

sorted runj ), the merge stage would proceed only after accepting another buffer from pj . When
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the buffer belonging topsC1 is full, it should be conveyed to the send stage. Therefore, in any round

of psC1, although the merge stage would always accept a buffer frompsC1, it would accept buffers

from vertical pipelines only when necessary. That is, with the help of these additional pipelines that

intersect at the merge stage, we would be able to read ahead ineach of the vertical pipelines using a

synchronous function. Each of thes C 1 pipelines in Figure 3.4 could run at its own speed, similar

to disjoint pipelines.

In order to be able to put the above strategy in practice, FG was extended to provideinter-

secting pipelinesthat can converge at a common stage, and diverge later if needbe. A stage that

is common to two or more pipelines is called anintersecting stage. As with disjoint pipelines, a

user can create intersecting pipelines and pass them to FG’spipeline manager. We overloaded the

accept thumbnail method to take a pipeline number9 as a parameter so that an intersecting

stage can specify the pipeline from which to accept a buffer.

In dsort pass 2, each node runs the pipelines shown in Figure 3.4. For efficiency, the send

pipeline, also referred to aspsC1 earlier, uses much larger buffers than the vertical pipelines. All

vertical pipelines use the same buffer size, and as in pass 1,the receive pipeline has the same buffer

size as the send pipeline. Because we knew that each sorted run is as big as the buffer size that was

used in pass 1, we were able to set the number of rounds for eachvertical pipeline. Similarly, each

node can set the number of rounds of the send pipeline based onits partition size after pass 1; the

receive stage sets the caboose after receivingP messages tagged as CABOOSEMSG.

When we tried to test intersecting pipelines with a few hundred sorted runs, the program came

to an abrupt halt. It turns out that the Linux kernel imposes alimit on the number of pthreads

that can run concurrently. Although the documented limit isquite high (�1024), we found that, in

practice, an FG program with more than about 100 pthreads does not run. Because FG maps each

stage, including the source and sink stages, to its own thread, a pipeline structure similar to that

of dsort pass 2 with hundreds or thousands of sorted runs willreach the system-imposed limit on

pthreads fairly quickly. For example, if dsort pass 1 results in 100 sorted runs for a particular dataset,

FG would spawn more than 200 pthreads in pass 2. Although we expect most FG applications to

have only a few stages and, therefore, not to be hindered by the pthread limit, we had at least one

application, dsort, which compelled us to think of a workaround for the number of threads that we

9Pipelines are numbered, starting from 0, in the order in which they are passed to the pipeline manager.
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spawn.

We noticed that in Figure 3.4, all vertical pipelines have the same structure; also, the read stages

all have the same stage function: accept a buffer, read a block from the associated sorted run, and

convey the buffer. Therefore, we pondered about whether it would be possible to “squeeze” all read

stages into a single stage and, therefore, spawn only one thread for all of them. There were at least

two immediate questions that needed to be answered with the single-thread approach. First, how

would the read stage know which sorted run to read a block from? Second, would there be multiple

buffer queues feeding into and going out from the read stage?Because we introduced pipeline

numbers in FG to overload theaccept thumbnail method, we decided that we could add the

same field to the definition of a thumbnail. That is, a thumbnail would now also carry information

about the number of the pipeline to which it belongs. Hence, the read stage could work with a

single incoming queue, because all the information that it requires would be carried by the pipeline

thumbnail. The merge stage, however, would need a separate incoming queue for each sorted run,

as before, so that it can accept the next block from the sortedrun that it has just exhausted. That is,

the read stage should have multiple queues going out from it.

When stages in multiple pipelines share the same stage function, they can be designated as

virtual in FG. Each virtual stage runs in its own single thread. A pipeline that has a virtual stage is

called avirtual pipeline. For example, the read stage in each of the vertical pipelines above could

be designated virtual, thereby making each vertical pipeline a virtual pipeline. Therefore, FG will

spawn only a single thread for all the read stages, as shown inFigure 3.5. In order to create multiple

virtual pipelines in FG, the user first creates all the pipelines as usual; she then collapses the stages

that share the same stage function into a single stage using themake virtual call. That is, in

order to create the vertical pipelines above, the user wouldfirst create thes vertical pipelines in the

usual manner. Then, she would use themake virtual call to notify FG to collapse all the read

stages into a single stage. FG will, therefore, spawn only one thread for all the read stages. To

further reduce the number of threads that are spawned, FG spawns only a single thread each for the

sources and sinks of all virtual pipelines; that is, FG makesthe sources and sinks of such pipelines

virtual. Furthermore, only one buffer queue sits between the single sink and the single source of

virtual pipelines.

FG’s intersecting pipelines and virtual pipelines enabledus to implement dsort pass 2 cleanly
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sendmerge sinksource

read

source

sink

…

Figure 3.5: Virtual pipelines used to implement dsort pass 2; the receive pipeline for dsort pass 2 is not
shown. Each box represents a thread and each arrow is associated with a buffer queue. All the read stages
in the vertical pipelines share a common thread, as do all thesource and sink stages. Although we have not
shown the arrows from the sink to the source stages, each source stage has only one incoming queue.

and efficiently. A pipeline number field was added to the thumbnail’s definition in FG; this field

provided useful information to the read stage, and it also enabled FG to not have to overload the

convey thumbnail call. That is, the read stage makes the usualconvey thumbnail call,

but under the hood, FG gleans the pipeline number information from the thumbnail and enqueues it

in the correct outgoing queue.

3.3 Experimental results

We compared dsort with the FG-based implementation of an out-of-core, oblivious, sorting program

based on columnsort (“csort”) [38]. We found that dsort runssignificantly faster than csort even

though the I/O and communication patterns for a given input are predetermined in csort, whereas

the patterns of these high-latency operations are determined at run time in dsort. Our results are in

stark contrast to those obtained in a similar experiment by Chaudhry and Cormen [11] where the

authors compared implementations of dsort and csort that did not use FG.

We also implemented shared-memory out-of-core sorting using FG and compared the results

of our implementation with that of an STXXL -based implementation. The STXXL library [20, 22]

provides classes for data structures such as vectors, stacks, and queues, and for algorithms such as

sorting, including when data resides on parallel disks on a single node. The library also supports

pipelining of operations to reduce I/O [6, 22].
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communicatesortread sinkwritepermutesource

Figure 3.6: The stages involved in a each pass of a four-pass implementation of columnsort. The sort stage
accomplishes an odd-numbered step in each pass and the communicate and permute stages together complete
the even-numbered step corresponding to the pass. As in dsort, each participating node runs a copy of the
above pipeline.

3.3.1 Columnsort

We now briefly describe the columnsort algorithm, and our FG-based, three-pass implementation,

csort. Columnsort sortsN D rs records, where the input is interpreted as anr � s matrix. The

numberr of rows is restricted to be even, the numbers of columns must divider , andr must be

at least2s2. The matrix is sorted in column-major order when columnsortcompletes. Column-

sort proceeds in eight steps, where steps 1, 3, 5, and 7 all sort each column individually. Each

even-numbered step performs a fixed permutation on the matrix. Step 2 transposes the matrix and

reshapes it back to haver rows ands columns; step 4 performs the inverse permutation of step 2.

Step 6 moves the bottom half of each column to the top half of the next column, and the top half

of each column into the bottom half of the same column. The thetop half of the leftmost column

is filled with �1 values and the bottom half of the new rightmost column is filled with 1 values.

That is, step 6 shifts down each column byr=2 positions; inversely, step 8 shifts up each column

by r=2 positions.

A four-pass implementation of out-of-core columnsort combines each odd-numbered step and

its consecutive even-numbered step into a single pass. Thatis pass 1 performs steps 1 and 2, pass 2

implements steps 3 and 4, and so on. In each pass, each node of the cluster runs a copy of the

pipeline shown in Figure 3.6. In each pass, the read stage reads a column of the matrix into a buffer

and the sort stage accomplishes the appropriate odd-numbered step. The communicate and permute

stages accomplish the appropriate even-numbered step, andthe write stage outputs a column to the

disk.

Following the earlier implementation [11], in csort we combined steps 5–8 of columnsort into

a single pass, to achieve a three-pass implementation. The key observation is that in the four-pass

implementation, the communicate, permute, and write stages of pass 3, along with the read stage of

pass 4, just shift each column down byr=2 positions. In csort, we eliminate one pass by replacing

26



these four stages by a single communicate stage. Csort has two important properties. First, csort

is oblivious to the data values (except for the local sort steps within each node); therefore, its disk-

I/O and communication patterns are predetermined. Second,because the communication steps in

csort correspond to highly regular permutations such as transposing a matrix or sending half of

each node’s data to the next node,10 each node receives exactly as much data as it sends in each

communication step.

3.3.2 Observations

Having seen the details of distribution-based sorting and those of sorting based on columnsort, we

can say that the distribution-based algorithm has one advantage and two disadvantages compared

with the columnsort-based algorithm [43]:

� Both algorithms make multiple passes over the data, where each pass reads each record to

be sorted once from one of the disks in the cluster and writes each record once to one of the

cluster’s disks. The distribution-based algorithm makes only two passes11 to the columnsort-

based algorithm’s three, and so the columnsort-based algorithm performs approximately 50%

more disk I/O.

� In each pass of the distribution-based algorithm, some nodes might read or write differing

volumes of data, and therefore some nodes might read or writemore than the average volume

of data. In the columnsort-based algorithm, all nodes read and write exactly the same volume

of data. Thus, the I/O time consumed by the most heavily used disk in a pass might be greater

in the distribution-based algorithm than in the columnsort-based algorithm.

� The distribution-based algorithm’s I/O and communicationoperations are determined only

dynamically, as the algorithms execution unfolds, therebymaking it difficult to prefetch data.

The columnsort-based algorithm’s I/O and communication operations are known in advance.

Thus, the columnsort-based algorithm is more amenable to overlapping I/O, communication,

and computation than is the distribution-based algorithm.

10Columns are distributed among nodes in round-robin order, so that columns numberedi , i C P , i C 2P , etc.,
reside on nodei .

11Note that pass 0 is a slight misnomer because we do not read each record in the input when selecting splitters.
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The question is whether the disadvantages of the distribution-based algorithm are enough to out-

weigh its lesser I/O volume.

3.3.3 Experimental setup

We ran our experiments on a Beowulf cluster with 32 nodes, of which we used 16 nodes. Each node

on the cluster has two 2.8-GHz Intel Xeon processors, 4 GB of RAM, and a 36-GB Ultra-320 SCSI

hard drive. The nodes run RedHat Linux 9.0 and are connected by a 2-Gbps Myrinet network. In

both programs, we use the C stdio interface for disk-I/O and athread-safe implementation of MPI,

ChaMPIon/Pro, for interprocessor communication. We did not use MPICH2 [42] because MPICH2

was not thread-safe at the time.

We compared dsort and csort with various key distributions:uniform random, all keys equal,

standard normal, and Poisson with� D 1. For the input in which all keys had the same value, we

extended the keys as described in Section 3.2.1. In additionto these inputs, we ran the two programs

on a distribution designed to bring out poor performance in dsort. In this distribution, we designed

the keys so that communication is unbalanced in dsort pass 1.Each time communication occurs in

pass 1, almost all the records go only toq out of the 16 nodes, with the remaining16 � q receiving

very few records. The nodes that comprise the set ofq varies over time so that each node ultimately

receives its full share of records. We designed input distributions forq D 1; 2; 4; 8, and16. In

each experiment, we sorted a total of 64 gigabytes of data, distributed evenly among the 16 nodes.

In order to vary the volume of records that are sorted for the same amount of data, we used two

different record sizes in our experiments: 16-byte recordsfor a total of 4 gigarecords, and 64-byte

records for a total of 1 gigarecord.

3.3.4 Results

Figure 3.7 shows the results for uniform random (averaged over three distinct input datasets), all

keys equal, standard normal, and Poisson distributions. Ineach case, dsort beat csort, taking

from 74.26% to 85.06% of csort’s time. The figure also illustrates that dsort’s advantage of having

one fewer pass outweighs its disadvantages of having unbalanced I/O and communication patterns.

As seen from the results in Figure 3.8, dsort performed fairly well even when it was run on in-
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Figure 3.7: Running time of dsort and csort on various input distributions of 64 GB of data on 16 nodes.

puts devised to slow it down. For 64-byte records, dsort comfortably beat csort for all values ofq.

For 16-byte records, however, csort outperformed dsort forq D 1; 2; 4, and8 and was slower only

for q D 16. As we mentioned earlier, our results differ greatly from the non-FG implementations

of dsort and csort that were compared in [11]. In this previous work, for 64-byte records, dsort was

slower than csort forq D 1; 2, and4 and was faster forq D 8 and16.

The results of our experiments, although welcome, were surprising to us because we expected

csort’s obliviousness to key values to work in its favor. On the other hand, dsort’s performance

depends heavily on the disk-I/O and communication patternsgenerated by the input keys. Having

one fewer pass than csort, however, seemed to prevail for dsort.

We believe that the extensions to FG made a significant contribution to dsort’s performance.
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Figure 3.8: Running times of dsort and csort for 64-GB datasets designedas bad inputs to dsort. In each
communication of pass 1, almost all the records go to onlyq out of the 16 nodes.

FG’s disjoint pipelines allowed nodes to send and receive data at different rates in pass 1, and

multiple intersecting pipelines support stages that consume data from one or more pipelines and

emit the results into a different pipeline at varying rates.Thus, using FG was a win-win situation

for us: we got better performance and each stage in dsort was fairly simple to program.

Unfortunately, we were restricted to input file sizes of only4 GB per node due to available disk

space in our cluster. Although a dataset of size 64 GB might seem small, given many modern cluster

configurations, we believe that our results would also extend to larger inputs. In other words, the

dataset size is a limitation of neither dsort nor FG.

3.3.5 Shared-memory out-of-core sorting

We now compare our implementation of out-of-core sorting ona single machine using FG against

the external-sorting routine provided by STXXL [6, 22].
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Our shared-memory implementation of out-of-core sorting using FG involves two passes; on

a single machine, we do not need to select splitters. In pass 1, we implement a simple pipeline

with three user-defined stages—read, sort, and write—to create multiple sorted runs on disk. Pass 2

merges these sorted runs to produce the final sorted output using intersecting pipelines, similar to

that of Figure 3.4, on a single node, where we replace the sendstage with a write stage. On a

single node, we do not require the receive pipeline shown in the figure. We use thesort and

multiway_merge routines provided by the parallel library fromlibstdc++ [40] to parallelize

the sort and merge stages in passes 1 and 2, respectively.

The number of sorted runs could be a few thousand even for moderate input sizes such as 64 GB.

In pass 2, although we collapse all the read stages to a singlestage using FG’s virtual pipelines,12

FG still maintains a separate buffer queue for each sorted run between the read and merge stages

shown in Figure 3.5. In addition, each buffer queue requiresits own semaphore. That is, despite

the savings offered by FG’s virtual pipelines, we might fallshort of system resources to run the

program. Furthermore, using a single read stage for thousands of sorted runs would be detrimental

to the program’s performance.

In our implementation, we use hierarchical merging to thwart such problems. When the number

of sorted runs after pass 1 exceeds a certain limit, sayk, we resort to hierarchical merging, wherein

we mergek consecutive sorted runs at a time, thereby creating longer sorted runs, and we continue

this process until the number of sorted runs is at mostk. Once the number of sorted runs is at

mostk, we merge the sorted runs one last time for the final sorted output. In general, if there arer

sorted runs, we requiredlogk re � 1 passes to bring down the number of sorted runs to at mostk. In

each pass, we merge all the sorted runs available from the previous pass in batches ofk consecutive

sorted runs at a time. To merge anyk consecutive sorted runs, we use the same set of pipelines

as in pass 2, i.e.,k vertical pipelines containing read and merge stages and onehorizontal pipeline

with merge and write stages. In general, if there werer sorted runs before hierarchical merging,

there will be max.k; dr=kdlogk re�1e/ sorted runs after we finish all required passes of hierarchical

merging.

Before we set up and run the pipelines for pass 2, we first checkwhether the number of sorted

12Recall that FG automatically collapses all the source stages and all the sink stages of virtual pipelines to a single
source stage and a single sink stage, respectively.
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runs, sayr , output by pass 1 exceedsk. If r > k, we finish executing all passes of hierarchical

merging to bring down the number of sorted runs to at mostk, and then we merge these sorted runs

in pass 2. In our implementation, we setk D 60.

If the input is of sizeb bytes, and if we have to resort to hierarchical merging, thenin each

hierarchical merging pass, we read and writeb bytes of data. Because each hierarchical merging

pass entails extra I/O, we engineered our implementation ofpass 1 to create longer in-memory

sorted runs, thus writing longer sorted runs to disk in an attempt to restrict the number of sorted

runs to at mostk. We do not provide details here, but we refer the reader to Section 4.4.2 for an

example.

We ran our experiments on a machine that has one quad-core, 2.8-GHz Intel i7 processor, 8 GB

of RAM, and a 1.5-TB, 7200 rpm, SATA 3-Gb/s hard drive. The machine runs Fedora linux, re-

lease 13. We use theread andwrite system calls for unbuffered disk I/O. We compiled our

FG-based implementation, written in C++, using the g++ 4.4.4 compiler at optimization level O3.

We implemented a program to use STXXL ’s pipelinedsort routine for out-of-core sorting and

compiled it using g++ 4.4.4 (optimization level O3) and STXXL version 1.3.0 with parallel pipelines

enabled, compiled in parallel mode.

We compared the two implementations on input sizes ranging from 8 GB to 128 GB, where we

doubled the input size successively. In all our experiments, we used 16-byte records with 8-byte

random keys. We restricted all experiments to use 1 GB of RAM.We used a block size of 4 MB in

the STXXL code. In the FG implementation, we used a buffer size of 64 MB in pass 1. In pass 2,

all vertical pipelines used a buffer size of 4 MB and the horizontal pipeline ran with a buffer size

of 128 MB. Each pipeline was given as many buffers as the number of user-defined stages in it.

This configuration allowed us to contain our memory usage to within 1 GB of RAM.

As Figure 3.9 shows, the FG-based implementation of shared-memory out-of-core sorting out-

performed the STXXL -based implementation for all input sizes. The STXXL -based implementation

was approximately 10.6%–19.5% slower than the FG-based implementation. Each result represents

the average of three runs, where running times varied only slightly within each group of three.

Because we present our results in seconds, normalized by thenumber of gigabytes in the input,

we would expect to see an almost straight-line graph for bothimplementations. On the contrary,

as Figure 3.9 illustrates, we see jumps in running times for both implementations starting at 64 GB
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Figure 3.9: Performance results for the FG-based and STXXL -based implementations of out-of-core sorting
on a single machine. All results are presented in seconds, normalized per gigabyte of input.

of input. Why do we see this jump in running times? By instrumenting our code, we found that

although we never require more than one merging pass, we do resort to hierarchical merging when

processing input sizes of 64 GB and more, which we believe explains the increase in running time.

The I/O-volume generated by the STXXL -based code suggests that STXXL , too, follows a hierar-

chical merging approach in its sorting implementation. Foran input of sizeb bytes that requiresh

passes of hierarchical merging, both implementations reada total of.2 C h/b bytes and write the

same amount. The number of hierarchical merging passes,h, could be different for the two imple-

mentations, however.

Therefore, an FG-based implementation of out-of-core sorting performs well both in the shared-

memory and distributed-memory settings.
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Chapter 4

External-Memory Suffix Arrays in FG

4.1 Introduction

The suffix array [26, 41], which is the lexicographically sorted array of the suffixes of a string, finds

applications in string matching, bioinformatics, and textcompression [10, 29]. For example, to find

all occurrences of a patternP in a textT , we could perform a binary search forP in the suffix array

of T , because all suffixes that haveP as a prefix will occur together in the suffix array ofT . The

Burrows-Wheeler transform [10] requires sorting the cyclic permutations of a string; if we append a

character that is lexicographically smaller than all the other characters to the end of the string, then

the problem of sorting cyclic permutations is equivalent tothat of sorting suffixes.

The suffix array is usually represented as an array of starting indices of the lexicographically

increasing suffixes. Let us denote the range of integersi; i C 1; : : : ; j by Œi; j � and letŒi; j / D

Œi; j � 1�. We assume that we are interested in constructing the suffix array of ann-character

string T D T Œ0; n/ D t0t1 : : : tn�1 over some alphabet. Fori 2 Œ0; n/, let Si D ti tiC1 : : : tn�1

denote thei th suffix of T . Given any two suffixesSi and Sj , wherei; j 2 Œ0; n/, we say that

Si < Sj if Si appears beforeSj in lexicographic order. Then, the suffix arraySAŒ0; n/ of T is a

permutation ofŒ0; n/ such thatSSAŒ0� < SSAŒ1� < � � � < SSAŒn�1�.

4.1.1 Background

The suffix tree [29] of a string is the compact trie of all its suffixes. The suffix tree of a string of

lengthn over alphabet† can be constructed inO.n log j†j/ time andO.n/ space, or usingO.nj†j/
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time and space. Although suffix trees are useful in a wide range of applications, their space-versus-

time tradeoff hinders their usability when the alphabet size is large. In these situations, the suffix

array presents itself as a more practical data structure. For a long time, however, the only known

linear-time algorithm for constructing the suffix array of astringT was the lexicographic depth-first

traversal of the suffix tree ofT [29].

In 2003, Kärkkäinen and Sanders [33], Kim et al. [35], and Ko and Aluru [37] came up

with three different in-memory, linear-time algorithms toconstruct suffix arrays. The DC3 al-

gorithm [33, 34] is a simple algorithm for constructing suffix arrays, and it adapts to many

models of computation. In the external-memory model [56, 57], the DC3 algorithm requires

O..n=.BD// logM=B.n=B// parallel I/Os andO.n logM=B.n=B// internal work, wheren is the

number of characters in textT andD, B, andM are the number of disks, block size, and internal

memory size of a machine, respectively. We describe the DC3 algorithm in Section 4.2.

Dementiev et al. [21] have implemented the DC3 algorithm in external memory using

STXXL [20], which is based on the C++ Standard Template Library [50]. In their paper, the authors

present the implementation of external-memory suffix arrays using techniques such as doubling [2]

and doubling with discarding [17], in addition to the DC3 algorithm. By comparing the performance

of the algorithms on various inputs, the authors conclude that the DC3 algorithm outperforms the

other techniques, both in terms of running time and the I/O volume.

The STXXL library provides classes for data structures such as vectors, stacks, and queues, and

for algorithms such as sorting, including when data resideson parallel disks on a single node. The

library also supports pipelining of operations to reduce I/O [6, 22], which is used extensively by

Dementiev et al. [21] in their implementation of external-memory suffix arrays.

This chapter describes how we implemented the DC3 algorithmfor suffix arrays in external

memory using the FG programming environment. As we shall see, the DC3 algorithm can be

programmed efficiently using FG’s pipeline structures. Experiments on real-world inputs and artifi-

cially constructed inputs demonstrate that FG as a softwareplatform is well-suited for implementing

external-memory suffix arrays. We found that the FG-based implementation of the external-memory

DC3 algorithm ran comparably to the STXXL -based implementation for all types and sizes of inputs

that we tested against.
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4.2 The DC3 algorithm

In this section, we describe the in-memory, linear-time DC3algorithm and provide pseudocode for

its external-memory implementation.

The DC3 algorithm assumes that the input is a stringT of length n over the alphabetŒ1; n�.

The algorithm requires a few extra characters beyond the endof the string, for which it introduces a

character,0, which is lexically smaller than all characters inT . That is, the algorithm assumes that

the input is a sequence ofn integers in the range1 to n, and thattj D 0 for j � n.

The integer-alphabet requirement of the algorithm is not asrestrictive as it seems. Given a string

T 0 D t 0
0t 0

1 : : : t 0
n�1 of lengthn over any alphabet, we can sort the unique characters ofT 0, assign a

rank to each character, and construct stringT over the alphabetŒ1; n� such thatti D rank.t 0
i /, for all

i 2 Œ0; n/. Because the character ranks are order preserving, the order of suffixes inT andT 0 is the

same.

Throughout this chapter, we will compare strings and character-tuples lexicographically. We

will use the % symbol for the modulus operator, and the / symbol will denote integer division. That

is, for anyi , we havei %3 D i mod3 andi = 3 D bi = 3c.

We will expose the details of the DC3 algorithm with the help of the example string1

0 1 2 3 4 5 6 7 8

T Œ0; n/ = m a l a y a l a m

with suffix arraySA D h5; 1; 7; 3; 6; 2; 8; 0; 4i.

The set of positionsfi 2 Œ0; n/ W i %3 ¤ 0g is called the set ofsample positions, and the suffixes

starting at these positions are calledsample suffixes. The remaining suffixes, starting at positions

congruent to0 mod3, arenonsample suffixes. The DC3 algorithm proceeds in three steps:

1. Sort sample suffixes.Construct stringsR1 andR2 such thatRk D hŒti tiC1tiC2� W i %3 D

ki, for i 2 Œ0; n/ and k D 1; 2. That is, fork D 1; 2, the characters ofRk are triples

Œti tiC1tiC2� starting at positionsi such thati %3 D k, for i 2 Œ0; n/. Let R D R1 ˇ R2 be

the concatenation ofR1 andR2. For our example string, we have

1Malayalam is a language spoken in southern India.
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index inT 1 4 7 2 5 8

character inR [ala] [yal] [am0] [lay] [ala] [m00]

index inR 0 1 2 3 4 5 .

We define anonempty suffixof R at positioni in R to be all characters fromi up to the first

character that contains a0 or the end of the string. In our exampleR above, the nonempty

suffixes starting at indices 0, 2, and 4 arealayalam0, am0, andalam00, respectively.

Whenn %3 D 1, we include a characterŒ000� at positionn in R1. Therefore, we are always

guaranteed to find a character containing a0 in R1. Note that, not counting the ending0s,

the nonempty suffixes ofR correspond to the set of sample suffixes ofT . In Lemma 1 below,

we prove that the order of suffixes ofR is the same as the order of its nonempty suffixes.

Therefore, the order of suffixes ofR gives us the order of the nonempty suffixes ofR, which

in turn gives us the order of the sample suffixes ofT .

In order to sort the suffixes ofR, the algorithm first sorts and ranks the unique characters

of R, where ranks start from1. In our example,R has five unique characters, which in sorted

order are [ala], [am0], [lay], [m00], and [yal]. The algorithm then constructs a new stringR0

by renaming each character inR with its rank as a character inR0. If all characters ofR0 are

different, we directly get the order of sample suffixes. Otherwise, the algorithm determines

the suffix array ofR0 recursively. In our example,

index inT 1 4 7 2 5 8

character inR0 1 5 2 3 1 4

index inR0 0 1 2 3 4 5 ,

and we recurse. The suffix array ofR0 is SAR0 D h4; 0; 2; 3; 5; 1i; therefore, the list of sorted

sample positions ofT is h5; 1; 7; 2; 8; 4i. Now that the order of sample suffixes is known,

the algorithm assigns a rank, starting from1, to each suffixSi , wherei 2 Œ0; n C 2�, and it

denotes the rank ofSi by rank.Si /. The ranks of suffixes at positionsŒn; n C 2� are set to0,

and rank.Si /, such thati %3 D 0, is currently undefined and is indicated by?. For T =

malayalam, with n D 9, the ranks of suffixes at positionsŒ0; 11� are shown below:
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i 0 1 2 3 4 5 6 7 8 9 10 11

character inT m a l a y a l a m 0 0 0

rank.Si / ? 2 4 ? 6 1 ? 3 5 0 0 0 .

2. Sort nonsample suffixes.Using the result of the previous step, we can sort the nonsample

suffixes by comparing tuples.ti ; rank.SiC1//. In our example,S3 < S6 < S0 because

.a; 6/ < .l; 3/ < .m; 2/.

3. Merge the two sorted sets of suffixes.For k D 0; 1; 2, let us define setsPk D fi 2 Œ0; n/ W

i %3 D kg. The algorithm defines the following comparison function for merging the sorted

sets of sample and nonsample suffixes:

i 2 P0; j 2 P1 W Si < Sj , .ti ; rank.SiC1// < .tj ; rank.Sj C1//;

i 2 P0; k 2 P2 W Si < Sk , .ti ; tiC1; rank.SiC2// < .tk ; tkC1; rank.SkC2//;

j; k 2 P1 [ P2 W Sj < Sk , rank.Sj / < rank.Sk/ :

For example,S1 < S3 because.a; 4/ < .a; 6/; S6 < S2 because.l; a; 5/ < .l; a; 6/, and

S5 < S1 because1 < 2. For the stringT D malayalam, the sets of starting indices of the

sorted suffixes at positions0, 1, and2 mod3 aref3; 6; 0g, f1; 7; 4g, andf5; 2; 8g, respectively.

Upon merging these sorted sets using the comparison function that was just described, we get

SA D h5; 1; 7; 3; 6; 2; 8; 0; 4i.

Here is the lemma that allows us to consider the suffixes ofR instead of the nonempty suffixes

of R when determining the order of the sample suffixes ofT .

Lemma 1 For the stringR D R1 ˇ R2, whereRk D hŒti tiC1tiC2� W i 2 Œ0; n/; i %3 D ki for

k D 1; 2, the order of suffixes ofR is the same as the order of nonempty suffixes ofR.

Proof. We will use lower-case Greek letters to represent zero or more contiguous characters ofR,

and lower-case English letters to denote a single characterof R. Recall that each character ofR is

a character triple ofT .

If all characters inR are unique, then the lemma is obvious, because then the rank of a suffix

(nonempty or otherwise) is determined by its first character.
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We now handle the case whenR has duplicate characters, i.e., there exist at least two suffixes

in R with some common prefix. Let̨bˇ and˛c
 be two suffixes2 of R with a common prefix̨ ,

where˛ has at least one character andb ¤ c. We will prove the lemma using three cases based on

whether the suffixes start inR1 or R2.

1. Both suffixes start in R1. Let y denote the character inR1 that contains a0; recall thatR1

is guaranteed to have such a character. Then, we can rewrite the suffixes̨ bˇ and˛c
 as

˛bı1yR2 and˛cı2yR2, respectively.3 Now, ˛bˇ < ˛c
 if and only if b < c. BecauseR2 is

common to both suffixes, we are, in effect, comparing the respective nonempty suffixes. That

is, if both suffixes start inR1, the order of the suffixes ofR matches the order of its nonempty

suffixes.

2. Both suffixes start in R2. If both suffixes˛bˇ and˛c
 start inR2, then they automatically

correspond to the respective nonempty suffixes. Hence, if both suffixes start inR2, the order

of suffixes ofR gives the order of the nonempty suffixes.

3. One suffix starts in R1 and the other starts in R2. Without loss of generality, let us

assume that̨ bˇ starts inR1; therefore,̨ c
 starts inR2. Let us rewritę bˇ as˛bı1y�˛c
 ,

wherey is the character inR1 that contains a0, andb andy might be the same. As we

noted in case 2, because suffix˛c
 starts inR2, it is the same as its corresponding nonempty

suffix. The nonempty suffix of̨ bˇ is ˛bı1y. Becausę bˇ < ˛c
 if and only if b < c, and

becauseb is part of the nonempty suffix of̨bˇ, we can say that the order of the suffixes˛bˇ

and˛c
 is determined by the order of the corresponding nonempty suffixes.

Figure 4.1 gives the pseudocode from [21] for an external-memory implementation of the DC3

algorithm. Lines 1–8 carry out step 1 of the DC3 algorithm. Lines 1 and 2 create the set of (character

triple, position) tuples starting at sample positions and sort the set lexicographically by the first

component. That is, at the end of line 2, all tuples with the same character-triple occur together in

setS . The NAME procedure, for which we do not provide pseudocode, scans setS , assigns a fresh

name, starting from1, to each new triple that is found, and builds setR of (name, position) tuples

2Any two suffixes of a string must differ in at least one character.
3In the new representation, it is possible forb or c to equaly. If b D y, then rewritę bˇ as˛bR2, and ifc D y, then

rewrite˛c
 as˛cR2.
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DC3.T /

// For all sample positions, store (character triple, position) tuples in setS
1 S D f.T Œi; i C 2�; i/ W i %3 ¤ 0g
2 sortS by component 1
3 R D NAME.S/

4 if the names inR are not unique
// Usei %3 as the primary key andi = 3 as the secondary key to sort the tuples inR

5 sort the.name; i/ 2 R by .i %3; i = 3/

6 R0Œ0; 2n=3/ D hnameW .name; i/ 2 Ri // build recursive input
7 SA12D DC3.R0/ // recurse
8 R D h.j C 1; SA12Œj �/ W j 2 Œ0; 2n=3/i
9 sortR by the second component

10 S0 D f.ti ; tiC1; r 0; r 00; i/ W i %3 D 0; .r 0; i C 1/; .r 00; i C 2/ 2 Rg
11 S1 D f.r; ti ; r 0; i/ W i %3 D 1; .r; i/; .r 0; i C 1/ 2 Rg
12 S2 D f.r; ti ; tiC1; r 00; i/ W i %3 D 2; .r; i/; .r 00; i C 2/ 2 Rg
13 sortS0 by components 1, 3 // sort nonsample suffixes by.ti ; rank.SiC1//

14 sortS1 andS2 by component 1 // sort sample suffixes by rank
15 SA D MERGE.S0; S1; S2/ using comparison function

.v; : : :/ 2 S1 [ S2 � .w; : : :/ 2 S1 [ S2 , v � w

.c; c0; u0; u00; i/ 2 S0 � .f; f 0; x0; x00; j / 2 S0 , .c; u0/ � .f; x0/

.c; c0; u0; u00; i/ 2 S0 � .v; d; v0; j / 2 S1 , .c; u0/ � .d; v0/

.c; c0; u0; u00; i/ 2 S0 � .w; e; e0; w00; k/ 2 S2 , .c; c0; u00/ � .e; e0; w00/
16 return hlast component ofs : s 2 SAi

Figure 4.1: Pseudocode by Dementiev et al. [21] for the external-memoryimplementation of the DC3 algo-
rithm.

by replacing the character triple in each tuple of setS by its name. In lines 5–8, the pseudocode

checks whether the order of sample suffixes has been completely determined, and then it recurses if

necessary.

Lines 9–16 implement steps 2 and 3 of the algorithm. SetsS0, S1, andS2 that are created in

lines 10–12 contain enough information to allow the MERGEprocedure in line 15 to correctly merge

the sorted sets of sample and nonsample suffixes. Line 16 returns the suffix array of the input as the

list of positions with lexicographically increasing suffixes.

The paper by Dementiev et al. [21] shows that the algorithm inFigure 4.1 can be implemented to

run using 3(sort(10n) + scan(2n)) I/Os, where scan(x) and sort(x) are the number of I/Os required

to scan and sortx words of data, respectively. The authors use words of sizedlogne bits for inputs

of sizen. In the Parallel Disk Model [57], which assumes a machine with internal memory of size
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Figure 4.2: Intersecting pipelines in FG to generate sorted runs of (character triple, position) tuples starting
at sample positions.

M andD disks, each of which can be accessed in blocks of sizeB, scan(x) = dx=.BD/e and sort(x)

= .x=.BD// logM=B.x=B/.

4.3 Suffix-array implementation in FG

In this section, we present the design of the FG pipeline structures that we used to implement the

external-memory DC3 algorithm. We will associate our pipelines with the line numbers of the

pseudocode of Figure 4.1 that they implement. As we shall soon see, our implementation comprises

a series of complex FG pipelines. We omit buffers and arrows connecting the respective sink and

source stages in all the figures in this section.

4.3.1 Generate character triples at sample positions and create sorted runs

Lines 1 and 2 of the pseudocode generate (character triple, position) tuples starting at sample posi-

tions and sort them lexicographically by the first component, so that at the end of line 2, all duplicate

character triples occur contiguously in setS . In our implementation, we generate sorted runs of

(character triple, position) tuples starting at sample positions, sorted lexicographically by character

triples, using the intersecting pipelines shown in Figure 4.2. When the pipelines of Figure 4.2 finish,

we complete line 1 and part of line 2 of the pseudocode.

In the pipelines of Figure 4.2, the read stage accepts an empty buffer from the source stage on its

pipeline, reads a buffer’s worth of data from the input file, and conveys the buffer to the next stage,

which generates tuples. Similar to the DC3 algorithm, we assume that the input is a sequence ofn

integers in the rangeŒ1; n�. We also assume that the size of the input file isn bytes; we interpret each
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byte as anunsigned char in C++, and we use the character’s numerical value in the machine’s

character set as its integer value. In each round except the last one, therefore, the read stage reads

as many bytes from the input file as a buffer can hold. Because the input sizen might not be an

integral multiple of the buffer size, the buffer read into inthe last round might be only partially full.

The first stage along the horizontal pipeline, which generates tuples, is common to two pipelines.

This stage accepts a buffer with input characters from the read stage along the vertical pipeline and

it accepts an empty buffer from the source stage along the horizontal pipeline. By using a static

counter and the data in the vertical buffer, this stage fills the horizontal buffer with (character triple,

position) tuples, starting at sample positions. After filling a horizontal buffer with as many tuples as

the buffer can hold, this stage conveys the buffer to the nextstage along the horizontal pipeline and

accepts a fresh buffer from the source stage. When this stagehas consumed all the data available

in a vertical buffer, it conveys the vertical buffer to the sink stage along the vertical pipeline and

accepts another buffer with input characters from the read stage. The last two stages, named sort

and write, along the horizontal pipeline, sort a buffer of (character triple, position) tuples by the

first component and write a sorted buffer to disk, respectively. Therefore, when the pipelines shown

in Figure 4.2 finish, we have sorted runs of (character triple, position) tuples, starting at sample

positions, available on disk.

In Figure 4.2, why did we require the stage that generates tuples to be an intersecting stage?

Could we have flattened the pipelines of Figure 4.2 into a single, linear pipeline with the source,

read, generate tuples, sort, write, and sink stages? No, because the stage that generates tuples

consumes its input at a rate different from the rate at which it produces output. These rates differ

because the sizes of the input and output data types of the stage differ—the stage consumes input

characters and outputs (character triple, position) tuples. For example, anx-byte buffer can hold up

to x input characters, but it can hold at mostx=7 (character triple, position) tuples, assuming4-byte

position values. Hence, the stage cannot reuse the buffer that it accepts from the read stage to emit

(character triple, position) tuples, which it would have toin case of a single, linear pipeline.

4.3.2 Merge sorted runs of character triples and name them

Before we proceed to name the character triples as required by line 3 of the pseudocode, we must

merge the sorted runs of (character triple, position) tuples that we created earlier. We merge sorted
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Figure 4.3: FG pipelines to merge sorted runs of (character triple, position) tuples and to generate sorted
runs of (name, position) tuples.

runs of (character triple, position) tuples and produce (name, position) tuples using the pipelines

shown in Figure 4.3. Assuming that the horizontal pipeline of Figure 4.2 writes outc sorted runs

of (character triple, position) tuples, Figure 4.3 showsc vertical pipelines with the read and merge

stages, one horizontal pipeline with the merge and name stages, and one vertical pipeline with the

name, sort, and write stages.

Along all thec vertical pipelines with the read and merge stages, the read stage on pipelinei

reads a block from sorted runi . The merge stage, which is common toc C 1 pipelines, accepts

a block from the read stage along each of thec vertical pipelines, and it produces merged output

along the horizontal pipeline. Each buffer that the merge stage conveys to the name stage along its

horizontal pipeline lexicographically follows the previous buffer that it conveyed.

The name stage, which is the other intersecting stage in the pipelines of Figure 4.3, is common to

two pipelines. Along its horizontal pipeline, this stage accepts buffers containing (character triple,

position) tuples in globally sorted order. The name stage assigns a fresh name,4 starting from1,

to each unique character triple and outputs (name, position) tuples5 to an empty buffer, which it

accepts along its vertical pipeline. Again, we chose to implement the name stage as an intersecting

stage because the rate at which it consumes buffers along itshorizontal pipeline differs from the rate

at which it produces buffers along its vertical pipeline.

4The name of a character triple corresponds to its rank.
5The position value in each tuple the same as the second component of the corresponding (character triple, position)

tuple.
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For now, let us assume that the input does not require recursion; that is, we assume that all

tuples in setR, which is created using the name stage, have unique names. Therefore, the condition

in line 4 of the pseudocode will be false, which means that we will proceed from line 9 after the

pipelines of Figure 4.3 finish. Based on this assumption, we sort the tuples in the buffers along

the last vertical pipeline of Figure 4.3 by their second component, i.e., by position. Hence, after

the pipelines of Figure 4.3 finish, we have sorted runs of (name, position) tuples available on disk,

which when merged will produce the sorted setR per line 9 of the pseudocode.6

4.3.3 Sort nonsample suffixes

We continue with the assumption that the input does not require recursion, which means that we

skip over lines 5–8 and proceed from line 9. As we proved in Section 4.2, because setR has unique

names, it represents the suffix array of the sample suffixes.

The next step in the algorithm is to generate setsS0, S1, andS2 and sort them (lines 10–14). In

our implementation, however, we do not generate three distinct sets. Instead, we note that an element

from any of the setsS0, S1, orS2 always contains the positioni in addition to at most two characters

and two ranks. Therefore, we generate a single set whose elements are a 5-tuple:.t; t 0; r; r 0; i/; we

distinguish these identical-looking elements as being from setsS0, S1, or S2 based on positioni .

For eachi 2 Œ0; n/, setSk , wherek 2 f0; 1; 2g, contains tuples with positionsi %3 D k. We will

denote the single set containing these 5-tuples as setS012.

Of course, we interpret the fields of the 5-tuple,.t; t 0; r; r 0; i/, differently for the elements of

setsS0, S1, andS2. For example, for an element of setS0 in setS012, fields t and t 0 represent

the characters at positionsi and i C 1, fields r and r 0 represent the ranks of suffixes starting at

positionsi C 1 andi C 2 (which have just been uniquely determined), andi 2 Œ0; n/ represents a

position such thati %3 D 0. For an element of setS1 in setS012, field t represents the character

at positioni , fieldsr andr 0 represent the ranks of suffixes at positionsi andi C 1, andi 2 Œ0; n/

represents a position such thati %3 D 1; field t 0 is unused. Similarly, for an element of setS2 in

setS012, fields t and t 0 represent the characters at positionsi andi C 1, fieldsr andr 0 represent

the ranks of suffixes starting at positionsi and i C 2, and i 2 Œ0; n/ represents a position such

6In a later subsection, where we deal with inputs that requirerecursion, we will see that, in fact, we do things slightly
differently in our actual implementation.
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Figure 4.4: FG pipelines to merge sorted runs of (name, position) tuplesand to generate sorted runs of
setS012. Each element of setS012 is a 5-tuple,.t; t 0; r; r 0; i /. We distinguish an element as being originally
from setS0, S1, orS2, based on positioni , and we sort the elements of setS012 using the comparison function
given in line 15 of the pseudocode.

that i %3 D 2.

After the pipelines of Figure 4.3 finish, suppose we haver sorted runs of (name, position) tuples

belonging to setR, which are sorted by position, available on disk. In order tocreate setS012, we

merge ther sorted runs to obtain sample suffixes sorted by position while also reading the input

file, as Figure 4.4 illustrates. The pipelines in Figure 4.4 also create sorted runs of setS012, thus

inherently completing lines 13 and 14 of the pseudocode. Forconvenience, we have numbered the

r C 3 pipelines in Figure 4.4 and we will refer to them asp1 to prC3.

In Figure 4.4, the merge stage, which is common tor C1 pipelines, merges sorted runs of (name,

position) tuples, which are fed to it along vertical pipelinesp1 to pr , and it produces merged output

along horizontal pipelineprC1. The contents of the buffers conveyed from the merge stage along

pipelineprC1, when taken in sequence, form the sorted setR as in line 9 of the pseudocode.

The second stage in pipelineprC1, which generates setS012, is common to three

pipelines: prC1; prC2, and prC3. This stage accepts buffers with data along pipelinesprC1

and prC2, and it accepts empty buffers along pipelineprC3. The buffer that this stage accepts

along the horizontal pipelineprC1 contains (name, position) tuples globally sorted by position,

and along the vertical pipelineprC2, the stage accepts a buffer’s worth of input characters, which

are read from the input file by the read stage. Using these two buffers, this stage generates tuples

belonging to setS012 and copies these tuples to the empty buffer that it accepts along the vertical
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Figure 4.5: FG pipelines to generate the final suffix array.

pipelineprC3.

The sort stage in pipelineprC3 sorts the tuples in its incoming buffer using the comparison

function given in line 15 of the pseudocode in Figure 4.1. Thewrite stage in the last pipeline of

Figure 4.4 writes a sorted buffer of setS012 to disk.

4.3.4 Merge sorted sets of sample and nonsample suffixes

The sorted runs of setS012 must be merged, using the comparison function in line 15 of Figure 4.1,

to create the suffix array ofT . Figure 4.5 containsr C 2 pipelines, wherer is the number of sorted

runs of setS012. Ther vertical pipelines in Figure 4.5 containing the read and merge stages and

the horizontal pipeline with the merge and generate suffix array stages work together to read and

merge the sorted runs of setS012 and produce the merged output along the horizontal pipeline.

In Figure 4.5, the stage that generates the suffix array ofT consumes the merged output from the

horizontal pipeline and it produces the suffix array ofT along the last vertical pipeline. The write

stage in the last vertical pipeline of Figure 4.5 writes the final indices representing the suffix array

of T to disk.

4.3.5 Recursion

So far, we have assumed that the input does not require recursion. We now handle the case when

the input requires recursion. Let us return to the pipelinesof Figure 4.3, which merge sorted runs of
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Figure 4.6: FG pipelines to generate sorted runs of (character triple, position) tuples in a recursive phase.

(character triple, position) tuples and create sorted runsof (name, position) tuples.7 Earlier, we said

that the sort stage in the last vertical pipeline of Figure 4.3 sorts the tuples in each incoming buffer

by their second component. For the sake of simplicity, we mispresented the sorting criterion at the

time. Indeed, our implementation always assumes that the condition in line 4 will be true, i.e., that

another level of recursion will be required, and so we sort buffers along the last vertical pipeline of

Figure 4.3 by (position%3, position= 3). We decided to use this sorting criterion because we expect

most inputs to require many levels of recursion. Hence, after the pipelines of Figure 4.3 finish, we

have sorted runs of (name, position) tuples available on disk, which when merged will produce the

sorted setR per line 5 of the pseudocode. The name component of the mergedresult of these sorted

runs gives us recursive input, which can be used for the recursive call in line 7 of the pseudocode.

One of the benefits of pipelined programs is that we can avoid unnecessary I/O. As Figure 4.6

illustrates, in a recursive phase, we feed the merged outputdirectly to the stage that generates (char-

acter triple, position) tuples. In Figure 4.6, the verticalpipeline with generate tuples, sort, and write

stages is similar in structure and functionality to the horizontal pipeline in Figure 4.2. Although

pipelined programming helps us avoid unnecessary I/Os, youmight wonder why we output the re-

cursive input to disk.8 We store the recursive input because it is also required later while creating

setS012.

We finish sorting setS of (character triple, position) tuples and name them using the pipelines

7Recall that these tuples belong to setR of line 3 of the pseudocode.
8Notice the write stage in the horizontal pipeline in Figure 4.6.
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in Figure 4.3. We reexecute the pipelines in Figures 4.6 and 4.3 until the recursion bottoms out. In

the last recursive phase, however, our default sorting criterion of (position%3, position= 3) for the

last vertical pipeline of Figure 4.3 is incorrect, because we will execute line 9 after checking the

condition in line 4, which will be false. Note that line 9 requires the tuples in setR to be sorted by

their second component. Therefore, we recreate sorted runsof (name, position) tuples, consistent

with line 9 of the pseudocode, by running a simple linear pipeline9 with read, sort, and write stages.

This pipeline reads the sorted runs of (name, position) tuples, sorts them by their second component,

and writes these freshly sorted runs to disk. When this linear pipeline completes, we have sorted

runs of (name, position) tuples, sorted by their second component, which when merged will create

setR per line 9 of the pseudocode.

When the recursion bottoms out, and after we return from a recursive phase, we run the pipelines

in Figure 4.4 to create sorted runs of setS012. To generate the suffix array in a recursive phase,

we use the pipelines in Figure 4.5, but we insert a sort stage before the write stage in the last

vertical pipeline. This sort stage sorts each incoming buffer of (name, position) tuples by the second

component. Therefore, in a recursive phase, the write stageoutputs sorted runs of (name, position)

tuples to disk; these sorted runs will be merged by the pipelines in Figure 4.4 acting on behalf of

the previous recursive step. In a recursive phase, the stagefunction for the generate suffix array

stage outputs (name, position) tuples, with names startingfrom 1; the stage function converts each

position in the rangeŒ0; 2n=3/ to its corresponding1 mod3 or 2 mod3 position of the previous

recursive step. When the pipelines in Figure 4.5 are used to generate the suffix array of the original

input, the stage function for the generate suffix array stageoutputs only the positions of the sorted

suffixes.

4.4 Implementation details

In this section, we outline some implementation decisions that we made to engineer the performance

of our external-memory DC3 program.
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Figure 4.7: FG pipelines to read and merge sorted runs, followed by further processing.

4.4.1 Hierarchical merging

Until now, we have seen that the implementation of the external-memory DC3 algorithm frequently

requires merging sorted runs available on disk. In order to merge sorted runs stored on disk, we use

the pipeline structures shown in Figure 4.7, where the rightmost ellipsis in the figure could stand

either for one or more stages following the merge stage in thehorizontal pipeline or for additional

pipelines, or both (see Figures 4.3–4.6).

Often, the number of sorted runs could be tens of thousands even for a moderate input size of

half a million characters. Although FG’s virtual pipelinesspawn only a single thread for all the

read, source, and sink stages, FG still maintains a separatebuffer queue for each sorted run between

the read and merge stages shown in Figure 4.7. In addition, each buffer queue requires its own

semaphore. That is, despite the savings offered by FG’s virtual pipelines, we fall short of system

resources so that the program grinds to a halt.

In our implementation, we use hierarchical merging to thwart such problems. When the number

of sorted runs exceeds a certain limit, sayk, we resort to hierarchical merging, wherein we mergek

consecutive sorted runs at a time, thereby creating longer sorted runs, and we continue this process

until the number of sorted runs is at mostk. Once the number of sorted runs is at mostk, we

merge sorted runs and use the sorted output in the manner shown in Figures 4.3–4.6. In general,

if there arer sorted runs, we requiredlogk re � 1 passes to bring down the number of sorted

runs to at mostk. In each pass, we merge all the sorted runs available from theprevious pass in

batches ofk consecutive sorted runs at a time. To merge anyk consecutive sorted runs, we use the

pipelines shown in Figure 4.7, where just a write stage follows the merge stage in the horizontal

9We do not show the figure for this pipeline.
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pipeline, thereby creating a longer sorted run of sizeks, assuming that each sorted run was of

sizes before merging. In general, if there werer sorted runs before hierarchical merging, there will

be max.k; dr=kdlogk re�1e/ sorted runs after we finish all required passes of hierarchical merging.

Before we set up and run any of the pipelines in Figures 4.3–4.6, we first check whether the

number of sorted runs, sayr , output by the previous set of pipelines exceedsk. If r > k, we finish

executing all passes of hierarchical merging to bring down the number of sorted runs to at mostk,

and then we set up and run the current set of pipelines. In our implementation of the external-

memory DC3 algorithm, we setk D 40. In the interest of simplicity, we omitted these details while

describing our implementation in Section 4.3.

4.4.2 Create longer, in-memory sorted runs

If we have to resort to hierarchical merging, and if ther sorted runs reside in a file of sizeb bytes,

then in each hierarchical merging pass, we read and writeb bytes of data. Because each hierarchical

merging pass entails extra I/O, we engineered our implementation to create longer in-memory sorted

runs, thus writing longer sorted runs to disk in an attempt torestrict the number of sorted runs to at

mostk. The next paragraph details our approach.

For all pipeline sets shown in Figures 4.2–4.6, we can calculate the number of sorted runs, say

r , that will be written to disk before we begin executing the pipelines. Therefore, in our implemen-

tation, whenever we notice thatr > k, we modify the pipeline structure such that longer sorted runs

will get written to disk. Figure 4.8 shows how we modify the pipelines of Figure 4.2 to write longer

sorted runs to disk. In Figure 4.8, for each round along the last vertical pipeline, the merge stage ac-

ceptsm buffers along the horizontal pipeline and merges the contents of these buffers into an empty

buffer that it accepts along the vertical pipeline. That is,if the horizontal pipeline has buffer sizes,

the last vertical pipeline has buffer sizems, which gets written to disk. Therefore, if the original

pipeline structures of Figure 4.2 would have producedr sorted runs, the pipelines of Figure 4.8

would write onlydr=me sorted runs to disk. We can make similar modifications to the pipelines in

Figures 4.3–4.6 to write longer sorted runs to disk. In our implementation, we setm D 10. We have

noticed that this approach often helps us avoid hierarchical merging before executing the next set of

pipelines.
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Figure 4.8: Modified FG pipelines from Figure 4.2 to create longer, in-memory sorted runs, thus writing
longer sorted runs to disk. Similar modifications can be madeto the pipelines of Figures 4.3–4.6.

4.4.3 Sort and merge stages

We parallelize the sort and merge stages in all pipelines, except for the sort stage in Figure 4.4.

Note that all sort stages we have seen in this chapter involvesorting tuples. In the sort stages

in Figures 4.2, 4.3, 4.6, and in the sort stage that gets sandwiched between the generate suffix array

and write stages in a recursive phase in Figure 4.5, all tuples share the same sorting criterion, and

the rank of each tuple depends on a fixed set of fields of the tuple. Therefore, we use parallel radix

sort, using 16-bit keys at a time, as the sort stage function for these sort stages. For example, let

us focus on the sort stage in Figure 4.6, which sorts a buffer of (character triple, position) tuples.

In our implementation, each character in the triple is a 32-bit value of typeunsigned int, thus

requiring six passes of radix sort through the buffer. Assuming that a buffer holdss (character triple,

position) tuples, (ai , bi , ci ) for i D 1; 2; 3 : : : ; s, we sort the 16 least-significant bits of allci in

one pass followed by the 16 most-significant bits of allci in another pass. Then, we sort the 16

least-significant bits and the 16 most-significant bits of all bi in two passes and finally, we sort the

16 least-significant bits and the 16 most-significant bits ofall ai in the last two passes.10 We use

OpenMP’sparallel for construct to parallelize each pass.

In the sort stage in Figure 4.4, however, any two tuples beingcompared could be from different

sets (S0, S1, or S2); that is, the inter-tuple rank depends on which combination of sets—of the six

possible combinations—the tuples belong to. Similarly, for any two tuples belonging to the same

10In our code, whenever we use radix sort, we do not optimize forthe most significant bits that remain zero and thus do
not contribute to the result of the sort. We admit that this strategy is less efficient both in time and space, but considering
that our input sizes range from 16 MB to 4 GB, i.e., from224 to 232 bytes, we are unlikely to benefit much from the
optimization for the input sizes that matter—512 MB and beyond.
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set, the fields of the tuple that participate in the sorting criterion are different for each of the setsS0,

S1, andS2. Therefore, we perform simple, comparison-based sorting of setS012, which subsumes

the setsS0, S1, andS2.

In all pipelines, we use themultiway_merge routine provided bylibstdc++ to parallelize

the merge stages. Themultiway_merge routine works in memory, but we want to merge sorted

runs available on disk, with only buffer-sized portions of each sorted run available in memory at

a time. Thus, to produce correctly merged output, we must ensure that none of the buffers run

empty during a single call tomultiway_merge. Therefore, we create partitions in the buffers

for all sorted runs such that we can merge the sum of the sizes of these partitions in a single

call to the routine. Below, we give pseudocode for the portion of the merge stage that uses the

multiway_merge routine.

MERGE STAGE FUNCTION

. . .// deleted code
1 while not all sorted runs have been fully exhausted
2 assumingr non-empty sorted runs, letm1; m2; : : : ; mr denote the respective

maxima of the elements available in the buffers for the sorted runs
3 m0 D minfm1; m2; : : : ; mrg // minimum of all local maxima
4 let s0 be a block whose maximum element ism0

5 rankm0 in all sorted runs excepts0 usingstd::upper_bound()
6 calculatet as the sum of the number of elements that can be merged from allblocks

before the current buffer ofs0 is fully consumed
7 callmultiway_merge to merget elements

// current buffer for sorted runs0 should be consumed now;
// current buffers of some other sorted runs might also have been consumed

8 for each sorted run
9 if all elements in the current buffer for the sorted run have been consumed

10 convey the buffer
11 if this sorted run has not been fully exhausted
12 accept another buffer along the respective vertical pipeline

. . .//more deleted code

We will explain the above pseudocode using an example. As Figure 4.9 shows, let us assume

that we want to merge five sorted runs and that we have a buffer’s worth of data available from each

of the sorted runs. Line 3 above definesm0 as the minimum of the maximum elements of all buffers,

and let us suppose thats0 D 2 in line 4. Figure 4.9(a) shows a possible scenario after we rank m0

in the buffers from all sorted runs. For each sorted run, the shaded region of its respective buffer

contains elements that equal at mostm0. Then, we calculatet to be the sum of sizes of all partitions,
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(a)

1 2 3 4 5

(b)

Figure 4.9: An example with five sorted runs to illustrate how we use themultiway merge routine. Each
vertical bar represents a buffer that is available in memory; run numbers are shown just below the buffers. We
assume that in each buffer, the elements increase from the bottom of the buffer to the top. We calculatem0

as in line 2 of the pseudocode. (a) The shaded region in each buffer represents the region of the buffer where
elements equal at mostm0. Because we assume thats0 D 2, the buffer from sorted run 2 is fully shaded; the
maximum element in the buffer from sorted run 5 also happens to bem0 and hence its buffer is fully shaded,
too. We calculatet to be the sum of the shaded regions in all buffers, and we callmultiway merge on t

elements. Aftermultiway merge returns, we accept new buffers for sorted runs 2 and 5, whose buffers
were fully consumed in the most recent call to the routine. (b) The shaded region within each buffer represents
the portion of the buffer within which we should rank the newm0 before the next call tomultiway merge.

i.e., the sum of sizes of all shaded regions in Figure 4.9(a).Line 6 of the above pseudocode calls

multiway_merge to merget elements. After the routine returns, we are sure to have consumed

the buffer from sorted runs0, which we assumed equals 2. In our example, we also happen to

consume the buffer from sorted run 5, however. Therefore, line 12 above accepts the next buffer

along the vertical pipelines for sorted runs 2 and 5, assuming that we haven’t yet fully exhausted

either of these sorted runs. Now, we are ready for another call to multiway_merge, so we can

restart from line 1 above. Because the maximum elements of the buffers from sorted runs 2 and 5

have changed,11 we resetm0 ands0 in lines 3 and 4, respectively. As Figure 4.9(b) shows, when we

rankm0 in all sorted runs in line 5, we should not use the portions of the buffers that we consumed

in the previous call tomultiway_merge. Then, we can continue as before from line 6.

4.5 Extensions to FG

In this section, we describe an extension to FG that came about from our original design of the

external-memory DC3 algorithm. We extended FG to allow multiple sets of virtual pipelines to

feed into an intersecting stage. As we shall soon see, such pipeline structures can prove useful in

some scenarios, but FG did not support them earlier.

11We accepted a new buffer along the pipelines for these sortedruns. The buffers for sorted runs 1, 3, and 4 are
unchanged, and so are the maximum elements in these buffers.
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Figure 4.10: FG pipelines to merge sorted runs of (name, position) tuplesand to generate sorted runs of
setsS0, S1, andS2.

We return the reader’s attention to the pipelines of Figure 4.4, which generate sorted runs of

setS012 (recall that each element of setS012 represents an element from one of the setsS0, S1,

or S2). Figure 4.10 shows our original design for generating setsS0, S1, andS2. Earlier, we

generated three distinct sets, using 5-tuples for elementsof setsS0 andS2 and a 4-tuple for elements

of setS1 (see lines 10–12 of the pseudocode in Figure 4.1). Most of thedescription for the pipelines

in Figure 4.10 is similar to that of Figure 4.4. Here, we briefly describe the working of the last three

vertical pipelines of Figure 4.10. The stage that generatedsetsS0, S1, andS2 accepted an empty

buffer from each of the last three vertical pipelines and filled them with tuples of setsS0, S1, andS2,

respectively. The sort stages in pipelinesprC3; prC4, andprC5 sorted a buffer of setS0, S1, andS2,

respectively, and the write stages along these pipelines wrote out the sorted buffers to a distinct file.

That is, earlier, we used a separate file to store the sorted runs of each of the three sets.

In order to merge the sorted runs of setsS0, S1, andS2 to obtain the sorted sets of sample

and nonsample suffixes and hence create the suffix array ofT , we used the pipelines shown in

Figure 4.11. Assuming that the pipelines of Figure 4.10 generatedr0, r1, andr2 sorted runs of

setsS0, S1, andS2, respectively, Figure 4.11 showsr0 C r1 C r2 C 4 pipelines. Pipelinesp0;0

to p0;r0
(pipeline numbers are shown in the figure) read and merge the sorted runs of setS0 and

produce the merged output along pipelinep0;0. Similarly, the results of merging the sorted runs

of setsS1 andS2 are output along pipelinesp1;0 andp2;0, respectively. In Figure 4.11, the stage

that generates the suffix array ofT is a 4-way intersecting stage: it merges the incoming data along
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Figure 4.11: FG pipelines to generate the final suffix array in the originaldesign. We assume that there are
r0, r1, andr2 sorted runs of setsS0, S1, andS2, respectively. Starting from the left, we can say that thereare
three groups of vertical pipelines; in each such group, there is one horizontal pipeline with the merge stage
and the stage that generates the suffix array, and some numberof vertical pipelines with the read and merge
stages. Therefore, we number pipelines using the group number and the pipeline number within the group.
There arer0 C 1 pipelines in the first group, with pipeline numbers0; 0 to 0; r0, there arer1 C 1 pipelines
in the second group, with pipeline numbers1; 0 to 1; r1, and there arer2 C 1 pipelines in the third group,
with pipeline numbers2; 0 to 2; r2. For consistency, the horizontal pipeline with the write stage is assumed
to have pipeline number3; 0.

pipelinesp0;0, p1;0, andp2;0 using the comparison function shown in line 15 of the pseudocode,

and it produces the suffix array ofT along pipelinep3;0. The write stage in pipelinep3;0 of

Figure 4.11 writes the final indices representing the suffix array of T to disk.

Figure 4.11 shows three sets of virtual pipelines, each of whose output feeds into an intersecting

stage. We extended FG to allow such pipeline structures.

4.6 Experimental results

In this section, we compare the performance of our FG-based implementation of the external-

memory DC3 algorithm with that of the STXXL -based implementation by Dementiev et al. [21].

We ran our experiments on a machine that has one quad-core, 2.8-GHz Intel i7 processor, 8 GB

of RAM, and a 1.5-TB, 7200 rpm, SATA 3Gb/s hard drive. The machine runs Fedora linux, re-

lease 13. We use theread andwrite system calls for unbuffered disk I/O. We compiled our

FG-based implementation, written in C++, using the g++ 4.4.4 compiler at optimization level O3.

We contacted the STXXL implementors for the latest version of their suffix-array code and compiled

it using g++ 4.4.4 (optimization level O3) and STXXL version 1.3.0 with parallel pipelines enabled,

compiled in parallel mode.
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We compared the two implementations using various types of inputs: an input comprising

an .n=2/-length random string concatenated with itself (we refer tothis input as Random2), an

input with all characters equal, human genome data [24], andGutenberg text [30]. We gener-

ated the first two types of inputs, and for the latter two types, we downloaded the input instances

used in the STXXL implementation [21], which are available at http://algo2.iti.kit.edu/dementiev/

esuffix/instances.shtml. For each type of input, we ran bothimplementations on input sizes ranging

from 16 MB to 4 GB, doubling the input size successively. The maximum input size for Guten-

berg and human genome inputs was approximately 3 GB, however. We restricted all experiments to

use 1 GB of RAM. We used a block size of 4 MB in the STXXL code. In the FG implementation, all

pipelines that had a read stage used a buffer size of 4 MB, and all other pipelines ran with a buffer

size of 32 MB. Each pipeline was given as many buffers as the number of user-defined stages in it.

This configuration allowed us to contain our memory usage within 1 GB of RAM.

As Figures 4.12(a)–(d) show, the FG implementation of the external-memory DC3 algorithm

performed comparably to the STXXL implementation for all types of inputs and for each input size.

As the figures show, the FG implementation is always faster for n � 231, and it is almost as good for

the biggest input size, which is 4 GB in the random2 and all characters equal input types and 3 GB

in case of Gutenberg and human genome inputs. The running times of the two implementations

were approximately within 5%–37% of each other. Each resultrepresents the average of three runs,

where running times varied only slightly within each group of three.

Because we present our results in microseconds, normalizedby the number of bytes in the

input, we would expect to see an almost straight-line graph for both implementations. On the

contrary, as Figures 4.12(a)–(d) illustrate, we see jumps in running times for all types of input,

for both implementations. In the FG implementation, we see these jumps for input sizes 1 GB

and beyond, whereas in the STXXL implementation, we see these jumps from 256 MB onwards.

Why do we see this jump in running times? By instrumenting ourcode, we found that although

we never require more than one merging pass, we do resort to hierarchical merging a number of

times when processing input sizes of 1 GB and more, which we believe explains the increase in

running time. The paper by Dementiev et al. [21] suggests that STXXL , too, follows a hierarchical

merging approach in its sorting implementation; perhaps the STXXL -based implementation of the

DC3 algorithm also requires many one-pass or multi-pass merges starting at 256 MB.
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Figure 4.12:Performance results for the FG-based and STXXL -based implementations of the DC3 algorithm.
All results are presented in microseconds, normalized per byte of input.

For ann-character input that requiresd levels of recursion, our implementation reads a total of

approximately.38nC96n.1�.2=3/d // � 134n bytes and writes the same amount plus another2n.

The effect of hierarchical merging defies analysis, and therefore, these base expressions for the

total volume of data read and written do not account for I/O induced by hierarchical merging. We

measured the I/O volume due to hierarchical merging in our Random2 runs, however, finding that

the additional volume ranged between22:5% and67:9% of the values given by the base expressions.

The dominant computation time for each pipeline isO.n logB/, whereB is the buffer size.

4.7 Conclusions

In an earlier paper [43], where we used FG’s intersecting pipelines for external-memory distribution

sort, we speculated that we would be able to use intersectingpipelines in the design of external-

memory algorithms other than sorting. Indeed, this projectdemonstrates that not only can we

combine FG’s intersecting pipelines in more innovative ways than we did for distribution sort, but
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also that these pipelines are efficient in practice, as our experiments reveal. Most of the pipelines that

we saw in this chapter are more complicated than those we implemented for out-of-core distribution

sorting.

The DC3 algorithm presented us with interesting design and implementation opportunities.

FG’s design enabled us to reuse stage functions for stages such as read, sort, and write across

different pipelines, with slight changes in function parameters. The FG-based implementation of

the DC3 algorithm ran comparably to that of the STXXL -based implementation, which, too, is a

well engineered implementation.

As we saw in section 4.5, our original design of external-memory suffix arrays also offered the

idea of extending FG to allow multiple sets of virtual pipelines. Such pipeline structures can be

useful when we wish to merge sorted runs of a limited number ofdifferent types of data, with each

of their outputs feeding into other stages.

The pipelines in this project, which are implemented using FG version 1.4, also proffered ideas

for some design features for FG’s next version. We realized that auxiliary buffers might be redun-

dant, after all. Whenever a stage requires auxiliary buffers, we could make it an intersecting stage

with the source stage feeding it a pipeline buffer that the stage can use as an auxiliary buffer. In

the current version of FG, auxiliary buffers in a pipeline are restricted to be of the same size as the

pipeline buffers flowing through the pipeline. Our latest design idea for replacing auxiliary buffers

will not bind their size based on other buffers.
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Chapter 5

Fast Gauss Transform

5.1 Introduction

The discrete Gauss transform at a target pointt 2 Rd due ton source pointssj 2 Rd for j D

1; 2; : : : ; n is defined as

g.t/ D
n

X

j D1

e�jt�sj j2=ıq.sj / ; (5.1)

whereq.sj / for j D 1; 2; : : : ; n is a charge distribution function defined at then source points,

jx � yj is the Euclidean distance betweenx andy, andı > 0 is the Gaussian parameter.

In many disciplines such as computational physics [39, 48, 55], computational finance [9], com-

puter graphics, and machine learning [23, 36], we are interested in computing transformations of

the form shown in equation (5.1) atm target locationsti for i D 1; 2; : : : ; m. We can evaluate the

sum ofn Gaussians atm targets using a matrix-vector product

g D Gq ;

where we define the matrixG and the vectorsq andg as

Gij D e�jti �sj j2=ı for i D 1; 2; : : : ; m andj D 1; 2; : : : n ; (5.2)

qj D q.sj / for j D 1; 2; : : : ; n ;

gi D g.ti / for i D 1; 2; : : : ; m :
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Given the sources, targets, charges at the sources, and the Gaussian parameterı, constructing

the matrixG of Gaussian interactions and computing the matrix-vector productGq requiresO.mn/

time, which becomes prohibitive for largem andn. The fast Gauss transform (FGT), introduced

by Greengard and Strain [27], reduces the time complexity ofevaluating equation (5.1) atm target

locations toO.m C n/. The authors were able to improve the running time by approximating the

Gaussian shown in equation (5.1) by using a truncated Hermite expansion, where the truncation

point depends on the required precision. That is, the fast Gauss transform computes approximate

values, albeit with high precision.

Later, Greengard and Sun [28] replaced the Hermite expansions in the fast Gauss transform with

plane-wave expansions, without changing the asymptotic running time of the transform. In fact, in

this new version of the fast Gauss transform, they were able to use a sweeping algorithm, which

drastically reduces the running time of one of the computation steps.

In this chapter, we present our implementation of the plane-wave version of the fast Gauss

transform, both in shared memory and in distributed memory.Because the distributed-memory

implementation requires interprocessor communication, we use FG to help us overlap communica-

tion with computation. We compare the performance of our implementation against a distributed-

memory implementation by Sampath, Sundar, and Veerapaneni[44]. Experimental results show

that under certain assumptions that hold for both implementations, our implementation outperforms

the other implementation. We begin by introducing the Hermite and plane-wave versions of the fast

Gauss transform in Sections 5.2 and 5.3. Section 5.4 outlines some performance improvements for

the FGT steps described by Spivak, Veerapaneni, and Greengard [47]. Section 5.5 discusses some

obvious but useful observations that we made to improve our implementation, and Section 5.6 de-

tails our shared-memory and distributed-memory implementations. The final sections of this chapter

present our experimental results and offer some concludingremarks.
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5.2 Hermite version of FGT

Greengard and Strain [27] approximate the Gaussian field at atarget t due to a sources, in one

dimension, as a Hermite expansion centered at a points0:

g.t/ D e�j.t�s/j2=ı D
1

X

kD0

1

kŠ

�

s � s0p
ı

�k

hk

�

t � s0p
ı

�

; (5.3)

where

hk.x/ D e�x2

Hk.x/ ; (5.4)

Hk.x/ D 2xHk�1.x/ � 2.k � 1/Hk�2.x/ ;

H1.x/ D 2x ;

H0.x/ D 1 I

Hk.x/ andhk.x/ are the Hermite polynomials and the associated Hermite functions, respectively.

For multidimensional FGT, we can split thed -dimensional Gaussian into the product ofd one-

dimensional Gaussians. Ift; s 2 Rd , then

e�jt�sj2=ı D e.�.t1�s1/2�.t2�s2/2�����.td �sd /2/=ı

D e�.t1�s1/2=ı � e�.t2�s2/2=ı � � � e�.td �sd /2=ı : (5.5)

The authors describe the higher-dimensional analog of equation (5.3) using multi-index nota-

tion. For any multi-index̨ D .˛1; ˛2; : : : ; ˛d / and anyt 2 Rd , define

j˛j D ˛1 C ˛2 C � � � C ˛d ;

˛Š D ˛1Š ˛2Š � � � ˛d Š ;

t˛ D t
˛1

1 t
˛2

2 � � � t˛d

d
: (5.6)

If p is an integer, we say that̨ � p if ˛i � p for 1 � i � d , and that˛ � p if ˛i � p
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for 1 � i � d . The multidimensional Hermite polynomials and Hermite functions are defined as

H˛.x/ D H˛1
.x1/ H˛2

.x2/ � � � H˛d
.xd / ;

h˛.x/ D e�jxj2H˛.x/

D e�.x2
1

Cx2
2

C���Cx2
d

/H˛1
.x1/ H˛2

.x2/ � � � H˛d
.xd /

D .e�x2
1 H˛1

.x1// .e�x2
2 H˛2

.x2// � � � .e�x2
d H˛d

.xd //

D h˛1
.x1/ h˛2

.x2/ � � � h˛d
.xd / ; by applying equation (5.4): (5.7)

Using equations (5.5), (5.6), and (5.7), Greengard and Strain show that

e�jt�sj2=ı D
X

˛�0

1

˛Š

�

s � s0p
ı

�˛

h˛

�

t � s0p
ı

�

: (5.8)

Greengard and Strain [27] prove that ifNB sources lie in a boxB with centersB and side length
p

ı,

and if t is a target point in a boxC with centertC , then the Gaussian in equation (5.1) due to the

sources in boxB can be evaluated using the Hermite expansion

g.t/ D
X

ˇ�0

Rˇ

�

t � tCp
ı

�ˇ

;

where

Rˇ D .�1/jˇ j

ˇŠ

X

˛�0

A˛ h˛Cˇ

�

sB � tCp
ı

�

;

A˛ D 1

˛Š

NB
X

j D1

qj

�

sj � sBp
ı

�˛

;

with a suitable error bound for truncating the series afterpd terms. In the above equations,˛ andˇ

are multi-indices. In later equations for the Hermite version, we will sum˛ andˇ up top.

With this background, we are ready to look at a simple, fast algorithm for evaluating

g.ti / D
n

X

j D1

e�jti �sj j2=ıqj
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at m target locations inO.m C n/ time, as given by Greengard and Strain [27]. The required

precision� determines the variablep, which denotes the number of expansion terms for the Hermite

expansions. The authors assume that the sourcessj and targetsti all lie in the unit boxŒ0; 1�d .

As a preprocessing step, they subdivideŒ0; 1�d into smaller boxes of length
p

ı parallel to each

axis and assign each sourcesj and targetti to its respective box. IfNB sources lie in boxB,

thenn D
P

B NB . The FGT algorithm proceeds in three steps:

1. For each source boxB, create a Hermite expansion with a term for each˛i such that1 �

˛i � p, totalingpd terms:

X

sj 2B

qj
1

˛Š

�

sj � sBp
ı

�˛

:

For source boxB, this step requiresO.pd NB/ time and, therefore, over all the source boxes,

this step requiresO.pd n/ time.

2. Now, consider a target boxC . For eachti 2 C , we need to accumulate the total field from all

source boxes. Because of the exponential decay of the Gaussian field, however, it suffices to

include only the.2b C1/d nearest boxes, whereb depends on the required precision�. These

nearest.2b C 1/d boxes are defined as theinteraction regionfor box C , denoted byI.C /.

Therefore, in this step, each target boxC accumulates the Hermite expansions from all source

boxes within its interaction region:

Rˇ D .�1/jˇ j

ˇŠ

X

B2I.C /

X

˛�p

A˛.B/ h˛Cˇ

�

sB � tCp
ı

�

; (5.9)

A˛.B/ D 1

˛Š

X

sj 2B

qj

�

sj � sBp
ı

�˛

:

Because of the product form ofh˛Cˇ (see equation (5.7)), it turns out that computing thepd

coefficientsRˇ involves onlyO.dpdC1/ operations. For any target box, because we collect

expansions from the.2b C1/d boxes in its interaction region, this step requiresO.bd dpdC1/

time in total for each target box, andO.bd dpdC1Nbox/ time over all boxes, whereNbox is

the total number of boxes.
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3. Finally, for any targetti in box C , approximateg.ti / by

g.ti / D
X

B

X

sj 2B

e�jti �sj j2=ıqj

D
X

ˇ�p

Rˇ

�

ti � tCp
ı

�ˇ

C O.�/ : (5.10)

Over all targetsti , where1 � i � m, evaluating expression (5.10) requiresO.pd m/ time in

total.

The above algorithm, therefore, requiresO.bd dpdC1Nbox/ C O.pd n/ C O.pd m/ D

O.pd .bd dpNbox C n C m// time, whereNbox D .1=
p

ı/d is the total number of boxes.

5.3 Plane-wave version of FGT

As mentioned earlier, Greengard and Sun [28] replaced the Hermite expansions in the fast Gauss

transform with plane-wave expansions, which reduced the running time of box-to-box translations

(step 2 in the algorithm from Section 5.2) without changing the overall running time of the algo-

rithm. The authors also show how to decompose the computation as a product of matrices. In this

section, we elaborate on the plane-wave version of the fast Gauss transform, and we introduce the

matrix factorization representation of the fast Gauss transform. Our parallel implementation of the

fast Gauss transform, which we will describe in a later section, is based on the plane-wave version

of the FGT.

Greengard and Sun proved that ifNB sources lie in a boxB with centersB and side length
p

ı,

and if t is a target point in a boxC with centertC , then we can approximate the Gaussian in

equation (5.1) using plane-wave expansions as

g.t/ D
X

�p�ˇ�p

Dˇ ei�ˇ � .t�tC / C O.�/ ;

where

Dˇ D Rˇ ei�ˇ � .tC �sB/ ;
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Rˇ D
�

L

2p
p

�

�d

e��2jˇ j2ı=4
NB
X

j D1

qj ei�ˇ � .sB�sj / :

In the above equations,i D
p

�1 is the square root of negative unity,ˇ is a multi-index, the number

of expansion termsp and variableL depend on the required precision�, we define� D L=.p
p

ı/,

andˇ � .t � tC / in the first equation above represents the dot product of thed -element vectorš

and.t � tC /. Similar terms in the expressions forDˇ andRˇ above, and in the rest of this chapter,

also stand for dot products.

Similar to the Hermite version, Greengard and Sun assume that the unit boxŒ0; 1�d is subdivided

into smaller boxes with length
p

ı along each axis. They describe the algorithm for the plane-

wave version of FGT in three steps, replacing the Hermite expansions with suitable plane-wave

expansions:

1. For each source boxB, accumulate the influence of all sources in the box into a plane-wave

expansion:

Rˇ .B/ D
�

L

2p
p

�

�d

e��2jˇ j2ı=4
NB
X

j D1

qj ei�ˇ � .sB�sj / ; for � p � ˇ � p :

Over all the source boxes, this step takesO.pd n/ time.

2. As in the Hermite version, for each target boxC , collect the plane-wave expansions from the

nearest.2b C 1/d boxes inC ’s interaction region:

Dˇ .C / D
X

B2I.C /

Rˇ .B/ ei�ˇ � .tC �sB/ ; for � p � ˇ � p :

This step requiresO.bd pd / time for one box, andO.bd pd Nbox/ for all boxes.

3. Finally, for any targett in box C , approximateg.t/ using plane-wave expansions as

g.t/ D
X

�p�ˇ�p

Dˇ .C / ei�ˇ � .t�tC / : (5.11)

This step requiresO.pd m/ time over allm targets.
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Approximating a Gaussian using plane-wave expansions, therefore, takesO.pd n/CO.bd pd Nbox/C

O.pd m/ D O.pd .bd Nbox CnCm// operations. Note that the time required for box-to-box trans-

lations (step 2) is less than that for the Hermite version by afactor ofdp.

In the literature [44, 47], step 1 of the algorithm is nicknamed the S2W step because for each

source boxB, this step accumulates the effect of all sources in the box into a single plane-wave

expansion. Step 2 of the algorithm is called the W2L step because for each target boxC , this step

adds the plane-wave expansions from all source boxes lying in C ’s interaction region to form a

“local” expansion forC . Similarly, the last step of the algorithm is labeled the L2Tstep because it

uses the local expansion for each target box to generate the final answer for each target.

Greengard and Sun [28] also show how to represent the matrixG of Gaussian interactions (see

equation (5.2)) in a factored form. Suppose there areS source boxes,B1; B2; : : : ; BS , andT target

boxes,C1; C2; : : : ; CT . Also, let Nj sources lie in boxBj , Mi targets lie in boxCi , and let the

points be ordered such that

fs1; : : : ; sN1
g � B1 ;

fsN1C1; : : : ; sN1CN2
g � B2 ;

: : :

fsn�NS C1; : : : ; sng � BS ;

ft1; : : : ; tM1
g � C1 ;

ftM1C1; : : : ; tM1CM2
g � C2 ;

: : :

ftm�MT C1; : : : ; tmg � CT :

Then, the approximationG� of the matrixG of Gaussian interactions can be factorized as

G� D DEF ; (5.12)

whereF andD are block diagonal matrices withS � S andT � T blocks, respectively, andE is a

block matrix withT � S blocks and at most.2b C 1/d nonzero blocks per row. Figure 5.1 shows
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N1

(2p+1)d

N2

(2p+1)d

NS

(2p+1)d

Nj

…

…

0

0

(2p+1)dS

n

(2p+1)d

M1

(2p+1)d

M2

(2p+1)d

MT

(2p+1)d

Mi

…

…

0

0

(2p+1)dT

m

(a) (b)

Figure 5.1: The structures of block diagonal matricesF andD. (a) The.2p C1/d S � n matrixF hasS � S

blocks, where each diagonal block corresponds to a distinctsource box. Thej th diagonal block of matrixF
has dimensions.2p C 1/d � Nj for j D 1; 2; : : : ; S ; each column of thej th diagonal block corresponds to
the plane-wave expansion of a distinct source within boxBj . (b) Them � .2p C 1/d T matrixD hasT � T

blocks, where each diagonal block corresponds to a distincttarget box. Thei th diagonal block of matrixD
has dimensionsMi � .2p C 1/d for i D 1; 2; : : : ; T ; each row of thei th diagonal block corresponds to the
plane-wave expansion of a distinct target within boxCi .

the structures of matricesF andD.

Each diagonal block of matrixF corresponds to a distinct source box, and each column of

the j th diagonal blockF.j / with dimensions.2p C 1/d � Nj for j D 1; 2; : : : ; S of matrix F

corresponds to the plane-wave expansion of a distinct source lying within boxBj . Matrix F has

dimensions.2p C1/d S �n. The block diagonal matrixD with T �T blocks is similar to matrixF ,

except that each diagonal block inD corresponds to a distinct target box. In matrixD, the i th

diagonal block, wherei D 1; 2; : : : ; T , has dimensionsMi � .2p C 1/d , and each row of thei th

diagonal block corresponds to the plane-wave expansion of adistinct target lying within boxCi .

Matrix D has dimensionsm � .2p C 1/d T .

As mentioned earlier,E is a block matrix withT � S blocks and at most.2b C 1/d nonzero

blocks per row. BlockE.i; j / for 1 � i � T and1 � j � S of matrix E is nonzero when source

boxBj lies in the interaction region of target boxTi . Each nonzero blockE.i; j / is a diagonal ma-

trix with dimensions.2p C 1/d � .2p C 1/d , whose diagonal entries are given bye
i�ˇ �.tCi

�sBj
/,

where�p � ˇ � p.
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Figure 5.2: Vectors showing plane-wave coefficients for a single sources, assuming thatp D 3. (a) The
vector fors D .sx/ with d D 1. (b) The vector fors D .sx; sy/ with d D 2. This vector gets scaled byqs

for further calculations.

We can utilize the factorized notation ofG� from equation (5.12) to compute the fast Gauss

transform using matrix-vector products. The S2W step of thealgorithm corresponds to multiplying

the .2p C 1/d S � n matrix F with the transpose of the row vectorfq1; q2; : : : ; qng, resulting in

the .2p C 1/d S-vectorF 0. The W2L step of the algorithm corresponds to multiplying the .2p C

1/d T � .2p C 1/d S matrixE with vectorF 0, resulting in the.2p C 1/d T -vectorE 0. The final step

of the algorithm corresponds to multiplying them � .2p C 1/d T matrix D with vectorE 0 in order

to approximate the Gaussian (5.1) at allm target locations.

5.4 Performance improvements

In this section, we elaborate on some methods to improve the performance of computing the fast

Gauss transform described by Spivak, Veerapaneni, and Greengard [47]. Because our parallel im-

plementation is based on the plane-wave version of the fast Gauss transform, we will focus on

improving the steps of the algorithm presented in Section 5.3.

5.4.1 S2W step

Figures 5.2 (a) and (b) show the.2p C 1/d plane-wave coefficients for a single sources D .sx/

with d D 1, ands D .sx ; sy/ with d D 2, respectively, assuming thatp D 3. As we noted in
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Section 5.3, step 1 requiresO.pd n/ operations to complete because we have to evaluate.2p C 1/d

plane-wave terms for each source. As Figures 5.2 (a) and (b) illustrate, the terms that are equidistant

from the middle element (which always evaluates to 1) are complex conjugates of each other. We

can use this observation to easily save a factor of 2 in the computation. We can do better, however,

if we know something about the source points.

Regular grids

In each source boxB, if the source points belong to a regular grid (known as a tensor grid in

the literature), we can apply the technique of separation ofvariables to accelerate the S2W step.

Let d D 3 and suppose that the vertices of a� � � � � regular grid form the source points of a

box B, such thatNB D �3. Spivak, Veerapaneni, and Greengard [47] show how to form the plane-

wave expansions in each box inO.p�3 C p2�2 C p3�/ operations, so that if� > p, the total cost

of forming the expansions for boxB reduces toO.pNB/ operations. Assuming that the source

points in each box lie on a regular grid, and becausen D
P

B NB , the net cost of the S2W step

reduces toO.pn/ operations [47]. Ind dimensions, computing the S2W step for a single box

takesO.dpNB/ time, and over all boxes it takesO.dpn/ time.

Let the �3 source points in boxB, centered at.sBx
; sBy

; sBz
/, lie on the regular

grid f.sj1
; sj2

; sj3
/ W j1; j2; j3 D 1; : : : ; �g. For boxB, we would like to compute the.2p C 1/3

plane-wave terms, which we denote byfwˇ1ˇ2ˇ3
W ˇ1; ˇ2; ˇ3 D �p; : : : ; pg, using the source

chargesfqj1j2j3
W j1; j2; j3 D 1; : : : ; �g. As Figure 5.3 shows, we can achieve the reduced

running time in three stages, where we unroll one dimension of the expansion formation in each

stage.

Note that in each of the three stages in the pseudocode of Figure 5.3, the dot product in the

exponentiation involves two scalar quantities. For example, ˇ1 is the first component of the multi-

indexˇ and.sBx
� sj1

/ is the difference between thex-components of a source’s box center and

itself. Bothˇ1 and.sBx
� sj1

/ are scalar values. Similarly,̌2; ˇ3; .sBy
� sj2

/, and.sBz
� sj3

/ are

scalars. Clearly, stages 1, 2, and 3 in the pseudocode of Figure 5.3 require timeO.p�3/, O.p2�2/,

andO.p3�/, respectively. Computing the plane-wave expansions for all source boxes, therefore,

requiresO.pn/ operations, assuming that� > p andd D 3. In general, the S2W step takesO.dpn/

time if � > p.
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S2W-STAGE1

for ˇ1 D �p to p

for j2; j3 D 1 to �

wˇ1
.j2; j3/ D

P�
j1D1 qj1j2j3

ei�ˇ1 � .sBx �sj1
/

S2W-STAGE2

for ˇ1; ˇ2 D �p to p

for j3 D 1 to �

wˇ1ˇ2
.j3/ D

P�
j2D1 wˇ1

.j2; j3/ei�ˇ2 � .sBy �sj2
/

S2W-STAGE3

for ˇ1; ˇ2; ˇ3 D �p to p

wˇ1ˇ2ˇ3
D

�

L
2p

p
�

�3
P�

j3D1 wˇ1ˇ2
.j3/ei�ˇ3 � .sBz �sj3

/

Figure 5.3: Pseudocode from [47] for the S2W step for a box, assuming thatpoints in the box lie on a regular
grid.

As an aside, for each source boxB, the pseudocode in Figure 5.3 computes the product of the

corresponding diagonal block in matrixF with the charge values of the sources in this box. That is,

executing the pseudocode in Figure 5.3 for a source boxB gives us a set of.2p C 1/d continuous

values in vectorF 0 that correspond to the pane-wave expansion for boxB.

5.4.2 Sweeping algorithm for W2L step

Recall from Section 5.3 that in the W2L step, for each target box, we accumulate the plane-wave

expansions from all source boxes that lie in the interactionregion of the target box. In the naive

method, we simply sum the plane-wave expansions of all the source boxes in a target box’s inter-

action region, which requiresO.bd pd Nbox/ operations, whereNbox is the total number of boxes.

Greengard and Sun [28], however, came up with a sweeping algorithm for speeding up this step,

which we now describe. For convenience, we will assume that the source and target boxes coincide

so that we can denote all boxes byBj for j D 0; : : : ; Nbox � 1, and their respective centers bysBj
.

Figure 5.4 depicts the idea behind the sweeping algorithm when boxes lie in one dimension.

For the leftmost box,B0, we sum the plane-wave expansions of the.b C 1/ boxes—boxB0 and

theb boxes to the right ofB0—using the direct method, which takesO.bp/ time. Let us denote the
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B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

(a)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

(b)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

(c)

+ + + + + +–

Figure 5.4: Sweeping algorithm for box-to-box translations when boxeslie in one dimension, forb D 3. (a)
For boxB0, we calculate the local expansion directly by adding the plane-wave expansions of boxesB0–B3,
indicated by plus signs in these boxes. (b) To calculate the local expansion of boxB1, we can reuse the local
expansion of boxB0, which we indicate by shading boxB0, and add the plane-wave expansion of boxB4. (c)
When we reuse the local expansion of boxB3 to calculate the local expansion for boxB4, we must subtract
the plane-wave expansion of boxB0 (which participates in the local expansion of boxB3), shown using a
minus sign in boxB0, and add the plane-wave expansion of boxB7. For all boxesB1–B9 shown in the figure,
we must appropriately adjust for box centers.

local expansion of boxB0 by l0 and an individual term in the local expansion1 of box B0 by l0;ˇ

for �p � ˇ � p. Then, if we assume thatb D 3, we can write

l0;ˇ D wB0;ˇ ei�ˇ � .sB0
�sB0

/ C wB1;ˇ ei�ˇ � .sB0
�sB1

/ C wB2;ˇ ei�ˇ � .sB0
�sB2

/ C

wB3;ˇ ei�ˇ � .sB0
�sB3

/ ;

wherewBj
denotes the plane-wave expansion of boxBj computed in the S2W step. We ignore all

boxes that lie outside the FGT grid, which is why there are no boxes to the left of boxB0 that can

be included.

To calculate the local expansion for boxB1, we can reusel0 (after adjusting for box centers)

and just add in the contribution from boxB4, as shown in Figure 5.4(b). Thus, we have

l1;ˇ D l0;ˇ ei�ˇ �.sB1
�sB0

/ C wB4;ˇ ei�ˇ � .sB1
�sB4

/ ; (5.13)

for �p � ˇ � p.

The above observation forms the basis for the sweeping algorithm. In general, boxBj �1’s

interaction list consists of boxesfBj �b�1; : : : ; Bj �1; : : : ; Bj Cb�1g and that of boxBj con-

sists of boxesfBj �b; : : : ; Bj ; : : : ; Bj Cbg (again, we ignore all box numbers that lie outside the

rangeŒ1; Nbox �). Therefore, we can use the standard stenciling technique to compute the local ex-

pansion for boxBj from that of boxBj �1: reuse the local expansion of boxBj �1, but subtract

the contribution from boxBj �b�1 (the leftmost member of boxBj �1’s interaction list), and add

1In one dimension, each box has.2p C 1/ terms in its local expansion.
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the contribution from boxBj Cb (the rightmost member of boxBj ’s interaction list). Of course, we

must adjust appropriately for box centers, as we showed in our calculation for boxB1 above. As-

suming that the vectors required for adjusting the box centers are precomputed, the cost of forming

the local expansion of a box is reduced from.2b C 1/p operations to3p operations, for a total cost

of O.pNbox/ over all boxes, when the boxes lie in one dimension. For a complete example, we

show the calculation for boxB4 below and illustrate it pictorially in Figure 5.4(c); as before, if we

assume thatb D 3, then for�p � ˇ � p, we have

l4;ˇ D l3;ˇ ei�ˇ �.sB4
�sB3

/ � wB0;ˇ ei�ˇ � .sB4
�sB0

/ C wB7;ˇ ei�ˇ � .sB4
�sB7

/ :

We can extend the sweeping algorithm to multiple dimensionsby performing a sequence ofd

one-dimensional sweeps [47]. As mentioned earlier, we assume that the unit boxŒ0; 1�d is sub-

divided into smaller boxes and that each box has side length
p

ı in each dimension. Therefore,

we have1=
p

ı boxes along each dimension, for a total of.1=
p

ı/d boxes. Let
 D 1=
p

ı de-

note the number of boxes in each dimension. Then, we can number the 
d FGT boxes asBj D

B.j1;j2;:::;jd /, where0 � jk � 
 � 1, for k D 1; : : : ; d . Box Bj ’s interaction region consists of

at most.2b C 1/d boxesB.r1;r2;:::;rd /, such thatjk � b � rk � jk C b and0 � rk � 
 � 1,

for k D 1; 2; : : : ; d . In the sweep along the first dimension, each box collects theexpansions

from .2b C 1/ boxes in its interaction region. After the sweep along the second dimension, each

box has gathered the necessary expansions from.2b C 1/2 boxes in its interaction region, so that

after thed th sweep, each box has the required expansions from all the.2bC1/d boxes in its interac-

tion region. The sweep along each dimension requires3pd Nbox operations, whereNbox D 
d and,

therefore, the W2L step requiresO.dpd Nbox/ time in total, using the sweeping algorithm. This

running time is considerably less than the running time ofO.bd pd Nbox/ using the naive method.

Note that vectors of the formei�ˇ �.sBi
�sBj

/ that get multiplied withwBj
correspond to the

diagonal entries of nonzero blockE.i; j / of matrix E. In the sweeping algorithm, we avoid com-

puting all.2b C 1/d nonzero blocks in a row of matrixE, however.
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5.4.3 L2T step

Similar to the S2W step, we can speed up the L2T step if we know that the targets lie on a regular

grid. Again, if we assume thatd D 3 and that the targets in each box lie on the vertices of a� �

� � � regular grid, then we can reduce the running time for the L2T step fromO.p3m/ to O.pm/,

assuming that� > p.

As before, we suppose that in target boxC , with center.tCx
; tCy

; tCz
/, the �3 target points

lie on the regular gridf.tj1
; tj2

; tj3
/ W j1; j2; j3 D 1; : : : ; �g. In box C , for each targett , we

would like to compute the sum of the elementwise product of the .2p C1/3 terms of the plane-wave

expansion of this target with the local expansion for this box (see equation (5.11)). We computeg.t/

for all targets in boxC in three stages, as we did in the S2W step. Below, we provide pseudocode

for all the three stages, in which we denote the.2p C 1/3 terms of the local expansion of boxC

by lC;ˇ1ˇ2ˇ3
, where each componentˇ1; ˇ2, andˇ3 of multi-indexˇ ranges between�p andp.

L2T-STAGE1

for j1 D 1 to �

for ˇ2; ˇ3 D �p to p

gj1
.ˇ2; ˇ3/ D

Pp

ˇ1D�p
lC;ˇ1ˇ2ˇ3

ei�ˇ1 � .tj1
�tCx /

L2T-STAGE2

for j1; j2 D 1 to �

for ˇ3 D �p to p

gj1j2
.ˇ3/ D

Pp

ˇ2D�p
gj1

.ˇ2; ˇ3/ei�ˇ2 � .tj2
�tCy /

L2T-STAGE3

for j1; j2; j3 D 1 to �

gj1j2j3
D

Pp

ˇ3D�p
gj1j2

.ˇ3/ei�ˇ3 � .tj3
�tCz /

For any target boxC , stages 1, 2, and 3 take timeO.p3�/, O.p2�2/, andO.p�3/, respectively,

to execute.2 Because we assumed that� > p, we can say that the total running time for computing

the fast Gauss transform for all targets in a single box isO.p�3/ and, therefore, the total running

time for all target boxes isO.pm/ whend D 3. In general, the total running time for the L2T step

when the target points in each box are assumed to lie on a regular grid isO.dpm/ if � > p.

2Similar to the S2W step, the dot products involve scalar quantities.
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Referring back to our matrix-vector-product notation, forany target boxC , the pseudocode

above computes the product of the diagonal block corresponding to boxC in matrix D with the

local expansion for boxC stored in vectorE 0. Executing all three stages of the L2T step for a target

box C thus approximates the Gaussian (5.1) for all targets in boxC .

5.5 Implementation details

In this section, we discuss some basic details of our fast Gauss transform implementation. We begin

by stating a few assumptions that we make in our implementation before continuing with some

specifics of the implementation.

In the rest of this chapter, we assume thatd D 3, the source and target points coincide, and that

all points lie within the unit cubeŒ0; 1�3. Along each axis, we divide the domain into
 D 1=
p

ı

equal parts, so that the side length of each box along each dimension is
p

ı and the total number of

boxes is
3. Furthermore, we assume that within each box, the sources and targets lie on a regular

grid. We will assume that the grid of points in any box has� points along each dimension for a total

of �3 points, and we will denote the fixed distance between any two vertices on the grid along any

dimension by� D
p

ı=�.

Given the regularity of the boxes and the points within them,we do not store the source and

target points but calculate them at run time, though we do store the random charge values for each

source point. In our code, we use BLAS routines [7] wherever applicable. Although BLAS routines

support operations on complex numbers and we generate complex values in all the FGT steps,3 we

use thedouble counterparts of these routines because in our code we store the real and imaginary

parts of a complex vector separately. In all the FGT steps, weuse the well-known formula

eix D cosx C i sinx

in our calculations.
3Note, however, that in the last step, L2T, although we use theimaginary parts of vectors for intermediate calculations,

we retain only the real part of the calculations as the final answer for each target.
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5.5.1 S2W and L2T steps

In addition to the methods presented for improving the running time of the FGT steps in Section 5.4,

we can save some additional computations in the implementation. Note that computing cosx

and sinx is usually costly, and given that we have to compute many sineand cosine values, we

would like to reuse values whenever possible. Again, our assumption that the sources and targets lie

on a regular grid proves helpful in achieving this goal in theS2W and L2T steps. Let us see how, by

taking the pseudocode for stage 1 of the S2W step for some boxB as an example. For convenience,

we replicate the pseudocode below.

S2W-STAGE1

for ˇ1 D �p to p

for j2; j3 D 1 to �

wˇ1
.j2; j3/ D

P�
j1D1 qj1j2j3

ei�ˇ1 � .sBx �sj1
/

In the above pseudocode, we exhaust all calculations based on a single value of̌ 1 before

moving further. The summation in the innermost loop, however, seems to require� calculations

of cos�j1
and sin�j1

, where�j1
D �ˇ1.sBx

�sj1
/ for j1 D 1; : : : ; �. As we noted in Section 5.4.1,

becausě 1 and.sBx
� sj1

/ are scalars,ei�ˇ1 � .sBx �sj1
/ D ei�ˇ1.sBx �sj1

/. By our assumption,

however,sj1C1 D sj1
C � for j1 D 1; : : : ; � � 1. The first points1 can be easily calculated for any

box, as we now describe. We number the
3 boxes from 0 to
3 � 1. If we imagine the
3 boxes

to be arranged in
 layers, with
2 boxes in each layer, then we can represent each box by itsx-,

y-, andz-coordinates, from (0, 0, 0) to.
 � 1; 
 � 1; 
 � 1/. For any boxB D .Bx; By ; Bz/, we

calculateBx D B mod
 ; then, if we assume thatj1 spans thex-dimension, we gets1 D Bx

p
ı.

Clearly, thex-coordinate of boxB ’s center issBx
D s1 C

p
ı=2. With these observations, we can

implement stage 1 above for any boxB with just eight sine and cosine computations, as depicted

below.
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S2W-STAGE1

1 Bx D B mod


2 s1 D Bx �
p

ı

3 sBx
D s1 C

p
ı=2

// storeei.�p�.sBx �s1// in two variables, where.sBx
� s1/ D

p
ı=2

4 src real D cos.� � �p � .sBx
� s1//

5 src imag D sin.� � �p � .sBx
� s1//

// storeei�.sBx �s1/ in two variables
6 inc src real D cos.� � .sBx

� s1//

7 inc src imag D sin.� � .sBx
� s1//

// computeei.�p�.��// andei�.��/

8 stepreal D cos.� � �p � ��/

9 stepimag D sin.� � �p � ��/

10 inc stepreal D cos.� � ��/

11 inc stepimag D sin.� � ��/

12 for ˇ1 D �p to p

13 for j2; j3 D 1 to �

14 tempreal D src real // start withei�ˇ1.sBx �s1/

15 tempimagD src imag
16 sumreal D 0:0

17 sumimagD 0:0

// expand the summation
18 for j1 D 1 to �

19 sumreal C= qj1j2j3
tempreal

20 sumimagC= qj1j2j3
tempimag

// update for the next source pointsj1C1 D sj1
C �

// ei�ˇ1.sBx �sj1C1/ D ei�ˇ1.sBx �sj1
/ei�ˇ1.��/

21 tempD tempreal � stepreal � tempimag� stepimag
22 tempimagD tempreal � stepimagC tempimag� stepreal
23 tempreal = temp

// store the result
24 wˇ1

.j2; j3/ D .sumreal; sumimag/ // representing a complex number as a tuple
// update for the next value of̌1

25 tempD src real � inc src real � src imag� inc src imag
26 src imagD src real � inc src real C src imag� inc src imag
27 src real = temp

28 tempD stepreal � inc stepreal � stepimag� inc stepimag
29 stepimagD stepreal � inc stepreal C stepimag� inc stepimag
30 stepreal = temp

In the above pseudocode, we determine thex-coordinate of the box, thex-coordinate of its

first source point, and thex-coordinate of its center in lines 1–3. In lines 4–11, we use eight
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variables to store the values ofei.�p�.sBx �s1//, ei�.sBx �s1/, ei.�p�.��//, and ei�.��/. Each

iteration of thefor loop of line 18 gathers a portion of the result and computes the next value

of ei�ˇ1.sBx �sj1
/ for a givenˇ1. After the for loop of line 18 finishes, the code stores the com-

puted result intowˇ1
.j2; j3/ in line 24, and before starting the next iteration of thefor loop of

line 12, the code calculatesei�.ˇ1C1/.sBx �s1/ andei�.ˇ1C1/.��/. Note that we use�� in the ex-

ponentiation because in the S2W step, we translate source points with respect to the center of their

box. Therefore, for anyj1 D 1; : : : ; � � 1, we haveei�ˇ1.sBx �sj1C1/ D ei�ˇ1.sBx �.sj1
C�// D

ei�ˇ1.sBx �sj1
/ei�ˇ1.��/. As highlighted earlier, the code computes only a few sines and cosines

to complete stage 1. We can apply similar techniques to compute stages 2 and 3 of the S2W step,

for which we do not show pseudocode. Note, however, that for abox B D .Bx; By ; Bz/, we

calculateBy D bB=
c mod
 andBz D bB=
2c.

The pseudocode above works well for a regular grid. If, however, the grid within each box

is adaptive—i.e., if the step value, denoted by�, is not constant between each successive source

point along any dimension—then we would require a few more sine and cosine computations. Let

us suppose that the step values between successive source points along any dimension are given

by �j1
D sj1C1 � sj1

for j1 D 1; : : : ; �, and let�� D 0. Now, if we use four vectors of size� each

to store the real and imaginary parts ofei.�p�.��j1
// andei�.��j1

/, we can proceed similar to the

pseudocode above for constant�, but we must use appropriate vector values to update variables

in lines 21–23 and lines 28–30. Therefore, we now have to compute 4� sine and cosine values in

stage 1 instead of four earlier (see lines 8–11) to accommodate the irregular step sizes.

We can employ similar methods to compute the L2T step, thoughthere are slight differences,

which we now highlight. Below, we replicate the pseudocode for stage 1 of the L2T step.

L2T-STAGE1

for j1 D 1 to �

for ˇ2; ˇ3 D �p to p

gj1
.ˇ2; ˇ3/ D

Pp

ˇ1D�p
lC;ˇ1ˇ2ˇ3

ei�ˇ1 � .tj1
�tCx /

In the pseudocode above, we exhaust all calculations based on a single target coordinate along

thex-dimension before updating the target coordinate along thesame dimension. Similar to stage 1

of the S2W step, calculating eight sine and cosine values will be enough. The pseudocode below,

though less elaborate than what we presented for the S2W step, clearly establishes our point.
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L2T-STAGE1

1 Cx D C mod


2 t1 D Cx �
p

ı

3 tCx
D t1 C

p
ı=2 // box center

4 store the real and imaginary parts ofei.�p�.t1�tCx // in two variables
5 store the real and imaginary parts ofei�.t1�tCx / in two variables
6 store the real and imaginary parts ofei.�p��/ in two variables
7 store the real and imaginary parts ofei�� in two variables

8 for j1 D 1 to �

9 for ˇ2; ˇ3 D �p to p

10 tempD ei.�p�.tj1
�tCx // // complextemp

11 sumD .0; 0/ // complexsum
// expand the summation

12 for ˇ1 D �p to p

13 sumC= lC;ˇ1ˇ2ˇ3
� temp // complex multiplication and addition

// update for nexť 1

14 tempD temp� ei�.tj1
�tCx /// complex multiplication

// store the result
15 gj1

.ˇ2; ˇ3/ D sum
// update for the next target

16 nextD j1 C 1

17 ei.�p�.tnext� tCx // D ei.�p�.tj1
�tCx // � ei.�p��/

18 ei�.tnext� tCx / D ei�.tj1
�tCx / � ei��

Above, we useC� in the exponentiation because in the L2T step, we translate the box center

with respect to the target points, so.tj1C1 � tCx
/ D .tj1

C � � tCx
/. As we can see, we were able

to implement stage 1 using just eight sine and cosine computations instead of4� computations. If,

however, the grid of points within a box is not uniform, so that �j1
D tj1C1 � tj1

for j1 D 1; : : : ; �,

we might be tempted to think that we will not benefit much by computing four vectors with� values

each in lines 6–7 above and using these vectors in lines 17–18.4 We would be wrong, however,

because we can reuse these values in stages 2 and 3.

5.5.2 W2L step

In the W2L step, we require many vectors, each of size.2p C1/3, to storeei.�ˇ �.sB�sB0 // for �p �

ˇ � p. Because we sweep one dimension at a time, exactly one of the components of.sB � sB0/

is nonzero. Furthermore, because all boxes have side lengths
p

ı, the nonzero component is a mul-

4Note that even if we were not to pre-calculateei.�p��j1
/ andei��j1 for j1 D 1; : : : ; �, we would still have to

compute only4� sine and cosine values in lines 17–18.
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tiple of
p

ı. For example, let’s look at Figure 5.5, which shows 512 boxesarranged in an8 � 8 � 8

grid and numbered from 0–511. As we can see from the figure, boxB0’s immediate neighbor in

thex-, y-, andz-directions are boxesB1, B8, andB64, respectively (boxB64 is hidden from view

in the figure). BoxB0 has center.
p

ı=2;
p

ı=2;
p

ı=2/, boxB1 has center.3
p

ı=2;
p

ı=2;
p

ı=2/,

box B8 has center.
p

ı=2; 3
p

ı=2;
p

ı=2/, and boxB64 has center.
p

ı=2;
p

ı=2; 3
p

ı=2/. There-

fore, .sB0
� sB1

/ D .�
p

ı; 0; 0/, .sB0
� sB8

/ D .0; �
p

ı; 0/, and .sB0
� sB64

/ D .0; 0; �
p

ı/.

In fact, for all boxesB D .Bx ; By ; Bz/ such thatBx D 0, the difference betweenB ’s cen-

ter and that of any of itsb neighbors to the right is.sB � sB0/ D ..Bx � Bx0/
p

ı; 0; 0/,

whereB 0 D .Bx0 ; By ; Bz/ andBx0 D Bx C 1; : : : ; Bx C b. That is, thex-component of.sB � sB0/

ranges from (�
p

ı) to (�b
p

ı) for the specific boxes under consideration. Using this observa-

tion, we calculate vectorV D ei�ˇ �.sB�sB0/ for �p � ˇ � p, with .2p C 1/3 elements, such

that .sB � sB0/ D .�
p

ı; 0; 0/. Note that for all
2 boxes withBx D 0, vectorV provides the

required adjustment of each box center with its immediate right neighbor during thex-sweep. Let

us define vectorV 2 with .2p C 1/3 elements to be the elementwise product of vectorV with itself;

define vectorsV 3; : : : ; V b, similarly. For all boxes withBx D 0, vectorsV 2; V 3; : : : ; V b provide

the necessary adjustments of box centers with their remaining .b � 1/ neighbors to the right. Recall

that in the sweeping algorithm, during the sweep along thex-dimension, the vectorsV; V 2; : : : ; V b

will be multiplied with the respective plane-wave expansions of the boxes that we calculated in the

S2W step, as shown in the pseudocode below.
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Figure 5.5: An 8 � 8 � 8 grid of boxes numbered from 0 through 511. The numbers shown inside the first
layer of boxes represent their respective box numbers. To reduce clutter, we don’t label the boxes asB0; B1,
etc., but simply show the box numbers.

MULTIDIMENSIONAL -SWEEP

// sweep along the first dimension

CalculateV D ei�ˇ � .�
p

ı;0;0/ for �p � ˇ � p

CalculateV 2; : : : ; V b

CalculateV bC1; VcompensateD V , andVsub D V bC1

// process each horizontal row
for j2; j3 D 0 to 
 � 1

// Associate box numberj with .0; j2; j3/

lj D wBj

// accumulate the plane-wave expansions from allb boxes to the right of
// box numberj D .0; j2; j3/

for j1 D 1 to b

// associate box numberj 0 with .j1; j2; j3/

lj C= wBj 0 � V j1

// compute the local expansion of box.j1 C 1; j2; j3/

for j1 D 0 to 
 � 2

// associate box numberj 0 with .j1 C 1; j2; j3/ and
// box numberj with .j1; j2; j3/

lj 0 D lj � Vcompensate

// subtract influence from boxu D .j1 � b; j2; j3/, if .j1 � b/ � 0

lj 0 �D wBu
� Vsub

// add influence from boxv D .j1 C 1 C b; j2; j3/, if .j1 C 1 C b/ � 
 � 1

lj 0 C= wBv
� V b

Repeat analogous loops along they- andz-dimensions; recalculate vectorsV; V 2; : : : ; V b, and
use the appropriatel-vectors calculated in the previous sweep, instead of thew-vectors.
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From the pseudocode, we note that during the sweep along thex-dimension, for all boxes such

that 0 < Bx � 
 � 1, we simply need two additional vectors, namelyVcompensateD V , whereV

denotes the complex conjugate of vectorV , andVsub D .V bC1/. Let’s see why we need these

complex conjugate vectors using boxesB0 D .0; 0; 0/; B1 D .1; 0; 0/, andB4 D .4; 0; 0/ from

Figure 5.5 as examples, and assuming thatb D 3. Recall from Section 5.4.2 that we calculatel0

directly, after which we can usel0 to calculatel1 (see equation (5.13)), but we must adjust for box

centers. To calculatel0, we translated the centers of all boxes in boxB0’s interaction region with

respect to the center of boxB0, denoted bysB0
, whereas to calculatel1, we must translate the

box centers with respect to boxB1’s center, denoted bysB1
. Because.sB1

� sB0
/ D .

p
ı; 0; 0/,

the vectorVcompensateD V gives us the correct adjustment. In the case of boxB1, there is no

box to subtract, and the center of boxB4, which should be added, is�3
p

ı away and so we can

useV 3 D V b. In the case of boxB4 where we have to subtract boxB0’s contribution, we observe

that.sB4
� sB0

/ D .4
p

ı; 0; 0/, and so we calculateVsub D V 4 D V bC1.

Hence, during thex-sweep, for any boxB D .Bx ; By ; Bz/ such that0 < Bx � 
 � 1, if we

labelBc D .Bx � 1; By ; Bz/, Bu D .Bx � b � 1; By ; Bz/, andBv D .Bx C b; By ; Bz/, ignoring

anyBu andBv whosex-component lies outsideŒ0; 
 � 1�, we can calculate

lB D lBc
Vcompensate� lBu

VsubC lBv
V b :

During thex-sweep, we require just 10 sine and cosine values to calculate vectorV (we do not

provide details here except noting that we can exploit the pattern that the elements of vectorV

follow, as Figure 5.2(b) shows ford D 2). All the other vectors—V 2; : : : ; V bC1; Vcompensate,

andVsub—require only multiplications and additions. We can use similar observations and tech-

niques for the sweeps along they- and z-dimensions. While sweeping along they-dimension,

we calculateV D ei� ˇ �.0;�
p

ı;0/ for �p � ˇ � p, and along thez-dimension, we calcu-

lateV D ei� ˇ �.0;0;�
p

ı/ for �p � ˇ � p.

In this section, we saw how we can save many computations in all the three steps of the fast

Gauss transform. The techniques highlighted in this section are used in our parallel implementation

of the fast Gauss transform, discussed next.
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5.6 Parallel implementation of fast Gauss transform

In this section, we discuss how we implemented the fast Gausstransform in parallel. We continue

with our assumption thatd D 3. We have implemented a shared-memory version and a distributed-

memory version of the algorithm, both of which will be discussed in this section.

5.6.1 Shared-memory implementation

We have implemented the fast Gauss transform in shared memory in C++ and using OpenMP. In the

shared-memory model, parallelizing the steps of the fast Gauss transform is fairly straightforward

because in the S2W and L2T steps, we can work on different boxes in parallel. We implement the

W2L step serially. We use OpenMP’sparallel for loop to parallelize the S2W and L2T steps,

and we use theomp set num threads() function to specify the number of threads that the

parallel for region should use. All assumptions that we made about the input points and the

performance accelerations that we discussed in the previous two sections hold. Of course, because

we are working with shared memory, we must be careful to provide non-overlapping pieces of

memory to the regions that execute in parallel. Overall, we have a clean, parallel implementation of

the fast Gauss transform in shared memory, as shown below. Inthe pseudocode below, allparallel

for loops stand for OpenMPparallel for regions.

SHMEM-PARALLEL -FGT

1 parallel for box id D 0 to 
3 � 1

2 execute all three stages of S2W for this box
3 call MULTIDIMENSIONAL -SWEEP to compute the local expansion for all boxes
4 parallel for box id D 0 to 
3 � 1

5 execute all three stages of L2T for this box

5.6.2 Distributed-memory implementation

We have implemented the fast Gauss transform in a distributed-memory setting using FG, MPI,

and OpenMP. Although we distribute data across the nodes of acluster, the computation on each

node takes place entirely in memory. That is, in this application, data does not reside on disk,

which makes this application different from the other FG programs that we have seen till now. A

distributed-memory implementation of FGT requires interprocessor communication for which we

use MPI, and FG helps overlap computation with interprocessor communication. Within each node,
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Figure 5.6: Distributing boxes across 8 nodes of a cluster, assuming that the unit cubeŒ0; 1�3 contains512

boxes arranged as an8 � 8 � 8 grid. Each node becomes responsible for a4 � 4 � 4 subgrid of boxes. As the
thicker lines demarcate, we can imagine the nodes themselves to be arranged as a2 � 2 � 2 grid, where each
node owns 64 boxes. NodeP4 and its boxes are completely hidden from view.

some work can be done in parallel for which OpenMP proves useful. As we shall soon see, in this

application, we also use FG as a signaling mechanism for events.

As with any distributed-memory application, we must first determine how to distribute the data

so as to load-balance the work across all the available nodes. As we have seen, the S2W and L2T

steps carry out box-wise computations, and so we would not like to split the data of a box across

nodes. Therefore, as Figure 5.6 shows, we partition the unitcubeŒ0; 1�3 with 
3 boxes arranged

as a
 � 
 � 
 grid across the available nodes such that each node is responsible for a subgrid

of boxes. As mentioned earlier, all computation on a node takes place entirely in memory. With

this setup, nodes obviously don’t require to communicate with each other during the S2W and L2T

steps because these steps work on data contained within a box. For each box, however, the W2L

step accumulates data from at most.2b C 1/3 neighboring boxes, some of which might belong to a

different node, thus requiring interprocessor communication during this step.

A basic implementation of the fast Gauss transform with the setup that we just described could

proceed as follows: during the S2W step, each node computes the plane-wave expansions of all

boxes that it owns. Indeed, if a node has multiple cores, it could execute the S2W step on multiple

boxes in parallel, as we described in the shared-memory implementation. For the W2L step, each

node uses interprocessor communication to obtain the plane-wave expansions of all boxes that lie
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Figure 5.7: FG pipelines that each node executes to calculate the plane-wave expansions of all local boxes
for the S2W step, and to sweep along thex-dimension for the W2L step.

in the interaction region of some box that this node owns. After the data exchange, each node

can use the sweeping algorithm to compute the local expansions of all its boxes to complete the

W2L step. The last step, L2T, is again completely local to a node and, therefore, each node can

work on its set of boxes (in parallel, if the node is so equipped), to complete the algorithm. In the

prospective design that we just described, only node-localcomputations are executed in parallel.

We can, however, overlap computation and interprocessor communication for better performance,

as we describe next.

5.6.3 S2W step and partial W2L step

In our implementation, each node executes the FG pipelines shown in Figure 5.7 to compute the

plane-wave expansions of all local boxes, hence completingthe S2W step, and to finish sweeping

along thex-dimension, as part of the W2L step. Unlike the FG pipelines that we have seen so

far, buffers along all pipelines of Figure 5.7 don’t necessarily carry useful data; some buffers are

dummy and are used only to signal the next stage to begin its computation. For example, the buffers

that flow along pipelinesp0 andp1 are dummy. The buffers along pipelinep2 carry useful data,

however: these buffers contain data that a node receives from other nodes. Before we elaborate on

how these pipelines work, we introduce a few assumptions.

In our implementation, we assume that the number of nodesP is a perfect cube, so thatP D �3

for some� that divides
 . Since
 denotes the number of boxes in each dimension, each node works

on .
=�/3 boxes. Let us denote
local D .
=�/ to be the number of boxes in each dimension on any

node. We also assume that
local � b so that any node will have to communicate with at most two
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other nodes for the W2L step.

On each node, the S2W stage, which is the intersecting stage along pipelinesp0 andp1, gener-

ates the plane-wave expansions for all boxes local to a node.As Figure 5.6 shows, we can perceive

all boxes local to a node to be arranged as a
local � 
local � 
local grid. In each round, the S2W stage

generates the plane-wave expansions of all boxes in a singlerow of the grid, for a total of
2
local

rounds. This stage processes the grid layer by layer, starting with the bottommost row and continu-

ing toward the top in each layer. The buffers that this stage accepts along pipelinesp0 andp1 are

dummy buffers. The buffer along pipelinep1 merely acts as a signal for this stage to start com-

puting the next row of boxes. Along pipelinep0, the S2W stage accepts a buffer and immediately

conveys it just before returning from its stage function. One might wonder, then, what role the S2W

stage plays along pipelinep0. As Figure 5.7 shows, the S2W stage feeds into thex-sweep stage,

and we shall soon see that in each round, thex-sweep stage can proceed only after the S2W stage

has finished its computation. The buffer that the S2W stage conveys along pipelinep0 acts as a

go-ahead signal for thex-sweep stage. In the stage function for the S2W stage, we use OpenMP’s

parallel for loop to compute the plane-wave expansions of multiple boxesin parallel in an

effort to completely utilize the multiple cores (if any) of amachine. Given that the S2W stage ac-

cepts and conveys only dummy buffers, where does it read its input from and write its output to?

Recall that all input5 and the results of all computations on a node are stored in memory. Therefore,

in each round, the S2W stage knows exactly which preallocated area of memory to read its input

from and write its output to.

Using an example, we first describe a prospective method to compute thex-sweep of all boxes.

In the next paragraph, we detail our actual implementation.Let us assume, as in Figure 5.8,

that P D 64 so that� D 4, ı D 1=256 so that
 D 16 and 
local D 4, andb D 3. In this

global 16 � 16 � 16 grid of boxes, let us focus on the bottommost row in the first layer, whose

boxes have numbers 0–15. If we were working on a single machine, we would process this row

during thex-sweep by directly calculating the result for box 0 and usingthe result of the previous

box (adding and subtracting boxes as necessary) for boxes 1 through 15. In the distributed-memory

setting, however, boxes 0–3 belong to nodeP0, boxes 4–7 belong to nodeP1, boxes 8–11 belong

5As mentioned earlier, we compute the source and target points at run time, so we store only the charge value corre-
sponding to each source as input.
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Figure 5.8: 64 nodes assumed to be arranged as a4 � 4 � 4 grid, with 64 boxes in each node. This figure
shows the bottommost row of boxes in the first 16 nodes. For clarity, we have not numbered the boxes in each
node. NodeP0 contains boxes 0–3, nodeP1 contains boxes 4–7, nodeP4 contains boxes 64–67, etc.

to nodeP2, and boxes 12–15 belong to nodeP3, as Figure 5.8 shows. Therefore, nodeP0 would

have to receive the S2W results of boxes 4–6 from nodeP1 in order to complete itsx-sweep of the

first row. NodeP1, in turn, would have to wait to receive thex-sweep results of box 3 and the S2W

results of boxes 0–3 from nodeP0, and the S2W results of boxes 8–10 from nodeP2, to complete

its sweep of boxes 4–7. Similarly, for each row, nodesP2 andP3 would have to wait for nodesP1

andP2, respectively, to finish their sweeps. On the whole, we wouldend up serializing the process

to some extent instead of using all the available resources.

In our implementation, therefore, on each node, in each round, thex-sweep stageindependently

sweeps each row of boxes. By independently, we mean that for each row, each node initiates a

sweep starting from the first box that it owns in that row. In each round, this stage processes a row

of boxes, following the same order of rows as its predecessoralong pipelinep0. Going back to

our example in the previous paragraph, nodeP0 works as before. NodeP1, however, receives the

S2W results of boxes 1–3 (the lastb boxes of nodeP0; recall, we assumed thatb D 3) and the

S2W results of boxes 8–10 (the firstb boxes of nodeP2). Using data received from its neighboring

nodes and the S2W results that it computes locally, nodeP1 is ready to compute the sweep of

box 4 directly, after which it can follow the usual scheme to sweep boxes 5–7. That is, nodeP1

initiates a sweep starting at box 4, which is the first box thatit owns in the row under consideration.

NodeP2, similarly, receives the S2W results of boxes 5–7 and boxes 12–14 from nodesP1 andP3,
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respectively, and initiates a sweep at box 8, and nodeP3 receives the S2W results of boxes 9–11

from nodeP2 and initiates a sweep at box 12. NodesP4–P7 require similar communication patterns

for each row of boxes that they own, and so on.

Referring again to the node arrangement shown in Figure 5.8,we can say that for thex-sweep,

each node requires data from its immediate neighbors along thex-dimension. Because we assume

that 
local � b, each node requires data from at most two other nodes. Boundary nodes along

the x-dimension require data from only one other node, whereas interior nodes require data from

two other nodes. In Figure 5.8, nodesP0; P3; P4, andP7 are examples of boundary nodes, and

nodesP1; P2; P5, andP6 are examples of interior nodes. Boundary nodes require the S2W results

of b boxes from their left or right neighbors, and interior nodesrequire the S2W results ofb boxes

from each of their left and right neighbors in thex-direction. For thex-sweep, a nodePi , where

i D 0; : : : ; P � 1, is a boundary node ifi mod� D 0 or i mod� D � � 1. We will refer to a

boundary nodePi such thati mod� D 0 as a left boundary node and a boundary nodePi such

that i mod� D � � 1 as a right boundary node.

Because we process one row per round, we require
2
local rounds to complete thex-sweep. As

mentioned earlier, the buffer along pipelinep0 is a dummy buffer, which signals that the local S2W

computation for the next row to be swept has finished, and the buffer along pipelinep2 carries S2W

results, received from neighboring nodes, that are required to sweep the next row.

On each node, the send and receive stages in pipelinesp1 andp2 of Figure 5.7 take care of

sending and receiving data, respectively, through interprocessor communication. From our previous

discussion, we know that both these stages repeat for
2
local rounds. In each round, the send stage

of a left boundary node sends the S2W results of the lastb boxes in the current row to its right

neighbor, and a right boundary node sends the S2W results of the firstb boxes in the current row to

its left neighbor. An interior node sends the S2W results of the first and lastb boxes in the current

row to its immediate left and right neighbor, respectively.Now that we know what data each node

sends in a round, we can easily infer what data each node receives in a round. In each round, the

receive stage of a left boundary node receives the S2W results of its right neighbor’s firstb boxes in

the current row and each right boundary node receives the S2Wresults of its left neighbor’s lastb

boxes in the current row. An interior node receives the S2W results of its immediate right and left

neighbor’s first and lastb boxes in the current row, respectively.
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Given that the send stage always accepts a dummy buffer from the S2W stage, where does it

send data for interprocessor communication from? Similar to the S2W stage, the send stage knows

exactly which preallocated area of memory to send the data from. Indeed, the send stage accesses

the most recent area of memory that the S2W stage used to writeits output. Unlike the dummy

buffers in pipelinesp0 andp1, buffers flowing through pipelinep2 carry useful data. The receive

stage uses the buffer to receive S2W results from other nodesand passes the buffer along to thex-

sweep stage, which uses the contents of the buffer to sweep the current row.

To aid performance in the send and receive stages, we distinguish between boundary and interior

nodes, and we order the sends and receives in order to minimize communication time. We now

explain how we ordered the sends and receives, assuming thatthe nodes are arranged as shown in

Figure 5.8. A boundary node sends data to the single other node that requires its data. An even-

numbered interior node first sends data to its right neighborand then to its left neighbor, whereas an

odd-numbered interior node first sends data to its left neighbor and then to its right neighbor. In the

receive stage, all nodes follow the same order that we just described for the send stage.

The chronology of events that follows summarizes the working of the pipelines in Figure 5.7 in

a single round:

1. The S2W stage accepts a dummy buffer from the source stage along pipelinep1, reads its

input from a predefined region of memory, computes the S2W results for the current row of

boxes, and writes its output to another known area of memory.The S2W stage then conveys

the dummy buffer along pipelinep1 to signal the send stage to proceed. Finally, this stage

accepts and immediately conveys a dummy buffer along pipeline p2 to signal thex-sweep

stage.

2. After the send stage accepts a dummy buffer along its pipeline, this stage sends data from the

S2W stage’s output region for this round of pipelinep1, through interprocessor communica-

tion, to the required nodes. Hence, no copying of data occursin this stage. The send stage

conveys the dummy buffer before returning from its stage function.

3. The receive stage accepts an empty buffer from the source stage along pipelinep2 and fills

the buffer with S2W results received through interprocessor communication from other nodes,

before conveying the buffer.
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y- or z-sweep of γlocal boxescommunicatesource sink

Figure 5.9: FG pipelines that each node executes to sweep along they- andz-dimensions for the W2L step.

4. Thex-sweep stage accepts a dummy buffer along pipelinep0, which indicates that S2W

stage’s output region for this round of pipelinep0 is available for reading. The buffer that

this stage accepts along pipelinep2 contains relevant data to sweep the current row of boxes.

After sweeping the current row and writing the sweep resultsto a preallocated region of

memory, which is disjoint from S2W stage’s output regions, this stage conveys both buffers

that it accepted along their respective pipelines.

Given that each node sends and receives data at exactly the same rate in each round,6 one might

wonder why we decided to use disjoint pipelines for interprocessor communication. Also, unlike

dsort, where the amount of data and the set of nodes that a nodesends data to and receives data

from might differ from one round to another, here, each node knows exactly how much data to com-

municate and which other nodes to communicate with, in each round. The pipelines of Figure 5.7

represent our existing design for implementing the S2W andx-sweep phases of distributed-memory

FGT. In retrospect, we could have collapsed the pipelines ofFigure 5.7 into a single, linear pipeline.

We realized this possibility after having performed the experiments reported in Section 5.7. We were

sufficiently satisfied with the experimental results that wefelt it unnecessary to reimplement the

pipelines. To avoid confusion, we refrain from describing this alternate, single-pipeline approach.

5.6.4 Completing the W2L step and the L2T step

Next, we carry out they- andz-sweeps in two phases on each node to complete the W2L step. For

both of the remaining sweeps, we implemented the FG pipelines shown in Figure 5.9. Buffers flow-

ing through this pipeline carry useful data. The first user-defined stage in the pipeline participates in

interprocessor communication, and its successor stage processes either a column of boxes (during

they-sweep) or a row of boxes along thez-dimension (during thez-sweep).

During they-sweep, each node processes a column of boxes in each round, for a total of
2
local

rounds. Similar to thex-sweep, each node communicates data required for they-sweep with other

6Each node either sends and receivesb.2p C 1/3 complex doubles, or it sends and receives2b.2p C 1/3 complex
doubles.
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nodes and again, because we assume that
local � b, each node communicates data with at most two

other nodes. Also as before, for each column, each node initiates a sweep for this column starting

at the bottommost box, after the node has received the necessary data to complete they-sweep for

this column. For they-sweep, a nodePi such thatbi=�c mod� D 0 or bi=�c mod� D � � 1

is designated a boundary node and other nodes are interior nodes. In Figure 5.8, nodesP0–P3

andP12–P15 are examples of boundary nodes and nodesP4–P11 are examples of interior nodes

for they-sweep.

The communicate stage in Figure 5.9 uses the MPI routineMPI_Sendrecv_replace to

send and receive data through interprocessor communication. TheMPI_Sendrecv_replace

routine uses the same region of memory to send data from and receive data into, though the node

that it sends data to can differ from the node that it receivesdata from. Because each node sends

and receives data at the same rate in each round,7 we decided to useMPI_Sendrecv_replace

in the communicate stage in the pipeline of Figure 5.9. To satisfy the specifications of the

MPI_Sendrecv_replace routine, each node copies the relevant data to be sent in a round into

the pipeline buffer, before invokingMPI_Sendrecv_replace. Here again, we order the com-

munication so that a boundary node immediately communicates with its top or bottom neighbor,

and an interior node communicates first with its top neighborand then its bottom neighbor, or vice-

versa. Of course, during they-sweep, each node uses the results of thex-sweep that it calculated

earlier for its set of boxes, along with the data that it receives from its neighboring nodes along

they-dimension.

As an aside, we briefly note that we could have collapsed the send and receive stages in the

pipelines of Figure 5.7 into a single communicate stage thatwould have worked similar to the

communicate stage that we just described. Hence, we could have implemented the S2W and thex-

sweep phases using a single, linear pipeline.

After completing they-sweep, we re-execute the pipelines of Figure 5.9 to complete thez-

sweep and hence the W2L step. During thez-sweep, each node processes a row of boxes along

thez-dimension in each round, for a total of
2
local rounds. We define a nodePi , for i D 0; : : : ; P �1,

such thatbi=�2c D 0 or bi=�2c D � � 1 to be a boundary node, and we categorize other nodes as

7Similar to thex-sweep, each node sends and receives eitherb.2p C 1/3 complex double values or2b.2p C 1/3

complex double values.
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interior nodes. In Figure 5.8, nodesP0–P15 and nodesP48–P63 (hidden) are boundary nodes, and

nodesP16–P47 are interior nodes. In thez-sweep, we use the results from they-sweep, and we

order the communication similar to the earlier sweeps.

Thus, executing the pipelines of Figure 5.7, followed by twoexecutions of the pipelines of

Figure 5.9 completes the first two steps of the fast Gauss transform in distributed memory.

All computations required for the last step, the L2T step, are entirely local to a node and, there-

fore, we use OpenMP’sparallel for loop (see lines 4–5 of the pseudocode for the shared-

memory implementation) to approximate the Gaussian of equation (5.1) for the targets in multiple

boxes in parallel.

5.6.5 Error checking

Given that the fast Gauss transform computes approximate values, we should take the time to de-

termine its numeric accuracy. Ideally, we would like to calculate the Gaussian of equation (5.1)

directly for each target, evaluate the error as the difference of the actual value with the respective

FGT value for the target, compute the root mean square error over all targets, and ensure that the

root mean square error is at most�, which is the required precision. Computing the actual value for

all targets is prohibitive, however.8 Therefore, we compute the sampled maximum relative error,9

defined in the pseudocode below, using a sample of target points and compare it against�.

SAMPLED-MAX -RELATIVE -ERROR

1 let maxFGT = maximum of all FGT values
2 let S D a sample of target points
3 for eachv 2 S

4 computevdirect D Gauss transform ofv calculated directly using equation (5.1)
5 let vFGT D FGT value forv
6 compute the relative error asjvdirect � vFGTj=maxFGT

7 sampled maximum relative error = maximum of the relative errors computed for sampleS

5.7 Experimental results

In this section, we present some performance results of our FGT implementation. As mentioned

earlier, we have implemented the fast Gauss transform in shared memory using OpenMP and in

8Recall that improving the O(mn) running time was the basis for FGT.
9We were in contact with Shravan K. Veerapaneni [44, 47], who suggested this method.
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distributed-memory using FG, MPI and OpenMP. Our shared-memory and distributed-memory ver-

sions are both implemented in C++. We compare our implementation against a distributed-memory

implementation in C++ by Sampath, Sundar, and Veerpaneni [44], which uses PETSc 3.0 [4, 5] for

MPI. We will refer to this other implementation as SSV-FGT.

We ran both implementations on a cluster with many nodes, of which we used either one or eight

nodes. Each of the nodes that we used has two dual-core, 2.3-GHz AMD Opteron 280 processors,

and 8 GB of RAM. Each node runs Linux version 2.6.33.3 and the nodes are connected using

gigabit ethernet. We use MPICH2 [42] for MPI because it is a thread-safe implementation of MPI.

We compiled our shared-memory and distributed-memory implementations using g++ version 4.1.2

and mpicxx, respectively, at optimization level O3. We requested the authors of SSV-FGT for their

code and compiled it using PETSc 3.0, as suggested by them; here again, we set the compiler

optimization level to O3.

In our experiments, we assume thatd D 3, that all points lie within the unit cubeŒ0; 1�3, and that

the sources and targets coincide. We also assume that withineach box, the points lie on a regular

grid. As mentioned earlier, we store only the charge values associated with the source points, and

we generate the source/target points at run time. Similar toour implementation, SSV-FGT, too,

seems to generate input at run time. To the best of our knowledge, the SSV-FGT implementation

that we compared against generates data on a regular grid in each box. For fairness, however, in our

implementation, we generate experimental results with points lying on a regular grid in each box

and with points not assumed to lie on a regular grid,10 using separate executions of our program.

On a single node, we generate 29.2 million source/target points and setı D 1=16, for a total

of 64 boxes arranged as a4 � 4 � 4 grid. On eight nodes, we generate 233.6 million source/target

points distributed equally across the nodes and setı D 1=64, for a total of 512 boxes. Each node,

therefore, owns a4 � 4 � 4 subgrid of boxes, for a total of 64 boxes. Note that forP D 8, we

generate 8 times as many points as forP D 1, so that we use the same number of points per node.

In both cases, we set� D 10�6, for which the required values ofL; b, andp are 7, 4, and 10,

respectively (see Table 2.1 in the paper by Spivak, Veerapaneni, and Greengard [47]). We provided

suitable command-line parameters to SSV-FGT to match our input sizes and the FGT parameter

10To satisfy this assumption, we repeatedly calculate sine and cosine values in the S2W and L2T steps instead of
applying our performance enhancements. That is, we did not actually generate points on a non-regular grid.
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P D 1 P D 8

29.2 million points 233.6 million points
implementation regular grid non-regular grid regular grid non-regular grid

PN-FGT 12.63 21.12 5.68 8.97
SSV-FGT 101.90 101.90 117.03 117.03

Table 5.1: Experimental results for our implementation, nicknamed PN-FGT, and SSV-FGT. All results are
presented in seconds and each result represents the averageof three runs.

values in both the 1-node and the 8-node cases.

Table 5.1 summarizes the results of our experiments. In the table, we nickname our implementa-

tion as PN-FGT. All results are presented in seconds; each result is the average of three runs, where

the running times differed only slightly within each group of three. Because we are not entirely sure

whether SSV-FGT generates inputs on a regular or a non-regular grid within each box, we show

the same running time for both types of grids in each case for SSV-FGT. In our implementation,

when P D 1, we use only one core out of the available cores on a node, similar to SSV-FGT.

That is, the results forP D 1 effectively give us the serial running time for both implementations.

When P D 8, we use all available cores on a node for maximum parallelism; we are not sure

whether SSV-FGT uses all available cores on a node. WhenP D 1, we get a maximum relative

error of10�8 based on the first 100 source/target points, and whenP D 8, we get a maximum rel-

ative error of 0.0000025 based on the first 100 source/targetpoints; we don’t know these numbers

for SSV-FGT.

As the results in Table 5.1 show, our FGT implementation ran considerably faster than SSV-FGT

in all cases. Our implementation was between 4.8–20.6 timesfaster than SSV-FGT. We attribute

our performance to the judicious use of available parallelism: both shared-memory and distributed-

memory parallelism. In shared-memory, we use OpenMP’sparallel for regions to compute

the results for multiple boxes in parallel in the S2W and L2T phases.11 In addition to distributing

the computation over multiple nodes in our distributed-memory implementation, FG pipelines help

us to overlap interprocessor communication with computation, and we use OpenMP’sparallel

for regions for in-core parallelism.

For completeness, we must also ensure that our implementation scales well. To check for scal-

11Our code has these parallel regions though we restrict ourselves to use only one core in our experiments for a fair
comparison with SSV-FGT.
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implementation regular grid non-regular grid
P D 1, using 4 cores 4.46 6.30
P D 8, using 4 cores on each node 5.68 8.97

Table 5.2: Scalability results for our implementation. All results are presented in seconds and each result
represents the average of three runs.

ability, we ran our shared-memory implementation by allowing it to access all available cores on a

single node and compared these results with our results forP D 8. As before, we use the same num-

ber of points per node, i.e., we generate 29.2 million source/target points on a single node and 233.6

million source/target points on eight nodes. Table 5.2 shows the results of our comparison. As

we can see from the table, our code scales reasonably well, though we admit that just eight nodes

are not enough to test for scalability. We were unable to testour code further because of hardware

limitations.

5.8 Conclusions

In this chapter, we saw how to approximate the Gaussian of equation (5.1) using Hermite and plane-

wave expansions atm target locations, as well as our implementation of the plane-wave version of

the fast Gauss transform. Although we did not store any data on disk for this application, we

still had to think about mitigating the effects of interprocessor communication on the performance

of our implementation, for which FG pipelines proved useful. Furthermore, we were able to use

FG stages as signaling mechanisms for the first time here. This application also provided us with

ample opportunity for in-core parallelism for which we usedOpenMP. In addition to exploiting

the available parallelism, we analyzed the structure of thecomputation and identified ways to reuse

costly computations to improve performance.

The experimental results presented in Section 5.7 are highly encouraging, both in terms of per-

formance and scalability. That being said, our implementation does make a few assumptions. In

particular, we assume that all source/target points withina box lie on a regular grid. In general, if

the source and target points are randomly distributed within the unit cubeŒ0; 1�3, some boxes are

likely to contain more points than the others. Going throughall the steps of the FGT for lightly-

populated boxes is costly. Hence, for general point distributions, we would want to segregate the
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densely-populated boxes from the lightly populated ones, and follow a different approach in each

case. Sampath, Sundar, and Veerapaneni [44] address the parallel implementation of this more

general case. Our experiments with a regular grid inspire usto try the general case in future. We

believe that FG pipelines will prove useful in the general case, too. As in the regular-grid case,

understanding the underlying computation and the sequenceof data exchanges will be vital to de-

signing efficient FG pipelines. FG, in turn, will provide multithreaded parallelism to help overlap

interprocessor communication with computation, in addition to allowing access to other sources of

parallelism in its stage functions. As mentioned earlier, we were able to run our experiments on

at most eight nodes, which served as a good starting point. Asa next step, we should endeavor to

run our implementation on more nodes to be able to better assess the performance and scalability

of our implementation. In Section 5.6.3, we mentioned the possibility of collapsing the pipelines of

Figure 5.7 into a single, linear pipeline. What effect this alternate design has on performance might

be worth looking into.

On the whole, the favorable results from our experiments forthe fast Gauss transform encourage

us to look for more applications in the field of scientific computing.
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Chapter 6

Related Work

In this chapter, we compare FG with related libraries such asUNIX pipes, StreamIt, TPIE, and

TBB, and we discuss the similarities and differences of eachof these libraries with respect to FG.

We also compare FG’s design with the concept of dataflow programming.

6.1 UNIX Pipes

FG shares its conceptual design of a pipeline acting on data streams with UNIX pipes [3]. Because

pipes transfer data between processes, not threads, pipes are a more heavyweight mechanism than

the buffer queues that sit between FG stages. Furthermore, because low-level system interactions in

UNIX occur through a higher-level file-like abstraction, UNIX pipes interact through the file-system

interface. FG and UNIX pipes both make use of shared memory, but whereas it is at the thread level

in FG, it is at the process level in pipes. Although it is possible for a process to read from or write

to multiple pipes and thus emulate intersecting-pipelines-like flow of data, the underlying program-

ming effort is considerable. We have to invoke thepipe system call multiple times as required, be

careful not to accidentally shut off some direction of a pipein a process, avoid deadlocks, and close

file descriptors and release memory associated with all pipes that were created. Moreover, we are

likely to run out of system resources in situations where we use FG’s virtual pipelines.
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6.2 StreamIt

The StreamIt [51, 52] project from MIT is a Java-like language and compiler for stream programs.

Stream-based applications are found in the embedded domainsuch as cell phones and software

routers. StreamIt and FG have much in common. StreamIt defines afilter to be the basic unit of

computation, with the fine-grained execution steps described in a filter’swork method; a filter and

its work function resemble FG’s stage and stage function, respectively. Just as a stage operates on a

fixed-size buffer, a filter has static input and output sizes,known as pop and push rates, respectively,

in StreamIt terminology.

StreamIt allows filters to be joined together to form a Pipeline, SplitJoin, and FeedbackLoop.

The simple linear pipeline constructs in StreamIt and FG arefundamentally similar. A SplitJoin in

StreamIt diverges at asplitter and converges at ajoiner; a splitter can be Duplicate, RoundRobin,

or Null. A Duplicate splitter sends a copy of each data item tothe various output streams, a

RoundRobin splitter sends data in a round-robin manner, anda Null splitter sends out no data at

all (useful if its successor filters expect no input). A joiner can be either RoundRobin or Null.

FG’s fork-join construct is similar in flavor, except that FGallows only the FG-equivalent of a

RoundRobin splitter but a joiner in FG can be either RoundRobin or first-come first-served (FCFS).

As in FG, the FeedbackLoop construct in StreamIt introducescycles in a stream graph. FG and

StreamIt share the common goal of making programs easier to write and faster to execute.

We now highlight some of the major differences between StreamIt and FG. Unlike FG, which

is a library, StreamIt is a language with its own compiler. The StreamIt language specification for

version 2.1 [49] suggests that StreamIt now supports dynamic I/O rates for filters, that is, a filter

can consume and emit data items at a varying rate; buffer sizes in FG remain fixed over the entire

execution of the pipeline. FG allows disjoint and intersecting pipeline structures, which are absent

from StreamIt.

StreamIt seems to assume an infinite sequence of data items, whereas FG has an explicit notion

of shutting down a pipeline. When the number of rounds are notknown in advance and when buffers

might flow nonlinearly through a pipeline, it can be difficultto determine when to shut down the

pipeline correctly.
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6.3 TPIE

Templated Parallel I/O Environment, or TPIE [1] is a librarythat provides templated interfaces

for efficient implementations of external-memory algorithms. TPIE is implemented as a set of

templated classes and functions in C++. Unlike FG, users never make explicit calls to I/O functions

in TPIE; its Block Transfer Engine takes care of transferring data to and from the disk. The user

is provided access to a data stream that can be read from and written to sequentially. Although

the user can choose from three Block Transfer Engines (one each for Cstdio, ufs I/O, and I/O

usingmmap) depending on her desired method for performing I/O, TPIE streams do not provide the

flexibility of non-sequential data access. In FG, however, because the user has full control over how

I/O is performed, she can access data sequentially or otherwise.

TPIE provides templates for several computation patterns such as scanning, permutation, and

merging in the form ofoperation management objects. The exact names of methods in an operation

management object and their required functionality are specified by TPIE, and the user is required

to supply the application-specific code. Usually, each operation management object requires at least

two methods:initialize() andoperate(). The user defines the exact computation that she

wants for the pattern in theoperate() method, just as she defines the exact operation of a stage

in an FG stage function. Theoperate() method can request access to multiple streams if need

be, similar to how the user can accept buffers from multiple pipelines in an intersecting stage in

FG. Unlike FG, where stage functions operate on large data buffers, theoperate() method of

an operation management object seems to function at the granularity of a single data element per

input stream. In FG terminology, this level of granularity is equivalent to calling a stage function for

every data element in the input. The user is also responsiblefor informing TPIE of the end of the

computation by returning a special TPIE-defined constant from theoperate()method, which is

similar to setting the caboose flag on the fly in an FG pipeline.

It is not clear from the documentation whether the user can perform interprocessor communi-

cation in anoperate() method. TPIE, therefore, seems to be designed for executingexternal-

memory algorithms on a single machine, and its documentation suggests that the Block Transfer

Engines only support streams stored on a single disk.
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6.4 Dataflow Programming

In the dataflow execution model [32], a program is represented as a directed graph where the nodes

are primitive instructions such as arithmetic operations,and edges between the nodes represent

data dependencies between the instructions. Data flows as tokens along the edges, which behave

as unbounded FIFO queues. A node’s incoming edges are calledits input arcsand its outgoing

edges are calledoutput arcs. Whenever data is available on all the input arcs of a node, itbecomes

fireableand is executed at some later time. When a fireable node executes, it removes data from

each of its input arcs, performs its operation, and places data on one or more of its output arcs. That

is, an operation becomes ready to execute as soon as all its required input is available. Because

multiple instructions might be executed in parallel, a dataflow program presents the potential for a

high degree of parallelism. In contrast, an instruction in the von Neumann execution model executes

only when the program counter reaches it, irrespective of whether the instruction could have been

executed earlier.

Dataflow principles automatically allow forpipelineddataflow if the computation is to be per-

formed on more than one dataset. Note, however, that a subsetof nodes in a dataflow graph that form

a chain1 can never be executed in parallel for a particular wave of data, and operating such subgraphs

at the fine granularity of the pure dataflow model is inefficient. Dataflow programming, therefore,

evolved to definelarge-grain dataflow[54] wherein a fine-grained dataflow graph is analyzed to

identify subgraphs that form a chain, whose instructions are then grouped to execute as a sequen-

tial process. These coarse-grained nodes are termedmacroactors. Even in large-grain dataflow, all

parts of the dataflow graph, including macroactors, executeunder the rules of the dataflow execution

model. In any of its forms, the dataflow model does not addresshigh-latency operations.

In principle, FG shares some features with dataflow programs. An FG pipeline can be seen as

a directed graph with data buffers flowing from one stage to another as specified by the user. The

thread corresponding to an FG stage becomes ready to executewhen a buffer is available in its

incoming queue. Similar to a node in a dataflow program, an FG stage accepts a buffer, executes its

stage function, and conveys the buffer to its outgoing queue. Conceptually, we, too, “overload” arcs

in our pipeline illustrations to represent both the direction of data flow and the buffer queues that

1By a chain, we mean that nodes are linked one after another such that the output of one node is the input for the next.
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sit between stages. Also, multiple stages in an FG pipeline might run in parallel, depending on the

available resources.

In practice, however, FG and dataflow programs share little in common. Dataflow graphs are

said to be the “machine language” of dataflow programs, whereas FG’s pipeline “graphs” are meant

purely for illustrative purposes. In the pure dataflow model, nodes represent primitive instructions,

whereas stage functions in FG usually span multiple lines ofcode in C++ and, therefore, involve

hundreds or thousands of instructions. At first glance, an FGpipeline seems to resemble a dataflow

graph in the large-grain dataflow model. Note, however, thatin the large-grain dataflow model, a

linear pipeline in FG would be executed as one big serial stage whose stage function is formed by

combining all the stage functions of the original pipeline,resulting in zero parallelism. As we know,

all FG programs are multithreaded and have the potential of running in parallel. FG’s pipelines are

coarse-grained in another sense, too: FG stages operate on large buffers of data, instead of single

data tokens. The coarse granularity of data “tokens” in FG isimportant for efficiently implementing

programs that run on massive datasets. FG can be seen as a combination of dataflow ideas and

multithreading features available in the von Neumann world.

6.5 Threading Building Blocks (TBB)

Intel’s Threading Building Blocks [53] is a C++ template library that supports many parallel-

programming constructs, including software pipelines. Similar to FG, TBB relieves the programmer

from having to parallelize her code using native threads andis offered as a library; thus, it does not

require learning a new language or using a new compiler. Justas FG encourages a programmer

to design an FG pipeline based on the high-latency operations in her program, TBB encourages a

programmer to express the required computation using a number of tasks. The TBB runtime system

takes care of efficiently mapping tasks to threads. Instead of statically allocating work to threads, the

Threading Building Blocks library recursively splits the user’s tasks until the right number of par-

allel tasks are reached. Breaking down the problem recursively also suits the library’s task-stealing

approach for load-balancing tasks among threads and enables the library to scale the parallelism

based on the number of cores available in a machine.

The Threading Building Blocks library offers a number of parallel-programming constructs
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such asparallel for, parallel scan, andparallel reduce and some concurrent con-

tainers such asconcurrent queue, concurrent vector, andconcurrent hashmap.

Additionally, TBB provides a pipeline template for programs that can be modeled as a linear se-

quence of stages. Each stage in a TBB pipeline is written as a C++ class that inherits from TBB’s

filter class; an implementation ofoperator () within the class serves as the corresponding

stage function. Public methods in TBB’spipeline class allow the user to set up and run the

pipeline. Analogous to FG buffers,tokensflow through a TBB pipeline, and as with FG, the user

is required to set the maximum number of tokens that can be in flight in a TBB pipeline. In TBB,

each stage can be designated as serial or parallel; a serial stage processes tokens one after the other,

in order, whereas a parallel stage might process multiple tokens concurrently or out of order. TBB

requires the first stage in the pipeline to also manage buffers; effectively, the first stage acts like FG’s

source stage but the code to manage buffers comes from the user and is part of the stage function.

That is, unlike FG, the user shares some of the burden of buffer management in TBB. The first

stage is also responsible for deciding when the pipeline hasfinished its computation; the stage re-

turnsNULL instead of a valid buffer to indicate the equivalent of FG’s caboose round. It is not clear

from the TBB documentation as to whether a middle stage in a pipeline can inform TBB’s runtime

system that the pipeline has finished its computation. Tokens arrive as stage function parameters and

are sent out of the stage function as return values; TBB internally ensures that tokens are processed

in order at the serial stages. TBB’s design allows disjoint linear pipelines to run concurrently, but

TBB requires that each pipeline be started from its own thread. TBB, however, does not support

non-linear pipeline constructs similar to FG’s fork-join or intersecting pipelines. That is, it would

not be possible to implement dsort pass 2 in TBB using the pipeline structures shown in Figure 3.4.

Unlike FG, TBB is not designed for programs that involve high-latency operations along with

computation operations; TBB’s task scheduler works best onalgorithms composed of non-blocking

tasks. Although tasks offer scalable parallelism, a blocked task can neither be split further nor

be scheduled on a processor; TBB documentation suggests using full-blown threads for tasks that

block. That is, FG’s design is suited for the kinds of programs we target.
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6.6 MapReduce

MapReduce, introduced by Google, is a programming model inspired by themapandreduceprim-

itives present in Lisp and other functional languages. The main focus of Google’s MapReduce is to

apply the paradigm to extremely large datasets, in the orderof terabytes, running on thousands of

nodes on a cluster. In a paper introducing the model [19], Dean and Ghemawat bring to light several

interesting problems, such as distributed grep, count of URL access frequency, and reverse web-link

graph, that can be effectively expressed using MapReduce. In order to realize these problems on

inputs spanning terabytes, the computations need to be distributed and carried out in parallel across

hundreds or thousands of machines. The conceptual simplicity of many such problems is obscured

by the much greater, and more complicated, code required to deal with the issues related to distribut-

ing the data and parallelizing the computation. The peripheral code, although tedious, repetitive, and

usually unrelated to the underlying problem, is necessary for a practical implementation. MapRe-

duce was, therefore, designed as an abstraction to allow users to express their computations in a

simple, uniform manner, without having to worry about the details of parallelization. Recall from

Section 2.1 that similar observations regarding out-of-core programs led to the genesis of FG. That

is, both MapReduce and FG share the goal of wanting to make it simpler for users to write efficient

parallel programs for large datasets. The users of MapReduce express the computation using two

functions:Map andReduce. These functions are analogous to FG’s stage functions, except that, in

FG, the user provides a stage function for each unique stage that she would like FG to spawn.

For each input pair, theMap function outputs a list ofintermediatekey-value pairs. The

Reduce function merges all values that belong to the same keyk to produce a smaller set of values

(typically zero or one output values). Similar to the input files, the output files are also distributed

on the nodes of a cluster; the user is required to specify the numberR of output files that should be

written by MapReduce. Because each reduce task outputs one file, R is also the number of reduce

tasks that work on the results of the map function. In addition to the map and reduce functions,

the library allows users to specify apartition function for intermediate keys to override the default

partition method that the library provides for ensuring well-balanced partitions.

The input files, stored on the local disks of the nodes of a cluster, are managed by the Google

File System (GFS) [25] which splits the files into 64-MB blocks and stores a copy of each block on
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three different nodes. MapReduce invokes multiple copies of the program on a cluster. One of the

copies becomes the master; the remaining copies are designated as workers and are assigned map

or reduce tasks by the master. In order to save network bandwidth, the master tries to schedule a

map task on a node that has a replica of the corresponding input. MapReduce re-executes halted

tasks resulting from node failures, which are common in large clusters. If a worker node fails, the

master reassigns the failed worker’s task to a new node; if the master fails, the program is aborted.

Also, because each reduce worker sorts its data by the intermediate keys before starting its work,

the library guarantees a sorted output file within each partition.

While enumerating the many applications of MapReduce in theintroductory paragraph earlier,

we deliberately left out one important application—distribution sort. In an implementation of distri-

bution sort using MapReduce, the map function emits a<key, record> pair and the reduce function

emits all pairs unchanged. Clearly, this implementation seems much simpler than the FG imple-

mentation that we described in Chapter 3. Recall, however, that the library ensures sorted output

for all applications; therefore, it is possible that a dsort-like algorithm is built into the library. The

MapReduce paper [19] mentions that an external sort is used when the intermediate data output by

the map function is too big to fit in main memory, but it does notprovide any details about the

underlying sorting mechanism.

Just as FG is a framework for pipeline-structured programs,MapReduce is a programming

model for problems that can express their computations within the map and reduce functions. We

listed several applications of MapReduce within our limited scope, and the literature on FG presents

a number of applications that are implementable using software pipelines. Whereas FG spawns as

many threads on each node as the number of stages in the pipeline, this information is not apparent

in the MapReduce literature; we conjecture that MapReduce handles one task per node. MapRe-

duce also provides support for recovering from faults and has a designated master that dynamically

allocates tasks to workers; FG relies on the operating system’s abilities to dynamically schedule

threads. Both FG and MapReduce provide a simple interface for applications that can fit within

their respective frameworks and make it simpler for users toparallelize their applications in this era

of multicore machines.
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6.7 STXXL

The Standard Template Library for Extra Large Data Sets (STXXL ) was introduced by Demen-

tiev [20] to allow easy implementation of algorithms based on the Parallel Disk Model [57]. STXXL ’s

interface resembles that of the C++ Standard Template Library (STL) [50]. The STXXL library pro-

vides classes for data structures such as vectors, stacks, and queues, and for algorithms such as

sorting, including when data reside on parallel disks on a single node. The library’s AIO layer

provides I/O-related operations and abstracts away details of how asynchronous I/O is performed.

Recently, the authors of STXXL added pipelining capabilities to the library [22] to overlap I/O and

computation, and to reduce the number of I/O operations.

In STXXL , a pipelined computation is represented as a directed, acyclic flow graph, where the

nodes of the flow graph represent data-processing components and its edges indicate the direction

of data flow. The nodes of a flow graph are analogous to FG stagesand edges play a similar role in

FG. Like an FG pipeline, an STXXL flow graph is set up in source code, i.e., there is no graphical

interface for setting up a pipeline.

STXXL defines three types of nodes in a flow graph: ascanningnode, asorting node, and a

file node. In traditional STXXL pipelining, each node processeselementsof possibly different types

and numbers, and the type dependencies are resolved at compile time. Scanning nodes process one

element after the other, do all work in order, and their functionality is defined by the programmer.

Sorting nodes sort elements with respect to some sorting criterion, and file nodes read elements

from disk to feed their successors or consume elements from their predecessors and write them to

disk. What role the programmer plays in these two kinds of nodes is not clear from the literature.

Nodes also seem to require definitions ofoperator*() andoperator++(), but here again we

are not sure as to who implements these operators. As we know,FG does not distinguish between

stage functions; an FG user is free to implement each stage function per her requirement. We do

acknowledge that scanning, sorting, and file nodes cover most operations in an external-memory

computation on a single machine.

Each flow graph is required to have aprimary sink, which is usually a file node, and pipeline

execution is triggered by the primary sink when it invokes the materialize() function. As in

an FG pipeline, STXXL requires that all nodes have a path to the primary sink. In FG,however, it is
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the source stage of a pipeline that triggers the computationby emitting an empty buffer to the first

user-defined stage in the pipeline.

A sorting node in an STXXL flow graph seems to be internally implemented using a three-node

sequence: a run-creator scanning node followed by a file nodeto store sorted runs on disk, and

a merging node to merge the sorted runs. Though each sorting node internally involves further

complexity as we just described, it has a simple representation in an STXXL flow graph. The im-

plementation of external-memory sorting in STXXL uses MCSTL [46] to parallelize the in-memory

computations; MCSTL seems to inherently use OpenMP’s parallel routines. For the task paral-

lelism that pipelining requires, STXXL relies on OS threading mechanisms, and POSIX threads in

particular, similar to FG.

Because STXXL assumes responsibility for providing some basic data structures and algorithms,

the glue code for a pipeline involving all three types of nodes looks fairly short and clean (see

Appendix A in [6]), but it is not intuitive for a novice STL programmer. We admit that a similar

pipeline in FG would require more coding effort, but in our opinion, the APIs that FG provides for

constructing a pipeline are much more intuitive. Furthermore, if FG were to internally support some

basic algorithms in its next version, the code for setting upan FG pipeline would shrink, too.

Later, the STXXL pipelining framework was augmented withasynchronousnodes [6], which

process data by spawning a worker thread to communicate databetween their predecessors and

successors. Each asynchronous node requires two element buffers: a producer buffer to absorb

elements from the predecessor and a consumer buffer to servethe successor. Routines executing

on behalf of nodes may block when no data is available. When the producer buffer is full and the

consumer buffer is empty, the two buffers are swapped. Thesebuffers work using OS-supported

synchronization mechanisms. The buffers associated with asynchronous nodes were introduced to

amortize the cost of thread synchronization because synchronizing for every single element would

be far too costly. The buffer size can be tuned as required, and introducing asynchronous nodes in

an existing implementation requires extra coding effort. From the above description, we best under-

stand asynchronous nodes as being akin to the buffer queues that sit between FG stages. Both FG

buffers and the buffers associated with asynchronous nodesprovide coarse-grained data parallelism.

Whether the primary sink of an STXXL flow graph recycles buffers is unclear.

On the whole, the fundamental designs of FG and STXXL pipelines seem to have more similar-
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ities than differences. The paper by Beckmann, Dementiev, and Singler [6] shows an example of a

distribute-collect flow graph that resembles FG’s intersecting pipelines, though support for disjoint

pipelines seems to be absent from STXXL . We conjecture that because of these similarities, the

FG-based and STXXL -based implementations of external-memory suffix array rancomparably, as

we saw in Chapter 4. To the best of our knowledge, STXXL does not support distributed-memory

computations that involve interprocessor communication.A stage that performs interprocessor com-

munication cannot be categorized as a scanning, sorting, ora file node, which further validates our

speculation.
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Chapter 7

Conclusions

In this thesis, we explored FG’s software-pipeline model for parallel computing. In particular, the

multithreaded platform that FG provides is useful for overlapping high-latency operations with other

operations in out-of-core and distributed-memory applications. In this thesis, we saw how to use

FG to tackle latency with the help of three program instances: an out-of-core, distribution-based

sorting program; an external-memory suffix-array program;and a scientific-computing application

called the fast Gauss transform (FGT). In the latter two applications, we tried to utilize all the cores

available in a machine by combining FG’s multithreading feature with libraries such as OpenMP that

help with in-core parallelism. In all three instances, we achieved good performance results, which

we attribute to well-designed FG pipelines and programmingtechniques that leveraged distributed-

memory and shared-memory parallelism, combined with FG’s quality implementation. This thesis

shows that we can use FG to model applications from a variety of disciplines and implement them

efficiently. As always, more work can be done, which we discuss next.

Both in dsort and in FGT, we used a distributed-memory cluster for our experiments. In both

these programs, we were limited by the available hardware, however. In dsort, we were able to sort

only 64 GB of data distributed across 16 nodes of a cluster. Considering the hardware that is avail-

able today, 64 GB of data is relatively small. Similarly, in FGT, we were able to test our scalability

results only on 8 nodes of a cluster, which again is not enough. FG and our implementations are

capable of handling bigger datasets in both these cases, so we should endeavor to look for hardware

on which we can test these programs better.

As we discussed in the last section of Chapter 4, the FG pipelines that we designed for im-
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plementing external-memory suffix arrays made us realize that auxiliary buffers available in FG

version 1.4 might be redundant, after all. Usually, a stage that cannot perform its work in-place re-

quires auxiliary buffers. We propose that whenever a stage requires an auxiliary buffer, we make it

an intersecting stage.1 Along the extra pipeline, only the source stage should precede this stage and

the sink stage should succeed this stage. A pipeline buffer along the extra pipeline can then serve as

an auxiliary buffer for this stage. Using the proposed design, we can allow auxiliary buffers to be

of a different size than the pipeline buffer, which is not possible in the existing FG implementation.

In this design, each stage that requires an auxiliary bufferwill add an extra pipeline, each of which

will require its own source and sink stages, which amounts toas many extra threads. As we saw

in Section 3.2.3, we could soon overwhelm the available system resources. In order to stay within

the system thread-limit, we could probably collapse all thesource stages and all the sink stages,

such that there is only one source stage and one sink stage forall the pipelines. We could take the

lead from virtual pipelines to implement the single-source, single-sink idea. Recall that the current

FG implementation provides a swap method for auxiliary and pipeline thumbnails, which swaps the

buffers associated with the thumbnails so that the auxiliary buffer becomes the pipeline buffer and

vice-versa. The main advantage of the swap method is that it helps us avoid having to copy data

from the auxiliary buffer to the pipeline buffer.2 Thanks to FG’s thumbnail design, we should be

able to implement the swap method now just as simply as before, i.e., by swapping only the buffer

pointers, keeping the rest of the two pipeline thumbnails the same.

Another FG feature that might be worth exploring is whether FG should provide built-in sup-

port for routine operations such as reading from and writingto disk and sorting. Aided with such

a functionality, the user will be saved from writing a function for each user-defined stage in the

pipeline. To implement the disk-based operations, for example, the user might tell FG the buffer

size and the file name to read from or write to, and FG could execute the command for reading or

writing. The sorting functionality might be more tricky, but will perhaps be doable with the help of

a user-provided comparison function and C++ template programming.

In the last section of Chapter 5, we identified some directions for future work, which we reit-

erate here. The FGT implementation that we presented in thisthesis assumes that the source/target

1If the said stage is already an intersecting stage, we add another pipeline.
2Recall that because a stage uses the auxiliary buffer as temporary space, the useful results of the computation might

be in the auxiliary buffer.
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points within each box lie on a regular grid, which is surely not the most general case. Our FGT

implementation should serve as a good starting point for a future implementation that would handle

the general point distribution. We might even identify somehidden FG facet that we haven’t come

across yet; for example, while designing pipelines for the FGT, we realized that FG stages could

also serve as signaling mechanisms. Another small but interesting experiment would be to try the

single, linear pipeline design for the S2W andx-sweep phases of distributed-memory FGT and see

how the performance of this alternate design compares with the existing results.

This thesis shows that we can use FG to model applications from different computing disciplines

and implement them efficiently. FG continues to deliver its promise of making multithreaded pro-

gramming easier for users, without compromising on performance. Our work has helped to extend

FG in meaningful ways, and it provides some suggestions for the next version of FG (version 2.0),

which is under way. The performance results from this thesiscan serve as initial benchmarks for the

same programs implemented using FG version 2.0; additionally, we have outlined some application-

specific future work.

To conclude, we reiterate the contributions of this thesis:

1. While designing an out-of-core, distribution-based sorting program using FG (nicknamed

“dsort”), we identified ways to advance FG from supporting just single, linear pipelines to

multiple disjoint pipelines and multiple pipelines that intersect at a common stage. Using

these new pipeline structures, we were able to implement dsort efficiently, despite its disad-

vantages of having dynamic I/O and communication patterns.

2. Our implementation of out-of-core sorting in a shared-memory setting using FG is faster

by 9.6%–16.3% (approximately) compared with an STXXL -based implementation.

3. Our implementation of external-memory suffix arrays exercised FG’s intersecting pipelines

in ways that had never been attempted before. The complex FG pipeline structures that we

designed for this algorithm also performed well. For the first time, we implemented a recur-

sive algorithm using FG, and we used OpenMP along with FG to fully utilize all the cores of

a multicore machine.

4. We have implemented the fast Gauss transform in a distributed-memory setting that uses
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FG to overlap communication with computation. In this project, we used FORTRAN-based

BLAS routines for vector computation, and we used OpenMP to leverage the in-core par-

allelism offered by the algorithm. We saw speedups in running time by factors of up to 20

compared with an alternate FGT implementation.

5. We have used our experience in designing out-of-core programs using FG to extend FG with

additional pipeline structures. We have also identified some FG features that might be redun-

dant, and thus can be removed from the next version of FG.
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