View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College
Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

9-1-2011

Tackling Latency Using FG

Priya Natarajan
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

b Part of the Computer Sciences Commons

Recommended Citation
Natarajan, Priya, "Tackling Latency Using FG" (2011). Dartmouth College Ph.D Dissertations. 36.
https://digitalcommons.dartmouth.edu/dissertations/36

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.


https://core.ac.uk/display/337600807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/36?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

TACKLING LATENCY USING FG
Dartmouth Computer Science Technical Report TR2011-706
A Thesis
Submitted to the Faculty
in partial fulfilment of the requirements for the
degree of
Doctor of Philosophy
in
Computer Science
by
Priya Natarajan
DARTMOUTH COLLEGE

Hanover, New Hampshire
September 2011

Examining Committee:

(chair) Thomas H. Cormen

David F. Kotz

M. Douglas Mcllroy

Laura l. Toma

Brian W. Pogue, Ph.D.
Dean of Graduate Studies






Abstract

Applications that operate on datasets which are too bigittitain memory, known in the literature
as external-memonpor out-of-coreapplications, store their data on one or more disks. Several
of these applications make multiple passes over the dataremmach pass reads data from disk,
operates on it, and writes data back to disk. Compared witim-amemory operation, a disk-1/0
operation takes orders of magnitude 100,000 times) longer; that is, disk-1/O ishégh-latency
operation. Out-of-core algorithms often run on a distéolsmemory cluster to take advantage
of a cluster's computing power, memory, disk space, andWwatid. By doing so, however, they
introduce another high-latency operation: interprocessmmunication. Efficientimplementations
of these algorithms access data in blocks to amortize theo€assingle data transfer over the disk
or the network, and they introduce asynchrony to overlap4agency operations and computations.

FG, short for Asynchronous Buffered Computation Design Bndineering Framework Gen-
erator, is a programming framework that helps to mitigaterey in out-of-core programs that run
on distributed-memory clusters. An FG program is compoded jpipeline of stages operating
on buffers. FG runs the stages asynchronously so that spagisming high-latency operations
can overlap their work with other stages. FG supplies the doctreate a pipeline, synchronize
the stages, and manage data buffers; the user providesghtawvard function, containing only
synchronous calls, for each stage.

In this thesis, we use FG to tackle latency and exploit thdahla parallelism in out-of-core
and distributed-memory programs. We show how FG helps ugrdesit-of-core programs and
think about parallel computing in general using three ms¢s: an out-of-core, distribution-based
sorting program; an implementation of external-memoryisarays; and a scientific-computing

application called the fast Gauss transform. FG’s int@waatith these real-world programs is sym-



biotic: FG enables efficient implementations of these oy, and the design of the first two of
these programs pointed us toward further extensions for Féglay’s era of multicore machines

compels us to harness all opportunities for parallelisnhdhaavailable in a program, and so in the
latter two applications, we combine FG’s multithreadingatailities with the routines that OpenMP

offers for in-core parallelism. In the fast Gauss transfapplication, we use this strategy to realize
an up to 20-fold performance improvement compared with terradte fast Gauss transform im-
plementation. In addition, we use our experience with desggprograms in FG to provide some

suggestions for the next version of FG.
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Chapter 1

Introduction

1.1 Latency

The termlatencyis defined as the time between when an operation starts anditdwenpletes. Let
us look at some aspects of latency through an example basmmbkimg. Suppose you want to cook
vegetable stir-fried rice for 20 people for a potluck evekithough you volunteer enthusiastically,
you later realize that you don’t have a stockpot large endoglet the job done. After the initial
panic, you calmly analyze the task at hand, and you conclode 7.5 cups of raw rice will be
sufficient. With a two-cup rice cooker at your disposal, yall meed just four iterations. You also
realize that you have a good medley of frozen vegetableséodish and a skillet large enough so
that you can prepare enough vegetables for one iteratiothel30 minutes that you know it will
take for the rice to cook in each iteration, you grab the rigimount of vegetables for this much
rice from the freezer and wash them in two minutes, and yos aalother 10—12 minutes to prepare
them. After four such iterations, your job is done. In thexabexample, cooking rice takes a long
time to finish, i.e., it is a high-latency operation, whergathering the vegetables and preparing
them takes much less time, and so we can characterize thaw-daténcy operations.

We can make two more observations from the above exampk, &lthough you did not have a
stockpot large enough to handle all the cooking at once, golehough resources to break down the
problem and still finish the job in a reasonable amount of ti®econd, you realized that cooking
rice and preparing vegetables require independent resgausdich let you overlap these operations

so that the low-latency operations hid behind the highalateoperation. Surely, performing the



operations sequentially would have taken much longer.

1.2 Latency and parallel computing

As in everyday life, high-latency and low-latency opemasicoccur frequently in the computing
world. Mitigating the effects of high-latency operatioraong with exploiting the available par-
allelism in a program are the central themes of this thesisst,Het us look at the high-latency
operations that we might come across in a computer progmaouttof-coreapplications, the input
datasets are too big to fit in main memory; therefore, datdeesn one or more disks.Access-
ing data from disk takes approximately 10 milliseconds tmplete, which seems fairly fast, until
we compare this time with the 100 nanoseconds (approxiy)atieht it takes to fetch data from
main memory. Because a disk access takes about 100,000dinges than a main-memory access,
we characterize disk 1/0 as a high-latency operation andia-mamory access as a low-latency
operation.

Often, out-of-core applications work on datasets that aoebig to fit on the hard disk of a
single machine. In such situations, these applications &alvantage of the computation and disk
resources offered by the nodes of a distributed-memontariuDistributing the data and com-
putation across the nodes of a distributed-memory clusteally introduces another high-latency
operation: interprocessor communication, which typicilkes 1-10 milliseconds to complete. Be-
cause each node of a distributed-memory cluster has its @skradd its own memory, the nodes
can work concurrently on distinct pieces of data, i.e., we parallelize the computation across
the nodes. In addition to distributed-memory parallelisotlay’s era of multicore machines and
parallel-computing libraries also allows program desigre leverage the in-core parallelism in-

herent in an application.

1.3 Tackling latency

From our previous discussions, we can appreciate that wenedisce the effect of high-latency op-
erations in a program to achieve an efficient implementatimplementors of out-of-core programs

often employ three techniques to reduce the effect of Igtenaheir implementation.

1out-of-core applications are also known as external-mgrapplications in the literature.



1. Access data in blocksywhere the block size is small relative to the total input sixg large
relative to an individual data element. Usually, the bloideds such that many blocks can
fit in main memory. In our example, we cook two cups of rice aingetand not just one
grain. Similarly, during a disk access, we read or write @kblbat is many kilobytes (or even
megabytes) in size instead of a single data element. Usouk laccesses, we can amortize
the cost of transferring data from disk to memory. Likewhaing interprocessor communi-

cation, we transfer data in blocks from one node’s memorynagleer node’s memory.

2. Design algorithms to minimize the number of disk accessasetwork transfers. See the
survey by Vitter [56], for example, which describes many-ofitore algorithms that access
data in blocks while minimizing the number of such accesseted, the Parallel Disk Model

by Vitter and Shriver [57] is dedicated to the design of sugo@thms.

3. Overlap disk I/0 and interprocessor communication witlhnputation. Usually, when a pro-
cess accesses the disk or the network, it bidekel yields the CPU so that the CPU is free to
perform other operations. Hence, we can overlap disk I/Oigtiedprocessor communication

with in-memory computation.

In order to overlap operations, we introduce asynchronyuinpsogram, either by introducing
asynchronous I/O and communication operations in a sithggaded program or by having multiple
threads in our program, with each thread running a synclusfunction. In the first case, we have
to statically schedule the high-latency operations sottiet overlap with computation operations,
whereas in a multithreaded program, the operating syste@mically schedules the threads so that
when a thread blocks, the OS runs another thread that is teady. Both of these approaches are
cumbersome and error-prone to program, and the periphedal-eoften termedlue—required to

introduce asynchrony and access data in blocks is usuaigfaiad to the underlying application.

2The word “block” can serve both as a noun, where it means akclamd as a verb, where it means to stall. Unfor-
tunately, both grammatical forms of the word bear relevanoaur work; the intended meaning of an occurrence will,
however, be clear from its context. In this particular cagemean a chunk.

3And here, we mean to stall.



1.4 Using FG to tackle latency

In this thesis, we will use FG [14, 18], a programming framegkwfor pipeline-structured programs,
to mitigate the effects of latency in out-of-core prograr@hapter 2 describes the features of FG
in detail, but in short, FG provides the code to introducenakyony and manage data blocks.
Programmers use FG to model their out-of-core applicatiares pipeline of software stages, where
the programmer writes a simple, synchronous function fochestage. FG runs each stage of the
pipeline in its own thread, thus introducing asynchrony sprovides methods to circulate buffers
to hold data through the pipeline. In a nutshell, FG provitiegylue, leaving the tasks more relevant
to the actual application to the programmer. Initial paer$-G [14, 18] suggest that FG makes it
faster, simpler, and more efficient to implement parallelgpams.

We will look at how FG helps us design out-of-core programs think about parallel comput-
ing in general using three instances: an out-of-core,iligton-based sorting program; an imple-
mentation of external-memory suffix arrays; and a scientifimputing application called the fast
Gauss transform.

We have implemented an out-of-core, distribution-basetingpprogram using FG, which we
nickname “dsort.” Until dsort, all programs written usingFould be implemented efficiently
with a single pipeline on each node of a cluster. As Chapteill3etail, dsort exhibits disk 1/0
and interprocessor communication patterns that vary basdte input dataset. In particular, we
observed that in dsort, nhodes might send and receive daiffeatdt rates during interprocessor
communication, and that a stage might consume data fromreift streams at varying rates and it
might produce data at some other rate. Dsort’'s design remeints helped us introduce two new
pipeline structures in FG, disjoint pipelines and intetisgcpipelines, to handle the situations that
we just described. Chapter 3 will show how these new pipedingctures made it simpler to design
and implement dsort, while being efficient in practice. Weailldchave programmed dsort using
a single, linear pipeline, but doing so would have left a il portion of the asynchronous
programming burden on the user, which is against FG's piesi Furthermore, the stage functions
would have been unwieldy to program, which made us realiae FiG’s design at the time was
insufficient for implementing dsort.

FG works well for out-of-core sorting in a shared-memorytisgt too. Our implementa-



tion of out-of-core sorting in shared-memory using FG otftpens an implementation that uses
STXXL [20, 22], which is a library for out-of-core programs.

Disjoint and intersecting pipelines worked well for dsdmit we wondered whether the utility
of these pipeline structures would end with dsort. Our deuere quelled when we implemented
external-memory suffix arrays [29, 41] using FG. Suffix asraye useful in pattern matching, text
compression, and computational biology. Not only did we insersecting pipelines extensively
in this project, but we were also able to combine pipelinemore innovative ways than we did
for dsort. We were able to efficiently tackle latency usingeimive FG pipeline structures in this
external-memory algorithm. With FG taking care of the heduyy multithreaded code under the
hood, we had to write code only specific to the applicatione algorithm that we used for con-
structing external-memory suffix arrays is a recursive r@lym, the first such attempt using FG.
The suffix-array algorithm that we used was designed to wark single machine so that we did
not require any interprocessor communication, but we peréol almost 2 terabytes of 1/O for a 4-
gigabyte input size. In addition to handling disk 1/O effidiy and multithreading the code using
FG, we parallelized the in-memory computations to utilit¢hee available cores in the underlying
machine. We used OpenMP and the parallel library from libstd[40] for in-core parallelism.
This project also pointed us to an extension for FG, and #éatd how some existing FG features
might be redundant. Chapter 4 covers these points in moad.det

The fast Gauss transform (FGT) [27, 28] approximates-@ement sum aw: target locations
in O(m + n) time instead of the) (mn) time required for exact computation. The fields of com-
putational physics and computational finance, for exangskejnterested in such computations. Of
the two available methods for computing the fast Gauss ftvemsthat we came across, we have
implemented the algorithm using one technique, both inexharemory and distributed-memory
settings. The main challenge in the shared-memory implétien, which does not use FG, was
to identify ways to reuse costly mathematical computatiand to locate parallel regions in the
algorithm. The distributed-memory implementation regsimterprocessor communication, and so
we used FG to overlap communication with computation, intamdto applying the strategies that
we used in our shared-memory implementation. As in our saffigy implementation, we were
able to use OpenMP parallel regions in our stage functiongfoore parallelism. We also used

FORTRAN-based BLAS routines [7] for some vector computaioFG’s generic design allowed



us to combine multithreading with OpenMP and FORTRAN-basedines to speed up the run-
ning time by factors of up to 20 compared with an alternate m@plementation. This project
showed how we can also use FG stages as a signaling mecha@lsapter 5 elaborates on our

implementation of the fast Gauss transform.

1.5 Contributions of this thesis

This thesis uses the FG programming framework to overlap-latency operations with other
operations in out-of-core and distributed-memory apfibees. Although FG provides all the code
for multithreading an application, the onus of identifyiting available parallelism in an application

and coming up with a good pipeline design in FG lies with us.

1. While designing an out-of-core, distribution-basedtiagrprogram using FG (nicknamed
“dsort”), we identified ways to advance FG from supportingtjsingle, linear pipelines to
multiple disjoint pipelines and multiple pipelines thatdrsect at a common stage. Using
these new pipeline structures, we were able to implement dffaciently, despite its disad-

vantages of having dynamic 1/O and communication patterns.

2. Our implementation of out-of-core sorting in a sharedvyogy setting using FG is faster

by 9.6%—-16.3% (approximately) compared with arx$L -based implementation.

3. Our implementation of external-memory suffix arrays eiserd FG’s intersecting pipelines
in ways that had never been attempted before. The complexieginge structures that we
designed for this algorithm also performed well. For the firme, we implemented a recur-
sive algorithm using FG, and we used OpenMP along with FGlip fiilize all the cores of

a multicore machine.

4. We have implemented the fast Gauss transform in a digtdemnemory setting that uses
FG to overlap communication with computation. In this pobjeve used FORTRAN-based
BLAS routines for vector computation, and we used OpenMReverage the in-core par-
allelism offered by the algorithm. We saw speedups in rujpnime by factors of up to 20

compared with an alternate FGT implementation.



5. We have used our experience in designing out-of-corergnag using FG to extend FG with
additional pipeline structures. We have also identifiedes®i®@ features that might be redun-

dant, and thus can be removed from the next version of FG.



Chapter 2

FG Introduction

In this chapter, we recap the challenges of an out-of-casgrpm, followed by a description of the
FG programming environment. After elaborating on the basmponents of an FG program, this

chapter continues with some additional structural andnarogning features that FG provides.

2.1 Birth of FG

The survey by Vitter [56] covers a number of external-memamryut-of-core applications. The
input datasets of these applications are too big to fit in tagnrmemory of a single computer and
sometimes even that of many computers. Therefore, datdesesin one or more disks. Several of
these algorithms make multiple passes over the data, whehepaiss usually involves reading data
from disk to memory, performing some computation on it, amidimg the results of the computation
back from memory to disk. If the data is distributed across ribdes of a distributed-memory
cluster, a pass might also require interprocessor comrmatioic amid disk-1/0 and computation
operations. As we saw in the previous chapter, both disk H® iaterprocessor communication
are high-latency operations, which can strongly influeriee dverall running time. In order to
mitigate the effects of high-latency operations, impletoeof out-of-core applications resort to
two coding techniques. First, they access data in blocksnortize the cost of a single disk 1/0
or interprocessor communication operation. Second, thiegduce asynchrony to overlap high-
latency operations with other operations.

The two common ways to introduce asynchrony—using asymcu® I/O and communication



operations in a single-threaded application, and mudigimg an application—are both cumber-
some and error-prone to program. Furthermore, the glueshnvibénotes the peripheral code re-
quired to introduce asynchrony and access data in blockssually unrelated to the underlying
application. We note, however, that for the most part, thee glode is reusable across different
applications.

A closer look at some programs for permuting, sorting, an@is=ier out-of-core data [12, 15,
16] that use either of the asynchronous approaches revedlmany external-memory algorithms
share yet another property: that of a pipeline. A single pasisese algorithms exhibits a pipeline
structure, and operating this pipeline on a different ddtekbeach time (to exhaust the input)
completes the pass. Although the pipeline for a sorting namogdiffers from that for a permuting
program, the code that sets up and runs the pipeline for agramn will work for the other pro-
gram after a few minor changes. These observations helpa@fting FG [14] as a programming
environment for applications that fit the pipeline modelghelieving programmers of the burden

of writing the glue.

2.2 FG basics

An FG program is composed of a pipeline of stages, each ofhwikienapped to a user-defined
stage functiorwritten in C or C++. Because FG maps each stage to its owndhtka stages can
run asynchronously to overlap high-latency operation wiher operations. Since FG handles the
asynchrony, a stage function need only be a straightforaaed containing synchronous calls. The
user also specifies the number and size of buffers that shirgldate through the pipeline; these
buffers are referred to gspeline buffers Ideally, the buffer size should be the same as the block
size in outer levels of memory hierarchy. FG takes care afadlgt creating the buffers, directing
them through the pipeline, and ultimately destroying them.

To aid in the smooth running of a pipeline, FG adds two stagesurce stage at the start and
a sink stage at the end, to every pipeline, as shown in FigireThe source stage emits buffers to
the first user-defined stage in the pipeline, starting anmoenyd with each emission; FG associates a
round numberstarting from0, with each buffer. An FG stagacceptsa buffer from its predecessor

when it needs a buffer to work on; similarly, a stagmveys buffer to its successor when it is done



I stage } I stage p—>| stage?l—i{ sink

Figure 2.1: A standard FG pipeline comprising a source, a sink, and thitesr stages. Each black rectangle
represents a buffer. Where a buffer appears inside a stagestdge is currently working on that buffer.
Buffers in queues appear below the arrows between stagesarfdw from the sink to the source represents
how buffers are recycled.

working on the buffer. When a buffer reaches the sink, it ¢ycted back to the source stage to be
reused in the pipeline with a new round number. The last btdfgjo through a pipeline is called
the caboosegindicated by a flag. FG shuts down the pipeline when the sdbosaches the sink.

Although we have been referring to buffers traversing alipeit is actuallythumbnailsthat
go through a pipeline. A thumbnail contains a pointer to theua buffer, among other useful
information such as the round number and the caboose flag. d&@aims two queues, an incoming
gueue and an outgoing queue, of thumbnails per stage. FGemmpraccept _t hunbnai | call
from a stage by dequeuing the stage’s incoming queue; thbloaks if a stage’s incoming queue
is empty. Similarly, during @onvey_t hunbnai | call from a stage, FG enqueues a thumbnail in
the stage’s outgoing queue. The enqueue operation on a qiituenbnails never blocks because
each queue is big enough to hold the number of buffers thaspedfied by the user.

If the user knows beforehand the number of rounds for whiehpipeline should run, she can
specify this number during pipeline setup. For example, ay@m that reads and processes a
1 GB file using buffers of size 1 MB will need exactly 1024 roarid finish; the source stage will,
therefore, set the caboose on the buffer with round numb2B8.1&ometimes, however, the user
might know when to finish the program only at run time. Goingko our previous example, if we
do not know the size of the input file beforehand, we would moable to set the number of rounds
on the pipeline. The stage that reads data into a buffer wmitthpable of identifying the last buffer
when it reads the end of file marker. Therefore, the caboogbtmieed to be set by stages other
than the source stage. In order to accommodate such sitgak& provides a method that sets the
caboose flag on a thumbnail; that is, the caboose can be dut dliy th FG.

FG maps each stage to its own thread via calls to POSIX pthi@dd. Although the user does
not make explicitpt hr ead_cr eat e calls, she does provide the functions that the threads call.

Without FG, the burden of spawning threads, running them pipeline, and finally destroying

10



stage2 || stage5

stage3 ‘

’ source ’—»{ stagel ’—»{ FG_fork

> FGJoin’—>{ stage6’—>{ sink ‘

Figure 2.2: An example of FG’s fork-join pipeline structure. FG does spawn the stages named F&k
and FGjoin; the stages are shown only for illustrative purposestiiy pipeline setup, the user informs FG
that the pipeline should fork at stagel and join at stagetguspecific FG calls. Buffers and sink-to-source
connections are not shown in this figure.

them would be on the programmer; this work would be in additio that of managing buffers.
With FG, a user can concentrate on the specifics of the afiplicaithout having to worry about
writing the cumbersome and error-prone glue. A paper by @@n and Cormen [14] elaborates on

the details of this section and also shows the results ofus® for some out-of-core programs.

2.3 Additional FG features

Using FG, we can deviate from the linear pipeline structurd ereate pipelines with forks and
joins. We can even create pipelines to represent a DAG ateior a macro [14, 18].

Thefork-join construct in FG, shown in Figure 2.2, allows a pipeline tatslone stage and
merge later. FG feeds the multiple successors of a forkeg $taa round-robin manner; the user
can specify the order, first-come first-served (defaultpand-robin, in which a stage should accept
from its multiple predecessors.

FG allows pipelines wherein a stage may convey its buffeasiyoother stage, rather than to only
its linear successor, as illustrated in Figure 2.3, pravithat the structure of the pipeline represents
a DAG. The user need not tell FG in advance of the stage jungistie intends to make; a stage
can decide where to send a buffer on the fly. A stage can, tiretefonvey a buffer directly to the
sink instead of making the buffer go through the remainiragas in the pipeline. A user might
want to convey a buffer to the sink if she decides that it dagsantain useful data to work on.

In a subsequent chapter, we shall see that FG also allon@indjsjntersecting, and virtual
pipelines. How these structures came about and why theysafelwill be clearer in the context
of the material presented therein. An outline of FG is inclatgwithout a mention of these types

of pipelines, however. The FG tutorial [13] also discussesnmws, hard barriers, and soft barriers.
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Figure 2.3: A DAG pipeline structure in FG. Stagel can decide at run tinhetlver it wants to convey a
buffer to stage2 or stage3; the figure also illustrates hotagesmight decide to convey a buffer to the sink
stage. The thicker, gray arrows represent decisions taken éime; the user need not inform FG of the stage
jumps in advance.

An FG macrois usually composed of several stages and is similar to aatibe in a program. A
hard barrier splits a pipeline into two mini-pipelines by making surettbae part of a pipeline runs
completely before the other part. A stage is designataftbarrierif it must accept more than one
buffer per round to complete its work.

In addition to these structural features that help with progdesign, FG provides some features
that help during program implementation. Sometimes, aestaight require temporary space to
carry out its work. Consider a stage function that permubesdontents of the incoming data
buffer; if the permutation is not done in-place, the stagedseanother buffer to store the results
of the permutation. One approach for the user is to allocamaony at the beginning of the stage
function, carry out the stage function using this memory xsaespace, copy the results of the
permutation from the user-allocated memory to the pipdhumiger, and finally deallocate the user-
acquired memory before conveying the thumbnail. That is, @approach involves extra copying.
The other approach is for the user to utilize F@isxiliary thumbnailsthat have been designed
expressly for the purpose of providing temporary spaceagest that cannot carry out their work in-
place. During pipeline setup, the user can specify the nawftauxiliary buffers that she anticipates
using in her program; FG creates a pool with that many auyittaumbnails, which are in addition
to the pipeline thumbnails. FG destroys the auxiliary nsffduring pipeline shutdown. Auxiliary
buffers are always as big as the pipeline buffers, and a stafyee to accept as many auxiliary
buffers as it might require. As we saw in our example, the fiaallt of a computation might end
up in the auxiliary buffer, whereas it is the pipeline busfénat travel from one stage to the next. FG
aids in ensuring that correct data flows to the next stage dwiging a method to swap the buffer

pointers of a pipeline and auxiliary thumbnail. After swagpthe buffers, a stage can convey the
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same pipeline thumbnail that it accepted. The swap methadienpossible by FG’s thumbnalil
design, saves the user from having to copy the contents fnemadxiliary buffer to the pipeline
buffer. That is, auxiliary thumbnails are convenient arfceint to use.

The prototype of an FG stage function allogtsage parameterfor information from outside
to enter the pipeline. For example, a user can open an inpudiiore setting up the pipeline and
pass the file pointer as a stage parameter to the read stag®funFG also providethumbnail
parameterdo enable control information to flow from one stage to theegtthumbnail parameters

exist as part of the thumbnail.
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Chapter 3

Dsort: Out-of-Core Distribution-Based

Sorting Using FG

In this chapter, we present the design and implementatiaruobut-of-core, distribution-based,
sorting program on a distributed-memory cluster, nickréfigsort,” using FG. To lay a foundation
for dsort, we begin with the general idea behind distribvtiased sorting. Dsort begins with a
sampling step followed by two passes; the descriptions ol @ the two passes will introduce
us to new pipeline structures in FG. In pass 1, we will learougldisjoint pipelines in FG, and
pass 2 will acquaint us with FG’s intersecting and virtuglghine structures. These structures have
a cause-effect relationship with dsort; we conceived déhextensions to FG while designing dsort,
and these structures, in turn, enabled a much cleaner defsitgort than would have been possible

earlier.

3.1 Distribution-based sorting

Distribution-based algorithms form one of the major pagaw for out-of-core sorting, along with
merging-based and oblivious algorithms. A distributiaséd sorting algorithm for out-of-core
data usually comprises three or four steps. The input, sontaN keys, resides o nodes of a
distributed-memory cluster. The first step samples thetidata to selecP —1 keys, calledsplitters
Based on the splitter values, the second step partitioniaplinto P sets,So, S1...., Sp—1, such

that all keys in seB; are less than or equal to all keys in 8¢t 1; seti resides on the disk of node
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The third step sorts each partition, and the fourth stepnglémented, load-balances the output
among theP nodes of the cluster. Because the 1/0O and communicatioerpatgenerated by a
distribution-based algorithm vary depending on the datzetsorted, an implementation should be

robust against inputs that can lead to badly skewed pattéthese high-latency operations.

3.2 Dsort

We have implemented dsort in three passes. Pass 0 samplepub@nd selects splitters, which
pass 1 uses to partition the input. Atthe end of pass 1, eatdnguntains several sorted runs. Pass 2
merges the sorted runs to create a single sorted sequenti,adso performs load balancing and
creates striped output. We assume that the input confirascordst distributed onP nodes of a
cluster.

By “striped output,” we mean that it appears in the order dmed in the Parallel Disk Model
[57]. The records reside in fixed-size blocks, which aregaesd in round-robin order to the disks in
the cluster. If each node has one disk and the block siBe the firstB records reside on node 0’s
disk, the nextB records on node 1's disk, and so on; a block on nBde 1 is followed by a block

on node 0.

3.2.1 Pass 0: Selecting splitters

The preprocessing step selects a sePof 1 key values, known asplitters which are used by
pass 1 to partition the input. We find the splitters using gulhique ofoversamplingas done by
Blelloch et al. [8] and by Seshadri and Naughton [45]. Fronoagiits N/ P records, each node
selects a uniform random sample of sigzethe parametes is known as theoversampling ratip
and the records that form the sample are cati@ddidates Each node then sends the set ofsits
candidates to node 0, which collects e candidates and sorts them locally. TRe— 1 final
splitters are the records at rank2s, ..., (P — 1)s in the sorted list of candidates. Node 0 then
broadcasts th@ — 1 splitters to all other nodes.

This method of selecting splitters works fairly well if theput keys are nicely distributed, but

it can lead to unbalanced partition sizes if the input kegswithin a small range. In the worst

1A record consists of a key along with satellite data.
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scenario, all input keys might be equal, causing a singleodort allN records, which the node
might not be able to handle. In order to ensure mostly bathpeetition sizes for all types of inputs,
we extend each candidate’s key with two additional fields:rtimber of the node (0 tB — 1) that

the candidate comes from, and the candidate’s offset (9/tB — 1) within the node. With these
extensions, all keys are unique. During pass 1, we extertdreaord’s key in the same manner and
decide the record’s destination node by comparing its eeerkey with the splitters. The original
keys are extended only to decide a record’s partition dupisgses 0 and 1; the extended parts are
discarded immediately after the decision has been madbkatortly the original parts of the record

are ever stored in a buffer or on disk.

3.2.2 Pass 1: Partitioning and creating sorted runs

Pass 1 partitions th¥ input records intaP partitions using the splitters that have just been selected
and broadcast. Because fltle partition, fori = 0,1, ..., P—1, belongs to nodg, pass 1 distributes
the records to their destination nodes using interprocessmmunication. Each node stores its
partition, as several runs of sorted data, on disk.

Prior to envisioning the idea of disjoint pipelines in FG, gl intended for each node to run a
copy’ of the pipeline structure shown in Figure 3.1, to completgsga Assuming that a buffer can
hold B records, FG would run the pipeline fof/ P rounds on each node. Below, we outline the

work of each stage, per round, in the pipeline.

Read stage: Accept a buffet from the source stage, regdrecords from the disk into the buffer,

and convey the buffer.

Permute stage: Accept a buffer from the read stage and use the splittersoyie the buffer’s
records into an auxiliary buffer, such that all records hglng to the same partition appear
contiguously in the auxiliary buffer. Note that partitioizess may vary. Convey the buffer

after swapping it with the auxiliary buffer.

2Running “a copy of the pipeline on each node” means that eadk runs an instance of an FG pipeline using its
own copy of the FG library. On any node, FG is cognizant onlthefpipeline running on that node; FG, in and of itself,
cannot communicate between pipelines running on diffenedies. A user can, however, communicate data between
pipelines running on different nodes if she implements gesta participate in interprocessor communication, usiog,
example, calls to Message Passing Interface (MPI) funstion

3Recall that a stage actually accepts and conveys a thumbiisgh in turn, contains a pointer to the buffer. For the
sake of convenience, we say that a stage accepts a buffer.
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Figure 3.1: The pipeline structure for implementing dsort pass 1 usistpgle linear pipeline. The dashed
arrows between the communicate stages indicate interggsoceommunication. The figure shows a copy of
the pipeline on two nodes only for illustration purposesgémeral, there can be any number of nodes, each
running a copy of the above pipeline.

Communicate stage: After accepting a buffer from the permute stage, this stageililites the
records in each partition to their target node, and it aldlecis the records destined for the

node that it is running on.

In order to distribute the partitions to their respectivasta@tions, this stage sends two sets
of P messages. In the first set, this stage sends, to each nodwyrtter of records that it
should expect in this round from this node. The stage thedssalt the records that it has
belonging to partition to nodei, foralli = 0,1,..., P — 1. This stage also receives data

into the buffer until the buffer is full, before conveyingethuffer to the next stage.

Sort stage: Accept a buffer from the previous stage, sort the elemernttseifuffer, and convey the

buffer.

Write stage: Accept a buffer containing sorted records and write it té&di®nvey the buffer to the

sink stage.

Therefore, at the end of pass 1, each node contains sortedofuall records that belong to its
partition.

Let us now see why the linear pipeline model proved to be fitseiht for pass 1 to run smoothly,
some of our initial attempts at a solution, and how FG’s digjpipelines contributed to a much
cleaner implementation. In the discussion that follows wilkaddress the issues in the context of
nodei, and in one round, say, of the pipeline running on node

In the linear pipeline above, the communicate stage act®isabsender and a receiver. As
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a sender, the stagdwaysdistributes a buffer's worth of records in each round. As eeneer,
however, the stage might need to collect more or less tharfferbuvorth of data in each round.
How much data the stage receives in a round depends solehgangut data that is currently being
processed over all thB nodes.

Suppose that, in a round, the communicate stage receives feang records; the stage can
then proceed in one of two ways: either convey the partidligdfibuffer, or wait for the buffer to
fill up before conveying it. Because the buffer that the comitaie stage conveys will ultimately
be written to disk, conveying partially filled buffers is ffieient. It is, therefore, beneficial for the
stage to wait for the buffer to fill up. The next set of messdgeswever, might send more records
to nodei than the remaining capacity of the buffer. That is, in thesaound, we might also have
to prepare for the communicate stage to receive more thaffex’swvorth of records.

If the communicate stage receives more tRaecords in a round, it can store the fifistecords
in the buffer that the stage accepted. The stage must, howigwkextra buffers to stow away the
remaining records, and it must also ensure that these buffers get yede the sort stage. One
immediate thought was to solve the problem using FG’s aanyilbuffers, because auxiliary buffers
offer extra storage, and a stage can accept as many awhblidigrs as it needs. Just being able
to store the received data is not enough, however; we musbealsble to convey all the auxiliary
buffers that we accept. Using auxiliary buffers was not &laaolution for us for two reasons: first,
we can swap at most one auxiliary buffer with the incomindgdmufind second, we would not want
to swap the incoming buffer because it, too, contains receilata.

Because FG already provided auxiliary buffers, we came up wie idea of introducing
Pipeline/Auxiliary Transform buffers, or PAT buffers, irGE PAT buffers, as their name suggests,
would be capable of acting both as pipeline and auxiliarjessf That is, after using up the pipeline
buffer that came in, a stage could accept multiple PAT bsffiera round as auxiliary buffers, but
convey each of them as a pipeline buffer to the next stage.

PAT buffers offered a solution to the conveying problem thaxiliary buffers posed, but not

without introducing a few problems of their own. Becauseséhbuffers get injected in the middle

4Presumably, some of the other nodes were able to proceee nett round; node, however, is still stuck in round.

5In the worst case, the communicate stage on a node mighveeBgirecords.

6Elena Davidson also observed that the name was the same asditogyne character “Pat” in old Saturday Night
Live sketches.
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of the pipeline, they do not carry round numbérghich is a hindrance to stages that use the
round-number information in their implementation. Forrmyde, the read and write stages use the
round number to determine the file offset for reading andimgit One might argue that a stage
that accepts PAT buffers—the communicate stage in dsaréxfample—could coordinate with the
source stage to assign successive round numbers to biBfevirtue of the coordination, however,
the round numbers emitted by the source stage need not mebes®e consecutive, leading to
gaps in file offsets calculated by the read stage. In ordensare that both the source stage and
the communicate stage emit consecutive round nunfbeescould probably make the two stages
use separate counters for round numbers. Now, althoughphe file on a node will be read
completely, we run the risk of FG shutting down the pipelimenpaturely. By “prematurely,” we
mean that FG might shut down the pipeline before a node hahédiwriting its output. Let us
explore why. Given that our linear pipeline was set to runNgg P 8) rounds, the buffer with round
numberN/(PB) — 1 is the caboose. Even in the last round, the communicate stégle accept
PAT buffers and convey them after the caboose buffer, whitlhr@ach the sink stage before the
others. Thus, when the sink stage sees the caboose, it iblpasgt some PAT buffers are still
being processed by the sort or write stages. FG would, hawslret down the pipeline, oblivious
to the buffers that follow the caboose buffer. Thereforel Baffers provided a flawed solution.
From the above discussion, we notice that what is essgntedjuired is that in each round, a
stage should be able to send data at a different rate thaniet wheceives data. Restricted by
FG's single linear pipeline model, we tried to handle thedasg and receiving in a single stage,
which was clearly not ideal. If we could “split” the pipelimgto two pipelines at the communicate
stage, as shown in Figure 3.2, and run these pipelines aemtlyy each node would be able to send
and receive data at different rates. Based on these ohiseis/at G was extended to providesjoint
pipelinesthat can run independently, but concurrently, on each nadeser can now create multiple
linear pipelines and pass these pipelines to F@igline managerwhich takes care of running the
pipelines and shutting them down later. Each pipeline casebd¢o run for a different number of
rounds than the other pipelines, and it can have its own nuari sizes of buffers. Although the

pipelines run concurrently on each node, each pipeline waatits own speed, independent of the

7Only the source stage assigns round numbers to buffers.
8Note that, because the round numbers generated by the cdoateustage affect the offset in the output file, we
must ensure that these round numbers, too, are consecutive.
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Figure 3.2: Disjoint pipelines that were run in each node for implememtisort pass 1 using FG. As before,
a copy of the pipelines runs in as many nodes as requiredgthibxe figure shows only two nodes. Although
the two pipelines run concurrently on a node, each pipelmebe set to have a different number and sizes of
buffers and it can progress independently of the other jpipelThe dashed arrows represent interprocessor
communication; on each node, the speed of the send andequpélines is determined in part by the amount
of data sent and received.

other pipelines.

In dsort pass 1, we used the pipeline structures shown irré&igu2; we set both pipelines to
have the same buffer size. On each node, the “send pipelmelong enough to exhaust the input
on the node, and the “receive pipeline” ran until all recowtched their destination node and were
written to disk. The stage functions for the read, permubet, @nd write stages are the same as
in the single linear pipeline case, except that the permaggesextends each record’s key with the
node number and record number in order to decide the redangjet node. The send stage, as its
name suggests, participates in the sending part of the caiation; we use MPI for interprocessor
communication. In each round, the send stage sends twofs@tsressages as before; it tags the
messages in the first set as COUNISG, and those in the second set as DAWSG. In the last
round, the send stage sends an extra sdt afiessages (one to each node, including itself), each
tagged as a CABOOSHISG,; the send pipeline on a node uses these messages to iafcimn
receive pipelines to not expect any more data from that node.

The receive stage takes care of receiving the records that the node’s partition. After re-
ceiving the data that arrives by interprocessor commupoic#ito a pre-allocated temporary buffer,
we copy the data from the temporary buffer into a pipelinddsuiVhen the pipeline buffer fills up

(which could possibly be after several receive calls), wevey it to the next stage. Upon seeing
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the Pth message tagged as a CABOQBISG, the receive stage sets the caboose on the pipeline

buffer that it is currently using, and conveys the buffertte sort stage.

3.2.3 Pass 2: Merging sorted runs and creating striped outgu

On each node, pass 2 merges the sorted runs that were cregassi 1, and it load-balances the
output. As we did for pass 1, we first describe our initial e at implementing pass 2 using FG,
and then elaborate upon how the intersecting and virtualipip structures in FG led to a much
cleaner design and implementation.

Although our method of selecting splitters, combined witin key-extension trick, works quite
well, some nodes are still bound to end up with more recordbeir partition than others after
pass 1. That is, we were faced with the same problem of unexah @&nd receive rates among
nodes during the final load-balancing in pass 2. We now knat BG’'s disjoint pipelines can
handle this situation well. The only missing piece, of ceuis merging the sorted runs, for which
we decided at first to use a single stage, resulting in thdipgstructures as shown in Figure 3.3.
In these pipelines, the send, receive, and write stagesiwdinke same manner as they did in pass 1.
The merge stage, however, was to both read and merge sontediiny did we not have a separate
stage for reading the sorted runs? Note that the merge stqgees a block froneachsorted run,
at all times, in order to be able to create merged output. iBhathen the merge stage exhausts a
block from sorted rury, it cannot proceed until the next block from sorted fuhas been read. The
order in which blocks from various sorted runs will be consdnon a node are not predetermined.
Therefore, the read stage (if there were one) would not kmosdivzance the file offset from where
to read data. Although the read stage could read an init@kbfrom each sorted run and pass
these blocks to the merge stage, it would need constantdekdbom the merge stage to know
which succeeding blocks to read. Because only the merge &tamvs which data it needs next,
we decided to delegate the responsibilities of readingkislo¢ sorted runs from disk, and merging
them, to the same stage.

Again, limited by FG’s existing pipeline structures, we hadombine a high-latency operation
(reading sorted runs), and a computation operation (mgrgimted runs) in a single stage, which
affects performance. There seemed to be one promisingsofor decoupling the two operations:

in addition to the pipelines shown in the earlier figure, hagemany pipelines as the number of
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Figure 3.3: Pipeline structures illustrating our first attempt at impénting dsort pass 2 using FG. Disjoint
pipelines proved useful for the load-balancing phase o fasThe merge stage, however, was overbur-
dened with both reading and merging of sorted runs. As befbeedashed arrows represent interprocessor
communication.
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Figure 3.4: Our vision for pipeline structures for dsort pass 2 to disbtre reading and merging of sorted
runs. In this figure, there are as many vertical pipelinehasttimben of sorted runs after pass 1. The
merge stage is, therefore, commontp 1 pipelines. As we shall soon see, FG’s intersecting pipslimade

it possible for a stage to be part of more than one pipeline.

sorted runs, with each pipeline consisting of a read stagdirig into the merge stage. That is,
assuming that there asesorted runs, the merge stage would be common 4o1 pipelines, as
shown in Figure 3.4. If FG could support such a design, thd stage in each of the “vertical
pipelines” could take care of reading a block from the repecorted run and then feeding the
gqueue that sits between it and the merge stage. Let us nanvertieal pipelines ag, pa,...,
ps, starting from the left, and let us denote the pipeline ciimgj of the merge and send stages
asps+1. The merge stage would then operate as follows: in the fisstdof p;+ 1, the merge stage
would accept a buffer containing a small portion of a sortedfrom each of the vertical pipelines,
and it would also accept a buffer from the source stage;qf; to store merged data. After the
merge stage is finished with the last record in the bufferitratcepted fronp; (corresponding to

sorted runj), the merge stage would proceed only after accepting anbtifeer from p ;. When
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the buffer belonging te; .1 is full, it should be conveyed to the send stage. Therefarany round

of ps+1, although the merge stage would always accept a buffer from, it would accept buffers
from vertical pipelines only when necessary. That is, whid help of these additional pipelines that
intersect at the merge stage, we would be able to read aheadhrof the vertical pipelines using a
synchronous function. Each of thet 1 pipelines in Figure 3.4 could run at its own speed, similar
to disjoint pipelines.

In order to be able to put the above strategy in practice, F& exéended to provideter-
secting pipelineshat can converge at a common stage, and diverge later if immed stage that
is common to two or more pipelines is called iatersecting stage As with disjoint pipelines, a
user can create intersecting pipelines and pass them todit&bne manager. We overloaded the
accept _t hunbnai | method to take a pipeline numBeas a parameter so that an intersecting
stage can specify the pipeline from which to accept a buffer.

In dsort pass 2, each node runs the pipelines shown in Figdre Bor efficiency, the send
pipeline, also referred to g% earlier, uses much larger buffers than the vertical pipslinAll
vertical pipelines use the same buffer size, and as in pabs fgceive pipeline has the same buffer
size as the send pipeline. Because we knew that each sontéslas big as the buffer size that was
used in pass 1, we were able to set the number of rounds forveaiital pipeline. Similarly, each
node can set the number of rounds of the send pipeline basksl gartition size after pass 1; the
receive stage sets the caboose after receifimgessages tagged as CABOQOBIEG.

When we tried to test intersecting pipelines with a few heddsorted runs, the program came
to an abrupt halt. It turns out that the Linux kernel imposdsmit on the number of pthreads
that can run concurrently. Although the documented limguge high &1024), we found that, in
practice, an FG program with more than about 100 pthreads nimterun. Because FG maps each
stage, including the source and sink stages, to its owndhm@pipeline structure similar to that
of dsort pass 2 with hundreds or thousands of sorted rungawitth the system-imposed limit on
pthreads fairly quickly. For example, if dsort pass 1 resintL00 sorted runs for a particular dataset,
FG would spawn more than 200 pthreads in pass 2. Although pecexnost FG applications to
have only a few stages and, therefore, not to be hinderedebgttiread limit, we had at least one

application, dsort, which compelled us to think of a workard for the number of threads that we

9Pipelines are numbered, starting from 0, in the order in tviiey are passed to the pipeline manager.
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spawn.

We noticed that in Figure 3.4, all vertical pipelines hawedhme structure; also, the read stages
all have the same stage function: accept a buffer, read & biom the associated sorted run, and
convey the buffer. Therefore, we pondered about whethepulavbe possible to “squeeze” all read
stages into a single stage and, therefore, spawn only oeadlior all of them. There were at least
two immediate questions that needed to be answered withrigkeghread approach. First, how
would the read stage know which sorted run to read a block?r&@mcond, would there be multiple
buffer queues feeding into and going out from the read staBe®ause we introduced pipeline
numbers in FG to overload theccept _t hunmbnai | method, we decided that we could add the
same field to the definition of a thumbnail. That is, a thumbwaiuld now also carry information
about the number of the pipeline to which it belongs. Henbke,read stage could work with a
single incoming queue, because all the information thagtires would be carried by the pipeline
thumbnail. The merge stage, however, would need a sepa@ming queue for each sorted run,
as before, so that it can accept the next block from the somethat it has just exhausted. That is,
the read stage should have multiple queues going out from it.

When stages in multiple pipelines share the same stageidanthey can be designated as
virtual in FG. Each virtual stage runs in its own single thread. A lijgethat has a virtual stage is
called avirtual pipeline For example, the read stage in each of the vertical pipelt®ve could
be designated virtual, thereby making each vertical pieedi virtual pipeline. Therefore, FG will
spawn only a single thread for all the read stages, as shofigime 3.5. In order to create multiple
virtual pipelines in FG, the user first creates all the pipesi as usual; she then collapses the stages
that share the same stage function into a single stage ustmgake_vi rt ual call. Thatis, in
order to create the vertical pipelines above, the user wiingicreate the vertical pipelines in the
usual manner. Then, she would use theke_vi r t ual call to notify FG to collapse all the read
stages into a single stage. FG will, therefore, spawn onéy tbread for all the read stages. To
further reduce the number of threads that are spawned, R@sganly a single thread each for the
sources and sinks of all virtual pipelines; that is, FG makessources and sinks of such pipelines
virtual. Furthermore, only one buffer queue sits betweenstihgle sink and the single source of
virtual pipelines.

FG's intersecting pipelines and virtual pipelines enahledo implement dsort pass 2 cleanly
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source

Figure 3.5: Virtual pipelines used to implement dsort pass 2; the recpipeline for dsort pass 2 is not
shown. Each box represents a thread and each arrow is @esosith a buffer queue. All the read stages
in the vertical pipelines share a common thread, as do alidhece and sink stages. Although we have not
shown the arrows from the sink to the source stages, eachesstage has only one incoming queue.

and efficiently. A pipeline number field was added to the thoailts definition in FG; this field
provided useful information to the read stage, and it alsabksd FG to not have to overload the
convey_t hunmbnai | call. That is, the read stage makes the usuaivey_t hunbnai | call,
but under the hood, FG gleans the pipeline number informdtmm the thumbnail and enqueues it

in the correct outgoing queue.

3.3 Experimental results

We compared dsort with the FG-based implementation of aiobBobre, oblivious, sorting program
based on columnsort (“csort”) [38]. We found that dsort reignificantly faster than csort even
though the I/O and communication patterns for a given inpatpgedetermined in csort, whereas
the patterns of these high-latency operations are detedvatrun time in dsort. Our results are in
stark contrast to those obtained in a similar experiment bgudhry and Cormen [11] where the
authors compared implementations of dsort and csort tdatatiuse FG.

We also implemented shared-memory out-of-core sortingguBiG and compared the results
of our implementation with that of anTSxL-based implementation. ThergxL library [20, 22]
provides classes for data structures such as vectorssstaulf queues, and for algorithms such as
sorting, including when data resides on parallel disks omgles node. The library also supports

pipelining of operations to reduce /O [6, 22].
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Figure 3.6: The stages involved in a each pass of a four-pass implenmmntzftcolumnsort. The sort stage
accomplishes an odd-numbered step in each pass and the cicateland permute stages together complete
the even-numbered step corresponding to the pass. As ih éagh participating node runs a copy of the
above pipeline.

3.3.1 Columnsort

We now briefly describe the columnsort algorithm, and ourbi&Sed, three-pass implementation,
csort. Columnsort sort8 = rs records, where the input is interpreted asrax s matrix. The
numberr of rows is restricted to be even, the numbesf columns must divide, andr must be
at least2s?. The matrix is sorted in column-major order when columnsornpletes. Column-
sort proceeds in eight steps, where steps 1, 3, 5, and 7 aleaoh column individually. Each
even-numbered step performs a fixed permutation on thexn&tep 2 transposes the matrix and
reshapes it back to haverows ands columns; step 4 performs the inverse permutation of step 2.
Step 6 moves the bottom half of each column to the top half @inéxt column, and the top half
of each column into the bottom half of the same column. Thedpehalf of the leftmost column
is filled with —oo values and the bottom half of the new rightmost column isdillgth co values.
That is, step 6 shifts down each column fi2 positions; inversely, step 8 shifts up each column
by r/2 positions.

A four-pass implementation of out-of-core columnsort comb each odd-numbered step and
its consecutive even-numbered step into a single pass.idpass 1 performs steps 1 and 2, pass 2
implements steps 3 and 4, and so on. In each pass, each ndue adtister runs a copy of the
pipeline shown in Figure 3.6. In each pass, the read stags eeaolumn of the matrix into a buffer
and the sort stage accomplishes the appropriate odd-naethbep. The communicate and permute
stages accomplish the appropriate even-numbered stefhemdite stage outputs a column to the
disk.

Following the earlier implementation [11], in csort we camdd steps 5-8 of columnsort into
a single pass, to achieve a three-pass implementation. dheliservation is that in the four-pass
implementation, the communicate, permute, and write stagpass 3, along with the read stage of

pass 4, just shift each column down b2 positions. In csort, we eliminate one pass by replacing
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these four stages by a single communicate stage. Csort loasnportant properties. First, csort

is oblivious to the data values (except for the local sopst&ithin each node); therefore, its disk-
I/0 and communication patterns are predetermined. Sedmuhuse the communication steps in
csort correspond to highly regular permutations such asp@sing a matrix or sending half of
each node’s data to the next no@eeach node receives exactly as much data as it sends in each

communication step.

3.3.2 Observations

Having seen the details of distribution-based sorting &ode of sorting based on columnsort, we
can say that the distribution-based algorithm has one aagarand two disadvantages compared

with the columnsort-based algorithm [43]:

¢ Both algorithms make multiple passes over the data, wherle pass reads each record to
be sorted once from one of the disks in the cluster and wridek e=cord once to one of the
cluster’s disks. The distribution-based algorithm makely two passes to the columnsort-
based algorithm'’s three, and so the columnsort-basediddgoperforms approximately 50%

more disk I/0O.

e In each pass of the distribution-based algorithm, some s1aaight read or write differing
volumes of data, and therefore some nodes might read ormvate than the average volume
of data. In the columnsort-based algorithm, all nodes readnaite exactly the same volume
of data. Thus, the I/O time consumed by the most heavily ustdmla pass might be greater

in the distribution-based algorithm than in the columné@sed algorithm.

e The distribution-based algorithm’s 1/O and communicatogerations are determined only
dynamically, as the algorithms execution unfolds, themsaking it difficult to prefetch data.
The columnsort-based algorithm’s 1/O and communicatioerafions are known in advance.
Thus, the columnsort-based algorithm is more amenableddapping I/O, communication,

and computation than is the distribution-based algorithm.

19Columns are distributed among nodes in round-robin ordethat columns numbered i + P,i + 2P, etc.,
reside on nodeé.
1INote that pass 0 is a slight misnomer because we do not readezard in the input when selecting splitters.
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The question is whether the disadvantages of the distoimiiased algorithm are enough to out-

weigh its lesser I/O volume.

3.3.3 Experimental setup

We ran our experiments on a Beowulf cluster with 32 nodes,hoflmwe used 16 nodes. Each node
on the cluster has two 2.8-GHz Intel Xeon processors, 4 GBANRand a 36-GB Ultra-320 SCSI
hard drive. The nodes run RedHat Linux 9.0 and are connegted23Gbps Myrinet network. In
both programs, we use the C stdio interface for disk-I/O atitead-safe implementation of MPI,
ChaMPlon/Pro, for interprocessor communication. We diduse MPICH2 [42] because MPICH2
was not thread-safe at the time.

We compared dsort and csort with various key distributiamsiform random, all keys equal,
standard normal, and Poisson with= 1. For the input in which all keys had the same value, we
extended the keys as described in Section 3.2.1. In adddithese inputs, we ran the two programs
on a distribution designed to bring out poor performancesiord In this distribution, we designed
the keys so that communication is unbalanced in dsort paBadh time communication occurs in
pass 1, almost all the records go onlytout of the 16 nodes, with the remaining — ¢ receiving
very few records. The nodes that comprise the sgtwaries over time so that each node ultimately
receives its full share of records. We designed input thstiobns forg = 1,2,4,8, and16. In
each experiment, we sorted a total of 64 gigabytes of dat&jluited evenly among the 16 nodes.
In order to vary the volume of records that are sorted for timesamount of data, we used two
different record sizes in our experiments: 16-byte recéods total of 4 gigarecords, and 64-byte

records for a total of 1 gigarecord.

3.3.4 Results

Figure 3.7 shows the results for uniform random (averagexa thvee distinct input datasets), all
keys equal, standard normal, and Poisson distributionsealth case, dsort beat csort, taking
from 74.26% to 85.06% of csort’s time. The figure also illatds that dsort’s advantage of having
one fewer pass outweighs its disadvantages of having umtedd/O and communication patterns.

As seen from the results in Figure 3.8, dsort performedyfairéll even when it was run on in-
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Figure 3.7: Running time of dsort and csort on various input distribasiof 64 GB of data on 16 nodes.

puts devised to slow it down. For 64-byte records, dsort cotably beat csort for all values gt
For 16-byte records, however, csort outperformed dsorg fer 1, 2, 4, and8 and was slower only
for ¢ = 16. As we mentioned earlier, our results differ greatly frora tion-FG implementations
of dsort and csort that were compared in [11]. In this previsork, for 64-byte records, dsort was
slower than csort fog = 1,2, and4 and was faster fog = 8 and16.

The results of our experiments, although welcome, wererisimg to us because we expected
csort’s obliviousness to key values to work in its favor. @e bther hand, dsort’s performance
depends heavily on the disk-I/O and communication pattgemerated by the input keys. Having
one fewer pass than csort, however, seemed to prevail for. dso

We believe that the extensions to FG made a significant conimh to dsort’s performance.

29



18.27

18 4 1224 16.65
16 1459 14.94

14.48 15.13 14.62 14.90 \-

%
]
£
g
= 121 13.12
R
E‘J 8 ——dsort
é 6 csort
=
& 4
2 4
0
1 2 4 8 16
q
(a) 16-byte records
16
13.74 14.11 14.34 14,08 14.21
14 -
$ 12 11.29 TRE!
E 1051 1038 10.13
E 10 -
£
£ 8
'éb 64 csort
£ ——dsort
=
5 4
~
2 4
0 ‘ ‘ ; .
1 2 4 8 16

q
(b) 64-byte records

Figure 3.8: Running times of dsort and csort for 64-GB datasets desigsdshd inputs to dsort. In each
communication of pass 1, almost all the records go to groyt of the 16 nodes.

FG's disjoint pipelines allowed nodes to send and receivta dadifferent rates in pass 1, and
multiple intersecting pipelines support stages that coregsdata from one or more pipelines and
emit the results into a different pipeline at varying ratébus, using FG was a win-win situation
for us: we got better performance and each stage in dsortairsdimple to program.
Unfortunately, we were restricted to input file sizes of o4lB per node due to available disk
space in our cluster. Although a dataset of size 64 GB migithsamall, given many modern cluster
configurations, we believe that our results would also ektenarger inputs. In other words, the

dataset size is a limitation of neither dsort nor FG.

3.3.5 Shared-memory out-of-core sorting

We now compare our implementation of out-of-core sortinga@ingle machine using FG against

the external-sorting routine provided byL [6, 22].
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Our shared-memory implementation of out-of-core sortisgngl FG involves two passes; on
a single machine, we do not need to select splitters. In passe Implement a simple pipeline
with three user-defined stages—read, sort, and write—aiemultiple sorted runs on disk. Pass 2
merges these sorted runs to produce the final sorted outimgt inersecting pipelines, similar to
that of Figure 3.4, on a single node, where we replace the stag#d with a write stage. On a
single node, we do not require the receive pipeline showiénfigure. We use theort and
mul t i way__mer ge routines provided by the parallel library from bst dc++ [40] to parallelize
the sort and merge stages in passes 1 and 2, respectively.

The number of sorted runs could be a few thousand even forratedaput sizes such as 64 GB.
In pass 2, although we collapse all the read stages to a sitagie using FG’s virtual pipelinés,
FG still maintains a separate buffer queue for each sortedetween the read and merge stages
shown in Figure 3.5. In addition, each buffer queue requteswn semaphore. That is, despite
the savings offered by FG's virtual pipelines, we might flort of system resources to run the
program. Furthermore, using a single read stage for thaigsainsorted runs would be detrimental
to the program’s performance.

In our implementation, we use hierarchical merging to thwach problems. When the number
of sorted runs after pass 1 exceeds a certain limitksaye resort to hierarchical merging, wherein
we mergek consecutive sorted runs at a time, thereby creating lorggéedsruns, and we continue
this process until the number of sorted runs is at mtostOnce the number of sorted runs is at
mostk, we merge the sorted runs one last time for the final sortgoubuln general, if there are
sorted runs, we requirgog, r | — 1 passes to bring down the number of sorted runs to at indst
each pass, we merge all the sorted runs available from th@peepass in batches &fconsecutive
sorted runs at a time. To merge ahyconsecutive sorted runs, we use the same set of pipelines
as in pass 2, i.ek vertical pipelines containing read and merge stages andharieontal pipeline
with merge and write stages. In general, if there wesmrted runs before hierarchical merging,
there will be maxk, [/ k% 71-17) sorted runs after we finish all required passes of hieraathic
merging.

Before we set up and run the pipelines for pass 2, we first civbeither the number of sorted

12Recall that FG automatically collapses all the source stagel all the sink stages of virtual pipelines to a single
source stage and a single sink stage, respectively.
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runs, sayr, output by pass 1 exceeds If r > k, we finish executing all passes of hierarchical
merging to bring down the number of sorted runs to at nipsind then we merge these sorted runs
in pass 2. In our implementation, we #et= 60.

If the input is of sizeb bytes, and if we have to resort to hierarchical merging, tine@ach
hierarchical merging pass, we read and wéitbytes of data. Because each hierarchical merging
pass entails extra 1/0O, we engineered our implementatiopasé 1 to create longer in-memory
sorted runs, thus writing longer sorted runs to disk in aenaptt to restrict the number of sorted
runs to at mosk. We do not provide details here, but we refer the reader ttic®ed.4.2 for an
example.

We ran our experiments on a machine that has one quad-c8¢&H Intel i7 processor, 8 GB
of RAM, and a 1.5-TB, 7200 rpm, SATA 3-Gb/s hard drive. The hiae runs Fedora linux, re-
lease 13. We use theead andwr i t e system calls for unbuffered disk I/O. We compiled our
FG-based implementation, written in C++, using the g++#ctmpiler at optimization level O3.
We implemented a program to useXXL’s pipelinedsort routine for out-of-core sorting and
compiled it using g++ 4.4.4 (optimization level O3) antk&L version 1.3.0 with parallel pipelines
enabled, compiled in parallel mode.

We compared the two implementations on input sizes rangorg 8 GB to 128 GB, where we
doubled the input size successively. In all our experimentsused 16-byte records with 8-byte
random keys. We restricted all experiments to use 1 GB of RMM.used a block size of 4 MB in
the SrxxL code. In the FG implementation, we used a buffer size of 64 Mpass 1. In pass 2,
all vertical pipelines used a buffer size of 4 MB and the hamial pipeline ran with a buffer size
of 128 MB. Each pipeline was given as many buffers as the numibeser-defined stages in it.
This configuration allowed us to contain our memory usageitioinvl GB of RAM.

As Figure 3.9 shows, the FG-based implementation of shawe@dory out-of-core sorting out-
performed the $xxL-based implementation for all input sizes. Thex8L -based implementation
was approximately 10.6%-19.5% slower than the FG-basel@mentation. Each result represents
the average of three runs, where running times varied oigits} within each group of three.

Because we present our results in seconds, normalized ythber of gigabytes in the input,
we would expect to see an almost straight-line graph for bufflementations. On the contrary,

as Figure 3.9 illustrates, we see jumps in running times étih bmplementations starting at 64 GB
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Figure 3.9: Performance results for the FG-based ama8 -based implementations of out-of-core sorting
on a single machine. All results are presented in secondsyalized per gigabyte of input.

of input. Why do we see this jump in running times? By instrativg our code, we found that
although we never require more than one merging pass, wesdd te hierarchical merging when
processing input sizes of 64 GB and more, which we believéa@mgpthe increase in running time.
The I/O-volume generated by ther$xL-based code suggests thatx&L, too, follows a hierar-
chical merging approach in its sorting implementation. &woinput of sizeb bytes that requires
passes of hierarchical merging, both implementations aeidal of (2 + /)b bytes and write the
same amount. The number of hierarchical merging pagsesuld be different for the two imple-
mentations, however.

Therefore, an FG-based implementation of out-of-corerspgerforms well both in the shared-

memory and distributed-memory settings.
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Chapter 4

External-Memory Suffix Arrays in FG

4.1 Introduction

The suffix array [26, 41], which is the lexicographically tat array of the suffixes of a string, finds
applications in string matching, bioinformatics, and testnpression [10, 29]. For example, to find
all occurrences of a patte in a text7’, we could perform a binary search f8rin the suffix array
of T, because all suffixes that haveas a prefix will occur together in the suffix array Bf The
Burrows-Wheeler transform [10] requires sorting the aypkrmutations of a string; if we append a
character that is lexicographically smaller than all tHeeoicharacters to the end of the string, then
the problem of sorting cyclic permutations is equivalenthiat of sorting suffixes.

The suffix array is usually represented as an array of staitidices of the lexicographically
increasing suffixes. Let us denote the range of integers-1,..., ;7 by [i,j] and let[i, j) =
[i,j — 1]. We assume that we are interested in constructing the suffay @f ann-character
stringT = T[0,n) = tot1...t,—1 Over some alphabet. Fore [0,n), letS; = tititv1...th—1
denote the'th suffix of 7. Given any two suffixess; and S;, wherei, j € [0,n), we say that
S; < §; if S; appears beford; in lexicographic order. Then, the suffix arrdy1[0,n) of T is a

permutation of0, n) such thatSg 0] < Ssaf] < *+- < Ssap—1]-

4.1.1 Background

The suffix tree [29] of a string is the compact trie of all it§fiues. The suffix tree of a string of

lengthn over alphabek can be constructed i@ (n log |X]|) time andO(n) space, or usin@ (n|X|)
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time and space. Although suffix trees are useful in a widegarigpplications, their space-versus-
time tradeoff hinders their usability when the alphabet $&zlarge. In these situations, the suffix
array presents itself as a more practical data structurea fkang time, however, the only known
linear-time algorithm for constructing the suffix array aftang 7 was the lexicographic depth-first
traversal of the suffix tree df [29].

In 2003, Karkkainen and Sanders [33], Kim et al. [35], and &d Aluru [37] came up
with three different in-memory, linear-time algorithms donstruct suffix arrays. The DC3 al-
gorithm [33, 34] is a simple algorithm for constructing suffirrays, and it adapts to many
models of computation. In the external-memory model [56, e DC3 algorithm requires
O((n/(BD))logy p(n/B)) parallel I/Os andO(n logyy, g(n/B)) internal work, where: is the
number of characters in teft and D, B, and M are the number of disks, block size, and internal
memory size of a machine, respectively. We describe the DgeBithm in Section 4.2.

Dementiev et al. [21] have implemented the DC3 algorithm xtemal memory using
STXXL [20], which is based on the C++ Standard Template Library. [BOtheir paper, the authors
present the implementation of external-memory suffix armaging techniques such as doubling [2]
and doubling with discarding [17], in addition to the DC3a@ithm. By comparing the performance
of the algorithms on various inputs, the authors conclu@e tthe DC3 algorithm outperforms the
other techniques, both in terms of running time and the I/Dme.

The SrxxL library provides classes for data structures such as \&edtacks, and queues, and
for algorithms such as sorting, including when data resaeparallel disks on a single node. The
library also supports pipelining of operations to reduc2 6, 22], which is used extensively by
Dementiev et al. [21] in their implementation of externadmory suffix arrays.

This chapter describes how we implemented the DC3 algorftmsuffix arrays in external
memory using the FG programming environment. As we shall #ee DC3 algorithm can be
programmed efficiently using FG's pipeline structures. &ipents on real-world inputs and artifi-
cially constructed inputs demonstrate that FG as a softplateorm is well-suited for implementing
external-memory suffix arrays. We found that the FG-basgiementation of the external-memory
DC3 algorithm ran comparably to tha$xL -based implementation for all types and sizes of inputs

that we tested against.
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4.2 The DC3 algorithm

In this section, we describe the in-memory, linear-time REHrithm and provide pseudocode for
its external-memory implementation.

The DC3 algorithm assumes that the input is a stilhgf lengthn over the alphabefl, n].
The algorithm requires a few extra characters beyond thegtie string, for which it introduces a
character(), which is lexically smaller than all charactersfn That is, the algorithm assumes that
the input is a sequence ofintegers in the rangéto n, and that; = 0 for j > n.

The integer-alphabet requirement of the algorithm is noesBictive as it seems. Given a string
T’ = tyt; ...t,_, of lengthn over any alphabet, we can sort the unique charactefs,aissign a
rank to each character, and construct stfihgver the alphabdfl, »] such that; = rank(z/), for all
i € [0,n). Because the character ranks are order preserving, theafrsigffixes in7 and 7"’ is the
same.

Throughout this chapter, we will compare strings and chargaples lexicographically. We
will use the % symbol for the modulus operator, and the / symiiibdenote integer division. That
is, for anyi, we havel %3 =i mod3andi /3 = |i /3].

We will expose the details of the DC3 algorithm with the hefphe example string

0 12 3 45 6 7 8
TO,n)= m a | a y a | a m
with suffix arrayS4 = (5,1,7,3,6,2,8,0,4).
The set of position$i € [0,7n) : i %3 # 0} is called the set afample positionsand the suffixes
starting at these positions are callegimple suffixesThe remaining suffixes, starting at positions

congruent t® mod 3, arenonsample suffixeIhe DC3 algorithm proceeds in three steps:

1. Sort sample suffixes.Construct stringRy and R, such thatR, = ([titi+1ti+2] : i %3 =
k), fori € [0,n) andk = 1,2. Thatis, fork = 1,2, the characters oR; are triples
[tit; +1ti +2] Starting at positions such that %3 = k, fori € [0,n). LetR = Ry ® R, be

the concatenation a®; andR,. For our example string, we have

IMalayalam is a language spoken in southern India.
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index inT 1 4 7 2 5 8
character inR [ala] [yal] [amO] [lay] [ala] [mOO]
index in R 0 1 2 3 4 5

We define anonempty suffief R at position; in R to be all characters fromup to the first
character that contains(aor the end of the string. In our exampke above, the nonempty
suffixes starting at indices 0, 2, and 4 aleayal an0, an0, andal anD0, respectively.
Whenn %3 = 1, we include a charact¢000] at positionz in R;. Therefore, we are always
guaranteed to find a character containing ia R;. Note that, not counting the endifg,

the nonempty suffixes ak correspond to the set of sample suffixe§ofin Lemma 1 below,
we prove that the order of suffixes & is the same as the order of its nonempty suffixes.
Therefore, the order of suffixes & gives us the order of the nonempty suffixesiyfwhich

in turn gives us the order of the sample suffixe§ of

In order to sort the suffixes aR, the algorithm first sorts and ranks the unique characters
of R, where ranks start frorh. In our exampleR has five unique characters, which in sorted
order are [ala], [amO], [lay], [m00], and [yal]. The algdwib then constructs a new strirkj

by renaming each character fwith its rank as a character iR'. If all characters ofR’ are
different, we directly get the order of sample suffixes. @thge, the algorithm determines

the suffix array ofR’ recursively. In our example,

index inT 1 4 7 2 5 8
characterinR’” 1 5 2 3 1 4
index in R’ 0 1 2 3 4 5 ,

and we recurse. The suffix array Bf is SAg: = (4,0, 2,3, 5, 1); therefore, the list of sorted
sample positions of" is (5,1,7,2,8,4). Now that the order of sample suffixes is known,
the algorithm assigns a rank, starting framto each suffixS;, wherei € [0,n + 2], and it
denotes the rank of; by rank(S;). The ranks of suffixes at positiofs, n + 2] are set td,
andrank(S;), such that %3 = 0, is currently undefined and is indicated by For7 =

mal ayal am with n = 9, the ranks of suffixes at positiof@, 11] are shown below:
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[ 0 1 2 3 45 6 7 8 9 10 11
characteriir m a | a y a | a m 0 0 O

rank(s; ) 1 24 1 611350 0 0

2. Sort nonsample suffixes.Using the result of the previous step, we can sort the noneamp
suffixes by comparing tupleg;, rank(S;+1)). In our example,S3 < S¢ < Sp because

(a,6) < (1,3) < (m,2).

3. Merge the two sorted sets of suffixesfFork = 0, 1, 2, let us define set®;, = {i € [0,n) :
i %3 = k}. The algorithm defines the following comparison functionrfeerging the sorted

sets of sample and nonsample suffixes:

1 € Py, Jj € P S < Sj < (t,-,rank(S,-+1)) < (tj,rank(Sj+1)),
i€ Py, kePy : S;<Sp <& (ti,tit1,rank(S;42)) < (tk,tk+1,rank(Sk+2)),

Joke PrUP, : §; <S8 < rank(S;) < rank(Sg) .

For example,S; < S3 becausda,4) < (a,6); S¢ < S, becausd!,a,5) < (/,a,6), and
S5 < S becausd < 2. For the stringl’ = mal ayal am the sets of starting indices of the
sorted suffixes at positiorts 1, and2 mod 3 are{3, 6,0}, {1, 7, 4}, and{5, 2, 8}, respectively.
Upon merging these sorted sets using the comparison furnittit was just described, we get

SA = (5,1,7,3,6,2,8,0,4).

Here is the lemma that allows us to consider the suffixeR ofstead of the nonempty suffixes

of R when determining the order of the sample suffixe§ of

Lemma 1 For the stringR = R; © Ry, whereR, = ([titi+1ti42] : i € [0,n),i %3 = k) for

k = 1,2, the order of suffixes @ is the same as the order of nonempty suffixe®.of

Proof. We will use lower-case Greek letters to represent zero oeroontiguous characters &,
and lower-case English letters to denote a single charati®r Recall that each character &fis
a character triple of".

If all characters inR are unique, then the lemma is obvious, because then the fankudfix

(nonempty or otherwise) is determined by its first character
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We now handle the case whéhhas duplicate characters, i.e., there exist at least twixssif
in R with some common prefix. Lethp andacy be two suffixe$ of R with a common prefixy,
wherea has at least one character anet ¢. We will prove the lemma using three cases based on

whether the suffixes start iRy or R».

1. Both suffixes start in Ry. Let y denote the character iR, that contains @; recall thatR;
is guaranteed to have such a character. Then, we can rewgitsutfixesebf andacy as
ab81yR, andacs, yR,, respectively Now, abf < acy if and only if b < ¢. BecauseR, is
common to both suffixes, we are, in effect, comparing theaethe nonempty suffixes. That
is, if both suffixes start iR, the order of the suffixes & matches the order of its nonempty

suffixes.

2. Both suffixes start in R,. If both suffixesaebf andacy start in R,, then they automatically
correspond to the respective nonempty suffixes. Hencetlif fuffixes start inR,, the order

of suffixes of R gives the order of the nonempty suffixes.

3. One suffix starts in Ry and the other starts in R,. Without loss of generality, let us
assume thathf starts inRy; thereforepcy starts inR,. Let us rewritexbf asabdy ypacy,
where y is the character irR; that contains @&, andb and y might be the same. As we
noted in case 2, because sutfixy starts inR5, it is the same as its corresponding nonempty
suffix. The nonempty suffix akbf is abd; y. Becausexbp < acy ifand only ifb < ¢, and
because is part of the nonempty suffix efb8, we can say that the order of the suffixdss

andacy is determined by the order of the corresponding nonempfixesf [

Figure 4.1 gives the pseudocode from [21] for an externahorg implementation of the DC3
algorithm. Lines 1-8 carry out step 1 of the DC3 algorithrmds 1 and 2 create the set of (character
triple, position) tuples starting at sample positions aad the set lexicographically by the first
component. That is, at the end of line 2, all tuples with theesgharacter-triple occur together in
setS. The NAME procedure, for which we do not provide pseudocode, scan$, sessigns a fresh

name, starting from, to each new triple that is found, and builds &obf (hame, position) tuples

2Any two suffixes of a string must differ in at least one chagact
3In the new representation, it is possible foor ¢ to equaly. If b = y, then rewritaxbp asabR», and ifc = y, then
rewriteaxcy asacR5.
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DC3(T)
/I For all sample positions, store (character triple, pasjtioples in sefS
1 S ={T[i,i +2],i):i%3 # 0}
2 sortS by component 1
3 R = NAME(S)
4 if the names irR are not unique
/I Usei %3 as the primary key and/ 3 as the secondary key to sort the tuplegin

5 sort the(namei) € R by (i %3,i/3)

6 R’[0,2n/3) = (name: (namei) € R) /I build recursive input
7 SA12= DC3(R) Il recurse

8 R = ((j + 1,SA12/]): j €[0,2n/3))

9 sortR by the second component

10 So = {(ti, tis1. 7", 1", i) i %3 =0,(r",i +1),(r",i +2) € R}

11 Sy ={(r,t;.7",i):i%3=1,(r,i),(r',i + 1) € R}

12 S, = {(rti tiv1,r",i) i %3 =2,(r,i),(r",i +2) € R}

13 sortSy by components 1, 3 /I sort nonsample suffixes lyy;, rank(S;+1))

14 sortS; andS, by component 1 /I sort sample suffixes by rank

15 SA= MERGESy, S1, S2) using comparison function
,..)eSi1USH<(w,..)eS1US, © v=<w
(c,c’ u' u"i)ye So < (f. f'.x',x",j) e Se & (c,u') <(f.x))
(c.c’,u',u",i)ye So < (v,d,v',j)e S & (c.u') <(d, V)
(c.c,u',u",i) e So < (w,e,e',w’, k) e Sy, & (c,c’,u”) < (e,e,w")

16 return (last component of : s € SA

Figure 4.1: Pseudocode by Dementiev et al. [21] for the external-mernmopjementation of the DC3 algo-
rithm.

by replacing the character triple in each tuple of Sdiy its name. In lines 5-8, the pseudocode
checks whether the order of sample suffixes has been coypletermined, and then it recurses if
necessary.

Lines 9-16 implement steps 2 and 3 of the algorithm. Sg{sS;, and S, that are created in
lines 10—12 contain enough information to allow the s Eprocedure in line 15 to correctly merge
the sorted sets of sample and nonsample suffixes. Line Isate suffix array of the input as the
list of positions with lexicographically increasing suéis

The paper by Dementiev et al. [21] shows that the algorithFidgnre 4.1 can be implemented to
run using 3(sort(0n) + scangn)) 1/0s, where scan() and sortf) are the number of I/Os required
to scan and sort words of data, respectively. The authors use words of[$oge: | bits for inputs

of sizen. In the Parallel Disk Model [57], which assumes a machiné&witernal memory of size
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’ source’—»{ generatetuple#—»{ sort ’—){ write ’—){ sink ‘

Figure 4.2: Intersecting pipelines in FG to generate sorted runs ofréater triple, position) tuples starting
at sample positions.

M andD disks, each of which can be accessed in blocks of Bizzan{) = [x/(BD)] and sortf)

= (x/(BD))logpsp(x/B).

4.3 Suffix-array implementation in FG

In this section, we present the design of the FG pipelinectiras that we used to implement the
external-memory DC3 algorithm. We will associate our giped with the line numbers of the

pseudocode of Figure 4.1 that they implement. As we shafi see, our implementation comprises
a series of complex FG pipelines. We omit buffers and arrawsecting the respective sink and

source stages in all the figures in this section.

4.3.1 Generate character triples at sample positions and eate sorted runs

Lines 1 and 2 of the pseudocode generate (character tripdejgn) tuples starting at sample posi-
tions and sort them lexicographically by the first componsathat at the end of line 2, all duplicate
character triples occur contiguously in set In our implementation, we generate sorted runs of
(character triple, position) tuples starting at sampletjwoss, sorted lexicographically by character
triples, using the intersecting pipelines shown in Figug ¥hen the pipelines of Figure 4.2 finish,
we complete line 1 and part of line 2 of the pseudocode.

In the pipelines of Figure 4.2, the read stage accepts arydmafier from the source stage on its
pipeline, reads a buffer’'s worth of data from the input filegd @onveys the buffer to the next stage,
which generates tuples. Similar to the DC3 algorithm, weiassthat the input is a sequencenof

integers in the rangl, n]. We also assume that the size of the input file Ig/tes; we interpret each
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byte as arunsi gned char in C++, and we use the character's numerical value in the mash
character set as its integer value. In each round excepashehe, therefore, the read stage reads
as many bytes from the input file as a buffer can hold. Becawsénput sizen might not be an
integral multiple of the buffer size, the buffer read intdle last round might be only partially full.

The first stage along the horizontal pipeline, which gemsraiples, is common to two pipelines.
This stage accepts a buffer with input characters from tad stage along the vertical pipeline and
it accepts an empty buffer from the source stage along thiedmtal pipeline. By using a static
counter and the data in the vertical buffer, this stage fiksttorizontal buffer with (character triple,
position) tuples, starting at sample positions. Afterrilia horizontal buffer with as many tuples as
the buffer can hold, this stage conveys the buffer to the staxge along the horizontal pipeline and
accepts a fresh buffer from the source stage. When this sageonsumed all the data available
in a vertical buffer, it conveys the vertical buffer to thalsistage along the vertical pipeline and
accepts another buffer with input characters from the réages The last two stages, named sort
and write, along the horizontal pipeline, sort a buffer digiacter triple, position) tuples by the
first component and write a sorted buffer to disk, respelgtivitherefore, when the pipelines shown
in Figure 4.2 finish, we have sorted runs of (character triptsition) tuples, starting at sample
positions, available on disk.

In Figure 4.2, why did we require the stage that generatdgegup be an intersecting stage?
Could we have flattened the pipelines of Figure 4.2 into algjimear pipeline with the source,
read, generate tuples, sort, write, and sink stages? Naubedhe stage that generates tuples
consumes its input at a rate different from the rate at whiginaduces output. These rates differ
because the sizes of the input and output data types of the difier—the stage consumes input
characters and outputs (character triple, position) sugter example, an-byte buffer can hold up
to x input characters, but it can hold at mast7 (character triple, position) tuples, assumixgyte
position values. Hence, the stage cannot reuse the buéfeit hiccepts from the read stage to emit

(character triple, position) tuples, which it would havert@ase of a single, linear pipeline.

4.3.2 Merge sorted runs of character triples and name them

Before we proceed to name the character triples as requiréideb3 of the pseudocode, we must

merge the sorted runs of (character triple, position) siat we created earlier. We merge sorted
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|sourcg—>{ \# merge ¢ F——

Figure 4.3: FG pipelines to merge sorted runs of (character triple,tjprgituples and to generate sorted
runs of (name, position) tuples.

runs of (character triple, position) tuples and producan@aposition) tuples using the pipelines
shown in Figure 4.3. Assuming that the horizontal pipelih€igure 4.2 writes out: sorted runs
of (character triple, position) tuples, Figure 4.3 sheweertical pipelines with the read and merge
stages, one horizontal pipeline with the merge and namestamd one vertical pipeline with the
name, sort, and write stages.

Along all thec vertical pipelines with the read and merge stages, the rag ®n pipeling
reads a block from sorted run The merge stage, which is commondet 1 pipelines, accepts
a block from the read stage along each of ¢heertical pipelines, and it produces merged output
along the horizontal pipeline. Each buffer that the merggesttonveys to the name stage along its
horizontal pipeline lexicographically follows the preumbuffer that it conveyed.

The name stage, which is the other intersecting stage inpleénes of Figure 4.3, is common to
two pipelines. Along its horizontal pipeline, this stageeuts buffers containing (character triple,
position) tuples in globally sorted order. The name stagégas a fresh namestarting from1,
to each unique character triple and outputs (name, positigies to an empty buffer, which it
accepts along its vertical pipeline. Again, we chose to am@nt the name stage as an intersecting
stage because the rate at which it consumes buffers alomgritontal pipeline differs from the rate

at which it produces buffers along its vertical pipeline.

4The name of a character triple corresponds to its rank.
5The position value in each tuple the same as the second cempohthe corresponding (character triple, position)
tuple.
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For now, let us assume that the input does not require r@cyrghat is, we assume that all
tuples in setR, which is created using the name stage, have unique nameeefdie, the condition
in line 4 of the pseudocode will be false, which means that wiepnoceed from line 9 after the
pipelines of Figure 4.3 finish. Based on this assumption, evethe tuples in the buffers along
the last vertical pipeline of Figure 4.3 by their second congmt, i.e., by position. Hence, after
the pipelines of Figure 4.3 finish, we have sorted runs of @ggosition) tuples available on disk,

which when merged will produce the sorted geper line 9 of the pseudocode.

4.3.3 Sort nonsample suffixes

We continue with the assumption that the input does not reqeicursion, which means that we
skip over lines 5-8 and proceed from line 9. As we proved irtiSed.2, because s& has unique
names, it represents the suffix array of the sample suffixes.

The next step in the algorithm is to generate $gtsS¢, andS, and sort them (lines 10-14). In
our implementation, however, we do not generate threendisdets. Instead, we note that an element
from any of the set§y, S1, or S always contains the positiorin addition to at most two characters
and two ranks. Therefore, we generate a single set whoseelsmare a 5-tupleiz, /', r, 7', i); we
distinguish these identical-looking elements as beingifsetsSy, S1, or S» based on position.
For eachi € [0,n), setSy, wherek € {0, 1,2}, contains tuples with positions¥ 3 = k. We will
denote the single set containing these 5-tuples aSyset

Of course, we interpret the fields of the 5-tuple,t’, r,r’, i), differently for the elements of
setsSy, S1, andS,. For example, for an element of s& in setSy1», fieldst and:’ represent
the characters at positiorisandi + 1, fieldsr andr’ represent the ranks of suffixes starting at
positionsi + 1 andi + 2 (which have just been uniquely determined), and [0, n) represents a
position such that %3 = 0. For an element of sef; in setSy12, field r represents the character
at positioni, fieldsr andr’ represent the ranks of suffixes at positiorendi + 1, andi € [0,n)
represents a position such tha 3 = 1; field ¢’ is unused. Similarly, for an element of s&f in
setSo12, fieldsz and:’ represent the characters at positiorendi + 1, fieldsr andr’ represent

the ranks of suffixes starting at positiohsindi + 2, andi € [0,n) represents a position such

8In a later subsection, where we deal with inputs that reqeicarsion, we will see that, in fact, we do things slightly
differently in our actual implementation.
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Figure 4.4: FG pipelines to merge sorted runs of (name, position) tuafesto generate sorted runs of
setSo12. Each element of sefy1, is a 5-tuple(z, ¢, r,7’,i). We distinguish an element as being originally
from setSy, S1, or S», based on position and we sort the elements of s, using the comparison function
given in line 15 of the pseudocode.

thati %3 = 2.

After the pipelines of Figure 4.3 finish, suppose we hasgerted runs of (name, position) tuples
belonging to seik, which are sorted by position, available on disk. In ordecrate sefy;,, we
merge ther sorted runs to obtain sample suffixes sorted by positionendddo reading the input
file, as Figure 4.4 illustrates. The pipelines in Figure 4sb &reate sorted runs of s&§;,, thus
inherently completing lines 13 and 14 of the pseudocode.cBavenience, we have numbered the
r + 3 pipelines in Figure 4.4 and we will refer to them asto p, 4 3.

In Figure 4.4, the merge stage, which is common-+ol pipelines, merges sorted runs of (name,
position) tuples, which are fed to it along vertical pipekp; to p,, and it produces merged output
along horizontal pipeling, 1. The contents of the buffers conveyed from the merge staggal
pipeline p,+1, when taken in sequence, form the sortedises in line 9 of the pseudocode.

The second stage in pipeling,+1, which generates sefy12, is common to three
pipelines: p,+1, pr+2, and p,43. This stage accepts buffers with data along pipelipes
and p,+2, and it accepts empty buffers along pipelipg;s. The buffer that this stage accepts
along the horizontal pipeling,+; contains (name, position) tuples globally sorted by positi
and along the vertical pipeling,,, the stage accepts a buffer’s worth of input charactersghvhi
are read from the input file by the read stage. Using these uffers, this stage generates tuples

belonging to selSy1, and copies these tuples to the empty buffer that it acceptgyahe vertical
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Figure 4.5: FG pipelines to generate the final suffix array.

pipeline p; 4 3.
The sort stage in pipeling, 3 sorts the tuples in its incoming buffer using the comparison
function given in line 15 of the pseudocode in Figure 4.1. White stage in the last pipeline of

Figure 4.4 writes a sorted buffer of s&f;, to disk.

4.3.4 Merge sorted sets of sample and nonsample suffixes

The sorted runs of sy, must be merged, using the comparison function in line 15 géfe 4.1,

to create the suffix array df. Figure 4.5 contains + 2 pipelines, where is the number of sorted
runs of setSo12. Ther vertical pipelines in Figure 4.5 containing the read andgeetages and
the horizontal pipeline with the merge and generate suffiayastages work together to read and
merge the sorted runs of sS4, and produce the merged output along the horizontal pipeline
In Figure 4.5, the stage that generates the suffix arrdy obnsumes the merged output from the
horizontal pipeline and it produces the suffix array7oélong the last vertical pipeline. The write
stage in the last vertical pipeline of Figure 4.5 writes timalfindices representing the suffix array

of T to disk.

4.3.5 Recursion

So far, we have assumed that the input does not require r@cuid/e now handle the case when

the input requires recursion. Let us return to the pipelofdsigure 4.3, which merge sorted runs of
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Figure 4.6: FG pipelines to generate sorted runs of (character trigigitipn) tuples in a recursive phase.

(character triple, position) tuples and create sorted afiisame, position) tuple$ Earlier, we said
that the sort stage in the last vertical pipeline of FiguBesrts the tuples in each incoming buffer
by their second component. For the sake of simplicity, wepnasented the sorting criterion at the
time. Indeed, our implementation always assumes that thditoon in line 4 will be true, i.e., that
another level of recursion will be required, and so we soffielosi along the last vertical pipeline of
Figure 4.3 by (positions 3, position/ 3). We decided to use this sorting criterion because we expect
most inputs to require many levels of recursion. Hencer #fiee pipelines of Figure 4.3 finish, we
have sorted runs of (name, position) tuples available dx dikich when merged will produce the
sorted sefRR per line 5 of the pseudocode. The name component of the mezgelt of these sorted
runs gives us recursive input, which can be used for the se@ucall in line 7 of the pseudocode.

One of the benefits of pipelined programs is that we can avomecessary 1/0. As Figure 4.6
illustrates, in a recursive phase, we feed the merged odipdtly to the stage that generates (char-
acter triple, position) tuples. In Figure 4.6, the vertipgdeline with generate tuples, sort, and write
stages is similar in structure and functionality to the bonial pipeline in Figure 4.2. Although
pipelined programming helps us avoid unnecessary 1/0Osnyight wonder why we output the re-
cursive input to disk. We store the recursive input because it is also required \etée creating
setSp1z.

We finish sorting sef of (character triple, position) tuples and name them udiegpipelines

"Recall that these tuples belong to #ebf line 3 of the pseudocode.
8Notice the write stage in the horizontal pipeline in Figuré.4
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in Figure 4.3. We reexecute the pipelines in Figures 4.6 aBdidtil the recursion bottoms out. In
the last recursive phase, however, our default sortingrasit of (positiorgs 3, position/ 3) for the
last vertical pipeline of Figure 4.3 is incorrect, becausewill execute line 9 after checking the
condition in line 4, which will be false. Note that line 9 reas the tuples in sek to be sorted by
their second component. Therefore, we recreate sortedofuimame, position) tuples, consistent
with line 9 of the pseudocode, by running a simple linear lpie with read, sort, and write stages.
This pipeline reads the sorted runs of (name, positiong&@orts them by their second component,
and writes these freshly sorted runs to disk. When this tipgzeline completes, we have sorted
runs of (hame, position) tuples, sorted by their second corapt, which when merged will create
setR per line 9 of the pseudocode.

When the recursion bottoms out, and after we return fromarsae phase, we run the pipelines
in Figure 4.4 to create sorted runs of $g,. To generate the suffix array in a recursive phase,
we use the pipelines in Figure 4.5, but we insert a sort staferd the write stage in the last
vertical pipeline. This sort stage sorts each incomingdsudf (name, position) tuples by the second
component. Therefore, in a recursive phase, the write stafpeits sorted runs of (name, position)
tuples to disk; these sorted runs will be merged by the pipslin Figure 4.4 acting on behalf of
the previous recursive step. In a recursive phase, the fitagdon for the generate suffix array
stage outputs (name, position) tuples, with names staiitomg 1; the stage function converts each
position in the rangg0, 21 /3) to its corresponding mod3 or 2 mod 3 position of the previous
recursive step. When the pipelines in Figure 4.5 are usednergte the suffix array of the original
input, the stage function for the generate suffix array stagputs only the positions of the sorted

suffixes.

4.4 Implementation details

In this section, we outline some implementation decisibaswe made to engineer the performance

of our external-memory DC3 program.
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Figure 4.7: FG pipelines to read and merge sorted runs, followed by éunphocessing.

4.4.1 Hierarchical merging

Until now, we have seen that the implementation of the esfemremory DC3 algorithm frequently
requires merging sorted runs available on disk. In orderaegasorted runs stored on disk, we use
the pipeline structures shown in Figure 4.7, where the mgist ellipsis in the figure could stand
either for one or more stages following the merge stage iftnzontal pipeline or for additional
pipelines, or both (see Figures 4.3-4.6).

Often, the number of sorted runs could be tens of thousarefs fev a moderate input size of
half a million characters. Although FG'’s virtual pipelinegawn only a single thread for all the
read, source, and sink stages, FG still maintains a segdartiéz queue for each sorted run between
the read and merge stages shown in Figure 4.7. In additia, leaffer queue requires its own
semaphore. That is, despite the savings offered by FGisaligipelines, we fall short of system
resources so that the program grinds to a halt.

In our implementation, we use hierarchical merging to thwwach problems. When the number
of sorted runs exceeds a certain limit, #&gyve resort to hierarchical merging, wherein we merge
consecutive sorted runs at a time, thereby creating lorgyedsruns, and we continue this process
until the number of sorted runs is at mdst Once the number of sorted runs is at mbstwe
merge sorted runs and use the sorted output in the mannenshdwigures 4.3-4.6. In general,
if there arer sorted runs, we requir@log, r] — 1 passes to bring down the number of sorted
runs to at mosk. In each pass, we merge all the sorted runs available fromrindous pass in
batches ok consecutive sorted runs at a time. To merge /acpnsecutive sorted runs, we use the

pipelines shown in Figure 4.7, where just a write stage ¥adldhe merge stage in the horizontal

9We do not show the figure for this pipeline.
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pipeline, thereby creating a longer sorted run of size assuming that each sorted run was of
sizes before merging. In general, if there wergorted runs before hierarchical merging, there will
be maxk, [r/ k9% 1-17) sorted runs after we finish all required passes of hieraathierging.
Before we set up and run any of the pipelines in Figures 463-we first check whether the
number of sorted runs, say output by the previous set of pipelines excekd# r > k, we finish
executing all passes of hierarchical merging to bring ddwenriumber of sorted runs to at mast
and then we set up and run the current set of pipelines. Inmpkementation of the external-
memory DC3 algorithm, we sét = 40. In the interest of simplicity, we omitted these details hehi

describing our implementation in Section 4.3.

4.4.2 Create longer, in-memory sorted runs

If we have to resort to hierarchical merging, and if theorted runs reside in a file of sizebytes,
then in each hierarchical merging pass, we read and Wwhiges of data. Because each hierarchical
merging pass entails extra I/O, we engineered our impleatientto create longer in-memory sorted
runs, thus writing longer sorted runs to disk in an attempéestrict the number of sorted runs to at
mostk. The next paragraph details our approach.

For all pipeline sets shown in Figures 4.2-4.6, we can caletthe number of sorted runs, say
r, that will be written to disk before we begin executing theghines. Therefore, in our implemen-
tation, whenever we notice that> k£, we modify the pipeline structure such that longer sortex ru
will get written to disk. Figure 4.8 shows how we modify th@glines of Figure 4.2 to write longer
sorted runs to disk. In Figure 4.8, for each round along teieMertical pipeline, the merge stage ac-
ceptsn buffers along the horizontal pipeline and merges the casigfithese buffers into an empty
buffer that it accepts along the vertical pipeline. Thatfithe horizontal pipeline has buffer size
the last vertical pipeline has buffer sizes, which gets written to disk. Therefore, if the original
pipeline structures of Figure 4.2 would have produeesbrted runs, the pipelines of Figure 4.8
would write only[r/m] sorted runs to disk. We can make similar modifications to thelmes in
Figures 4.3—4.6 to write longer sorted runs to disk. In oyplementation, we set = 10. We have
noticed that this approach often helps us avoid hierartheaging before executing the next set of

pipelines.
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Figure 4.8: Modified FG pipelines from Figure 4.2 to create longer, inamoey sorted runs, thus writing
longer sorted runs to disk. Similar modifications can be madke pipelines of Figures 4.3-4.6.

4.4.3 Sortand merge stages

We parallelize the sort and merge stages in all pipelinefor the sort stage in Figure 4.4.

Note that all sort stages we have seen in this chapter imésaiviing tuples. In the sort stages
in Figures 4.2, 4.3, 4.6, and in the sort stage that gets sahdd between the generate suffix array
and write stages in a recursive phase in Figure 4.5, all $ugil@are the same sorting criterion, and
the rank of each tuple depends on a fixed set of fields of the.tdpierefore, we use parallel radix
sort, using 16-bit keys at a time, as the sort stage functionthlese sort stages. For example, let
us focus on the sort stage in Figure 4.6, which sorts a bufféct@mracter triple, position) tuples.
In our implementation, each character in the triple is a B2ddue of typeunsi gned i nt, thus
requiring six passes of radix sort through the buffer. Assgrthat a buffer holds (character triple,
position) tuples, 4;, b;, ¢;) fori = 1,2,3...,s, we sort the 16 least-significant bits of ajl in
one pass followed by the 16 most-significant bits ofcalin another pass. Then, we sort the 16
least-significant bits and the 16 most-significant bits bbain two passes and finally, we sort the
16 least-significant bits and the 16 most-significant bitalbf:; in the last two passe$. We use
OpenMP’spar al | el f or construct to parallelize each pass.

In the sort stage in Figure 4.4, however, any two tuples beamgpared could be from different
sets 8o, S1, or Sy); that is, the inter-tuple rank depends on which combimatibsets—of the six

possible combinations—the tuples belong to. Similarly,&oy two tuples belonging to the same

101n our code, whenever we use radix sort, we do not optimizéhfomost significant bits that remain zero and thus do
not contribute to the result of the sort. We admit that thiategy is less efficient both in time and space, but consideri
that our input sizes range from 16 MB to 4 GB, i.e., fraftf to 232 bytes, we are unlikely to benefit much from the
optimization for the input sizes that matter—512 MB and belo
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set, the fields of the tuple that participate in the sortingiion are different for each of the sefg,
S1, andS,. Therefore, we perform simple, comparison-based sortirsgtSy;,, which subsumes
the setsSy, S1, andsS,.

In all pipelines, we use theul t i way_nmer ge routine provided by i bst dc++to parallelize
the merge stages. Tl t i way _mer ge routine works in memory, but we want to merge sorted
runs available on disk, with only buffer-sized portions atk sorted run available in memory at
a time. Thus, to produce correctly merged output, we musirenthat none of the buffers run
empty during a single call taul ti way_ner ge. Therefore, we create partitions in the buffers
for all sorted runs such that we can merge the sum of the sizésese partitions in a single
call to the routine. Below, we give pseudocode for the partid the merge stage that uses the

mul t i way__mer ge routine.

MERGE.STAGE_.FUNCTION

.../l deleted code
while not all sorted runs have been fully exhausted
assuming non-empty sorted runs, lei;, m,, ..., m, denote the respective
maxima of the elements available in the buffers for the slonies

m' = min{my,my,...,m;} /I minimum of all local maxima
lets” be a block whose maximum elemenii$
rankm’ in all sorted runs except usingst d: : upper _bound()
calculater as the sum of the number of elements that can be merged frditoeks
before the current buffer of is fully consumed
7 callmul tiway_ner geto merger elements

/I current buffer for sorted rusf should be consumed now;

/I current buffers of some other sorted runs might also have beesumed

N -

o0k W

8 for each sorted run

9 if all elements in the current buffer for the sorted run havenlwmesmsumed
10 convey the buffer
11 if this sorted run has not been fully exhausted
12 accept another buffer along the respective verticallipipe

.../l more deleted code

We will explain the above pseudocode using an example. Asréig.9 shows, let us assume
that we want to merge five sorted runs and that we have a muffer'th of data available from each
of the sorted runs. Line 3 above defing’sas the minimum of the maximum elements of all buffers,
and let us suppose th&t = 2 in line 4. Figure 4.9(a) shows a possible scenario after wk w&
in the buffers from all sorted runs. For each sorted run, Haled region of its respective buffer

contains elements that equal at mast Then, we calculateto be the sum of sizes of all partitions,
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Figure 4.9: An example with five sorted runs to illustrate how we userthkt i way _mer ge routine. Each
vertical bar represents a buffer that is available in menprony numbers are shown just below the buffers. We
assume that in each buffer, the elements increase from ttenbof the buffer to the top. We calculaté

as in line 2 of the pseudocode. (a) The shaded region in edfdr bepresents the region of the buffer where
elements equal at most'. Because we assume that= 2, the buffer from sorted run 2 is fully shaded; the
maximum element in the buffer from sorted run 5 also happebet:’ and hence its buffer is fully shaded,
too. We calculate to be the sum of the shaded regions in all buffers, and wentdlt i way_mer ge on¢
elements. Afterrul ti way_ner ge returns, we accept new buffers for sorted runs 2 and 5, whoffers
were fully consumed in the most recent call to the routingTtie shaded region within each buffer represents
the portion of the buffer within which we should rank the nahbefore the next call taul t i way ner ge.

i.e., the sum of sizes of all shaded regions in Figure 4.9(&e 6 of the above pseudocode calls
mul ti way_rmer ge to merger elements. After the routine returns, we are sure to haveuroed

the buffer from sorted rur’, which we assumed equals 2. In our example, we also happen to
consume the buffer from sorted run 5, however. Therefong, 1i2 above accepts the next buffer
along the vertical pipelines for sorted runs 2 and 5, assgirtiat we haven't yet fully exhausted
either of these sorted runs. Now, we are ready for anothétacaul t i way_ner ge, so we can
restart from line 1 above. Because the maximum elementsedfuffers from sorted runs 2 and 5
have changed we resetn’ ands’ in lines 3 and 4, respectively. As Figure 4.9(b) shows, when w
rankm’ in all sorted runs in line 5, we should not use the portionsefhiuffers that we consumed

in the previous call torul t i way_rer ge. Then, we can continue as before from line 6.

4.5 Extensionsto FG

In this section, we describe an extension to FG that cametdbmu our original design of the
external-memory DC3 algorithm. We extended FG to allow ipldtsets of virtual pipelines to
feed into an intersecting stage. As we shall soon see, speling structures can prove useful in

some scenarios, but FG did not support them earlier.

1we accepted a new buffer along the pipelines for these souesi The buffers for sorted runs 1, 3, and 4 are
unchanged, and so are the maximum elements in these buffers.
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P1 P2 Pr Pr+2 Pr+3 Pr+a Pr+5

’SOUI’C# ’SOUI’C# ’SOUI’C# ’SOUI’C# ’SOUYC# ’SOUYC#
Y Y * Y

read read | | read read
sorted run 1 |sorted run 2 |sorted rurr input file
Y Y Y Y Y vy
Pre1 [SOUrCE->| merge > generat&,, S;, S, > sink |

Y Y Y vy
| sink | | sink | - ’sorJSo‘ ’soitsl‘ ’soltsz‘

| write | | write | | write |

Y
’ sink‘ ’ sink‘ ’ sink‘ ’ sink‘

Figure 4.10: FG pipelines to merge sorted runs of (hame, position) tuphesto generate sorted runs of
setsSy, S1, andsS,.

We return the reader’s attention to the pipelines of Figude Which generate sorted runs of
setSp12 (recall that each element of s§§;, represents an element from one of the s&ts.S,
or S). Figure 4.10 shows our original design for generating $gtsS;, and S,. Earlier, we
generated three distinct sets, using 5-tuples for elenoésetsS, andS, and a 4-tuple for elements
of setS; (see lines 10-12 of the pseudocode in Figure 4.1). Most aleleription for the pipelines
in Figure 4.10 is similar to that of Figure 4.4. Here, we byieféscribe the working of the last three
vertical pipelines of Figure 4.10. The stage that generagslSy, S, andS, accepted an empty
buffer from each of the last three vertical pipelines anddithem with tuples of sefs, S1, andS;,
respectively. The sort stages in pipelings.s, pr+4, andp, 5 sorted a buffer of sefy, S1, andSs,
respectively, and the write stages along these pipelinetevaut the sorted buffers to a distinct file.
That is, earlier, we used a separate file to store the sortedafueach of the three sets.

In order to merge the sorted runs of séts S;, and S, to obtain the sorted sets of sample
and nonsample suffixes and hence create the suffix arrdy, @fe used the pipelines shown in
Figure 4.11. Assuming that the pipelines of Figure 4.10 tpeedr,, r1, andr, sorted runs of
setsSy, S1, andS,, respectively, Figure 4.11 shows + r; + r2 + 4 pipelines. Pipelinepg o
to po.r, (pipeline numbers are shown in the figure) read and mergeotttedsruns of sef, and
produce the merged output along pipelipgo. Similarly, the results of merging the sorted runs
of setsS; andS, are output along pipelinesg; o and p, o, respectively. In Figure 4.11, the stage

that generates the suffix array Bfis a 4-way intersecting stage: it merges the incoming datagal
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roruns ryruns rpruns

Po,1 Po,2 Po.ro P P12 P P21 P22 P2
|sourceé [source - [source [source [source - -+ [source [sourceé [source - -+ [source
[ read] [read] - - [read] [ read] [read] - [ read] [ read] [read] --- [ read]
Po,0 Pro P20
[source—>] merges, [source—>| mergeS; |source—>{ merges,
[sink | [sink | --- [ sink ] [sink ] [sink ] --- [ sink ] [ sink | [ sink] --- [ sink ]
Pro ‘sourc#—»‘ generate suffix array ’—)‘ write ’—)‘ sink ‘
v v

Figure 4.11: FG pipelines to generate the final suffix array in the origitedign. We assume that there are
ro, 1, andr;, sorted runs of set§,, S, andsS,, respectively. Starting from the left, we can say that tteeee
three groups of vertical pipelines; in each such groupgtlieone horizontal pipeline with the merge stage
and the stage that generates the suffix array, and some nofmlaatical pipelines with the read and merge
stages. Therefore, we number pipelines using the group euartd the pipeline number within the group.
There arery + 1 pipelines in the first group, with pipeline numb&x$ to 0, r, there are;; + 1 pipelines

in the second group, with pipeline numbét9) to 1, r,, and there are, + 1 pipelines in the third group,
with pipeline numberg, 0 to 2, r,. For consistency, the horizontal pipeline with the writegst is assumed
to have pipeline numbey, 0.

pipelinespo.o0, p1,0, andps o using the comparison function shown in line 15 of the pseadec
and it produces the suffix array @t along pipelineps . The write stage in pipelings o of
Figure 4.11 writes the final indices representing the suffiayaof T to disk.

Figure 4.11 shows three sets of virtual pipelines, each alaloutput feeds into an intersecting

stage. We extended FG to allow such pipeline structures.

4.6 Experimental results

In this section, we compare the performance of our FG-basgdementation of the external-
memory DC3 algorithm with that of theT& XL -based implementation by Dementiev et al. [21].
We ran our experiments on a machine that has one quad-c8¢&H Intel i7 processor, 8 GB
of RAM, and a 1.5-TB, 7200 rpm, SATA 3Gb/s hard drive. The nmaehruns Fedora linux, re-
lease 13. We use theead andwr i t e system calls for unbuffered disk I/O. We compiled our
FG-based implementation, written in C++, using the g++#ctmpiler at optimization level O3.
We contacted the XxL implementors for the latest version of their suffix-arrageand compiled
it using g++ 4.4.4 (optimization level O3) and$xL version 1.3.0 with parallel pipelines enabled,

compiled in parallel mode.
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We compared the two implementations using various typesipifits: an input comprising
an (n/2)-length random string concatenated with itself (we refethie input as Random?2), an
input with all characters equal, human genome data [24], Guténberg text [30]. We gener-
ated the first two types of inputs, and for the latter two types downloaded the input instances
used in the $xxL implementation [21], which are available at http://aldbXit.edu/dementiev/
esuffix/instances.shtml. For each type of input, we ran botfiementations on input sizes ranging
from 16 MB to 4 GB, doubling the input size successively. Thexmimum input size for Guten-
berg and human genome inputs was approximately 3 GB, howaigerestricted all experiments to
use 1 GB of RAM. We used a block size of 4 MB in thexXL code. In the FG implementation, all
pipelines that had a read stage used a buffer size of 4 MB, lanthar pipelines ran with a buffer
size of 32 MB. Each pipeline was given as many buffers as thaben of user-defined stages in it.
This configuration allowed us to contain our memory usagliwit GB of RAM.

As Figures 4.12(a)—(d) show, the FG implementation of thtereal-memory DC3 algorithm
performed comparably to ther8xL implementation for all types of inputs and for each inpuesiz
As the figures show, the FG implementation is always faster fo 23!, and it is almost as good for
the biggest input size, which is 4 GB in the random2 and altattars equal input types and 3 GB
in case of Gutenberg and human genome inputs. The runnires tohthe two implementations
were approximately within 5%—-37% of each other. Each respitesents the average of three runs,
where running times varied only slightly within each grodploee.

Because we present our results in microseconds, normdligdgtie number of bytes in the
input, we would expect to see an almost straight-line graghbbth implementations. On the
contrary, as Figures 4.12(a)—(d) illustrate, we see jumpsunning times for all types of input,
for both implementations. In the FG implementation, we $essé jumps for input sizes 1 GB
and beyond, whereas in the<L implementation, we see these jumps from 256 MB onwards.
Why do we see this jump in running times? By instrumenting aate, we found that although
we never require more than one merging pass, we do resoretartihical merging a number of
times when processing input sizes of 1 GB and more, which viegeexplains the increase in
running time. The paper by Dementiev et al. [21] suggestsSinaxL, too, follows a hierarchical
merging approach in its sorting implementation; perhaps3txxL -based implementation of the

DC3 algorithm also requires many one-pass or multi-pasgesestarting at 256 MB.
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Figure 4.12: Performance results for the FG-based am#)8 -based implementations of the DC3 algorithm.
All results are presented in microseconds, normalized pier &f input.

For ann-character input that requireslevels of recursion, our implementation reads a total of
approximately(38n +96n(1—(2/3)?)) < 134n bytes and writes the same amount plus anaher
The effect of hierarchical merging defies analysis, andefloee, these base expressions for the
total volume of data read and written do not account for I/Quized by hierarchical merging. We
measured the 1/0 volume due to hierarchical merging in ourd@a?2 runs, however, finding that
the additional volume ranged betwexh5% and67.9% of the values given by the base expressions.

The dominant computation time for each pipelingié: log B), whereB is the buffer size.

4.7 Conclusions

In an earlier paper [43], where we used FG’s intersectingljpips for external-memory distribution
sort, we speculated that we would be able to use intersepipglines in the design of external-
memory algorithms other than sorting. Indeed, this progEmnonstrates that not only can we

combine FG's intersecting pipelines in more innovative svihan we did for distribution sort, but
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also that these pipelines are efficient in practice, as querxents reveal. Most of the pipelines that
we saw in this chapter are more complicated than those wemgaited for out-of-core distribution
sorting.

The DC3 algorithm presented us with interesting design amplémentation opportunities.
FG's design enabled us to reuse stage functions for stagsasuread, sort, and write across
different pipelines, with slight changes in function paeers. The FG-based implementation of
the DC3 algorithm ran comparably to that of thexXL-based implementation, which, too, is a
well engineered implementation.

As we saw in section 4.5, our original design of external-ragnsuffix arrays also offered the
idea of extending FG to allow multiple sets of virtual pipels. Such pipeline structures can be
useful when we wish to merge sorted runs of a limited numbeliftérent types of data, with each
of their outputs feeding into other stages.

The pipelines in this project, which are implemented usi@Jersion 1.4, also proffered ideas
for some design features for FG’s next version. We realihatl duxiliary buffers might be redun-
dant, after all. Whenever a stage requires auxiliary bsiffele could make it an intersecting stage
with the source stage feeding it a pipeline buffer that tlgetcan use as an auxiliary buffer. In
the current version of FG, auxiliary buffers in a pipeline agstricted to be of the same size as the
pipeline buffers flowing through the pipeline. Our latessida idea for replacing auxiliary buffers

will not bind their size based on other buffers.
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Chapter 5

Fast Gauss Transform

5.1 Introduction

The discrete Gauss transform at a target poirt R? due ton source points; € R¢ for j =

1,2,...,nis defined as

n
gty =Y eI (s)) (5.1)
j=1
whereq(s;) for j = 1,2,...,n is a charge distribution function defined at theource points,

|x — y| is the Euclidean distance betweemndy, ands > 0 is the Gaussian parameter.

In many disciplines such as computational physics [39, 88,domputational finance [9], com-
puter graphics, and machine learning [23, 36], we are istedein computing transformations of
the form shown in equation (5.1) at target locations; fori = 1,2,...,m. We can evaluate the

sum ofn Gaussians ai targets using a matrix-vector product

g=0Gq,

where we define the matri& and the vectorg andg as

Gij = o1t/ 12/8 for i = 1,2,....mandj = 1,2,...n, (5.2)
q;j = q(sj)forj=12....n,
g = g)fori=12,....m.
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Given the sources, targets, charges at the sources, andatlssi@n parametdr, constructing
the matrixG of Gaussian interactions and computing the matrix-veatodyctG g requiresO (mn)
time, which becomes prohibitive for large andn. The fast Gauss transform (FGT), introduced
by Greengard and Strain [27], reduces the time complexigvafuating equation (5.1) at target
locations toO(m + n). The authors were able to improve the running time by apprating the
Gaussian shown in equation (5.1) by using a truncated Herexpansion, where the truncation
point depends on the required precision. That is, the fass&aansform computes approximate
values, albeit with high precision.

Later, Greengard and Sun [28] replaced the Hermite expasgicthe fast Gauss transform with
plane-wave expansions, without changing the asymptotining time of the transform. In fact, in
this new version of the fast Gauss transform, they were ables¢ a sweeping algorithm, which
drastically reduces the running time of one of the componasiieps.

In this chapter, we present our implementation of the plaaee version of the fast Gauss
transform, both in shared memory and in distributed memd@gcause the distributed-memory
implementation requires interprocessor communicatianuse FG to help us overlap communica-
tion with computation. We compare the performance of oudémgntation against a distributed-
memory implementation by Sampath, Sundar, and Veerapjhéhi Experimental results show
that under certain assumptions that hold for both impleatents, our implementation outperforms
the other implementation. We begin by introducing the Hegrand plane-wave versions of the fast
Gauss transform in Sections 5.2 and 5.3. Section 5.4 osttiome performance improvements for
the FGT steps described by Spivak, Veerapaneni, and Gneefgd. Section 5.5 discusses some
obvious but useful observations that we made to improvemapteémentation, and Section 5.6 de-
tails our shared-memory and distributed-memory impleat@ris. The final sections of this chapter

present our experimental results and offer some concluginarks.
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5.2 Hermite version of FGT

Greengard and Strain [27] approximate the Gaussian fieldtatgets due to a source, in one

dimension, as a Hermite expansion

g(t) = 710/ = §°

where

hi(x)
Hy (x)
Hi(x)

Ho(x)

Hy (x) andhg (x) are the Hermite po

centered at a pgint

o0

1 (s—s0 k t— 8o
k:(ﬁ(ﬁ) (5 &)
e_szk(x) , (5.4)

2xHp—1(x) = 2(k = 1) H—(x) ,
2x

1;

lynomials and the associated Hermiteifums; respectively.

For multidimensional FGT, we can split tlledimensional Gaussian into the producidobne-

dimensional Gaussians.fs € R?, then

e—\t—S|2/5 e(—(tl—Sl)2—(t2—S2)2—"'—(td—Sd)z)/5

e—(t1—31)2/5 ,e—(12—32)2/5 ,,,e—(td—Sd)2/5 )

(5.5)

The authors describe the higher-dimensional analog oftinuéb.3) using multi-index nota-

tion. For any multi-indext = («;, a2, ..., ag) and anyr € R4, define

la| = ar+ox+--+ag,

a! = aplay! --ag!,

o — o] 02 oq

1 = g (5.6)

If pis an integer, we say that > pifa; > pforl <i <d,andthate < pifa; < p
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for 1 <i < d. The multidimensional Hermite polynomials and Hermitediions are defined as

Ho(x) = Ha(x1) Hoy(x2) -+~ Ha, (xq) .
ha(x) = e P Hg(x)

= o CTFEED (1) Hay (¥2) -+ Ha, (xa)

= (7 Hy, (x1)) (€7 Hay (x2)) -+ (¢ ¥4 Hay, ()

= g, (x1) hay(X2) -+~ he, (xg) , by applying equation (5.4) (5.7)

Using equations (5.5), (5.6), and (5.7), Greengard andrStheow that

—\t—s|2/8: i S — S0 « r— 35S0
‘ () =) 9

a>0

Greengard and Strain [27] prove thahif sources lie in a bo® with centers g and side length/s,
and if ¢ is a target point in a box" with centerzc, then the Gaussian in equation (5.1) due to the

sources in boxB can be evaluated using the Hermite expansion

_ B
) = ZRﬂ(’JgC) ,

B=0

where

)8l _
R = S Lehann (M)

a>0
Np o
12 Sj —SB
Aa = aj:lqj( NE ) ’

with a suitable error bound for truncating the series afteterms. In the above equationsand
are multi-indices. In later equations for the Hermite vansiwe will suma andg up to p.

With this background, we are ready to look at a simple, fagtrithm for evaluating

n
Clf—e ]2
gt) =) e iy,
j=1
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at m target locations inO(m + n) time, as given by Greengard and Strain [27]. The required
precisione determines the variable, which denotes the number of expansion terms for the Hermite
expansions. The authors assume that the sourcesid targets; all lie in the unit box|0, 14.

As a preprocessing step, they subdivi@el]? into smaller boxes of length/s parallel to each
axis and assign each source and target; to its respective box. IfVp sources lie in boxB,

thenn = ) 5 Np. The FGT algorithm proceeds in three steps:

1. For each source boR, create a Hermite expansion with a term for eaglsuch thatl <

a; < p, totaling p? terms:

For source boxB, this step requireQ(pdNB) time and, therefore, over all the source boxes,

this step require®(p?n) time.

2. Now, consider a target baX. For each; € C, we need to accumulate the total field from all
source boxes. Because of the exponential decay of the @au#lid, however, it suffices to
include only the(2b + 1)¢ nearest boxes, whebedepends on the required precisiariThese
nearesi(2b + 1)? boxes are defined as tlimteraction regionfor box C, denoted byl (C).
Therefore, in this step, each target l@xaccumulates the Hermite expansions from all source

boxes within its interaction region:

181
R = i T deBhass (PC) 5.9)

Bel(C)a<p

Ay(B) = —Z (S’_SB)

Because of the product form 6§, g (see equation (5.7)), it turns out that computing e
coefficientsRg involves onlyO(dp?+!) operations. For any target box, because we collect
expansions from th&b + 1)¢ boxes in its interaction region, this step requied®? dp?+1)
time in total for each target box, ar@(b? dp?+! Ny,,) time over all boxes, wher#yy,,, is

the total number of boxes.
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3. Finally, for any target; in box C, approximateg(z;) by

gt) = Y > el

B SjEB
L \A
= Y R (”\/g’c) +0(e). (5.10)
B=<p

Over all targets;, wherel < i < m, evaluating expression (5.10) requit@$p? m) time in

total.

The above algorithm, therefore, requir€b?dp?*'Ny,x) + O(p?n) + O(p?m) =

O(p?(b%dpNp,, + n + m)) time, whereN,,,,, = (1/+/8)¢ is the total number of boxes.

5.3 Plane-wave version of FGT

As mentioned earlier, Greengard and Sun [28] replaced thmiteeexpansions in the fast Gauss
transform with plane-wave expansions, which reduced thaing time of box-to-box translations
(step 2 in the algorithm from Section 5.2) without changihg bverall running time of the algo-
rithm. The authors also show how to decompose the compntai@ product of matrices. In this
section, we elaborate on the plane-wave version of the fags&transform, and we introduce the
matrix factorization representation of the fast Gausssfiam. Our parallel implementation of the
fast Gauss transform, which we will describe in a later sectis based on the plane-wave version
of the FGT.
Greengard and Sun proved thaiMi sources lie in a bo¥ with centersz and side length/s,

and if ¢ is a target point in a boxC with centerzc, then we can approximate the Gaussian in

equation (5.1) using plane-wave expansions as

g(t) — Z Dﬂ ei/’kﬂ - (t—tc) + O(E) ,
—p=B=p

where

Dg = Rp oA - tc—sB)
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L \? PRIVIEEY ZNB AB - ( )
_ — 4 PN -(sp—s;
Rﬁ = (W) e . qje B—5j)

Jj=1

In the above equations,= +/—1 is the square root of negative unifyjs a multi-index, the number
of expansion termgp and variablel. depend on the required precisienwe definel = L/(p~/$),
andg - (t —t¢) in the first equation above represents the dot product of/teéement vectorg
and(s — t¢). Similar terms in the expressions fbrg and Rg above, and in the rest of this chapter,
also stand for dot products.

Similar to the Hermite version, Greengard and Sun assunhénganit box0, 1]¢ is subdivided
into smaller boxes with length/§ along each axis. They describe the algorithm for the plane-

wave version of FGT in three steps, replacing the Hermiteaegjpns with suitable plane-wave

expansions:

1. For each source ba&, accumulate the influence of all sources in the box into agplaave

expansion:

d N
Rs(B) = L o—H2IBI28/4 i B GBS for — p< B <

j=1
Over all the source boxes, this step takiig?n) time.
2. Asin the Hermite version, for each target loxcollect the plane-wave expansions from the

neares(2b + 1)¢ boxes inC’s interaction region:

Dg(C)= Y Rpg(B)e* csn) for —p<p<p.
BelI(C)

This step require® (b4 p?) time for one box, and (b< p? Ny, for all boxes.

3. Finally, for any target in box C, approximateg () using plane-wave expansions as

gy= > Dg(C)e* te), (5.11)
—p<B=<p

This step require®(p?m) time over allm targets.
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Approximating a Gaussian using plane-wave expansiongftre, take) (p?n)+ 0 (b% p% Ny, )+
O(p?m) = 0(p? (b% Ny, +n +m)) operations. Note that the time required for box-to-boxgran
lations (step 2) is less than that for the Hermite version factor ofdp.

In the literature [44, 47], step 1 of the algorithm is nickrexhthe S2W step because for each
source boxB, this step accumulates the effect of all sources in the btaxarsingle plane-wave
expansion. Step 2 of the algorithm is called the W2L step lieedor each target ba¥, this step
adds the plane-wave expansions from all source boxes Iyi@'s interaction region to form a
“local” expansion forC. Similarly, the last step of the algorithm is labeled the L2&p because it
uses the local expansion for each target box to generatendiefiswer for each target.

Greengard and Sun [28] also show how to represent the m@takGaussian interactions (see
equation (5.2)) in a factored form. Suppose thereSaseurce boxesB1, B», ..., Bs, andT target
boxes,Cy,Cs,...,Cr. Also, let N;j sources lie in boxB;, M; targets lie in boxC;, and let the

points be ordered such that

{s1,....s5,} C Bi,

SN 415+ s SN +N,f C Bz,

{Sn—Ns—i—l, LRI ,Sn} C BS [l
{Il,...,lMl} c Cr,

UM+, -ty C Co,

{tm—Mp+1.-- - tmy C Cr.

Then, the approximatioty. of the matrixG of Gaussian interactions can be factorized as

G. = DEF , (5.12)

whereF and D are block diagonal matrices with x S andT x T blocks, respectively, anfl is a

block matrix with7 x S blocks and at mos2b + 1)¢ nonzero blocks per row. Figure 5.1 shows
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Figure 5.1: The structures of block diagonal matricEsandD. (a) The(2p + 1)¢ S x n matrix F hasS x S
blocks, where each diagonal block corresponds to a digtmatce box. Thg th diagonal block of matrix¥”
has dimension&p + 1) x N;forj =1,2,...,8; each column of thg th diagonal block corresponds to
the plane-wave expansion of a distinct source within Bgx(b) Them x 2p + 4T matrix D hasT x T
blocks, where each diagonal block corresponds to a distinget box. Theth diagonal block of matrixD
has dimensiona/; x 2p + D4 fori = 1,2,...,T; each row of theth diagonal block corresponds to the
plane-wave expansion of a distinct target within gx

the structures of matrice8 and D.

Each diagonal block of matri¥’ corresponds to a distinct source box, and each column of
the jth diagonal blockF () with dimensions(2p + 1)¢ x Nj; for j =1,2,...,5 of matrix F
corresponds to the plane-wave expansion of a distinct edwireg within box B;. Matrix F has
dimensiong2p + 1)2 S x n. The block diagonal matri® with 7' x T blocks is similar to matrix®,
except that each diagonal block i corresponds to a distinct target box. In matfd theith
diagonal block, wheré = 1,2, ..., T, has dimensiond/; x (2p + 1)¢, and each row of théth
diagonal block corresponds to the plane-wave expansiondidtinct target lying within boxC;.
Matrix D has dimensions: x (2p + 1)4T.

As mentioned earlierE is a block matrix withT x S blocks and at most2b + 1)¢ nonzero
blocks per row. BlockE (i, j) for 1 <i < T andl < j < S of matrix E is nonzero when source
box B; lies in the interaction region of target b@x. Each nonzero blockE (i, ;) is a diagonal ma-
trix with dimensions(2p + 1)¢ x (2p + 1)¢, whose diagonal entries are given ﬁ)’}ﬂ'(’ci _SBJ),

where—p < B < p.
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Figure 5.2: Vectors showing plane-wave coefficients for a single sosra@ssuming thap = 3. (a) The
vector fors = (sx) with d = 1. (b) The vector fos = (sy,s,) with 4 = 2. This vector gets scaled lay
for further calculations.

We can utilize the factorized notation 6f, from equation (5.12) to compute the fast Gauss
transform using matrix-vector products. The S2W step ofiggerithm corresponds to multiplying
the 2p + 1)?S x n matrix F with the transpose of the row vect{q,, 2. . ... ¢»}, resulting in
the 2p + 1)? S-vector F’. The W2L step of the algorithm corresponds to multiplying thp +
DT x (2p + 1)2 S matrix E with vector F’, resulting in thg2p + 1)¢ T-vector E’. The final step
of the algorithm corresponds to multiplying thex (2p + 1)4 T matrix D with vector E’ in order

to approximate the Gaussian (5.1) atraltarget locations.

5.4 Performance improvements

In this section, we elaborate on some methods to improve elfermance of computing the fast
Gauss transform described by Spivak, Veerapaneni, anch@aes[47]. Because our parallel im-
plementation is based on the plane-wave version of the fass§&transform, we will focus on

improving the steps of the algorithm presented in Secti8n 5.

5.4.1 S2W step

Figures 5.2 (a) and (b) show tii2p + 1)¢ plane-wave coefficients for a single source= (sy)

with d = 1, ands = (sx,s,) with d = 2, respectively, assuming that = 3. As we noted in
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Section 5.3, step 1 require®(p®n) operations to complete because we have to evalQate- 1)¢

plane-wave terms for each source. As Figures 5.2 (a) antdu$rate, the terms that are equidistant
from the middle element (which always evaluates to 1) areptexnconjugates of each other. We
can use this observation to easily save a factor of 2 in thepotattion. We can do better, however,

if we know something about the source points.

Regular grids

In each source box, if the source points belong to a regular grid (known as adegsid in

the literature), we can apply the technique of separatiomadfbles to accelerate the S2W step.
Let d = 3 and suppose that the vertices ob & v x v regular grid form the source points of a
box B, such thatNp = v3. Spivak, Veerapaneni, and Greengard [47] show how to fomptane-
wave expansions in each box @ pv3 + pZv? + p3v) operations, so that if > p, the total cost

of forming the expansions for boR reduces toO(pNp) operations. Assuming that the source
points in each box lie on a regular grid, and because ) 5 Np, the net cost of the S2W step
reduces toO(pn) operations [47]. Ind dimensions, computing the S2W step for a single box
takesO(dpN p) time, and over all boxes it take3(dpn) time.

Let the v3 source points in boxB, centered at(sp,.sB,.sp.), lie on the regular
orid {(sj,,5/,,53) : j1,Jj2,j3 = 1,...,v}. For boxB, we would like to compute th€p + 1)3
plane-wave terms, which we denote fyg, g,5, : PB1.B2.83 = —p..... p}, using the source
charges{q;, j,js : Jji1.Jj2.j3 = 1,...,v}. As Figure 5.3 shows, we can achieve the reduced
running time in three stages, where we unroll one dimensfaheexpansion formation in each
stage.

Note that in each of the three stages in the pseudocode ofeFig8, the dot product in the
exponentiation involves two scalar quantities. For exan| is the first component of the multi-
index 8 and(sg, — s;,) is the difference between thecomponents of a source’s box center and
itself. BothB; and(sp, —sj,) are scalar values. Similarlgy, 83, (sp, —sj,), and(sp. —s;) are
scalars. Clearly, stages 1, 2, and 3 in the pseudocode afeFigai require timed (pv3), O(p?v?),
and O(p3v), respectively. Computing the plane-wave expansions fsalrce boxes, therefore,
requiresO(pn) operations, assuming that>- p andd = 3. In general, the S2W step takégdpn)

timeifv > p.
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S2W-SrAGEL

for By =—ptop
for j,, j3=1tov

w'Bl(jz’ J3) = Z?1=1 qjlfz]éemﬂl F(sBx=sjy)

S2W-STAGE2

for B1,82 = —ptop
for jz =1tov

wﬂlﬂz(j3) = 2?2:1 wﬂl(jz, j3)6’M32 < (SBy—5j,)

S2W-STAGE3
for B1,B2,83 = —pto r
L . 2B - o
We1p2B3 = (W) Z;3=1w'31'32(13)el B3 - (sB-—53)

Figure 5.3: Pseudocode from [47] for the S2W step for a box, assumingttiats in the box lie on a regular
grid.

As an aside, for each source b#x the pseudocode in Figure 5.3 computes the product of the
corresponding diagonal block in matri with the charge values of the sources in this box. That is,
executing the pseudocode in Figure 5.3 for a sourceBajives us a set of2p + 1)¢ continuous

values in vectorr’ that correspond to the pane-wave expansion for Box

5.4.2 Sweeping algorithm for W2L step

Recall from Section 5.3 that in the W2L step, for each target, bve accumulate the plane-wave
expansions from all source boxes that lie in the interact@mion of the target box. In the naive
method, we simply sum the plane-wave expansions of all thecedboxes in a target box’s inter-
action region, which require® (b? p¢ Ny,,,,) operations, wherd/y,, is the total number of boxes.
Greengard and Sun [28], however, came up with a sweepingithlgofor speeding up this step,
which we now describe. For convenience, we will assume beasource and target boxes coincide
so that we can denote all boxes By for j = 0,..., Np,y — 1, @nd their respective centers by, .
Figure 5.4 depicts the idea behind the sweeping algorithrandoxes lie in one dimension.
For the leftmost boxBg, we sum the plane-wave expansions of ¢het+ 1) boxes—boxB, and

theb boxes to the right of3p—using the direct method, which takéxbp) time. Let us denote the
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HEENCOEEEEEENE BENNEEEEEREEE EEEREEE

By By B, B B, Bs By By Bg By By By B, B B, Bs By By Bg By By By B, B3 B, Bs By By Bg By
(@) (b) (c)

Figure 5.4: Sweeping algorithm for box-to-box translations when bdiem one dimension, fob = 3. (a)
For box By, we calculate the local expansion directly by adding the@lavave expansions of box&g—Bs,
indicated by plus signs in these boxes. (b) To calculatedta lexpansion of boB;, we can reuse the local
expansion of boxB,, which we indicate by shading bad3, and add the plane-wave expansion of Bax (c)
When we reuse the local expansion of bBxto calculate the local expansion for b&y, we must subtract
the plane-wave expansion of b@®g (which participates in the local expansion of bBx), shown using a
minus sign in boxB,, and add the plane-wave expansion of X For all boxesB;—By shown in the figure,
we must appropriately adjust for box centers.

local expansion of boxB by /o and an individual term in the local expanstasf box By by lo,p

for—p < B < p. Then, if we assume that= 3, we can write

lkﬂ ‘ (SBO_SB()) lkﬂ ‘ (SBO_SBI) lkﬂ ‘ (SBO_SBz) 4+

lopg = wpype +wp, pe +wp,pe

wB3,ﬂ elkﬂ : (SBO_SB:;) ,
wherewp ; denotes the plane-wave expansion of yxcomputed in the S2W step. We ignore all
boxes that lie outside the FGT grid, which is why there are axeb to the left of boxB, that can
be included.

To calculate the local expansion for bd, we can reusé, (after adjusting for box centers)

and just add in the contribution from bdk,, as shown in Figure 5.4(b). Thus, we have
lip=lope?P B804y gelhh (m=58,) (5.13)

for—p < B < p.

The above observation forms the basis for the sweepingitidguor In general, boxB;_1’s
interaction list consists of boxe§B;_,_i,...,Bj—1....,Bj1p—1} and that of boxB; con-
sists of boxegB;_p,...,Bj,..., B;1p} (again, we ignore all box numbers that lie outside the
range[l, Np,x]). Therefore, we can use the standard stenciling technimuaerhpute the local ex-
pansion for boxB; from that of boxB;_;: reuse the local expansion of bd¥;_;, but subtract

the contribution from boxB;_,_; (the leftmost member of bo®;_;’s interaction list), and add

LIn one dimension, each box hezp + 1) terms in its local expansion.
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the contribution from bo)8; 1, (the rightmost member of bo&;’s interaction list). Of course, we
must adjust appropriately for box centers, as we showed icalaulation for boxB; above. As-
suming that the vectors required for adjusting the box eeratee precomputed, the cost of forming
the local expansion of a box is reduced fr¢2» + 1) p operations t@p operations, for a total cost
of O(pNp,y) over all boxes, when the boxes lie in one dimension. For a tetmgxample, we
show the calculation for boB,4 below and illustrate it pictorially in Figure 5.4(c); as beg, if we
assume thatk = 3, then for—p < 8 < p, we have
log = l3p e MB35 _ypp o oiMB - (By=580) 4 yyp g oi3B - (5y=587)

We can extend the sweeping algorithm to multiple dimensknperforming a sequence df
one-dimensional sweeps [47]. As mentioned earlier, werassthat the unit boxX0, 1]¢ is sub-
divided into smaller boxes and that each box has side Ien@hn each dimension. Therefore,
we havel/+/8§ boxes along each dimension, for a total(df+/5)¢ boxes. Lety = 1/+/§ de-
note the number of boxes in each dimension. Then, we can nuinbg? FGT boxes asBB; =
B, jn,ja) Where0 < jp <y —1,fork = 1,...,d. Box B;’s interaction region consists of

at most(2b + 1)4 boxes B, r, suchthatj, —b <rp < jr+band0 <r, <y —1,

..... ra)
fork = 1,2,...,d. In the sweep along the first dimension, each box collectseipansions
from (26 + 1) boxes in its interaction region. After the sweep along theoed dimension, each
box has gathered the necessary expansions {2@m+ 1) boxes in its interaction region, so that
after thedth sweep, each box has the required expansions from dltthe 1)¢ boxes in its interac-
tion region. The sweep along each dimension requipgsV,,,,. operations, wher&/,,, = y¢ and,
therefore, the W2L step required(dp? Np,,) time in total, using the sweeping algorithm. This
running time is considerably less than the running tim&@< p¢ N,,..) using the naive method.
Note that vectors of the forra"*# 2 =5,) that get multiplied withw B, correspond to the

diagonal entries of nonzero blodk(i, j) of matrix E. In the sweeping algorithm, we avoid com-

puting all (25 + 1)¢ nonzero blocks in a row of matrik, however.
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5.4.3 L2T step

Similar to the S2W step, we can speed up the L2T step if we kheitvthe targets lie on a regular
grid. Again, if we assume that = 3 and that the targets in each box lie on the vertices ofa
v x v regular grid, then we can reduce the running time for the Lt2p §omO(p3m) to O(pm),
assuming that > p.

As before, we suppose that in target bGx with center(ic,.tc,.c.), the v3 target points
lie on the regular grid(¢;,.j,.tj5) : Jji.Jj2.j3 = 1,...,v}. In box C, for each target, we
would like to compute the sum of the elementwise product@f2p + 1) terms of the plane-wave
expansion of this target with the local expansion for this (se equation (5.11)). We compuyté&)
for all targets in boxC in three stages, as we did in the S2W step. Below, we providaduode
for all the three stages, in which we denote {d@ + 1) terms of the local expansion of bax
by Ic,g, 8,85+ Where each componefii, 2, andfs of multi-index 8 ranges between p and p.
L2T-STAGEL

for j; =1tov

for B2,f3 =—ptop

gjl (ﬁZ’ﬁ3) = Zﬁlz—p lc,ﬂ1ﬂ2ﬂ3eikﬂl ' (tjl_th)

L2T-STAGE2
for jl?jz = ltol)
for B3 =—ptop
gj1j2(B3) = 2'11;2:_1) gh (182”33)81/1/32 - (tjy—tcy)

L2T-STAGE3
for J1,J2,Jj3 = 1tov
8j1j2js = 2'11;3:_1) 8j1j2 (,33)3”1/33 (s
For any target box’, stages 1, 2, and 3 take tind¥ p3v), O(p?v?), andO(pv?), respectively,
to execute’. Because we assumed that- p, we can say that the total running time for computing
the fast Gauss transform for all targets in a single bo®({gv?) and, therefore, the total running
time for all target boxes i® (pm) whend = 3. In general, the total running time for the L2T step

when the target points in each box are assumed to lie on aaregndl isO(dpm) if v > p.

2Similar to the S2W step, the dot products involve scalar tties.
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Referring back to our matrix-vector-product notation, &y target boxC, the pseudocode
above computes the product of the diagonal block correspgrid box C in matrix D with the
local expansion for box’ stored in vectol=’. Executing all three stages of the L2T step for a target

box C thus approximates the Gaussian (5.1) for all targets in@ox

5.5 Implementation details

In this section, we discuss some basic details of our fastS&mansform implementation. We begin
by stating a few assumptions that we make in our implememtdtiefore continuing with some
specifics of the implementation.

In the rest of this chapter, we assume tthat 3, the source and target points coincide, and that
all points lie within the unit cubéo, 1]3. Along each axis, we divide the domain into= 1/+/3
equal parts, so that the side length of each box along eadndion is+/§ and the total number of
boxes isy3. Furthermore, we assume that within each box, the souraksaagets lie on a regular
grid. We will assume that the grid of points in any box lhgmints along each dimension for a total
of v3 points, and we will denote the fixed distance between any ®vtices on the grid along any
dimension byA = /§/v.

Given the regularity of the boxes and the points within thera,do not store the source and
target points but calculate them at run time, though we de gtee random charge values for each
source point. In our code, we use BLAS routines [7] wherepgtiaable. Although BLAS routines
support operations on complex numbers and we generate epwgllies in all the FGT stepsye
use thedoubl e counterparts of these routines because in our code we boredl and imaginary

parts of a complex vector separately. In all the FGT stepajseghe well-known formula
e'® = cosx + i sinx

in our calculations.

3Note, however, that in the last step, L2T, although we uséntlaginary parts of vectors for intermediate calculations,
we retain only the real part of the calculations as the finalhaan for each target.
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5.5.1 S2W and L2T steps

In addition to the methods presented for improving the migtime of the FGT steps in Section 5.4,
we can save some additional computations in the implenientatNote that computing cos
and sinx is usually costly, and given that we have to compute many aimecosine values, we
would like to reuse values whenever possible. Again, owrragsion that the sources and targets lie
on a regular grid proves helpful in achieving this goal in8#V and L2T steps. Let us see how, by
taking the pseudocode for stage 1 of the S2W step for somékasan example. For convenience,

we replicate the pseudocode below.

S2W-SrAGEL

for By =—ptop
for J2,j3 = l1tov

wg, (j2. Jj3) = X5 <1 @ jojse Pt CBx 7500

In the above pseudocode, we exhaust all calculations basedsingle value off; before
moving further. The summation in the innermost loop, howeseems to require calculations
of cosf;, and sinf;,, wheref;, = AB(sg, —s,;) for j1 = 1,...,v. Aswe noted in Section 5.4.1,
becaused; and (sp, — s5;,) are scalars¢!*P1 - (8x=5i1) = (i*B1(s8x=5j1) By our assumption,
however,s;, +1 = s;, + Afor ji =1,...,v—1. The first points; can be easily calculated for any
box, as we now describe. We number jhkboxes from 0 toy® — 1. If we imagine they boxes
to be arranged iy layers, withy? boxes in each layer, then we can represent each box by,its
y-, andz-coordinates, from (0, 0, 0) toy — 1,y — 1,y — 1). For any boxB = (By, By, B;), we
calculateB, = B mody; then, if we assume thgt spans ther-dimension, we get; = Bx«/g.
Clearly, thex-coordinate of boxB’s center issp,. = 51 + V/8/2. With these observations, we can

implement stage 1 above for any b@&xwith just eight sine and cosine computations, as depicted

below.
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S2W-STAGE1

1
2
3

N

10
11

12
13
14
15
16
17

18
19
20

21
22
23

24

25
26
27

28
29
30

B = B mody
s1 = Bx*\/g
SB, =s1+«/g/2

Il storee’=PAsBx=s1)) in two variables, wherésp, —s1) = +/5/2
src_real = cogA * —p * (sp, — 51))
src.imag = Sin(A * —p * (s, — 1))

/I storee!*(Bx=51) in two variables
inc_src_real = cogA * (sp, —s1))
inc_src.imag = sin(A * (sp, — s1))

/I computee’(—PA(=A) gndeiA(—4)
stepreal = cogA * —p x —A)
stepimag = sin(A x —p * —A)
inc_stepreal = cogA * —A)
inc_stepimag = sin(A x —A)

for B =—ptop
for J2,j3 = l1tov
tempreal = srcreal  // start witheiA#1(s5x—s1)
tempimag = src.imag
sumreal = 0.0
sumimag= 0.0
/I expand the summation
for jy =1tov
sumreal += g, j, j;tempreal
sumimag+= g, j, j;tempimag
/I update for the next source poisy +1 = s;, + A
/] &MB1IGBx=5j1+1) — HiABI(SBx—5),) i AB1(=A)
temp= tempreal x stepreal — tempimag * stepimag
tempimag = tempreal x stepimag+ tempimag* stepreal
tempreal = temp
/I store the result
wg, (j2, j3) = (sumreal,sumimag) // representing a complex number as a tuple
/I update for the next value ¢f;
temp= src_real x inc_src_real — src.imag * inc_src.imag
src_imag = src_real *x inc_src_real 4+ src_imag* inc_src_imag
src_real = temp

temp= stepreal * inc_stepreal — stepimag* inc_stepimag
stepimag = stepreal % inc_stepreal + stepimag * inc_stepimag
stepreal = temp

In the above pseudocode, we determine theoordinate of the box, the-coordinate of its

first source point, and the-coordinate of its center in lines 1-3. In lines 4-11, we uggte
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variables to store the values eft™PA(Bx=51)  piA(sy=s1) i(=PA(=A)) gndiA(—2)  Each
iteration of thefor loop of line 18 gathers a portion of the result and computesnixt value
of e/*P168:=5/1) for a givenB;. After thefor loop of line 18 finishes, the code stores the com-
puted result intawg, (/2. j3) in line 24, and before starting the next iteration of toe loop of
line 12, the code calculateg?B1+1D(8x—s1) gndeiA(B1+1D(=A)  Note that we use-A in the ex-
ponentiation because in the S2W step, we translate sounsts path respect to the center of their
box. Therefore, for anyi; = 1,...,v — 1, we havee!*#168x=5j1+1) = (iABi1(sBc=(sj; +4) —

e MB1(sBx=3j1)0iAB1(=B) - As highlighted earlier, the code computes only a few simesa@sines
to complete stage 1. We can apply similar techniques to ctergiages 2 and 3 of the S2W step,
for which we do not show pseudocode. Note, however, that fooxaB = (By, By, B;), we
calculateB, = | B/y| mody andB, = |B/y?].

The pseudocode above works well for a regular grid. If, hamethe grid within each box
is adaptive—i.e., if the step value, denoted Adyis not constant between each successive source
point along any dimension—then we would require a few mane sind cosine computations. Let
us suppose that the step values between successive soumteglong any dimension are given
byAj, =sj,41—sj forji =1,...,v,and letA, = 0. Now, if we use four vectors of siaeeach
to store the real and imaginary partsedf?*(—2/1) ande!*(—24/1) we can proceed similar to the
pseudocode above for constaki but we must use appropriate vector values to update vasgabl
in lines 21-23 and lines 28-30. Therefore, we now have to ctedy sine and cosine values in
stage 1 instead of four earlier (see lines 8-11) to accomtadta irregular step sizes.

We can employ similar methods to compute the L2T step, thahgre are slight differences,
which we now highlight. Below, we replicate the pseudocantesfage 1 of the L2T step.
L2T-STAGEL

for ji =1tov

for B2,83 =—ptop

gjl (,32,,33) = Z§1=—p lcaﬂlﬂzﬂ:z,ei/lﬂl : (tjl—lcx)

In the pseudocode above, we exhaust all calculations basadingle target coordinate along
the x-dimension before updating the target coordinate alongdinge dimension. Similar to stage 1
of the S2W step, calculating eight sine and cosine valudso@ienough. The pseudocode below,

though less elaborate than what we presented for the S2\\citeply establishes our point.
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L2T-STAGEL
1 Cy =C mody

2 1) = Cyx /6
3 tc, =t ++/8/2 Il boxcenter
4 store the real and imaginary partsedf~?A(1—tcx)) in two variables
5 store the real and imaginary partsedt“1=¢x) in two variables
6 store the real and imaginary partsedf~?*4) in two variables
7 store the real and imaginary partseét2 in two variables
8 for j; =1tov
9 for 8,83 =—ptop
10 temp= ¢! (P ~tCx)) /I complextemp
11 sum= (0,0) /I complexsum
/I expand the summation
12 for By =—ptop
13 sum+=Ic g, g,p; * temp /I complex multiplication and addition
/I update for nexp;
14 temp= temp  ¢!*®17¢x) || complex multiplication
/I store the result
15 gj1(B2,B3) = sum
/I update for the next target
16 next= j; + 1
17 i (P Alinex—1Cy)) — pi(-PAG) ~1C1)) 4 i (—pAA)
18 eiMtnext—1Cx) — piA(tj—1Cx) y HIAA

Above, we uset A in the exponentiation because in the L2T step, we trandhatddx center
with respect to the target points, 69, +1 —tc,) = (j, + A —tc,). As we can see, we were able
to implement stage 1 using just eight sine and cosine cortipusainstead oftv computations. If,
however, the grid of points within a box is not uniform, sotthg, = ¢;, +1 —¢;, for j; =1,...,v,
we might be tempted to think that we will not benefit much by pating four vectors withy values
each in lines 6-7 above and using these vectors in lines 17-\1/8 would be wrong, however,

because we can reuse these values in stages 2 and 3.

5.5.2 W2L step

In the W2L step, we require many vectors, each of §ize+ 1)3, to storee!A8-5=s5)) for —p <
B < p. Because we sweep one dimension at a time, exactly one obthpanents ofsp — sp/)

is nonzero. Furthermore, because all boxes have side ten@,hthe nonzero component is a mul-

iAA

4Note that even if we were not to pre-calculafé_l”mfl) ande "71 for j; = 1,..., v, we would still have to

compute onlylv sine and cosine values in lines 17-18.
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tiple of +/§. For example, let’s look at Figure 5.5, which shows 512 batesnged in a8 x 8 x 8
grid and numbered from 0-511. As we can see from the figure Byximmediate neighbor in
thex-, y-, andz-directions are boxe8, Bg, and Bg4, respectively (boxBg4 is hidden from view
in the figure). BoxB, has centeft~/§/2, v/8/2,+/§/2), box By has centef3+/5/2, v/§/2,/5/2),
box Bg has centet+/6/2,3+/8/2,+/8/2), and boxBg4 has centet/8/2, v/8/2,3+/8/2). There-
fore, (sp, — sB,) = (—+/8,0,0), (sB, — SBg) = (0,—+/8,0), and (sp, — s,,) = (0,0, /).
In fact, for all boxesB = (By. By, B;) such thatB, = 0, the difference betweeB’s cen-
ter and that of any of it$ neighbors to the right iSsp — sg’) = ((Bx — Byx)+/3.0,0),
whereB’ = (By/, By, B;) andBys = Bx +1,..., By +b. Thatis, thex-component ofsg — sp’)
ranges from £+/38) to (—b+/3) for the specific boxes under consideration. Using this mlase
tion, we calculate vectoV = ¢4 68=s5) for —p < B < p, with (2p + 1)? elements, such
that (s — sp’) = (—+/8,0,0). Note that for ally? boxes withB, = 0, vectorV provides the
required adjustment of each box center with its immediafetmeighbor during the-sweep. Let
us define vectoi’? with (2p + 1)3 elements to be the elementwise product of vegtavith itself;
define vectord’3, ..., V?, similarly. For all boxes withB, = 0, vectorsV’2, V3, ..., V? provide
the necessary adjustments of box centers with their rengaihi— 1) neighbors to the right. Recall
that in the sweeping algorithm, during the sweep alongrtidémension, the vectorg, V2,..., V?
will be multiplied with the respective plane-wave expansiof the boxes that we calculated in the

S2W step, as shown in the pseudocode below.
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boxes 64-127—>
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Figure 5.5: An 8 x 8 x 8 grid of boxes numbered from 0 through 511. The numbers shosideé the first
layer of boxes represent their respective box numbers. ducesclutter, we don't label the boxes Bg, B,
etc., but simply show the box numbers.

|

MULTIDIMENSIONAL -SWEEP
/I sweep along the first dimension
CalculatelV = ¢i*8 - (—v8.00) for _p < g < p
CalculateV2, ..., v?
CalculateV >+, Veompensate= V, andVeyp = Vo+1
/I process each horizontal row
for J2,j3 = OtO)/—l
/I Associate box numbef with (0, j», j3)
lj = ij
/I accumulate the plane-wave expansions fronb &lbxes to the right of
/I box numberj = (0, j2, j3)
for ji =1tob
/I associate box number with (j1, j2, j3)
lj += WB;, * Vi

/I compute the local expansion of b0y + 1, j, j3)
for jy =0toy —2
/I associate box numbgr with (j; + 1, j», j3) and
/I box number;j with (1, j2, j3)
lj’ = lj * Vcompensate
/I subtract influence from bax = (j; — b, jz. j3), if (j1 —b) >0
lj» == wp, * Vsup
/I add influence from box = (j1 + 1 + b, j2, j3),if (j1 +1+b) <y —1
ljr +=wp, * 144

Repeat analogous loops along theandz-dimensions; recalculate vectorsV?2,..., v and
use the appropriatevectors calculated in the previous sweep, instead ofitivectors.
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From the pseudocode, we note that during the sweep alongdaension, for all boxes such
that0 < By <y — 1, we simply need two additional vectors, namélgmpensate= ¥, whereV’
denotes the complex conjugate of vector and Vyp = (Vb—+1). Let's see why we need these
complex conjugate vectors using boxBg = (0,0,0), B; = (1,0,0), and B4 = (4,0,0) from
Figure 5.5 as examples, and assuming that 3. Recall from Section 5.4.2 that we calculdge
directly, after which we can udg to calculate/; (see equation (5.13)), but we must adjust for box
centers. To calculatk, we translated the centers of all boxes in Rys interaction region with
respect to the center of bak,, denoted bysp,, whereas to calculaty, we must translate the
box centers with respect to ba¥;’s center, denoted byp,. Becausdsp, — sp,) = (+/$.,0,0),
the vectorVeompensate= V gives us the correct adjustment. In the case of Bgx there is no
box to subtract, and the center of bdx, which should be added, is3+/§ away and so we can
useV3 = V%, In the case of boxBs where we have to subtract bd’s contribution, we observe
that(sp, — s8,) = (4+/3.0,0), and so we calculatls,, = V* = Vb+1,

Hence, during thec-sweep, for any bo8 = (Bx, By, B;) such thah < By <y — 1, if we
label B, = (Bx — 1, By, B;), B, = (Bx —b—1,B,,B;),andB, = (Bx + b, B, B;), ignoring

any B,, and B,, whosex-component lies outsid@, y — 1], we can calculate

ZB = ZBC Vcompensate— lBu Vsub+ ZBU Vb .

During the x-sweep, we require just 10 sine and cosine values to catcutadtorl’ (we do not
provide details here except noting that we can exploit theepathat the elements of vectdf
follow, as Figure 5.2(b) shows faf = 2). All the other vectors—¥2, ..., Vo*! Vompensate
and Vgy—require only multiplications and additions. We can useilsinmobservations and tech-
nigues for the sweeps along the and z-dimensions. While sweeping along tlyedimension,
we calculateV = ¢i*B©O—v80 for _p < B < p, and along thez-dimension, we calcu-
late V = ¢i*B-00=V®) for _p < B < p.

In this section, we saw how we can save many computationd theathree steps of the fast
Gauss transform. The techniques highlighted in this seetie used in our parallel implementation

of the fast Gauss transform, discussed next.
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5.6 Parallel implementation of fast Gauss transform

In this section, we discuss how we implemented the fast Gaassform in parallel. We continue
with our assumption that = 3. We have implemented a shared-memory version and a digidibu

memory version of the algorithm, both of which will be dissed in this section.

5.6.1 Shared-memory implementation

We have implemented the fast Gauss transform in shared nigem@t+ and using OpenMP. In the
shared-memory model, parallelizing the steps of the fasts&#&ansform is fairly straightforward
because in the S2W and L2T steps, we can work on differentsbioxgarallel. We implement the
W2L step serially. We use OpenMRigir al | el f or loop to parallelize the S2W and L2T steps,
and we use thenp_set _-numt hr eads() function to specify the number of threads that the
paral | el for region should use. All assumptions that we made about thé pgints and the
performance accelerations that we discussed in the preteon sections hold. Of course, because
we are working with shared memory, we must be careful to pevion-overlapping pieces of
memory to the regions that execute in parallel. Overall, exeha clean, parallel implementation of
the fast Gauss transform in shared memory, as shown beld¥ve Ipseudocode below, garallel

for loops stand for OpenMPpar al | el f or regions.

SHMEM-PARALLEL-FGT

1 parallel for boxid = 0toy3 — 1

2 execute all three stages of S2W for this box

3 call MULTIDIMENSIONAL -SWEEP to compute the local expansion for all boxes
4 parallel for boxid = 0toy3 —1

5 execute all three stages of L2T for this box

5.6.2 Distributed-memory implementation

We have implemented the fast Gauss transform in a distdbuemory setting using FG, MPI,
and OpenMP. Although we distribute data across the nodeshister, the computation on each
node takes place entirely in memory. That is, in this appboa data does not reside on disk,
which makes this application different from the other FGgpeans that we have seen till now. A
distributed-memory implementation of FGT requires integessor communication for which we

use MPI, and FG helps overlap computation with interpramessmmunication. Within each node,
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Figure 5.6: Distributing boxes across 8 nodes of a cluster, assumirtgtibaunit cubg0, 1]3 contains512
boxes arranged as &rx 8 x 8 grid. Each node becomes responsible fdra4 x 4 subgrid of boxes. As the
thicker lines demarcate, we can imagine the nodes thensseh\ee arranged as2ax 2 x 2 grid, where each
node owns 64 boxes. Nod#& and its boxes are completely hidden from view.

some work can be done in parallel for which OpenMP provesuliséfs we shall soon see, in this
application, we also use FG as a signaling mechanism fotgven

As with any distributed-memory application, we must firstedmine how to distribute the data
S0 as to load-balance the work across all the available ngdlese have seen, the S2W and L2T
steps carry out box-wise computations, and so we would kettti split the data of a box across
nodes. Therefore, as Figure 5.6 shows, we partition theauie [0, 1] with 3 boxes arranged
as ay x y x y grid across the available nodes such that each node is mbfgifor a subgrid
of boxes. As mentioned earlier, all computation on a nodedgiace entirely in memory. With
this setup, nodes obviously don’t require to communicaté each other during the S2W and L2T
steps because these steps work on data contained within. &Hooxach box, however, the W2L
step accumulates data from at m(#t + 1)3 neighboring boxes, some of which might belong to a
different node, thus requiring interprocessor commuiocaduring this step.

A basic implementation of the fast Gauss transform with ttagsthat we just described could
proceed as follows: during the S2W step, each node complgeplane-wave expansions of all
boxes that it owns. Indeed, if a node has multiple cores,utccexecute the S2W step on multiple
boxes in parallel, as we described in the shared-memoryeimghtation. For the W2L step, each

node uses interprocessor communication to obtain the plane expansions of all boxes that lie
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Figure 5.7: FG pipelines that each node executes to calculate the plame-expansions of all local boxes
for the S2W step, and to sweep along thdimension for the W2L step.

in the interaction region of some box that this node owns.eAfhe data exchange, each node
can use the sweeping algorithm to compute the local expasgball its boxes to complete the
W2L step. The last step, L2T, is again completely local to denand, therefore, each node can
work on its set of boxes (in parallel, if the node is so equipe complete the algorithm. In the
prospective design that we just described, only node-locaiputations are executed in parallel.
We can, however, overlap computation and interprocessonamication for better performance,

as we describe next.

5.6.3 S2W step and partial W2L step

In our implementation, each node executes the FG pipelinesrsin Figure 5.7 to compute the
plane-wave expansions of all local boxes, hence complétiag2W step, and to finish sweeping
along thex-dimension, as part of the W2L step. Unlike the FG pipelirest tve have seen so
far, buffers along all pipelines of Figure 5.7 don’t necebgaarry useful data; some buffers are
dummy and are used only to signal the next stage to beginntpatation. For example, the buffers
that flow along pipelinego and p; are dummy. The buffers along pipelipg carry useful data,
however: these buffers contain data that a node receivesdtber nodes. Before we elaborate on
how these pipelines work, we introduce a few assumptions.

In our implementation, we assume that the number of ndtissa perfect cube, so th& = p3
for somep that dividesy. Sincey denotes the number of boxes in each dimension, each node work
on(y/p)? boxes. Let us denotgocal = (y/p) to be the number of boxes in each dimension on any

node. We also assume thai.a > b so that any node will have to communicate with at most two
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other nodes for the W2L step.

On each node, the S2W stage, which is the intersecting stag pipelinespo and p;, gener-
ates the plane-wave expansions for all boxes local to a rssl€igure 5.6 shows, we can perceive
all boxes local to a node to be arranged g% & X Yiocal X Yiocal grid. In each round, the S2W stage
generates the plane-wave expansions of all boxes in a siogi®f the grid, for a total ofy?
rounds. This stage processes the grid layer by layer,rggastith the bottommaost row and continu-
ing toward the top in each layer. The buffers that this stagepts along pipelinegy and p; are
dummy buffers. The buffer along pipeling merely acts as a signal for this stage to start com-
puting the next row of boxes. Along pipeling, the S2W stage accepts a buffer and immediately
conveys it just before returning from its stage function.e@might wonder, then, what role the S2wW
stage plays along pipelingy. As Figure 5.7 shows, the S2W stage feeds intoxttsveep stage,
and we shall soon see that in each round, thsweep stage can proceed only after the S2W stage
has finished its computation. The buffer that the S2W stageeys along pipeling acts as a
go-ahead signal for the-sweep stage. In the stage function for the S2W stage, we psaMP'’s
paral | el for loop to compute the plane-wave expansions of multiple baxgmrallel in an
effort to completely utilize the multiple cores (if any) ofaachine. Given that the S2W stage ac-
cepts and conveys only dummy buffers, where does it readpist ifrom and write its output to?
Recall that all inpuit and the results of all computations on a node are stored inanemherefore,
in each round, the S2W stage knows exactly which prealldcatea of memory to read its input
from and write its output to.

Using an example, we first describe a prospective methodnpuate thex-sweep of all boxes.

In the next paragraph, we detail our actual implementatituet us assume, as in Figure 5.8,
that P = 64 so thatp = 4, § = 1/256 so thaty = 16 and yiocal = 4, andb = 3. In this
global 16 x 16 x 16 grid of boxes, let us focus on the bottommost row in the firgetawhose
boxes have numbers 0-15. If we were working on a single machiwe would process this row
during thex-sweep by directly calculating the result for box 0 and ughgyresult of the previous
box (adding and subtracting boxes as necessary) for boxesugh 15. In the distributed-memory

setting, however, boxes 0-3 belong to nalg boxes 4—7 belong to nod®,, boxes 8-11 belong

5As mentioned earlier, we compute the source and targetgatmun time, so we store only the charge value corre-
sponding to each source as input.
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Figure 5.8: 64 nodes assumed to be arranged ds<ad x 4 grid, with 64 boxes in each node. This figure
shows the bottommost row of boxes in the first 16 nodes. Faoitglae have not numbered the boxes in each
node. NodeP, contains boxes 0—3, nodg contains boxes 4—7, nod& contains boxes 64—67, etc.

to node P,, and boxes 12-15 belong to node, as Figure 5.8 shows. Therefore, nadlgwould
have to receive the S2W results of boxes 4—6 from nBde order to complete its-sweep of the
first row. NodeP;, in turn, would have to wait to receive thesweep results of box 3 and the S2W
results of boxes 0-3 from nodg,, and the S2W results of boxes 8—10 from natie to complete
its sweep of boxes 4-7. Similarly, for each row, nodgsand P; would have to wait for node#;
and P,, respectively, to finish their sweeps. On the whole, we weuld up serializing the process
to some extent instead of using all the available resources.

In our implementation, therefore, on each node, in eachddiinex-sweep stagadependently
sweeps each row of boxes. By independently, we mean thatafdr eow, each node initiates a
sweep starting from the first box that it owns in that row. Iokeeound, this stage processes a row
of boxes, following the same order of rows as its predeceatorg pipelinepy. Going back to
our example in the previous paragraph, ndeworks as before. Nod®;, however, receives the
S2W results of boxes 1-3 (the lastboxes of nodePy; recall, we assumed that = 3) and the
S2W results of boxes 8-10 (the fitgsboxes of nodeP,). Using data received from its neighboring
nodes and the S2W results that it computes locally, nBgdes ready to compute the sweep of
box 4 directly, after which it can follow the usual scheme weep boxes 5-7. That is, nodg
initiates a sweep starting at box 4, which is the first box ithatvns in the row under consideration.

Node P,, similarly, receives the S2W results of boxes 5-7 and bo%e44 from nodes’; and Ps,
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respectively, and initiates a sweep at box 8, and nBgleeceives the S2W results of boxes 9-11
from nodeP, and initiates a sweep at box 12. Nod&s-P5 require similar communication patterns
for each row of boxes that they own, and so on.

Referring again to the node arrangement shown in Figurede&an say that for the-sweep,
each node requires data from its immediate neighbors almng-timension. Because we assume
that yiocat > b, each node requires data from at most two other nodes. Boumdaes along
the x-dimension require data from only one other node, wherdasian nodes require data from
two other nodes. In Figure 5.8, nod®s, P3, P4, and P; are examples of boundary nodes, and
nodesP;, P,, P5, and Pg are examples of interior nodes. Boundary nodes require 2k i@sults
of b boxes from their left or right neighbors, and interior nodeguire the S2W results &f boxes
from each of their left and right neighbors in thedirection. For thex-sweep, a nodeé;, where
i =0,...,P—1,is aboundary node ifmodp = 0 ori modp = p— 1. We will refer to a
boundary nodeP; such that modp = 0 as a left boundary node and a boundary n&esuch
thati modp = p — 1 as a right boundary node.

Because we process one row per round, we regifigg rounds to complete the-sweep. As
mentioned earlier, the buffer along pipelipg is a dummy buffer, which signals that the local S2W
computation for the next row to be swept has finished, anduffertalong pipelinep, carries S2W
results, received from neighboring nodes, that are requorsweep the next row.

On each node, the send and receive stages in pipefinesd p, of Figure 5.7 take care of
sending and receiving data, respectively, through inbegssor communication. From our previous
discussion, we know that both these stages repeatgy rounds. In each round, the send stage
of a left boundary node sends the S2W results of theddsbxes in the current row to its right
neighbor, and a right boundary node sends the S2W resulte dif$th boxes in the current row to
its left neighbor. An interior node sends the S2W resultdeffirst and lasb boxes in the current
row to its immediate left and right neighbor, respectivélyow that we know what data each node
sends in a round, we can easily infer what data each nodevescei a round. In each round, the
receive stage of a left boundary node receives the S2W sasts right neighbor’s firsh boxes in
the current row and each right boundary node receives the 188Wits of its left neighbor’s lagt
boxes in the current row. An interior node receives the S28\lte of its immediate right and left

neighbor’s first and lagi boxes in the current row, respectively.
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Given that the send stage always accepts a dummy buffer fien$2W stage, where does it
send data for interprocessor communication from? Simdléiné S2W stage, the send stage knows
exactly which preallocated area of memory to send the data.findeed, the send stage accesses
the most recent area of memory that the S2W stage used toitsriveitput. Unlike the dummy
buffers in pipelinespy and py, buffers flowing through pipeling, carry useful data. The receive
stage uses the buffer to receive S2W results from other rangpasses the buffer along to the
sweep stage, which uses the contents of the buffer to sweeqthent row.

To aid performance in the send and receive stages, we dighnbetween boundary and interior
nodes, and we order the sends and receives in order to méicoinmunication time. We now
explain how we ordered the sends and receives, assuminthéhabdes are arranged as shown in
Figure 5.8. A boundary node sends data to the single othe tiad requires its data. An even-
numbered interior node first sends data to its right neighlbdrthen to its left neighbor, whereas an
odd-numbered interior node first sends data to its left dmigland then to its right neighbor. In the
receive stage, all nodes follow the same order that we justribed for the send stage.

The chronology of events that follows summarizes the warkihthe pipelines in Figure 5.7 in

a single round:

1. The S2W stage accepts a dummy buffer from the source stagg pipeline p;, reads its
input from a predefined region of memory, computes the S2Wteekor the current row of
boxes, and writes its output to another known area of menTdrg. S2W stage then conveys
the dummy buffer along pipeling; to signal the send stage to proceed. Finally, this stage
accepts and immediately conveys a dummy buffer along pipely to signal thex-sweep

stage.

2. After the send stage accepts a dummy buffer along itsipmehis stage sends data from the
S2W stage’s output region for this round of pipelipg through interprocessor communica-
tion, to the required nodes. Hence, no copying of data odautsis stage. The send stage

conveys the dummy buffer before returning from its stagetion.

3. The receive stage accepts an empty buffer from the sotage along pipeling, and fills
the buffer with S2W results received through interprocesscamunication from other nodes,

before conveying the buffer.
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Figure 5.9: FG pipelines that each node executes to sweep along-thedz-dimensions for the W2L step.

4. The x-sweep stage accepts a dummy buffer along pipetipewhich indicates that S2W
stage’s output region for this round of pipelipg is available for reading. The buffer that
this stage accepts along pipelipe contains relevant data to sweep the current row of boxes.
After sweeping the current row and writing the sweep residta preallocated region of
memory, which is disjoint from S2W stage’s output regioims stage conveys both buffers

that it accepted along their respective pipelines.

Given that each node sends and receives data at exactlyntieerate in each rourflpne might
wonder why we decided to use disjoint pipelines for intecessor communication. Also, unlike
dsort, where the amount of data and the set of nodes that asemdls data to and receives data
from might differ from one round to another, here, each naumns exactly how much data to com-
municate and which other nodes to communicate with, in eachd. The pipelines of Figure 5.7
represent our existing design for implementing the S2Wsasdieep phases of distributed-memory
FGT. In retrospect, we could have collapsed the pipelinésgufre 5.7 into a single, linear pipeline.
We realized this possibility after having performed thearikpents reported in Section 5.7. We were
sufficiently satisfied with the experimental results thatfek it unnecessary to reimplement the

pipelines. To avoid confusion, we refrain from describih @lternate, single-pipeline approach.

5.6.4 Completing the W2L step and the L2T step

Next, we carry out the- andz-sweeps in two phases on each node to complete the W2L step. Fo
both of the remaining sweeps, we implemented the FG pipehewn in Figure 5.9. Buffers flow-
ing through this pipeline carry useful data. The first usgfireed stage in the pipeline participates in
interprocessor communication, and its successor stagegses either a column of boxes (during
the y-sweep) or a row of boxes along thedimension (during the-sweep).

During they-sweep, each node processes a column of boxes in each rourdiotal ofy2

rounds. Similar to the-sweep, each node communicates data required foy-theeep with other

6Each node either sends and receitézp + 1)3 complex doubles, or it sends and recei2és2p + 1)3 complex
doubles.
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nodes and again, because we assume/that > b, each node communicates data with at most two
other nodes. Also as before, for each column, each nodatastia sweep for this column starting
at the bottommost box, after the node has received the rasgesata to complete the-sweep for
this column. For they-sweep, a nodé’; such that|i/p] modp = 0 or |i/p] modp = p—1

is designated a boundary node and other nodes are interitgsndn Figure 5.8, nodeBy—P3

and P;,—P;5 are examples of boundary nodes and nolgsP;; are examples of interior nodes
for the y-sweep.

The communicate stage in Figure 5.9 uses the MPI rou#de_Sendr ecv_r epl ace to
send and receive data through interprocessor commumcalibe MPl _Sendr ecv_r epl ace
routine uses the same region of memory to send data from aet/eedata into, though the node
that it sends data to can differ from the node that it recedlaa from. Because each node sends
and receives data at the same rate in each réuveldecided to usbPl _Sendr ecv_r epl ace
in the communicate stage in the pipeline of Figure 5.9. Tdsfyathe specifications of the
MPI _Sendr ecv_r epl ace routine, each node copies the relevant data to be sent imd ioto
the pipeline buffer, before invokingPl _Sendr ecv_r epl ace. Here again, we order the com-
munication so that a boundary node immediately commurscaith its top or bottom neighbor,
and an interior node communicates first with its top neigldmat then its bottom neighbor, or vice-
versa. Of course, during thesweep, each node uses the results ofxttsveep that it calculated
earlier for its set of boxes, along with the data that it reegifrom its neighboring nodes along
the y-dimension.

As an aside, we briefly note that we could have collapsed thd aad receive stages in the
pipelines of Figure 5.7 into a single communicate stage Waatld have worked similar to the
communicate stage that we just described. Hence, we couédiimplemented the S2W and the
sweep phases using a single, linear pipeline.

After completing they-sweep, we re-execute the pipelines of Figure 5.9 to comphet z-
sweep and hence the W2L step. During theweep, each node processes a row of boxes along
thez-dimension in each round, for a totalgf ., rounds. We define anodg, fori =0,..., P—1,

such thatli/p?| = 0 or |i/p?] = p — 1 to be a boundary node, and we categorize other nodes as

"Similar to thex-sweep, each node sends and receives eltty + 1)3 complex double values &b (2p + 1)3
complex double values.
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interior nodes. In Figure 5.8, nodé%—P;5 and nodesP43—Pg3 (hidden) are boundary nodes, and
nodesPi¢—P47 are interior nodes. In the-sweep, we use the results from thesweep, and we
order the communication similar to the earlier sweeps.

Thus, executing the pipelines of Figure 5.7, followed by t@cutions of the pipelines of
Figure 5.9 completes the first two steps of the fast Gaussftan in distributed memory.

All computations required for the last step, the L2T step,extirely local to a node and, there-
fore, we use OpenMP’par al | el for loop (see lines 4-5 of the pseudocode for the shared-
memory implementation) to approximate the Gaussian oftamu#b.1) for the targets in multiple

boxes in parallel.

5.6.5 Error checking

Given that the fast Gauss transform computes approximdes;ave should take the time to de-
termine its numeric accuracy. Ideally, we would like to cddte the Gaussian of equation (5.1)
directly for each target, evaluate the error as the diffegenf the actual value with the respective
FGT value for the target, compute the root mean square evarall targets, and ensure that the
root mean square error is at meswhich is the required precision. Computing the actual editu

all targets is prohibitive, howevérTherefore, we compute the sampled maximum relative &rror,
defined in the pseudocode below, using a sample of targetspail compare it against

SAMPLED-MAX-RELATIVE-ERROR

1 letmaxgt = maximum of all FGT values

2 letS = asample of target points

3 for eachv € §

4 computevgirect = Gauss transform af calculated directly using equation (5.1)

5 let vegT = FGT value forv

6 compute the relative error &Sjirect — VreT|/Ma%GT

7 sampled maximum relative error = maximum of the relativersrcomputed for samplg&

5.7 Experimental results

In this section, we present some performance results of GIr implementation. As mentioned

earlier, we have implemented the fast Gauss transform iredhaemory using OpenMP and in

8Recall that improving the @{x) running time was the basis for FGT.
9We were in contact with Shravan K. Veerapaneni [44, 47], wiggssted this method.
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distributed-memory using FG, MPI and OpenMP. Our sharedtamg and distributed-memory ver-
sions are both implemented in C++. We compare our implertientagainst a distributed-memory
implementation in C++ by Sampath, Sundar, and Veerpandij\¢hich uses PETSc 3.0 [4, 5] for
MPI1. We will refer to this other implementation as SSV-FGT.

We ran both implementations on a cluster with many nodeshaflwwe used either one or eight
nodes. Each of the nodes that we used has two dual-core,l 2z3AGID Opteron 280 processors,
and 8 GB of RAM. Each node runs Linux version 2.6.33.3 and tbden are connected using
gigabit ethernet. We use MPICH2 [42] for MPI because it isradld-safe implementation of MPI.
We compiled our shared-memory and distributed-memoryempitations using g++ version 4.1.2
and mpicxx, respectively, at optimization level O3. We rested the authors of SSV-FGT for their
code and compiled it using PETSc 3.0, as suggested by thema;again, we set the compiler
optimization level to O3.

In our experiments, we assume thlat= 3, that all points lie within the unit cub@, 1]3, and that
the sources and targets coincide. We also assume that wialeim box, the points lie on a regular
grid. As mentioned earlier, we store only the charge valgss@ated with the source points, and
we generate the source/target points at run time. Simila@utoimplementation, SSV-FGT, too,
seems to generate input at run time. To the best of our kngsldthe SSV-FGT implementation
that we compared against generates data on a regular gedhroex. For fairness, however, in our
implementation, we generate experimental results withtpdiing on a regular grid in each box
and with points not assumed to lie on a regular gfidsing separate executions of our program.

On a single node, we generate 29.2 million source/targeitpaind se6 = 1/16, for a total
of 64 boxes arranged asdax 4 x 4 grid. On eight nodes, we generate 233.6 million sourcedtarg
points distributed equally across the nodes and setl/64, for a total of 512 boxes. Each node,
therefore, owns @ x 4 x 4 subgrid of boxes, for a total of 64 boxes. Note that for= 8, we
generate 8 times as many points asfoe= 1, so that we use the same number of points per node.
In both cases, we set = 10~°, for which the required values df, b, and p are 7, 4, and 10,
respectively (see Table 2.1 in the paper by Spivak, Veempaand Greengard [47]). We provided

suitable command-line parameters to SSV-FGT to match qurtisizes and the FGT parameter

1070 satisfy this assumption, we repeatedly calculate simkcasine values in the S2W and L2T steps instead of
applying our performance enhancements. That is, we didatoably generate points on a non-regular grid.
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P=1
29.2 million points

P =3
233.6 million points

implementation| regular grid non-regular grid regular grid non-regular grig
PN-FGT 12.63 21.12 5.68 8.97
SSV-FGT 101.90 101.90 117.03 117.03

Table 5.1: Experimental results for our implementation, nicknamedMBlIT, and SSV-FGT. All results are
presented in seconds and each result represents the avéthgee runs.

values in both the 1-node and the 8-node cases.

Table 5.1 summarizes the results of our experiments. Irathle twe nickname our implementa-
tion as PN-FGT. All results are presented in seconds; eatlit i the average of three runs, where
the running times differed only slightly within each grouftliree. Because we are not entirely sure
whether SSV-FGT generates inputs on a regular or a nonaeguld within each box, we show
the same running time for both types of grids in each case $+BGT. In our implementation,
when P = 1, we use only one core out of the available cores on a nodelasitni SSV-FGT.
That is, the results foP = 1 effectively give us the serial running time for both implartegions.
When P = 8, we use all available cores on a node for maximum parallelisen are not sure
whether SSV-FGT uses all available cores on a node. Whesa 1, we get a maximum relative
error of 108 based on the first 100 source/target points, and whea 8, we get a maximum rel-
ative error of 0.0000025 based on the first 100 source/tamjats; we don't know these numbers
for SSV-FGT.

As the results in Table 5.1 show, our FGT implementation carsiclerably faster than SSV-FGT
in all cases. Our implementation was between 4.8—-20.6 tfamsr than SSV-FGT. We attribute
our performance to the judicious use of available paraleliboth shared-memory and distributed-
memory parallelism. In shared-memory, we use OpenNjRisal | el f or regions to compute
the results for multiple boxes in parallel in the S2W and L2ikges:! In addition to distributing
the computation over multiple nodes in our distributed-ragmmplementation, FG pipelines help
us to overlap interprocessor communication with compemtatand we use OpenMPr al | el
f or regions for in-core parallelism.

For completeness, we must also ensure that our implemamtsdales well. To check for scal-

110ur code has these parallel regions though we restrict lwesseo use only one core in our experiments for a fair
comparison with SSV-FGT.
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implementation regular grid non-regular grid
P =1, using 4 cores 4.46 6.30
P = 8, using 4 cores on each nogde 5.68 8.97

Table 5.2: Scalability results for our implementation. All result®aresented in seconds and each result
represents the average of three runs.

ability, we ran our shared-memory implementation by altuit to access all available cores on a
single node and compared these results with our resuli® ter8. As before, we use the same num-
ber of points per node, i.e., we generate 29.2 million sdtaget points on a single node and 233.6
million source/target points on eight nodes. Table 5.2 shtive results of our comparison. As
we can see from the table, our code scales reasonably waliglhwe admit that just eight nodes
are not enough to test for scalability. We were unable todestode further because of hardware

limitations.

5.8 Conclusions

In this chapter, we saw how to approximate the Gaussian @teu(5.1) using Hermite and plane-
wave expansions at target locations, as well as our implementation of the plaaee version of
the fast Gauss transform. Although we did not store any datdisk for this application, we
still had to think about mitigating the effects of interpessor communication on the performance
of our implementation, for which FG pipelines proved usefaurthermore, we were able to use
FG stages as signaling mechanisms for the first time heres dpplication also provided us with
ample opportunity for in-core parallelism for which we ugedenMP. In addition to exploiting
the available parallelism, we analyzed the structure ottmputation and identified ways to reuse
costly computations to improve performance.

The experimental results presented in Section 5.7 areyhatdouraging, both in terms of per-
formance and scalability. That being said, our impleméortatioes make a few assumptions. In
particular, we assume that all source/target points wighitox lie on a regular grid. In general, if
the source and target points are randomly distributed wilte unit cubg0, 1]3, some boxes are
likely to contain more points than the others. Going throafjtihe steps of the FGT for lightly-

populated boxes is costly. Hence, for general point distidins, we would want to segregate the
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densely-populated boxes from the lightly populated oned,fallow a different approach in each
case. Sampath, Sundar, and Veerapaneni [44] address #ilpanplementation of this more
general case. Our experiments with a regular grid inspir® tiy the general case in future. We
believe that FG pipelines will prove useful in the generae;aoo. As in the regular-grid case,
understanding the underlying computation and the sequeindata exchanges will be vital to de-
signing efficient FG pipelines. FG, in turn, will provide rtithreaded parallelism to help overlap
interprocessor communication with computation, in additio allowing access to other sources of
parallelism in its stage functions. As mentioned earlieg, were able to run our experiments on
at most eight nodes, which served as a good starting poina Wext step, we should endeavor to
run our implementation on more nodes to be able to bettessaghe performance and scalability
of our implementation. In Section 5.6.3, we mentioned thesjlmlity of collapsing the pipelines of
Figure 5.7 into a single, linear pipeline. What effect thtemate design has on performance might
be worth looking into.

On the whole, the favorable results from our experimentthiefast Gauss transform encourage

us to look for more applications in the field of scientific cartipg.
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Chapter 6

Related Work

In this chapter, we compare FG with related libraries sucbJidéX pipes, Streamlt, TPIE, and
TBB, and we discuss the similarities and differences of eddhese libraries with respect to FG.

We also compare FG’s design with the concept of dataflow progring.

6.1 UNIX Pipes

FG shares its conceptual design of a pipeline acting on datamnss with UNIX pipes [3]. Because
pipes transfer data between processes, not threads, pgpasr@ore heavyweight mechanism than
the buffer queues that sit between FG stages. Furthermecaube low-level system interactions in
UNIX occur through a higher-level file-like abstraction, Uf\pipes interact through the file-system
interface. FG and UNIX pipes both make use of shared memotyybereas it is at the thread level
in FG, itis at the process level in pipes. Although it is pbksior a process to read from or write
to multiple pipes and thus emulate intersecting-pipeliiesflow of data, the underlying program-
ming effort is considerable. We have to invoke tliegpe system call multiple times as required, be
careful not to accidentally shut off some direction of a gipa process, avoid deadlocks, and close
file descriptors and release memory associated with albpipet were created. Moreover, we are

likely to run out of system resources in situations where s@kG’s virtual pipelines.
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6.2 Streamlt

The Streamlt [51, 52] project from MIT is a Java-like langeiamnd compiler for stream programs.
Stream-based applications are found in the embedded dasunamas cell phones and software
routers. Streamlt and FG have much in common. Streamlt defififer to be the basic unit of
computation, with the fine-grained execution steps desdrib a filter’'swork method; a filter and
its work function resemble FG's stage and stage functispeaetively. Just as a stage operates on a
fixed-size buffer, afilter has static input and output sikeswn as pop and push rates, respectively,
in Streamlt terminology.

Streamlt allows filters to be joined together to form a PipeliSplitJoin, and FeedbackLoop.
The simple linear pipeline constructs in Streamlt and FGamdamentally similar. A SplitJoin in
Streamlt diverges at splitter and converges atjainer; a splitter can be Duplicate, RoundRobin,
or Null. A Duplicate splitter sends a copy of each data itenthé® various output streams, a
RoundRobin splitter sends data in a round-robin manner,aaNdll splitter sends out no data at
all (useful if its successor filters expect no input). A joirean be either RoundRobin or Null.
FG’s fork-join construct is similar in flavor, except that FBows only the FG-equivalent of a
RoundRobin splitter but a joiner in FG can be either RoundRobfirst-come first-served (FCFS).
As in FG, the FeedbackLoop construct in Streamlt introdumedes in a stream graph. FG and
Streamlt share the common goal of making programs easierit® and faster to execute.

We now highlight some of the major differences between &tteand FG. Unlike FG, which
is a library, Streamlt is a language with its own compileretreamlt language specification for
version 2.1 [49] suggests that Streamlt now supports dyndi@i rates for filters, that is, a filter
can consume and emit data items at a varying rate; buffes #izZEG remain fixed over the entire
execution of the pipeline. FG allows disjoint and intergegpipeline structures, which are absent
from Streamit.

Streamlt seems to assume an infinite sequence of data itdrasas FG has an explicit notion
of shutting down a pipeline. When the number of rounds ar&mmivn in advance and when buffers
might flow nonlinearly through a pipeline, it can be diffictdt determine when to shut down the

pipeline correctly.
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6.3 TPIE

Templated Parallel /0O Environment, or TPIE [1] is a librahat provides templated interfaces
for efficient implementations of external-memory algamth TPIE is implemented as a set of
templated classes and functions in C++. Unlike FG, usersrmaake explicit calls to 1/0 functions
in TPIE; its Block Transfer Engine takes care of transfgrritata to and from the disk. The user
is provided access to a data stream that can be read from ateinvio sequentially. Although
the user can choose from three Block Transfer Engines (artefeaCst di o, uf s I/0, and I/O
usingmrap) depending on her desired method for performing 1/O, TPi&ashs do not provide the
flexibility of non-sequential data access. In FG, howevecduse the user has full control over how
I/O is performed, she can access data sequentially or ogerw

TPIE provides templates for several computation pattemeh ss scanning, permutation, and
merging in the form obperation management objeciBhe exact names of methods in an operation
management object and their required functionality areifipd by TPIE, and the user is required
to supply the application-specific code. Usually, each ajpmm management object requires at least
two methodsi ni ti al i ze() andoper at e() . The user defines the exact computation that she
wants for the pattern in theper at e() method, just as she defines the exact operation of a stage
in an FG stage function. Theper at e() method can request access to multiple streams if need
be, similar to how the user can accept buffers from multipfelmes in an intersecting stage in
FG. Unlike FG, where stage functions operate on large ddfarbutheoper at e() method of
an operation management object seems to function at thelgréy of a single data element per
input stream. In FG terminology, this level of granulargyeiquivalent to calling a stage function for
every data element in the input. The user is also respornfibiaforming TPIE of the end of the
computation by returning a special TPIE-defined constamhftheoper at e() method, which is
similar to setting the caboose flag on the fly in an FG pipeline.

It is not clear from the documentation whether the user cafoge interprocessor communi-
cation in anoper at e() method. TPIE, therefore, seems to be designed for execekitggnal-
memory algorithms on a single machine, and its documentaimgests that the Block Transfer

Engines only support streams stored on a single disk.
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6.4 Dataflow Programming

In the dataflow execution model [32], a program is represeagea directed graph where the nodes
are primitive instructions such as arithmetic operaticasg edges between the nodes represent
data dependencies between the instructions. Data flowkess@long the edges, which behave
as unbounded FIFO queues. A node’s incoming edges are d¢tlaghut arcsand its outgoing
edges are calledutput arcs Whenever data is available on all the input arcs of a nodedbmes
fireableand is executed at some later time. When a fireable node esedutemoves data from
each of its input arcs, performs its operation, and placesaaone or more of its output arcs. That
is, an operation becomes ready to execute as soon as aljiise® input is available. Because
multiple instructions might be executed in parallel, a lata program presents the potential for a
high degree of parallelism. In contrast, an instructiorhimton Neumann execution model executes
only when the program counter reaches it, irrespective @thdr the instruction could have been
executed earlier.

Dataflow principles automatically allow f@ipelineddataflow if the computation is to be per-
formed on more than one dataset. Note, however, that a safiosades in a dataflow graph that form
a chairt can never be executed in parallel for a particular wave @, daid operating such subgraphs
at the fine granularity of the pure dataflow model is ineffitiddataflow programming, therefore,
evolved to defindarge-grain dataflow[54] wherein a fine-grained dataflow graph is analyzed to
identify subgraphs that form a chain, whose instructiomsthen grouped to execute as a sequen-
tial process. These coarse-grained nodes are temmagcbactors Even in large-grain dataflow, all
parts of the dataflow graph, including macroactors, exaoutier the rules of the dataflow execution
model. In any of its forms, the dataflow model does not addnegslatency operations.

In principle, FG shares some features with dataflow prograkmsFG pipeline can be seen as
a directed graph with data buffers flowing from one stage tler as specified by the user. The
thread corresponding to an FG stage becomes ready to exghatea buffer is available in its
incoming queue. Similar to a node in a dataflow program, ante@esaccepts a buffer, executes its
stage function, and conveys the buffer to its outgoing qu@amceptually, we, too, “overload” arcs

in our pipeline illustrations to represent both the directof data flow and the buffer queues that

1By a chain, we mean that nodes are linked one after anothkrtksatthe output of one node is the input for the next.
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sit between stages. Also, multiple stages in an FG pipelilg@tnun in parallel, depending on the
available resources.

In practice, however, FG and dataflow programs share littieommon. Dataflow graphs are
said to be the “machine language” of dataflow programs, vaseiré&s’s pipeline “graphs” are meant
purely for illustrative purposes. In the pure dataflow modeldes represent primitive instructions,
whereas stage functions in FG usually span multiple linesodk in C++ and, therefore, involve
hundreds or thousands of instructions. At first glance, ampipéline seems to resemble a dataflow
graph in the large-grain dataflow model. Note, however, ith#ihe large-grain dataflow model, a
linear pipeline in FG would be executed as one big serialestagpose stage function is formed by
combining all the stage functions of the original pipeliresulting in zero parallelism. As we know,
all FG programs are multithreaded and have the potentialrofing in parallel. FG’s pipelines are
coarse-grained in another sense, too: FG stages operagegenduffers of data, instead of single
data tokens. The coarse granularity of data “tokens” in F@portant for efficiently implementing
programs that run on massive datasets. FG can be seen as matonbof dataflow ideas and

multithreading features available in the von Neumann world

6.5 Threading Building Blocks (TBB)

Intel's Threading Building Blocks [53] is a C++ template riioy that supports many parallel-

programming constructs, including software pipelinesnitir to FG, TBB relieves the programmer

from having to parallelize her code using native threadsiswffered as a library; thus, it does not

require learning a new language or using a new compiler. aki§tG encourages a programmer
to design an FG pipeline based on the high-latency operatioher program, TBB encourages a
programmer to express the required computation using a euaftasks. The TBB runtime system

takes care of efficiently mapping tasks to threads. Instéathtically allocating work to threads, the

Threading Building Blocks library recursively splits theau’s tasks until the right number of par-

allel tasks are reached. Breaking down the problem re@lysalso suits the library’s task-stealing

approach for load-balancing tasks among threads and engd@dibrary to scale the parallelism

based on the number of cores available in a machine.

The Threading Building Blocks library offers a number of gdbel-programming constructs
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such apar al | el for,parall el scan,andparal | el _reduce and some concurrent con-
tainers such asoncurrent _queue, concurrent vect or, andconcurr ent _hashmap.
Additionally, TBB provides a pipeline template for prograutihat can be modeled as a linear se-
guence of stages. Each stage in a TBB pipeline is written astadass that inherits from TBB’s
filter class; an implementation aofper at or () within the class serves as the corresponding
stage function. Public methods in TBB® pel i ne class allow the user to set up and run the
pipeline. Analogous to FG bufferspkensflow through a TBB pipeline, and as with FG, the user
is required to set the maximum number of tokens that can bégint fh a TBB pipeline. In TBB,
each stage can be designated as serial or parallel; a sagal@ocesses tokens one after the other,
in order, whereas a parallel stage might process multifpden® concurrently or out of order. TBB
requires the first stage in the pipeline to also manage Isyfédiectively, the first stage acts like FG’'s
source stage but the code to manage buffers comes from thangés part of the stage function.
That is, unlike FG, the user shares some of the burden ofrbaffsagement in TBB. The first
stage is also responsible for deciding when the pipelindihahed its computation; the stage re-
turnsNULL instead of a valid buffer to indicate the equivalent of FGibaose round. It is not clear
from the TBB documentation as to whether a middle stage ipalipe can inform TBB’s runtime
system that the pipeline has finished its computation. Tekerive as stage function parameters and
are sent out of the stage function as return values; TBBriatgrensures that tokens are processed
in order at the serial stages. TBB’s design allows disjdmdr pipelines to run concurrently, but
TBB requires that each pipeline be started from its own thréeBB, however, does not support
non-linear pipeline constructs similar to FG's fork-joinintersecting pipelines. That is, it would
not be possible to implement dsort pass 2 in TBB using thdipgstructures shown in Figure 3.4.
Unlike FG, TBB is not designed for programs that involve higtency operations along with
computation operations; TBB’s task scheduler works bestigorithms composed of hon-blocking
tasks. Although tasks offer scalable parallelism, a bldctesk can neither be split further nor
be scheduled on a processor; TBB documentation suggests fudl-blown threads for tasks that

block. That is, FG’s design is suited for the kinds of progsame target.
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6.6 MapReduce

MapReduce, introduced by Google, is a programming modplred by themapandreduceprim-
itives present in Lisp and other functional languages. Tharfocus of Google’s MapReduce is to
apply the paradigm to extremely large datasets, in the af@rabytes, running on thousands of
nodes on a cluster. In a paper introducing the model [19]n2ea Ghemawat bring to light several
interesting problems, such as distributed grep, count df Biétess frequency, and reverse web-link
graph, that can be effectively expressed using MapReducerder to realize these problems on
inputs spanning terabytes, the computations need to biébdistd and carried out in parallel across
hundreds or thousands of machines. The conceptual sitypdicmany such problems is obscured
by the much greater, and more complicated, code requiregdiondth the issues related to distribut-
ing the data and parallelizing the computation. The pergdrtede, although tedious, repetitive, and
usually unrelated to the underlying problem, is necessama fpractical implementation. MapRe-
duce was, therefore, designed as an abstraction to allokg ts@&xpress their computations in a
simple, uniform manner, without having to worry about théade of parallelization. Recall from
Section 2.1 that similar observations regarding out-oeqoograms led to the genesis of FG. That
is, both MapReduce and FG share the goal of wanting to makmler for users to write efficient
parallel programs for large datasets. The users of MapRedxgress the computation using two
functions: Map andReduce These functions are analogous to FG’s stage functiongpéxicat, in
FG, the user provides a stage function for each unique stagstie would like FG to spawn.

For each input pair, thé/ap function outputs a list ofntermediatekey-value pairs. The
Reduce function merges all values that belong to the samekkyproduce a smaller set of values
(typically zero or one output values). Similar to the inpladj the output files are also distributed
on the nodes of a cluster; the user is required to specifyuhger R of output files that should be
written by MapReduce. Because each reduce task outputslen® fs also the number of reduce
tasks that work on the results of the map function. In additmthe map and reduce functions,
the library allows users to specifypartition function for intermediate keys to override the default
partition method that the library provides for ensuring voellanced partitions.

The input files, stored on the local disks of the nodes of aetuare managed by the Google

File System (GFS) [25] which splits the files into 64-MB blgsaknd stores a copy of each block on
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three different nodes. MapReduce invokes multiple copiekeoprogram on a cluster. One of the
copies becomes the master; the remaining copies are dexigamworkers and are assigned map
or reduce tasks by the master. In order to save network baitlidwhe master tries to schedule a
map task on a node that has a replica of the corresponding. ivapReduce re-executes halted
tasks resulting from node failures, which are common indatyisters. If a worker node fails, the
master reassigns the failed worker’s task to a new nodegifrthster fails, the program is aborted.
Also, because each reduce worker sorts its data by the iatkate keys before starting its work,
the library guarantees a sorted output file within each fpamti

While enumerating the many applications of MapReduce inrttreductory paragraph earlier,
we deliberately left out one important application—distition sort. In an implementation of distri-
bution sort using MapReduce, the map function emitkay, record- pair and the reduce function
emits all pairs unchanged. Clearly, this implementatioenmse much simpler than the FG imple-
mentation that we described in Chapter 3. Recall, howekiat,the library ensures sorted output
for all applications; therefore, it is possible that a ddibet algorithm is built into the library. The
MapReduce paper [19] mentions that an external sort is useth the intermediate data output by
the map function is too big to fit in main memory, but it does paivide any details about the
underlying sorting mechanism.

Just as FG is a framework for pipeline-structured prograMapReduce is a programming
model for problems that can express their computationsinvitie map and reduce functions. We
listed several applications of MapReduce within our lidiseope, and the literature on FG presents
a number of applications that are implementable using so#wipelines. Whereas FG spawns as
many threads on each node as the number of stages in thenpigkiis information is not apparent
in the MapReduce literature; we conjecture that MapRedarelles one task per node. MapRe-
duce also provides support for recovering from faults arslehdesignated master that dynamically
allocates tasks to workers; FG relies on the operating systabilities to dynamically schedule
threads. Both FG and MapReduce provide a simple interfacadplications that can fit within
their respective frameworks and make it simpler for usepatallelize their applications in this era

of multicore machines.
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6.7 SIXXL

The Standard Template Library for Extra Large Data Setsx§&) was introduced by Demen-
tiev [20] to allow easy implementation of algorithms basadhe Parallel Disk Model [57]. BXXL's
interface resembles that of the C++ Standard Template il &TL) [50]. The SxxL library pro-
vides classes for data structures such as vectors, stawksjueeues, and for algorithms such as
sorting, including when data reside on parallel disks onnglsinode. The library’s AIO layer
provides I/O-related operations and abstracts away dasathow asynchronous I/O is performed.
Recently, the authors ofiSxL added pipelining capabilities to the library [22] to ovexl#ZO and
computation, and to reduce the number of I/O operations.

In STXXL, a pipelined computation is represented as a directedliadimv graph where the
nodes of the flow graph represent data-processing compoaadtits edges indicate the direction
of data flow. The nodes of a flow graph are analogous to FG stagkedges play a similar role in
FG. Like an FG pipeline, ani&xL flow graph is set up in source code, i.e., there is no graphical
interface for setting up a pipeline.

STxXXL defines three types of nodes in a flow graphscanningnode, asorting node, and a
file node. In traditional $xxL pipelining, each node processdement®f possibly different types
and numbers, and the type dependencies are resolved atledimg. Scanning nodes process one
element after the other, do all work in order, and their fiomality is defined by the programmer.
Sorting nodes sort elements with respect to some sortirtgrion, and file nodes read elements
from disk to feed their successors or consume elements e pgredecessors and write them to
disk. What role the programmer plays in these two kinds ofesdd not clear from the literature.
Nodes also seem to require definitionsopfer at or = () andoper at or ++( ) , but here again we
are not sure as to who implements these operators. As we K®wpoes not distinguish between
stage functions; an FG user is free to implement each stagsidu per her requirement. We do
acknowledge that scanning, sorting, and file nodes covet opmerations in an external-memory
computation on a single machine.

Each flow graph is required to havepamary sink which is usually a file node, and pipeline
execution is triggered by the primary sink when it invokesriat eri al i ze() function. As in

an FG pipeline, $xxL requires that all nodes have a path to the primary sink. Infe@gver, it is
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the source stage of a pipeline that triggers the computéyoemitting an empty buffer to the first
user-defined stage in the pipeline.

A sorting node in an $xxL flow graph seems to be internally implemented using a thoekn
sequence: a run-creator scanning node followed by a file twdéore sorted runs on disk, and
a merging node to merge the sorted runs. Though each soridg internally involves further
complexity as we just described, it has a simple representat an SxxL flow graph. The im-
plementation of external-memory sorting im@&L uses MCSTL [46] to parallelize the in-memory
computations; MCSTL seems to inherently use OpenMP’s lghnalutines. For the task paral-
lelism that pipelining requires, 1XXL relies on OS threading mechanisms, and POSIX threads in
particular, similar to FG.

Because $xxL assumes responsibility for providing some basic datatsires and algorithms,
the glue code for a pipeline involving all three types of r@dsoks fairly short and clean (see
Appendix A in [6]), but it is not intuitive for a novice STL pgpammer. We admit that a similar
pipeline in FG would require more coding effort, but in ouiirdpn, the APIs that FG provides for
constructing a pipeline are much more intuitive. Furtheend FG were to internally support some
basic algorithms in its next version, the code for settingqup-G pipeline would shrink, too.

Later, the SxxL pipelining framework was augmented wilsynchronoushodes [6], which
process data by spawning a worker thread to communicatebgdfteeen their predecessors and
successors. Each asynchronous node requires two elenférsbwa producer buffer to absorb
elements from the predecessor and a consumer buffer to sernaiccessor. Routines executing
on behalf of nodes may block when no data is available. Whemtbducer buffer is full and the
consumer buffer is empty, the two buffers are swapped. Theffers work using OS-supported
synchronization mechanisms. The buffers associated sithclironous nodes were introduced to
amortize the cost of thread synchronization because sgnidimg for every single element would
be far too costly. The buffer size can be tuned as requiratljraroducing asynchronous nodes in
an existing implementation requires extra coding efforankthe above description, we best under-
stand asynchronous nodes as being akin to the buffer quieaiesitt between FG stages. Both FG
buffers and the buffers associated with asynchronous nde&le coarse-grained data parallelism.
Whether the primary sink of ant@XL flow graph recycles buffers is unclear.

On the whole, the fundamental designs of FG ama)&. pipelines seem to have more similar-
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ities than differences. The paper by Beckmann, DementieV,Sangler [6] shows an example of a
distribute-collect flow graph that resembles FG's intelisgcpipelines, though support for disjoint
pipelines seems to be absent fromx8L. We conjecture that because of these similarities, the
FG-based and &XxL -based implementations of external-memory suffix arrayc@mparably, as
we saw in Chapter 4. To the best of our knowledgex:8. does not support distributed-memory
computations that involve interprocessor communicatfostage that performs interprocessor com-
munication cannot be categorized as a scanning, sortirafilernode, which further validates our

speculation.
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Chapter 7

Conclusions

In this thesis, we explored FG’s software-pipeline modelgarallel computing. In particular, the
multithreaded platform that FG provides is useful for capging high-latency operations with other
operations in out-of-core and distributed-memory apfibice. In this thesis, we saw how to use
FG to tackle latency with the help of three program instane@esout-of-core, distribution-based
sorting program; an external-memory suffix-array prograng a scientific-computing application
called the fast Gauss transform (FGT). In the latter twoiappibns, we tried to utilize all the cores
available in a machine by combining FG’s multithreadingdieawith libraries such as OpenMP that
help with in-core parallelism. In all three instances, wkiaeed good performance results, which
we attribute to well-designed FG pipelines and programntée@niques that leveraged distributed-
memory and shared-memory parallelism, combined with F@&ity implementation. This thesis
shows that we can use FG to model applications from a variedysoiplines and implement them
efficiently. As always, more work can be done, which we disquext.

Both in dsort and in FGT, we used a distributed-memory ctusteour experiments. In both
these programs, we were limited by the available hardwanseber. In dsort, we were able to sort
only 64 GB of data distributed across 16 nodes of a clustensidering the hardware that is avail-
able today, 64 GB of data is relatively small. Similarly, iGTF, we were able to test our scalability
results only on 8 nodes of a cluster, which again is not enol@h and our implementations are
capable of handling bigger datasets in both these cases sbauld endeavor to look for hardware
on which we can test these programs better.

As we discussed in the last section of Chapter 4, the FG pgelihat we designed for im-
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plementing external-memory suffix arrays made us realiaé dxiliary buffers available in FG
version 1.4 might be redundant, after all. Usually, a sthge ¢annot perform its work in-place re-
quires auxiliary buffers. We propose that whenever a stageires an auxiliary buffer, we make it
an intersecting stageAlong the extra pipeline, only the source stage should pieteis stage and
the sink stage should succeed this stage. A pipeline buffiagdhe extra pipeline can then serve as
an auxiliary buffer for this stage. Using the proposed desige can allow auxiliary buffers to be
of a different size than the pipeline buffer, which is notgbke in the existing FG implementation.
In this design, each stage that requires an auxiliary buffiéadd an extra pipeline, each of which
will require its own source and sink stages, which amounstonany extra threads. As we saw
in Section 3.2.3, we could soon overwhelm the availableesygesources. In order to stay within
the system thread-limit, we could probably collapse allsbarce stages and all the sink stages,
such that there is only one source stage and one sink stagé# foe pipelines. We could take the
lead from virtual pipelines to implement the single-souiagle-sink idea. Recall that the current
FG implementation provides a swap method for auxiliary a@pélme thumbnails, which swaps the
buffers associated with the thumbnails so that the auyilaffer becomes the pipeline buffer and
vice-versa. The main advantage of the swap method is thatpshus avoid having to copy data
from the auxiliary buffer to the pipeline bufférThanks to FG’s thumbnail design, we should be
able to implement the swap method now just as simply as hefereby swapping only the buffer
pointers, keeping the rest of the two pipeline thumbnaissiime.

Another FG feature that might be worth exploring is wheth@&r $hould provide built-in sup-
port for routine operations such as reading from and writindisk and sorting. Aided with such
a functionality, the user will be saved from writing a furmctifor each user-defined stage in the
pipeline. To implement the disk-based operations, for etanthe user might tell FG the buffer
size and the file name to read from or write to, and FG couldwgrethie command for reading or
writing. The sorting functionality might be more tricky, towill perhaps be doable with the help of
a user-provided comparison function and C++ template aragring.

In the last section of Chapter 5, we identified some direstimn future work, which we reit-

erate here. The FGT implementation that we presented inthtegss assumes that the source/target

1if the said stage is already an intersecting stage, we adtiempipeline.
2Recall that because a stage uses the auxiliary buffer astamyspace, the useful results of the computation might
be in the auxiliary buffer.
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points within each box lie on a regular grid, which is surebt the most general case. Our FGT
implementation should serve as a good starting point fotladlimplementation that would handle
the general point distribution. We might even identify sdmaden FG facet that we haven't come
across yet; for example, while designing pipelines for tk&lTFwe realized that FG stages could
also serve as signaling mechanisms. Another small buteistiag experiment would be to try the
single, linear pipeline design for the S2W andweep phases of distributed-memory FGT and see
how the performance of this alternate design compares wélexisting results.

This thesis shows that we can use FG to model applicationsdifferent computing disciplines
and implement them efficiently. FG continues to deliver itsnpise of making multithreaded pro-
gramming easier for users, without compromising on peréoroe. Our work has helped to extend
FG in meaningful ways, and it provides some suggestionshionext version of FG (version 2.0),
which is under way. The performance results from this thesisserve as initial benchmarks for the
same programs implemented using FG version 2.0; additipma have outlined some application-
specific future work.

To conclude, we reiterate the contributions of this thesis:

1. While designing an out-of-core, distribution-basedtiagrprogram using FG (nicknamed
“dsort”), we identified ways to advance FG from supportingtjsingle, linear pipelines to
multiple disjoint pipelines and multiple pipelines thatdrsect at a common stage. Using
these new pipeline structures, we were able to implement dfficiently, despite its disad-

vantages of having dynamic 1/O and communication patterns.

2. Our implementation of out-of-core sorting in a sharedvyogy setting using FG is faster

by 9.6%—-16.3% (approximately) compared with arx$L -based implementation.

3. Our implementation of external-memory suffix arrays eiserd FG’s intersecting pipelines
in ways that had never been attempted before. The complexipenge structures that we
designed for this algorithm also performed well. For the firme, we implemented a recur-
sive algorithm using FG, and we used OpenMP along with FGlip fiilize all the cores of

a multicore machine.

4. We have implemented the fast Gauss transform in a digtdbmnemory setting that uses
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FG to overlap communication with computation. In this pobjeve used FORTRAN-based
BLAS routines for vector computation, and we used OpenMReverage the in-core par-
allelism offered by the algorithm. We saw speedups in rujpnime by factors of up to 20

compared with an alternate FGT implementation.

. We have used our experience in designing out-of-corergnog using FG to extend FG with
additional pipeline structures. We have also identifieds®i@ features that might be redun-

dant, and thus can be removed from the next version of FG.
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