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Abstract

The problem of moving rigid bodies efficiently is of particular interest in robotics because the simplest model
of a mobile robot or of a manipulated object is often a rigid body. Path planning, controller design and robot
design may all benefit from precise knowledge of optimal trajectories for aset of permitted controls.

In this work, we present a general solution to the problem of finding minimum timetrajectories for
an arbitrary self-propelled, velocity-bounded rigid body in the obstacle-free plane. Such minimum-time
trajectories depend on the vehicle’s capabilities and on and the start and goal configurations. For example,
the fastest way to move a car sideways might be to execute a parallel-parkingmotion. The fastest long-
distance trajectories for a wheelchair-like vehicle might be of a turn-drive-turn variety.

Our analysis reveals a wide variety of types of optimal trajectories. We determine an exhaustive tax-
onomy of optimal trajectory types, presented as a branching tree. For each of the necessary leaf nodes, we
develop a specific algorithm to find the fastest trajectory in that node. The fastest trajectory overall is drawn
from this set.
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Chapter 1

Introduction

The problem of moving rigid bodies efficiently is of particular interest in robotics because the simplest model
of a mobile robot or of a manipulated object is often a rigid body. Path planning, controller design and robot
design may all benefit from precise knowledge of optimal trajectories for aset of permitted controls.

In this work, we present a general solution to the problem of finding minimum timetrajectories for a self-
propelled, velocity-bounded rigid body in the obstacle-free plane. Suchminimum-time trajectories depend
on the vehicle’s capabilities and on and the start and goal configurations.For example, the fastest way to
move a car sideways might be to execute a parallel-parking motion. The fastest long-distance trajectories
for a wheelchair-like vehicle might be of a turn-drive-turn variety.

Our mathematical model is fully developed in Chapter 3. We assume the controls that can be applied to
a rigid body to be velocities witḣx, ẏ andθ̇ components. The accelerations are assumed to be instantaneous,
allowing direct control over the velocity. The problem is to find minimum time control policies that cause
the vehicle to reach the goal.

A control policy is a functionu(t) that specifies which velocity is chosen at each timet. The velocities
are chosen from within a convex polyhedral set of velocitiesU . Reflecting the assumption that the vehicle
moves autonomously, the control set is fixed in the body’s frame of reference. Among all the control policies
that take us from an initial configurationq0 = (x0, y0, θ0) to a goal configurationqg = (xg, yg, θg), we wish
to find one of the least duration possible. The minimum-time curves (“brachistochrones”) characterized in
the present work are a generalization of some previously studied minimum-length curves (“geodesics”): the
Dubins [12] and the Reeds-Shepp [19] bounded-curvature trajectories.

An example minimum time curve found by our algorithm, for an omnidirectional vehicle with three

start goal

Figure 1.1: The fastest trajectory connecting the two configurations shown for a vehicle with three powered omni-
wheels. This trajectory issingular, as it contains a translation parallel to thecontrol line.
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Figure 1.2: Taxonomy of time optimal kinematic trajectories for self-propelled rigid bodies in the plane, represented
as a tree. We give a search algorithm for each of the leaf nodes, with the exception of the types within dashed border
boxes, which are not necessary for optimality.

symmetrically placed omniwheels, is shown in Figure 1.1.

1.1 Summary of results

Our analysis reveals a wide variety of types of optimal trajectories. One of the main results of the present
work is an exhaustive taxonomy of optimal trajectory types. Figure 1.2 shows this taxonomy as a tree. Some
of the leaf nodes of this tree are such that there always exists an optimal trajectory outside the corresponding
class. For each of the remaining, necessary leaf nodes, we develop a specific algorithm to find the fastest
trajectory in that node. The fastest trajectory overall is drawn from this set.

Chapter 3 defines the model and the problem and gives formulas for the forward kinematics of rigid
bodies in the plane. A simple planner is developed as a constructive proof of controllability. The existence
of optimal trajectories then follows from Fillipov’s existence theorem.

Chapter 4 applies the Pontryagin Principle, which sets necessary conditions for optimality, to the prob-
lem. Optimal trajectories that verify the Pontryagin Principle are shown to fall into two classes: the more
general class for which there exists a directing line in the plane, called acontrol line, and the more restricted
class ofwhirls. Whirls are trajectories that maintain a constant angular velocity. By applyinga different
version of the Pontryagin Principle, as well as some geometrical analysis, we find a canonical subclass of
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whirls, roll-and-catch trajectories, that is sufficient for optimality. We conclude the chapter by giving an
algorithm for finding the fastest roll-and-catch trajectory.

Chapter 5 studies optimal control policies for the more general class of control line trajectories. The
main result of this chapter is that piecewise constant control policies that only use controls from a canonical,
finite subset of the polyhedral control set are sufficient for optimality.

Chapter 6 prepares the stage for an efficient algorithmic search of the space of canonical control policies.
We first show that, except on well-characterized singular intervals, the position of the control line uniquely
determines the optimal control policy. We then give an algorithm that generates the optimal control policy
on non-singular intervals, when given the position of the control line.

Chapter 7 makes extensive use of the generator developed in Chapter 6 inorder to develop specific algo-
rithms for each of several further subclasses of canonical control line trajectories.Singularsare trajectories
that may contain singular intervals. Singular trajectories may be either regular, in which singular intervals
effect translations parallel to the control line, ortacking, which may contain a translation-translation control
switch. The algorithm for finding the fastest tacking trajectory is only slightly modified from the algorithm
for finding the fastest regular singular.

Genericsare trajectories where the control policy is everywhere uniquely determined by the position of
the control line.TGTgenerics begin and end with translations, and in this case it is possible to find the exact
position of the control line. For all other generics, we give a parametrization of the control line, and a root
finding approximation algorithm.

Finally, Chapter 8 presents some experimental results obtained from implementing the algorithms for
the more general cases. We have implemented algorithms for the more common subtypes (except whirls
and tacking) and obtained trajectories, which we believe to be optimal, for bothpreviously studied vehicles,
as well as a vehicle for which the boundary problem had not been solvedbefore (the symmetric three-
omniwheeled robot). We also discuss possible future directions of development and applications.
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Chapter 2

Related work

The earliest origins of optimal control theory can be said to be almost as old as the calculus of variations:
with the benefit of hindsight, we can place Bernoulli’s 1696 brachistochrone problem within the realm of
optimal control theory ([27]). A firm theoretical basis for this discipline was, however, only established
in the 1950s and 1960s, initially through the work of Richard Bellman at RAND.Bellman formulated the
fundamental problem in terms of searching for a “control” function, i.e. a function of time, while given a
system of differential constraints and an objective function to maximize. Initially analyzing the discrete case
(i.e. multistage processes), Bellman’s first result was the well-known methodof dynamic programming. His
later extension of the fundamental equation to the continuous case generated the Hamilton-Jacobi-Bellman
equation, a sufficient condition for optimality and the basis of so-called “direct” methods in modern control
theory (for a concise summary of Bellman’s results, see [4]). The HJB equation is generally difficult to solve
analytically except in relatively simple instances of the control problem, although at least one of these cases
(linear quadratic control) has important practical applications. The HJB equation has, however, proven very
suitable as a basis for numeric methods for optimal control, e.g. the direct collocation methods implemented
in multiple FORTRAN and MATLAB software packages.

At roughly the same time as Bellman’s work, and on the other side of the Iron Curtain, the second
foundation stone of modern optimal control theory was being laid at the Moscow Steklov Mathematical
Institute, by a team under the leadership of Lev Pontryagin. The main resultof their “indirect” method ([18])
has become known as the Pontryagin Principle (called the Maximum Principle by Pontryagin himself, and
the Pontryagin Minimum Principle in some recent works). The Principle is a strong necessary condition on
the local structure of optimal control functions (and their correspondingtrajectories in state space) and has
provided an easier path to analytically solving non-linear optimal control systems than the HJB equation.
Numerical optimizers based on the PMP also exist (e.g. BNDSCO [16]).

While the applications of dynamic programming, the HJB equation, and the Pontryagin Principle are
widespread and diverse, we will restrict the current work to geometric considerations inspired by the move-
ment of planar robots. Planar curves (whether considered as vehicle trajectories, or not) have also been sub-
ject to mathematical interest for a very long time. Without dwelling too long on subjects such as Galileo’s
characterization of the cycloid, we will trace the roots of the current inquiry to a problem posed by Markov
in 1887 ([15]): what are the shortest planar curves, of bounded maximum curvature and connecting two
given tangent vectors? Seventy years later, the solution to this problem was characterized by L. E. Dubins
([12]), who described a class of curves he calledR-geodesics. In 1975, Cockayne and Hall ([9]) showed
how to synthesize the shortest R-geodesics to any given configuration.

In 1990, Reeds and Shepp ([19]), explicitly motivated by a robotics problem (finding the optimal trajec-
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tories for a robotic cart), and by Dubins’ success at giving, in effect,the shortest paths for a car that can only
travel forwards, gave a characterization of the geodesics for a car that can travel both forwards and back-
wards. Their result revealed the scope for the application of optimal control theory into mobile robotics, and
shortly afterwards two independent papers (by Sussmann and Tang [28] in 1991 and Boissonnatet al. [5]
in 1992, respectively) re-established (and even slightly tightened) the Reeds and Shepp results on the more
general basis of classical optimal control theory. The optimal trajectory synthesis, i.e. the set of optimal
trajectories from all starting configurations, for the Reeds-Shepp car was given by Soùeres and Laumond in
1996 [25]. The Pontryagin Principle constituted the main theoretical basis ofthese papers, and at this point
we see coming together the approach of which the present work is the logical continuation: analyzing planar
motion problems through the prism of the Pontryagin Principle.

The chassis of mobile robots is, of course, not limited to the cart design. Themost popular arrangement,
at least for small robots, seems to be the differential drive: two independent motors driving parallel wheels.
Such vehicles, unlike cars, can spin in place, thus rendering a straight application of the “geodesic” criterion
into a rather uninteresting problem - the shortest paths for the center of therobot are always to spin in place,
and drive straight to the destination. There are, however, two optimality criteria for which the problem
becomes nontrivial. A “fuel consumption” criterion (the sum of the distances traveled by each wheel) was
studied by Chitsazet al. [7], and surprisingly enough the optimal paths, in this case, turn out to be identical
to the Reeds-Shepp paths. Also, a “brachistochronic” (time optimal) criterionwas used in several analyses.

While time optimality is the simplest case for the Pontryagin Principle (as one of the terms in the main
PMP equation becomes extremely simplified), such a criterion raises, on the other hand, the problem of
dynamic effects. In classical mechanics, the “controls” are forces, which result in accelerations; thus, one
controls the second derivative of the vehicle’s position. A model of the differential drive in which the
accelerations of the two wheels are the controls (within the[−1, 1] interval) has been extensively studied.
This model, associated with the LAAS-CNRS robot Hilare, was proposed byJacobset al. in 1991 [17]. In
1994, Reister and Pin [20] presented a numerical analysis of trajectoriesfor the Hilare model that contained
at most four switches. In 1997, Renaud and Fourquet [21] showed that some optimal trajectories for this
vehicle contain more than four control switches; thus only the shapes of theoptimal segments seem to be
known for this system (they are pieces of clothoids and involutes of circles[24]).

An alternate time-optimal model of the differential drive was studied, with more extensive results, by
Balkcom and Mason in 2002 [3]. They obtained a novel set of curves,as well as an optimal trajectory
synthesis for the differential drive, by considering the controls to be wheel velocities rather than acceler-
ations. There is a good case to be made that such a “kinematic” (as opposedto dynamic) model is not
only convenient to analyze, but also fairly accurate. Common electric motorsrespond to a given voltage
by quickly settling to a well-determined velocity. The input can thus be considered to be, in effect, this
velocity; and the time to cover a given distanced under a given control is better estimated through dividing
the distance by the “steady” velocity corresponding to the control, rather than through the12ma2 formula.
For small robots, the acceleration times are expected to be quite short. Furthermore, the optimal control
problem for dynamic models appears to be very difficult, as the differentialequations describing the tra-
jectories do not have recognizable analytic solutions, and, in some cases,the optimal trajectories appear to
involve chattering (“the Fuller phenomenon”), an infinite number of controlswitches within a finite time.
Such issues occured in analyses of the bounded acceleration Dubins car (studied by Sussmann in 1997 [26]
and by Soùeres and Boissonnat in 1998 [24]) and of a dynamic model of an underwater vehicle (studied by
Chyba and Haberkorn in 2005 [8]).

On the other hand, the combination of kinematic models and the Pontryagin Principle seems more
amenable to analytic solution. Such a model was used by Balkcomet al. in 2006 to characterize the time

6



optimal paths for a symmetric omnidirectional vehicle [2] and by Furtuna and Balkcom in 2008 [14] to
characterize the optimal paths for a vehicle with three arbitrarily placed omniwheels (which was also a
generalization of the previous results by Dubins and Reeds and Shepp).Furtuna and Balkcom extended the
analysis of the kinematic model to cover the time optimal trajectories for any rigid body in the plane with
velocity controls in [13]. These results will be discussed at length in a subsequent section. But first, we will
introduce a few other works that are related to the current work.

Analyzing the optimal trajectories in the absence of obstacles has limited direct applications, as few
mobile robots will operate within boundless, empty parking lots. But the structures thus derived do have
a significant place as part of the general problem of moving efficiently within a cluttered environment. In
fact, all optimal trajectory segments that do not exactly follow the contour of an obstacle should have their
shape characterized by the obstacle-free model, by the principle that a subsegment of an optimal trajectory
must itself be an optimal trajectory. Thus, a solution to the problem of optimal motionin the presence of
obstacles consists of not only the mentioned work, but also two additional components: a characterization
of which shapes of obstacle boundaries can be followed, and a theory of the junction points between free
and obstacle-bound segments. Such a comprehensive solution has not been, so far, completed for any of the
studied vehicles.

The closest work to our intended approach is Chitsaz’s Ph. D. thesis [6]. By considering the differen-
tial drive with a “total wheel motion” metric among obstacles, Chitsaz developeda generalization of the
visibility graph that he called anonholonomic bitangency graph. This graph (which has to be generated
numerically, based on the shape of the obstacles) encodes the structure of the optimal trajectories among
obstacles; it is then to be processed by a standard shortest-path graph algorithm.

The other vehicle model that has been extensively studied among obstaclesis the Reeds-Shepp car (with
the standard distance optimization metric). In 1996, Desaulniers [11] showed that the optimal trajectories in
such a case do not exist for some instances of the problem (or, more precisely, that such optimal trajectories
involve infinite chattering). For cases where the optimal trajectories do exist,and the obstacles only consist
of a room’s walls (i.e., the work space is within a convex polygon), Agarwalet al gave aO(n2 log n)
algorithm for finding such trajectories [1].

Optimal distance metrics may also give some useful information about how obstacles may interfere with
desired motions. Vendittelliet al.[29] developed an algorithm to obtain the shortest non-holonomic distance
from a robot to any point on an obstacle. Optimal paths between pairs of points in configuration space may
not exist in the presence of visibility constraints. Salariset al. [22] give the optimal control words for a
unicycle with a limited FOV camera.
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Chapter 3

Model and kinematics

The object of this chapter is to study the mathematical model and the kinematics of the optimization problem
that we are concerned with. The main focus is on trajectories that reach thegoal, by choosing velocities
from the vehicle’s control set. Figure 3.1 shows an example of two such trajectories for a simple, car-like
vehicle.

In the first section, we give a precise mathematical definition of the problem setting and of what an
admissible trajectory is. The second section provides a means of verifying that a trajectory reaches the goal,
by showing how to build a vehicle simulator that maps control policies to the configurations reached by
applying those control policies. The third section gives a constructive proof that a trajectory that reaches the
goal always exists for our model, by developing a simple planner that can reach the goal while applying only
two distinct controls. Finally, the last section uses all of these results to prove that time optimal trajectories
always exist for the studied system.

3.1 Problem setting

The vehicles we study are rigid bodies that can propel themselves in the unobstructed Euclidean plane. The
configuration of a rigid body in the plane is fully given by three quantities: twocoordinates for a reference
point on the rigid body, with respect to the plane’s origin, and an angular quantity that indicates the body’s

1
12 2

3
3

4 4 5simple

time: 7.66

generic

time: 3.10

Figure 3.1: Two trajectories that reach the goal for a simple car-like vehicle under control setU = [−1, 1]×0×[−1, 1].
Both trajectories go from configuration(0.04,−1.55,−0.17) to configuration(0, 0, 0). Both control policies begin
with a sharp right turn forwards,̇q = (ẋ, ẏ, θ̇) = (1, 0,−1).
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orientation with respect to thex axis. We collect these three quantities into astatevectorq = (x, y, θ).

Our model is fully kinematic, assuming that acceleration happens so fast thatits time can be neglected.
Thus, the vehicle is controlled by directly choosing velocities of the formq̇ = (ẋ, ẏ, θ̇). The control setU
is simply the set of all allowable velocities. We assume this control set to be a convex polyhedron inR3.
SpecifyingU fully specifies the vehicle’s capabilities.

The assumption that the vehicle is self-propelled translates into the fact thatU is specified, and constant,
in the vehicle’s own frame of reference, rather than in the world frame. For instance, ifU contains the
vector(ẋ, ẏ, θ̇) = (1, 0, 0), this indicates that the vehicle can always translate “forwards”, no matter how it
is oriented. (This assumption does not hold for vehicles that rely on an external source of power, such as a
sailboat.) In order to transform a velocity vector from the robot frame to theworld frame, when the vehicle’s
orientation isθ with respect to thex axis, we need to multiply the velocity vector by a rotation matrix:

q̇W = Rθ q̇R. (3.1)

Here,Rθ is a rotation matrix that is simply augmented with an extra row and column that leave theθ̇ quantity
unchanged:

Rθ =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 . (3.2)

The next section discusses transformations between the vehicle frame andthe world frame in more detail.

The possibility of choosing among controls raises the issue of what choicesare made as time passes. A
control policyspecifies these control choices. In mathematical terms, we define a control policy of duration
tf to be a Lebesgue integrable functionu : [0, tf ) → U . The control policy takes three-dimensional values:
u(t) = (ux(t), uy(t), uθ(t)). The trajectory corresponding to this control policy is simply defined to be
a function of timeq(t) that indicates the vehicle’s state at each moment in time. In order to obtain the
trajectory, given an initial stateq0 and a control policy, the control policy is integrated in two steps. First,
we obtain theθ(t) component of the trajectory:

θ(t) = θ0 +

∫ t

0
uθ(τ)dτ. (3.3)

Next,θ(t) is used to calculate the other components of the vehicle’s state:

q(t) = q0 +

∫ t

0
Rθ(τ)u(τ)dτ. (3.4)

Given initial stateq0 and goal stateqg, a goal-reaching trajectory under control setU is a trajectoryq(t),
corresponding to some control policy underU , such thatq(tf ) = qg.

With these definitions, we can mathematically specify what an instance of optimization problem that we
are concerned with is. Such an instance is specified by an initial stateq0, a goal stateqg and a polyhedral
convex control setU . (Strictly speaking, it is sufficient to specifyq0, as the goal can always be assumed to
be the world frame origin. As we will see in Section 3.3,U also needs to contain at least two controls, out of
which at least one needs to be a rotation.) A solution to the problem is a Lebesgue integrable control policy
u(t) underU of durationtm such that
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1. The trajectoryq(t), starting fromq0 and corresponding tou(t) as characterized by equation 3.3
reachesqg.

2. There exists no control policy underU of durationt < tm such that the trajectory starting fromq0

and corresponding to this control policy reachesqg.

3.2 Trajectories generated by sequences of controls

This section is concerned with computing the positions attained by a vehicle as several distinct controls
are applied in sequence. We will proceed in three stages: first by analyzing the stationary vehicle, next
by studying motion when a single control is applied, and finally by showing howto compose arbitrary
sequences of controls.

3.2.1 Stationary vehicle

Giving a state of the vehicle only specifies the position of a reference pointand the vehicle’s orientation.
Where are the other points of the vehicle located in the world frame, when the vehicle is in this position?
The immediate application will be that our simulator becomes capable of feats suchas drawing the complete
vehicle (including, for example, its wheels) at arbitrary positions in the plane. In the longer run, it is also
useful to determine the locations of points of importance for locomotion, such as rotation centers.

The standard toolset used for frame transformations is constituted by homogeneous coordinates. Point
(xp, yp) in the robot frame gets its position vector expanded by appending1 to it: p = (xp, yp, 1)T . This
expanded position vector is then multiplied by frame transformation matrices, in order to obtain the point’s
position in various frames of reference.

The transformation matrix from the robot frame to the world frame is

TWR =





cos θ − sin θ x
sin θ cos θ y

0 0 1



 . (3.5)

This transformation matrix is so often used that, when the context is unambigous, we will simply designate
it by T . It also contains the same information as the state vectorq; for this reason, we will often useT and
q in an interchangeable manner.q is easier to interpret, andT is usually more convenient for computations.

Sometimes we need to transform the positions of points in the world frame into positions in the robot
frame. For this purpose, we transform these points into homogeneous coordinates as above and multiply
their position vectors by the transformation matrix from the world frame to the robot frame:

TRW =





cos θ sin θ −x cos θ − y sin θ
− sin θ cos θ x sin θ − y cos θ

0 0 1



 . (3.6)

In our further analysis, we also consider a reference frame tied to a “control line” in the plane. The control
line will be specified, in the world frame, as a line with heading specified by unit-length vector(k1, k2) and
signed distancek3 from the origin (k3 thus being the coordinate of the world frame origin in the control line
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frame). Then the transformation matrix from the world frame to the control line frame is

TLW =





k1 k2 0
−k2 k1 k3

0 0 1



 . (3.7)

Its inverse is

TWL =





k1 −k2 k2k3

k2 k1 −k1k3

0 0 1



 . (3.8)

3.2.2 Applying one control

What is the effect of applying, for timet, a velocity vectoru, specified in the robot frame, when the vehicle
is in world frame configurationq? We separate this question into two parts. First, we show how to transform
velocities among frames, and we develop a useful alternative notation for controls in the process. Second,
we develop a unified method of integrating velocites, which works for both rotations and translations.

The main idea that we use for transforming velocities among frames is to express these velocities in
terms of the corresponding rotation centers. Since these rotation centers are points at easily determined
locations in the robot frame, we then simply use the same transformation matrices that we have given above
in order to transform velocities as well as points.

If control u = (ẋ, ẏ, θ̇) is a rotation (i.e.,θ̇ 6= 0), the rotation center is at location(−ẏ/θ̇, ẋ/θ̇). In
homogeneous coordinates, it is equivalent to represent this point as either (−ẏ/θ̇, ẋ/θ̇, 1) or

c = (−ẏ, ẋ, θ̇). (3.9)

The second representation is particularly convenient. Not only is it the position of a point, so it can be passed
through transformation matrices; but it also contains, as the third componentof the vector, the angular veloc-
ity θ̇. Since the third component of a homogeneous coordinates vector is left unchanged by multiplications
with frame transform matrices, it is possible to thus retrieve the full control (location of rotation center,
and the angular velocity at which the rotation proceeds) after passing this representation through the regular
frame transformations.

The following lemma places this insight on a mathematical basis, and shows that themethod also applies
to translations. Note that the rotation center representation of a control,(−ẏ, ẋ, θ̇) is easily obtained from
the standard velocity representation(ẋ, ẏ, θ̇) by left multiplying the latter with a rotation matrixRπ/2.

Lemma 1 Assume a moving rigid body in the plane and consider two reference frames, A andB. In frame
A, the current velocity iṡqA = (ẋA, ẏA, θ̇) and letTBA be the transformation matrix fromA to B. Then the
velocity in frameB is

q̇B = R−π/2TBARπ/2q̇A. (3.10)

Proof: If q̇ is a translation,TBA has the same effect as a pure rotation matrix. Therefore the right-hand
side of equation 3.10 has the same effect as an application ofTBA to the velocity vector, which is the correct
result.
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If q̇ is a rotation,Rπ/2q̇A gives us theA frame coordinates of the rotation center. Passing these coor-
dinates throughTBA gives us theB frame coordinates of the rotation center, and then we apply aR−π/2

matrix to obtain theB frame velocity.

This lemma suggests that it will often be convenient, for transformation purposes, to represent controls
in a rotation center notation. For any controlu = q̇, we define the rotation center representation to be

c = Rπ/2u. (3.11)

With this notation, equation 3.10 becomes

cB = TBAcA. (3.12)

We have, at this point, achieved our first objective for the current section, i.e. the transformation of velocities
among reference frames. We will now proceed with the second objective:showing how to integrate a given
velocity for an arbitrary timet.

Knowing the position of the rotation center allows integration of the control foran arbitrary point in the
robot frame. Selig [23] gives us the rotation matrix around pointc:

[

R (I2 − R)c
0 1

]

, (3.13)

whereR is a2X2 rotation matrix andI2 is the identity matrix.

By replacing into equation 3.13 the coordinates of the rotation center from equation 3.9, we obtain the
following transformation matrix that corresponds to the application of controlu = (ẋ, ẏ, θ̇) for time t:

T (u, t) =





cos θ̇t − sin θ̇t ẋt sinc θ̇t − ẏt verc θ̇t

sin θ̇t cos θ̇t ẋt verc θ̇t + ẏt sinc θ̇t
0 0 1



 , (3.14)

where

sinc (x) =

{

sin x
x , x 6= 0

1, x = 0
(3.15)

is the well-known cardinal sine function and

verc (x) =

{

1−cos x
x , x 6= 0

0, x = 0
(3.16)

is a differentiable “cardinal versine” function, developed by analogy with the cardinal sine.

This result has some implications that are not necessarily limited to the study of optimal trajectories.
Since both the cardinal sine and the cardinal versine are defined forθ̇ = 0, Formula 3.14 also works for
integrating translations and we are, in effect, presenting a unified method for integrating both rotations and
translations in the plane. The smooth behavior of this formula around theθ̇ = 0 point leads to increased
numerical stability for the analysis of vehicles that sometimes move in almost a straight line (e.g., wheeled
vehicles for which the wheel diameters are not exactly equal). Furthermore, the following section will show
that the integration matricesT (u, t) can be easily composed, which leads to facile modeling of sequences
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of rotations and translations.
The final result of this section will be an analysis of the velocities achieved by arbitrary points in the

vehicle frame, when a control is applied. This operation is necessary if wewish to update the control space
to reflect a change in reference point. We determine a matrix that can be multipliedby any new reference
point’s coordinates in the old frame, in order to determine its(ẋ, ẏ) velocity vectory (theθ̇ velocity always
being the same as that of the original control). In order to build this matrix, we first translate the rotation
center to the origin and then apply a skew-symmetric matrix. We obtain the following:

S =





0 −θ̇ 0

θ̇ 0 0
0 0 1









1 0 ẏ/θ̇

0 1 −ẋ/θ̇
0 0 1



 =





0 −θ̇ ẋ

θ̇ 0 ẏ
0 0 1



 . (3.17)

This matrix is then multiplied by the new reference point’s coordinates to obtain thereference point’s veloc-
ity, i.e. theẋ andẏ components of the control in the new frame. Note that this transformation matrix isalso
valid for translations (̇θ = 0).

3.2.3 Sequences of controls

A trajectory with a piecewise constant control law can be given as a sequence of(ui, ti) pairs, where each
consecutive controlui = (ẋi, ẏi, θ̇i) is applied for timeti. Given such a sequence, we first assemble the
T (ui, ti) integration matrices as above. These matrices compose by post-multiplication. Thus, the final state
of trajectory[(u1, t1), (u2, t2), . . . (un, tn)], starting from stateq0 (equivalently specified by the robot frame
to world frame transform matrixT0) is:

Tf = T0T (u1, t1)T (u2, t2) . . . T (un, tn). (3.18)

The active control at timet ≤ ∑n
j=0 tj is the control corresponding to the largest indexk such thatt ≥

∑k
j=0 tj . The state at timet is thus:

T (t) = T0T (u1, t1)T (u2, t2) . . . T (uk, tk)T (uk+1, t
′), (3.19)

wherek is the largest index such thatt′ = t − ∑k
j=0 tj ≥ 0. This equation proves our initial statement

in this section: if a trajectory has piecewise constant controls, its representation as a sequence of (control,
time) pairs is equivalent with our earlier definition of a trajectory as aq(t) function.

3.3 A simple method for finding a trajectory that reaches the goal

Being able to find a trajectory that reaches the goal is an important step in ourwork. The existence of
such a trajectory is a critical requirement for the proof of the existence ofoptimal trajectories at the end of
this chapter. Furthermore, search methods described later in this work construct trajectories and test if those
trajectories pass close enough to the goal. Consideration of a trajectory is terminated if it has not yet reached
the goal in time given by a known trajectory to the goal.

In this section we describe a simple and fast technique for always finding atrajectory to the goal, so that
controllability is established and there is always an upper bound on trajectory time. We will see that such
a trajectory to the goal always exists, even if we have as few as two controls (without both of them being
translations).
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A

B

Figure 3.2: A trajectory found for a robot with just two rotation controls centers (black and white circles). Start and
goal configurations are given by arrows; the path of the whiterotation center is shown.

The basic idea, if we have a rotation and a translation available, is to build a turn-drive-turn trajectory.
We use the rotation to achieve the proper orientation, drive “straight” with thetranslation, and turn again at
the goal. If only two rotations are available, we will show a way to simulate the “driving straight” part by
alternating these two rotations (see Fig. 3.2 for an example). By careful choice of rotation directions and
careful choice of the controls used to construct the translation segment (in the case that there are more than
two controls available), this method can be used to quickly construct trajectories that are often not too much
slower than the optimal.

If a trajectory to any goal always exists, we will say that the system iscontrollable. The following
lemma gives the geometry behind the main result of this section:

Lemma 2 A rigid body, controlled by velocities chosen from a setU that is constant in the body’s own
frame of reference, is controllable in SE(2) if and only ifU contains two or more distinct velocities, at least
one of which is a rotation.

The remainder of this section is dedicated to a constructive proof of this lemma.
It is evident that the body is not controllable if eitherU has cardinality less than two orU only contains

translations. We will next give a constructive proof for the converse.
Let u1 andu2 be two distinct controls inU . Without loss of generality, assumeu1 is a rotation of center

c1. Let c10 andc1f be the positions, in the world frame, ofc1 at statesq0 andqf respectively. Letg be the
displacement vectorc1f − c10. There are two cases, according to whetheru2 is a translation.

The two cases will be discussed in detail below. The basic idea of the proofis the folllowing. If u2

is a translation, then the trajectory will be easy to construct: choose the reference point of the robot to be
centered on the rotation center, spin in place until the translation direction is lined up with the vector from
the start to the goal, drive to the goal, and rotate to the required angle. If both velocities are rotations, we
will replace the translation section of the trajectory with a sequence of rotations.

u2 is a translation

The goal is achieved by a turn-drive-turn trajectory. Letv0 = (ẋ20, ẏ2f ) be the velocity vector corresponding
to u2 at the initial state andvf be the velocity vector corresponding tou2 at the final state. We connectq0 to
qf as follows:

1. Apply u1 until v0 becomes parallel tog.

2. Apply u2 until the displacement distance||g|| is achieved.

3. Apply u1 until g becomes parallel tovf .
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u2 is a rotation

We will develop a controller very similar to the one above, by simulating the middle translation with an
alternation of the two rotations provided. Thus letv0 be the velocity vector ofc10 whenu2 is applied atq0,
and letvf be the velocity vector ofc1f whenu2 is applied atqf . We connectq0 to qf thus:

1. Apply u1 until v0 becomes parallel tog.

2. Apply an alternation ofu2 andu1 until the translational displacement||g|| is achieved in the direction
of the vectorg.

3. Apply u1 until g becomes parallel tovf .

We still need to show how to achieve the middle step. LetA andB represent rotation centers (see
Fig. 3.2); choose the origin of the robot frame coincident withA. Let the distance between the two rotation
centers bel. RotateB aroundA until the line segment fromA to B is perpendicular to the line from the start
to the goal. Then repeat a series of segments, where each segment is of the formBπ/2AπBπ/2, achieving
a pure translation of distance2l in the direction of the line segment from start to goal. If such a translation
would overshoot the goal, adjust the angles in the BAB segment to exactly reach the goal (details left to
reader); finally rotate aboutA to the goal angle.

To translate for a distanced < 2l, we apply the following sequence of actions. Align the worldx axis
with thec20 − c10 vector. Then

1. Apply u2 until c1 achieves ay coordinate ofd/2.

2. Apply u1 until c2 achieves ay coordinate ofd.

3. Apply u2 until c1 achieves ay coordinate ofd.

Thus we obtain an alternation ofu1 andu2 that translates the body for a displacement ofg. With this
module, the universal planner is complete. This concludes our constructive proof of Lemma 2.

3.4 Existence of optimal trajectories

The existence of optimal trajectories for the system studied in this work is quickly implied by a corollary to
Fillipov’s existence theorem given in [24] (pp. 98 - 99). We slightly restatethis corollary with the notation
used in the present work, as follows.

Let q0 andqg be two states inSE(2). If all the following conditions are satisfied, there exists a minimum
time trajectory underU from q0 to qg:

1. There exists a functiong(q) such thatq̇ = g(q)u.

2. g(q) is locally Lipschitz continuous.

3. The control setU is a compact convex subset ofR
m.

4. There exists an admissible trajectory fromq0 to qg.
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5. Given any initial stateq0 and control lawu(t), there exists a corresponding trajectoryq(t), defined for
the whole duration of the given control law.

It is easily shown that our system verifies these conditions:

1. In our case,g(q) = Rθ (see eq. 3.3).

2. Rθ(q) is locally Lipschitz continuous as it only contains the functionssin θ and cos θ, which are
Lipschitz continuous.

3. In our case,U is a closed convex polyhedron inRm.

4. The existence of an admissible trajectory has been proven in the preceding section.

5. Sinceu(t) is Lebesgue integrable, the integral in equation 3.3 always exists, and thusthere always
exists a trajectoryq(t) corresponding tou(t).

Therefore, optimal trajectories always exist for the system model analyzed in this work. The next chapter
will apply the methods of optimal control theory to study these optimal trajectories.
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Chapter 4

Necessary conditions for optimality

We start our analysis of optimal trajectories by applying the Pontryagin Principle to the problem stated
in Section 3.1. This application immediately separates optimal trajectories into two classes, one of which
(whirls) is less general, as it only contains trajectories with a constant angular velocity. We develop a
geometric, local condition on the optimal control policy for trajectories belonging to the general case, and
based on this condition we call such trajectoriescontrol line trajectories. For the particular case of the
whirls, we use a modified version of the Pontryagin Principle to completely solve this case, thus leaving
control line trajectories the sole subject of subsequent chapters.

4.1 The Pontryagin Principle

The Pontryagin Principle [18] places several strong necessary conditions on optimal control policies. The
conditions are local in trajectory space, and the entire approach may be placed in analogy with the study of
the maxima and minima of differentiable real functions. At all such extremal points, the derivative of the
function must be zero. After solving the equationf ′(x) = 0, the value of the function is compared at all the
points thus found in order to find the global maximum or minimum.

Analogously, consider the space of all valid trajectories that reach the goal. Letf(x) be a function that
computes the time of a trajectoryx. The Pontryagin Principle is a local condition in this space, correspond-
ing to thef ′(x) = 0 condition in simpler spaces. We call the trajectories that satisfy the PontryaginPrinciple
extremal, and there is usually a limited number of them, just as usuallyf ′(x) = 0 has a limited number of
solutions.

Our approach is to find all extremal trajectories linking a start to a goal, and tocompare their times in
order to pick the fastest. We will find that there exist several very distincttypes of extremal trajectories, and
different methods will be needed for constructing a shortest time trajectorywithin each of these classes.

Let us now examine the details. The Pontryagin Principle requires, first, that for each time optimal
trajectoryq(t) there must exist a correspondingadjointλ(t) that represents a privileged direction in velocity
space at each point on the trajectory. All along the optimal trajectory, the control applied must maximize,
among all possible controls, the dot product of the adjoint and the generalized velocity of the body. Second,
this dot productH(t) = 〈λ(t), q̇(t)〉, called theHamiltonianof the optimal trajectory, is a constant function
H(t) = λ0 > 0.

Finally, the Pontryagin Principle places restrictions on the adjoint.λ(t) must be a non-zero continuous

19



function and must satisfy the following differential equation:

dλ

dt
= −∂H

∂q
. (4.1)

For a given vehicle control spaceU , we will call theextremal ensembleof an extremal trajectoryq(t) the
components of the proof that it is indeed extremal: the control policyu(t), the adjointλ(t) and the value of
the Hamiltonian. Only trajectories for which an extremal ensemble exists can be timeoptimal.

In the following, we integrate the Pontryagin differential equation for the adjoint, as applied to kinematic
rigid bodies in the plane, and we examine the immediate implications of the formula thus obtained.

4.1.1 Integration of the adjoint function

This section is concerned with proving the following theorem:

Theorem 1 Consider a rigid body with an attached convex polygonal control setU , moving in the unob-
structed plane on a trajectoryq(t) = (x(t), y(t), θ(t)) from initial stateq0 = q(0) to final stateqf = q(tf ).
The trajectory is generated by an acceptable control policyu(t) according to the definitions in Section 3.1.

If control policy u(t) is time optimal among all acceptable control policies that generate trajectories
fromq0 to qf , then there exist constantsk1, k2 andk3 such that at every timet the value of the control policy
u(t) is a point inU that maximizes the value of the Hamiltonian function

H(t) =





k1

k2

k1y(t) − k2x(t) + k3





T

Rθ(t)u(t). (4.2)

Furthermore, the Hamiltonian is a constant functionH(t) = λ0 > 0.

Proof: At any time t, from the Pontryagin Principle (as stated above in equation 4.1), the adjoint
equation is

λ̇ = − ∂

∂q
〈λ, q̇(q, u)〉 (4.3)

= −





0
0

λT ( ∂
∂θRθ)u



 . (4.4)

The zeros occur becauseq̇ = Rθu does not depend oṅx or ẏ. Therefore, by direct integration,λ1 = k1 and
λ2 = k2. Let (ux, uy, uθ) = u and substitute these values back into the definition forλ̇3:

λ̇3 = k1(sux + cuy) − k2(cux − suy), (4.5)

wherec ands are shorthand forcos θ andsin θ. From equation 3.1,

ẋ = cux − suy (4.6)

ẏ = sux + cuy (4.7)
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Substitute into equation 4.5,
λ̇3 = k1ẏ − k2ẋ, (4.8)

and integrate:
λ3 = k1y − k2x + k3. (4.9)

The Hamiltonian to be maximized along time-optimal trajectories is thus

H = k1ẋ + k2ẏ + θ̇(k1y − k2x + k3). (4.10)

4.1.2 The control line

Since the adjoint must be non-null, it is not possible for any trajectory to have an adjoint with all three inte-
gration constants equal to zero. We will, however, distinguish two kinds of adjoints, and two corresponding
kinds of time optimal trajectories.

For adjoints withk1 = k2 = 0, the controlu = (ux, uy, uθ) only needs to maximizeH = k3uθ. Thus,
for all control policies that use exclusively either controls fromU of maximum angular velocity (k3 > 0)
or of minimum angular velocity (k3 < 0), it is always possible to find a very simple adjoint that verifies the
Pontryagin Principle. Let this kind of trajectories be calledwhirls. This particular case does not have much
in common with the rest of our analysis (besides the kinematic model already discussed), and, since it is
thus self-contained, it will be solved separately in the next section.

In the rest of the current work, we study the more general case whereat least one ofk1 or k2 is not null.
Since the conditions set by the Pontryagin Principle are invariant with respect to scaling of the adjoint by a
positive constant, we assume without loss of generality, in this case, thatk2

1 + k2
2 = 1.

The optimal trajectories that admit this kind of adjoint have a peculiar geometrical property. Define the
control line to be a line with heading(k1, k2), and signed distancek3 from the origin. The first part of the
Hamiltonian

k1ẋ + k2ẏ (4.11)

is the component of the translational velocity of the rigid body along the vector(k1, k2), and the term
−k2x + k1y + k3 is the distance from the reference point of the rigid body to the control line.

Therefore, let the the more general type of optimal trajectories that are not whirls be calledcontrol line
trajectories.

We thus have a geometric interpretation of the Hamiltonian for non-whirls. Define the “control line
frame”L to be a frame attached to the control line with thex axis aligned with the control line (see Fig. 4.1).
Then in the control line frame,yL is the distance of the rigid body from the control line, andθL is the angle
the body frame makes with the control line.ẋL is the component of the body’s velocity along the control
line. In these coordinates, the Hamiltonian of a control that imposes velocity that resolves to(ẋL, ẏL, θ̇) in
the control line frame is

H = ẋL + yLθ̇. (4.12)

It will sometimes be convenient to write the above expression of the Hamiltonian for controls expressed in
polar coordinates. For a control that sets velocityv in directionα and angular velocityω in the frame of the
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Figure 4.1: A rigid body instantaneously following a control line optimal trajectory. Two possible reference points
attached to the rigid body are shown. The optimal control lawneeds to choose a control that maximizes the Hamil-
tonian with respect to the control line. For a reference point crossing the control line, the Hamiltonian is equal to the
component of this point’s velocity that is parallel to the control line.

body, (thusux = v cos α, uy = v sinα anduθ = ω), the following formula is obtained immediately:

H = v cos(θL + α) + yLω. (4.13)

In particular, if the reference point on the vehicle happens to be crossing the control line at some time,
thenyL = 0 and the necessary condition is to simply choose a control that maximizes the reference point’s
velocity in the control line’s direction (see Figure 4.1).

As the following lemma shows, we are, in fact, able to change the point of reference for the purpose of
calculating the Hamiltonian along a trajectory.

Lemma 3 Given a rigid body trajectory that obeys the Pontryagin Principle, the same value of the Hamil-
tonian will be obtained for any point of reference in the body frame.

Proof: Instantaneous motions for planar rigid bodies can be either rotations or translations. If the
instantaneous motion is a translation, the result is immediate. Let the instantaneousmotion be a rotation
of centerO and angular velocityω. Let yO be the distance betweenO and the control line. LetO′ beO’s
projection onto the control line andP be an arbitrary point in the frame of the vehicle. From the perspective
of P , the Hamiltonian is

HP = ẋP + yP ω = ||OP ||ω cos ∠POO′ + yP ω (4.14)

HP = (||OP || cos ∠POO′ + yP )ω = yOω = HO. (4.15)

Therefore calculating the Hamiltonian at any point in the frame of the body is thesame as calculating it at
the center of rotation.

An interesting result is obtained by choosing the reference point, during arotation control, to be the
rotation center, for whicḣx = 0. Therefore, given a value forH, we can compute the distance of the active
rotation center from the control line. A similar result is obtained describing theangle a translation makes
with the control line in terms of the value ofH.
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Corollary 1 If the control corresponding to rotation centerO and angular velocityω is active at timet on
an extremal trajectory of Hamiltonian valueH, then at this time the signed distance fromO to the control
line isyO = H

ω .

Corollary 2 If a translation control of velocityv and forming angleα with the horizontal axis is active at
timet on an extremal trajectory of Hamiltonian valueH, then at this timecos(α + θ) = H

v , whereθ is the
orientation of the body frame with respect to the control line.

4.2 Whirls

Since, in the case of whirls, two constants from equation 4.2 are null (k1 = k2 = 0), the expression of the
Hamiltonian is simple:

H = k3θ̇. (4.16)

Eitherk3 is greater than zero, or less than zero. (k3 6= 0, since the Pontryagin Principle restrictsH from
being identically zero.) Ifk3 is positive, then any control with maximuṁθ satisfies the Pontryagin Principle.
Otherwise, any control with minimuṁθ satisfies the principle.

In the simplest case, the controls for which the minimum and maximum values ofθ̇ are attained are
unique. Then these trajectories are simple: constant controls, corresponding to pure rotations around a
fixed rotation center. The more interesting case is when multiple controls maximize or minimize θ̇. The
Pontryagin Principle, as applied above, does not directly give any information about when to switch between
the controls in this case.

Under what circumstances might such a trajectory be optimal? The classic example is a Reeds-Shepp
car that can reverse as well as go forwards. Consider the goal of spinning this car in place. A direct spin
is not an available control, and a human driver would execute a three-point turn. The driver might move
forwards around the left rotation center, with positive angular velocity, then backwards around the right
rotation center, with positive angular velocity, then forwards again around the left rotation center.

How long does the three-point turn take? It is simply the angle to be traverseddivided by the angular
velocity. Assuming that the car is controlled by an electronic system that can effect very quick control
changes, it could also follow a four-, five-, or six-point turn, taking thesame time, but following a very
different trajectory. Therefore, we expect that there may be many optimal trajectories between configurations
for which the amount of angle to turn through is the limiting factor, rather than thedistance to be travelled.
Rather than constructing all such trajectories, we will show that there is a canonical trajectory structure,
which we call ‘roll-and-catch’ (see Fig. 4.2 for an example) that we can use to always find one optimal
trajectory. We also show that that for this canonical trajectory structure,we can find the precise control
policy of the optimal trajectory for every start and goal.

Since the original control spaceU is a convex polyhedron, all the controls that can be used for whirls are
on a single polygonal face of this polyhedron. The problem of finding theoptimal whirl trajectories can be
restated equivalently in the following way. Consider a convex polygonal surface of rotation centersZ in the
plane, containing at least two distinct points, and a vehicle that this surfaceis attached to. The vehicle can
rotate at angular velocity1 around any point inZ. (The clockwise case is symmetric.) Find an algorithm to
construct an optimal trajectory for given start and end configurations,q0 andqf respectively.
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Figure 4.2: Example of a roll and catch trajectory. The polygonal control surface rolls along the control axis with
constant angular velocity. When the last rotation center is put in place, the last motion is an off-axis rotation around
this point (the “catch” stage). The trajectory of the last rotation center is shown, as well as the locations in the world
frame of all the rotation centers used along the trajectory.

4.2.1 A sufficient family of whirls for optimality

In a direct application, the Pontryagin Principle does not place any constraints on whirl trajectories. We will
identify a class of optimal trajectories that always exist and are composed of two stages, with the objective
of applying the Pontryagin Principle to characterize the shape of the first stage. Given a whirling vehicle
with convex control surfaceZ, we will call anxy stage trajectory for pointA (A ∈ Z) a trajectory between
two configurationsq0, qf that satisfies the following two conditions:

1. The first stage of the trajectory placesA on its correct position inqf in as short a time as possible. We
will call this thexy stage, as only thex andy coordinates forA need to be attained.

2. The second stage of the trajectory is a rotation aroundA, until qf is attained.

xy stage trajectories always exist between a given pair of configurations,as the vehicle is controllable.
Given two such configurations,q0 andqf , consider an optimal trajectory and anxy stage trajectory between
them, respectively. Lettf be the time taken by the optimal trajectory, lett1 andt2 be the respective times
taken by the two stages of thexy stage trajectory. Since the optimal trajectory does placeA in its correct
location,t1 ≤ tf ; thereforetf ≤ t1 + t2 < tf + 2π. But the times of two trajectories between the same
pair of configurations must differ by a multiple of2π; thereforet1 + t2 = tf and thexy stage trajectory is
optimal.xy stage trajectories are therefore a class of optimal trajectories that alwaysexist. In the following,
we will confine our efforts to characterizing this class of optimal trajectoriesand finding a method to always
construct one such trajectory.

4.2.2 The non-autonomous version of the Pontryagin Principle

The configuration space for thexy stage is two-dimensional, containing only thex andy coordinates. This
makes it possible to remove theθ coordinate from the state, and re-apply the Pontryagin Principle. However,
removingθ from the state makes the configuration space velocity depend on time:q̇ = f(q, u, t). To deal
with this problem, we will apply the non-autonomous version of the Pontryagin Principle.

The Pontryagin Principle for time-optimal trajectories for non-autonomous vehicles ( [18] p. 60) is very
similar to the version used previously in this work, with the exception that the function H is only required
to be positive and not necessarily constant. Taking the final rotation center as a reference point in the frame
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of the body, we obtain the condition that, along thexy stage, the functionH(x, u, t) needs to be maximized
by the chosen control at each point along the trajectory, where

H = λ1ẋ + λ2ẏ (4.17)

and the(λ1, λ2) vector is non-null. Sincedλ1

dt = ∂H
∂x = 0, λ1(t) is a constant function. Similarly,λ2(t) is a

constant as well, therefore
H = k1ẋ + k2ẏ, (4.18)

with k2
1 + k2

2 > 0. Therefore, for eachxy stage optimal trajectory, there exists a control direction in the
plane, given by the vector(k1, k2) such that the optimal control policy, at all times, chooses a control that
maximizes the body’s velocity component in this direction. Since the control velocities form a polygon that
is always turning at constant velocity, it follows that optimal control policiesare piecewise constant.

4.2.3 Shape of thexy stage

Consider, along anxy stage optimal trajectory, the time when the control switches fromui to ui+1, cor-
responding to rotation centersRi and Ri+1 respectively. Consider the functionsHi = H(x, ui, t) and
Hi+1 = H(x, ui+1, t). Both these functions are continuous. Immediately before the switch,Hi ≥ Hi+1

and immediately after the switchHi ≤ Hi+1. Therefore,Hi andHi+1 are equal at the time of the switch.
Furthermore, at the switching time, letP be the reference point andvi andvi+1 its velocity vectors

immediately before and after the switch respectively. Since the angular velocity is constant, the lengths of the
vectorsvi andvi+1 are proportional to the lengths of the segmentsPRi andPRi+1 respectively. The angle
between the pre-switch and post-switch velocity vectors is furthermore equal to the angle∠RiPRi+1, as the
velocities are perpendicular to the radii. So the triangle formed by the two velocity vectors is proportional
to the triangle∆RiPRi+1 and these two triangles form an angle ofπ

2 .
SinceHi = Hi+1 at the time of the switch, and these two functions are the projections ofvi andvi+1

onto the control direction, the third side of the triangle formed byvi andvi+1 is perpendicular onto the
control direction. This side corresponds toRiRi+1 in the proportional and rotated bypi

2 triangle; therefore
RiRi+1 is parallel to the control direction. This holds for all switches along thexy stage. Therefore, in the
world frame, all the rotation centers used during thexy phase are found on a line passing through the first
rotation center and parallel to the control direction.

Setting the world reference frame on this axis, we notice by a similar argument that, if Rj is placed
higher, in respect to the control line, thanRk, thenHj > Hk. Since the first rotation center used is on the
control line, assuming the control direction points right to left, all the other rotation centers must be above
the control line in the initial state; this condition is then propagated along the trajectory. We have therefore
proven the following:

Lemma 4 For eachxy stage optimal trajectory, there exists acontrol linesuch that thexy stage is a rolling
of control surfaceZ in the positive direction along the control line.

Thus, we have found that a control line exists even for a subclass of whirls that is sufficient for optimality.
Because thexy stage is thus shown to be analogous to a sideways view of a rolling motion on a flat surface,
with a subsequent “catch” on the final rotation center, we will alternativelycall xy stage trajectories “roll
and catch” trajectories.
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4.2.4 The position of the control line for known initial and final controls

Number the corners of the convex hull consecutively clockwise asR1, R2, . . . , Rm. Assume we knew
that the initial control is a rotation aroundR1 and the final two controls are rotations aroundRk andRf

respectively. The optimal control is thereforeR1, R2, · · · , Rm repeatedn times (wheren is an unknown
integer) and thenR1, R2, · · · , Rk−1, Rk, Rf .

In the world frame, letR′

1 be the initial location ofR1, let R′

f be the final location ofRf and letR′

k

be the location, at the final switch, ofRk. We are given the position ofR′

1, and we know the position of
R′

f as the final motion is a rotation around this point. Letd′1f be the length of the segmentR′

1R
′

f . In order
to determine the structure of the trajectory (if it exists), it is sufficient to find the positon ofR′

k, which
determines the control lineR′

1R
′

k.
Let rij be the distance, in the body frame, between two arbitrary rotation centersRi and Rj . Let

li = ri,i+1, i.e. the length of theith side of the control surface. Letp =
∑m

i=1 li be the perimeter of the
control surfaceZ. Since the trajectory is a roll along the control line, the length of the segmentR′

1R
′

k is:

d′1k = np + l1 + l2 + · · · + lk−1. (4.19)

In the triangle∆R′

1R
′

kR
′

f , the triangle inequality must hold:

d′ − rkf < np + l1 + l2 + · · · + lk−1 ≤ d′ + rkf . (4.20)

The left-hand side is a strict inequality because, as shown above, if two rotation centers are on the control
line at the same time, the one that is used on the immediately preceding interval must have a smallerx
coordinate.

Sincerkf is a section throughZ, 2rkf ≤ p. Note that Relation 4.20 has a span of2rkf between the
leftmost and rightmost side, and the middle changes in increments ofp. Therefore Relation 4.20 has at most
one solution for the unknown integern, which is obtained by subtracting and dividing appropriately and
taking the floor function:

n = ⌊d′ + rkf − (l1 + l2 + · · · + lk−1

p
)⌋. (4.21)

Furthermore,n needs to satisfy the left-hand side of 4.20 above. By replacing this solution into equation 4.19
above, we determine the length ofd′1k. This fully determines the triangle∆R′

1R
′

kR
′

f and, by extension, the
position of the control line and the structure of the trajectory. In order forthexy stage to be extremal, we
only need to check observance of the Pontryagin Principle at its final point, i.e. calculate the configuration
at the switch fromRk to Rf and verify that no point ofZ is above the control line in this configuration.

Since there is at most one solution for the location of the control line, if such asolution exists then the
correspondingxy stage is the fastest way to getRf into its final position by usingR1 as the first rotation
center andRk as the last.

4.2.5 Constructing anxy stage trajectory for given initial and final configurations

Given a control surface and initial and final configurationsq0 andqf respectively, we have proven above that
there exists a “roll and catch” optimal trajectory between these configurations, for any choice of reference
point on the control surface (the reference point being the location of the last rotation center that is used on
the trajectory). We have also shown how to find this trajectory, if the initial andthe second to last controls
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were known; these two controls have to be rotations around corners of the control surface, which we have
shown can be assumed without loss of generality to be a convex polygon. Therefore, the following simple
algorithm is valid:

1. Enumerate all possible ordered pairs of corners of the control surface.

2. For each such pair, construct the “roll and catch” trajectory (therecan exist at most one) that corre-
sponds to the chosen initial and second to last controls.

3. Pick the fastest trajectory.

The algorithm runs in time that isO(m2), wherem is the number of corners of the polygonal control
surface. For any given control surface, the running time is constant.

This result concludes our analysis of whirls. For the rest of the current work, we limit ourselves to the
case of control line trajectories.
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Chapter 5

A class of control policies sufficient for
optimality

The sole requirement that the control policyu(t) be Lebesgue integrable leaves open a wide variety of
candidate solutions for the optimal control problem defined in Section 3.1. A direct search of this infinitely
(ℵ1) dimensional space is not feasible. In this chapter, we considerably narrow down the search space
by characterizing a class of control policies that are sufficient for optimality. These control policies are
piecewise continuous and only use a finite set of controls. We will begin by presenting the main result and
some applications, and will use the second half of the chapter to prove the result by a sequence of lemmas.

5.1 Control space discretization

The main result that will be proven in this chapter is the following:

Theorem 2 There exists a canonical finite subsetUc of control setU , containing the vertices ofU and at
most one point on each face or edge ofU that intersects thėθ = 0 plane, such that any optimal control
problem of the type defined in Section 3.1 has a solution that is a control policythat

1. is piecewise continuous

2. only takes values inUc.

The proof for this result will be given in the second half of the chapter. In the first half, we will first
examine how optimal control policies that are not piecewise constant can occur in some cases, which will
reinforce our motivation to search for piecewise constant policies. Second, we will show how control space
discretization and the existence of piecewise constant control policies areintertwined, by discussing a few
examples for the application of Theorem 2 to several well-studied vehicles.

5.1.1 Optimal control policies that are not piecewise constant

Control policies that are not piecewise constant can be difficult to implementin practice. They are, however,
mathematically optimal in some cases.

For example, consider a rigid body in the plane that can translate in any of thefour directions aligned
with the axes, north, south, east, and west, with speed one, as shown in Figure 5.1. The fastest trajectory
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Figure 5.1: Two optimal trajectories for a translational platform.

to move to a point to the east is unique and simple to describe: drive east, with nocontrol switches. How
about a trajectory to drive to the point(2, 1)? The minimum time required is3 (the Manhattan distance
to the point from the origin), and one optimal trajectory is to drive east for timetwo, then north for time
one. However, any other trajectory to the goal that uses only the controls‘east’ and ‘north’ is also optimal,
even if these controls are applied in a manner that is not piecewise continuous. For this system, optimal
trajectories clearly exist; but it is easiest to describe the trajectories with a minimum number of switches,
with the understanding that permutations of translation sections of the trajectory will also be optimal.

There are worse situations that can arise. Consider a refrigerator whose projection onto the plane is a
square, with supporting legs at the vertices of the square. Assume we canrotate the refrigerator about any
of the legs with angular velocity1 or−1. What is the fastest way to move the refrigerator along the positive
x axis? It turns out that the solution may be to “chatter”, or switch infinitely quickly, between two rotation
controls, approximating a straight-line motion.

We will show that, because of the convexity requirement for the control space, it is always possible
to find a piecewise constant optimal control policy. This is particularly easy tosee for the refrigerator
example above: since the control space includes a hard turn left and a hard turn right, it must also include
all intermediate controls between these two, and in particular a straight line translation that can be used to
replace any “chattering” segment. For the translational platform, we show that all “chattering” segments can
be replaced by a piecewise constant control policy with at most one switch.

In general, we will show that for any polyhedral convex control space U it is possible to find a finite
subset of the control space that is sufficient for optimality, and furthermore that it is always possible to find
a piecewise constant optimal control policy corresponding to this finite subset.

5.1.2 Examples of control space discretization

Before presenting a proof for Theorem 2, let us examine the way it applies to several well-known vehicles.
This sequence of examples will also show how control space discretizationand the existence of piecewise
constant control laws are intertwined in our analysis. We begin with the Dubins car, for which the control
space (see Fig. 5.2) is the line segment1×0× [−1, 1] (i.e., the vehicle always drives straight with a velocity
ẋ = 1, ẏ = 0 in its own frame of reference, and the only control is choosing the bounded turning radius).
The finite canonical control set contains the two vertices of the control set and the one point on the single
edge wherėθ = 0:

Uc = {(1, 0,−1), (1, 0, 1), (1, 0, 0)} (5.1)

Intuitively, the necessity of including the vertices is easily demonstrated by recalling that the Pontryagin
Principle requires that, at an arbitrary timet, only controls that maximize the projection of the vehicle’s
velocity onto the adjoint vector may be chosen. If the adjoint happens to be,in the vehicle’s frame of
reference, at positiona1 depicted in Figure 5.2, then only the upper vertexu+ = (1, 0, 1) can be maximizing.
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Figure 5.2: The control space for a Dubins car is a vertical line segment in the(ẋ, ẏ, θ̇) space. Extremal trajectories
for this vehicle will use, at most times, either controlu+ (a hard turn left, e.g. for the adjoint at positiona1) or control
u− (a hard turn right, e.g. for the adjoint at positiona2). In the particular case when the adjointa3 is perpendicular to
one edge of the control space, all the controls on this edge can be chosen; however, choosing, in this case, any control
except the translationu0 will cause the adjoint to move from this position, thus causing one of the two corners ofU to
become the single maximizing control.
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Figure 5.3: The control space for a convexified Reeds-Shepp car is a square centered on the origin in thėy = 0 plane.
All the four corners maximizeH for some position of the adjoint. Furthermore, the left and right edges contain points
on both sides of thėθ = 0 plane, a fact that allows singular translations. The top andbottom edges do not have this
property.

If the adjoint is at positiona2, then only the lower vertexu− is maximizing.
The possibility that other controls might also be used on an optimal trajectory is indicated by considering

the adjoint in positiona3, i.e. perpendicular onto the edge of the control space. In such a case,all the controls
on the edge are maximizing, and may be chosen without violating the Pontryagin Principle. However, it
turns out that it is sufficient to add to the canonical control set the point on the edge wherėθ = 0, i.e. the
translationu0 = (1, 0, 0).

The necessity of having this point in the control set that is sufficient for optimality is easily demonstrated.
Consider the very simple situation where the Dubins car needs to drive fromq0 = (−1, 0, 0) to qg =
(0, 0, 0). If only u+ andu− were available, then there would exist no optimal control policy that is piecewise
constant. Instead, the solution would be to “chatter”, i.e. to alternate infinitesimal applications ofu+ and
u− respectively, achieving a continuous straight translation from this alternation of rotations. However, if
we also addu0 to the canonical control set, it is always possible to replace such “chattering” segments with
a single application ofu0 instead. Deeper analysis will show that no other additions are necessaryin this
case.

Figure 5.3 shows the discretization of the control set for another well-studied vehicle, the convexified
Reeds-Shepp car. The control set is, in this case, a square centeredon the originU = [−1, 1]× 0× [−1, 1].
Note that such a convexified control set gives our car capabilities (e.g.spinning in placeu0+ = (0, 0, 1))
that are not usually associated with car-like vehicles, a reason for whichthe original Reeds-Shepp car [19]
only allowed controls belonging to a subset of this square.

However, it turns out that the convexified Reeds-Shepp car always has an optimal control policy that
only uses six controls: straight forward, forward left, forward right,straight backwards, backwards left,
backwards right. Since all of these controls are also available to the non-convexified Reeds-Shepp car,
it turns out that the canonical optimal trajectories are, in fact, identical forthese two apparently distinct
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Figure 5.4: The control space for a differential drive vehicle is a diamond centered on the origin in thėy = 0 plane.
Since none of the edges cross theθ̇ = 0 plane, only the corners can be maximizingH in a sustainable manner, when
the adjoint varies.

vehicles. (This discretization result was first presented in [28], which also first introduced the notion of the
convexified Reeds-Shepp car.)

In our framework, we obtain the canonical control set for the convexified Reeds-Shepp car by adding
to it the original control set’s four corners and, by arguments analogous with those presented above for the
Dubins car, also one point on each of the right and left edges, corresponding to translating straight forward
(u+,0 = (1, 0, 0)) and backwards (u−,0 = (−1, 0, 0)) respectively. Note that the control set has two more
edges, an upper and a lower edge. However, none of these edges intersects theθ̇ = 0 plane (i.e., there are
no translations on these edges), so the canonical control set does notcontain points from these two edges.

Figure 5.4 shows the discretization of the control set of the differential drive, a wheelchair-like vehicle
that can be driven by setting different velocities on two parallel wheels. In this case, none of the four edges
crosses thėθ = 0 plane, so the canonical control set contains simply the four vertices of thecontrol space
(two of which are translations).

Finally, Figure 5.5 shows a quadrilateral face of the control set for a hypothetical omnidirectional vehi-
cle, projected onto the(ẋ, θ̇) plane. In a manner similar to the convexified Reeds-Shepp car, the canonical
control set will contain, corresponding to this face ofU , the four vertices and the two points where the edges
intersect theθ̇ = 0 plane. In addition, the control set will also contain a translationu′ that corresponds to
the face itself (as opposed to the edges). Intuitively, this translation corresponds to a “chattering” of three or
more of the face’s vertices.

Our analysis is also applicable to some control spaces that are not polyhedral. For example, if presented
with an arbitrary, non-convex control set (e.g, a finite control set or the original control set of the Reeds-
Shepp car), we would first build the convex hull of this control set, and then discretize the convex hull in
order to obtain a canonical control set. If the canonical set is a subsetof the original control set, then optimal
control laws that are piecewise constant always exist, and can be obtained through the same methods that
we use in the rest of our analysis. If the canonical control set is not a subset of the original control set, then
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Figure 5.5: A projection onto theẏ = 0 plane of a quadrilateral face of an arbitrary polyhedral control space. The
corners can always be maximizing. The upper and lower edges do not cross thėθ = 0 plane, and therefore contain no
extra maximizing controls. When the adjointa′ is perpendicular onto the polyhedron’s face, there exists at most one
sustainable controlu′ on the face whose application will keep the adjoint in positiona3.

piecewise constant optimal control laws may not exist for that vehicle.
Let us now detail our analysis by presenting the mathematics behind the statements above.

5.2 Sufficiency of piecewise constant control policies that take valuesin the
canonical control set

This section will present a proof for Theorem 2. The proof will be built up through a sequence of lemmas,
some of which also contain results that will be used in subsequent chapters. The main outline of the proof is
the following. First, we characterize the maximizing controls that need to be used by extremal control poli-
cies, and we will prove a few properties that such maximizing controls exhibit.Next, we prove that extremal
control policies need to be piecewise constant outside so-calledsingular intervals. Singular intervals are
time intervals during which multiple maximizing controls exist everywhere. Finally, we show that singular
intervals can, in fact, be equivalently replaced with piecewise constant control policies. This will complete
our proof that piecewise constant control policies are sufficient for optimality.

5.2.1 Maximizing controls

Let us first examine the kinds of controls that maximize the Hamiltonian during extremal trajectories. For an
extremal trajectoryq(t) and its ensembleu(t), λ(t), H, let the timest where there exists a single control that
maximizes the Hamiltonian be calledunimax. Let the times where there exist multiple maximizing controls
multimax. In this section, we will prove a sequence of lemmas that lead to the proof, in the next section, that
piecewise constant control laws are sufficient for optimality.

Consider an arbitrary timet′ ∈ [0, tf ]. The Pontryagin Principle requires thatu(t′) be a solution of
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the following problem: maximize the HamiltonianH = (λ(t′)Rθ(t′))u for u in U . SinceU is assumed
to be a convex polyhedron, the conditionu ∈ U can be written as a linear system of inequalities, and the
Hamiltonian maximization problem is thus a classical linear program: out of all the points in a convex
polyhedron, find those points that maximize their position vectors’ projectionsonto a given direction.

This simple observation, in conjunction with the facts about the adjoint provenin Theorem 1, allows us
to make a few further observations that hold at all times along an optimal trajectory, no matter what value
the adjoint may take.

Fact 1 The optimal control policy can only contain controls that are on the outer hull of convex polyhedron
U .

Proof: The proof is by replacing any other control by its positive scaling to the convex hull to obtain a
larger value for the Hamiltonian.

The next two observations follow immediately from the properties of linear programs and the fact that
λ(t) is a continuous function:

Fact 2 If t is unimax, thenu(t) must be one of the vertices ofU . Furthermore, there exists an entire
neighborhood oft on whichu(t) is also the only maximizing control.

Fact 3 If t is multimax, then there exists an entire edge or face ofU such that all the controls on this edge
or face are maximizing.

We are now ready to prove several lemmas about multimax points. The case where the multimax point
involves an edge ofU that is entirely made up of translations needs to be treated separately.

Lemma 5 On an extremal trajectory with HamiltonianH, there exists only one value ofθ at which all the
controls on an edge ofU that is entirely in theuθ = 0 plane can be maximizing. Furthermore, there exists
only one value ofH for which this may happen.

Proof: Let ui anduj be the two distinct vertices of the edge ofU under consideration. Note thatui and
uj are both translations. At the multimax point, we write equation 4.13 for both controls:

H = vi cos(θL + αi) (5.2)

H = vj cos(θL + αj). (5.3)

We have two equations in two unknowns,H andθL. Their right-hand sides are also equal:

vi cos(θL + αi) = vj cos(θL + αj). (5.4)

Use of the cosine addition identity and some algebraic manipulation leads to:

tan θL =
vj cos αj − vi cos αi

vj sinαj − vi sin αi
. (5.5)

We choose the solution forθL satisfying the requirement thatH > 0, and compute the unique value forH
from H = vi cos(θL + αi).

For edges ofU that do not exclusively contain translations, we obtain
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Lemma 6 On a control line trajectory of HamiltonianH, there exist only two pairs of values(yL, θL) at
which all the controls on an edge ofU that is not entirely in theuθ = 0 plane can be maximizing.

Proof: Let the two distinct vertices on the edge ofU under consideration be labelled asu1, u2. Note
that not both of these can be translations.

At the multimax point, we write equation 4.13 for both controls:

H = v1 cos(θL + α1) + yLω1 (5.6)

H = v2 cos(θL + α2) + yLω2. (5.7)

By multiplying the top equation byω2, the bottom byω1, and subtracting, we may eliminatey:

ω2H − ω1H = ω2v1 cos(θL + α1) − ω1v2 cos(θL + α2). (5.8)

Using the cosine addition formula and rearranging, this equation can be written in the form

a cos θL + b sin θL = c, (5.9)

where

a = ω2v1 cos α1 − ω1v2 cos α2 (5.10)

b = −ω2v1 sinα1 + ω1v2 sinα2 (5.11)

c = ω2H − ω1H. (5.12)

Equation 5.9 is of standard form. Craig [10] gives the solution as

θL = 2 atan

(

b ±
√

a2 + b2 − c2

a + c

)

. (5.13)

(A solution also exists fora + c = 0: θL = π.) Note that there are at most two solutions forθL. For each
solution forθL, we can plug the values ofθL, H, and the rotation control into equation 4.13 to compute the
unique value ofy.

5.2.2 Piecewise continuity outside singular segments

We are now in a position to define singular segments, and to show that extremaltrajectories are piecewise
continuous outside the singular segments. The next lemma will give a lower bound on the duration of
unimax intervals.

Lemma 7 For any extremal trajectoryq(t) : [0, td] → SE(2) with extremal ensembleu(t), λ(t), H, there
exists a constant quantitykc > 0 such that all unimax times are contained within unimax time intervals,
each interval of duration at leastkc.

Proof: Consider a unimax timetv. Because of fact 2, there must existε > 0 such that all the points in
(tv − ε, tv + ε) are unimax. There must also exist a vertexuv of U such that for allt ∈ (tv − ε, tv + ε),
u(t) = uv.

There are two cases: eitheruv is a rotation, oruv is a translation.
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If uv is a rotation, thenθ(t) is monotonic on(tv − ε, tv + ε) and thereforeθ(t) is not constant on
any superset of this interval. LetΘc = {θ(0), θ(td)} ∪ {θ| there exists an edge or face ofU that can be
maximizing atθ}. According to lemmas 6 and 5,Θc is a finite set.

Let tc1 = max{t < tv|θ(t) ∈ Θc} andtc2 = min{t > tv|θ(t) ∈ Θc}. Then all the points in(tc1, tc2)
are unimax, and furthermoreu(t) = uv on this interval. Sincėθ(t) thus exists and is constant on(tc1, tc2),
there must exist a quantitykr > 0, depending only on the trajectory and its extremal ensemble, such that the
length of the(tc1, tc2) interval is at leastkr. This concludes the case whereuv is a rotation.

If uv is a translation, theny(t) is monotonic on(tv − ε, tv + ε). Let Yc = {y(0), y(td)} ∪ {y| there
exists an edge or face ofU , not entirely in theuθ = 0 plane, that can be maximizing aty}. (Sincetv is not
multimax, anduv does not modifyθ, we do not need to consider the case when an edge ofU entirely in the
θ̇ = 0 plane might become maximizing.) By an argument analogous to that used in the case whereuv was
a rotation, there exists a quantitykt > 0, depending only on the trajectory and its extremal ensemble, such
that the length of the(tc1, tc2) interval is at leastkt.

The proof is concluded by lettingkc be the minimum ofkr andkt.
We are now able to prove the central result of this section:

Lemma 8 For any extremal trajectoryq(t) : [0, td] → SE(2) with extremal ensembleu(t), λ(t), H, the
function

us(t) =

{

u(t), if t is unimax

0, if t is multimax
(5.14)

is piecewise constant. Furthermore,us(t) = 0 at all discontinuity points.

Proof: Any discontinuity point will contain both unimax and multimax points arbitrarily close toit;
because of fact 2, such discontinuity points can only be multimax, and thereforeus is 0 at all discontinuity
points.

We will prove by contradiction thatus is piecewise continuous. Assume thatus is not piecewise con-
tinuous; then it must have an infinity of discontinuity points on[0, td]. Therefore there must exist a pointta
within [0, td] such that there are discontinuity points arbitrarily close tota. However, according to Lemma 7,
there existskc such that no unimax point can exist within(ta − kc, ta + kc). Therefore, there exists an in-
terval containingta in which all the points are multimax, and thereforeus is 0, and thus continuous, on this
interval; which is a contradiction.

Therefore,us is piecewise continuous. Since all the unimax points form intervals of a certainminimum
length (Lemma 7), this also implies thatus is piecewise constant.

The lemma above implies that(0, td) is composed of open unimax intervals that are separated by either
isolated multimax points or by closed intervals that are multimax at all points. Let a unimax interval be
called ageneric interval. The isolated multimax points separate generic segments, indicating a change of
controls; we will therefore call isolated multimax pointscontrol switches. The nondegenerate multimax
intervals can contain irregular behaviors for the control policy (e.g. nowhere continuous functions etc.); let
such nondegenerate multimax intervals be calledsingular intervals.

5.2.3 Replacing singular segments

We will next be concerned with a more detailed characterization of singular intervals. We will show that
singular intervals only occur at certain values of the Hamiltonian, and that singular intervals can always be
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replaced by a time-equivalent piecewise constant control law, with at mosttwo pieces. This will conclude
our proof of Theorem 2.

Fact 4 Consider an arbitrary extremal control policyu(t) that contains a singular interval[t1, t2] on which
a face ofU , which contains an edgeet in the planeθ̇ = 0, is maximizing everywhere. Thenu(t)takes values
fromet almost everywhere.

Proof: From Lemma 5, it is not possible for two distinct edges ofU in the θ̇ = 0 plane to be simulta-
neously maximizing. Therefore, all the other edges on the maximizing face need to be on the same side of
the θ̇ = 0 plane. Choosinguθ(t) 6= 0 at points that form a set of measure greater than zero would therefore
result inθ(t2) 6= θ(t1), which, in conjunction with Lemma 5, contradicts the initial assumption thatet is
maximizing everywhere.

Lemma 9 Any singular interval[t1, t2] for which the set{t ∈ [t1, t2]|uθ(t) 6= 0} has measure zero, and
during which multiple translation controls are maximizing, can be equivalently replaced by a control policy
of the form

u′(t) =

{

u1, t ∈ [t1, t
′]

u2, t ∈ [t′, t2]
(5.15)

for somet′ ∈ [t1, t2], whereu1 andu2 are vertices ofU that are translation controls.

Proof: The fact thatuθ(t) = 0 almost everywhere, coupled with the requirement that the interval be
singular and that multiple translation controls must be maximizing, indicates that there exists an edgeet of
U , contained in thėθ = 0 plane, that is maximizing at all points on[t1, t2].

The value of the Hamiltonian is determined in this case, as shown by Lemma 5; also,at no point in
[t1, t2] can there exist any other translations-only edge ofU that is also maximizing.

Let u1 andu2 be the two corners ofet. As a first step, we replace the value ofu(t) at all points where
uθ 6= 0 with u1. Since all these points form a set of measure zero, the shape of the trajectory q(t) remains
unchanged.

The requirement that all the controls onet be maximizing indicates, by application of equation 4.13, that
for anyu ∈ et the ẋL velocity is the same. Therefore, any control policy on[t1, t2] that only uses controls
from et achieves that samexL displacement as the originalu(t).

Furthermore, any control policy that only uses controls fromet will attain a yL displacement that is
intermediate between those achieved byu1(t) = u1 andu2(t) = u2 everywhere on[t1, t2]. Therefore, the
following equation always has a solution in[t1, t2]:

uyL1t
′ + uyL2(t2 − t1 − t′) = yL(t2) − yL(t1). (5.16)

Thus, the control policyu′(t) that is constructed by using the value oft′ obtained above in 5.15 is an
equivalent substitute for the original control policyu(t).

We can thus lay aside the case of singular intervals that feature a maximizing translations edgeet. There
are two cases left to consider: intervals where an entire face ofU , with no translations-only edge, is maxi-
mizing; and intervals where only one edge ofU , which does not contain only translations, is maximizing.
The following two lemmas address these two cases.
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Lemma 10 Any singular interval[t1, t2] for which exactly one edge ofU , er, which contains points on both
sides of thėθ = 0 plane, is maximizing can be equivalently replaced by a control policy of the form

u′(t) = u0, t ∈ [t1, t2], (5.17)

whereu0 is the translation control iner. Furthermore, the value of the Hamiltonian is uniquely determined
byer in this case.

Proof: The requirement thater must be maximizing everywhere on[t1, t2], along with Lemma 6,
indicate thatyL andθ are constant on[t1, t2] and thus the trajectory is a translation parallel to the control
line on this interval. The replacement control policy 5.17 thus leaves the trajectory q(t) unchanged. From
equation 4.13, the value of the Hamiltonian is thus calculated as the Euclidean length of theu0 vector.

Lemma 11 Any singular interval[t1, t2] for which an entire face ofU , F , which contains points on both
sides of thėθ = 0 plane, is maximizing can be equivalently replaced by a control policy of the form

u′(t) = u0, t ∈ [t1, t2], (5.18)

whereu0 is a translation control inF . Furthermore, the value of the Hamiltonian is uniquely determined
byF in this case.

Proof: The requirement that any given edge onF must be maximizing everywhere on[t1, t2], along
with Lemma 6, indicate thatyL andθ are constant on[t1, t2] and thus the trajectory is a translation parallel
to the control line on this interval.

Let ui, uj anduk be three distinct corners ofF that are not all on the same side of theθ̇ = 0 plane.
SinceF is convex, these three vertices are not collinear.

For any controlu = (ux, uy, yθ), we can re-write equation 4.13 as

uxc − uys + uθyL − H = 0, (5.19)

wherec = cos θL ands = sin θL. By writing equations of the form 5.19 forui, uj anduk respectively, we
construct the linear system





uxi −uyi uθi −1
uxj −uyj uθj −1
uxk −uyk uθk −1













c
s
yL

H









=









0
0
0
0









. (5.20)

Sinceui, uj anduk are not collinear, the matrix is of rank three. By elementary row operations on the
system, we eliminate variablesH andyL and are left with an equation of the formac + bs = 0, wherea
andb are constants, not both zero. In conjunction withc2 + s2 = 1, we calculate two possible values of the
(c, s) pair; these two values add up to zero. Replacing into the original system, we obtain two critical values
of H, one of which is the negative of the other. Only the positive solution forH and its corresponding(c, s)
pair are valid.

This value ofH is the critical value corresponding toF . Oncec, s andH are thus determined,u0 is the
only translation onF for which equation 5.19 holds:

ux0c − uy0s = H (5.21)
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This concludes our proof of Theorem 2. Based on the lemmas stated above, we can also summarize the
following useful fact:

Fact 5 There exists a finite set of singular values of the Hamiltonian, computed in theproofs of lemmas 5,
10 and 11, such that singular segments do not occur for extremal ensembles that do not contain a singular
value of the Hamiltonian.
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Chapter 6

Generating canonical control policies

We have shown, in the previous chapter, that piecewise constant control policies, using controls from a finite,
canonical control set, are sufficient for optimality, as far as control linetrajectories are concerned. Control
policies of this type are fully specified by a sequence of the type

[(u1, t1), (u2, t2), . . . , (un, tn)], (6.1)

where theui are canonical controls and theti are the times for which each control is applied.
This result, in conjunction with our analysis of the kinematics of control sequences in Section 3.2.3,

opens up the possibility of algorithmic search for the fastest trajectory. A direct search, however, will be
very slow. Let the number of canonical controls be|Uc|; there are|Uc|n possible structures andn degrees of
freedom for trajectories of the type described in Formula 6.1, and we haveno upper bound onn.

The characterization of a control line in Section 4.1.2 offers the potential ofconsiderably speeding up
the search. There are only two degrees of freedom involved in specifying the position of a line and, once this
line is fixed, many if not most of the control switches and control application times involved in Formula 6.1
are strictly determined.

The purpose of this chapter is to explore the use of the control line for generating canonical control
policies. The first part of the chapter will delineate the conditions under which the position of the control
line uniquely determines an extremal trajectory: we show that it does uniquely determine the trajectory
in most cases. In the second part of the chapter, we develop a precise algorithm that builds canonical
trajectories from the position of the control line.

6.1 Trajectories uniquely determined by the control line

For each trajectory segment on a canonical trajectory of type 6.1, there are two basic issues that any trajectory
generation algorithm needs to address: what is the control to be applied, and for what duration is it to be
applied? We will show that, for extremal trajectory ensembles that containgeneric, i.e. non-singular, values
of the Hamiltonian, the answers to both these questions are uniquely determinedby the position of the
control line.

Regarding the choice of controls, we will introduce the notion ofsustainable controls. Even though an
entire edge ofU is maximizing at multimax points, we will show that it is usually the case that only one
control can be applied sustainably, i.e. without contradicting the PontryaginPrinciple after an infinitesimal
application.
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Figure 6.1: The control line uniquely determines a section of an optimaltrajectory for a Dubins car.

For determining the duration of unimax segments, we will introduce the notion ofswitching points.
We will show that every pair of canonical controls has a correspondingswitching point in the vehicle’s
frame, such that the two controls’ Hamiltonians are only equal when their corresponding switching point
is on the control line. This analysis framework will be used twice: first, to show that the durations of
control application are uniquely determined on generic trajectories; and, inthe second part of the chapter, to
calculate these durations.

6.1.1 Switching points

For any two controls of different angular velocities there will exist a pointthat has the same planar velocity
(but different angular velocities) under both controls. For instance, consider controlsu1 = (0, 0,−1) (a spin
in place counter-clockwise) andu2 = (1, 0, 0) (forwards translation). The points12 = (0, 1, 1) has the same
planar velocityẋ = 1, ẏ = 0 under both controls (but different angular velocities).

As shown in Lemma 3, the Hamiltonian can be calculated at any point on the vehicle. Calculating the
Hamiltonians ofu1, u2 in a reference frame centered ons12, by applying equation 4.12 we obtain

H1 = ẋ1L + yLθ̇1 (6.2)

H2 = ẋ2L + yLθ̇2. (6.3)

Since the planar velocity ofs12 is equal under both controls,ẋ1L = ẋ2L. Therefore, the above two formulas
only differ in θ̇:

H2 − H1 = yL(θ̇2 − θ̇1). (6.4)

Sinceθ̇2 − θ̇1 > 0 in this example,H2 ≥ H1 iff yL ≥ 0. Therefore, for any extremal ensemble, the control
policy can only take valueu2 whens12 is above the control line.u1 can only be chosen whens12 is below
the control line, and the control can only switch betweenu1 andu2 whens12 is on the control line. Since
s12 thus indicates switches betweenu1 andu2, we call it aswitching pointbetweenu1 andu2.

Figure 6.1 shows a switching point for the Dubins car. The car can turn left uL = (1, 0, 1) and right
uR = (1, 0,−1); the switching point issRL = (0, 0, 2) which is the midpoint between the two rotation
centers. In the initial configuration,sRL is above the control line, and thusuL has to be chosen, as there
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are no other available control and the Hamiltonian ofuR is smaller. AfteruL is applied for some time,sRL

crosses the control line. At this point, both controls are maximizing the Hamiltonian.
However, any application ofuL will causesRL to immediately cross to below the control line, thus

causing the Hamiltonian ofuR to be larger than that ofuL. Thus, onlyuR is a sustainable controlat
the multimax point. The position of the control line thus uniquely determines the trajectory everywhere,
including at the multimax point.

Let us now give a precise mathematical formulation of the intuitions above. We will first establish the
existence of switching points, and then use this result to show unique determination of generic segment
length. In the next section, we will examine sustainable controls.

Lemma 12 Consider an extremal trajectory and its ensemble. For any pair of distinctcontrolsui, uj with
θ̇i ≤ θ̇j , there exists a switching point in the vehicle frame at homogeneous coordinates

sij =





ẏi − ẏj

ẋj − ẋi

θ̇j − θ̇i



 , (6.5)

such that

1. The Hamiltonians of the two controls,Hi andHj , are equal iff the world frame position ofsij is on
the control line.

2. Hi < Hj iff sij is above the control line, i.e. iff theyL coordinate ofsij is strictly positive.

Proof:
In the inequality

Hi ≤ Hj , (6.6)

we develop both sides according to Formula 4.10 and subtract the left-handside from the right-had side.
The inequality thus obtained is identical to the one we obtain by developing the formula

0 ≤ (0, 1, 0)TLW TWRsij , (6.7)

whereTLW andTWR are the world-frame-to-control-line-frame and robot-frame-to-world-frame transfor-
mation matrices, respectively.

Fact 6 Given two controls,ui anduj , let their rotation center representations (see eq. 3.11) beci andcj .
Thenci, cj and the switching pointsij are collinear.

Proof: From equations 6.5 and 3.11,
sij = cj − ci. (6.8)

Let L = (l1, l2, l3) be a homogenous coordinates line throughci andcj . ThenLci = Lcj = 0, and therefore
Lsij = 0 and the switching point is collinear with the two rotation centers.

Fact 7 Let e be an edge ofU . Then all pairs of distinct controls one have the switching point in the same
location (with possibly different homogeneous weights).
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Proof: Let ui anduj be the two ends ofe. It is sufficient to show that for anyuk on the edge,sik and
sij are in the same location.

Sinceuk is on the edge, there existsa ∈ (0, 1) such that

uk = auj + (1 − a)ui. (6.9)

Multiplying by Rπ/2,
ck = acj + (1 − a)ci. (6.10)

Applying equation 6.8,
sik = ck − ci = a(cj − ci) = asij . (6.11)

Therefore,sij andsik are homogenous multiples and thus represent the same location.

Fact 8 Let se be the switching point for an edgee of U . Then the planar point represented byse point has
the same(ẋ, ẏ) planar velocity under all controls one.

Proof: If all the controls one have the same angular velocity, Formula 6.5 indicatesse is at infinity.
Any control one imparts the same motion velocity onse.

If e is not parallel to theθ̇ = 0 plane, then we calculate the planar velocity ofse under each of the
two ends ofe by assembling the velocity matrix from Formula 3.17 and multiplying byse as given by
equation 6.5. We obtain the same result; sincese’s planar velocity under all the other controls one is
intermediate between these two, it follows that the planar velocity ofse is the same under all controls one.

Lemma 13 The duration of each generic interval is uniquely determined by the positionof the control line.

Proof: Consider an arbitrary generic interval (i.e. a unimax segment with possible isolated multimax
points at its ends) with a fixed starting configuration and a maximizing controlu. If the interval is the last
generic interval in the trajectory, then the duration is limited by the final configuration.

If the generic interval under consideration is not the last, then consider the positions of all the switching
points at the fixed starting configuration. Whenu is applied, for each switching point it is the case that it
either never collides with the control line, or there exists a minimum positive time untilit collides with the
control line. Since the interval is not the last on the trajectory, there must bea control switch after it. The
time at which the control switch occurs is one of the times at which one of the switching points collides with
the control line.

The next section will show that control switches on generic trajectories are also uniquely determined by
the position of the control line. Section 6.3 will show how to calculate the durationof generic intervals.

6.1.2 Sustainable controls

On piecewise constant trajectories, each applied control must be maximizingH not only instantaneously,
but also for at least some short time interval. We formalize this fact in the concept of sustainable controls.
Let a sustainable controlat timet be a maximizing controlu for which there existsε > 0 such that the
application ofu on time interval[t, t + ε) keepsu as a maximizing control.

For canonical trajectories, since the control set is finite, sustainability analysis can be done on a pairwise
basis. A controlui is sustainable if and only if it is sustainable with respect to any other controluj : ui must
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be maximizing, and its immediate application must not cause the Hamiltonian ofuj , Hj , to become higher
thanHi.

It is evident that only sustainable controls may be chosen by piecewise constant extremal control poli-
cies. If the control policy has in its ensemble a generic value of the Hamiltonian,i.e. not one of the singular
values characterized in Section 5.2.3, then the control policy cannot contain any singular intervals. The
control policy is therefore made up of unimax intervals separated by isolatedmultimax points.

On such generic trajectories, despite there being multiple maximizing controls at the multimax points,
the choice is, in fact, deterministic at these points.

Lemma 14 For any extremal trajectory, if its ensemble contains a generic value of theHamiltonian then
there exists only one sustainable control at all points.

Proof: The lemma is evident for unimax points. We only need to consider multimax points in this
proof. According to the analysis in Section 5.2.1, at a multimax point there may bemultiple maximizing
edges, or a single maximizing edge.

As shown in the proof of Lemma 11, if two or more distinct edges ofU are simultaneously maximizing
then the value of the Hamiltonian must be singular. This case is therefore ruledout.

Thus, only one edgee can be maximizing. Ife contained multiple translations, then Lemma 5 would
yield a singular value for the Hamiltonian. There are, therefore, only two possibilities: eithere contains
exactly one translation, or it contains none.

Case 1:If e contains no translation, then the edge doesn’t cross theθ̇ = 0 plane.e therefore contains
only rotations that have the same sign on their angular velocities.

Consider a pair of rotationsui anduj that have the same sign on their angular velocities. Letsij be their
corresponding switching point. As observed above, the two centers of rotationci andcj are collinear with
sij . At a time when bothui anduj are maximizing,sij must be on the control line. Also, on account of
corollary 1, both rotation centers are on the same side of the control line. Given this geometry, there exists
a half-plane bounded by the control line, so that, no matter whetherui or uj is applied,sij instantaneously
moves into this half-plane. On account of Lemma 12, only one of the two controls ui anduj is associated
with this half-plane; therefore, only one of the two rotations is sustainable.

By repeating this argument for all rotations one, only one rotation one can be sustainable in this case.
Case 2:If e does contain a translation, assumee contains multiple sustainable controls. According to

the analysis in the previous case, no two of these sustainable controls can be on the same side of thėθ = 0
plane. Therefore, there can be at most three sustainable controls: the two extremes ofe, of opposite sign
angular velocities, and the translation that is contained bye.

If a rotation and a translation are both sustainable, then the translation has to be parallel to the control
line, in order to keepsij on the control line. As shown in Section 5.2.3, the Hamiltonian has a singular value
in this case. If two rotations of opposite angular velocities are both sustainable, then the translation one is
also sustainable, which implies, as above, thatH is singular.

6.1.3 Periodicity of generic trajectories

In this section, we show that generic trajectories are periodic by proving the following lemma:

Lemma 15 There exists a partitioning of the values of the Hamiltonian into a finite set of open intervals
and a finite set of critical values, such that every canonical trajectory with a Hamiltonian within a single
interval, containing the same control switch, will contain the same sequenceof control switches, following
the switch that the trajectories have in common.
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Proof: The partitioning of the Hamiltonian is effected by a finite set ofcritical valuesof the Hamilto-
nian. To obtain the set of critical values, we start with the set of singular values (see fact 5) and add to them
the magnitudes of the velocities of all switching points. Fact 7 indicates that there is only one switching
point per edge ofU , and fact 8 indicates that this switching point has the same(ẋ, ẏ) planar speed under all
controls on its edge. Therefore, the number of velocity magnitudes to be added to the set of critical values
is no larger than the number of edges ofU .

Now we want to show that outside of these critical values, continuous perturbation of the value ofH
starting from a trajectory with some control switchu1, u2 does not change the structure of the trajectory.

Consider an extremal with a value ofH not in the partitioning. Since values ofH where aθ̇ = 0 edge
of U is maximizing are singular, this extremal may not contain any translation-translation switches. If the
trajectory contains control switchu1, u2, then the(yL, θL) configuration at this switch may be uniquely
computed from Lemma 6 and from the analysis in Section 6.3.1. This(yL, θL) configuration furthermore
changes continuously with changes inH.

Starting from switchu1, u2, consider each possible switchu2, uk with k 6= 2. Each of these switches
will happen when the corresponding switching point hits the control line. Continuously perturbingH, and
thus the initial configuration, will not immediately change the order in which the switching points hit the
control line. Changes in this order need to pass through configurations inwhich either:

1. Two or more switching points hit the control line simultaneously. In this case,at least two distinct
edges ofU are maximizing; thus an entire vface ofU is maximizing, and the value ofH is singular.

2. The trajectory of a switching point becomes tangent to the control line. Atthe tangency point, this
switching point’s velocity is parallel to the control line. Calculating the Hamiltonian at this switching
point at the tangency moment, it is equal to its velocity, thereforeH is critical.

Thus, as long as the change inH does not cross a critical value, the trajectory structure is constant.
Since there are a finite number of possible control switches on generic trajectories (two for each edge of
U ), all generic trajectories beyond a certain number of switches must becomeperiodic in their switch se-
quence. Since each switch corresponds to a fixed(yL, θL) configuration, these trajectories are also periodic
in (yL, θL) space.

We will discuss the(yL, θL) space at more length in Section 6.2. For now, let us prove a limitation on
the number of periods for a certain class of extremal trajectories. We will need the following fact:

Fact 9 Generic trajectory segments with constantθ(t) have constant controls.

Proof: Sinceθ(t) is constant, the control must be a translation. On non-singular trajectories,there may
only be one maximizing translation for any givenθ.

Lemma 16 Generic trajectories for which the image ofθ(t) is notS1, and for whichθ̇(0) 6= 0, contain no
more than one period.

Proof: Consider a candidate trajectory that contains more than a full period. We willprove that this
trajectory is not optimal by constructing another trajectory from the start to the goal that takes an equal
amount of time, but does not satisfy the Maximum Principle (and is therefore not optimal). Figure 6.2
illustrates the idea.
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Figure 6.2: Construction showing that optimal trajectories for which the image ofθ(t) is not S1, and for which
θ̇(0) 6= 0, contain no more than one period.

Any trajectory achieves both a minimum and a maximum value forθ. For now, assume thatθ(0) is
not either of the extreme values. By fact 9, trajectories for which the image of θ(t) is a point contain zero
periods.

Let T be the duration of the first period. Sinceθ(t) is continuous, it must achieve all the values between
the minimum and maximum values ofθ in (0, T ). Therefore there existst1 ∈ (0, T ) such thatθ(t1) = θ(0).
Also, y(0) 6= y(t1), sincet1 < T . Let A be the section of the trajectory on the interval[0, t1], let B be the
section of the trajectory on[t1, T ], and letC be the remainder of the trajectory. The controls at the start of
A and the start ofC are the same.

Now construct the trajectoryBAC. This trajectory takes the same duration asABC, is feasible, and
reaches the goal. On this new trajectory, we have the same controls at the beginning of A (time T − t1)
and beginning ofC (time T ), but differenty values. If we compute the Hamiltonians at these times with
equation 4.12,

H(T − t1) = ẋL(T ) + θ̇(T )yL(T − t1) (6.12)

H(T ) = ẋL(T ) + θ̇(T )yL(T ), (6.13)

we find that the Hamiltonian is not constant of the trajectory, sinceyL(T ) 6= yL(T − t1) andθ̇(t) 6= 0.
Let us now examine a way in which generic trajectories may be easily visualized.

6.2 Visualizing trajectory segments uniquely determined by the control line

From a topological point of view, the requirement that the Hamiltonian be constant on extremal trajectories
(Theorem 1) makes it possible to represent extremal trajectories as levelcurves of the Hamiltonian. In the
control line frame of reference, the level curves of the Hamiltonian are two-dimensional, only depending on
yL andθL (eq. 4.12).

It is not particularly difficult to represent these two-dimensional level curves graphically. Figure 6.3
shows some examples. Specifically, assume control

ui = (vi cos αi, vi sin αi, ωi) (6.14)

47



-2

-1

0

1

2

CLC

CLC

CCC

C

π 2π

5

6

5

6

θ

y

(a) The Dubins car, a car that can only drive forwards.

(b) The Reeds-Shepp car.

(c) The differential-drive, a wheelchair-like vehicle.

Figure 6.3: Switching spaces and example trajectories for standard robotic vehicles. For each vehicle, the figure on
the left side shows level curves of the Hamiltonian in the(yL, θL) space. The figure on the right side shows some
extremal trajectories, in the plane, that correspond to portions of the Hamiltonian level curves on the left.
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is maximizing for some(yL, θL) configurations that are on the level curve for a specifiedH. Then, from
equation 4.13,

H − vi cos(θL + αi) = yLωi. (6.15)

This is a sinusoid curve. Repeating this analysis for all the controls in the canonical control setUc, we
obtain the level curve of Hamiltonian valueH as a union of (possibly degenerate) segments of sinusoids.
The bounds of these segments are on(yL, θL) configurations that are multimax, and thus can be calculated
through the techniques of lemmas 6 and 5.

This representation of level curves makes it easy to visualize the periodicityof generic trajectories. For
the Dubins car (Fig. 6.3 (a) ), the periodicity is evident for both trajectories(1) (a turning motion that, as
far as constrained by the control line, may continue indefinitely) and (2) - (3) (a sequence of left and right
turns). The continuous level curve that contains configurations (4), (5) and (6) contains a singular point at
the origin (showed twice since the(yL, θL) space has a cylindrical topology). In the(0, 0) configuration,
corresponding to the car being on the control line and parallel to the control line, there is a choice of:

1. A multimax segment of indefinite length, driving straight along the control line.

2. A left turn.

3. A right turn.

The level curve passing through this configuration is thus singular. Similar analyses apply to the Reeds-
Shepp car (Fig. 6.3 (b) ) and the differential drive (Fig. 6.3 (c) ). Each level curve contains a potentially
infinite number of optimal trajectories, since it is possible to start and end anywhere on it, as long as travel
proceeds continuously, with the possibility of periodicity as well. Some level curves (e.g. the one containing
configuration (2) for the Reeds-Shepp car) may consist of multiple disjointsegments.

6.3 An algorithm that generates trajectories based on the control line posi-
tion

The approach described in Section 6.2 is useful for visualizing extremal trajectories, but not particularly
suitable for generating them. An algorithm based on this approach would need to determine connections
between the ends of the various sinusoids, and perform graph searches in order to determine the sequence of
switches and switching configurations. This section presents a simpler, moredirect (if less visual) method
to achieve the same goal.

A very simple algorithm for building a generic trajectory, given a position of the control line, would be
to

1. Determine the sustainable control, by calculatingH and d
dtH for all controls in the canonical control

setUc.

2. Integrate the sustainable control for some very small timetε.

3. Repeat.
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This algorithm has a number of problems, notably error accumulation and the danger of missing out on
controls that are only applied for a very short time. We will spend the remainder of this section building a
much more precise algorithm. Its basic outline is

1. Determine the sustainable controlu, by calculatingH and d
dtH for all controls in the canonical control

setUc.

2. For each controlui in Uc, determine the time to switch toui, i.e. the time thatu can be applied before
ui becomes sustainable.

3. Pick the minimum of the switching times,tmin.

4. Integrateu for tmin to obtain a new state, using Equation 3.4.

5. Repeat.

Step3 is trivial, and step4 is achieved by the method described in Section 3.2.2. Step1 will be described
in the following section. Step2 is the most challenging.

In the context of the characterization of switching points in Lemma 12 above, step2 is an instance of a
more general kinematics problem. Given a planar vehicle that is moving at velocity u, constant in its own
frame of reference, and a pointP rigidly attached to the vehicle (the switching point, in our case), how long
will it take until point P collides with a given line in the plane? We solve this more general problem in
Section 6.3.2.

6.3.1 Determining all sustainable controls

As defined above, sustainable controls need to maximize the Hamiltonian, and to change state in a manner
that doesn’t increase the Hamiltonian of other maximizing controls. We have already shown how to calculate
a control’s Hamiltonian.

Assume two canonical controls,ui anduj , are both maximizing at some multimax pointt: Hi = Hj =
H. From equation 4.13,

Hi(qL(t)) = vi cos(θL + αi) + yLωi (6.16)

Assumeuj = (vj cos αj , vj sin αj , ωj) is instantaneously applied. Then the rate of change of the expression
above is

d

dt
Hi(qL) = −ωjvi sin(θL + αi) + vjωi sin(θL + αj) (6.17)

If uj is sustainable, its application must not immediately causeHi to become greater thanH. Therefore,

d

dt
Hi ≤ 0 (6.18)

In a given configuration, we repeat this procedure for all pairs of maximizing canonical controls and elim-
inate all non-sustainable controls. As shown in Lemma 14, if the value ofH is generic then there will be
only one sustainable control left, when this analysis is finalized.
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6.3.2 Time to collision with a line

In the next section, we will see that the solution to the switching time problem involves three cases. The
most difficult case is that in which the motion is a nondegenerate rotation. For solving this case, we will
prove an auxiliary lemma and will introduce calculations for some quantities.

The following lemma gives us the time to collision with vertical linex = c2 when moving on the unit
circle (starting at anglec1).

Lemma 17 The minimumt ≥ 0 such that

cos(ωt + c1) = c2 (6.19)

whereω 6= 0 andc2 ∈ [−1, 1], is

t =
2π

|ω| min

({

−c1 − acos c2

2π sign ω

}

,

{

−c1 + acos c2

2π sign ω

})

(6.20)

where{x} = x − ⌊x⌋ is the fractional part ofx.

Proof: The problem is restated equivalently as finding the minimum of a set:

tmin = min{t ≥ 0| cos(ωt + c1) = c2} (6.21)

Defining
A+ = {t ≥ 0 | ∃k ∈ Z ωt + c1 = acos c2 + 2kπ} (6.22)

and
A− = {t ≥ 0 | ∃k ∈ Z ωt + c1 = − acos c2 + 2kπ} (6.23)

we have

tmin = min(A+ ∪ A−) (6.24)

= min(minA+, minA−) (6.25)

Next we findminA+. In the case whereω > 0

min A+ =
1

ω
min{t′ ≥ 0 | t′ = −c1 + 2kπ + acos c2} (6.26)

=
−c1 + acos c2

ω
+ (6.27)

+
2π

ω
min{k | − c1 + 2kπ + acos c2 ≥ 0} (6.28)

=
−c1 + acos c2

ω
+

2π

ω
⌈c1 − acos c2

2π
⌉ (6.29)

Since⌈x⌉ = −⌊−x⌋,

minA+ =
−c1 + acos c2

ω
− 2π

ω
⌊−c1 + acos c2

2π
⌋ (6.30)

=
2π

ω

(−c1 + acos c2

2π
− ⌊−c1 + acos c2

2π
⌋
)

(6.31)
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Therefore

minA+ =
2π

ω

{−c1 + acos c2

2π

}

(6.32)

In the case whereω < 0, we analogously obtain (by using the identityminS = −max(−S) )

minA+ = −2π

ω

{

c1 − acos c2

2π

}

(6.33)

Therefore

minA+ =
2π

|ω|

{

−c1 − acos c2

2π sign ω

}

(6.34)

Analogously,

minA− =
2π

|ω|

{

−c1 + acos c2

2π sign ω

}

(6.35)

Equation 6.20 follows immediately.

6.3.3 Time to switch

We are now ready to give a general solution to the time to switch problem. In the control line frame, let
P (0) = (xP , yP , wP ) be the homogeneous coordinates of a point of interest (i.e. the switching point),
possibly at infinity, attached to the robot, att = 0. Let R = (xR, yR, ω) be the homogeneous coordinates
of the center of a (possibly degenerate) rotation, corresponding to control ẋ = yR, ẏ = −xR, θ̇ = ω. We
would like to find the minimumt ≥ 0 such thatP (t) is on thex axis.

We will use Lemma 17 to solve the nondegenerate rotation case (ω 6= 0). We calculate a few additional
quantities to reduce the rotation case problem to the situation in Lemma 17. The forward kinematics from
eq. 3.14 imply

yP (t) = b1 sinωt + b2 cos ωt + b3 (6.36)

where
b1 = xP − wP xR/ω (6.37)

b2 = yP − wP yR/ω (6.38)

b3 = wP yR/ω (6.39)

Let r =
√

b2
1 + b2

2 (sinceP andR are different points,r > 0) and letϕ = −atan2(b1, b2). ThenP is on the
x axis whenyP (t) = 0, i.e.

r cos(ωt + ϕ) = −b3 (6.40)

To reduce this case to the situation in Lemma 17, let

c1 = ϕ (6.41)

and
c2 = −b3/r. (6.42)
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The other cases are trivial. The general solution, divided into three cases with several subcases, can thus
be detailed as follows:

1. Degenerate cases
(P andR correspond to the same planar point,
or ω = wP = 0)

a)yP = 0: t = 0
b) yP 6= 0: t = ∞

2. Translation
(ω = 0, wP 6= 0)

a)yP = 0: t = 0
b)xR = 0 or

yP /xR < 0: t = ∞
c) yP /xR > 0: t = yP /xR

3. Rotation
(ω 6= 0)
Obtainc1, c2 as in equations 6.41 and 6.42.

a) c2 /∈ [−1, 1]: t = ∞
b) c2 ∈ [−1, 1]: Obtaint from Lemma 17.

This concludes our analysis of how to generate non-singular trajectory segments.
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Chapter 7

Finding minimum time trajectories

The generator algorithm in Chapter 6 constructs a trajectory for a given position of the control line. In this
chapter, we use this result to find the fastest control line trajectories that reach the goal. For singulars, we
are able to find the exact location of the control line. For generic trajectories, we vary the position of the
control line until the goal is attained with a sufficiently small error.

The position of the control line is determined by three parameters:k1, k2 andk3. Without loss of
generality, we can restrictk1 andk2 such thatk2

1 + k2
2 = 1. While positioning a line is thus generally a

problem with two degrees of freedom, working with a finite control set allowsus to consider all possible
pairs for the initial and final controls, for any given instance of the problem. Setting the condition that the
Hamiltonian needs to be equal for the initial and final controls allows us to reduce the problem of finding
the control line to one degree of freedom. This condition is equivalent to determining one point, possibly at
infinity, on the control line.

7.1 Parametrization of the control line position by the value of the Hamilto-
nian

A parametrization by the Hamiltonian value is convenient for search. For singulars, we showed in Chapter 5
how to calculate all possible singular Hamiltonian values, and this parametrizationyields the position of the
control line directly, in most cases. For generics, we have shown in Section 6.1.3 how to calculate a number
of critical values of the Hamiltonian, such that the trajectory structure (i.e. thesequence of controls used) is
constant when the Hamiltonian varies between two critical values.

We describe a procedure to obtain a functionf(H) that returns a maximum of two(k1, k2, k3) tuples
characterizing the position of the control line or, equivalently,(ϕ, k3) tuples, as(k1, k2) = (cos ϕ, sinϕ).

This function ofH is curried from a function that involves several additional parameters. Given initial
and final states,q0 andqf , with corresponding robot-frame-to-world frame transformation matricesT0 and
Tf , and initial and final controls,u0 anduf , let c0 andcf be the rotation center representations (see eq. 3.11)
of u0 anduf , respectively. LetcW0 andcWf represent the initial and final rotation centers in the world
frame:

cW0 = T0c0 = (a0, b0, g0) (7.1)

cWf = Tfcf = (af , bf , gf ). (7.2)
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The Hamiltonians of the initial and final controls need to equal the trajectory’sHamiltonian value:

(− sinϕ, cos ϕ, k3)cW0 = H (7.3)

(− sinϕ, cos ϕ, k3)cWf = H. (7.4)

Subtracting,

(− sinϕ, cos ϕ, k3)(cW0 − cWf ) = 0. (7.5)

Let (a, b, g) = cW0 − cWf . There are two cases, according to whetherg is zero.

Case 1: g 6= 0

We solve fork3 from equation 7.5 and replace into system 7.3 to obtain

−a′ sinϕ + b′ cos ϕ = H, (7.6)

where

a′ = af − a
gf

g
(7.7)

b′ = bf − b
gf

g
. (7.8)

If a′ = b′ = 0, there exists no solution andf(H) identically returns the empty set. Otherwise, letr′ andα′

be such that

a′ = r′ sinα′ (7.9)

b′ = r′ cos α′. (7.10)

Then
r′ cos(ϕ + α′) = H. (7.11)

We solve this equation and replace into 7.5 to obtaink3:

ϕ = −α′ ± acos
H

r′
(7.12)

k3 =
a sinϕ − b cos ϕ

g
. (7.13)

The functionf(H) returns, for any value ofH, the two(ϕ, k3) tuples corresponding to this system.

Case 2: g = 0

In this case, the initial and final controls have the same angular velocity. Ifa = b = 0, thencW0 and
cWf coincide. We will treat this case in Section 7.3. Otherwise, letr andα be such that

(a, b) = (r sinα, r cos α). (7.14)

56



By algebraic manipulation,
r cos(ϕ + α) = 0, (7.15)

and therefore
ϕ = −α ± π

2
. (7.16)

As above, we have
(− sinϕ, cos ϕ, k3)cWf = H. (7.17)

We will treat the case wheregf = g0 = 0 (u0 anduf are translations) in Section 7.3. Otherwise,

k3 =
H + af sinϕ − bf cos ϕ

gf
. (7.18)

In conclusion, we have obtained a parametrization, in the general case, of the position of the control line by
the value ofH. There also exist two cases where this parametrization does not exist: when the initial and
final motions are both translations, and when the initial and final world frame velocities are identical. We
will begin by studying how to find optimal trajectories in the case where a parametrization byH exists. The
cases when the parametrization does not exist will be studied in the second half of the chapter.

7.2 Finding optimal control policies corresponding to control lines parametrized
by H

As shown previously, control line trajectories can be divided into singulars and generics. Singulars have
singular values ofH that were exactly determined in Chapter 5. Generics have control policies that are
uniquely determined by the position of the control line.

7.2.1 Computing singulars

Since, for singulars, the value ofH belongs to a finite set of singular values, we use the control line
parametrization developed above to determine the exact position of the control line in this case.

Generic excursions

Singulars are not composed entirely of singular points. On non-singular segments, the control switches and
durations are uniquely determined by the position of the control line. We call sub-trajectories that contain
no singular point (i.e., no point with multiple sustainable controls)generic excursions. Since the position of
the control line is known, generic excursions are constructed by the Chapter 6 generator. Generic excursions
are of three types:

1. Type A: The initial generic excursion on a singular trajectory. It is generated by running the Chapter 6
generator fromq0, until a singular point is reached.

2. Type B: The final generic excursion on a singular trajectory. Generated by running the Chapter 6
generator in reverse fromqf , until a singular point is reached.

3. Type C: Intermediate generic excursions. Generated from one singular point to another singular point.
Since there exist multiple sustainable controls at the initial singular point, the generator also needs to
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be given an initial control (picked from the sustainable set) in order to generate a type C generic
excursion.

Building singulars from generic excursions and singular segments

The following algorithms outputs a list of singular trajectories that reach the goal. For a given instance of the
problem, letqAL be the state, in the control line frame, reached at the end of the type A generic excursion,
and letqBL be the state that the type C generic excursion begins with. All possible singular trajectories need
to fill the gap betweenqAL andqBL with typeC generic excursions and with singular segments. Since all
the singular segments are translations ofẋL = H, we can consolidate them into a single singular segment.

The algorithm for generating the middle part of a singular is thus to branch off and keep following
each possible generic excursion fromqAL. If it is possible to connect the obtained stateqCL to qBL by a
singular segment, output the resulting trajectory into the list of results, and continue in order to find all other
singulars. Keep applying the same procedure recursivelyqCL becoming the newqAL. Stop computation in
each branch when the total time of the trajectory under consideration has surpassed a reference time, e.g.
the time of the trajectory found by the simple planner from Chapter 3.

The only part that needs to be further detailed in the algorithm is how to determine the singular segment
connection betweenqAL andqBL. The states can be connected by a singular segment only ifθA = θB.
Furthermore, ifyAL = yBL and there exists a sustainable controlu0 atqAL that effects a translation parallel
to the control line, thenqAL andqBL are united by an application ofu0 for an appropriate length of time.

If yAL 6= yBL and there exist two translation controlsu1 andu2 that are sustainable atqAL, thenqAL and
qBL may be united by a tacking segment that consists in an application ofu1 followed by an application of
u2. This is always possible ifu1 andu2 haveẏL velocities that are of opposite signs. If theẏL velocities have
the same sign, there are some cases when such a connecting segment cannot be built (i.e., if the minimum
ẏL is either in the wrong direction or overshoots the difference inyL coordinates betweenqAL andqBL). In
such instances, we simply continue the computation without outputting a trajectoryinto the results list.

7.2.2 Approximating generics

For generic trajectories other than TGT, we have found no analytical methodto determine the remaining
parameter of the control line. Our best method is to approximate the optimal trajectory in this case by
sampling all possible values ofH at a fine resolution and picking the trajectory with the minimum error.

SamplingH works because small changes inH usually correspond to small changes in the trajectory.
As we have shown in Section 6.1.3, as long as the initial state changes in a way that doesn’t cross a critical
value of the Hamiltonian, the trajectory structure will stay constant, and the onlychange is in the duration
of the various controls applied on the trajectory.

Phase shift metric

In order to conduct a search, we need a way to determine how close a trajectory comes to reaching the
goal. As shown in Section 6.1.3, all generics become periodic after a maximum number of control switches.
Given a position of the control line, we use the following metric. Generate a trajectory starting fromq0, and
generate a trajectory starting fromqf . The trajectory starting fromq0 and corresponding to the given control
line reaches the goal if and only if these two curves are exactly on top of each other past a certain point. In
the general case, the curves differ. If they differ in structure, then there is no small change in the position
of the control line that can change that structure (we would need to crossa critical value ofH for that). We
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consider the metric to be infinite in this case. Usually, the two trajectories have thesame structure, but differ
from each other in theirphase shift, i.e. thexL coordinate displacement. In such a case, we consider the
value of the phase shift to be the metric.

SamplingH space

The Hamiltonian cannot be negative. Also, there exists a superior bound on the Hamiltonian, corresponding
to the highest critical value, beyond which all the trajectories are whirls (which we have studied already).
Thus, given an instance of the problem, the following uniform sampling algorithm is feasible:

1. Divide the(0, Hmax) interval uniformly, with a resolution fine enough to ensure a good coverage of
the smallest interval between critical values.

2. For each sampled value ofH, compute the two possible positions of the control line from theH
parametrization.

3. For each possible position of the control line, generate trajectories from q0 andqf and compute the
phase shift metric.

4. Out of the trajectories that reach the goal (i.e. have a value of the phase shift metric that is considered
close enough to zero), pick the fastest.

Sampling does not have to be uniform, but the resolution can be varied so asto sample more densely
around points with low values of the phase shift metric.

The phase shift evidently changes continuously with changes inH. As H approaches a value corre-
sponding to an optimal trajectory that reaches the goal, the phase shift goes to zero. For future work, it
would be a very useful result to bound the rate of change in the phase shift asH varies, and to show that this
function is Lipschitz continuous.

7.3 Finding optimal control policies in the cases when the control line cannot
be parametrized byH

In the notation of Section 7.1, we can safely ignore the case whencW0 = cWf . In this case, the initial
and final control have the same center of rotation in the world frame (or areparallel translations). Since the
controls need to have the sameH, the angular velocities (or planar velocities, for translations) are also the
same. Therefore, for any such trajectory, we can shift small amounts ofmovement from the initial to the
final control, and generate an infinite number of trajectories that take the same time. At least one of these
trajectories (zero time on the initial control) will be found by other means.

Thus, the remaining case when the control line cannot be parametrized byH is when both the initial
and the final motion are non-parallel translations. Let(ẋ0, ẏ0) and(ẋf , ẏf ) be the world-frame velocities of
these translations. Since

H = k1ẋ0 + k2ẏ0 = k1ẋf + k2ẏf , (7.19)

H > 0, and the translations are not parallel, bothH and the(k1, k2) direction vector for the control line are
uniquely determined in this case. We use this information to compute the control lineframe velocities for
the two translations,(ẋ0L, ẏ0L) and(ẋfL, ẏfL) repectively. It must further hold thatẋ0L = ẋfL = H.

There are two cases: either the trajectory contains a singular point, or it does not.
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7.3.1 Singular trajectories that begin and end with translations

We will show that considering the case of singular trajectories that begin and end with translations is not
necessary for finding an optimal trajectory. Assume the trajectory containsa singular point. If at least one
of the ẏL velocities of the initial and final controls is zero, then that control effects atranslation parallel to
the control line and the trajectory will be found in the regular singular search.

If ẏL0ẏLf 6= 0, there exists a regular singular that is just as fast as the trajectory underconsideration.
This regular singular is obtained by completely removing the shorter of the two translations, and replacing
it by a combination of elongating the regular singular segment, at the singular point that exists within the
trajectory, and either reducing or elongating (according to the sign ofẏL0ẏLf ) the longer translation.

7.3.2 Generic trajectories that begin and end with translations

The solution of this case (translation-generic-translation, orTGT trajectories) is based upon an idea due to
our colleague Weifu Wang. Assume there exists no singular point along an optimal trajectory that begins
and ends with translations. As shown above, both the direction of the control line andH are uniquely
determined.

Rotate the world frame such that thex axis is parallel to the direction of the control line determined
above. Consider the locations of all the switching points betweenu0 and other controls atq0. Let y+ be the
minimumy coordinate for a switching point that needs to be above the control line foru0 to be maximizing;
let y− be the maximumy coordinate for a switching point that needs to be below the control line foru0 to
be maximizing. In the rotated world frame, thek3 parameter for the control line (i.e. they coordinate of the
world frame origin in the control line frame) needs to be in the[−y+,−y−] interval.

Choosingk3 anywhere in this interval will lead to exactly the same sequence of control switches, and
the same duration for the subsequent control applications (sinceH is fixed). We will show that a translation
of vector(ẋfL, ẏfL) cannot appear twice in this sequence. If it appeared twice, we can build an equivalent
time trajectory by entirely removing the second application and making the first application longer by the
same amount. Consider the locations where the active switching points are at control switches on the new
trajectory. The active switching points are on one line (the old control line) onthe first section of the
trajectory, and on a different line on the second section of the trajectory.Therefore this trajectory does not
verify the Pontryagin Principle, so it cannot be time optimal. Since the original, two-translations trajectory
is time equivalent, it cannot be time optimal either. Therefore two parallel translations cannot appear on the
optimal trajectory under consideration.

Sinceuf thus can only appear once in its correct orientation, place the control line anywhere in the valid
interval (e.g.k3 = −y+) and use the Chapter 6 generator to build a trajectory until the switch touf at the
correct body orientation. Letd be the distance travelled by the rigid body between the first and the final
control switches on this trajectory. Then the position of the control line can be exactly determined.

7.4 Conclusion

In the case of TGT trajectories, the position of the control line is not determined by the value of the Hamil-
tonian and we use a specific method for saving this case. All other cases where position of the control line
cannot be parametrized byH are not necessary to be considered for finding an optimal trajectory. When
parametrization is possible, we have two cases. For singulars, we exactly determine the position of the con-
trol line, and we pursue and exhaustive search based on stringing together generic excursions. For generics,
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we sample theH space and use the phase shift metric to find an approximation of the optimal trajectory.
This algorithm, together with the algorithm for finding whirls in Chapter 4, constitutes a solution to the
problem posed in Section 3.1.
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Chapter 8

Implementation and results

This chapter describes the results we have obtained by implementing and running the more common cases
among the algorithms we have described. The implementation did not contain the less common “whirls”
and “tacking” cases.

8.1 Implementation challenges

The main implementation challenge consisted in the fact that many of the algorithms presented in this
work are geometric. As such, they can be easily visalized in the general case. However, a purely geometric
approach is not straightforward to implement in code, and often misses out on specific cases. Developing the
series of geometric formulas presented in Chapter 3 was thus an essential foundation for the implementation.
Similarly, the “collision with line” algorithm of Chapter 6 is easy to visualize, but corresponds to relatively
complex algebraic formulas.

Finding a suitable implementation language has also proven somewhat difficult. In the initial stages, we
used Matlab, but were unable to extend the code beyond a certain size whilealso keeping it manageable.
The algorithms presented are actually fast enough that we were able to alsodevelop a in-browser Javascript
version of a large subsection of the codebase, at one point. Eventually,we’ve settled on Python with NumPy,
and recently our colleague Weifu Wang has been working on porting substantial sections of this code base
to the C language, with a resulting speed-up factor of about one hundred. Numerical precision was also a
factor we had to fine tune on a few occasions.

8.2 Results

We have implemented the search algorithms described in about three thousandlines of Python code. We
have compared the results with those obtained by a direct planner method implemented by our colleague
Wenyu Lu, which uses reverse kinematics to find the fastest piecewise constant control policies with up
to four segments. This direct plannning algorithm first computes exactly all the possible three segment
trajectories, according to the eight possible cases (e.g. rotation-translation-rotation or translation-rotation-
rotation etc.). The algorithm then samples the possible durations for a fourth segment, to find the fastest
trajectory with up to four segments.

With a naive uniform sampling strategy for the generic trajectory finder, aswell as speed limitations
of interpreted code, running the code takes on the order of ten minutes perconfiguration on a desktop
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computer (including the running time for the reverse kinematics planner). We have run two tests, with one
hundred random starting configurations for the symmetric omnidrive robotfor each test. For each tested
configuration, the following results hold as we would expect:

• A generic or singular exists and achieves the minimum time over all methods.

• If the generic or singular has three or four actions, the direct planner always finds a trajectory of the
same speed. This is because the direct planner, as described above, always finds the fastest trajectory
with three or four segments.

• If the fastest generic or singular has five or more actions, it is typically faster than three- and four-
action trajectories from the direct method.

The first test picked one hundred random starting configurations fromthe rangeq0 ∈ [−5, 5]× [−5, 5]×
[0, 2π), with the goal at the origin. For this relatively short distance to the origin, wefound that the direct
method came close to the fastest trajectory 90% of the time. Of the extremals, generics were fastest 76% of
the time, and singulars 24% of the time. The second test picked one hundred random starting configurations
from the wider rangeq0 ∈ [−10, 10] × [−10, 10] × [0, 2π), with the goal still at the origin. For this longer
distance, the singulars proved fastest 81% of the time, and generics only 19% of the time. The direct method
became less accurate, as expected, with only 83% of the runs finding a trajectory comparable to the fastest
extremal.

For about 2% of the configurations tested, the direct planner was initially found to be faster than extremal
trajectories. Upon closer examination, all of these cases were found to becaused by insufficient sampling.
Fine tuning the sampling resolution resulted in finding extremal trajectories that were at least as fast as the
direct planner in all cases.

Figures 8.2 - 8.9 show some of the results obtained, both in the tests describedabove for the omnidrive
and in isolated runs for other vehicles.

Our colleague Weifu Wang has since re-implemented the generic search code in C. This has reduced the
average search time for a random starting configuration to less than a second, on a standard 2010 desktop
computer, for the symmetrical omnidirectional vehicle with seventeen controls inthe canonical control set.
For larger control sets, we expect this duration to grow no worse than polynomially with the square of the
number of controls.

The increased speed of the C code allowed for running a more extensivebatch of tests, shortly before
the finalization of this work. An extensive test was run for the differentialdrive, with over fourteen thousand
starting configurations in the[−3, 3] × [−3, 3] × {π

4 } set. The results of this test are shown graphically
in Figure 8.1. This figure generally corresponds with Figure 12 from [3](see this work for a detailed
description of the trajectory types indicated by the different colors). Numerical imprecision is causing some
blurring and speckling, particularly around the isocost lines.

For each of the differential drive, Dubins car, and Reeds-Shepp car, we have also run a further batch of
one thousand random starting configurations in the[−3, 3] × [−3, 3] × [0, 2π) set. A further one thousand
random starting configurations in[−7, 7] × [−7, 7] × [0, 2π) were tried for the symmetric omnidirectional
vehicle. Optimal trajectories were found in all cases, with an exception for the Reeds-Shepp car that we
detail below.

For the differential drive, generics were fastest in 645 cases, and singulars in 355. For the Dubins car,
generics were fastest in 252 cases, and singulars in the remaining 748. For the symmetric omniwheeled
vehicle, generics were fastest in 477 cases, and singulars were fastest in 523 cases.
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Figure 8.1: A summary of over fourteen thousand optimal trajectories for the differential drive, as found by our algo-
rithm. Trajectories start with configuration(x, y, π/4) and end at the origin. The colors indicate different trajectory
structures.
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Figure 8.2: A simple planner trajectory for the differential drive compared to a generic trajectory.
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Figure 8.3: Comparison of three Dubins car trajectories: simple planner output, fastest singular and fastest generic.

For the Reeds-Shepp car, generics were fastest in 217 cases, and singulars in 673 cases. In the remaining
110 cases, neither generics nor singulars were found. We have confirmed that these cases were whirls (the
whirl-finding algorithm not having been implemented) by running one thousand more tests for the Reeds-
Shepp car for starting configurations in the−π/2 and−3π/2 planes and plotting out the configurations for
which no generic or singular were found. The shapes and sizes of the resulting plots closely corresponded
to the central regions (corresponding to whirls) in Figures 14 and 15, pp. 134-135 from [24].

In all cases, the trajectories found were at least as fast as those found by the simple universal planner. A
comparison with the reverse kinematics planner is pending, based on a re-implementation of this code base
in C as well.
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Figure 8.4: Simple planner output, compared to a generic trajectory forthe omnidrive.
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Figure 8.5: Simple planner output, compared to a singular trajectory for the omnidrive.
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Figure 8.6: Simple planner output, compared to a generic trajectory forthe omnidrive.
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Figure 8.7: Fastest singular and fastest generic trajectories connecting a given pair of configurations for the omnidrive.
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Figure 8.8: Simple planner output, compared to the fastest trajectory for the Reeds-Shepp car.
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Figure 8.9: Simple planner output, compared to the fastest trajectory for the Reeds-Shepp car.
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Chapter 9

Future work and conclusions

In this chapter, we discuss promising directions for future work based onthe current results, and we conclude
the present work with a series of general observations and lessons learned.

9.1 Future work

An immediate improvement for the work done would be to implement the whirls and tacking cases. Tacking
trajectories do not occur for any of these vehicles, as they require an entire edge ofU to be in theuθ = 0
plane. Whirls only occur in a very simple case for the Reeds-Shepp car (three-point turns).

The sampling strategy used for finding the fastest generic can be much improved. For uniform sampling,
we have a sketch of a proof that, for any degree of approximation desired for the optimal trajectory time,
there exists a corresponding sampling resolution forH that achieves a trajectory withing that approximation.
The running time can also be considerably sped up by implementing non-uniform sampling and using, for
example, a sampling strategy based on Newton’s method.

Currently, we examine a model in which there are no obstacles and the controls switch instantaneously.
There are reasons to believe that these restrictions can be lifted from the theoretical analysis. By applying
additional results from classical optimal control theory ([18]) to an improved model, it seems possible to
obtain results of very immediate practical relevance.

9.1.1 Costly switches

One of the more serious difficulties encountered by geometric optimal controlanalysis has been the so-called
“chattering” phenomenon (see, for example, [28] and the work presented above). Some motion vectors
can always be obtained from a combination of infinitesimal movements in other directions. There will,
furthermore, exist optimal trajectories, for simple kinematic or dynamic models, that involve such chattering
motions. Such trajectories can never be followed by a practical controller,as the controller’s feedback loop
will always involve some delay in changing the control, and the physical components themselves have
inertia. One possible approach to this problem is to show that, for each chattering optimal trajectory, there
exists a non-chattering equivalent trajectory; but this does not hold in allsituations (see [11] for an example).

A more satisfying approach is to explicitly model the fact that control switchesare inherently costly;
in a practical situation, we will almost always prefer a slightly slower trajectory with three switches to
another trajectory with billions of switches. In his seminal work that constitutesthe basis of our analysis,
Pontryagin ([18] p. 263) acknowledges this issue and suggests the following solution: “in a number of cases,
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the controllers have a definite inertia [. . . ]. Let us [then] make the parameter u a phase variable, and let us
take the derivative ofu to be our control parameter”.

Such a model is similar, in some respects, to the delays involved in a driver’s short range maneuvers
with an automobile (e.g. three-point turn, parallel parking). To go from “forwards-left” to “backwards-
right”, the driver has to stop the vehicle and adjust the “shifting” controls (steering wheel, transmission
stick) to different positions, which takes time. Some velocity shifts (e.g. “forwards-straight” to “backwards-
straight”) can be achieved faster than others.

Costly switches cannot be dealt with by the Pontryagin Principle in a direct manner. However, we
can build an augmented mathematical model, suitable to analysis through the Pontryagin Principle, in the
following way. We will augment the space of controls with some new dimensions consituting a “shifting
space”. Let the shifting space containn privileged points, corresponding to the old controlsRq̇1 · · ·R q̇n. We
will keep the old controls, and call them “movement” controls. Applying control i will result in a movement
of velocity Rq̇i in the plane if and only if the vehicle is at the point corresponding to controli in shifting
space (in order to keeṗq differentiable with respect toq, as required by the Maximum Principle, we will
in fact associate with each movement control a very sharp bump function, peaking at the corresponding
point in shifting space). It is therefore never optimal to apply controli unless we are at the right point in
shifting space. For each oriented pair of movement controls(i, j) we will furthermore create a “shifting”
control, which keeps the rigid body motionless in the plane, but moves betweenthe shifting space points
corresponding toi andj in a time interval corresponding to the delay we want to model as involved in such
a switch. The shifting control should, furthemore, be unable to switch between any other pair of movement
controls.

While the presented model introduces a number of additional controls, we have no reason to suspect that
these controls change the existing analysis, as the shifting controls have noimpact on position in the plane,
and therefore should not change the value of the components of the adjoint that lie inSE(2). This intuition
needs to be, however, verified by rigorous proof.

A model with costly switches has additional benefits, besides ruling out chattering. It allows us to
accurately model tasks such as pushing a rigid body (e.g. a part on an assembly table, or a piece of furniture
in a room), a situation in which changing the pushing direction has costs associated with re-orienting the
manipulator towards the new direction. For a very simple example, we may consider the problem of a robot
moving a heavy bench by lifting one end at a time and rotating the bench aroundthe other end. A naive
kinematic model would yield trajectories that, for instance, achieve a forwardtranslation by chattering the
two allowed motions. The augmented model would, in effect, keep track of the robot’s position along the
bench as well. Such an analysis should quantitatively model the practical trade-off between costly control
switches and continuous motion: we may often prefer a longer trajectory, if ithas fewer control switches.

Furthermore, a costly switches model allows the analysis of hybrid kinematic-dynamic models, in which
we replace a “dynamic” control switch (change the direction of the force,movement slows down in the
current direction, speeds up in the new direction) with a corresponding “delayed” switch (keep going at the
current speed a little further, stop for a bit, start at full speed in the new direction) that takes the same amount
of time. As dynamic physical models have proven difficult to solve with the Maximum Principle in the past,
this approach could yield analytical optimal trajectories for vehicles with significant inertia.

In conclusion, we consider a costly switches model of rigid body motion as a significant improvement,
and we see the following as the main issues in constructing and analyzing sucha model:

• Construct a rigorous mathematical definition of a costly switches model that is suitable to non-trivial
application of the Maximum Principle.
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• Apply the Maximum Principle to this definition, solve for the adjoint and compare with the current
“inertialess” model.

• Find a way to transform any given dynamic model into a time-equivalent costlyswitches kinematic
model, or characterize the limits of such transformation, if these limits exist.

Existence of optimal trajectories for the costly switches model

We wish to present a proof of existence of optimal trajectories for the costlyswitches model. This proof was
developed in collaboration with Vladimir Chernov.

Consider a controllable system with a finite number of controls and costly switches between pairs of
these controls; the switch between any two controls costs at leastǫ > 0. We will prove that, under some
reasonable assumptions about the cost function, optimal trajectories always exist for such a system. First,
we will give a bound on the number of switches for an optimal trajectory; second, we will show that, given
this bound, an optimal trajectory can be attained.

The first part is trivial. Assume that the cost of applying a control, after switching to it, is always
positive. Then for any pair of configurations there is an upper bound on the number of switches of a
minimum cost trajectory connecting the two configurations:cc/ǫ, wherecc is the cost of a trajectory uniting
the two configurations. Coupled with the finite number of controls, this immediately gives us a finite possible
number of structures for the optimal trajectory. We will next prove that, forany such trajectory structure,
the existence of an admissible trajectory of this structure implies the existence ofan admissible optimal
trajectory of the same structure.

Let q denote a state of the system. We assume that the system has a closed setQ of admissiblestates
(e.g., states that are in obstacle-free space). A trajectory is described by a sequence of controls, and the time
for which each control is applied. Assume a finite set of controls. We define each control as a differentiable
functionFi : Q×R

+ 7→ Q, whereFi(q0, t) = q1 iff q1 is the resulting state after applying controli for time
t in stateq0.

A trajectory structureof length n consists of a finite sequenceS of positive integers that represent
indices into the control set. Given a structureS, a trajectory is specified by a corresponding equal length
sequenceT of positive real numbers, containing the times each control is applied.

Thecost functionsci(q0, t) >= 0 are real valued differentiable functions such that the pre-image of any
interval[0, b] underci is a bounded set (i.e., arbitrarily long trajectories have arbitrarily high costsas well).

In the following, we will keep the trajectory structure fixed, and vary the control times to obtain different
trajectories. Given an initial stateq0, we will defineqi(p) to be the state obtained after applying controli for
timeT [i] along the trajectoryT . qi is given by the recurrence relation

qi(T ) = Fi(qi−1(T ), T [i]). (9.1)

At time t along trajectoryp, the system is in state

q(T, t) = Fh(qm−1(T ), t −
h

∑

i=1

T [i]), (9.2)

whereh is the highest index such thatt ≥ ∑h
i=1 T [i]. We will call a trajectoryp admissibleif, for all

t ≤ ∑n
i=1 T [i], the stateq(p, t) is admissible. We will call a stateqf reachablefrom q0 if there exists an

admissible trajectorype such thatqn(pe) = qf .
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The cost of trajectoryp is

c(p) = C +
n

∑

i=1

ci(T [i], qi), (9.3)

whereC is an overhead cost associated with a trajectory of the given structure (inour case, this contains the
cost of switching controls). Since we are only interested in finding the minimum cost trajectory associated
with the given trajectory structure, we can safely disregardC in the following analysis.

We will prove the following lemma:

Lemma 18 Let function sequencesFi, ci, i = 1 . . . n, define a trajectory structure. Letq0 be an initial
configuration for the system and letqf be a configuration that is reachable fromq0. If the set of all configu-
rations reachable fromq0 is a closed set, then there exists a minimum cost trajectory fromq0 to qf .

Proof: Consider the set of all costs of admissible trajectories fromq0 to qf . The set is nonempty, and
has a lower bound of zero. Therefore, the set has an infimumm. Therefore, there exists a sequence of
trajectoriesTi such thatc(Ti) ≤ m + 2−i. For this sequence,

lim
i→∞

c(Ti) = m. (9.4)

Consider the sequence formed by the time of control1 for all trajectories inTi, Ti[1]. Since0 ≤
c(Ti[1]) < m + 1, the assumption we have made about the cost function indicates that theTi[1] sequence
is bounded. By the Bolzano-Weierstrass theorem, this sequence must contain a convergent subsequence
t1j that has a limit oft1l. We construct the corresponding subsequenceTj from the initial sequence of
trajectories, and repeat the procedure for the times of controls2, . . . n. We thus obtain a sequence of limits
t1l, t2l, . . . tnl. This is an admissible trajectory, since the reachable space is closed, and each subsection of
this trajectory is the limit of a convergent sequence of admissible trajectories.The constructed trajectory is
also the limit of theTi sequence, and therefore its cost ism.

9.1.2 Obstacles

Pontryagin’s book ([18]) has all of chapter five dedicated to “Optimal Processes with Restricted Phase
Coordinates”. The authors consider an optimal trajectory lying entirely in a closed regionG, with piecewise
smooth boundaries described by a curveg(x) = 0, and obtain the following strong results (p. 311):

• Each section of the trajectory that lies in the interior ofG satisfies the Maximum Principle.

• Each section of the trajectory that lies on a smooth piece of the boundary ofG satisfies Theorem 22
(p. 267).

• At each junction point, the jump condition (p. 302) is satisfied.

The implications of the first result have already been analyzed. The second result is more difficult to
interpret; it seems to imply that the boundary ofG will only be followed when it has a certain shape; what
this means in the context of our problem remains to be seen. The jump condition appears to be relatively
more straightforward; in our notation, we can express it as follows. Consider an optimal trajectory, and let
tj be a junction time during it. Letλ−(t) be the adjoint on the time interval precedingtj , andλ+(t) the
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adjoint on the time interval succeedingtj . Then there exists a real numberµ such that one of the following
two mutually exclusive conditions holds:

λ−(tj) + µ grad g(x(tj)) = 0, (9.5)

or

λ−(tj) + µ grad g(x(tj)) = λ+(tj). (9.6)

The implications for our problem seem to be quite geometric. Recall that the(x, y) component of the
adjoint, in our case, is a constant direction in the plane(k1, k2). Therefore, the above conditions mean that,
at a junction point, either the “incoming” control line is parallel to the tangent to the surface; or otherwise,
the “outgoing” control line is the reflection of the “incoming” line around the normal to the surface. This
seems to indicate an intriguing scenario, in which the control line reflects itself around a maze of obstacles.

These are, in conclusion, the main issues in studying a phase-restricted model within the context of our
problem:

• Determine the implications of Pontryagin’s Theorem 22: what kind of obstacleboundaries can be
followed, and what kind can not?

• Determine the implications of the jump condition in theθ coordinate as well: can we say anything
about the location of the control line at the jump point, as opposed to just its direction?

• Develop the two points above into a global theory of rigid body optimal motion in theobstacle-
obstructed plane.

9.2 Lessons learned

The essential underpinning of our work is the Pontryagin Principle, but this principle by itself is nowhere
near sufficient for solving the problem at hand. The approach we have followed does suggest a general
strategy for approaching a class of optimal control problems. Consider asystem that has ann dimensional
state, a polyhedral control space, and a linear mapping from control space to velocity space. Any optimal
trajectory for this system has an adjointλ(t). We do not know the initial value of the adjoint,λ(0); but,
once this value is set, there will usually only exist one corner of the polyhedral control space that maximizes
the projection of the system’s velocity onto the adjoint, i.e. the Hamiltonian. Applyingthis control will
result in changes in both the system’s state, and in the adjoint as characterized by the Pontryagin differential
equation. Once a multimax point is reached, sustainability analysis is necessary in order to indicate which
control can be chosen. In order for the trajectory to be singular, it is necessary for the adjoint to stay in the
same orientation relative to velocity space; this seems a strong condition, whichonly allows few controls to
be applied in order to obtain such a situation.

This is obviously just a very general approach, and a lot depends on the specifics of the system studied.
An analytic integration of the adjoint function is very useful, but seems difficult to achieve for most systems;
in this respect, rigid bodies in the plane are a fortunate case. Sustainability analysis and a characterization of
singular segments are also very important, and seem to depend a lot on the specifics of the system studied.

For our particular case, geometric considerations are very important. On the one hand, this is helpful
as it makes everything easier to visualize. On the other hand, an algebraic study of the problems involved,
in a form suitable for algorithmic implementation, is hampered by the scarcity of all-purpose geometric

73



computational tools. Procedures as simple as computations with angles, or an easy way to compute the time
to collision of a constant-velocity point with a line, are not readily available andneed to be implemented from
scratch. We hope that our results in this direction will also prove useful for other geometric computational
efforts, not necessarily related to optimal control.

Overall, the problem is surprisingly challenging, and leads to a number of very distinct cases that need
to be considered. The practical implications and the theoretical simplicity of the mathematical question are,
however, a source of distinct satisfaction.
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[5] Jean-Daniel Boissonnat, André Ćeŕezo, and Juliette Leblond. Shortest paths of bounded curvature in
the plane. InProceedings of the 1992 International Conference on Robotics and Automation, pages
2315–2320, 1992.

[6] H. R. Chitsaz. Geodesic problems for mobile robots. PhD thesis, University of Illinois at Urbana-
Champaign, 2008.

[7] Hamidreza Chitsaz, Steven M. LaValle, Devin J. Balkcom, and Matthew T.Mason. Minimum wheel-
rotation paths for differential-drive mobile robots. InIEEE International Conference on Robotics and
Automation, 2006. To appear.

[8] M. Chyba and T. Haberkorn. Designing efficient trajectories for underwater vehicles using geomet-
ric control theory. In24rd International Conference on Offshore Mechanics and Artic Engineering,
Halkidiki, Greece, 2005.

[9] E. J. Cockayne and G. W. C. Hall. Plane motion of a particle subject to curvature constraints.SIAM
Journal on Control, 13(1):197–220, 1975.

[10] John J. Craig.Introduction to Robotics: Mechanics and Control. Addison-Wesley, 1989.

[11] Guy Desaulniers. On shortest paths for a car-like robot maneuvering around obstacles.Robotics and
Autonomous Systems, 17:139–148, 1996.

[12] L. E. Dubins. On curves of minimal length with a constraint on averagecurvature and with prescribed
initial and terminal positions and tangents.American Journal of Mathematics, 79:497–516, 1957.

75



[13] Andrei A. Furtuna and Devin J. Balkcom. Generalizing dubins curves: Minimum-time sequences of
body-fixed rotations and translations in the plane.Int. J. Rob. Res., 29:703–726, May 2010.

[14] Andrei A. Furtuna, Devin J. Balkcom, Hamidreza Chitsaz, and Paritosh Kavathekar. Generalizing the
Dubins and Reeds-Shepp cars: Fastest paths for bounded-velocity mobile robots. InIEEE Interna-
tional Conference on Robotics and Automation, pages 2533–2539, 2008.

[15] Andrey Andreyevich Markov. Some examples of the solution of a special kind of problem in greatest
and least quantities. InSoobshch. Karkovsk. Mat. Obshch., pages 250–276, 1887.

[16] H.J Oberle and W. Grimm. Bndsco. a program for the numerical solutionof optimal control problems.
1989.

[17] A. Rege P. Jacobs and J-P. Laumond. Non-holonomic motion planningfor hilare-like mobile robots.
In Proceedings of the International Symposium on Intelligent Robotics, 1991.

[18] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical
Theory of Optimal Processes. John Wiley, 1962.

[19] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes bothforwards and backwards.Pacific
Journal of Mathematics, 145(2):367–393, 1990.

[20] David B. Reister and Francois G. Pin. Time-optimal trajectories for mobile robots with two indepen-
dently driven wheels.International Journal of Robotics Research, 13(1):38–54, February 1994.

[21] Marc Renaud and Jean-Yves Fourquet. Minimum time motion of a mobile robot with two independent
acceleration-driven wheels. InProceedings of the 1997 IEEE International Conference on Robotics
and Automation, pages 2608–2613, 1997.

[22] Paolo Salaris, Felipe A. W. Belo, Daniele Fontanelli, Luca Greco, andAntonio Bicchi. Optimal paths in
a constarained image plane for purely image-based parking. InInternational Conference on Intelligent
Robots and Systems, pages 1673–1680, 2008.

[23] J.M. Selig.Geometrical Methods in Robotics. Springer-Verlag, 1996.
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[28] Héctor Sussmann and Guoqing Tang. Shortest paths for the Reeds-Sheppcar: a worked out exam-
ple of the use of geometric techniques in nonlinear optimal control. SYCON 91-10, Department of
Mathematics, Rutgers University, New Brunswick, NJ 08903, 1991.

76



[29] M. Vendittelli, J.P. Laumond, and C. Nissoux. Obstacle distance for car-like robots.IEEE Transactions
on Robotics and Automation, 15(4):678–691, 1999.

77


	Minimum time kinematic trajectories for self-propelled rigid bodies in the unobstructed plane
	Recommended Citation

	thesis3.dvi

