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Abstract

The problem of moving rigid bodies efficiently is of particular interest in tasdecause the simplest model
of a mobile robot or of a manipulated object is often a rigid body. Path planoargroller design and robot
design may all benefit from precise knowledge of optimal trajectories $et af permitted controls.

In this work, we present a general solution to the problem of finding minimum tiejectories for
an arbitrary self-propelled, velocity-bounded rigid body in the obsthekeplane. Such minimum-time
trajectories depend on the vehicle’s capabilities and on and the start ahdogdigurations. For example,
the fastest way to move a car sideways might be to execute a parallel-parkiimn. The fastest long-
distance trajectories for a wheelchair-like vehicle might be of a turn-duxe variety.

Our analysis reveals a wide variety of types of optimal trajectories. Werdigteran exhaustive tax-
onomy of optimal trajectory types, presented as a branching tree. Hooé#te necessary leaf nodes, we
develop a specific algorithm to find the fastest trajectory in that node. agest trajectory overall is drawn
from this set.



Contents

1 Introduction 1
1.1 Summaryofresults . . . . . . . .. e 2
2 Related work 5
3 Model and kinematics 9
3.1 Problemsetting . . . . . . .. e 9
3.2 Trajectories generated by sequences ofcontrols . . . ... ... ............... 11
3.2.1 Stationaryvehicle. . . . . . .. 11
3.2.2 Applyingonecontrol . . . . . ... 12
3.2.3 Sequencesofcontrols . .. ... ... ... ... e 14
3.3 A simple method for finding a trajectory that reachesthegoal . . . . . .. ... .... 14
3.4 Existence of optimal trajectories . . . . . . . . . ... 16
4 Necessary conditions for optimality 19
4.1 The Pontryagin Principle . . . . . . . . . . . e 19
4.1.1 Integration of the adjointfunction . . . . . ... ... ... .. ... ... .. 20
4.1.2 Thecontrolline . . . . . . . . . . e 21
4.2 WHhIrls . . . . e e 23
4.2.1 Asufficient family of whirls foroptimality . . . ... ... ... .......... 42
4.2.2 The non-autonomous version of the Pontryagin Principle . . . . . .. ... .. 24
4.2.3 Shapeoftheystage . . . . . . . . . . . . 25
4.2.4 The position of the control line for known initial and final controls . ...... . .. 26
4.2.5 Constructing amy stage trajectory for given initial and final configurations . . . . . 26
5 A class of control policies sufficient for optimality 29
5.1 Control space discretization. . . . . . . . . ... e 29
5.1.1 Optimal control policies that are not piecewiseconstant. . . . . . .. ..... 29
5.1.2 Examples of control space discretization. . . . . . . ... ... ... . .... 30
5.2 Sufficiency of piecewise constant control policies that take valueioahonical control set 34
5.2.1 Maximizingcontrols . . . . . . . .. e e 34
5.2.2 Piecewise continuity outside singularsegments . . . . . ... ... ... ... 36
5.2.3 Replacing singularsegments . . . . . . . .. ... o o 37



6 Generating canonical control policies 41

6.1 Trajectories uniquely determined by the controlline . . . . . . . . . ... ... ... 41
6.1.1 Switchingpoints . . . . . . . . . e 42
6.1.2 Sustainablecontrols . . . . .. ... 44
6.1.3 Periodicity of generic trajectories . . . . . . . ... ... o 45
6.2 Visualizing trajectory segments uniquely determined by the control line . . ... ... 47
6.3 An algorithm that generates trajectories based on the control line position . . . . . . . 49
6.3.1 Determining all sustainablecontrols . . . .. ... ... ... .......... 50
6.3.2 Timetocollisionwithaline . . ... ... .. ... ... ... . .......... 51
6.3.3 Timetoswitch . . . . . . .. . . .. 52
7 Finding minimum time trajectories 55
7.1 Parametrization of the control line position by the value of the Hamiltonian . . . . . . 55
7.2 Finding optimal control policies corresponding to control lines paraneetby 74 . . . . . 57
7.2.1 Computingsingulars . . . . . . . . . . . e 7 5
7.2.2 Approximating generics . . . . . ... e e e 58
7.3 Finding optimal control policies in the cases when the control line carpatametrized
DY H . o o e e 59
7.3.1 Singular trajectories that begin and end with translations . . .. ... ........ 60
7.3.2 Generic trajectories that begin and end with translations . .. ... . ........ 60
7.4 Conclusion . . . . . . . . e 60
8 Implementation and results 63
8.1 Implementationchallenges . . . . . . . . . . ... e 63
8.2 Results. . . . . e 63
9 Future work and conclusions 69
9.1 Futurework . . . . L 69
9.1.1 Costlyswitches . . . . . . . . . . 9 6
9.1.2 Obstacles . . . . . . . . e 2 7
9.2 Lessonslearned . . . . . . . ... e 73



List of Figures

11

1.2

3.1

3.2

4.1

4.2

51
5.2

The fastest trajectory connecting the two configurations shown fhiale with three pow-
ered omniwheels. This trajectory $ngular, as it contains a translation parallel to the
control line . . . . . .

Taxonomy of time optimal kinematic trajectories for self-propelled rigid baditd plane,
represented as a tree. We give a search algorithm for each of thetied, rwith the excep-
tion of the types within dashed border boxes, which are not necessasptimality.

Two trajectories that reach the goal for a simple car-like vehicle urmidrat setU =
[—1,1] x 0 x [-1,1]. Both trajectories go from configuratioff).04, —1.55, —0.17) to
configuration(0, 0,0). Both control policies begin with a sharp right turn forwargs=

(2, 0,0) = (1,0, 1) o o o e e

A trajectory found for a robot with just two rotation controls centerscfolnd white cir-
cles). Start and goal configurations are given by arrows; the péfieavhite rotation center

ISShOWN. . . . e e 15

A rigid body instantaneously following a control line optimal trajectory. essible ref-
erence points attached to the rigid body are shown. The optimal controblesisrio choose
a control that maximizes the Hamiltonian with respect to the control line. Foreaerafe
point crossing the control line, the Hamiltonian is equal to the component opding’s
velocity that is parallel to the control line. . . . . . .. .. ... ... ... ... . ...

Example of a roll and catch trajectory. The polygonal control sanfalts along the control
axis with constant angular velocity. When the last rotation center is put i plhe last
motion is an off-axis rotation around this point (the “catch” stage). Thediajg of the
last rotation center is shown, as well as the locations in the world frame ofeatbthtion
centers used along the trajectory. . . . . . . . . . . .. e e

Two optimal trajectories for a translational platform.

The control space for a Dubins car is a vertical line segment ifiithe ) space. Extremal
trajectories for this vehicle will use, at most times, either contro(a hard turn left, e.g. for
the adjoint at positiom,) or controlu_ (a hard turn right, e.g. for the adjoint at positios).

22

24

30

In the particular case when the adjointis perpendicular to one edge of the control space,

all the controls on this edge can be chosen; however, choosing, in ggs @ay control
except the translationg will cause the adjoint to move from this position, thus causing on
of the two corners o/ to become the single maximizing control. . . . . . ... ... ..

\Y

e



5.3 The control space for a convexified Reeds-Shepp car is a sopraezed on the origin in the
y = 0 plane. All the four corners maximizg for some position of the adjoint. Furthermore,
the left and right edges contain points on both sides ofithe 0 plane, a fact that allows
singular translations. The top and bottom edges do not have this property.. . . . . . . 32
5.4 The control space for a differential drive vehicle is a diamond cetiten the origin in
they = 0 plane. Since none of the edges crosséhe 0 plane, only the corners can be
maximizing H in a sustainable manner, when the adjoint varies.
5.5 A projection onto thg = 0 plane of a quadrilateral face of an arbitrary polyhedral control
space. The corners can always be maximizing. The upper and lowes ddgiot cross the
6 = 0 plane, and therefore contain no extra maximizing controls. When the adjomt
perpendicular onto the polyhedron’s face, there exists at most ot@rsise controt,’ on
the face whose application will keep the adjointinpositign . . . . . . . .. .. ... .. 34

6.1 The control line uniquely determines a section of an optimal trajectoryDatséns car. . . 42
6.2 Construction showing that optimal trajectories for which the imaggtofis notS*, and for

which #(0) # 0, contain no morethanoneperiod. . . . . . .. ... ............. 47
6.3 Switching spaces and example trajectories for standard robotic vehtcesach vehicle,

the figure on the left side shows level curves of the Hamiltonian in{ghed; ) space. The

figure on the right side shows some extremal trajectories, in the plane,atiasgond to

portions of the Hamiltonian level curvesontheleft. . . . . ... ... ... ... ... 48

8.1 A summary of over fourteen thousand optimal trajectories for the diffiatelrive, as found
by our algorithm. Trajectories start with configurati@n y, 7/4) and end at the origin. The

colors indicate different trajectory structures. . . . . . . . .. ... oL 65
8.2 A simple planner trajectory for the differential drive compared to agetrajectory. . .. 66
8.3 Comparison of three Dubins car trajectories: simple planner output,tfasigslar and

fastestgeneric. . . . . . . e e e e 66
8.4 Simple planner output, compared to a generic trajectory for the omnidrive.. ... . . . . 67
8.5 Simple planner output, compared to a singular trajectory for the omnidrive. ... . . . . 67
8.6 Simple planner output, compared to a generic trajectory for the omnidrive.. ... . . 67
8.7 Fastest singular and fastest generic trajectories connecting gogiveri configurations for

the omnidrive. . . . . . . L 68
8.8 Simple planner output, compared to the fastest trajectory for the Rbegp-8ar. . . . . . 68
8.9 Simple planner output, compared to the fastest trajectory for the Rbegg-8ar. . . . . . 68

Vi






Chapter 1

Introduction

The problem of moving rigid bodies efficiently is of particular interest in taisdecause the simplest model
of a mobile robot or of a manipulated object is often a rigid body. Path planoamdroller design and robot
design may all benefit from precise knowledge of optimal trajectories $et af permitted controls.

In this work, we present a general solution to the problem of finding minimumttegexctories for a self-
propelled, velocity-bounded rigid body in the obstacle-free plane. Bustmum-time trajectories depend
on the vehicle’s capabilities and on and the start and goal configuraffmmsexample, the fastest way to
move a car sideways might be to execute a parallel-parking motion. Thetflastgslistance trajectories
for a wheelchair-like vehicle might be of a turn-drive-turn variety.

Our mathematical model is fully developed in Chapter 3. We assume the conabtsthbe applied to
a rigid body to be velocities with, y andf components. The accelerations are assumed to be instantaneous,
allowing direct control over the velocity. The problem is to find minimum time cémtoticies that cause
the vehicle to reach the goal.

A control policy is a functionu(t) that specifies which velocity is chosen at each ttm€&he velocities
are chosen from within a convex polyhedral set of velocitieReflecting the assumption that the vehicle
moves autonomously, the control set is fixed in the body’s frame of referéAmong all the control policies
that take us from an initial configuratiag = (o, y0, 6o) to a goal configuration, = (x4, y4, 6,), we wish
to find one of the least duration possible. The minimum-time curves (“brachistoes”) characterized in
the present work are a generalization of some previously studied minimuri-leumyes (“geodesics”): the
Dubins [12] and the Reeds-Shepp [19] bounded-curvature traijestor

An example minimum time curve found by our algorithm, for an omnidirectional \ehiith three

Figure 1.1: The fastest trajectory connecting the two configuratiormwshfor a vehicle with three powered omni-
wheels. This trajectory isingular, as it contains a translation parallel to dentrol line
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Figure 1.2: Taxonomy of time optimal kinematic trajectories for setbpelled rigid bodies in the plane, represented
as a tree. We give a search algorithm for each of the leaf nadisthe exception of the types within dashed border
boxes, which are not necessary for optimality.

symmetrically placed omniwheels, is shown in Figure 1.1.

1.1 Summary of results

Our analysis reveals a wide variety of types of optimal trajectories. Oneseahtin results of the present
work is an exhaustive taxonomy of optimal trajectory types. Figure 1.2 shuataxonomy as a tree. Some
of the leaf nodes of this tree are such that there always exists an optijeatdrg outside the corresponding
class. For each of the remaining, necessary leaf nodes, we devgbegificsalgorithm to find the fastest

trajectory in that node. The fastest trajectory overall is drawn from is s

Chapter 3 defines the model and the problem and gives formulas forriwarébkinematics of rigid
bodies in the plane. A simple planner is developed as a constructive groohollability. The existence
of optimal trajectories then follows from Fillipov’s existence theorem.

Chapter 4 applies the Pontryagin Principle, which sets necessary coaddrooptimality, to the prob-
lem. Optimal trajectories that verify the Pontryagin Principle are shown to falltimo classes: the more
general class for which there exists a directing line in the plane, catiedteol line, and the more restricted
class ofwhirls. Whirls are trajectories that maintain a constant angular velocity. By appéy/iifferent
version of the Pontryagin Principle, as well as some geometrical analysineva canonical subclass of
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whirls, roll-and-catch trajectories, that is sufficient for optimality. We dode the chapter by giving an
algorithm for finding the fastest roll-and-catch trajectory.

Chapter 5 studies optimal control policies for the more general class tifotdine trajectories. The
main result of this chapter is that piecewise constant control policies thatise controls from a canonical,
finite subset of the polyhedral control set are sufficient for optimality.

Chapter 6 prepares the stage for an efficient algorithmic search ofahe epcanonical control policies.
We first show that, except on well-characterized singular intervals,dbigign of the control line uniquely
determines the optimal control policy. We then give an algorithm that gesdtseptimal control policy
on non-singular intervals, when given the position of the control line.

Chapter 7 makes extensive use of the generator developed in Chaptrdérino develop specific algo-
rithms for each of several further subclasses of canonical conteotrifectoriesSingularsare trajectories
that may contain singular intervals. Singular trajectories may be either reguiahich singular intervals
effect translations parallel to the control linetacking which may contain a translation-translation control
switch. The algorithm for finding the fastest tacking trajectory is only slightlgified from the algorithm
for finding the fastest regular singular.

Genericsare trajectories where the control policy is everywhere uniquely detedbipnéhe position of
the control line TGTgenerics begin and end with translations, and in this case it is possible todingaht
position of the control line. For all other generics, we give a parametrizafithe control line, and a root
finding approximation algorithm.

Finally, Chapter 8 presents some experimental results obtained from implegéreialgorithms for
the more general cases. We have implemented algorithms for the more comniygpesulexcept whirls
and tacking) and obtained trajectories, which we believe to be optimal, fopbetiously studied vehicles,
as well as a vehicle for which the boundary problem had not been sokfue (the symmetric three-
omniwheeled robot). We also discuss possible future directions of demeltand applications.






Chapter 2

Related work

The earliest origins of optimal control theory can be said to be almost asdheaalculus of variations:
with the benefit of hindsight, we can place Bernoulli's 1696 brachisteghpyoblem within the realm of
optimal control theory ([27]). A firm theoretical basis for this disciplineswhowever, only established
in the 1950s and 1960s, initially through the work of Richard Bellman at RABEIman formulated the
fundamental problem in terms of searching for a “control” function, i.eurecfion of time, while given a
system of differential constraints and an objective function to maximize. ligiiaalyzing the discrete case
(i.e. multistage processes), Bellman’s first result was the well-known mefidyhamic programming. His
later extension of the fundamental equation to the continuous case gertematéamilton-Jacobi-Bellman
equation, a sufficient condition for optimality and the basis of so-called¢tlimethods in modern control
theory (for a concise summary of Bellman’s results, see [4]). The HaBtean is generally difficult to solve
analytically except in relatively simple instances of the control problem, althatipast one of these cases
(linear quadratic control) has important practical applications. The HaBtam has, however, proven very
suitable as a basis for numeric methods for optimal control, e.g. the directatidlocnethods implemented
in multiple FORTRAN and MATLAB software packages.

At roughly the same time as Bellman’s work, and on the other side of the Iromi€@uthe second
foundation stone of modern optimal control theory was being laid at the doSteklov Mathematical
Institute, by a team under the leadership of Lev Pontryagin. The main ofsléir “indirect” method ([18])
has become known as the Pontryagin Principle (called the Maximum PrinciplertigyBgin himself, and
the Pontryagin Minimum Principle in some recent works). The Principle is agtnecessary condition on
the local structure of optimal control functions (and their corresponttajgctories in state space) and has
provided an easier path to analytically solving non-linear optimal contréésysthan the HIB equation.
Numerical optimizers based on the PMP also exist (e.g. BNDSCO [16]).

While the applications of dynamic programming, the HIB equation, and the RgriPrinciple are
widespread and diverse, we will restrict the current work to geomaetrisiderations inspired by the move-
ment of planar robots. Planar curves (whether considered as vehijelettries, or not) have also been sub-
ject to mathematical interest for a very long time. Without dwelling too long on stégich as Galileo’s
characterization of the cycloid, we will trace the roots of the current iggoia problem posed by Markov
in 1887 ([15]): what are the shortest planar curves, of boundedmuam curvature and connecting two
given tangent vectors? Seventy years later, the solution to this problerahasacterized by L. E. Dubins
([12]), who described a class of curves he calegeodesicsin 1975, Cockayne and Hall ([9]) showed
how to synthesize the shortest R-geodesics to any given configuration.

In 1990, Reeds and Shepp ([19]), explicitly motivated by a roboticslenoiffinding the optimal trajec-
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tories for a robotic cart), and by Dubins’ success at giving, in effaetshortest paths for a car that can only
travel forwards, gave a characterization of the geodesics for a abcdh travel both forwards and back-
wards. Their result revealed the scope for the application of optimalaldhé&ory into mobile robotics, and
shortly afterwards two independent papers (by Sussmann and Tajig [2991 and Boissonnat al. [5]

in 1992, respectively) re-established (and even slightly tightened) thdsRend Shepp results on the more
general basis of classical optimal control theory. The optimal trajectorthesis, i.e. the set of optimal
trajectories from all starting configurations, for the Reeds-Shepp asuigwen by Soeres and Laumond in
1996 [25]. The Pontryagin Principle constituted the main theoretical batiesé papers, and at this point
we see coming together the approach of which the present work is thellogideuation: analyzing planar
motion problems through the prism of the Pontryagin Principle.

The chassis of mobile robots is, of course, not limited to the cart designm®kepopular arrangement,
at least for small robots, seems to be the differential drive: two indegpegmaotors driving parallel wheels.
Such vehicles, unlike cars, can spin in place, thus rendering a straiglitation of the “geodesic” criterion
into a rather uninteresting problem - the shortest paths for the centermftbeare always to spin in place,
and drive straight to the destination. There are, however, two optimalityiarf@ which the problem
becomes nontrivial. A “fuel consumption” criterion (the sum of the distanveled by each wheel) was
studied by Chitsaet al. [7], and surprisingly enough the optimal paths, in this case, turn out tocodiodl
to the Reeds-Shepp paths. Also, a “brachistochronic” (time optimal) critesdsrused in several analyses.

While time optimality is the simplest case for the Pontryagin Principle (as one of the terthe main
PMP equation becomes extremely simplified), such a criterion raises, on #wehathd, the problem of
dynamic effects. In classical mechanics, the “controls” are forcegharesult in accelerations; thus, one
controls the second derivative of the vehicle’s position. A model of thierdifitial drive in which the
accelerations of the two wheels are the controls (within[thk 1] interval) has been extensively studied.
This model, associated with the LAAS-CNRS robot Hilare, was proposelhbgbst al. in 1991 [17]. In
1994, Reister and Pin [20] presented a numerical analysis of trajeciorig® Hilare model that contained
at most four switches. In 1997, Renaud and Fourquet [21] shovedstime optimal trajectories for this
vehicle contain more than four control switches; thus only the shapes optireal segments seem to be
known for this system (they are pieces of clothoids and involutes of cii24ds

An alternate time-optimal model of the differential drive was studied, with merensive results, by
Balkcom and Mason in 2002 [3]. They obtained a novel set of curaesyell as an optimal trajectory
synthesis for the differential drive, by considering the controls to beeliielocities rather than acceler-
ations. There is a good case to be made that such a “kinematic” (as ofpodgdamic) model is not
only convenient to analyze, but also fairly accurate. Common electric masp®nd to a given voltage
by quickly settling to a well-determined velocity. The input can thus be coreidier be, in effect, this
velocity; and the time to cover a given distantender a given control is better estimated through dividing
the distance by the “steady” velocity corresponding to the control, ratherttirough th%maQ formula.
For small robots, the acceleration times are expected to be quite short. rlnoteethe optimal control
problem for dynamic models appears to be very difficult, as the differemgjiaations describing the tra-
jectories do not have recognizable analytic solutions, and, in some tasegtimal trajectories appear to
involve chattering (“the Fuller phenomenon”), an infinite number of cordwatches within a finite time.
Such issues occured in analyses of the bounded acceleration Dub{sgidéed by Sussmann in 1997 [26]
and by Soeres and Boissonnat in 1998 [24]) and of a dynamic model of an uaderwehicle (studied by
Chyba and Haberkorn in 2005 [8]).

On the other hand, the combination of kinematic models and the Pontryagin Rrisegms more
amenable to analytic solution. Such a model was used by Ballktah in 2006 to characterize the time
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optimal paths for a symmetric omnidirectional vehicle [2] and by Furtuna arikicB@ in 2008 [14] to
characterize the optimal paths for a vehicle with three arbitrarily placed oreeiat{which was also a
generalization of the previous results by Dubins and Reeds and Stiepp)na and Balkcom extended the
analysis of the kinematic model to cover the time optimal trajectories for any riglg imothe plane with
velocity controls in [13]. These results will be discussed at length in aesulent section. But first, we will
introduce a few other works that are related to the current work.

Analyzing the optimal trajectories in the absence of obstacles has limited dpglatations, as few
mobile robots will operate within boundless, empty parking lots. But the strestilnus derived do have
a significant place as part of the general problem of moving efficientlyinvélcluttered environment. In
fact, all optimal trajectory segments that do not exactly follow the contoun afstacle should have their
shape characterized by the obstacle-free model, by the principle thesegsuent of an optimal trajectory
must itself be an optimal trajectory. Thus, a solution to the problem of optimal mutithre presence of
obstacles consists of not only the mentioned work, but also two additiongd@wents: a characterization
of which shapes of obstacle boundaries can be followed, and a thetrg unction points between free
and obstacle-bound segments. Such a comprehensive solution haenpsd far, completed for any of the
studied vehicles.

The closest work to our intended approach is Chitsaz's Ph. D. thesi8y6¢onsidering the differen-
tial drive with a “total wheel motion” metric among obstacles, Chitsaz develapgeneralization of the
visibility graph that he called aonholonomic bitangency graphThis graph (which has to be generated
numerically, based on the shape of the obstacles) encodes the strdfdtugeoptimal trajectories among
obstacles; it is then to be processed by a standard shortest-path lgyaitiniz.

The other vehicle model that has been extensively studied among obiahkeReeds-Shepp car (with
the standard distance optimization metric). In 1996, Desaulniers [11] shibxaethe optimal trajectories in
such a case do not exist for some instances of the problem (or, maiegbyethat such optimal trajectories
involve infinite chattering). For cases where the optimal trajectories do eridtthe obstacles only consist
of a room’s walls (i.e., the work space is within a convex polygon), Agamtal gave aO(n?logn)
algorithm for finding such trajectories [1].

Optimal distance metrics may also give some useful information about howctdsstaay interfere with
desired motions. Vendittelét al.[29] developed an algorithm to obtain the shortest non-holonomic distance
from a robot to any point on an obstacle. Optimal paths between pairsraé pio configuration space may
not exist in the presence of visibility constraints. Salatisl. [22] give the optimal control words for a
unicycle with a limited FOV camera.






Chapter 3

Model and kinematics

The object of this chapter is to study the mathematical model and the kinematiesogitiimization problem
that we are concerned with. The main focus is on trajectories that reagjoétheby choosing velocities
from the vehicle’s control set. Figure 3.1 shows an example of two sugttoaies for a simple, car-like
vehicle.

In the first section, we give a precise mathematical definition of the probédtimg and of what an
admissible trajectory is. The second section provides a means of verifghg ttajectory reaches the goal,
by showing how to build a vehicle simulator that maps control policies to the aoafigns reached by
applying those control policies. The third section gives a constructivef pinat a trajectory that reaches the
goal always exists for our model, by developing a simple planner thaeeah the goal while applying only
two distinct controls. Finally, the last section uses all of these results te phat time optimal trajectories
always exist for the studied system.

3.1 Problem setting

The vehicles we study are rigid bodies that can propel themselves in thetanted Euclidean plane. The
configuration of a rigid body in the plane is fully given by three quantities: caardinates for a reference
point on the rigid body, with respect to the plane’s origin, and an angulantity that indicates the body’s

simple 4 4
time: 7.66

54

5/

/
/7

2 1 2
generic
time: 3.10
Figure 3.1: Two trajectories that reach the goal for a simple car-likgicle under control séf = [—1,1]x0x[—1,1].

Both trajectories go from configuratigi®.04, —1.55, —0.17) to configuration(0, 0, 0). Both control policies begin

with a sharp right turn forwardsg, = (&, y,0) = (1,0, —1).



orientation with respect to theaxis. We collect these three quantities intstatevectorq = (z,y, 6).
Our model is fully kinematic, assuming that acceleration happens so fadstliate can be neglected.

Thus, the vehicle is controlled by directly choosing velocities of the f¢rm (z, 7, é). The control setV
is simply the set of all allowable velocities. We assume this control set to bevaxpolyhedron inR3,

SpecifyingU fully specifies the vehicle’s capabilities.

The assumption that the vehicle is self-propelled translates into the faéf thapecified, and constant,
in the vehicle’s own frame of reference, rather than in the world frame.irfSdance, ifU contains the
vector (i, 5,0) = (1,0,0), this indicates that the vehicle can always translate “forwards”, no mateith
is oriented. (This assumption does not hold for vehicles that rely on ameksource of power, such as a
sailboat.) In order to transform a velocity vector from the robot frame tavttréd frame, when the vehicle’s

orientation isf with respect to the axis, we need to multiply the velocity vector by a rotation matrix:

dw = Roqr. (3.1)

Here, R, is a rotation matrix that is simply augmented with an extra row and column that leatetiaetity
unchanged:

cosf —sinf 0
Rg= | sinf cosf 0 |. (3.2)
0 0 1

The next section discusses transformations between the vehicle frarttecsamdrld frame in more detail.

The possibility of choosing among controls raises the issue of what chaieesade as time passes. A
control policyspecifies these control choices. In mathematical terms, we define a caitcglqf duration
ts to be a Lebesgue integrable function [0,¢;) — U. The control policy takes three-dimensional values:
u(t) = (uz(t),uy(t),us(t)). The trajectory corresponding to this control policy is simply defined to be
a function of timegq(t) that indicates the vehicle’s state at each moment in time. In order to obtain the
trajectory, given an initial statg, and a control policy, the control policy is integrated in two steps. First,
we obtain theé)(t) component of the trajectory:

t
0(t) = 6o + / g (7)dr- (3.3)
0

Next,6(t) is used to calculate the other components of the vehicle’s state:

t
q(t) =qo + /0 RQ(T)U(T)dT. (34)

Given initial stategy and goal statg,, a goal-reaching trajectory under control sets a trajectoryqy(t),
corresponding to some control policy undéyrsuch thay(t;) = gq.

With these definitions, we can mathematically specify what an instance of optinnipaitiblem that we
are concerned with is. Such an instance is specified by an initial gtategoal state, and a polyhedral
convex control sel/. (Strictly speaking, it is sufficient to specify, as the goal can always be assumed to
be the world frame origin. As we will see in Section 3.Balso needs to contain at least two controls, out of
which at least one needs to be a rotation.) A solution to the problem is a Lebegggrable control policy
u(t) underU of durationt,,, such that
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1. The trajectoryg(t), starting fromgy and corresponding ta(t) as characterized by equation 3.3
reacheg,.

2. There exists no control policy undér of durationt < t,, such that the trajectory starting froq
and corresponding to this control policy reachgs

3.2 Trajectories generated by sequences of controls

This section is concerned with computing the positions attained by a vehicleyesilséistinct controls

are applied in sequence. We will proceed in three stages: first by amalye stationary vehicle, next
by studying motion when a single control is applied, and finally by showing ttosompose arbitrary
sequences of controls.

3.2.1 Stationary vehicle

Giving a state of the vehicle only specifies the position of a reference poihthe vehicle’s orientation.
Where are the other points of the vehicle located in the world frame, wherethele is in this position?
The immediate application will be that our simulator becomes capable of featasdcawing the complete
vehicle (including, for example, its wheels) at arbitrary positions in the pléméhe longer run, it is also
useful to determine the locations of points of importance for locomotion, siobtation centers.

The standard toolset used for frame transformations is constituted by koemgs coordinates. Point
(z,,yp) in the robot frame gets its position vector expanded by apperidtogt: p = (7, yp,, 1)T. This
expanded position vector is then multiplied by frame transformation matricesjém tr obtain the point’s
position in various frames of reference.

The transformation matrix from the robot frame to the world frame is

cos —sinf =z
Twgr= | sinf cosf y |. (3.5)
0 0 1

This transformation matrix is so often used that, when the context is unambigeuwsill simply designate

it by T'. It also contains the same information as the state vegtior this reason, we will often usg and

¢ in an interchangeable mannetris easier to interpret, arifl is usually more convenient for computations.
Sometimes we need to transform the positions of points in the world frame into pesitiaghe robot

frame. For this purpose, we transform these points into homogeneordira@ies as above and multiply

their position vectors by the transformation matrix from the world frame to thetfobme:

cosf sinf —xcosf — ysinf
Trw = | —sinf cosf xsinf —ycosl | . (3.6)
0 0 1

In our further analysis, we also consider a reference frame tied torartiddine” in the plane. The control
line will be specified, in the world frame, as a line with heading specified bylength vector(k1, k) and
signed distancés from the origin 3 thus being the coordinate of the world frame origin in the control line
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frame). Then the transformation matrix from the world frame to the control temaé is

ki ko O
Trw = | —ka k1 ks |. (3.7)
0 0 1
Its inverse is
k1 —ko  koks
TWL = k‘g /6‘1 —/{1]{53 . (38)
0 0 1

3.2.2 Applying one control

What is the effect of applying, for time a velocity vecton, specified in the robot frame, when the vehicle

is in world frame configuration? We separate this question into two parts. First, we show how to transform
velocities among frames, and we develop a useful alternative notatiooritnots in the process. Second,
we develop a unified method of integrating velocites, which works for bd#ttioms and translations.

The main idea that we use for transforming velocities among frames is to expeese velocities in
terms of the corresponding rotation centers. Since these rotation cerggrsiats at easily determined
locations in the robot frame, we then simply use the same transformation matetesthave given above
in order to transform velocities as well as points.

If control u = (&, 7,6) is a rotation (i.e.f # 0), the rotation center is at locatiqr-3/6, /6). In
homogeneous coordinates, it is equivalent to represent this point as(eityyd, i/, 1) or

¢ = (—y,i,0). (3.9)

The second representation is particularly convenient. Not only is it tHeguosf a point, so it can be passed
through transformation matrices; but it also contains, as the third compaoitietvector, the angular veloc-
ity 6. Since the third component of a homogeneous coordinates vector is d&tinged by multiplications
with frame transform matrices, it is possible to thus retrieve the full contrahkfion of rotation center,
and the angular velocity at which the rotation proceeds) after passingfnssentation through the regular
frame transformations.

The following lemma places this insight on a mathematical basis, and shows thagtihed also applies

to translations. Note that the rotation center representation of a coftigali, 0) is easily obtained from

the standard velocity representatign ¢, ¢) by left multiplying the latter with a rotation matrii . .

Lemma 1 Assume a moving rigid body in the plane and consider two reference fralveesl B. In frame

A, the current velocity ig4 = (24,34, 6) and letTz 4 be the transformation matrix from to B. Then the
velocity in frameB is

i = R_z/2TBAR, /24 (3.10)
Proof: If ¢ is a translation7 3 4 has the same effect as a pure rotation matrix. Therefore the right-hand
side of equation 3.10 has the same effect as an applicatifp ofo the velocity vector, which is the correct

result.
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If ¢ is a rotation,R 2G4 gives us theA frame coordinates of the rotation center. Passing these coor-
dinates throug's 4 gives us theB frame coordinates of the rotation center, and then we appgty g
matrix to obtain theB frame velocity. |

This lemma suggests that it will often be convenient, for transformation pagp®o represent controls
in a rotation center notation. For any conttoE ¢, we define the rotation center representation to be

c= Ry pu. (3.11)
With this notation, equation 3.10 becomes
CB :TBACA- (3.12)

We have, at this point, achieved our first objective for the currenitsed.e. the transformation of velocities
among reference frames. We will now proceed with the second objestiering how to integrate a given
velocity for an arbitrary time.

Knowing the position of the rotation center allows integration of the contrahfioarbitrary point in the
robot frame. Selig [23] gives us the rotation matrix around paint

[ g (2 ER)C ] : (3.13)

whereR is a2X 2 rotation matrix and is the identity matrix.
By replacing into equation 3.13 the coordinates of the rotation center froetieq 3.9, we obtain the

following transformation matrix that corresponds to the application of conteel(z, g, #) for time ¢:

cosft —sinft it sinc Ot — yt verc ot

T(u,t) = | sinft cosft it verc 0t + yt sinc ot |, (3.14)
0 0 1
where
Siﬂ, x#0
sinc (z) = z 3.15
(@) {1’ T (3.15)
is the well-known cardinal sine function and
1—cosx T ?é 0
verc (1) = L (3.16)
0, x=0

is a differentiable “cardinal versine” function, developed by analogh the cardinal sine.

This result has some implications that are not necessarily limited to the studyimfabgrajectories.
Since both the cardinal sine and the cardinal versine are defineéd:ﬁoﬂ, Formula 3.14 also works for
integrating translations and we are, in effect, presenting a unified methoddgrating both rotations and
translations in the plane. The smooth behavior of this formula around the) point leads to increased
numerical stability for the analysis of vehicles that sometimes move in almost eh$tiag(e.g., wheeled
vehicles for which the wheel diameters are not exactly equal). Furthertar following section will show
that the integration matricés(u, t) can be easily composed, which leads to facile modeling of sequences
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of rotations and translations.

The final result of this section will be an analysis of the velocities achieyeatltrary points in the
vehicle frame, when a control is applied. This operation is necessaryfisteto update the control space
to reflect a change in reference point. We determine a matrix that can be mulbpleay new reference
point’s coordinates in the old frame, in order to determing:ts)) velocity vectory (the velocity always
being the same as that of the original control). In order to build this matrix, nsetfanslate the rotation
center to the origin and then apply a skew-symmetric matrix. We obtain the following

0 —6 0 10 g/6 0 —6 &
S=16 0 0 01 —&/6 |=|6 0 y|. (3.17)
0 0 1 00 1 0 0 1

This matrix is then multiplied by the new reference point’s coordinates to obtaneftkence point’s veloc-
ity, i.e. thez andy components of the control in the new frame. Note that this transformation maaisois
valid for translationsf{ = 0).

3.2.3 Sequences of controls

A trajectory with a piecewise constant control law can be given as a sequé(u;, t;) pairs, where each
consecutive controk; = (&, ¥;, 9'1-) is applied for timet;. Given such a sequence, we first assemble the
T(u;, t;) integration matrices as above. These matrices compose by post-multiplicatics tiéfinal state

of trajectory[(u1, t1), (u2, t2), . . . (un, t,)], Starting from state, (equivalently specified by the robot frame

to world frame transform matri¥p) is:
Tf = T()T(’u,l, tl)T(ug, tz) oo T(un, tn). (318)

The active control at time < Z?:o t; is the control corresponding to the largest indeguch that >
> 4y tj. The state at timeis thus:

T(t) = T()T(ul, t1)T(U2, tg) ce T(uk, tk)T(uk+1, t/), (319)

wherek is the largest index such thét= ¢ — Z?:o t; > 0. This equation proves our initial statement
in this section: if a trajectory has piecewise constant controls, its repagiggnas a sequence of (control,
time) pairs is equivalent with our earlier definition of a trajectory gétafunction.

3.3 A simple method for finding a trajectory that reaches the goal

Being able to find a trajectory that reaches the goal is an important step waskr The existence of
such a trajectory is a critical requirement for the proof of the existenoptirhal trajectories at the end of
this chapter. Furthermore, search methods described later in this watkuwdirirajectories and test if those
trajectories pass close enough to the goal. Consideration of a trajectaryiisated if it has not yet reached
the goal in time given by a known trajectory to the goal.

In this section we describe a simple and fast technique for always findrageatory to the goal, so that
controllability is established and there is always an upper bound on trajdota. We will see that such
a trajectory to the goal always exists, even if we have as few as two &(wibhout both of them being
translations).
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Figure 3.2: A trajectory found for a robot with just two rotation contsatenters (black and white circles). Start and
goal configurations are given by arrows; the path of the wioitation center is shown.

The basic idea, if we have a rotation and a translation available, is to build-driveaturn trajectory.
We use the rotation to achieve the proper orientation, drive “straight” witkréimslation, and turn again at
the goal. If only two rotations are available, we will show a way to simulate thigifdy straight” part by
alternating these two rotations (see Fig. 3.2 for an example). By carefidecbf rotation directions and
careful choice of the controls used to construct the translation segmehé(case that there are more than
two controls available), this method can be used to quickly construct trégstbat are often not too much
slower than the optimal.

If a trajectory to any goal always exists, we will say that the systegoidrollable The following
lemma gives the geometry behind the main result of this section:

Lemma 2 A rigid body, controlled by velocities chosen from a Eethat is constant in the body’s own
frame of reference, is controllable in SE(2) if and only/itontains two or more distinct velocities, at least
one of which is a rotation.

The remainder of this section is dedicated to a constructive proof of this lemma.

It is evident that the body is not controllable if eitiérhas cardinality less than two 6F only contains
translations. We will next give a constructive proof for the converse.

Let u; andusy be two distinct controls i/. Without loss of generality, assume is a rotation of center
c1. Letcig andey be the positions, in the world frame, of at states)y andq, respectively. Ley be the
displacement vectar; y — c19. There are two cases, according to whethgis a translation.

The two cases will be discussed in detail below. The basic idea of the préloé folllowing. If us
is a translation, then the trajectory will be easy to construct: choose thremeéepoint of the robot to be
centered on the rotation center, spin in place until the translation direction dsujmavith the vector from
the start to the goal, drive to the goal, and rotate to the required anglethlivbtocities are rotations, we
will replace the translation section of the trajectory with a sequence of rogation

ug IS a translation

The goal is achieved by a turn-drive-turn trajectory. kgt= (220, 72¢) be the velocity vector corresponding
to uy at the initial state and; be the velocity vector correspondingudg at the final state. We connegf to
qr as follows:

1. Apply u; until v becomes parallel tg.
2. Apply uz until the displacement distan¢ig|| is achieved.

3. Apply u1 until g becomes parallel toy.
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ug IS a rotation

We will develop a controller very similar to the one above, by simulating the middhslation with an
alternation of the two rotations provided. Thusdgtbe the velocity vector of;g whenu, is applied aty,
and letv be the velocity vector of; y whenus is applied al¢. We connecty to gy thus:

1. Apply u; until vy becomes parallel tg.

2. Apply an alternation ofi; andu; until the translational displacemelfig|| is achieved in the direction
of the vectory.

3. Apply u1 until g becomes parallel toy.

We still need to show how to achieve the middle step. Hednd B represent rotation centers (see
Fig. 3.2); choose the origin of the robot frame coincident wAth_et the distance between the two rotation
centers beé. RotateB aroundA until the line segment from to B is perpendicular to the line from the start
to the goal. Then repeat a series of segments, where each segmenteisahtt3, , A, B, /2, achieving
a pure translation of distan@g in the direction of the line segment from start to goal. If such a translation
would overshoot the goal, adjust the angles in the BAB segment to exaatli the goal (details left to
reader); finally rotate about to the goal angle.

To translate for a distancé < 2[, we apply the following sequence of actions. Align the warléxis
with thecog — ¢19 vector. Then

1. Apply ug until ¢; achieves @ coordinate ofi/2.
2. Apply u; until ¢ achieves & coordinate ofi.

3. Apply us until ¢; achieves g coordinate ofi.

Thus we obtain an alternation af andus that translates the body for a displacemeng.ofVith this
module, the universal planner is complete. This concludes our congépetiof of Lemma 2.

3.4 Existence of optimal trajectories

The existence of optimal trajectories for the system studied in this work islguinklied by a corollary to
Fillipov’s existence theorem given in [24] (pp. 98 - 99). We slightly restii® corollary with the notation
used in the present work, as follows.

Let go andg, be two states i8E(2). If all the following conditions are satisfied, there exists a minimum
time trajectory undet/ from ¢ to g,:

1. There exists a functiof(q) such thag = g(q)u.
2. g(q) is locally Lipschitz continuous.
3. The control sel is a compact convex subsetRf".

4. There exists an admissible trajectory frogrto g,.
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5. Given any initial statg, and control law(t), there exists a corresponding trajectg(y), defined for
the whole duration of the given control law.

It is easily shown that our system verifies these conditions:

1. In our casey(q) = Ry (see eq. 3.3).

2. Ry(q) is locally Lipschitz continuous as it only contains the functiensf and cos, which are
Lipschitz continuous.

3. Inour casel is a closed convex polyhedronRi™.
4. The existence of an admissible trajectory has been proven in the prgsediion.

5. Sinceu(t) is Lebesgue integrable, the integral in equation 3.3 always exists, anthéresalways
exists a trajectory(¢) corresponding ta(t).

Therefore, optimal trajectories always exist for the system model agthlpzhis work. The next chapter
will apply the methods of optimal control theory to study these optimal trajectories
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Chapter 4

Necessary conditions for optimality

We start our analysis of optimal trajectories by applying the Pontryagin iBlento the problem stated
in Section 3.1. This application immediately separates optimal trajectories into tveeglase of which
(whirls) is less general, as it only contains trajectories with a constantiangelocity. We develop a
geometric, local condition on the optimal control policy for trajectories belantp the general case, and
based on this condition we call such trajectord@strol line trajectories For the particular case of the
whirls, we use a modified version of the Pontryagin Principle to completely solve thés taus leaving
control line trajectories the sole subject of subsequent chapters.

4.1 The Pontryagin Principle

The Pontryagin Principle [18] places several strong necessarytimorsdon optimal control policies. The
conditions are local in trajectory space, and the entire approach maydeslpaanalogy with the study of
the maxima and minima of differentiable real functions. At all such extremaltqdine derivative of the
function must be zero. After solving the equatiffitz) = 0, the value of the function is compared at all the
points thus found in order to find the global maximum or minimum.

Analogously, consider the space of all valid trajectories that reach e lget f (x) be a function that
computes the time of a trajectogy The Pontryagin Principle is a local condition in this space, correspond-
ing to thef’(x) = 0 condition in simpler spaces. We call the trajectories that satisfy the Pontifyegaiple
extrema) and there is usually a limited number of them, just as usydlly) = 0 has a limited number of
solutions.

Our approach is to find all extremal trajectories linking a start to a goal, andrpare their times in
order to pick the fastest. We will find that there exist several very distypets of extremal trajectories, and
different methods will be needed for constructing a shortest time trajegitiin each of these classes.

Let us now examine the details. The Pontryagin Principle requires, firstfdhaach time optimal
trajectoryq(t¢) there must exist a correspondiadjoint A(¢) that represents a privileged direction in velocity
space at each point on the trajectory. All along the optimal trajectory, thigat@pplied must maximize,
among all possible controls, the dot product of the adjoint and the demeeraelocity of the body. Second,
this dot product (t) = (A(t), ¢(t)), called theHamiltonianof the optimal trajectory, is a constant function
H(t) =Xy > 0.

Finally, the Pontryagin Principle places restrictions on the adjdi(t) must be a non-zero continuous
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function and must satisfy the following differential equation:

d\ OH
@ o 4.1)
For a given vehicle control spacé, we will call the extremal ensemblef an extremal trajectory(t) the
components of the proof that it is indeed extremal: the control pali¢y, the adjoint\(¢) and the value of
the Hamiltonian. Only trajectories for which an extremal ensemble exists can beiimeal.

In the following, we integrate the Pontryagin differential equation for theiat] as applied to kinematic
rigid bodies in the plane, and we examine the immediate implications of the formulakitaises.

4.1.1 Integration of the adjoint function

This section is concerned with proving the following theorem:

Theorem 1 Consider a rigid body with an attached convex polygonal control5etoving in the unob-
structed plane on a trajectory(t) = (z(t), y(t), 6(t)) from initial stateqy = ¢(0) to final stateg; = q(ty).
The trajectory is generated by an acceptable control pali¢yy according to the definitions in Section 3.1.
If control policy u(t) is time optimal among all acceptable control policies that generate trajectorie
fromgq to gy, then there exist constants, k2 andks such that at every timethe value of the control policy
u(t) is a point inU that maximizes the value of the Hamiltonian function
ky g
H(t) = k2 Ryyu(t). (4.2)
kly(t) — kzﬂ?(t) + k3

Furthermore, the Hamiltonian is a constant functiéf{t) = \o > 0.

Proof: At any timet, from the Pontryagin Principle (as stated above in equation 4.1), the adjoint
equation is

j= —fq(x, (g, w)) 4.3)
0
- 0 . (4.4)
)\T(%Rg)u

The zeros occur becauge= Ryu does not depend ainor y. Therefore, by direct integration; = k; and
Ay = ka. Let (ug, uy, up) = u and substitute these values back into the definitior\for

A3 = ki (sug + cuy) — ka(cuy — suy), (4.5)
wherec ands are shorthand fafos # andsin #. From equation 3.1,
T = Cly — Sy (4.6)

Y = Sy + Cuy 4.7
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Substitute into equation 4.5, '
A3 = k19 — ko, (4.8)

and integrate:
A3 = k1y — kox + k3. (4.9)

The Hamiltonian to be maximized along time-optimal trajectories is thus

H = kyi + koyy 4 0(kvy — kox + k3). (4.10)

4.1.2 The control line

Since the adjoint must be non-null, it is not possible for any trajectory te hawadjoint with all three inte-
gration constants equal to zero. We will, however, distinguish two kinddjofras, and two corresponding
kinds of time optimal trajectories.

For adjoints withk; = ky = 0, the controlu = (u, uy, up) only needs to maximizél = ksug. Thus,
for all control policies that use exclusively either controls fréhof maximum angular velocityk > 0)
or of minimum angular velocityk; < 0), it is always possible to find a very simple adjoint that verifies the
Pontryagin Principle. Let this kind of trajectories be caNdtirls. This particular case does not have much
in common with the rest of our analysis (besides the kinematic model alreadysskst), and, since it is
thus self-contained, it will be solved separately in the next section.

In the rest of the current work, we study the more general case vahérast one ok; or ks is not null.
Since the conditions set by the Pontryagin Principle are invariant with eegpecaling of the adjoint by a
positive constant, we assume without loss of generality, in this casé;that3 = 1.

The optimal trajectories that admit this kind of adjoint have a peculiar geomgirimaerty. Define the
control lineto be a line with headingk;, k2), and signed distande; from the origin. The first part of the
Hamiltonian

k1z + kay (4.11)

is the component of the translational velocity of the rigid body along the véétork,), and the term
—kox + k1y + k3 is the distance from the reference point of the rigid body to the control line.
Therefore, let the the more general type of optimal trajectories that arehids be calledcontrol line
trajectories
We thus have a geometric interpretation of the Hamiltonian for non-whirls. ®dfi@ “control line
frame” L to be a frame attached to the control line with thaxis aligned with the control line (see Fig. 4.1).
Then in the control line framey, is the distance of the rigid body from the control line, #ds the angle
the body frame makes with the control lingy, is the component of the body’s velocity along the control
line. In these coordinates, the Hamiltonian of a control that imposes velocityes@lves td iy, yr, é) in
the control line frame is

H =+ yof. (4.12)

It will sometimes be convenient to write the above expression of the Hamiltooiazohtrols expressed in
polar coordinates. For a control that sets veloeitg directione and angular velocity in the frame of the
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Control Point

Figure 4.1: A rigid body instantaneously following a control line optirtrajectory. Two possible reference points

attached to the rigid body are shown. The optimal control t@eds to choose a control that maximizes the Hamil-
tonian with respect to the control line. For a reference paoiossing the control line, the Hamiltonian is equal to the
component of this point’s velocity that is parallel to thentrol line.

body, (thusu, = v cos o, u, = vsina anduy = w), the following formula is obtained immediately:
H =wvcos(0r + ) + yrw. (4.13)

In particular, if the reference point on the vehicle happens to be cdsancontrol line at some time,
theny; = 0 and the necessary condition is to simply choose a control that maximizes¢hened point's
velocity in the control line’s direction (see Figure 4.1).

As the following lemma shows, we are, in fact, able to change the point akrefe for the purpose of
calculating the Hamiltonian along a trajectory.

Lemma 3 Given a rigid body trajectory that obeys the Pontryagin Principle, the saahesvof the Hamil-
tonian will be obtained for any point of reference in the body frame.

Proof: Instantaneous motions for planar rigid bodies can be either rotations statians. If the
instantaneous motion is a translation, the result is immediate. Let the instantanebais be a rotation
of centerO and angular velocitw. Letyo be the distance betweénand the control line. Le®’ be O’s
projection onto the control line ani be an arbitrary point in the frame of the vehicle. From the perspective
of P, the Hamiltonian is

Hp =ip+ ypw = ||OP||w cos ZPOO" + ypw (4.14)
Hp = (]|OP|| cos ZPOO' + yp)w = yow = Hop. (4.15)

Therefore calculating the Hamiltonian at any point in the frame of the body isaime as calculating it at
the center of rotation. [ |

An interesting result is obtained by choosing the reference point, duriotation control, to be the
rotation center, for whicti = 0. Therefore, given a value fdi, we can compute the distance of the active
rotation center from the control line. A similar result is obtained describingtige a translation makes
with the control line in terms of the value &f.
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Corollary 1 If the control corresponding to rotation centérand angular velocity is active at time on
an extremal trajectory of Hamiltonian valué, then at this time the signed distance fréhto the control
lineisyp = &

w "

Corollary 2 If a translation control of velocity and forming anglex with the horizontal axis is active at
timet on an extremal trajectory of Hamiltonian valué, then at this timeos(a + 0) = % whered is the
orientation of the body frame with respect to the control line.

4.2 Whirls

Since, in the case of whirls, two constants from equation 4.2 arenu-(ks = 0), the expression of the
Hamiltonian is simple: '
H = ks0. (4.16)

Either k3 is greater than zero, or less than zerks # 0, since the Pontryagin Principle restrigts from
being identically zero.) Ik is positive, then any control with maximu#rsatisfies the Pontryagin Principle.
Otherwise, any control with minimum satisfies the principle.

In the simplest case, the controls for which the minimum and maximum valuésf attained are
unique. Then these trajectories are simple: constant controls, candksgdo pure rotations around a
fixed rotation center. The more interesting case is when multiple controls maximin&imnize 6. The
Pontryagin Principle, as applied above, does not directly give anynraion about when to switch between
the controls in this case.

Under what circumstances might such a trajectory be optimal? The classiplexa a Reeds-Shepp
car that can reverse as well as go forwards. Consider the goalrofisg this car in place. A direct spin
is not an available control, and a human driver would execute a threetpam The driver might move
forwards around the left rotation center, with positive angular velocign thackwards around the right
rotation center, with positive angular velocity, then forwards again afthm left rotation center.

How long does the three-point turn take? It is simply the angle to be travdigeed by the angular
velocity. Assuming that the car is controlled by an electronic system thatféeot gery quick control
changes, it could also follow a four-, five-, or six-point turn, taking slaene time, but following a very
different trajectory. Therefore, we expect that there may be many dptijectories between configurations
for which the amount of angle to turn through is the limiting factor, rather thadigtance to be travelled.
Rather than constructing all such trajectories, we will show that there im@nizal trajectory structure,
which we call ‘roll-and-catch’ (see Fig. 4.2 for an example) that we csanto always find one optimal
trajectory. We also show that that for this canonical trajectory structueesan find the precise control
policy of the optimal trajectory for every start and goal.

Since the original control spacéis a convex polyhedron, all the controls that can be used for whirls are
on a single polygonal face of this polyhedron. The problem of findinggtenal whirl trajectories can be
restated equivalently in the following way. Consider a convex polygamnéhee of rotation center® in the
plane, containing at least two distinct points, and a vehicle that this susfattached to. The vehicle can
rotate at angular velocity around any point irZ. (The clockwise case is symmetric.) Find an algorithm to
construct an optimal trajectory for given start and end configuratigremdq, respectively.
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Figure 4.2: Example of a roll and catch trajectory. The polygonal cdrétoface rolls along the control axis with
constant angular velocity. When the last rotation centeutdrpplace, the last motion is an off-axis rotation around
this point (the “catch” stage). The trajectory of the lagation center is shown, as well as the locations in the world
frame of all the rotation centers used along the trajectory.

4.2.1 A sufficient family of whirls for optimality

In a direct application, the Pontryagin Principle does not place any eamiston whirl trajectories. We will
identify a class of optimal trajectories that always exist and are compdsew stages, with the objective
of applying the Pontryagin Principle to characterize the shape of the tigpt.s Given a whirling vehicle
with convex control surfac&, we will call anzy stage trajectory for poind (A € Z) a trajectory between
two configurationsy, ¢, that satisfies the following two conditions:

1. The first stage of the trajectory placén its correct position ig, in as short a time as possible. We
will call this the zy stage, as only the andy coordinates ford need to be attained.

2. The second stage of the trajectory is a rotation arotinahtil ¢, is attained.

xy stage trajectories always exist between a given pair of configuratsnt)e vehicle is controllable.
Given two such configurationgs andg, consider an optimal trajectory and an stage trajectory between
them, respectively. Left; be the time taken by the optimal trajectory, ietandt, be the respective times
taken by the two stages of the stage trajectory. Since the optimal trajectory does plade its correct
location,?; < ty; thereforet; < t; +t2 < ty + 2. But the times of two trajectories between the same
pair of configurations must differ by a multiple 2f-; thereforet; + to = t; and thexy stage trajectory is
optimal. zy stage trajectories are therefore a class of optimal trajectories that awiay.sin the following,

we will confine our efforts to characterizing this class of optimal traject@mekfinding a method to always
construct one such trajectory.

4.2.2 The non-autonomous version of the Pontryagin Princig

The configuration space for they stage is two-dimensional, containing only thendy coordinates. This
makes it possible to remove theoordinate from the state, and re-apply the Pontryagin Principle. However
removingé from the state makes the configuration space velocity depend ondimef (g, u,t). To deal
with this problem, we will apply the non-autonomous version of the Pontryagciple.

The Pontryagin Principle for time-optimal trajectories for non-autonomohishes ( [18] p. 60) is very
similar to the version used previously in this work, with the exception that thetitmH is only required
to be positive and not necessarily constant. Taking the final rotationr@sgereference point in the frame
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of the body, we obtain the condition that, along thestage, the functiol/ (x, u, t) needs to be maximized
by the chosen control at each point along the trajectory, where

H=\d + Moy (4.17)

and the(\1, A2) vector is non-null. Sincégl = 21 = (, \;(¢) is a constant function. Similarly(t) is a

constant as well, therefore

with k2 + k2 > 0. Therefore, for eachry stage optimal trajectory, there exists a control direction in the
plane, given by the vectdi, k) such that the optimal control policy, at all times, chooses a control that
maximizes the body’s velocity component in this direction. Since the controtiel® form a polygon that

is always turning at constant velocity, it follows that optimal control policiespiecewise constant.

4.2.3 Shape of thery stage

Consider, along any stage optimal trajectory, the time when the control switches ftpno u;1, cor-
responding to rotation cente®; and R, respectively. Consider the functiod$; = H(z,u;,t) and
H;,11 = H(x,u;;+1,t). Both these functions are continuous. Immediately before the swifchr H,

and immediately after the switcl; < H,,1. Therefore H; and H;; are equal at the time of the switch.

Furthermore, at the switching time, &t be the reference point ang andv;; its velocity vectors
immediately before and after the switch respectively. Since the angulaityétomonstant, the lengths of the
vectorsy; andv;,1 are proportional to the lengths of the segmerf®; and PR, 1 respectively. The angle
between the pre-switch and post-switch velocity vectors is furthermowed exjihe angle’ R; PR, 11, as the
velocities are perpendicular to the radii. So the triangle formed by the twoityel@xtors is proportional
to the triangleA R; PR, 1 and these two triangles form an anglegof

SinceH; = H;,; at the time of the switch, and these two functions are the projectionsafdv;
onto the control direction, the third side of the triangle formedvbyndv;,, is perpendicular onto the
control direction. This side correspondsRgR;. 1 in the proportional and rotated t%' triangle; therefore
R;R; 1 is parallel to the control direction. This holds for all switches alongithstage. Therefore, in the
world frame, all the rotation centers used during tlgephase are found on a line passing through the first
rotation center and parallel to the control direction.

Setting the world reference frame on this axis, we notice by a similar argumantfti®; is placed
higher, in respect to the control line, th&h, thenH; > H;,. Since the first rotation center used is on the
control line, assuming the control direction points right to left, all the othttian centers must be above
the control line in the initial state; this condition is then propagated along thettsejetVe have therefore
proven the following:

Lemma 4 For eachzy stage optimal trajectory, there existgantrol linesuch that thery stage is a rolling
of control surfaceZ in the positive direction along the control line.

Thus, we have found that a control line exists even for a subclassid$wiat is sufficient for optimality.
Because they stage is thus shown to be analogous to a sideways view of a rolling motion drsarfkce,
with a subsequent “catch” on the final rotation center, we will alternatigelyzy stage trajectories “roll
and catch” trajectories.
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4.2.4 The position of the control line for known initial and final controls

Number the corners of the convex hull consecutively clockwis®asRk,, ..., R,. Assume we knew
that the initial control is a rotation arounfé and the final two controls are rotations arouRg and R,
respectively. The optimal control is therefolg, Ro, - - - , R, repeatech times (wheren is an unknown
integer) and thely, Ry, - - -, R_1, Ry, Ry.

In the world frame, let?] be the initial location off?,, let I, be the final location of?; and letR;,
be the location, at the final switch, &,.. We are given the position a®;, and we know the position of
R'; as the final motion is a rotation around this point. gt be the length of the segmef¥ ;. In order
to determine the structure of the trajectory (if it exists), it is sufficient to firelghsiton of R/, which
determines the control linB} R

Let r;; be the distance, in the body frame, between two arbitrary rotation ceRteanid R;. Let
li = riiq1, i.e. the length of theéth side of the control surface. Let= 3", I; be the perimeter of the
control surfaceZ. Since the trajectory is a roll along the control line, the length of the segRIgRY is:

diy=np+1l +lo+ -+ 11 (4.19)

In the triangleA R} R}, R, the triangle inequality must hold:

d—rp<np+lh+lo+-+ 1l <d+rgy. (4.20)

The left-hand side is a strict inequality because, as shown above, if tatiorocenters are on the control
line at the same time, the one that is used on the immediately preceding intervalauest smaller:
coordinate.

Sincery is a section througl, 2,y < p. Note that Relation 4.20 has a span2ef,; between the
leftmost and rightmost side, and the middle changes in incremeptsidierefore Relation 4.20 has at most
one solution for the unknown integer, which is obtained by subtracting and dividing appropriately and
taking the floor function:

dl+7"kf— (L+l+- -+l
p

Furthermorepn needs to satisfy the left-hand side of 4.20 above. By replacing this solut@adoation 4.19
above, we determine the lengthdjf,. This fully determines the triangla | it} R, and, by extension, the
position of the control line and the structure of the trajectory. In ordetifer:y stage to be extremal, we
only need to check observance of the Pontryagin Principle at its final, p@incalculate the configuration
at the switch fromR2;, to R, and verify that no point of is above the control line in this configuration.

Since there is at most one solution for the location of the control line, if swdtudion exists then the
correspondingry stage is the fastest way to git into its final position by using?; as the first rotation
center andz;, as the last.

). (4.21)

n=|

4.2.5 Constructing anzy stage trajectory for given initial and final configurations

Given a control surface and initial and final configuratignandg, respectively, we have proven above that
there exists a “roll and catch” optimal trajectory between these confignsatior any choice of reference
point on the control surface (the reference point being the locatioredast rotation center that is used on
the trajectory). We have also shown how to find this trajectory, if the initialthadsecond to last controls
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were known; these two controls have to be rotations around corners obtitrol surface, which we have
shown can be assumed without loss of generality to be a convex poly@enefdre, the following simple
algorithm is valid:

1. Enumerate all possible ordered pairs of corners of the contracsurf

2. For each such pair, construct the “roll and catch” trajectory (tbarneexist at most one) that corre-
sponds to the chosen initial and second to last controls.

3. Pick the fastest trajectory.

The algorithm runs in time that i©(m?), wherem is the number of corners of the polygonal control
surface. For any given control surface, the running time is constant.

This result concludes our analysis of whirls. For the rest of the cuwerk, we limit ourselves to the
case of control line trajectories.
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Chapter 5

A class of control policies sufficient for
optimality

The sole requirement that the control polieyt) be Lebesgue integrable leaves open a wide variety of
candidate solutions for the optimal control problem defined in Section 3.1lreAtdearch of this infinitely
(N1) dimensional space is not feasible. In this chapter, we considerabigwna@iown the search space
by characterizing a class of control policies that are sufficient for ofitynal’hese control policies are
piecewise continuous and only use a finite set of controls. We will begirrdgepting the main result and
some applications, and will use the second half of the chapter to provesthielrg a sequence of lemmas.

5.1 Control space discretization
The main result that will be proven in this chapter is the following:

Theorem 2 There exists a canonical finite subgét of control set/, containing the vertices df and at
most one point on each face or edgelbthat intersects thé = 0 plane, such that any optimal control
problem of the type defined in Section 3.1 has a solution that is a control ploéity

1. is piecewise continuous

2. only takes values itl..

The proof for this result will be given in the second half of the chapter.thk first half, we will first
examine how optimal control policies that are not piecewise constant cam imcsome cases, which will
reinforce our motivation to search for piecewise constant policies.réeege will show how control space
discretization and the existence of piecewise constant control policiéstarevined, by discussing a few
examples for the application of Theorem 2 to several well-studied vehicles.

5.1.1 Optimal control policies that are not piecewise conant

Control policies that are not piecewise constant can be difficult to implem@nactice. They are, however,
mathematically optimal in some cases.

For example, consider a rigid body in the plane that can translate in any tduhdirections aligned
with the axes, north, south, east, and west, with speed one, as showmia bifj. The fastest trajectory
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Figure 5.1: Two optimal trajectories for a translational platform.

to move to a point to the east is unique and simple to describe: drive east, withntrol switches. How

about a trajectory to drive to the poi(2,1)? The minimum time required i3 (the Manhattan distance
to the point from the origin), and one optimal trajectory is to drive east for timme then north for time

one. However, any other trajectory to the goal that uses only the cofgasis and ‘north’ is also optimal,

even if these controls are applied in a manner that is not piecewise corgin&ou this system, optimal
trajectories clearly exist; but it is easiest to describe the trajectories with a nmimmmber of switches,
with the understanding that permutations of translation sections of the trgjedgtbalso be optimal.

There are worse situations that can arise. Consider a refrigerat@ewnojection onto the plane is a
square, with supporting legs at the vertices of the square. Assume wetasmthe refrigerator about any
of the legs with angular velocity or —1. What is the fastest way to move the refrigerator along the positive
x axis? It turns out that the solution may be to “chatter”, or switch infinitely duidietween two rotation
controls, approximating a straight-line motion.

We will show that, because of the convexity requirement for the contratespit is always possible
to find a piecewise constant optimal control policy. This is particularly easseefor the refrigerator
example above: since the control space includes a hard turn left and &uharight, it must also include
all intermediate controls between these two, and in particular a straight lirstatian that can be used to
replace any “chattering” segment. For the translational platform, we shaafiffchattering” segments can
be replaced by a piecewise constant control policy with at most one switch.

In general, we will show that for any polyhedral convex control sgédt is possible to find a finite
subset of the control space that is sufficient for optimality, and furthesiiat it is always possible to find
a piecewise constant optimal control policy corresponding to this finiteesubs

5.1.2 Examples of control space discretization

Before presenting a proof for Theorem 2, let us examine the way it apliseveral well-known vehicles.
This sequence of examples will also show how control space discretizatobthe existence of piecewise
constant control laws are intertwined in our analysis. We begin with the Bwdain for which the control
space (see Fig. 5.2) is the line segmert0 x [—1, 1] (i.e., the vehicle always drives straight with a velocity
# = 1,y = 0 in its own frame of reference, and the only control is choosing the balnhdaing radius).
The finite canonical control set contains the two vertices of the contr@rskthe one point on the single
edge wherd = 0:

U.={(1,0,-1),(1,0,1),(1,0,0)} (5.1)

Intuitively, the necessity of including the vertices is easily demonstrateddajlirey that the Pontryagin
Principle requires that, at an arbitrary timeonly controls that maximize the projection of the vehicle’s
velocity onto the adjoint vector may be chosen. If the adjoint happens tolibe vehicle’'s frame of
reference, at positiom depicted in Figure 5.2, then only the upper vertex= (1,0, 1) can be maximizing.
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Figure 5.2: The control space for a Dubins car is a vertical line segmettié (i, , ) space. Extremal trajectories
for this vehicle will use, at most times, either contral (a hard turn left, e.g. for the adjoint at positian) or control

u_ (a hard turn right, e.g. for the adjoint at positi@s). In the particular case when the adjaiftis perpendicular to
one edge of the control space, all the controls on this edg&ea&hosen; however, choosing, in this case, any control
except the translatiom, will cause the adjoint to move from this position, thus cagsine of the two corners &f to
become the single maximizing control.

31



U— uo,+ U+
o L o
U0
< >—@ -
U— 0 0 T
b = b
’LL_,_ UO’_ ’U,_{_’_

Figure 5.3: The control space for a convexified Reeds-Shepp car is assgaatered on the origin in the= 0 plane.
All the four corners maximizél for some position of the adjoint. Furthermore, the left agtitredges contain points
on both sides of thé = 0 plane, a fact that allows singular translations. The toplzottbm edges do not have this

property.

If the adjoint is at positiom., then only the lower vertex_ is maximizing.

The possibility that other controls might also be used on an optimal trajectodié¢sted by considering
the adjoint in positioms, i.e. perpendicular onto the edge of the control space. In such aatldke,controls
on the edge are maximizing, and may be chosen without violating the Pontryagaipie. However, it
turns out that it is sufficient to add to the canonical control set the poirhe edge wheré = 0, i.e. the
translationup = (1,0, 0).

The necessity of having this point in the control set that is sufficientgtnlity is easily demonstrated.
Consider the very simple situation where the Dubins car needs to drivedfom (—1,0,0) to ¢, =
(0,0,0). Ifonly v, andu_ were available, then there would exist no optimal control policy that is piseew
constant. Instead, the solution would be to “chatter”, i.e. to alternate infiniteajppéications ofu, and
u_ respectively, achieving a continuous straight translation from this attermaf rotations. However, if
we also addg to the canonical control set, it is always possible to replace such “cingftsiegments with
a single application ofiy instead. Deeper analysis will show that no other additions are necésgaiy
case.

Figure 5.3 shows the discretization of the control set for another wellestuethicle, the convexified
Reeds-Shepp car. The control set is, in this case, a square cemtetegloriginU = [—1,1] x 0 x [—1, 1].
Note that such a convexified control set gives our car capabilities $pigning in placesyy = (0,0,1))
that are not usually associated with car-like vehicles, a reason for iécbriginal Reeds-Shepp car [19]
only allowed controls belonging to a subset of this square.

However, it turns out that the convexified Reeds-Shepp car alwaysuh optimal control policy that
only uses six controls: straight forward, forward left, forward rigdttaight backwards, backwards left,
backwards right. Since all of these controls are also available to the orarexified Reeds-Shepp car,
it turns out that the canonical optimal trajectories are, in fact, identicathese two apparently distinct
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Figure 5.4: The control space for a differential drive vehicle is a diasi@entered on the origin in the= 0 plane.
Since none of the edges cross the: 0 plane, only the corners can be maximiziAgin a sustainable manner, when
the adjoint varies.

vehicles. (This discretization result was first presented in [28], wHedhfast introduced the notion of the
convexified Reeds-Shepp car.)

In our framework, we obtain the canonical control set for the conwskiReeds-Shepp car by adding
to it the original control set’s four corners and, by arguments anakgath those presented above for the
Dubins car, also one point on each of the right and left edges, pomdgng to translating straight forward
(ut,0 = (1,0,0)) and backwardsi(_ o = (—1,0,0)) respectively. Note that the control set has two more
edges, an upper and a lower edge. However, none of these edgesdtge¢he = 0 plane (i.e., there are
no translations on these edges), so the canonical control set dagstein points from these two edges.

Figure 5.4 shows the discretization of the control set of the differentnat,da wheelchair-like vehicle
that can be driven by setting different velocities on two parallel wheelthi$ case, none of the four edges
crosses thé = 0 plane, so the canonical control set contains simply the four vertices abfteol space
(two of which are translations).

Finally, Figure 5.5 shows a quadrilateral face of the control set forpatmetical omnidirectional vehi-
cle, projected onto théi, §) plane. In a manner similar to the convexified Reeds-Shepp car, the cahonic
control set will contain, corresponding to this facd bfthe four vertices and the two points where the edges
intersect thé) = 0 plane. In addition, the control set will also contain a translatibthat corresponds to
the face itself (as opposed to the edges). Intuitively, this translationspames to a “chattering” of three or
more of the face’s vertices.

Our analysis is also applicable to some control spaces that are not paiHemlrexample, if presented
with an arbitrary, non-convex control set (e.qg, a finite control set erotfiginal control set of the Reeds-
Shepp car), we would first build the convex hull of this control set, aed tiscretize the convex hull in
order to obtain a canonical control set. If the canonical set is a sabiet original control set, then optimal
control laws that are piecewise constant always exist, and can be ebthiough the same methods that
we use in the rest of our analysis. If the canonical control set is nabses of the original control set, then
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Figure 5.5: A projection onto they = 0 plane of a quadrilateral face of an arbitrary polyhedraltagdrspace. The
corners can always be maximizing. The upper and lower edyesittross thé = 0 plane, and therefore contain no
extra maximizing controls. When the adjoititis perpendicular onto the polyhedron’s face, there existsast one
sustainable contral’ on the face whose application will keep the adjoint in positis.

piecewise constant optimal control laws may not exist for that vehicle.
Let us now detail our analysis by presenting the mathematics behind the sttteieve.

5.2 Sufficiency of piecewise constant control policies that take valu@asthe
canonical control set

This section will present a proof for Theorem 2. The proof will be builtthirough a sequence of lemmas,
some of which also contain results that will be used in subsequent chafitersmain outline of the proof is
the following. First, we characterize the maximizing controls that need to lskhysextremal control poli-
cies, and we will prove a few properties that such maximizing controls exhbitt, we prove that extremal
control policies need to be piecewise constant outside so-csithedilar intervals Singular intervals are
time intervals during which multiple maximizing controls exist everywhere. Finakkysthwow that singular
intervals can, in fact, be equivalently replaced with piecewise constatrtot@olicies. This will complete
our proof that piecewise constant control policies are sufficientgtinality.

5.2.1 Maximizing controls

Let us first examine the kinds of controls that maximize the Hamiltonian duringreatrtrajectories. For an
extremal trajectory(t) and its ensemble(t), A(t), H, let the timeg where there exists a single control that
maximizes the Hamiltonian be calledimax Let the times where there exist multiple maximizing controls
multimax In this section, we will prove a sequence of lemmas that lead to the proog irettt section, that
piecewise constant control laws are sufficient for optimality.

Consider an arbitrary timé€ < [0,¢f]. The Pontryagin Principle requires thaft’) be a solution of
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the following problem: maximize the Hamiltoniad = (A(t") Rgy)u for u in U. SinceU is assumed
to be a convex polyhedron, the conditianc U can be written as a linear system of inequalities, and the
Hamiltonian maximization problem is thus a classical linear program: out of all dh@spin a convex
polyhedron, find those points that maximize their position vectors’ projectinttsa given direction.

This simple observation, in conjunction with the facts about the adjoint priov€heorem 1, allows us
to make a few further observations that hold at all times along an optimal trajectomatter what value
the adjoint may take.

Fact 1 The optimal control policy can only contain controls that are on the outdrdiconvex polyhedron
U.

Proof: The proof is by replacing any other control by its positive scaling to thgeohull to obtain a
larger value for the Hamiltonian. ]
The next two observations follow immediately from the properties of lineagnaras and the fact that
A(t) is a continuous function:

Fact 2 If ¢ is unimax, thenu(t) must be one of the vertices bf. Furthermore, there exists an entire
neighborhood of on whichu(t) is also the only maximizing control.

Fact 3 If ¢ is multimax, then there exists an entire edge or facE slich that all the controls on this edge
or face are maximizing.

We are now ready to prove several lemmas about multimax points. The case tlth multimax point
involves an edge df/ that is entirely made up of translations needs to be treated separately.

Lemma 5 On an extremal trajectory with HamiltoniaH, there exists only one value éft which all the
controls on an edge df that is entirely in theuy = 0 plane can be maximizing. Furthermore, there exists
only one value off for which this may happen.

Proof: Letu; andu; be the two distinct vertices of the edgeldfunder consideration. Note that and
u; are both translations. At the multimax point, we write equation 4.13 for both dentro

H = v;cos(0r + ;) (5.2)
H =wvjcos(fr, + ;). (5.3)

We have two equations in two unknowri$,andf,. Their right-hand sides are also equal:
v; cos(0r, + a;) = vj cos(0f, + o). (5.4)

Use of the cosine addition identity and some algebraic manipulation leads to:

Vj COS (&vj — V; COS O

tan @y, = (5.5)

V5 SIN Qj — V5 SIN Oy

We choose the solution f@l, satisfying the requirement that > 0, and compute the unique value far
from H = v; cos(fr + ;). [ ]
For edges ot/ that do not exclusively contain translations, we obtain
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Lemma 6 On a control line trajectory of Hamiltoniar/, there exist only two pairs of valugg;, ;) at
which all the controls on an edge bfthat is not entirely in theyy = 0 plane can be maximizing.

Proof: Let the two distinct vertices on the edgel@funder consideration be labelled @ag u,. Note
that not both of these can be translations.
At the multimax point, we write equation 4.13 for both controls:

H =wvjcos(0p + a1) + yrwr (5.6)
H = wvycos(0 + a2) + yrws. (5.7)

By multiplying the top equation by, the bottom byv;, and subtracting, we may eliminage
woH — w1 H = wovy cos(fr + 1) — wyve cos(fr + ao). (5.8)

Using the cosine addition formula and rearranging, this equation can benwnittiee form

acosfr 4+ bsinfy, = c, (5.9)
where
a = woU1 COS (X1 — W1V COS ¥y (5.10)
b = —w9ov1 sin oy + w109 sin ag (5.11)
c=woH —w H. (5.12)

Equation 5.9 is of standard form. Craig [10] gives the solution as

(5.13)

b4 21 p2 _ 2
9L:2atan< @t C).
a—+c

(A solution also exists fo + ¢ = 0: §;, = w.) Note that there are at most two solutions gt For each
solution forér,, we can plug the values éf,, H, and the rotation control into equation 4.13 to compute the
unique value ofj. ]

5.2.2 Piecewise continuity outside singular segments

We are now in a position to define singular segments, and to show that extrajaalories are piecewise
continuous outside the singular segments. The next lemma will give a lowedbmu the duration of
unimax intervals.

Lemma 7 For any extremal trajectory(¢) : [0, ¢s] — SE(2) with extremal ensemble(t), A(t), H, there
exists a constant quantity. > 0 such that all unimax times are contained within unimax time intervals,
each interval of duration at leadt..

Proof: Consider a unimax timg,. Because of fact 2, there must exist- 0 such that all the points in
(t, — &,t, + €) are unimax. There must also exist a vertexof U such that for alk € (¢, — e, ¢, + ¢),
u(t) = uy.
There are two cases: eithey is a rotation, on, is a translation.
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If u, is a rotation, ther®(¢) is monotonic on(¢, — ¢,t, + ¢) and therefor&(¢) is not constant on
any superset of this interval. L&, = {6(0),0(tqy)} U {0| there exists an edge or face Gfthat can be
maximizing atf}. According to lemmas 6 and ). is a finite set.

Lett.; = max{t < t,|0(t) € ©.} andt.o = min{t > ¢,|0(t) € ©.}. Then all the points irft.1,t.2)
are unimax, and furthermorg(t) = u,, on this interval. Sincé(t) thus exists and is constant ¢, t.),
there must exist a quantiy. > 0, depending only on the trajectory and its extremal ensemble, such that the
length of the(t.1, t.2) interval is at leask,.. This concludes the case whergis a rotation.

If u, is a translation, theg(¢) is monotonic on(t, — ¢,t, + ¢). LetY, = {y(0),y(tqa)} U {y| there
exists an edge or face 6f, not entirely in theuy = 0 plane, that can be maximizing . (Sincet, is not
multimax, andu,, does not modify, we do not need to consider the case when an edgeenttirely in the
6 = 0 plane might become maximizing.) By an argument analogous to that used in theltaseu, was
a rotation, there exists a quantity > 0, depending only on the trajectory and its extremal ensemble, such
that the length of thét.;, t.2) interval is at leask;.

The proof is concluded by lettink. be the minimum ok, andk;. ]

We are now able to prove the central result of this section:

Lemma 8 For any extremal trajectory(¢) : [0,t4] — SE(2) with extremal ensemble(t), A(¢), H, the
function
t ifti i
uy(t) = § 0 TS umimax (5.14)
0, if ¢ is multimax

is piecewise constant. Furthermore,(¢) = 0 at all discontinuity points.

Proof: Any discontinuity point will contain both unimax and multimax points arbitrarily closé;to
because of fact 2, such discontinuity points can only be multimax, and dtnetefis 0 at all discontinuity
points.

We will prove by contradiction that, is piecewise continuous. Assume thatis not piecewise con-
tinuous; then it must have an infinity of discontinuity points[ort,]. Therefore there must exist a poipt
within [0, t4] such that there are discontinuity points arbitrarily closg,tdHowever, according to Lemma 7,
there existd:. such that no unimax point can exist withity, — k., t, + k.). Therefore, there exists an in-
terval containing, in which all the points are multimax, and therefargis 0, and thus continuous, on this
interval; which is a contradiction.

Thereforeu; is piecewise continuous. Since all the unimax points form intervals of a ceniaimum
length (Lemma 7), this also implies that is piecewise constant. ]

The lemma above implies th&, ¢;) is composed of open unimax intervals that are separated by either
isolated multimax points or by closed intervals that are multimax at all points. Let a wninteaval be
called ageneric interval The isolated multimax points separate generic segments, indicating a change of
controls; we will therefore call isolated multimax poirdsntrol switches The nondegenerate multimax
intervals can contain irregular behaviors for the control policy (e.g.haoercontinuous functions etc.); let
such nondegenerate multimax intervals be cadledular intervals

5.2.3 Replacing singular segments

We will next be concerned with a more detailed characterization of singutvals. We will show that
singular intervals only occur at certain values of the Hamiltonian, and thgilsinintervals can always be
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replaced by a time-equivalent piecewise constant control law, with attwogpieces. This will conclude
our proof of Theorem 2.

Fact 4 Consider an arbitrary extremal control poliey(?) that contains a singular intervat,, ¢2] on which
aface ofU, which contains an edgs in the plane) = 0, is maximizing everywhere. Thef¥)takes values
from e; almost everywhere.

Proof: From Lemma 5, it is not possible for two distinct edgeg/oin thed = 0 plane to be simulta-
neously maximizing. Therefore, all the other edges on the maximizing facktod® on the same side of
thed = 0 plane. Choosingy(t) # 0 at points that form a set of measure greater than zero would therefore
result inf(t2) # 6(t1), which, in conjunction with Lemma 5, contradicts the initial assumption ¢ha
maximizing everywhere. ]

Lemma 9 Any singular intervalt;, t2] for which the sef{t € [t1, t2]|ug(t) # 0} has measure zero, and
during which multiple translation controls are maximizing, can be equivaleafiiaced by a control policy
of the form

’ ) ua, t e [tl,t/]
(1) = {u% el (5.15)

for somet’ € [t1,t2], whereu; andus are vertices ot/ that are translation controls.

Proof: The fact thatuy(t) = 0 almost everywhere, coupled with the requirement that the interval be
singular and that multiple translation controls must be maximizing, indicates thatdkists an edge; of
U, contained in thé = 0 plane, that is maximizing at all points ¢, ).

The value of the Hamiltonian is determined in this case, as shown by Lemma 5aalso,point in
[t1,t2] can there exist any other translations-only edg¥ dfiat is also maximizing.

Let u; andug be the two corners aof;. As a first step, we replace the valueudt) at all points where
ug # 0 with u;. Since all these points form a set of measure zero, the shape of theéanajge¢) remains
unchanged.

The requirement that all the controls erbe maximizing indicates, by application of equation 4.13, that
for anyu € e; thedy, velocity is the same. Therefore, any control policy[ont,] that only uses controls
from e; achieves that same, displacement as the original(t).

Furthermore, any control policy that only uses controls frgnwill attain ay;, displacement that is
intermediate between those achievedbyt) = u; andus(t) = uy everywhere orjty, t2]. Therefore, the
following equation always has a solution|iq, to]:

uyth' + uyLQ(tQ e t/) = yL(tQ) — yL(tl). (5.16)

Thus, the control policy/(t) that is constructed by using the value tfobtained above in 5.15 is an
equivalent substitute for the original control policyt).
[ |
We can thus lay aside the case of singular intervals that feature a maximizistatians edge;. There
are two cases left to consider: intervals where an entire fa€g wfith no translations-only edge, is maxi-
mizing; and intervals where only one edgelof which does not contain only translations, is maximizing.
The following two lemmas address these two cases.
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Lemma 10 Any singular intervalty, t2] for which exactly one edge b6f, e,., which contains points on both
sides of th& = 0 plane, is maximizing can be equivalently replaced by a control policy of the fo

'U,/(t) = U, te [tla tQ]a (517)

whereuy is the translation control ire,.. Furthermore, the value of the Hamiltonian is uniquely determined
by e, in this case.

Proof: The requirement that, must be maximizing everywhere dty, ¢t5], along with Lemma 6,
indicate thaty;, and@ are constant oft;, t] and thus the trajectory is a translation parallel to the control
line on this interval. The replacement control policy 5.17 thus leaves thettrajedt) unchanged. From
equation 4.13, the value of the Hamiltonian is thus calculated as the Euclidedim éétige, vector. =

Lemma 11 Any singular intervalty, to] for which an entire face of/, /', which contains points on both
sides of thé = 0 plane, is maximizing can be equivalently replaced by a control policy of tihe fo

U,(t) = ug,t € [th tg], (5.18)

whereuy is a translation control inF'. Furthermore, the value of the Hamiltonian is uniquely determined
by F in this case.

Proof: The requirement that any given edge Brmust be maximizing everywhere df, 2], along
with Lemma 6, indicate thaj;, andd are constant oft, t2] and thus the trajectory is a translation parallel
to the control line on this interval.

Let u;, u; anduy, be three distinct corners df that are not all on the same side of the= 0 plane.
SinceF' is convex, these three vertices are not collinear.
For any controk: = (u,, uy, yp), We can re-write equation 4.13 as

UgC — UyS + ugyr, — H =0, (5.19)

wherec = cos 01, ands = sin 6. By writing equations of the form 5.19 far;, v; andw,, respectively, we
construct the linear system

c 0

Ugi  —Uy;  Ug; —1 s 0
Ugy —Uyj; UGj -1 = (520)

YL 0

Ugk —Uyk Uge —1 I 0

Sincew;, u; andu;, are not collinear, the matrix is of rank three. By elementary row operatiorth®
system, we eliminate variabld$ andy; and are left with an equation of the foram + bs = 0, wherea
andb are constants, not both zero. In conjunction withi- s> = 1, we calculate two possible values of the
(¢, s) pair; these two values add up to zero. Replacing into the original systenhtaia two critical values
of H, one of which is the negative of the other. Only the positive solutiodf@nd its corresponding:, s)
pair are valid.

This value ofH is the critical value corresponding fo. Oncec, s and H are thus determinedy is the
only translation orF’ for which equation 5.19 holds:

Uz0C — Uyos = H (5.21)
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[ |
This concludes our proof of Theorem 2. Based on the lemmas stated a®gan also summarize the
following useful fact:

Fact 5 There exists a finite set of singular values of the Hamiltonian, computed prdés of lemmas 5,

10 and 11, such that singular segments do not occur for extremairéies that do not contain a singular
value of the Hamiltonian.
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Chapter 6

Generating canonical control policies

We have shown, in the previous chapter, that piecewise constantlquolteies, using controls from a finite,
canonical control set, are sufficient for optimality, as far as controltt@jectories are concerned. Control
policies of this type are fully specified by a sequence of the type

[(u1,t1), (u2,t2), - - -, (Un, tn)], (6.1)

where theu; are canonical controls and thgare the times for which each control is applied.

This result, in conjunction with our analysis of the kinematics of control secgsein Section 3.2.3,
opens up the possibility of algorithmic search for the fastest trajectory. ectdgearch, however, will be
very slow. Let the number of canonical controls|bg|; there aréU.|” possible structures anddegrees of
freedom for trajectories of the type described in Formula 6.1, and wertaupper bound on.

The characterization of a control line in Section 4.1.2 offers the potentiedrdiderably speeding up
the search. There are only two degrees of freedom involved in spegtfye position of a line and, once this
line is fixed, many if not most of the control switches and control applicationstimslved in Formula 6.1
are strictly determined.

The purpose of this chapter is to explore the use of the control line faergeng canonical control
policies. The first part of the chapter will delineate the conditions undéchwthe position of the control
line uniquely determines an extremal trajectory: we show that it does unigeédyntine the trajectory
in most cases. In the second part of the chapter, we develop a prégisihan that builds canonical
trajectories from the position of the control line.

6.1 Trajectories uniquely determined by the control line

For each trajectory segment on a canonical trajectory of type 6.1, tlesfv@@basic issues that any trajectory
generation algorithm needs to address: what is the control to be appigdorawhat duration is it to be
applied? We will show that, for extremal trajectory ensembles that cogéaieric i.e. non-singular, values
of the Hamiltonian, the answers to both these questions are uniquely deteryiribd position of the
control line.

Regarding the choice of controls, we will introduce the notiosudtainable controlsEven though an
entire edge ot/ is maximizing at multimax points, we will show that it is usually the case that only one
control can be applied sustainably, i.e. without contradicting the Pontryagiciple after an infinitesimal
application.
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control line

Figure 6.1: The control line uniquely determines a section of an optitregéctory for a Dubins car.

For determining the duration of unimax segments, we will introduce the noti@wit€hing points
We will show that every pair of canonical controls has a corresponglivitching point in the vehicle’s
frame, such that the two controls’ Hamiltonians are only equal when theesgmonding switching point
is on the control line. This analysis framework will be used twice: first, toastimt the durations of
control application are uniquely determined on generic trajectories; attte Becond part of the chapter, to
calculate these durations.

6.1.1 Switching points

For any two controls of different angular velocities there will exist a pthiat has the same planar velocity
(but different angular velocities) under both controls. For instarmesider controls; = (0,0, —1) (a spin
in place counter-clockwise) and = (1, 0, 0) (forwards translation). The poists = (0, 1, 1) has the same
planar velocityi: = 1,y = 0 under both controls (but different angular velocities).

As shown in Lemma 3, the Hamiltonian can be calculated at any point on the veGaleulating the
Hamiltonians ofuq, us in a reference frame centered on, by applying equation 4.12 we obtain

Hy = i1y +yrb (6.2)
Hy = dop, + yrbs. (6.3)

Since the planar velocity of; 5 is equal under both controls; ;, = -;. Therefore, the above two formulas
only differ in 6:

HQ—Hl :yL(ég—él). (64)

Sinced, — 6; > 0 in this exampleH, > H; iff y; > 0. Therefore, for any extremal ensemble, the control
policy can only take valua, whensis is above the control lineu; can only be chosen whes, is below
the control line, and the control can only switch betwegrandus whens;s is on the control line. Since
s12 thus indicates switches betweenandus, we call it aswitching pointetweernu; andus.

Figure 6.1 shows a switching point for the Dubins car. The car can turmjef= (1,0,1) and right
ur = (1,0, —1); the switching point issp;, = (0,0, 2) which is the midpoint between the two rotation
centers. In the initial configurationgy, is above the control line, and thug, has to be chosen, as there
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are no other available control and the Hamiltoniam gfis smaller. Afteru;, is applied for some timesgy,
crosses the control line. At this point, both controls are maximizing the Hamiltonian

However, any application of;, will causesgy, to immediately cross to below the control line, thus
causing the Hamiltonian of to be larger than that of;. Thus, onlyup is a sustainable controht
the multimax point. The position of the control line thus uniquely determines the tvajeeverywhere,
including at the multimax point.

Let us now give a precise mathematical formulation of the intuitions above. MeBrst establish the
existence of switching points, and then use this result to show unique ded¢ioniof generic segment
length. In the next section, we will examine sustainable controls.

Lemma 12 Consider an extremal trajectory and its ensemble. For any pair of distioetrolsw;, u; with
8; < 6;, there exists a switching point in the vehicle frame at homogeneous cataslin

Ui — U5
sij=| Tj =T |, (6.5)
6, — 6,

such that

1. The Hamiltonians of the two control&,; and H;, are equal iff the world frame position &f; is on
the control line.

2. H; < H; iff s;; is above the control line, i.e. iff thg, coordinate ofs;; is strictly positive.

Proof:
In the inequality
H; < Hj, (6.6)
we develop both sides according to Formula 4.10 and subtract the leftsigadrom the right-had side.
The inequality thus obtained is identical to the one we obtain by developingrine
0 <(0,1,0)TwTwrsij, (6.7)

whereT andTyy r are the world-frame-to-control-line-frame and robot-frame-to-wordarfe transfor-
mation matrices, respectively.
]

Fact 6 Given two controlsy; andw;, let their rotation center representations (see eq. 3.11¢;tend c;.
Thenc;, c; and the switching poing;; are collinear.

Proof: From equations 6.5 and 3.11,

Sij = Cj — Cj. (68)
Let L = (l1,12,13) be a homogenous coordinates line througandc;. ThenLc; = Lc; = 0, and therefore
Ls;; = 0 and the switching point is collinear with the two rotation centers. |

Fact 7 Lete be an edge ob/. Then all pairs of distinct controls omhave the switching point in the same
location (with possibly different homogeneous weights).
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Proof: Let u; andu; be the two ends of. It is sufficient to show that for any;. on the edges;; and
si; are in the same location.
Sinceuy, is on the edge, there existis= (0, 1) such that

up = auj + (1 — a)u,. (6.9)
Multiplying by R /5,
¢k = ac; + (1 —a)q. (6.10)
Applying equation 6.8,
Sik = C)p — ¢ = a(cj — ¢;) = as;. (6.11)
Therefores;; ands;;, are homogenous multiples and thus represent the same location. ]

Fact 8 Let s, be the switching point for an edgeof U. Then the planar point represented fypoint has
the samd, ) planar velocity under all controls oa.

Proof: If all the controls ore have the same angular velocity, Formula 6.5 indicateis at infinity.
Any control one imparts the same motion velocity ap.

If e is not parallel to the) = 0 plane, then we calculate the planar velocityspfunder each of the
two ends ofe by assembling the velocity matrix from Formula 3.17 and multiplyingsbyas given by
equation 6.5. We obtain the same result; siage planar velocity under all the other controls eris
intermediate between these two, it follows that the planar velocity &f the same under all controls en

[ |

Lemma 13 The duration of each generic interval is uniquely determined by the positite control line.

Proof: Consider an arbitrary generic interval (i.e. a unimax segment with possiaad multimax
points at its ends) with a fixed starting configuration and a maximizing coatrtilthe interval is the last
generic interval in the trajectory, then the duration is limited by the final corstgun.

If the generic interval under consideration is not the last, then considg@uatitions of all the switching
points at the fixed starting configuration. Wheris applied, for each switching point it is the case that it
either never collides with the control line, or there exists a minimum positive timeiuotillides with the
control line. Since the interval is not the last on the trajectory, there mustdoatrol switch after it. The
time at which the control switch occurs is one of the times at which one of thetémgtpoints collides with
the control line. ]

The next section will show that control switches on generic trajectorealao uniquely determined by
the position of the control line. Section 6.3 will show how to calculate the durafigeneric intervals.

6.1.2 Sustainable controls

On piecewise constant trajectories, each applied control must be maxintizimgt only instantaneously,
but also for at least some short time interval. We formalize this fact in theepbrod sustainable controls.
Let asustainable controht timet be a maximizing control: for which there existg > 0 such that the
application ofu on time intervalt, t + ¢) keepsu as a maximizing control.

For canonical trajectories, since the control set is finite, sustainabilitysasaan be done on a pairwise
basis. A controk; is sustainable if and only if it is sustainable with respect to any other cantral; must
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be maximizing, and its immediate application must not cause the Hamiltoniap &f;, to become higher
than H;.

It is evident that only sustainable controls may be chosen by piecewistaobextremal control poli-
cies. If the control policy has in its ensemble a generic value of the Hamiltargamot one of the singular
values characterized in Section 5.2.3, then the control policy cannotit@rta singular intervals. The
control policy is therefore made up of unimax intervals separated by isatatééiinax points.

On such generic trajectories, despite there being multiple maximizing controls aiuitimax points,
the choice is, in fact, deterministic at these points.

Lemma 14 For any extremal trajectory, if its ensemble contains a generic value ofitrailtonian then
there exists only one sustainable control at all points.

Proof: The lemma is evident for unimax points. We only need to consider multimax points in this
proof. According to the analysis in Section 5.2.1, at a multimax point there mayult@le maximizing
edges, or a single maximizing edge.

As shown in the proof of Lemma 11, if two or more distinct edge& @fre simultaneously maximizing
then the value of the Hamiltonian must be singular. This case is thereforeoutled

Thus, only one edge can be maximizing. I& contained multiple translations, then Lemma 5 would
yield a singular value for the Hamiltonian. There are, therefore, only tvasipdities: eithere contains
exactly one translation, or it contains none.

Case 1:If e contains no translation, then the edge doesn’t cros§ the) plane. e therefore contains
only rotations that have the same sign on their angular velocities.

Consider a pair of rotations; andu; that have the same sign on their angular velocities sLdte their
corresponding switching point. As observed above, the two centectaifanc; andc; are collinear with
si;. At a time when bothy; andw; are maximizing,s;; must be on the control line. Also, on account of
corollary 1, both rotation centers are on the same side of the control limen®iis geometry, there exists
a half-plane bounded by the control line, so that, no matter whetherw; is applied,s;; instantaneously
moves into this half-plane. On account of Lemma 12, only one of the two deniy@ndw; is associated
with this half-plane; therefore, only one of the two rotations is sustainable.

By repeating this argument for all rotations @ronly one rotation or can be sustainable in this case.

Case 2:If e does contain a translation, assumeontains multiple sustainable controls. According to
the analysis in the previous case, no two of these sustainable controls cartie same side of tie= 0
plane. Therefore, there can be at most three sustainable controls: alexttewmes ok, of opposite sign
angular velocities, and the translation that is containeel by

If a rotation and a translation are both sustainable, then the translation hapéodilel to the control
line, in order to keep;; on the control line. As shown in Section 5.2.3, the Hamiltonian has a singular valu
in this case. If two rotations of opposite angular velocities are both sustajrihbn the translation onis
also sustainable, which implies, as above, tas singular. [ |

6.1.3 Periodicity of generic trajectories

In this section, we show that generic trajectories are periodic by provenfptlowing lemma:

Lemma 15 There exists a partitioning of the values of the Hamiltonian into a finite set of opervals
and a finite set of critical values, such that every canonical trajectatly & Hamiltonian within a single
interval, containing the same control switch, will contain the same sequeramtrol switches, following
the switch that the trajectories have in common.
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Proof: The partitioning of the Hamiltonian is effected by a finite setwfical valuesof the Hamilto-
nian. To obtain the set of critical values, we start with the set of singulaesgsee fact 5) and add to them
the magnitudes of the velocities of all switching points. Fact 7 indicates that themly one switching
point per edge o/, and fact 8 indicates that this switching point has the sé@img) planar speed under all
controls on its edge. Therefore, the number of velocity magnitudes to leeladdhe set of critical values
is no larger than the number of edged bf

Now we want to show that outside of these critical values, continuousrpation of the value off
starting from a trajectory with some control switeh, us does not change the structure of the trajectory.

Consider an extremal with a value Bf not in the partitioning. Since values &f where & = 0 edge
of U is maximizing are singular, this extremal may not contain any translation-tramstaticches. If the
trajectory contains control switchy, ua, then the(yr, ;) configuration at this switch may be uniquely
computed from Lemma 6 and from the analysis in Section 6.3.1. (hig,) configuration furthermore
changes continuously with changesfn

Starting from switchuy, us, consider each possible switah, u; with & # 2. Each of these switches
will happen when the corresponding switching point hits the control lineti@oously perturbing?, and
thus the initial configuration, will not immediately change the order in which thickimg points hit the
control line. Changes in this order need to pass through configuratiovisiéh either:

1. Two or more switching points hit the control line simultaneously. In this casksast two distinct
edges ofU/ are maximizing; thus an entire vface Gfis maximizing, and the value df is singular.

2. The trajectory of a switching point becomes tangent to the control lingheAtangency point, this
switching point’s velocity is parallel to the control line. Calculating the Hamiltoniahia switching
point at the tangency moment, it is equal to its velocity, thereféiie critical.

Thus, as long as the change ih does not cross a critical value, the trajectory structure is constant.
Since there are a finite number of possible control switches on genericttrégs (two for each edge of
U), all generic trajectories beyond a certain number of switches must bgoeriaglic in their switch se-
quence. Since each switch corresponds to a fixedd; ) configuration, these trajectories are also periodic
in (yr,01) space. [

We will discuss they;,, 01,) space at more length in Section 6.2. For now, let us prove a limitation on
the number of periods for a certain class of extremal trajectories. We el thes following fact:

Fact 9 Generic trajectory segments with constéfit) have constant controls.

Proof: Sinced(t) is constant, the control must be a translation. On non-singular trajectivees,may
only be one maximizing translation for any givén ]

Lemma 16 Generic trajectories for which the image @ft) is notS*, and for whichd(0) # 0, contain no
more than one period.

Proof. Consider a candidate trajectory that contains more than a full period. Wenaie that this
trajectory is not optimal by constructing another trajectory from the startda@dal that takes an equal
amount of time, but does not satisfy the Maximum Principle (and is therefareptimal). Figure 6.2
illustrates the idea.
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Figure 6.2: Construction showing that optimal trajectories for whitie image off(t) is not S', and for which
6(0) # 0, contain no more than one period.

Any trajectory achieves both a minimum and a maximum valug/foFor now, assume th&t(0) is
not either of the extreme values. By fact 9, trajectories for which the imagé& pis a point contain zero
periods.

Let T be the duration of the first period. Sin€€g) is continuous, it must achieve all the values between
the minimum and maximum values &fn (0,7"). Therefore there exists € (0,7") such that)(t,) = 6(0).
Also, y(0) # y(t1), sincet; < T. Let A be the section of the trajectory on the interilt, ], let B be the

section of the trajectory oft;, 7], and letC' be the remainder of the trajectory. The controls at the start of

A and the start of” are the same.

Now construct the trajectorfB AC. This trajectory takes the same durationaBC, is feasible, and
reaches the goal. On this new trajectory, we have the same controls agihaibg of A (time T' — t1)
and beginning of” (time T'), but differenty values. If we compute the Hamiltonians at these times with
equation 4.12,

H(T —t1) = &1(T) + 0(T)yo(T — t1) (6.12)
H(T) = &1(T) + 6(T)yL(T), (6.13)

we find that the Hamiltonian is not constant of the trajectory, sind@’) # y.(T —t;) andf(t) #0. =
Let us now examine a way in which generic trajectories may be easily visualized

6.2 Visualizing trajectory segments uniquely determined by the antrol line

From a topological point of view, the requirement that the Hamiltonian betaohen extremal trajectories
(Theorem 1) makes it possible to represent extremal trajectories aslgvek of the Hamiltonian. In the
control line frame of reference, the level curves of the Hamiltonian arediwm@nsional, only depending on
yr andfy, (eq. 4.12).

It is not particularly difficult to represent these two-dimensional leveVes graphically. Figure 6.3
shows some examples. Specifically, assume control

u; = (v; cos ay, v; sin o, w;) (6.14)
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®

A
A\

(c) The differential-drive, a wheelchair-like vehicle.

Figure 6.3: Switching spaces and example trajectories for standamtimbehicles. For each vehicle, the figure on
the left side shows level curves of the Hamiltonian in the, 6;,) space. The figure on the right side shows some
extremal trajectories, in the plane, that correspond ttigqes of the Hamiltonian level curves on the left.
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is maximizing for soméyy,, 6;,) configurations that are on the level curve for a specifiedThen, from
equation 4.13,

H —v;cos(0r + o) = yrwi. (6.15)

This is a sinusoid curve. Repeating this analysis for all the controls in thenizah control set/,., we
obtain the level curve of Hamiltonian valué as a union of (possibly degenerate) segments of sinusoids.
The bounds of these segments arg@n 6;,) configurations that are multimax, and thus can be calculated
through the techniques of lemmas 6 and 5.

This representation of level curves makes it easy to visualize the periodigigneric trajectories. For
the Dubins car (Fig. 6.3 (a) ), the periodicity is evident for both trajectdfi¢$a turning motion that, as
far as constrained by the control line, may continue indefinitely) and () @(sequence of left and right
turns). The continuous level curve that contains configurations§4ar(d (6) contains a singular point at
the origin (showed twice since thgr, 01) space has a cylindrical topology). In tl@& 0) configuration,
corresponding to the car being on the control line and parallel to the ¢tingpthere is a choice of:

1. A multimax segment of indefinite length, driving straight along the control line
2. Aleftturn.

3. Aright turn.

The level curve passing through this configuration is thus singular. Sinmédyses apply to the Reeds-
Shepp car (Fig. 6.3 (b) ) and the differential drive (Fig. 6.3 (c) ). tElawel curve contains a potentially
infinite number of optimal trajectories, since it is possible to start and endrargwon it, as long as travel
proceeds continuously, with the possibility of periodicity as well. Some leveks(e.g. the one containing
configuration (2) for the Reeds-Shepp car) may consist of multiple digegrments.

6.3 An algorithm that generates trajectories based on the control line posi-
tion

The approach described in Section 6.2 is useful for visualizing extreajattories, but not particularly
suitable for generating them. An algorithm based on this approach wouthtoatetermine connections
between the ends of the various sinusoids, and perform graph ssamatrder to determine the sequence of
switches and switching configurations. This section presents a simplerdinecé (if less visual) method
to achieve the same goal.

A very simple algorithm for building a generic trajectory, given a position efdantrol line, would be
to

1. Determine the sustainable control, by calculaﬂﬁ@nd%H for all controls in the canonical control
setU..

2. Integrate the sustainable control for some very small time

3. Repeat.
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This algorithm has a number of problems, notably error accumulation anétigedof missing out on
controls that are only applied for a very short time. We will spend the rereaivicthis section building a
much more precise algorithm. Its basic outline is

1. Determine the sustainable contigby calculatingH and%H for all controls in the canonical control
setU..

2. For each contral; in U,, determine the time to switch ta, i.e. the time that; can be applied before
u; becomes sustainable.

3. Pick the minimum of the switching timef,,;, .
4. Integrateu for t¢,,,;, to obtain a new state, using Equation 3.4.

5. Repeat.

Step3 is trivial, and stept is achieved by the method described in Section 3.2.2. Biélh be described
in the following section. Step is the most challenging.

In the context of the characterization of switching points in Lemma 12 abte@? $s an instance of a
more general kinematics problem. Given a planar vehicle that is moving atityelg constant in its own
frame of reference, and a poiftrigidly attached to the vehicle (the switching point, in our case), how long
will it take until point P collides with a given line in the plane? We solve this more general problem in
Section 6.3.2.

6.3.1 Determining all sustainable controls

As defined above, sustainable controls need to maximize the Hamiltonian, amatgecstate in a manner
that doesn't increase the Hamiltonian of other maximizing controls. We hazadglishown how to calculate
a control’'s Hamiltonian.
Assume two canonical controlg; andu;, are both maximizing at some multimax pointt; = H; =
H. From equation 4.13,
Hi(qr(t)) = vicos(0r + ;) + yrwi (6.16)

Assumeu; = (vj cos o, v; sin a5, w; ) is instantaneously applied. Then the rate of change of the expression
above is

d
$Hi(qL) = —w;v; sin(fr, + o;) + vjw; sin(fr, + ;) (6.17)
If u; is sustainable, its application must not immediately cdilise® become greater thaid. Therefore,
iH ; <0 (6.18)
dt—" — '

In a given configuration, we repeat this procedure for all pairs ofimiaing canonical controls and elim-
inate all non-sustainable controls. As shown in Lemma 14, if the valué of generic then there will be
only one sustainable control left, when this analysis is finalized.
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6.3.2 Time to collision with a line

In the next section, we will see that the solution to the switching time problem iesdlvee cases. The
most difficult case is that in which the motion is a nondegenerate rotation.okang this case, we will
prove an auxiliary lemma and will introduce calculations for some quantities.

The following lemma gives us the time to collision with vertical line= ¢, when moving on the unit
circle (starting at angle,).

Lemma 17 The minimunt > 0 such that

cos(wt + ¢1) = ¢ (6.19)

wherew # 0 andcg € [—1,1],is

t:2—7rmin - 2.1(:0502 ’ _c1+ .istcoch (6.20)
|w| 27 sign w 27 sign w

where{z} = = — |z| is the fractional part ofz.

Proof: The problem is restated equivalently as finding the minimum of a set:

tmin = min{t > 0| cos(wt + ¢1) = ca} (6.21)

Defining
Ay ={t>0]|3k € Zwt+ ¢ = acos ca + 2k} (6.22)

and

A_={t>0]|3k € Z wt + c; = — acos ¢ + 2km} (6.23)

we have
timin = min(A4 U A_) (6.24)
= min(min A, min A_) (6.25)

Next we findmin A, . In the case where > 0

1
min A, = " min{t' > 0|t = —c; + 2km + acos c2} (6.26)
_~a + acos 02+ (6.27)
w
2
+Z min{k | — ¢; + 2km + acos ¢z > 0} (6.28)
w
—ep + 2 —
_ —at acose 27 (cl acos 021 (6.29)
w w 2m

Since[z] = —|—=z],

—c1 + acoscy 2w, —c1 + acos ¢y

min A, = " - | 5 | (6.30)
:27r(—01—|— acoscz_L—cl—l- acosch> 6.31)
w 2T 2T
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Therefore

2 —
min A, = 2 {WCOS@} (6.32)
w 27
In the case where < 0, we analogously obtain (by using the identityn S = — max(—S) )
2 —
min A, = 2 {} (6.33)
w 27
Therefore
min A, = 2n —w (6.34)
|w] 27 sign w
Analogously,
2
minA_ = —% ]Gt acsc (6.35)
|w] 27 sign w
Equation 6.20 follows immediately. ]

6.3.3 Time to switch

We are now ready to give a general solution to the time to switch problem. Irotiteotline frame, let
P(0) = (zp,yp,wp) be the homogeneous coordinates of a point of interest (i.e. the switching,po
possibly at infinity, attached to the robot,tat 0. Let R = (zg, yr,w) be the homogeneous coordinates
of the center of a (possibly degenerate) rotation, corresponding tooten= yr, § = —zp, = w. We
would like to find the minimunt > 0 such thatP(¢) is on thex axis.

We will use Lemma 17 to solve the nondegenerate rotation cage(). We calculate a few additional
guantities to reduce the rotation case problem to the situation in Lemma 17. Werddtinematics from
eq. 3.14 imply

yp(t) = by sinwt + bg cos wt + bs (6.36)
where
by =zp —wprr/w (6.37)
by = yp — wpyr/w (6.38)
b3 = wpyr/w (6.39)

Letr = /b] + b3 (sinceP andR are different pointsy > 0) and lety = —atanZby, b2). ThenP is on the
x axis whenyp(t) = 0, i.e.
rcos(wt + ¢) = —bs (6.40)

To reduce this case to the situation in Lemma 17, let
1= (6.41)

and
co = —bg/r. (6.42)
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The other cases are trivial. The general solution, divided into threxs edth several subcases, can thus

be detailed as follows:

1. Degenerate cases
(P andR correspond to the same planar point,
orw=wp =0)

ayp=0. t=0
b) yp # O: t=o00
2. Translation

(w=0,wp # 0)
a)yp =0: t=20
b)zr =0o0r

yp/xr <0: t=o00
C)yp/rr>0: t=yp/zR
3. Rotation

(w #0)

Obtaincy, ¢o as in equations 6.41 and 6.42.

a)cp ¢ [-1,1]:  t=o0
b)ca € [-1,1]:  Obtaint from Lemma 17.

This concludes our analysis of how to generate non-singular trajecgngents.
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Chapter 7

Finding minimum time trajectories

The generator algorithm in Chapter 6 constructs a trajectory for a givgitign of the control line. In this
chapter, we use this result to find the fastest control line trajectoriesaheth the goal. For singulars, we
are able to find the exact location of the control line. For generic trajestosie vary the position of the
control line until the goal is attained with a sufficiently small error.

The position of the control line is determined by three parametersk, and k3. Without loss of
generality, we can restridt; andk, such thatk? + k2 = 1. While positioning a line is thus generally a
problem with two degrees of freedom, working with a finite control set allow/$o consider all possible
pairs for the initial and final controls, for any given instance of the fjenmb Setting the condition that the
Hamiltonian needs to be equal for the initial and final controls allows us taceesthe problem of finding
the control line to one degree of freedom. This condition is equivalenttesrdéing one point, possibly at
infinity, on the control line.

7.1 Parametrization of the control line position by the value of the Hamilto-
nian

A parametrization by the Hamiltonian value is convenient for search. Faulsirsg we showed in Chapter 5
how to calculate all possible singular Hamiltonian values, and this parametriyagida the position of the
control line directly, in most cases. For generics, we have shown in 8dctid3 how to calculate a number
of critical values of the Hamiltonian, such that the trajectory structure (i.eséfjgence of controls used) is
constant when the Hamiltonian varies between two critical values.

We describe a procedure to obtain a functjf/ ) that returns a maximum of twik;, ks, k3) tuples
characterizing the position of the control line or, equivaleritby,ks) tuples, agk:, k2) = (cos ¢, sin ).

This function of H is curried from a function that involves several additional parameteksenGnitial
and final statesyy andgqy, with corresponding robot-frame-to-world frame transformation matfigesnd
T, and initial and final controlsyy anduy, letcy andcy be the rotation center representations (see eq. 3.11)
of ug anduy, respectively. Lety andcy ; represent the initial and final rotation centers in the world
frame:

ewo = Toco = (ao, bo, 9o) (7.1)
cewr =Trep = (ag, by, gy). (7.2)
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The Hamiltonians of the initial and final controls need to equal the trajectbigrsiltonian value:

(—sin g, cos p, ks)ewo = H (7.3)
(—singp, cosp, k3)ew s = H. (7.4)

Subtracting,
(—sing, cos ¢, k3)(cwo — cwy) = 0. (7.5)

Let (a,b,9) = cwo — cw . There are two cases, according to whethir zero.
Caselg#0

We solve forks from equation 7.5 and replace into system 7.3 to obtain

—a’sinp + b cosp = H, (7.6)
where
ad =ap— oL (7.7)
g
W =b;— b9, (7.8)
g

If o’ = V' = 0, there exists no solution anf /) identically returns the empty set. Otherwise,feanda’
be such that

a =7'sind (7.9)
b =1 cosa. (7.10)

Then
' cos(p + ') = H. (7.11)

We solve this equation and replace into 7.5 to obkain

H
¢ = —a’ & acos — (7.12)
r
asinp —bcos
p .

ks =

(7.13)
The functionf (H) returns, for any value off, the two(y, k3) tuples corresponding to this system.
Case2g=0

In this case, the initial and final controls have the same angular velocity=Ifb = 0, thency¢ and
cw s coincide. We will treat this case in Section 7.3. Otherwiser; @bdo be such that

(a,b) = (rsina,rcosa). (7.14)
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By algebraic manipulation,

rcos(p +a) =0, (7.15)
and therefore -
gpz—a:l:E. (7.16)
As above, we have
(—sinp, cosp, k3)ew s = H. (7.17)

We will treat the case whergr = go = 0 (ug anduy are translations) in Section 7.3. Otherwise,

 H+aygsinp —bycosy
95 '

ks (7.18)

In conclusion, we have obtained a parametrization, in the general ¢abe,position of the control line by
the value ofH. There also exist two cases where this parametrization does not exist:tidaitial and
final motions are both translations, and when the initial and final world fragtecities are identical. We
will begin by studying how to find optimal trajectories in the case where a paraat@n by H exists. The
cases when the parametrization does not exist will be studied in the sealbofithe chapter.

7.2 Finding optimal control policies corresponding to control lines paranetrized
by H
As shown previously, control line trajectories can be divided into singwdad generics. Singulars have

singular values off that were exactly determined in Chapter 5. Generics have control policegrin
uniquely determined by the position of the control line.

7.2.1 Computing singulars

Since, for singulars, the value df belongs to a finite set of singular values, we use the control line
parametrization developed above to determine the exact position of theldiortia this case.

Generic excursions

Singulars are not composed entirely of singular points. On non-singedanents, the control switches and
durations are uniquely determined by the position of the control line. We w@altrajectories that contain
no singular point (i.e., no point with multiple sustainable contrg&s)eric excursionsSince the position of
the control line is known, generic excursions are constructed by thgt@t&generator. Generic excursions
are of three types:

1. Type A: The initial generic excursion on a singular trajectory. It issgated by running the Chapter 6
generator fromyg, until a singular point is reached.

2. Type B: The final generic excursion on a singular trajectory. Geaeedrby running the Chapter 6
generator in reverse frogy, until a singular point is reached.

3. Type C: Intermediate generic excursions. Generated from ondaipgunt to another singular point.
Since there exist multiple sustainable controls at the initial singular point, theagenalso needs to
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be given an initial control (picked from the sustainable set) in order tergé®m a type C generic
excursion.

Building singulars from generic excursions and singular segments

The following algorithms outputs a list of singular trajectories that reach thk §or a given instance of the
problem, letg4;, be the state, in the control line frame, reached at the end of the type Aigereursion,
and letgpy, be the state that the type C generic excursion begins with. All possible sitigjétories need
to fill the gap between 4;, andqp;, with type C generic excursions and with singular segments. Since all
the singular segments are translations pf= H, we can consolidate them into a single singular segment.

The algorithm for generating the middle part of a singular is thus to brarfcandf keep following
each possible generic excursion framy,. If it is possible to connect the obtained statg, to ¢g, by a
singular segment, output the resulting trajectory into the list of results, artthae in order to find all other
singulars. Keep applying the same procedure recursiyelybecoming the new 4;,. Stop computation in
each branch when the total time of the trajectory under consideration fEsssad a reference time, e.g.
the time of the trajectory found by the simple planner from Chapter 3.

The only part that needs to be further detailed in the algorithm is how to detethersingular segment
connection betweens; andgpy. The states can be connected by a singular segment o6y # 0.
Furthermore, ify4;, = yp, and there exists a sustainable contrpht ¢ 41, that effects a translation parallel
to the control line, they 47, andqp;, are united by an application af, for an appropriate length of time.

If yar # ypr and there exist two translation contraelsandus that are sustainable @f ;,, theng 41, and
g1, may be united by a tacking segment that consists in an applicationfoflowed by an application of
uo. Thisis always possible if; andusy havey;, velocities that are of opposite signs. If thgvelocities have
the same sign, there are some cases when such a connecting segmenbedilt (i.e., if the minimum
v is either in the wrong direction or overshoots the differencgricoordinates betweep,;, andgpr). In
such instances, we simply continue the computation without outputting a trajéctothe results list.

7.2.2 Approximating generics

For generic trajectories other than TGT, we have found no analytical méthdetermine the remaining
parameter of the control line. Our best method is to approximate the optimaltorgjéc this case by
sampling all possible values @f at a fine resolution and picking the trajectory with the minimum error.

SamplingH works because small changesHAhusually correspond to small changes in the trajectory.
As we have shown in Section 6.1.3, as long as the initial state changes in aavap#sn’t cross a critical
value of the Hamiltonian, the trajectory structure will stay constant, and thecbalyge is in the duration
of the various controls applied on the trajectory.

Phase shift metric

In order to conduct a search, we need a way to determine how close @drgjeomes to reaching the
goal. As shown in Section 6.1.3, all generics become periodic after a maximmonen of control switches.
Given a position of the control line, we use the following metric. Generatgextaay starting fromy,, and
generate a trajectory starting frafp. The trajectory starting frony and corresponding to the given control
line reaches the goal if and only if these two curves are exactly on topchfather past a certain point. In
the general case, the curves differ. If they differ in structure, theretls no small change in the position
of the control line that can change that structure (we would need to arastical value ofH for that). We
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consider the metric to be infinite in this case. Usually, the two trajectories hasaitie structure, but differ
from each other in theiphase shifti.e. thex; coordinate displacement. In such a case, we consider the
value of the phase shift to be the metric.

Sampling H space

The Hamiltonian cannot be negative. Also, there exists a superior bautig ¢Hamiltonian, corresponding
to the highest critical value, beyond which all the trajectories are whirlscfwive have studied already).
Thus, given an instance of the problem, the following uniform sampling ilhgoiis feasible:

1. Divide the(0, H,,,,) interval uniformly, with a resolution fine enough to ensure a good coeenfg
the smallest interval between critical values.

2. For each sampled value &f, compute the two possible positions of the control line from khe
parametrization.

3. For each possible position of the control line, generate trajectorigsgy@ndq; and compute the
phase shift metric.

4. Out of the trajectories that reach the goal (i.e. have a value of the phdsmetric that is considered
close enough to zero), pick the fastest.

Sampling does not have to be uniform, but the resolution can be variedtscsample more densely
around points with low values of the phase shift metric.

The phase shift evidently changes continuously with changés.ifAs H approaches a value corre-
sponding to an optimal trajectory that reaches the goal, the phase shift@aero. For future work, it
would be a very useful result to bound the rate of change in the phésassH varies, and to show that this
function is Lipschitz continuous.

7.3 Finding optimal control policies in the cases when the control lineannot
be parametrized by H

In the notation of Section 7.1, we can safely ignore the case wh@n= cy . In this case, the initial
and final control have the same center of rotation in the world frame (qaagdlel translations). Since the
controls need to have the sarfile the angular velocities (or planar velocities, for translations) are also the
same. Therefore, for any such trajectory, we can shift small amoumswément from the initial to the
final control, and generate an infinite number of trajectories that take the sane. At least one of these
trajectories (zero time on the initial control) will be found by other means.

Thus, the remaining case when the control line cannot be parametrizBdi®yvhen both the initial
and the final motion are non-parallel translations. (gt 7o) and(z s, 7¢) be the world-frame velocities of
these translations. Since

H = kg + koo = k‘ﬁf + k;Qy'f, (7.19)

H > 0, and the translations are not parallel, bétrand the(k;, k2) direction vector for the control line are
uniguely determined in this case. We use this information to compute the contrfidine velocities for
the two translationstoz, 7o) and(z sz, yrr,) repectively. It must further hold thaty, = &7, = H.

There are two cases: either the trajectory contains a singular point, @sitrax.
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7.3.1 Singular trajectories that begin and end with transldions

We will show that considering the case of singular trajectories that begiread with translations is not
necessary for finding an optimal trajectory. Assume the trajectory cordaimgyular point. If at least one
of the g, velocities of the initial and final controls is zero, then that control effedtarsslation parallel to
the control line and the trajectory will be found in the regular singular $earc

If yroyry # 0O, there exists a regular singular that is just as fast as the trajectory cowigideration.
This regular singular is obtained by completely removing the shorter of the amslétions, and replacing
it by a combination of elongating the regular singular segment, at the singuitdrtpat exists within the
trajectory, and either reducing or elongating (according to the sign@f; ;) the longer translation.

7.3.2 Generic trajectories that begin and end with translaibns

The solution of this case (translation-generic-translatio,@T trajectorie$ is based upon an idea due to
our colleague Weifu Wang. Assume there exists no singular point alongtanad trajectory that begins
and ends with translations. As shown above, both the direction of the téinfaand H are uniquely
determined.

Rotate the world frame such that theaxis is parallel to the direction of the control line determined
above. Consider the locations of all the switching points betwgeand other controls af. Lety be the
minimumy coordinate for a switching point that needs to be above the control ling flarbe maximizing;
let y_ be the maximuny coordinate for a switching point that needs to be below the control linegfdo
be maximizing. In the rotated world frame, theparameter for the control line (i.e. thyecoordinate of the
world frame origin in the control line frame) needs to be infthg, —y_] interval.

Choosingks anywhere in this interval will lead to exactly the same sequence of contitwh®s, and
the same duration for the subsequent control applications (&irisdixed). We will show that a translation
of vector (i sz, 9z,) cannot appear twice in this sequence. If it appeared twice, we can lugduavalent
time trajectory by entirely removing the second application and making the fipfitagon longer by the
same amount. Consider the locations where the active switching points anetiatl switches on the new
trajectory. The active switching points are on one line (the old control linetherfirst section of the
trajectory, and on a different line on the second section of the trajectbilrefore this trajectory does not
verify the Pontryagin Principle, so it cannot be time optimal. Since the originatttanslations trajectory
is time equivalent, it cannot be time optimal either. Therefore two parallell&i@mss cannot appear on the
optimal trajectory under consideration.

Sinceu thus can only appear once in its correct orientation, place the controhyvenere in the valid
interval (e.g.k3 = —y.) and use the Chapter 6 generator to build a trajectory until the switel & the
correct body orientation. Lef be the distance travelled by the rigid body between the first and the final
control switches on this trajectory. Then the position of the control line eagxhctly determined.

7.4 Conclusion

In the case of TGT trajectories, the position of the control line is not detethtipe¢he value of the Hamil-
tonian and we use a specific method for saving this case. All other cages pdsition of the control line
cannot be parametrized by are not necessary to be considered for finding an optimal trajectorgnWh
parametrization is possible, we have two cases. For singulars, we exaigtiynthe the position of the con-
trol line, and we pursue and exhaustive search based on stringirtheéogeneric excursions. For generics,

60



we sample thdd space and use the phase shift metric to find an approximation of the optimatdrgje
This algorithm, together with the algorithm for finding whirls in Chapter 4, corissta solution to the
problem posed in Section 3.1.
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Chapter 8

Implementation and results

This chapter describes the results we have obtained by implementing arigrtime more common cases
among the algorithms we have described. The implementation did not containghmiamon “whirls”
and “tacking” cases.

8.1 Implementation challenges

The main implementation challenge consisted in the fact that many of the algoritessnted in this
work are geometric. As such, they can be easily visalized in the genserl ldawever, a purely geometric
approach is not straightforward to implement in code, and often missega gptgific cases. Developing the
series of geometric formulas presented in Chapter 3 was thus an essantadtion for the implementation.
Similarly, the “collision with line” algorithm of Chapter 6 is easy to visualize, butesponds to relatively
complex algebraic formulas.

Finding a suitable implementation language has also proven somewhat difficthié initial stages, we
used Matlab, but were unable to extend the code beyond a certain sizealgbilkeeping it manageable.
The algorithms presented are actually fast enough that we were able testdop a in-browser Javascript
version of a large subsection of the codebase, at one point. Eventuegiihg settled on Python with NumPy,
and recently our colleague Weifu Wang has been working on portingastz sections of this code base
to the C language, with a resulting speed-up factor of about one hundrederical precision was also a
factor we had to fine tune on a few occasions.

8.2 Results

We have implemented the search algorithms described in about three thdinsanof Python code. We
have compared the results with those obtained by a direct planner method imf#drbg our colleague
Wenyu Lu, which uses reverse kinematics to find the fastest piecewistaodrrontrol policies with up
to four segments. This direct plannning algorithm first computes exactly alptissible three segment
trajectories, according to the eight possible cases (e.g. rotation-transgiatigion or translation-rotation-
rotation etc.). The algorithm then samples the possible durations for a fagihest, to find the fastest
trajectory with up to four segments.

With a naive uniform sampling strategy for the generic trajectory findewedksas speed limitations
of interpreted code, running the code takes on the order of ten minutesopfiguration on a desktop
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computer (including the running time for the reverse kinematics planner).ae tun two tests, with one
hundred random starting configurations for the symmetric omnidrive riobaach test. For each tested
configuration, the following results hold as we would expect:

e A generic or singular exists and achieves the minimum time over all methods.

¢ If the generic or singular has three or four actions, the direct pladwaya finds a trajectory of the
same speed. This is because the direct planner, as described dlvays,fands the fastest trajectory
with three or four segments.

o If the fastest generic or singular has five or more actions, it is typicaltgifdsan three- and four-
action trajectories from the direct method.

The first test picked one hundred random starting configurationstiiemangey, € [—5, 5] x [—5, 5] x
[0, 27), with the goal at the origin. For this relatively short distance to the originfonad that the direct
method came close to the fastest trajectory 90% of the time. Of the extremaldcgevere fastest 76% of
the time, and singulars 24% of the time. The second test picked one huaddmihr starting configurations
from the wider range, € [—10,10] x [—10,10] x [0, 27), with the goal still at the origin. For this longer
distance, the singulars proved fastest 81% of the time, and genericsQ8algfithe time. The direct method
became less accurate, as expected, with only 83% of the runs findingcdrajeomparable to the fastest
extremal.

For about 2% of the configurations tested, the direct planner was initialhdfto be faster than extremal
trajectories. Upon closer examination, all of these cases were foundctused by insufficient sampling.
Fine tuning the sampling resolution resulted in finding extremal trajectories tratat least as fast as the
direct planner in all cases.

Figures 8.2 - 8.9 show some of the results obtained, both in the tests desdribedfor the omnidrive
and in isolated runs for other vehicles.

Our colleague Weifu Wang has since re-implemented the generic seaemdddThis has reduced the
average search time for a random starting configuration to less thanradsecoa standard 2010 desktop
computer, for the symmetrical omnidirectional vehicle with seventeen contrtig icanonical control set.
For larger control sets, we expect this duration to grow no worse thigngmially with the square of the
number of controls.

The increased speed of the C code allowed for running a more extdrate of tests, shortly before
the finalization of this work. An extensive test was run for the differewiizie, with over fourteen thousand
starting configurations in the-3,3] x [-3,3] x {7} set. The results of this test are shown graphically
in Figure 8.1. This figure generally corresponds with Figure 12 from($8k this work for a detailed
description of the trajectory types indicated by the different colors). Nigaleémprecision is causing some
blurring and speckling, particularly around the isocost lines.

For each of the differential drive, Dubins car, and Reeds-Sheppveshave also run a further batch of
one thousand random starting configurations in[th& 3] x [—3, 3] x [0, 27) set. A further one thousand
random starting configurations jr-7, 7] x [—7,7] x [0,27) were tried for the symmetric omnidirectional
vehicle. Optimal trajectories were found in all cases, with an exception éoR#eds-Shepp car that we
detail below.

For the differential drive, generics were fastest in 645 cases,iagdlars in 355. For the Dubins car,
generics were fastest in 252 cases, and singulars in the remaining @d&eFsymmetric omniwheeled
vehicle, generics were fastest in 477 cases, and singulars werst fai@3 cases.
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Figure 8.3: Comparison of three Dubins car trajectories: simple plaongut, fastest singular and fastest generic.

For the Reeds-Shepp car, generics were fastest in 217 casem@gnidrs in 673 cases. In the remaining
110 cases, neither generics nor singulars were found. We havencedfihat these cases were whirls (the
whirl-finding algorithm not having been implemented) by running one thalisaore tests for the Reeds-
Shepp car for starting configurations in the /2 and—37 /2 planes and plotting out the configurations for
which no generic or singular were found. The shapes and sizes aéghking plots closely corresponded
to the central regions (corresponding to whirls) in Figures 14 and 13,3#135 from [24].

In all cases, the trajectories found were at least as fast as thoskliguhe simple universal planner. A
comparison with the reverse kinematics planner is pending, based on alesriempation of this code base

in C as well.
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Figure 8.4: Simple planner output, compared to a generic trajectoryifieomnidrive.
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Figure 8.6: Simple planner output, compared to a generic trajectorjhi@omnidrive.

67



%
generic \ singular

Figure 8.7: Fastest singular and fastest generic trajectories congegiven pair of configurations for the omnidrive.
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Figure 8.8: Simple planner output, compared to the fastest trajectorthie Reeds-Shepp car.
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Figure 8.9: Simple planner output, compared to the fastest trajectorthie Reeds-Shepp car.
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Chapter 9

Future work and conclusions

In this chapter, we discuss promising directions for future work baségeocurrent results, and we conclude
the present work with a series of general observations and lessonsdea

9.1 Future work

An immediate improvement for the work done would be to implement the whirls anchtac&ses. Tacking
trajectories do not occur for any of these vehicles, as they requiratae edge ofU to be in theuy = 0
plane. Whirls only occur in a very simple case for the Reeds-Shepp cae{tivint turns).

The sampling strategy used for finding the fastest generic can be muchviedpfeor uniform sampling,
we have a sketch of a proof that, for any degree of approximation deesiréhe optimal trajectory time,
there exists a corresponding sampling resolutiorffdahat achieves a trajectory withing that approximation.
The running time can also be considerably sped up by implementing non+arsiompling and using, for
example, a sampling strategy based on Newton’s method.

Currently, we examine a model in which there are no obstacles and thels@witch instantaneously.
There are reasons to believe that these restrictions can be lifted fronetiretibal analysis. By applying
additional results from classical optimal control theory ([18]) to an impdomnodel, it seems possible to
obtain results of very immediate practical relevance.

9.1.1 Costly switches

One of the more serious difficulties encountered by geometric optimal camiabisis has been the so-called
“chattering” phenomenon (see, for example, [28] and the work ptedeabove). Some motion vectors
can always be obtained from a combination of infinitesimal movements in otremtidins. There will,
furthermore, exist optimal trajectories, for simple kinematic or dynamic modalsin¥olve such chattering
motions. Such trajectories can never be followed by a practical contrafi¢ne controller’'s feedback loop
will always involve some delay in changing the control, and the physical oosms themselves have
inertia. One possible approach to this problem is to show that, for eachraingtdgtimal trajectory, there
exists a non-chattering equivalent trajectory; but this does not holdsit@itions (see [11] for an example).
A more satisfying approach is to explicitly model the fact that control switelmnesnherently costly;
in a practical situation, we will almost always prefer a slightly slower trajgctath three switches to
another trajectory with billions of switches. In his seminal work that constitimedasis of our analysis,
Pontryagin ([18] p. 263) acknowledges this issue and suggests theifadleolution: “in a number of cases,
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the controllers have a definite inertia [. . .]. Let us [then] make the parametghase variable, and let us
take the derivative of to be our control parameter”.

Such a model is similar, in some respects, to the delays involved in a dribersrange maneuvers
with an automobile (e.g. three-point turn, parallel parking). To go froonwhrds-left” to “backwards-
right”, the driver has to stop the vehicle and adjust the “shifting” contrsisefing wheel, transmission
stick) to different positions, which takes time. Some velocity shifts (e.g. ‘ods-straight” to “backwards-
straight”) can be achieved faster than others.

Costly switches cannot be dealt with by the Pontryagin Principle in a direchenarHowever, we
can build an augmented mathematical model, suitable to analysis through theagonRyinciple, in the
following way. We will augment the space of controls with some new dimensionsittiting a “shifting
space”. Let the shifting space contaiprivileged points, corresponding to the old contréis - - -7 ¢,,. We
will keep the old controls, and call them “movement” controls. Applying cdntwall result in a movement
of velocity ¢; in the plane if and only if the vehicle is at the point corresponding to contiolshifting
space (in order to keepdifferentiable with respect tg, as required by the Maximum Principle, we will
in fact associate with each movement control a very sharp bump funcieéakjng at the corresponding
point in shifting space). It is therefore never optimal to apply contumless we are at the right point in
shifting space. For each oriented pair of movement contiiols we will furthermore create a “shifting”
control, which keeps the rigid body motionless in the plane, but moves betiveeshifting space points
corresponding té and; in a time interval corresponding to the delay we want to model as involved in suc
a switch. The shifting control should, furthemore, be unable to switch leehary other pair of movement
controls.

While the presented model introduces a number of additional controls,weenbaeason to suspect that
these controls change the existing analysis, as the shifting controls hawpact on position in the plane,
and therefore should not change the value of the components of thetadgiilie inSE(2). This intuition
needs to be, however, verified by rigorous proof.

A model with costly switches has additional benefits, besides ruling out dhattelt allows us to
accurately model tasks such as pushing a rigid body (e.g. a part osemlaly table, or a piece of furniture
in a room), a situation in which changing the pushing direction has costsiagsbwith re-orienting the
manipulator towards the new direction. For a very simple example, we may eottsé&problem of a robot
moving a heavy bench by lifting one end at a time and rotating the bench atioerrtdher end. A naive
kinematic model would yield trajectories that, for instance, achieve a fort@andlation by chattering the
two allowed motions. The augmented model would, in effect, keep track obtha’s position along the
bench as well. Such an analysis should quantitatively model the practidalafabetween costly control
switches and continuous motion: we may often prefer a longer trajectorjzdgifewer control switches.

Furthermore, a costly switches model allows the analysis of hybrid kinemgat@antic models, in which
we replace a “dynamic” control switch (change the direction of the fama/ement slows down in the
current direction, speeds up in the new direction) with a correspondiglgyed” switch (keep going at the
current speed a little further, stop for a bit, start at full speed in the fr@stibn) that takes the same amount
of time. As dynamic physical models have proven difficult to solve with the MarirRuinciple in the past,
this approach could yield analytical optimal trajectories for vehicles with sggmifiinertia.

In conclusion, we consider a costly switches model of rigid body motion amdisant improvement,
and we see the following as the main issues in constructing and analyzing sumnthel:

e Construct a rigorous mathematical definition of a costly switches model thaitabke to non-trivial
application of the Maximum Principle.
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e Apply the Maximum Principle to this definition, solve for the adjoint and compadtie the current
“inertialess” model.

e Find a way to transform any given dynamic model into a time-equivalent cesitghes kinematic
model, or characterize the limits of such transformation, if these limits exist.

Existence of optimal trajectories for the costly switches model

We wish to present a proof of existence of optimal trajectories for the ceosttghes model. This proof was
developed in collaboration with Vladimir Chernov.

Consider a controllable system with a finite number of controls and costly ®sitcatween pairs of
these controls; the switch between any two controls costs atdeash. We will prove that, under some
reasonable assumptions about the cost function, optimal trajectoriegsadwiat for such a system. First,
we will give a bound on the number of switches for an optimal trajectorygrastove will show that, given
this bound, an optimal trajectory can be attained.

The first part is trivial. Assume that the cost of applying a control, afedtching to it, is always
positive. Then for any pair of configurations there is an upper boumthe number of switches of a
minimum cost trajectory connecting the two configuratiange, wherec, is the cost of a trajectory uniting
the two configurations. Coupled with the finite number of controls, this immediaitedg gs a finite possible
number of structures for the optimal trajectory. We will next prove thatafor such trajectory structure,
the existence of an admissible trajectory of this structure implies the existerase aifmissible optimal
trajectory of the same structure.

Let ¢ denote a state of the system. We assume that the system has a cloQenf sefmissiblestates
(e.g., states that are in obstacle-free space). A trajectory is descyilzesElguence of controls, and the time
for which each control is applied. Assume a finite set of controls. Weelefich control as a differentiable
functionF; : Q x R™ — Q, whereF;(qo,t) = q1 iff g1 is the resulting state after applying contidéor time
t in stateqg.

A trajectory structureof lengthn consists of a finite sequence of positive integers that represent
indices into the control set. Given a structufgea trajectory is specified by a corresponding equal length
sequencd’ of positive real numbers, containing the times each control is applied.

Thecost functiong;(qo, t) >= 0 are real valued differentiable functions such that the pre-image of any
interval[0, b] underc; is a bounded set (i.e., arbitrarily long trajectories have arbitrarily high essteell).

In the following, we will keep the trajectory structure fixed, and vary thetid times to obtain different
trajectories. Given an initial statg, we will defineg;(p) to be the state obtained after applying coniriar
time 7'[:] along the trajectory. g; is given by the recurrence relation

¢i(T) = Fi(qi—1(T), Ti]). (9.1)

At time ¢ along trajectory, the system is in state

h
Q(T7 t) = Fh(Qm—l(T)7 t— ZT[Z])> (9.2)

=1

whereh is the highest index such that> 2?21 Ti]. We will call a trajectoryp admissibleif, for all
t < Yo, T[i], the statey(p, t) is admissible. We will call a statg; reachablefrom g if there exists an
admissible trajectory,. such that, (p.) = q.
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The cost of trajectory is

n
co(p) =C+ Y cilTlil, qi), (9.3)
=1
where(C is an overhead cost associated with a trajectory of the given structwer(gase, this contains the
cost of switching controls). Since we are only interested in finding the mininaghtajectory associated
with the given trajectory structure, we can safely disredgaid the following analysis.
We will prove the following lemma:

Lemma 18 Let function sequences;, ¢;, i = 1...n, define a trajectory structure. Let be an initial
configuration for the system and Igt be a configuration that is reachable frog. If the set of all configu-
rations reachable fron is a closed set, then there exists a minimum cost trajectory fsoimgq .

Proof: Consider the set of all costs of admissible trajectories fggno ¢;. The set is nonempty, and
has a lower bound of zero. Therefore, the set has an infimunTherefore, there exists a sequence of
trajectoriesl; such that(7;) < m + 2%, For this sequence,

lim ¢(T3) = m. (9.4)
1—00
Consider the sequence formed by the time of contrébr all trajectories inT;, T;[1]. Since0 <

c(T;[1]) < m + 1, the assumption we have made about the cost function indicates tH&{theequence
is bounded. By the Bolzano-Weierstrass theorem, this sequence mta&incarconvergent subsequence
t1; that has a limit oft;;. We construct the corresponding subsequéficéom the initial sequence of
trajectories, and repeat the procedure for the times of coritrolsn. We thus obtain a sequence of limits
ty, to, . . . tn. This is an admissible trajectory, since the reachable space is closechc@mdubdsection of
this trajectory is the limit of a convergent sequence of admissible trajectditiesconstructed trajectory is
also the limit of thel; sequence, and therefore its costis [ |

9.1.2 Obstacles

Pontryagin’s book ([18]) has all of chapter five dedicated to “OptimalcEBsses with Restricted Phase
Coordinates”. The authors consider an optimal trajectory lying entirely iosed regiorz, with piecewise
smooth boundaries described by a cugye) = 0, and obtain the following strong results (p. 311):

e Each section of the trajectory that lies in the interioCb$atisfies the Maximum Principle.

e Each section of the trajectory that lies on a smooth piece of the boundé#safisfies Theorem 22
(p. 267).

e At each junction point, the jump condition (p. 302) is satisfied.

The implications of the first result have already been analyzed. Th&de&esult is more difficult to
interpret; it seems to imply that the boundary@fwill only be followed when it has a certain shape; what
this means in the context of our problem remains to be seen. The jump congifieara to be relatively
more straightforward; in our notation, we can express it as follows. i@enan optimal trajectory, and let
t; be a junction time during it. Lek™ (¢) be the adjoint on the time interval precedityg and\* (¢) the
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adjoint on the time interval succeeding Then there exists a real numbesuch that one of the following
two mutually exclusive conditions holds:

A7 (t5) + p grad g(z(t;)) = 0, (9.5)
or
A”(t5) + p grad g(x(ty)) = AT (t)). (9.6)

The implications for our problem seem to be quite geometric. Recall thdtithg component of the
adjoint, in our case, is a constant direction in the plgnek:). Therefore, the above conditions mean that,
at a junction point, either the “incoming” control line is parallel to the tangentécstirface; or otherwise,
the “outgoing” control line is the reflection of the “incoming” line around themal to the surface. This
seems to indicate an intriguing scenario, in which the control line reflects iteelid a maze of obstacles.

These are, in conclusion, the main issues in studying a phase-restrictetiwithih the context of our
problem:

e Determine the implications of Pontryagin’s Theorem 22: what kind of obstamlmdaries can be
followed, and what kind can not?

e Determine the implications of the jump condition in theoordinate as well: can we say anything
about the location of the control line at the jump point, as opposed to just itgidm@

e Develop the two points above into a global theory of rigid body optimal motion inothetacle-
obstructed plane.

9.2 Lessons learned

The essential underpinning of our work is the Pontryagin Principle, lisiftiinciple by itself is nowhere
near sufficient for solving the problem at hand. The approach we falowed does suggest a general
strategy for approaching a class of optimal control problems. Consislgstam that has am dimensional
state, a polyhedral control space, and a linear mapping from conttokdp velocity space. Any optimal
trajectory for this system has an adjox(t). We do not know the initial value of the adjoint(0); but,
once this value is set, there will usually only exist one corner of the potghedntrol space that maximizes
the projection of the system’s velocity onto the adjoint, i.e. the Hamiltonian. Applyirsgcontrol will
result in changes in both the system'’s state, and in the adjoint as chaedtteyithe Pontryagin differential
eguation. Once a multimax point is reached, sustainability analysis is necessatler to indicate which
control can be chosen. In order for the trajectory to be singular, itdsssary for the adjoint to stay in the
same orientation relative to velocity space; this seems a strong condition, evitjcallows few controls to
be applied in order to obtain such a situation.

This is obviously just a very general approach, and a lot depends@p#tifics of the system studied.
An analytic integration of the adjoint function is very useful, but seems diffto achieve for most systems;
in this respect, rigid bodies in the plane are a fortunate case. Sustainatkalygiarand a characterization of
singular segments are also very important, and seem to depend a lot opd¢Hiespf the system studied.

For our particular case, geometric considerations are very important. €t hand, this is helpful
as it makes everything easier to visualize. On the other hand, an algdaiidya$ the problems involved,
in a form suitable for algorithmic implementation, is hampered by the scarcity olugblegse geometric
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computational tools. Procedures as simple as computations with angles,aayamag to compute the time
to collision of a constant-velocity point with a line, are not readily availableresdi to be implemented from
scratch. We hope that our results in this direction will also prove usefutfeer geometric computational
efforts, not necessarily related to optimal control.

Overall, the problem is surprisingly challenging, and leads to a numbemrpfginct cases that need
to be considered. The practical implications and the theoretical simplicity of ttteematical question are,
however, a source of distinct satisfaction.
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