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Abstract

The study of three-dimensional protein structures produces insights into protein function at

the molecular level. Graphs provide a natural representation of protein structures and as-

sociated experimental data, and enable the development of graph algorithms to analyze the

structures and data. This thesis develops such graph representations and algorithms for two

novel applications: structure-based NMR resonance assignment and disulfide cross-link ex-

periment planning for protein fold determination. The first application seeks to identify cor-

respondences between spectral peaks in NMR data and backbone atoms in a structure (from

x-ray crystallography or homology modeling), by computing correspondences between a

contact graph representing the structure and an analogous but very noisy and ambiguous

graph representing the data. The assignment then supports further NMR studies of protein

dynamics and protein-ligand interactions. A hierarchical grow-and-match algorithm was

developed for smaller assignment problems, ensuring completeness of assignment, while a

random graph approach was developed for larger problems, provably determining unique

matches in polynomial time with high probability. Test results show that our algorithms

are robust to typical levels of structural variation, noise, and missings, and achieve very

good overall assignment accuracy. The second application aims to rapidly determine the

overall organization of secondary structure elements of a target protein by probing it with

a set of planned disulfide cross-links. A set of informative pairs of secondary structure el-

ements is selected from graphs representing topologies of predicted structure models. For

each pair in this “fingerprint”, a set of informative disulfide probes is selected from graphs

representing residue proximity in the models. Information-theoretic planning algorithms

were developed to maximize information gain while minimizing experimental complexity,

and Bayes error plan assessment frameworks were developed to characterize the probabil-

ity of making correct decisions given experimental data. Evaluation of the approach on a

number of structure prediction case studies shows that the optimized plans have low risk of
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error while testing only a very small portion of the quadratic number of possible cross-link

candidates.
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for α-helices and β-sheets and 4 Å for loops. . . . . . . . . . . . . . . . . 51

3.6 Overall performance of our algorithm. Cyan circles indicate average as-

signment accuracy over all members of an ensemble for a dataset, while

bars indicate the best and worst assignments. . . . . . . . . . . . . . . . . 52

xiii



4.1 Protein fold determination by disulfide cross-linking. The example shows

two models, but the method readily handles tens or even hundreds of mod-

els. (a) Two models, TS125 3 (green) and TS194 2 (magenta), for CASP

target T0351, are of reasonable quality but have rather different topologies.

(b) The three-dimensional structures are compiled into graphs on the sec-

ondary structure elements (SSEs), representing the topology in terms of

contacting SSE pairs. A topological fingerprint is selected based on differ-

ences in SSE contacts (e.g., 1-2, 2-4, 3-5, etc.) that together distinguish the

models. (c) For each SSE pair in the topological fingerprint, a set of residue

pairs is selected for disulfide cross-linking, in order to robustly determine

whether or not the SSE pair is actually in contact. The figure shows the

selected cross-links (yellow) to test for SSE pair (1, 2). Residues selected

for cross-linking are colored red. . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Noise factors in cross-link planning: misalignment (left) and flexibility

(right). Blue dots represent residues and yellow lines their contacts. Re-

gions in dashed lines are the modeled SSE and those in solid lines those

measured by cross-linking experiments. . . . . . . . . . . . . . . . . . . . 68

4.3 Bayes error (ε), expected tie ratio (τ ), and expected none-of-the-above ratio

(ν) with addition of SSE pairs to fingerprints for targets. x-axis: SSE pairs.

y-axis (left): τ , (%). y-axis (right): ε, ν. . . . . . . . . . . . . . . . . . . . 72

4.4 Sensitivity analysis for three q function values (0.7, 0.8, and 0.9) for target

T0306 and T0383. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiv



4.5 ROC curves for eight simulation studies, at different SSE contact fraction

thresholds r. T0304 D1 doesn’t have a predicted model that matches the

crystal structure and thus is analyzed separately (see the discussion for Ro-

bustness). x-axis: False Positive Rate. y-axis: True Positive Rate. AUC:

Area under the ROC curve, for r of 0.05, 0.1, 0.15, and 0.2 respectively. . . 75

4.6 Plot of the probability function for threading misalignment with different

offset limits. x-axis: Offset value (δ). y-axis: Probability. . . . . . . . . . . 79

4.7 Performance comparison for ε (top), τ (middle), and ν (bottom) of random

selections vs. topological fingerprints for protein targets T0306 (left) and

T0312 (right). The green curve is the topological fingerprint selection and

the the red curve is the average result of ten random SSE pair selections.

Bars indicate the minimum metric value and the maximum metric value

over the random selections. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Likelihood score distributions for three protein targets, evaluating models

against to their reference crystal structures with threading misalignment

allowed. Matched models are sorted by their likelihood. Log-transform

was applied for a better illustration of the likelihood scores. x-axis: Model

ID. y-axis: Likelihood (log). . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Case studies for three protein targets: The true positives (models matched

with the crystal structure’s fold) when misalignment is allowed, and δ = 0

(blue), 1 (cyan), 2 (yellow). The red bar shows the total number of true

positives for each target. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xv



4.10 Bayes error (ε) with addition of cross-links to the experiment plans for three

protein targets. x-axis: Number of selected cross links. y-axis: Bayes error

(ε). Names in the legend stand for the SSE pairs included in the topological

fingerprint of corresponding protein target. We perform separate cross-link

experiment planning for each SSE pair. . . . . . . . . . . . . . . . . . . . 86

xvi



Chapter 1

Introduction

Proteins play crucial roles in almost every biological process. Each protein starts from a

sequence of amino acids, but it is not functional until folded into some particular three-

dimensional structure. Thus structural studies of proteins are central to post-genomic tasks

in modeling, predicting behaviors of, and controlling the molecular machinery of the cell.

There are four distinct aspects of a protein’s structure (Figure 1.1). The primary structure

is the sequence of amino acids in a polypeptide chain. The secondary structure consists

of the geometry of segments in forms such as alpha-helices or beta-sheets. The tertiary

structure, or fold, describes the spatial arrangement of the secondary structures and the

relative positions of all the atoms in a chain. The quaternary structure describes how two

or more protein chains interact to form a complex. To understand protein functions at the

molecular level, we need to know structures at these various levels. This is the topic of

structural biology, which employs experimental techniques such as x-ray crystallography,

nuclear magnetic resonance spectroscopy, and cryo-electron microscopy.

In addition to providing insights into biomolecular function, analysis of protein struc-

tures has a significant impact on important applications. It can guide the development of in-

hibitors that can disable undesired protein functions (i.e., drug design), or help to re-design

amino acid sequences to introduce/improve particular enzymatic activities (i.e., protein de-

1



Figure 1.1: Main levels of protein structure.
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Figure 1.2: A protein is a linear chain (sequence) of amino acids, which folds up into a
three-dimensional structure in solution. We can visualize a structure by plotting all atoms in
a space-filling representation (left) or a trace of just the backbone atoms (middle), including
both α-helices (purple, outer) and β-strands (yellow, center). Alternatively, the structure
can be represented as a contact graph (right), where vertices are amino acids and edges are
the physical contacts or proximity of vertices. Here the contact graph is visualized as a
matrix with rows/columns for vertices and non-zero cells for edges. When a contact pair is
within an α-helix or β-strand, its color matches that in the middle panel.

sign). However, there are still significant challenges in determining, analyzing and utilizing

protein structure, due to the difficulty of experiments and the consequent noise/error in the

collected data. They in return require the development of models and algorithms to prop-

erly process the information content of the data, adequately explore the solution space, and

rigorously characterize the results.

To analyze a protein’s structure, we can naturally consider it as a graph. For example, a

“contact graph” (Figure 1.2) can be generated where the vertices are backbone residues

and the edges capture the chemical bonds/spatial interactions between atoms in differ-

ent residues. A graph representation of protein structure is natural due to the underlying

physics — atoms are located in space and only a limited set of “neighbor” atoms have the

strongest interactions. Also, atomic interactions are often the key features in studies of pro-

tein folding, dynamics and function. A graph representation of structure is also sufficient

in that it uniquely encodes coordinate information into spatial proximity, when the edges

have interatomic distance measurements [26].

3



Based on graph representations, graph algorithms have been widely used to investi-

gate protein structure. Example applications include the clique-finding approach for com-

parative modeling [59], the frequent subgraph mining approach for structure motif find-

ing [5,27,77], protein contact graph mining for folding pathways [81], secondary structure

based protein topological model [42], and tree-decomposition approaches for protein struc-

ture prediction [72, 73]. These approaches have proved that advanced graph algorithms,

such as graph pattern mining or graph-based feature selection, can be successfully applied

to discover substantial properties of proteins.

Research conducted in this thesis was motivated by the success of using graph algo-

rithms to analyze protein structures, and introduces two significant new applications —

contact replacement for NMR backbone resonance assignment and cross-link experiment

planning for protein fold determination. We have successfully converted these into graph

problems (graph matching and graph-based feature selection). The next two sections will

introduce the problem scopes and overview our solutions.

1.1 Contact Replacement for NMR Resonance Assignment

Nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role

in studies of proteins beyond the determination of their three-dimensional structures. For

example, since NMR is performed in solution, it can gather information regarding dynam-

ics [33, 48] and structure-function relationships under varying conditions [43]. Similarly,

solution NMR is a vital tool in assessing ligand binding for drug development [24, 61] and

can also help characterize protein-protein interactions [11]. These applications of NMR are

significant even if the structure has already been determined by x-ray crystallography or a

high quality homology model is available.

Therefore we would like to develop a novel algorithm that exploits an available structure

to interpret NMR data, supporting studies of dynamics and interactions; see Figure 1.3. In

4
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Figure 1.3: Contact-based NMR resonance assignment. Both an existing three-dimensional
structure and NMR data (based on the through-space NOESY experiment) are represented
as graphs. The interaction graph representing the NMR data is essentially a corrupted,
ambiguous version of the contact graph representing the structure. The goal is to uncover
the correspondence.

the targeted scenarios, the key bottleneck is to determine the resonance assignment map-

ping NMR data to specific atoms in the protein (e.g., those affected by ligand binding).

While backbone resonance assignment (i.e., resonance assignment of the backbone atoms)

in support of structure determination has been well-studied (e.g., [3, 30, 32, 40, 44, 64, 65,

76,84]), we aim essentially to invert the process, and use the structure in support of assign-

ment.

Here we formulate the problem of assignment given a structure and minimalist NMR

data as the contact replacement problem (Figure 1.3). A contact graph representing a pro-

tein structure has vertices for the individual amino acid residues in the protein and edges

between nearby pairs. A particular form of “interaction graph” representing NMR data has

vertices for NMR-probed “pseudoresidues” (which correspond via an unknown mapping to

the real residues), and edges between pairs that, if they were nearby, would explain the data.

The NMR edges are essentially the contact edges, significantly corrupted by experimental

noise and ambiguity (around 5 noisy edges per correct one). The contact replacement prob-

lem is then to uncover the correspondences between these graphs for a given protein.

The name “contact replacement” for our problem is inspired by the names for the analo-
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gous problems “molecular replacement” in x-ray crystallography [57] and “nuclear vector

replacement” in NMR [37, 39]. In molecular replacement, initial data interpretation is

aided by matching against available structural information from a related protein. Like-

wise, in nuclear vector replacement, residual dipolar coupling data are matched against

predictions from an available structure (or high-quality model). Contact replacement and

nuclear vector replacement are complementary, relying on different types of NMR data

with different information content (distances vs. orientations). The contact replacement

problem is related to threading (sequence-structure alignment), but for threading, residues

are in sequential order for both the sequence and the structure, whereas here we have no

information about the sequential order of the pseudoresidues.

Given this problem definition, we have developed two complementary approaches which

focus on different aspects of this problem and have different objectives. We first developed

a Hierarchical Grow-and-Match (HGM) algorithm to effectively search the whole solu-

tion space to ensure the completeness of assignment results. Our algorithm decomposes

the contact graph into sequential fragments with relatively dense interactions, and then

combines possible assignments for the fragments, searching over the combinations with

effective but conservative pruning criteria. Our algorithm is guaranteed to identify all solu-

tions consistent with the data within a likelihood threshold of the optimal solution. It also

deals correctly and uniformly with missing edges, which are quite common when graphs

are compiled from the experimental data.

However, HGM only applies to well formed secondary structure elements. The guaran-

tee of completeness was based on the conservative branch-and-bound search, which may

take a few hours to a few days to assign a single protein. To better serve the needs of large-

scale NMR assignment, we developed an alternative random graph approach that gives up

the completeness guarantee but assigns the entire backbone and returns high quality results

significantly faster in both theory and practice. In this approach, we first show that by com-
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bining connectivity and amino acid type information, and exploiting the random structure

of the noise, one can provably determine unique correspondences in polynomial time with

high probability, even in the presence of significant noise, i.e., a constant number of noisy

edges per vertex. We then detail an efficient randomized algorithm and show that, over

a variety of experimental and synthetic datasets, it is robust to typical levels of structural

variation, noise and missing.

Our main contributions in contact replacement for NMR resonance assignment include:

• We have introduced the contact replacement approach to do NMR backbone reso-

nance assignment by referring to a known structure and using a minimalist set of

experiments, primarily the through-space NOESY.

• We have developed two complementary algorithms for contact replacement: a hi-

erarchical grow-and-match algorithm focused on SSEs, which is guaranteed to find

all solutions consistent with the data, and a random graph approach, for the whole

protein, which can provably determine unique matches in polynomial time with high

probability.

• We have demonstrated the effectiveness of our algorithms on both experimental and

synthetic data, with significant noise and missings. We have also shown that the

random graph approach has good tolerance to moderate structural uncertainty.

1.2 Protein fold determination

Although a vast number of protein sequences have been identified, just a tiny fraction (≈

1%) of them have experimentally determined three-dimensional structures [1, 19, 68], due

to the difficulty of related wet-lab experiments. At the same time, since structure is more

conserved than sequence, only a small number of folds (overall structural organizations)

exist in nature [20, 47, 83] and many have been recorded in public protein databases [6].
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Fold recognition (including “threading”) [19,74,75] takes advantage of this by performing

a protein database search and using the available 3D structures to predict the structure

of a target sequence. The outputs are crude structures and may vary significantly due to

different choices of score function [45, 82]. A near-native structure is often among a set of

predictions with high scores, but not necessarily the highest one. Therefore, to correctly

and confidently determine the fold, it is necessary to use additional wet-lab approaches to

reduce the ambiguity and evaluate the set of proposed solutions.

To bridge computational structure prediction and experimental structure determination,

different research groups [10, 13, 21, 35, 78–80] have worked on the problem of “struc-

ture elucidation” where predicted structures can be selected by relatively quick biophysi-

cal/biochemical experiments instead of the more expensive and time-consuming X-ray or

NMR technologies. One experimental type that particularly suits this need is cross-linking.

Compared with NMR-based techniques, cross-linking is generally a cheaper experimental

approach but provides only the relatively coarse information of a pair of residues being

within a relatively large distance (e.g., up to 19 Å [79]) at some moment. Although it may

not be sufficient to determine the protein structure, previous research [35, 79, 80] showed

that cross-linking can be used to select the correct model from a set of high quality predic-

tions. Disulfide cross-linking [9, 28, 36] is a form of cross-linking with advantages in easy

and reliable experimentation, quality of resulting information content [79], and plannabil-

ity of residue locations. In disulfide cross-linking, cysteines are specifically introduced at

selected residue positions; the resulting presence / absence of disulfide bonds can then be

evaluated by alteration in electrophoretic mobility [9, 36, 79].

In general, it is not practical to conduct disulfide cross-linking over all the possible

residue pairs of a even small-size (100 residues) protein. Therefore, the major problem of

using cross-links in protein structure analysis is to identify the best cross-link sites (pairs

of residue positions to test experimentally). Overall, the geometric feasibility (or simply

8



the direct distance) of sites is what determines the likelihood of cross-link formation. Thus

residue positions with distinct geometric feasibility across different models will be more

informative. But potential model errors and structure flexibility will make it difficult to

locate the exact cross-linking sites, and we need to carefully model and compensate such

kind of noise.

1

132

4 5

1

132

4 5

Predicted protein structures SSE contact graph Cross-link experiment plan

Figure 1.4: Protein fold determination by disulfide cross-linking. Protein structures are pre-
dicted in 3D representations (left), and then compiled into 2D SSE contact graphs (middle).
Structure differences are evaluated through contact graphs, with the most distinctive pat-
terns (topological fingerprints) selected through a graph-based feature selection approach.
Then an experiment planning algorithm is applied to select a set of residue pairs for disul-
fide cross-linking (right), to be experimentally evaluated in order to identify the true protein
fold.

In contrast to previous researches that focus more on probing the 3D structure geome-

try and trying to select specific models, in this thesis we introduce a new approach called

protein fold determination. We target a higher level of structure characterization—“fold”—

the spatial organization of protein secondary structure elements (SSEs). An integrated

computational-experimental method has been developed to determine the fold of a target

protein by probing it with a set of planned disulfide cross-links. We start with predicted

structural models obtained by standard fold recognition techniques. In a first stage (Fig-

ure 1.4, left – middle), we characterize the fold-level differences between the models in
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terms of topological fingerprints, and select a small set of SSE pairs that differentiate the

folds. In a second stage (Figure 1.4, middle – right), we determine a set of residue-level

cross-links to probe the selected SSE pairs. Each stage employs an information-theoretic

planning algorithm to maximize information gain while minimizing experimental complex-

ity, along with a Bayes error plan assessment framework to characterize the probability of

making a correct decision once data for the plan are collected. By focusing on overall

topological differences and planning cross-linking experiments to probe them, our fold de-

termination approach is robust to noise and uncertainty in the models (e.g., threading mis-

alignment) and in the actual structure (e.g., flexibility). We demonstrate the effectiveness

of our approach in case studies for a number of targets in CASP database [45], showing

that the optimized plans have low risk of error while testing only a very small portion of

the quadratic number of possible cross-link candidates. Fold determination can overcome

scoring limitations in purely computational fold recognition methods, while requiring less

experimental effort than traditional protein structure determination approaches.

Our main contributions in protein fold determination include:

• We have introduced the protein fold determination approach to characterize protein’s

structure topology with an integrated computational-experimental solution.

• We have developed information-theoretic selection algorithms for both topological

fingerprint identification and robust cross-link experiment planning.

• We have introduced Bayes error frameworks for quality evaluation of the experiment

plans.

• We have demonstrated the effectiveness of our approach with analysis of different

error/risk factors and conducted end-to-end simulation studies. We have also shown

the approach is robust to errors in models, and can account for the case when none

of the models is correct.
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Chapter 2

Contact Replacement for NMR

Resonance Assignment: A Hierarchical

Grow-and-Match (HGM) Algorithm

2.1 Overview

Nuclear magnetic resonance (NMR) spectroscopy enables analysis of protein structure, dy-

namics, and interactions in near-physiological conditions. While much work has focused

on the use of NMR in structure determination (including at a genomic scale [55]), applica-

tions in studies of dynamics and interactions can be equally important, even if the structure

has already been determined by crystallography or modeled computationally. NMR-based

methods enable rapid and cost-effective screening for binding, and have become a vital tool

in drug development [24,61] as well as characterization of protein-protein interactions [11].

Since NMR does not require crystallization of the sample, conditions can be varied in or-

der to study structure-function relationships [43]. Nuclear spin relaxation provides insights

1This work has been published [69] in the proceedings of IEEE International Conference on Bioinformat-
ics and Bioengineering (BIBE) 2007.

11



44 47 4845 46

1619 18 17

40130189

34

spectra NMR interaction graph contact graph 3D structure

compile analyzeassign

Figure 2.1: Assignment given 3D structure. Both an existing three-dimensional struc-
ture and NMR data (based on the through-space NOESY experiment) are represented as
graphs. The interaction graph representing the NMR data is essentially a corrupted, am-
biguous version of the contact graph representing the structure. The goal is to uncover the
correspondence.

into protein structural dynamics (again, in solution) [33, 48].

Figure 2.1 shows the flow of information in NMR-based studies. We then formulate

the problem of assignments given a structure and minimalist NMR data as the contact

replacement problem. As discussed above, the already available structure provides the

necessary information about the intrinsic properties of that protein, and those properties

should be encoded in the NMR experimental data as well. Thus we consider it as an

“inversed” process of the structure determination problem: Given a 3D structure, use the

constraints it reveals to process data generated from NMR experiments. Our approach

represents both the NMR data and the structure as graphs (the “NMR interaction graph”

and the “contact graph”, respectively); the NMR graph is essentially a corrupted version of

the contact graph, with an unknown correspondence between vertices (and thereby edges).

Our goal is to find the correspondence (middle of Figure 2.1). We note that this problem

is different from those addressed by previous graph-based approaches [3, 4, 32], which

focused on uncovering patterns in an NMR graph rather than matching it to a specified

contact graph. Significant challenges still exist to develop and analyze efficient algorithms

that guarantee robust performance and enable to explore the information content in both
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protein structures and NMR data.

In this work we developed a novel algorithm that utilizes the known structure of a

protein to guide its NMR backbone resonance assignment. The key features of our method

are as follows:

• It is complete, guaranteed to determine all solutions consistent with the data (to

within a likelihood threshold of the optimal one). This is particularly important for

sparse datasets and with somewhat subjective scoring functions, where we must be

careful to characterize the similarities and differences among competing high-quality

solutions [64].

• It takes advantage of a structure to effectively decompose the solution space, and then

efficiently search through it by hierarchically merging partial solutions and eliminat-

ing those that provably cannot lead to complete solutions of sufficient quality.

• It is minimalist, requiring only 4 spectra from 15N-labeled protein, saving substantial

spectrometer time and substantial expense compared to standard triple-resonance-

based assignment methods.

We demonstrate the effectiveness of our algorithm in studies of a number of proteins

with experimental data and with simulation studies under varying amounts of noise and

sparsity. In comparison with some available techniques, Section 2.5 further elaborates on

the general context of our work.

2.2 Problem Definition

We first summarize the representations of the input contact graph and NMR interaction

graph; for details see [3, 4, 32].

Contact graph. G∗ = (V ∗, E∗), where V ∗ is a set of residue positions and E∗ is a set

of pairs of nearby residue positions. In particular, we place an edge when a pair of protons
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is within a specified distance threshold (say, 3, 4, or 5 Å). Each vertex v is labeled with its

amino acid type, a(v).

NMR interaction graph. G = (V,E), where V is a set of pseudoresidues of unknown

correspondence to the residues and E is a set of pairs of pseudoresidues that may have

interacting protons (i.e., an interaction would explain a peak in the NOESY spectrum).

Such a graph can be compiled from a set of four 15N spectra (HSQC, HNHA, TOCSY, and

NOESY), and has a number of properties [32, 56, 69]:

• Each vertex is labeled with a secondary structure type, either α or β, as determined

from HNHA.

• Each vertex is labeled with a list ` of possible amino acid types. We use here the

classes output by RESCUE [52], which employs a two-level neural network to esti-

mate amino acid type from proton chemical shifts. The first level associates a pseu-

doresidue with one of the ten type classes (IL, A, G, P, T, V, KR, FYWHDNC, EQM,

and S) with very high accuracy (avg: 91.9%, min:88.1%); amino acids within a class

are treated as indistinguishable.

• Each edge is labeled with an interaction type based on the chemical shift ranges.

We use only HN and Hα, since a structure model’s side-chain atomic coordinates are

usually less reliable, and we have not found their inclusion to aid the results.

• Each edge has a match score s, evaluating the quality of the edge as an explanation

for the peak. Typical scoring rules (e.g., [22,64,66,84]) compare absolute or squared

difference in chemical shift; except for noise (reasonably modeled as Gaussian), the

correct edge should match exactly and have the best score. Here we score edges

by error probability, i.e., how likely it is that an edge could be generated by noise.

In this way, missing edges are naturally penalized since they contribute a score of

zero. The score is thus − log

(
1− 1√

2πσ
exp−

∆(e)2

2σ2

)
where ∆(e) is the chemical
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shift difference for edge e, and σ is the standard deviation of chemical shift difference

distribution.

Due to the nature of the 15N NOESY (HN–15N for one vertex and 1H for the other), the

NMR interaction graph is directed. For consistency, we adopt the same convention for the

contact graph.

We assume for simplicity that the contact graph is “correct”—it represents exactly those

interactions that are physically present (thus its designation as G∗ = (V ∗, E∗)), and all the

errors are in the NMR graph. The NMR interaction graph G constructed from NMR data

is substantially corrupted from G∗, and has an unknown vertex correspondence. We now

formalize our problem in its cleanest form.

Problem 1 (Contact replacement) We are given a contact graph G∗ = (V ∗, E∗) and an

NMR interaction graph G = (V,E). The goal is to find a bijection m from V ∗ to V that

matches amino acid classes and maximizes the score of the edges in E that correspond

to edges in E∗. Formally, if m(v∗) = v, then we must have a(v∗) ∈ `(v). The score is

computed as
∑

(e∗,e)∈c s(e), where the mapping c between E∗ and E is induced by m as

c = {((u∗, v∗), (u, v)) s.t. (u∗, v∗) ∈ E∗, (u, v) ∈ E,m(u∗) = u,m(v∗) = v}.

2.3 Methods

We develop an algorithm based on two insights: multiple consistent edges are necessary to

obtain effective constraint on an assignment, and sequential edges (i.e., residue i to residue

i + 1) provide an appropriate basis for uncovering a correspondence. Noise edges in the

NMR graph result from chemical shift degeneracy, and are not correlated with spatial prox-

imity. Thus we are more confident in a set of NMR edges that consistently match a set of

contact edges; it is not likely that many false positives can “conspire” to match properly.

Confidence is gained by both the number of edges and their density (number of edges di-
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Figure 2.2: Intuition for our Hierarchical Grow-and-Match algorithm. The 3D structure is
decomposed into fragments; here a β-sheet is decomposed into f1, . . . , f4 (in practice, each
strand may be composed of multiple fragments). The decomposition accounts for both con-
tact density and the combinatorics of the sets of possible assignments; here P1, . . . , P4 are
the sets of possible “pseudofragments”, each listing pseudoresidues (indicated by differ-
ent letters) that could correspond to the fragment’s residues. Pseudofragments are merged
according to a hierarchical “merge tree”; those that are inconsistent (use the same pseu-
doresidue) are immediately pruned and are not shown. A conservative bound (not illus-
trated) eliminates some combinations that provably cannot lead to a near-optimal solution;
these are illustrated by strike-throughs.

vided by number of vertices). While all contacts are important, to construct an assignment,

we want to focus on edges likely to match well, and sequential residues reliably are in

contact and reliably generate NOESY peaks. Furthermore, the one-dimensional structure

of sequential residues makes strings of them relatively easy to manipulate. To incorporate

both density and sequentiality, our algorithm first forms fragments based on sequential in-

teractions, and then hierarchically merges them according to the contact density of edges

across two fragments (Figure 2.2). We now detail this process.
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Sequential Fragments As discussed above, we construct an assignment based on se-

quential connections. We define a sequential fragment f = 〈v∗i1, v∗i2, . . .〉 to be a sequence

of vertices in V ∗ for a substring of the primary sequence. A corresponding pseudofragment

p = 〈vj1, vj2, . . .〉 is a sequence of vertices in V giving an assignment for a sequential frag-

ment. Note that while there is a natural order to V ∗ (the primary sequence), there is none

to V .

Previous work [64, 65] on assignment using sequential fragments raised two impor-

tant considerations: the fragments should be long enough to provide sufficient constraint,

but short enough to keep under control the combinatorial number of corresponding pseud-

ofragments. The same holds here, with an extra twist for our context: the fragments should

account for contact density. We thus take advantage of the natural organization of sec-

ondary structure elements—the decomposition should “respect” helices and sheets, using

them as core fragments (perhaps subdivided, to control pseudofragment combinatorics).

We follow the basic previous approach [64, 65] of growing one fragment until there would

be too many corresponding pseudofragments (according to a threshold θ), and then starting

a new fragment. We also start a new fragment when the secondary structure type changes.

If a single-residue fragment results, we merge it into the previous fragment. The result is

a set S = {f1, f2, . . .} of sequential fragments and a set of sets P = {P1, P2, . . .}, where

Pi = {pi1, pi2, . . .} is a set of alternative pseudofragments.

Merge Tree The decomposition of the graphs into fragments and pseudofragments yields

high-quality sequential “building blocks”; we combine these based on contact density. β-

sheets provide intuition (see Figure 2.2)—there are relatively dense connections between

adjacent strands, so it makes sense to merge sequential fragments for the strands into (no

longer sequential) fragments for the sheet. More generally, let us define a merge tree,

such that parents represent the unions of their children, and the leaves are the sequential

fragments. We call the unions fragments (not necessarily sequential), and thereby extend
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the set S of sequential fragments to a set F of fragments, each of which is the union

of the sequential fragment leaves below a node in the tree. The root thus represents a

fragment including all residues, to which we want to assign a pseudofragment including all

pseudoresidues.

In order to take advantage of contact graph density, we construct a merge tree by clus-

tering fragments hierarchically (average linkage) according to their contacts. For the clus-

tering similarity measure, we count the number of contacts between the residues composing

the fragments; again, more contacts provide more constraints and less likelihood of a set of

incorrect NMR graph edges appearing to be correct. We break ties according to amino acid

composition; those with more common amino acid types are likely to have more conflicts

in their matched pseudoresidues, thus enabling earlier detection of inconsistency in partial

assignments.

Scoring and Bounding An assignment (fragment and corresponding pseudofragment)

must satisfy the “hard” constraints of consistency of amino acid type and secondary struc-

ture type, and uniqueness of residues and pseudoresidues. It can then be evaluated for how

well it explains the data:

s(f, p) =
∑

(e∗,e)∈m(f,p)

w(e) + φ∗(f, p) + φ(f, p) (2.1)

wherem(f, p) gives the pairs of corresponding edges induced by the residue/pseudoresidue

match between f and p, w(e) is the edge’s match score and the φ are penalties for missing

correspondences. In our current implementation, φ∗(f, p) penalizes each missing contact

edge as if it had actually appeared but with a bad score (probability ≤ 0.05). We penalize

unassigned peaks via φ(f, p), adding the − log of the fraction of peaks that are unassigned,

adopting the conservative stance of not penalizing until we can guarantee that there is no

possible assignment for a peak.
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The score of a partial pseudofragment (i.e., below the root in the merge tree) may let

us determine that it is not worth pursuing. To be safe, we must ensure that the pseudo-

fragment’s score, plus the best possible score for remaining fragments/pseudofragments, is

not competitive with the score for a complete pseudofragment (say, more than a threshold

∆ worse). Suppose that we have remaining a set F ′ of fragments and a set of sets P ′ of

possible corresponding pseudofragments. Ultimately, the fragments must be merged to a

complete fragment, and we want to bound the score of a corresponding complete pseudo-

fragment. We can decompose the score of such a complete pseudofragment into singleton

terms (scores for edges within the individual pseudofragments) and pairwise terms (scores

for edges between them). Rather than separately bounding the singleton terms and the pair-

wise terms (which might be minimized by inconsistent choices of pseudofragments), we

“fold” the singleton terms into the pairwise ones:

s2(fi, fj;P ′) = (2.2)

min
pi∈Pi,pj∈Pj

(
s(fi, pi)

ni
+
s(fj, pj)

nj
+ s(fi, fj, pi, pj)

)

where s(fi, fj, pi, pj) sums match scores of edges between the two fragments (as s(f, p)

does within a fragment) and ni and nj count the number of fragments with any edge to fi

and fj , respectively. Thus the singleton scores are divided equally among pairs of interact-

ing fragments, and included in their s2 scores. Then a bound for the total score adds up all

the pairwise scores.

b(F ′,P ′) =
∑

fi 6=fj∈F ′
s2(fi, fj;P ′) (2.3)

We can prove that (2.3) is a lower bound on the match score of any complete pseudo-

fragment, and our results below (Figure 2.4) also indicate that it is fairly tight.
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s∗ ←∞
define HGM(k, p, P)

if k > |F |
// complete fragment
output p; s∗ ← min {s∗, s(fk−1, p)}

else
let fi, fj be the fragments merged to form fk
foreach (pi, pj) ∈ Pi × Pj ,

sorted by s(fi ∪ fj , pi ∪ pj)
if pi ∩ pj = ∅ and p ∩ (pi ∪ pj) = ∅

// no shared pseudoresidues
p′ ← p ∪ pi ∪ pj
let P ′ be a copy of P with Pk fixed to {p′}
if b(F,P ′) < s∗ + ∆

// satisfied bound
HGM(k + 1, p′, P ′)

Figure 2.3: Hierarchical Grow-and-Match Search. The arguments are k: fragment index;
p: pseudofragment; P: set of sets of alternative pseudofragments. An ensemble is output,
and the best score is maintained in s∗.

Search Algorithm Based on the merge tree, we can assemble larger and larger pseud-

ofragments; based on the bound, we can eliminate pseudofragments that are guaranteed

to be sufficiently suboptimal. Thus we perform Hierarchical-Grow-and-Match as a depth-

first search with conservative pruning (i.e., only eliminate partial solutions guaranteed to be

suboptimal). The search (Figure 2.3) follows the structure established by the merge tree:

to merge a pair of fragments, branch on the possible pairs of pseudofragments, ordered

by score. (We assume binary trees, but the generalization is straightforward.) The search

proceeds bottom-up, left-to-right, through the tree; the initial invocation is for the first non-

leaf node, with an empty pseudofragment. We assume that the fragments are numbered

accordingly—S is the set of sequential fragments and F has S followed by merged frag-

ments in order. Thus to assemble fragment fk, we merge fragments fi and fj , choosing one

pseudofragment each from sets Pi and Pj . Pseudoresidues already used in earlier pseud-

ofragments cannot be reused later in the same search branch. Upon merging the selected

pseudofragments (setting Pk to the merged result), we verify that the bound is satisfied and
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then recurse to the next fragment in the tree (fk+1), with the pseudofragment assembled

so far (p′) and the choices of pseudofragments for the remaining fragments (P ′). The al-

gorithm will find the optimal assignment, and by setting threshold ∆ to be greater than

zero, it will also find a complete ensemble of nearly-optimal solutions. Variations of this

depth-first approach are straightforward; e.g., we also used a beam-search-like approach

that propagates several choices simultaneously, in order to more rapidly identify a solution.

2.4 Results

Table 2.1 summarizes the datasets, both experimental and synthetic, that we used to validate

HGM. The proteins are of moderate size for typical NMR studies. Since HGM separates

residues and pseudoresidues by secondary structure type, we present here results for sepa-

rate assignments of α-helices and β-sheets. For all datasets, we generated pseudofragments

using a threshold (see Section 2.3 para. 2) of θ = 1000. The likelihood threshold (see Sec-

tion 2.3 para. 5) ∆ was used to collect alternative assignments that are at most 100 times

worse a posteriori than the optimal one.

2.4.1 Experimental datasets

We used four experimental datasets: three from previous contact-based assignment work [32],

including Human Glutaredoxin (PDB ID: 1JHB), Core Binding Factor β (PDB ID: 2JHB),

and the catalytic domain of GCN5 histone acetyltranferase (PDB ID: 5GCN); the fourth

from the ST2NMR paper [56], Paracoccus denitrificans cytochromeC552 (PDB ID: 1QL4).

For brevity, and since assignment is based on structure, we refer to each protein by its PDB

ID. We constructed NMR interaction graphs from the already compiled pseudoresidues,

adding vertex labels as described in the Methods. We generated edges from the the 15N-

edited NOE peak lists with conservatively large match tolerances: 0.05 for 1H, 0.015 for
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HN, and 0.35 for 15N. We used a proton-proton contact threshold of 4 Å, and selected

the most representative contact graph from each deposited ensemble. Overall each correct

edge had a mean of 2.5–6.0 noise edges, and the average missing rate is slightly above

30%, except for 1QL4 which has a significant missing rate of 62.5%.

Table 2.2 summarizes assignment results by HGM for the experimental datasets. Note

that the search is rather efficient, explicitly testing only a small fraction of states (i.e., num-

ber of recursive calls of the HGM algorithm). For example, if we multiply the number of

pseudofragments for each fragment, there are about 1.24× 1010 possible states for 1JHB’s

β-sheets, of which 2716 are visited, and 1.93× 1024 for 1QL4, of which 29 million are vis-

ited. The difference in number of visited states for different datasets is due to a combination

of number of residues and pseudoresidues, ambiguity in amino acid type, number of edges,

and noise and missing rates. For instance, 1JHB’s 43 α-helix residues were represented in

the contact graph by 160 edges, of which 52 are missing in the NMR graph. This leads to a

very sparse graph to match and requires HGM to search deeper before being able to safely

prune a sub-optimal solution.

For all the test cases, HGM took from a few minutes to a few days (e.g. 1QL4) to con-

duct a complete search. The variety of its performance is highly dependent on the quality

of input NMR data, as we discussed above. However, the advantage of searching accord-

ing to the merge tree is clearly apparent. For example, for 1JHB’s β-sheets, the number

of nodes visited in successive merge steps decreases exponentially from 2603 to 107 to 6.

Even though naı̈vely, the combinatorics should increase, effective pruning eliminates most

solutions. Similarly, for 2JHB’s β-sheets, this number decreases from 1.3× 106 (max, sec-

ond step) to 8 (min, final step). The same trend has been observed for other experimental

datasets.
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Table 2.2: HGM results for experimental data

PDB ID 2◦ seq. frags seq. pseudofrags visited ens. size ref. rank
1JHB 4β 4 120–1440 (570) 2716 3 1
1JHB 5α 13 10–720 (287) 1.59× 106 9 1
2JHB 6β 10 20–4320 (952) 2.35× 106 4 1
2JHB 5α 11 110–1232 (693) 10434 2 1
5GCN 7β 14 16–2016 (379) 1.87× 107 10 1
5GCN 4α 18 88–1760 (591) 1.24× 106 1 1
1QL4 6α 10 20–672 (301) 2.94× 107 30 2

For each PDB ID and secondary structure, columns give number of sequential fragments,
min–max (mean) number of pseudofragments for each sequential fragment, number of
recursive calls, size of the result ensemble and rank within the ensemble of the reference
solution.

Figure 2.4: Comparison of HGM-identified lower bound on match score with the score
of optimal assignment for experimental (top) and synthetic (bottom, 10, 30% missing)
datasets.

Figure 2.4 illustrates the lower bound estimated by (2.3) relative to the optimal match

score. In general, the bound is tight — the score difference is less than 8%.
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(a) Experimental Data

(b) Synthetic Data (10, 30% missing)

Figure 2.5: Score distribution in the result ensembles (θ = 100) of experimental and syn-
thetic data sets. Displayed values have been adjusted regarding to the best score (ground
zero) in each ensemble. Red asterisks indicate the reference assignment solutions. Orange
underlines indicate where the reference solution is not ranked the best.

Deposited solutions, determined by expert spectroscopists, serve as ‘reference’ assign-

ments. As shown in Figure 2.5, for each dataset, HGM found the reference assignment, but

also a number of alternative assignments that were about as good (or perhaps even better),

under our scoring model. The largest ensemble (30 solutions) was found for 1QL4, due to
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the extreme sparsity of the dataset. Even in that case, the reference solution is ranked as

second best, with a score difference of 0.44 due to one difference in the assignment (a swap

of the pseudoresidues mapped to residues 5 and 52).

The differences among the high-quality assignments were typically confined to swaps

between a few ‘equivalent’ pseudoresidues. For example, in the α-helices of 1JHB, pseu-

doresidues assigned to positions 58, 90 and 91 are exchangeable and the top four solutions

of the ensemble provided all the possibilities. By computing a complete ensemble of fea-

sible assignments, HGM allows us to carefully evaluate the remaining ambiguity, as Fig-

ure 2.6 illustrates. Overall, the average number of possible assignments for each residue

position has been reduced from 7.9 to 1.2. The most significant ambiguity was caused by

significant numbers of missing edges in particular secondary structure elements (e.g., in the

first and the third helices of 1QL4). Figure 2.6 doesn’t include 5GCN 4α, since it has only

one solution returned by HGM. The mean number of assignments before HGM for 5GCN

4α is 11.86.

We evaluated the effect of the contact distance threshold on the performance of HGM.

For example, we found that for the 5 α-helices of 2JHB, as we varied the threshold from 4

to 4.5 to 5 to 5.5 Å, the ensemble size increased from 2 to 6 to 16 to 52. The number of vis-

ited states jumped to 724719 at a threshold of 5.5 Å. Results for other proteins (not shown)

were similar. With a larger threshold, more edges are included in the contact graph, more

of which are missing in the NMR graph (as discussed at the start of this section). Conse-

quently, the “wild-card” scores from missing edges start to dominate the match scores of

existing edges.

To the best of our knowledge, only one algorithm, ST2NMR [56], has been developed

for backbone assignment based on a 3D structure and NOESY data. ST2NMR uses a

Monte Carlo approach to optimize an assignment, explaining NOESY peaks in terms of

distances in the structure. It was shown to be effective for some example test data, but
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requires specific experimental set-ups and can provide no guarantees or insights into the

information content of the data. For a comparison, we tested ST2NMR on our 3 different

experimental datasets (the publication already provided results for 1QL4), but found the

resulting assignment to be highly dependent on the order of the input pseudoresidues. For

example, over a set of 10 runs with different random pseudoresidue order for 1JHB, the

assignment accuracy of ST2NMR varied from 28% to 77%, with a median of 56%. The

results were confirmed by communication with the authors, who pointed out that ST2NMR

depends critically on the combination of good structure and NOESY spectra, with good

matches between them, and that ST2NMR works better with 2D homonuclear NOESY

rather than 3D 15N-edited NOESY. This result further emphasizes the need for complete

search algorithms, like HGM, to be able to evaluate the reliability of an assignment in a

situation with sparse, noisy data.

2.4.2 Synthetic datasets

In order to study our algorithm’s performance under varying noise and sparsity levels, we

also generated synthetic datasets using chemical shift data deposited in the BMRB [60]. We

chose a random set of eight moderate-sized proteins previously tested with RESCUE [52],

with varying α-helix and β-sheet content (refer again to Table 2.1). To construct the NMR

interaction graph, we first simulated NOE peaks for pairs of interresidue backbone protons

within a distance≤ 4 Å. We likewise restricted the contact graph to 4 Å, thereby essentially

ignoring the longer-distance NOEs, since we found in the experimental data that they are

missing at a significant frequency and thus the information they provide is not worth the

additional computational complexity they require. We randomly deleted peaks according

to observed statistics correlating the missing probability with the interatomic distance [12],

and tested two different missing rates at different distances: d ≤ 3 Å, missing either 10%

or 21%; 3 < d ≤ 4 Å, missing either 30% or 41%. Note that these rate ranges cover
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the rates observed in the experimental datasets, except for the extremely sparse 1QL4. We

generated an “observed” interresidue proton chemical shift for each remaining peak by

adding Gaussian noise with variance 0.02 (corresponding to the 0.05 1H match tolerance).

We added an edge to the NMR graph for each proton whose chemical shift matches the

noisy value within the 0.05 threshold, yielding an average of 1.4–4.3 noise edges per correct

edge. As discussed [32], all the noise is on the interresidue side of the interaction, since

the intraresidue side has two chemical shifts (HN, 15N) by which to resolve chemical shift

ambiguity. The simulated noise rates are somewhat smaller than the experimental ones, but

we did not consider it realistic to increase the chemical shift tolerance in order to artificially

inflate them.

Table 2.3 summarizes the results of HGM on the synthetic datasets. Here reference

solutions indicate the original BMRB assignments. As with experimental data, for all test

cases the reference assignment is included with an optimal or near-optimal score, and only

a few assignment swaps differentiate the best solutions. Figure 2.4 illustrates that the lower

bound remains quite tight. In general, the HGM algorithm performed very well and only

explicitly tested a tiny fraction of the search space before finding the complete solution set.

The synthetic tests further demonstrate the effect observed before: an increase in the miss-

ing rate yields greater search complexity and ensemble size (the last two sets of columns).

These results also indicate that, given a uniform missing rate, α-helices tend to have a better

tolerance for missings than do β-sheets since their tertiary structures are usually more com-

pact and thus generate more edge constraints. Also, assignment of β-sheets benefits from

the hierarchical merge order which naturally utilizes the spatial proximity of β-strands,

even when sequentially separated. In such cases, a poor local assignment, e.g., many miss-

ing edges in a strand, can be effectively overcome by way of connections with neighboring

strands.
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Å
)a

nd
30

%
(3

–4
Å
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2.5 Related Work

Our work differs from most traditional approaches to backbone resonance assignment

in that it is structure based. As we showed in the Results, our guarantee of complete-

ness appears to be very valuable, as ST2NMR (the only other existing approach using

structure+NOESY) did not perform well on our sparse, noisy datasets. Our work is com-

plementary to structure-based assignment approaches that reply primarily on experiments

other than NOESY. For example, the NVR work by Langmead and Donald [37, 39] uses

residual dipolar coupling (RDC) data as global orientational restraints, with only unam-

biguous NOEs to help prune. It remains interesting future work to fully integrate RDC

with NOESY data and thereby perhaps overcome their individual limitations.

There are other techniques for assignment based on the NOESY, but they do not use

information from an available 3D structure. The Main-Chain Directed approach repre-

sents an early approach to backbone assignment based on the NOESY [46, 62], although

that work was developed for homonuclear spectra, only partially automated, and applied

to experimental data for only one small protein. The automated Jigsaw approach [4] was

successfully applied to uncover α-helix and β-sheet patterns in NOESY data (and thereby

assign those regions). More recent work developed an algorithmic basis for the Jigsaw-

style approach, with a randomized algorithm that gives optimal performance in expected

polynomial time for the special case of uncovering secondary structures in corrupted NMR

graphs [3, 32]. We note that we are focusing here on backbone assignment based on the

NOESY. Work on NOE assignment (e.g., [67]), including side-chain interactions, is cer-

tainly related but typically is addressed only once backbone resonances have been assigned

by standard techniques. An algorithm combining these two aspects for simultaneous back-

bone and side-chain assignment would represent an interesting, and significant, advance.

In our focus on matching graph representations of protein structures, our work is some-

what like sequence-structure alignment (threading); e.g., Xu and co-workers developed a
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divide-and-conquer approach that uses hierarchical combinations of sub-alignments [75]

and can incorporate assigned NOE data to constrain them [76]. A significant difference is

that for threading, residues are in sequential order for both the sequence and the structure,

while in contact-based assignment, the pseudoresidues come with no explicit order.

2.6 Summary

To reduce the time and expense of NMR-based studies of protein interactions and dynam-

ics, we develop an algorithm to find all feasible mappings between a contact graph encod-

ing the structure and a corrupted version encoding the NMR data, limiting the combinato-

rial explosion by hierarchically decomposing the structure and effectively pruning partial

solutions. Tests on both experimental and synthetic data show that the algorithm handles

significant noise and sparsity in assigning relatively contact-dense regions (α-helices and

β-sheets).

An important step for practical utility of HGM is to characterize its performance on x-

ray structures and homology models, the natural inputs for structure-based assignment. We

must model and account for any systematic differences between these models (generating

contact graph edges) and the native solution state probed by NMR (generating NMR graph

edges). Since HGM focuses on high-contact-density regions and the edges most likely to

be observed, we believe that it will be fairly robust to modest structural differences. Vari-

able correspondence and lack of correspondence in different subgraphs may also provide

evidence to select models, as was done for RDC data by Langmead and Donald [38].

Preliminary tests also indicate that our method can naturally extend from secondary

structure to connected loops, and thereby assign larger portions of the structure. An in-

teresting aspect of NOESY-based assignment is that the data are inherently local, thereby

providing the possibility of assigning different portions of the structure to different confi-

dence levels.
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Chapter 3

Contact Replacement for NMR

Resonance Assignment: Random Graph

Model for Contact Replacement

3.1 Introduction

As we discussed before, although the problem of backbone resonance assignment has been

well-studied within the context of structure determination, the standard protocols are based

merely on the restraints derived from NMR experiments, without any reference to the avail-

able structure of a target protein. Therefore, by transforming the backbone resonance as-

signment problem into the contact replacement problem. we actively utilize the spatial

contact information from a protein’s known structure, and look for a pattern match from it

to the graph compiled from the NMR data.

Various versions of what we are calling here contact replacement have previously been

studied. Our Hierarchical Grow-and-Match (HGM) algorithm [69] uses a branch-and-

2This work has been published [71] in the proceedings of 16th Annual International Conference Intelligent
Systems for Molecular Biology (ISMB) 2008. It also appears in Bioinformatics, 24:i105− i213, 2008.
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bound algorithm to find the complete ensemble of consistent correspondences between

contact graphs and NMR graphs, and can handle significant noise and sparsity. How-

ever, due to the combinatorics of the problem and the branch-and-bound approach, HGM

is effectively restricted to well-defined regions of secondary structure. The ST2NMR pro-

gram [56] casts assignment given a 3D structure and NMR data as an optimization problem,

and uses a Monte Carlo approach to find explanations of the data in terms of distances in

the structure. While ST2NMR was shown to be effective for some test data, it requires

very specific experimental set-ups and can provide no guarantees or insights into the in-

formation content of the data. We tested it on a number of different datasets, and found

the accuracy to be fairly low and quite sensitive to the order of the input data [69]. PEP-

MORPH [14] uses graph representations of the structure and data, but augments them with

residual dipolar coupling data in order to compute matchings. Our earlier work on graph-

based approaches to NMR assignment, Jigsaw [4] and random graph algorithms [3, 32],

were able to effectively uncover secondary structure patterns; our random graph model

enabled us to prove that the randomized methods have optimal performance in expected

polynomial time. However, these approaches were all restricted to uncovering generic pro-

totypes of secondary structure elements, rather than matching NMR data to an arbitrary

three-dimensional structure.

Contribution. This work presents the first efficient algorithm to solve the contact re-

placement problem for entire proteins. We first show that by combining connectivity and

type, and by exploiting the random structure of the noisy edges and vertex labels, one can

provably determine unique matchings in polynomial time with high probability, even in

the presence of significant noise, i.e., a constant number of noisy edges per vertex. Since

the NMR interaction graphs we are studying have up to 5 times as many noise edges as

correct ones, the ability to handle this degree of noise is important. This result significantly

improves over previous results on finding long paths in noisy NMR graphs [3]. We then
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detail a simple and efficient randomized algorithm that works very well in practice. To do

so, we build upon our earlier work on random graph algorithms in NMR [3,32], which used

connectivity information alone to uncover large, regular structures (α-helices and β-sheets)

in NMR graphs. We now integrate connectivity information with amino acid type informa-

tion (ambiguous labels on the vertices) in order to uncover large corresponding fragments

in NMR and contact graphs for complete structures. We significantly extend our reuse

paradigm to efficiently uncover these correspondences. Instead of backtracking upon find-

ing an inconsistency in a growing correspondence, the reuse approach seeks to maintain

the (mostly good) structure by applying local fix-up rules to address just the source of the

inconsistency. Our empirical results show that this approach is quite effective in practice,

relatively insensitive both to noise in the NMR graph and structural variation in the contact

graph.

3.2 Our Approach

As defined in Section 2.2, input data are represented as graphs and the NMR resonance

assignment problem has been converted into a matching between the contact graph G∗

and the NMR interaction graph G. One feature of proteins particularly relevant here is

that they are made of chains of amino acids. Thus the contact graph has an embedded

Hamiltonian path from N terminus to C terminus (in addition to numerous through-space

edges connecting residues at any sequential distance). Ignoring missing edges, the NMR

graph has a corresponding Hamiltonian path. Our analysis and randomized algorithm both

make use of this property, by focusing on finding the Hamiltonian path while “bringing

along” the additional edges for scoring purposes.

We note that the contact replacement problem is NP-hard in general, since it contains

as a special case the following NP-hard problem: Given a unweighted Hamiltonian graph

(undirected or directed) H find a Hamiltonian path in H (i.e., assuming that there are no
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constraints on vertex labels and all edge scores are the same). We note that the above

problem remains NP-hard even when restricted to sparse Hamiltonian graphs, e.g., di-

rected Hamiltonian graphs with maximum out-degree two [51] or undirected Hamiltonian

graphs with degree at most three [18]. The problem has been shown hard to approximate

in directed graphs: it is not possible to find paths even of superpolylogarithmic length in

constant out-degree Hamiltonian graphs unless Satisfiability can be solved in subexponen-

tial time [7]. For undirected Hamiltonian graphs, the best known algorithms give longer

paths (e.g., of length nΩ(1/ log logn)) in Hamiltonian graphs in polynomial time [15–17].

We note that the above algorithmic results do not apply to our problem because we have

additional information (amino acid classes) for the vertices. More importantly, NMR in-

teraction graphs are not arbitrary graphs and indeed have a special structure as captured by

the random graph model described next.

3.3 Random Graph Model for NMR Interaction Graph

In order to develop and analyze effective algorithms, we must consider and model the

nature of the relationship between the ideal contact graph G∗ and the observed NMR inter-

action graph G. We note that traditional G(n, p) random graph models [8] essentially add

noise edges randomly and independently. However, the noisy edges in an NMR interaction

graph are not arbitrarily distributed. Instead, chemical shift degeneracy is the key source of

noise in these graphs, imposing a particular correlation structure among noise edges. We

have developed a random graph model that properly captures the noise in NMR interaction

graphs [3, 32].

Definition 1 (M(G∗, w) random graph) The modelM(G∗, w) “generates” a random graph

from the (correct) graph G∗, where w is a parameter that determines the number of noisy

edges generated per correct edge. Let π be a random permutation of V ∗. Denote by π(v)
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the index of v ∈ V ∗ in the permutation. We then consider as ambiguous all vertices within

a “window” of size w around a particular vertex. For each edge of G∗, additional edges

are generated as follows. Consider an edge (u∗, v∗) ∈ E∗. Then for each u in the window

of width w around π(u∗) (i.e., |π(u∗)− π(u)| ≤ w), we add the edge (u, v∗) to the random

graph.

This model captures the way in which uncertainty in the data leads directly to ambiguity

in the edges posited in an NMR graph. In particular, NMR spectra represent interactions

between atoms as peaks in R2 or R3, where each dimension indicates the coordinates (res-

onance frequencies, in units called “chemical shifts”) of one of the interacting atoms. Un-

certainty in the measured chemical shifts of the protons thus leads to ambiguity in matches,

and the construction of noise edges. When two vertices have atoms that are similar in

chemical shift, they will tend to share edges—each edge for the one will also appear for the

other. Since there is no systematic, global correlation between chemical shifts and positions

of atoms in the primary sequence or in space, we simply model chemical shift similarity ac-

cording to a random permutation. The model can be extended in order to generate synthetic

data (e.g., incorporating edge scores, accounting for missing edges, etc.); see the Results

section for our actual simulation testbed. We use this basic model in the next section to

analyze the contact replacement problem.

For amino acid types, we assume a simple independent model for the purpose of anal-

ysis. (Of course, in practice we know the actual amino acid types for the contact graph.) In

particular, let A be the set of amino acid types and D be some fixed probability distribution

over A (e.g., 1/20 for each, or using empirically observed frequencies). Assume without

loss of generality that for all a ∈ A, the probability that a is chosen, Pr(a), is greater than

q, where q > 0 is some fixed constant. We assume that a vertex is labeled by sampling

independently at random from D.
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3.4 Theoretical Analysis and Implications

We present a theoretical analysis to show that the contact replacement problem can be

solved with high probability in polynomial time. For the analysis, we assume that the

NMR interaction graph G = M(G∗, w) is generated from the correct contact graph G∗ =

(V ∗, E∗) which is a Hamiltonian path of length n (= number of amino acids). For now, we

assume no edge weights, no breaks, and no other sources of noise (additions and deletions);

the result can be generalized. We also assume that for each vertex, the true amino acid type

is in the amino acid class labeling the vertex, and that it is a non-trivial class, i.e., it is not A

itself (refer to the model above). The contact replacement problem now reduces to finding

whether there is a Hamiltonian path in G that is equivalent (defined below) to that of the

Hamiltonian path G∗.

Definition 2 (equivalence) We say that a subgraph H = (V1, E1) of G is equivalent to a

subgraph (i.e., subpath) H∗ = (V2, E2) of G∗, denoted as H ≡ H∗, if and only if there is a

bijection m : V1 → V2 such that for every v1 ∈ V1, a(m(v1)) ∈ `(v1) and there is an edge

e = (u1, v1) ∈ E1 iff there is an edge (m(u1),m(v1)) ∈ E2.

In the following, “with high probability (whp)” means with probability at least 1 −

1/nΩ(1), where n is the number of amino acids in the protein.

Theorem 1 Under our M(G∗, w) random graph model, if w = O(1), then the contact

replacement problem can be solved in polynomial time whp.

Proof Without loss of generality, we will assume that |A| = 2 (A is the set of amino acid

types). The proof can be easily made to work without this restriction. The proof hinges on

the following claim.

Claim: Fix a (sub)path P of length k = c log n in G∗, where c > 0 is a constant (fixed in

the proof). Then the following hold whp.
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(a) There is a unique subgraph H of G, such that H ≡ P , i.e., there is no other subgraph

H ′ of G such that H ′ ≡ P .

(b) There is no other subgraph Q of G∗ such that P ≡ Q.

We will first show (a).

Since G = M(G∗, w) (i.e., generated by our random graph model), we know that there

exists a subgraph H of G such that H ≡ P . We now show that H is unique. Let the two

amino acids be a and b, with probabilities of occurring pa and 1 − pa respectively. Let

q = max{pa, 1− pa}. By our assumption on the size of A, q is a constant (< 1). The path

G∗ induces a natural ordering of vertices of G. We bound the probability of finding another

path (subgraph) H ′ of G that is equivalent to P by the following expression:

Pr{∃H ′ ≡ P} ≤
k−1∑
k′=0

n

(
n

k′

)
(
w

n
)k
′
qk−k

′

The reasoning is as follows. Let k′ be the number of noisy edges inH ′; k′ can vary between

0 and k−1, and hence we sum over all possibilities. The first term is the number of different

ways of fixing the starting vertex. There are at most
(
n
k′

)
ways of choosing vertices from

which the noisy edges emanate. The third term bounds the probability that the noisy edges

form a path between them with the amino acid labels matching those of the corresponding

vertices in P . The last term is the probability that the amino acid labels for the correct

vertices match. We can bound the sum as follows (note that we take∞0 = 1):

Pr{∃H ′ ≡ P} ≤
k−1∑
k′=0

n(
en

k′
)k
′
(
w

n
)k
′
qk−k

′

≤
k−1∑
k′=0

n(
ew

k′
)k
′
qk−k

′
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Plugging k = c log n, the above sum is bounded by

Pr{∃H ′ ≡ P} ≤ n

c logn∑
k′=0

(
ew

k′
)k
′
q(c logn)−k′

≤ n

c logn∑
k′=0

(
ew

qk′
)k
′
qc logn

≤ n

c logn∑
k′=0

(
ew

qk′
)k
′
O(nc log q)

≤ n

c logn∑
k′=0

O(1)O(1/nc log(1/q))

≤ n

c logn∑
k′=0

O(1/n3)

= O(1/n)

if c is a sufficiently large constant.

We now show Claim (b). We bound the probability that there is some subgraph Q of

G∗ such that P ≡ Q:

Pr{∃Q ≡ P} ≤ nqk.

The first term in the bound is the number of different ways of fixing the starting vertex

of Q and the second term bounds the probability that a particular Q is identical to P . If

k = c log n, for a sufficiently large constant c, the above probability is bounded by 1/n.

Using the above claims we can design the following polynomial-time algorithm. The

algorithm finds a subgraph H in G of length c log n (where c is fixed in the above claim)

such that it is equivalent to some subgraph P of G∗. Once such a subgraph is found, it will

be a unique match in G∗ whp (by the above claim). The algorithm then repeats this process

until the full equivalent mapping is found. The subgraph H can be found by an exhaustive

search, starting at some vertex and examining all possible paths of length c log n. There are

only at most wc logn = O(nc logw) (i.e., a polynomial number) of possible paths and hence
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the search can be done in polynomial time. One of these paths in G will be a unique match

with a corresponding path in G∗.

We note that the above theorem can be extended to the case when there are missing

(correct) edges in the NMR graph G′ as shown in the following corollary.

Corollary 1 Suppose G contains a path P ′ of length at least c log n (where c is as fixed in

the above theorem) that is equivalent to a subgraph H∗ of G∗. Then P ′ can be found and

matched correctly with H∗ whp.

The above analysis shows that the contact replacement problem can be solved in poly-

nomial time if w = O(1), i.e., there is at most a constant number of noisy edges per vertex.

This is significant for two reasons. First, in practice, typically the number of noisy edges

per vertex is a constant (around 5). Second, if there is no amino acid information, the

randomized algorithm of [3,49] can find long paths (of length at least Ω(n/ log n)) in poly-

nomial time only if the number of noisy edges per vertex is at most one. Our analysis here

shows that this threshold barrier can be surmounted by using amino acid type information.

Our experimental results validate this theoretical prediction.

3.5 Methods

In practice, the simplified model and algorithm used in the analysis may not be fully ap-

plicable, in particular because some edges may be missing and some amino acid type in-

formation may be erroneous (the correct type for a contact graph vertex not included in

the class for the corresponding NMR vertex). Such errors result in “breaks” in the corre-

spondence between a contact graph and NMR graph. Thus we seek to find a set of disjoint

paths (“fragments”) in the NMR graph that together match the Hamiltonian path in the

contact graph. Given such an equivalence, we score all corresponding edges, including the

non-sequential ones. By basing our algorithm on paths, we take advantage of our long-
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path result from the previous section, while by including all edges in the score, we take

advantage of all available information to better control the search.

A key insight of our algorithm is that in searching for good matchings, the best ones

tend to share a lot of substructure. (Our results below on assignment ambiguity, Figure 3.4,

illustrate.) In branching-based searches, such shared substructure can appear on many

different branches, making exhaustive search very inefficient and causing backtracking to

perform wasteful undoing and redoing. In contrast, we use more efficient local fixes to

resolve inconsistencies and continue searching with most of the structure still intact.

Figure 3.1 gives the pseudocode for our algorithm. The algorithm maintains (and fixes

up) a single set F of fragments, with a mapping m to the contact graph that is always

consistent (i.e., fragments do not overlap). Some fragments may not be mapped, meaning

that under the current matching, they are considered noise. On each iteration, the algorithm

sequentially extends one fragment, adding an NMR vertex that will correspond to the next

residue position in the sequence. Several things could happen upon growing to that vertex;

see Figure 3.2. In the simplest case, the algorithm picks up an unmatched NMR vertex

(and its fragment) and simply extends the matching. However, it may run into a conflict

and need to fix up the current matching. If a fragment wants to grow to a vertex in the

middle of another fragment, then the other fragment is split at the point of conflict to allow

its suffix to be taken away. If the growth results in a mismatch of amino acid type or

of alignment, then a realignment is attempted. Matching the fragment somewhere else in

the contact graph may result in a consistent matching, or may produce another conflict,

potentially fixed by replacing part of the conflicting fragment with the new fragment. To

keep each step simple enough, we only recursively handle the conflict at this point if it’s

simple enough to fix. The algorithm repeats until convergence. In practice, we run a fixed

number of iterations, and keep track of m through the iterations in order to analyze the

distribution of good solutions.

42



m← ∅ // matching, from G to G*
F ← {{v} s.t. v ∈ V} // each v starts in its own fragment
Repeat until convergence:

Choose at random a vertex u ∈ V with no successor in F
Choose an edge (u, v) ∈ E, for some v, with probability
according to score
// Try to grow from u to v at current alignment
Let fu and fv be the fragments in F containing u and v
fu ← fu + suffix of fv starting at v
fv ← prefix of fv before v
If fv is empty, remove it from F
If m(v) is defined and m(u) is undefined and
fu can be aligned ending at m(v)− 1

Update m to align fu, i.e., m(u)← m(v)− 1, etc.
Else if m(u) is defined and m(v) is undefined and
fv can be aligned starting at m(u) + 1

Update m to align fv, i.e., m(v)← m(u) + 1, etc.
Else

// Try to realign
Let f = {p1, ..., pn} be the fragment with u and v
Choose an alignment f ′ = [i, i+ n] starting from
position i, with probability according to score
If any portion of f ′ already has some other fragment
aligned there

Choose to splice that out or to keep it,
with probability according to score

Update m
Recursively handle spliced-out subfragments,

if they are large enough and can be aligned

Figure 3.1: Randomized algorithm for contact replacement: given a contact graph G∗ =
(V ∗, E∗) and NMR graph G = (V,E), determine the matching m.

At several places in the algorithm, we choose an option “with probability according to

its score.” In general, the score refers to the total score of NMR edges matched to contact

graph edges (refer again to the graph definition for our scoring function). Since we are

using discrete amino acid classes, we require that the matched contact amino acid type be

a member of the NMR amino acid class. In choosing an edge from u, we only consider the

edges along the current path, while in choosing an alignment or whether or not to splice,
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u

Figure 3.2: Reuse-based growing and aligning. Contact graph and NMR residues in the
same column are matched. There are two amino acid types (empty squares and filled cir-
cles), which must match. (left) Growing from a matched fragment ending in u to an un-
matched fragment with v in the middle leaves behind the prefix of the unmatched fragment
in order to append and match the suffix following u. (right) Growing from u to v requires a
realignment of the joined fragment. The joined fragment displaces the suffix starting at w
of another fragment.

we consider the total of all edges before vs. after the possible change.

3.6 Results

Table 3.1 summarizes the datasets, both experimental and synthetic, that we used to val-

idate our algorithm. The proteins are of moderate size for typical NMR studies, and this

collection has representative structural diversity and assignment difficulty. We used three

experimental datasets from previous contact-based assignment work [32, 69], including

Human Glutaredoxin (PDB ID: 1JHB), Core Binding Factor β (PDB ID: 2JHB), and the

catalytic domain of GCN5 histone acetyltranferase (PDB ID: 5GCN). For brevity, and since

assignment is based on structure, we refer to each protein by its PDB ID. The noise rate

(average number of noisy NMR edges per contact edge) is as high as 5.4 (1JHB α-helices)

and the missing rate as high as 51.8% (5GCN loops). Since such complete experimental

datasets are a rare commodity, in order to more broadly test our approach, we also used a set

of previously-generated synthetic datasets [69] based on chemical shift data deposited in
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the BMRB. These synthetic datasets include noise edges according to Gaussian noise with

variance 0.02 (corresponding to a standard 0.05 1H match tolerance) and missing edges

according to observed statistics correlating the missing probability with the interatomic

distance [12]: d ≤ 3 Å, missing 21%; 3 < d ≤ 4 Å, missing 41%.

For each dataset, we ran our algorithm 100 times, each for 10, 000 iterations. For each

run, we kept the top-scoring assignment over the 10, 000 iterations. We then took as our

solution ensemble the top 10 assignments over the 100 runs. For validation purposes, we

use deposited solutions, which were determined by expert spectroscopists, as “reference”

assignments.

Figure 3.3 illustrates some examples of the convergence of the algorithm; other runs and

other datasets had similar behavior. In general, the score increases rapidly over the initial

iterations (a few hundred steps). During this phase, pseudoresidues are being organized

into various “short” paths aligned to the primary sequence, naturally increasing the score.

With successive iterations, the short paths will start to grow into each other and conflicts

occur, requiring fix-up moves to remove the conflicts. While moves are made so as to

prefer increased score, locally bad moves are occasionally made in order to escape local

optima. In many cases, the score converges to a value near that of the reference solution.

As we will see below, the variation tends to produce only minor ambiguity in the resulting

correspondence, and over the ensemble of solutions the correct assignments tend to be

found.
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(Å

)
1J

H
B

N
/A

5/
4/

10
43

/1
8/

44
16

0/
49

/8
1

5.
4/

2.
5/

3.
0

32
.5

/3
8.

7/
33
.3

1.
3/

0.
8/

1.
6

2J
H

B
40

92
5/

6/
11

36
/4

2/
64

13
8/

99
/1

41
3.

5/
5.

2/
3.

7
33
.3

/1
8.

2/
41
.1

1.
5/

0.
9/

2.
6

5G
C

N
43

21
4/

7/
12

56
/5

2/
58

24
5/

11
5/

11
0

4.
9/

4.
6/

2.
2

32
.7

/2
8.

7/
51
.8

1.
5/

1.
6/

3.
5

1K
A

5
20

30
3/

4/
8

40
/2

3/
25

16
2/

56
/5

8
3.

2/
2.

8/
1.

9
21

,4
1

0.
8/

0.
7/

0.
8

1E
G

O
21

52
3/

4/
8

39
/1

9/
27

16
5/

42
/4

9
2.

2/
2.

7/
2.

6
21

,4
1

2.
1/

1.
4/

3.
6

2F
B

7
70

84
–

/5
/6

–
/3

2/
63

–
/7

4/
96

–
/3
.0

/2
.4

21
,4

1
–

/1
.5

/7
.7

1G
6J

53
87

2/
5/

8
18

/2
2/

36
75

/4
7/

71
1.

4/
3.

1/
3.

0
21

,4
1

1.
0/

1.
1/

2.
3

1P
4W

56
15

5/
–

/6
66

/–
/3

3
25

3/
–

/2
9

3.
8/

–
/2
.7

21
,4

1
1.

2/
–

/3
.5

1S
G

O
60

52
4/

6/
9

47
/2

6/
64

19
9/

68
/1

31
2.

9/
3.

4/
6.

3
21

,4
1

2.
8/

1.
3/

9.
6

1R
Y

J
51

06
1/

5/
7

9/
27

/3
7

31
/5

5/
51

1.
0/

4.
3/

3.
4

21
,4

1
1.

3/
1.

4/
2.

6
2N

B
T

16
75

–
/3

/4
–

/1
6/

50
–

/3
6/

10
8

–
/1
.0

/2
.9

21
,4

1
–

/1
.5

/4
.5

1Y
Y

C
65

15
2/

9/
11

36
/7

2/
66

14
9/

16
5/

15
3

1.
2/

4.
7/

2.
6

21
,4

1
2.

0/
1.

7/
6.

2

C
ol

um
ns

gi
ve

nu
m

be
ro

fs
ec

on
da

ry
st

ru
ct

ur
e

el
em

en
ts

,n
um

be
ro

fr
es

id
ue

s,
nu

m
be

ro
fc

on
ta

ct
gr

ap
h

ed
ge

s,
av

er
ag

e
nu

m
be

ro
fn

oi
sy

N
M

R
ed

ge
s

pe
r

co
nt

ac
te

dg
e,

pe
rc

en
ta

ge
of

m
is

si
ng

co
nt

ac
te

dg
es

an
d

av
er

ag
e

R
M

SD
to

th
e

re
fe

re
nc

e
m

od
el

am
on

g
st

ru
ct

ur
es

in
th

e
de

po
si

te
d

en
se

m
bl

e.
E

ac
h

co
lu

m
n

is
br

ok
en

in
to

st
at

is
tic

s
fo

r
α

-h
el

ic
es

,β
-s

he
et

s,
an

d
lo

op
re

gi
on

s,
se

pa
ra

te
d

by
sl

as
he

s.
‘–

’
in

di
ca

te
s

no
in

st
an

ce
of

th
at

se
co

nd
ar

y
st

ru
ct

ur
e.

46



Figure 3.4 illustrates the assignment results for the experimental datasets. Notice that

we can assign the whole protein, and that for most of the positions, the reference assign-

ments are included in the top-ranked solutions. Exceptions tend to be from areas with many

missing edges (e.g. 1JHB 51–57) or residues close to a Proline (e.g. 5GCN 34–35), which

necessarily induces a break. The results also show that the high-scoring solutions tend

largely to agree. For 1JHB, there are on average 1.7 matches for each residue in α-helices,

and 1.2 in β-sheets and loops. For 2JHB the ambiguity level is 1.3 for α-helices, 2.5 for

β-sheets, and 2.4 for loops, and for 5GCN we have 1.3, 2.6, and 3. (These numbers can

be compared to the expected number of matches a priori, which is simply the number of

residues in the protein within the same ambiguous amino acid class, anywhere from 2 to

14.) In general, β-sheets and loops are more ambiguous than α-helices since their tertiary

structures generate fewer edge constraints. For the nine synthetic datasets, the average

ambiguity is as low as 1 for α-helices (1G6J), β-sheets (1KA5) and loops (1EGO); with a

maximum of 2.8 (1SGO), 3.6 (1YYC), 9.1 (1SGO), and median of 1.7 (1KA5), 1.5 (1G6J),

2.1 (1G6J) for the three types, respectively. The most ambiguous case is 1SGO loops since

it has both the highest noise ratio (6.3) and the largest RMSD (9.6 Å).

We compared these results to the corresponding ones of [3] (limited to α-helices), and

found that our algorithm performs much better. Considering each position separately, we

can evaluate how frequently the majority of the solution ensemble identifies the correct

match. In our results, that is true for 90% of the positions, where it holds for less than 70%

of the positions under the earlier method.

For both the experimental datasets and the synthetic ones, we studied the sensitivity of

our algorithm to structural variation. For each dataset, an ensemble of NMR-determined

structures had been deposited. We generated a contact graph for each different member of

the ensemble, and studied how well the original data could be assigned under the varying

structures. The average RMSDs of the ensemble members (all to the reference model) are
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Figure 3.3: Score convergence over 10, 000 iterations for 5 individual test runs for 1JHB.
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rejected during fix-up). The dashed horizontal line at the top indicates the score of the
reference assignment.
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given as the far right column in Table 3.1, and are representative of the extent of structural

uncertainty one might expect when assigning NMR data using an x-ray structure or high-

quality homology model.

Figure 3.5 illustrates the effect of structural variation on the performance of our al-

gorithm for each secondary structure type. For experimental data, we observe that for

α-helices, there is no obvious change in the assignment accuracy when reference structures

have a moderate difference (RMSD ≤ 2 Å). However, for β-sheets and loops, the assign-

ment accuracy degrades when RMSD increases beyond about 1.25 Å for β-sheets and 3

Å for loops. Similar results can be observed in the synthetic data set—α-helices are very

tolerant to structural uncertainty, while β-sheets are best for RMSDs under around 1.5 Å,

and loops are best up to around 3.5 Å.

Figure 3.6 summarizes the performance of our algorithm for each dataset under the

different structure models. These results suggest that, overall, we achieve good accuracy in

assignment, above 80% for α-helices, 70% for β-sheets and 60% for loops. Since contacts

are discrete, one might initially expect more effects from structural variation. However,

recall that our method focuses on matching paths and uses non-sequential edges for scoring.

While the score degrades with the loss of non-sequential edges, path connectivity is fairly

well maintained regardless of the three-dimensional coordinates.

3.7 Discussion

NMR spectroscopy provides scientists with the ability to collect detailed information re-

garding protein dynamics and interactions in solution. However, in order to interpret the

dynamics and interaction experiments, it is necessary to first obtain a resonance assign-

ment so that the observed spectral peaks may be matched to atoms in the protein (e.g.,

to localize which atoms are affected by binding). In order to increase the throughput and

decrease the expense of performing resonance assignment, this paper develops a new ap-
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Figure 3.5: Performance of our algorithm with varying structure, measured in terms of Root
Mean Square Distance (RMSD) to the reference model. Each blue asterisk indicates the
accuracy of one member of the structural ensemble for one dataset. We only show results
for structures with at most 2 Å RMSD for α-helices and β-sheets and 4 Å for loops.
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(b) synthetic datasets

Figure 3.6: Overall performance of our algorithm. Cyan circles indicate average assign-
ment accuracy over all members of an ensemble for a dataset, while bars indicate the best
and worst assignments.

52



proach, contact replacement. Contact replacement exploits information from an available

three-dimensional structure (from x-ray crystallography or homology modeling) to drive

the assignment process, replacing the typical more extensive and expensive set of experi-

ments with a minimalist set. Once contact replacement has been performed, the available

assignments can be used to interpret dynamics or perturbation experiments. We note that

those are separate experiments not included in the assignment process, and it is an in-

teresting question (regardless of the assignment approach) to propagate uncertainty from

assignment to uncertainty in dynamics or interactions.

Contact replacement poses interesting algorithmic problems in matching the corrupted

graphs, along with basic questions regarding the information content in connectivity and in

vertex labels. In this paper we presented the first efficient algorithm to solve this problem

for entire proteins. We used a random-graph theoretic framework to derive a theoretical

justification for why our approach works well in practice. Even with a large number of

noisy edges (a constant number per vertex) and a high degree of vertex label ambiguity,

the random structure of the noise and ambiguity allows a polynomial-time algorithm to

uncover the correct solutions.

We showed that our approach works quite well in practice, tolerating significant noise

(up to 500% noisy edges), missings (up to 40%), and structural variability (up to 2 Å in α-

helices and β-sheets, and more in loops), while achieving very good assignment accuracy

(60–80% overall). This combination is quite promising, and a significant advance in the

state of the art. In particular, our robustness to structural uncertainty suggests that we may

even be able to handle a “looser” structural profile, such as the overall relationship among

the core elements. This is a compelling challenge for further work.

It is interesting to consider the relationship between contact replacement and nuclear

vector replacement (NVR) [37, 39], both of which use an available structure to perform

NMR resonance assignment, but based primarily on different data. (NVR does use some

53



NOESY data, too, but only unambiguously assignable peaks.) At a high level, the residual

dipolar coupling data used in NVR is global, giving orientations of bond vectors wrt a co-

ordinate frame, whereas the NOESY data used here is local, giving distances only between

close protons. A natural avenue of work is to study the relative information content of these

types of information in order to develop a unified framework incorporating both.

Compared to other graph-based structure matching problems (e.g., threading, structural

alignment, structure motif finding, chemical compound querying, etc.), contact replace-

ment has no sequential order information for one of the graphs (the NMR one). However,

the basic insights behind our algorithm (namely reusing partial solutions by making local

fix-ups) may still be quite relevant in developing new algorithms for those applications.

Alternatively, giving up sequential order in those applications may result in finding more

distant relationships.
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Chapter 4

Protein Fold Determination: Topological

Fingerprint-based Cross-link Analysis

and Experiment Planning

4.1 Introduction

Despite significant efforts in structural genomics, the vast majority (> 90% [19]) of avail-

able protein sequences do not have experimentally determined three-dimensional struc-

tures, due to experimental expense and limitations (e.g., lack of crystallizability). At the

same time, since structure is more conserved than sequence, there may be only a small num-

ber (a thousand or two [20,47]) of distinct natural “folds” (overall structural organizations),

and many of them can already be found in the protein databank (PDB). Fold recognition

techniques [19, 74] take advantage of this, and have become increasingly effective at iden-

tifying the fold of a given target sequence. However, the series of Critical Assessment of

Structure Prediction (CASP) [45] contests demonstrates that, in the absence of sufficient
3This work will be published [70] in the proceedings of 9th International Workshop on Data Mining in

Bioinformatics (BIOKDD ’10).
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Figure 4.1: Protein fold determination by disulfide cross-linking. The example shows two
models, but the method readily handles tens or even hundreds of models. (a) Two models,
TS125 3 (green) and TS194 2 (magenta), for CASP target T0351, are of reasonable quality
but have rather different topologies. (b) The three-dimensional structures are compiled into
graphs on the secondary structure elements (SSEs), representing the topology in terms
of contacting SSE pairs. A topological fingerprint is selected based on differences in SSE
contacts (e.g., 1-2, 2-4, 3-5, etc.) that together distinguish the models. (c) For each SSE pair
in the topological fingerprint, a set of residue pairs is selected for disulfide cross-linking, in
order to robustly determine whether or not the SSE pair is actually in contact. The figure
shows the selected cross-links (yellow) to test for SSE pair (1, 2). Residues selected for
cross-linking are colored red.

sequence identity, it remains difficult for fold recognition methods to always select the cor-

rect model. While a native-like model is often among a pool of highly ranked models, it is

not necessarily the highest-ranked one, and the model rankings depend sensitively on the

scoring function used [45, 82]. Figure 4.1(a) illustrates two possible alternative models for

one target from a recent CASP competition.

Alternatively, some structure biologists also use the actual 3D distance cutoffs of the

predicted model deviating from the target template to evaluate model quality. Global Dis-

tance Test (GDT) [82] is one of the popularly adopted method. It identifies in the prediction

the sets of residues deviating from the target by not more than specified CA Distance cutoff

using many different superpositions. Nevertheless, it is more about the detailed 3D coordi-
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nate comparison of individual residues while doesn’t obtain the high-level structure infor-

mation revealed by topological analysis. For example, it is poor to detect un-protein-like

features such as knots or slip-knots [34] which occur more frequently in models generated

by protein structure prediction methods. Another widely used metric is the Root-mean-

square deviation (RMSD) for the subset of CA atoms from the predicted models. However,

it again measures the direct 3D structural difference while doesn’t have enough power to

present the model’s topological abstraction.

Seeking to close the gap between computational structure prediction and experimental

structural determination, we [78,79] and others [10,21,80] have developed methods (which

we call structure elucidation) to select structural models based on relatively rapid biochem-

ical/biophysical experiments. One type of experiment particularly suitable for this purpose

is cross-linking, which essentially provides distance restraints between specific pairs of

residues, based on the formation (or not) of chemical cross-links. While residue-specific

(e.g., lysine-specific) cross-linking has been effectively used for this task [25, 35, 80], we

previously showed that planned disulfide cross-linking has a number of advantages, in terms

of the ease and reliability of experiment and the quality of the resulting information con-

tent [79]. In disulfide cross-linking (or “trapping”) [9, 28, 36], a pair of cysteine substitu-

tions is made and the formation of a disulfide bond after oxidation is evaluated, e.g., by

alteration in electrophoretic mobility [9, 36, 79]. An important point for our purposes here

is that disulfide cross-links are plannable—we control exactly which pair of residues is

probed in a particular experiment.

While earlier methods have focused on probing geometry and selecting a model, we tar-

get here a more defined characterization of protein structure, ascertaining the overall protein

fold. We call this approach fold determination, named in contrast to purely computational

fold recognition and our less defined structure elucidation approach. We first characterize

the topological / fold-level differences in a set of models in terms of contact patterns of
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secondary structure elements (SSEs); see Figure 4.1(b). The topological representation al-

lows for a robust experimental characterization of the structure, less sensitive to noise and

uncertainty in both the models (e.g., threading misalignment) and the actual structure (e.g.,

flexibility). As a representation with fewer degrees of freedom than the complete threading

models, the topological representation also enables us to explicitly consider all possibilities

and handle the case when none of the models is correct. Once we have identified a subset

of SSE pairs that are most informative for fold determination, we plan disulfide cross-links

to evaluate these SSE pairs; see Figure 4.1(c). By specifically planning for each such SSE

pair, we can account for the dependence among the cross-links and select a set that will be

robust to, and even help characterize, model misalignment and protein flexibility.

The method presented here strikes a balance between very limited cross-linking (e.g.,

six disulfide pairs in our earlier work [79]) and testing all residue pairs. We assume that

robotic genetic manipulation methods (e.g., based on SPLISO [58] and RoboMix [2]) can

construct a combinatorial set of dicysteine mutants, but that we still should test a much

smaller set than all residue pairs. (Our plans require tens to around a hundred cross-links,

depending on error requirements.) Thus we must optimize a plan so as to maximize in-

formation gain while minimizing experimental complexity. This is analogous to feature

subset selection, where the goal is to choose a subset of features from a dataset such that

the reduced set still keeps the most “distinguishing” characteristics of the original [23, 41].

At the topological level (Figure 4.1(b)) the features are SSE pairs, and the objective is to

select those that will correctly classify the real structure to a model. At the cross-link level

(Figure 4.1(c)) the features are potential disulfide pairs and the objective is to select those

that will correctly classify contact/not for the SSE pair. For each level, we optimize a plan

by employing an information-theoretic planning algorithm derived from the minimum re-

dundancy maximum relevance approach [50]. We then evaluate a plan with a Bayes error

framework that characterizes the probability of making a correct decision from the experi-
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mental data.

4.2 Methods

We are given a set M of models. They may be redundant (i.e., some may have the same

fold), and they may be incomplete (i.e., a representative of the correct fold may not be

included). Our goal is to plan a set of disulfide cross-linking experiments (i.e., identify

residue pairs to be individually tested) in order to select among them. As discussed in the

introduction, we do this in two stages (Figure 4.1(b) and (c)), first selecting a “topological

fingerprint” of SSE pairs to distinguish the folds, and then selecting cross-links to assess

these SSE pairs.

4.2.1 Topological fingerprint selection

In order to compare SSE topologies, we need a common set of SSEs across the models.

Since secondary structure prediction techniques are fairly stable [29,31], it is generally the

case that models have more-or-less the same set of SSEs, covering more-or-less the same

residues (> 50% overlapping as observed in our test data). Our approach starts with a set S

of SSEs that are common to at least a specified fraction (default 50%) of the given models.

For example, both models in Figure 4.1 have 5 α-helices, as do 63 other models for the

same target. The later cross-link planning stage will account for the fact that the common

SSEs may in fact extend over slightly different residues in the different models.

Given the SSE identities, we form for each model mi ∈ M an SSE contact graph

GSSE ,i = (S,Ci) in which the nodes S are the SSEs (common to the specified fraction of

models, as described in the preceding paragraph) and the edges Ci ⊂ S × S are between

contacting SSEs (specific to each model). We determine SSE contacts from residue con-

tacts, deeming an SSE pair to be in contact if a sufficient set of residues are. Our current
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implementation requires at least 5 contacts (at < 9 Å Cβ-Cβ distance), and at least 20% of

each SSE’s residues to have a contact partner in the other SSE.

Our goal then is to find a minimum subset F ⊂ S × S of SSE pairs providing the

maximum information content to differentiate the models. As discussed in the introduc-

tion, this is much like feature subset selection; in particular, the max-dependency feature

selection problem seeks to find a set of features with the largest dependency (in term of

mutual information) on the target class (here, the predicted structural model) [50]. While

max-dependency leads to the minimum classification error, there is unfortunately a com-

binatorial explosion in the number of possible feature subsets that must be considered. To

deal with the combinatorial explosion, we develop here an approach based on the minimum

Redundancy Maximum Relevance (mRMR) method [50].

Probabilistic model

First we develop a probabilistic model in order to evaluate the information content in a

possible experiment plan. Let us treat each edge as being a binary random variable c

representing whether or not the SSE pair is in contact, with Pr(c) the probability of being

in contact (c = 1) or not (c = 0). We estimate Pr(c) by counting occurrence frequencies

over the contact edge sets Ci for the models:

Pr(c = x) =

∑
y q(c, x, y) · |{Ci : y = 1Ci(c)}|∑

z

∑
y q(c, z, y) · |{Ci : y = 1Ci(c)}|

, (4.1)

where the summed variables range over {0, 1} and the indicator function 1 tests for mem-

bership of c in set Ci, and thus the set includes those SSE contact graphs for which the

contact state of c agrees with y. To allow for noise, when evaluating x = 1 we include

a contribution from y = 0 (false negative) along with that for y = 1 (true positive), and

similarly when evaluating x = 0 we consider both y = 1 (false positive) and y = 0 (true

negative). The q function weights the contributions for the agreeing and disagreeing case.
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We currently employ a uniform weighting independent of edge, since we observed in cross-

link planning (below) that the expected error rate in evaluating any SSE contact was well

below 10% when using a reasonable number of cross-links.

q(c, x, y) =

 0.9 x = y;

0.1 x 6= y.
(4.2)

The approach readily extends to be less conservative and to allow different weights for

different SSE pairs, e.g., according to cross-link planning (discussed in the next section).

We can likewise compute a joint probability Pr(c, c′) from co-occurrence frequencies:

Pr(c = x, c′ = x′) =

∑
y,y′ q(c, x, y) · q(c′, x′, y′) · |{Ci : y = 1Ci(c), y

′ = 1Ci(c
′)}|∑

z,z′
∑

y,y′ q(c, z, y) · q(c′, z′, y′) · |{Ci : y = 1Ci(c), y
′ = 1Ci(c

′)}|
(4.3)

where again the sums are over {0, 1} and the indicator function is as described above.

Then we can evaluate the relevance of each SSE contact edge c in terms of its entropy

H(c); a high-entropy edge will help differentiate models while a low-entropy one won’t.

We can also evaluate the redundancy of a pair (c, c′) of edges in terms of their mutual

information I(c, c′); a high mutual-information pair contains redundant information.

H(c) = −
∑
x

Pr(c = x) log Pr(c = x) (4.4)

I(c, c′) =
∑
x

∑
x′

Pr(c = x, c′ = x′) log
Pr(c = x, c′ = x′)

Pr(c = x) Pr(c′ = x′)
(4.5)

Experiment planning

The mRMR approach seeks to minimize the total mutual information (redundancy) and

maximize the total entropy (relevance). In this chapter, we define the objective function as
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the difference of the two terms.

s(F ) =
1

|F |
∑
c∈F

H(c)− 1

|F |2
∑
c,c′∈F

I(c, c′) (4.6)

To optimize this objective function, we employ a first-order incremental search [50],

which builds up a set F starting from the empty set and at each step adding to the current

F the edge c∗ that maximizes

c∗ = arg max
c∈(S×S)\F

(
H(c)− 1

|F |
∑
c′∈F

I(c, c′)
)

(4.7)

The search algorithm stops when the score for c∗ drops below a threshold (we use 0.01 for

the results shown below).

The original mRMR formulation with first-order incremental search was proved to be

equivalent to max-dependency (i.e., to provide the most information about the target clas-

sification) [50]. The proof carries over to our version upon substituting our formulations

of redundancy and relevance (discrete, with choices of SSE pairs providing information

about models) in place of the original ones (continuous, with gene profiles representing

different types of cancer or lymphoma). Essentially, it can be proved that the optimal max-

dependency value is achieved when each feature variable is maximally dependent on the

class of samples, while the pairwise dependency of the variables is minimized. Further-

more, this objective can be obtained by pursuing the mRMR criterion in the “first-order”

incremental search (i.e., greedy) where one feature is selected at a time. Therefore we

don’t need to explicitly compute the complicated multivariate joint probability, but can in-

stead compute just the pair-wise joint probabilities. We thus have an efficient algorithm for

finding an optimal set of SSE pairs to differentiate models.
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Data interpretation

In the next section, we will describe the planning of disulfide cross-linking experiments to

evaluate a given fingerprint. For now, let us assume that the form of experimental data X

regarding a fingerprint F is a binary vector indicating for each edge whether or not the SSE

pair was found to be in contact. Let us denote by X = {0, 1}|F | the set of possible binary

vector values for X . Then the likelihood takes the joint probability over the edges, testing

agreement between the observed contact state and that expected under the model:

Pr(X | m) =

|F |∏
i=1

Pr(Fi = Xi | m) (4.8)

where we use the subscript to get the ith element of the set. The naive conditional indepen-

dence assumption here is reasonable, since the elements of Fi (SSE contact states) depend

directly on the model, and are thus conditionally independent given the model. We then

select the model with the highest likelihood. (If we have informative priors, evaluating

model quality, we could instead select based on posterior probabilities.)

Plan evaluation

In the experiment planning phase, we don’t yet have the experimental data. However, we

can evaluate the potential for making a wrong decision using a given plan by computing

the Bayes error, ε. If we knew which model m were correct and which dataset X we

would get, we could evaluate whether or not we would make the wrong decision, choosing

a wrong model m′ due to its having a higher likelihood for X than the correct model m.

The Bayes error considers separately each case where one particular model is correct and

one particular dataset results, and sums over all the possibilities. It weights each possibility

by its probability—is the model likely to be correct, and if it is, are we likely to get that
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dataset. Thus:

ε =
∑
m∈M

Pr(m) ·
∑
X∈X

Pr(X | m) · 1(Pr(X | m) < max
m′ 6=m

Pr(X | m′)) (4.9)

where Pr(m) is the prior probability of a model, which we currently take as uniform, but

could instead be based on fold recognition scores. Here and in the following formulas we

use an indicator function 1 that gives 1 if the predicate is true and 0 if it is false. So we

assume each different model is correct (at its prior probability), and assess whether or not

it would be beaten for each different data set (at probability conditioned on the assumed

correct model). This framework thereby gives a probabilistic evaluation of how likely it is

that we will make an error, in place of the usual empirical cross-validation that is performed

to assess a feature subset selected for classification.

In the case of fold determination, there may not be a single best model—a number of

models may in fact have the same fold, and thus be equally consistent with the experimental

data. Thus in the data interpretation phase we would not want to declare a single winner,

but instead would return a set of the tied-for-optimal models. In the experiment planning

phase, we develop a complementary metric to the Bayes error, which we call the expected

tie ratio, τ :

τ =
∑
m∈M

Pr(m) ·
∑
X∈X

Pr(X | m) ·
∑

m′∈M,m′ 6=m 1(Pr(X | m) = Pr(X | m′))
|M |

(4.10)

The formula mirrors that for ε, but instead of counting the number of incorrect decisions,

it counts the fraction of ties. Evaluating τ as we build up a topological fingerprint allows

us to track the incremental power to differentiate folds, up to the point where we find that

a set of models has the same fold and τ has flat-lined. The metric can readily be extended

to account for sets of models whose likelihood is within some threshold of the best.

Finally, the topological fingerprint approach allows us to handle the “none-of-the-above”
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scenario, when we decide that no model is sufficiently good; i.e., the correct fold isn’t

represented by a predicted model. While in other contexts that would be done by com-

paring the likelihood to some threshold (is the selected model “good enough”?), here we

can actually explicitly consider the chance of not considering the correct fold. Note that

since a fingerprint typically has a small number of SSE pairs, we can enumerate the space

F = {0, 1}|F | of its possible values (indicating whether or not each SSE pair in the fin-

gerprint is in contact). Some of those values, FM , correspond to models in M , while the

rest, F − FM , are “uncovered”. We want to decide if an uncovered fold f ′ ∈ F − FM is

better than the fold f for the selected model. Moving from models to folds, we can evaluate

Pr(X | f) by a formula like (4.8), simply testing whether each Xi has the value specified

in f . Then we can decide that it is “none of the above” (models) if ∃f ′ ∈ F − FM such

that Pr(X | f ′) ≥ maxf∈FM Pr(X | f).

Moving from data interpretation to experiment planning, we can again evaluate a plan

for the probability of deciding none of the above. If we think of Bayes error as the false

positive rate, then we want something more like a false negative rate. We call this metric ν,

the expected none-of-the-above ratio.

ν =
∑

f ′∈F\FM

Pr(f ′) ·
∑
X∈X

1

2|F |
· 1(Pr(X | f ′) > max

f∈FM
Pr(X | f)) (4.11)

Thus ν is the fraction of experimental datasets for which an uncovered fold will be better

than the best covered fold. We currently do not include a prior on X , in order to provide

a direct assessment of how many experiments could lead to a none-of-the-above decision.

However, we could obtain a weighted value by estimating Pr(X), e.g., from the priors on

the individual SSE pairs (from (4.1)). For the same reason, we treat Pr(f ′) as uniform over

the uncovered folds f ′, rather than evaluating it by priors on SSE pairs.

Note that the formula does not include SSE pairs in (S × S) \ F ; i.e., pairs not in the

fingerprint. This is as if they contribute equally to covered and uncovered folds, and thus
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do not affect the outcome. In the absence of other information or assumptions about the

uncovered folds, this is a reasonable (and conservative) assumption, and yields an inter-

pretable metric.

4.2.2 Cross-link selection

Once a topological fingerprint F has been identified, the next task is to optimize a disulfide

cross-linking plan to experimentally evaluate the SSE pairs in the fingerprint. We sepa-

rately plan for each SSE pair (their conditional independence was discussed in the previous

section), optimizing a set of disulfide cross-link experiments (a single cross-link per exper-

iment), such that, taken together, these cross-links will reveal whether or not the SSE pair

is in contact. The overall plan is then the union of these SSE-pair plans. Thus we focus

here on planning for a single SSE pair. We must account for noise and uncertainty in both

the model and the actual protein, as well as for dependency among cross-links. This work

represents the first to address these issues.

Different models may place an SSE at somewhat different residues, so when planning

cross-links to probe that SSE’s contacts, it is advantageous to focus on residues common to

many models (and thus able to provide information about cross-linkability in those models).

We define for each SSE a set of common residues that may be used in a disulfide plan. Our

current implementation includes all residues that appear in at least half of the models that

have that SSE. In the following, let R denote the common residues for a target SSE pair.

For each model mi we construct a residue cross-link graph Gxlink ,i = (R,Di), in which

the nodes are common residues R and there are edges Di ⊂ R × R between possible

disulfide pairs (specific to each model). We compute the cross-linking distance for a residue

pair as the Cβ–Cβ distance, and take as edges those with distance at most 19 Å, based on an

analysis of rates of disulfide formation [9,79]. Our method could be generalized to include

a more detailed geometric evaluation of the likelihood of cross-linking.
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Probabilistic model

We must define a probabilistic model in order to evaluate the information content provided

by a set of cross-links. We treat possible cross-link (pair of residues) as a binary random

variable indicating whether or not there is a cross-link. We start with the model of our

earlier work, in which the prior probability of a cross-link wrt a model is 0.95 for distances

≤ 9Å, 0.5 for distances between 9 and 19 Å, and 0.05 for those > 19 Å [79]. However, we

also account for two important types of noise in this context: threading misalignment and

structural flexibility (Figure 4.2).

We place a distribution Pr(δ) over possible offsets by which an SSE could be mis-

aligned in a model. That is, residue number r in the model is really residue r + δ in the

protein, and thus a cross-link involving residue r+δ is really testing proximity to residue r.

We use a distribution with 0.5 probability at 0 offset, decaying exponentially on both sides

up to a maximum offset. Analysis of a model or the secondary structure prediction could

provide a more problem-specific distribution. We currently consider each SSE separately;

a future extension could model correlated misalignments resulting from threading.

We sample a set of alternative backbones for a model, and place a distribution Pr(b)

over the identities of these alternatives. While there are many ways to sample alternative

structures, we currently use Elastic Normal Modes (ENMs) as implemented by elNémo [63],

sampling along the lowest non-trivial normal mode. We set Pr(b) according to the ampli-

tude of the perturbation, using a Hookean potential function derived from ENMs. Future

extensions could model different aspects of flexibility, such as local unfolding events during

which a cross-link may be captured.

These two factors result in dependence among possible cross-links: if an SSE is mis-

aligned or has moved relative to the original model, all its cross-links will be affected.

However, the cross-links are conditionally independent given the particular value of mis-
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Figure 4.2: Noise factors in cross-link planning: misalignment (left) and flexibility (right).
Blue dots represent residues and yellow lines their contacts. Regions in dashed lines are
the modeled SSE and those in solid lines those measured by cross-linking experiments.

alignment or backbone choice. Thus we have for any two cross-links `, `′:

Pr(`, `′) =
∑
m

Pr(m) ·
∑
δ

Pr(` | m, δ) · Pr(`′ | m, δ) · Pr(δ) (4.12)

and similarly for backbone flexibility. Furthermore, misalignment and flexibility are inde-

pendent. Detailed steps about how to compute Pr(δ) will be discussed in Section 4.5.1.

Experiment planning

Our goal is to select a “good” set of residue pairs L ⊂ R×R to experimentally cross-link,

in order to assess whether or not the SSE pair is in contact. This is another feature subset

selection problem, and we again employ an mRMR-type incremental algorithm. Here a

possible cross-link `’s relevance is evaluated in terms of the information it provides about

whether or not the SSE pair is in contact: I(`, c), where c is the binary random variable for

contact of a target SSE pair. Redundancy is again evaluated in terms of mutual information.

Thus the objective is:

s(L) =
1

|L|
∑
`∈L

I(`, c)− 1

|L|2
∑
`,`′∈L

I(`, `′) (4.13)

68



and we incrementally select cross-links to maximize the difference in relevance regarding

contact and average redundancy with already-selected cross-links.

Data interpretation

Once we have experimentally assessed cross-link formation for each selected residue pair,

we can evaluate the probability of the SSE pair being in contact. Let Y be the set of cross-

linking data, indicating for each residue pair in L whether or not a disulfide was detected.

To decide whether or not c is in contact, we will compare Pr(Y | c = 1) and Pr(Y | c = 0),

and take the one with higher likelihood. Intuitively, the more cross-links that are detected,

the more confident we are that the SSE pair is in contact. Thus we currently employ a

sigmoidal function to evaluate the likelihood:

Pr(Y | c = x) =
1

1 + e(−1)x·(k−k0)
. (4.14)

Here k is the number of detected cross-links in Y , and k0 is the minimum number of

positive cross-links for us to start believing c is in contact. For example, for c = 1, given

a default number of 10 experiments, we set k0 = 3 and the likelihoods of c = 1 for k = 0,

3, 6 are then approximately 0.05, 0.5, and 0.95, respectively. The metric could be extended

to reward the broader distribution of cross-links throughout each SSE. However, in our

current framework, we find that having a sufficient number of cross-links without regard to

location tends to achieve that goal.
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Plan evaluation

Finally, in order to assess an experiment plan’s robustness, we develop a Bayes error crite-

rion to evaluate the probability of making a wrong decision regarding SSE contact.

ε =
∑

x∈{0,1}

Pr(c = x) ·
∑
Y ∈Y

Pr(Y | c = x) · 1(Pr(Y | c = x) < Pr(Y | c 6= x)) (4.15)

As in the previous section, we sum over the possible outcomes (here, in contact or not)

and the possible experimental results (Y = {0, 1}|L|, all binary choices for cross-links in

plan L), weighted by their probabilities, and see which yield the wrong decision. In the

absence of an informative prior for c (and one that we want to use in interpreting the data),

we simply use Pr(c = 1) = Pr(c = 0) = 0.5.

Note that, if desired, we could use the cross-linking Bayes error as a replacement for q

(as 1 − ε) in evaluating Pr(c = x). These values could be precomputed for all candidate

SSE pairs, or a fingerprint could be reevaluated and perhaps modified upon evaluating its

possible cross-link plan.

4.3 Results

We demonstrate the effectiveness of our approach with a representative set of 9 different

CASP targets (Table 4.3), including proteins that are all-α, some that all-β, and some that

are mixed α and β. For each target, a number of high-quality models have been produced by

different groups; we evaluate those of common SSE content, as described in the methods.

The models vary in similarity to the crystal structure (the PDB ID indicated), which is

unknown at the time of modeling and furthermore not used for experiment planning, as well

as to each other (the average root mean squared deviation in atomic coordinates, RMSD,
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CASP ID PDB ID 2o # residues # models Avg. RMSD
T0283 D1 2hh6 5α 97 162 17.26
T0289 D2 2gu2 5β 74 34 13.45
T0299 D1 2hiy 3α, 3β 91 30 15.23
T0304 D1 2h28 2α, 5β 101 26 15.76

T0306 2hd3 7β 95 45 14.22
T0312 D1 2h6l 2α, 5β 132 55 16.13

T0351 2hq7 5α 117 65 15.42
T0382 D1 2i9c 6α 119 196 12.79

T0383 2hnq 2α, 4β 127 59 11.61

Table 4.1: Test data sets (from CASP7)

between pairs of models is indicated). Our goal is to select for each target an experiment

plan to robustly determine the model(s) of the same fold as the crystal structure.

Topological fingerprint selection

Figure 4.3 shows the trends of Bayes error (ε), expected tie ratio (τ ), and expected none-

of-the-above ratio (ν) as more SSE pairs are included in the topological fingerprint. It may

seem counterintuitive that ε initially increases with the addition of SSE pairs. However,

this is because we define the Bayes error of a tie as zero (4.9), and separate out the tie ratio.

With few SSE pairs in the fingerprint, τ is generally high—few decisions will be made,

as many models look equally good, and the Bayes error is small. Then as SSE pairs are

added, τ drops sharply—the fold is more specifically determined, decisions will be made,

and the potential for error (as reflected in the Bayes error) increases. Once a sufficient

number of SSE pairs has been selected, the specifically-determined fold is distinct, and the

decisions are likely to be right, and ε will decrease. Thus it is both appropriate and helpful

to consider ε and τ together, as they provide complementary information in the progress

toward obtaining a unique and correct fold.

On the other hand, we observe that the ν value is usually 0 in the first few steps, because

at that point there are not distinct folds separated, and it is easy for the SSE graphs from

the predicted models to “cover” all the possible folds. ν becomes non-zero when there
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Figure 4.3: Bayes error (ε), expected tie ratio (τ ), and expected none-of-the-above ratio (ν)
with addition of SSE pairs to fingerprints for targets. x-axis: SSE pairs. y-axis (left): τ ,
(%). y-axis (right): ε, ν.

are uncovered folds. Its value first decreases because the number of covered folds and the

number of uncovered folds are both increasing as more SSE pairs are included, and ν only

gets contributions from an uncovered fold with greater (not equal) likelihood as the best

covered fold. At some point the number of covered folds stops increasing (due to the limited

set of predicted fold types), while the number of uncovered folds is still growing. Then the

additional fold possibilities in the uncovered space result in a higher risk of “none-of-the-

above”, and thus the ν value starts increasing again. This trend is particularly obvious for

targets T0289 D2 and T0304 D1; in fact, we return to T0304 D1 below as a real example
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of “none-of-the-above”.

The fingerprint evaluation incorporates a parameter in the q function (4.2), essentially

indicating the confidence we expect to have in the experimental evaluation of an SSE pair.

We performed a sensitivity analysis for three values of q, from 0.7 (fairly ambiguous) to

0.9 (fairly confident). Figure 4.4 shows that for two targets the trends are very similar in all

three cases; our algorithm is insensitive to the choice. we omit showing other targets since

they display similar insensitivity. A verification with our cross-link plans show their bayes

errors fit best with the 0.9 setting.

End-to-end simulation study

Once we have selected a topological fingerprint, we next design a disulfide cross-linking

plan to determine the contact state of the selected SSE pairs. To validate the overall process

(fingerprint + disulfides), we perform a simulation study. Given a selected set of residue

pairs for cross-linking, we use the crystal structure (PDB entry in Table 4.3) to determine

whether or not they should form disulfides (Cβ-Cβ distance < 9 Å), and treat those evalu-

ations as the data. We also use the set of all SSE pairs to directly compare the fold of each

model with that of the crystal structure, and thereby label each model as being the “correct”

fold or not depending on whether or not they have the same SSE contacts for the same SSE

pairs. We then evaluate whether or not the simulated data for the selected cross-linking

plans result in the same conclusions as the direct comparisons of folds.

To compare the decision based on simulated cross-linking data with that based on fold

analysis, we performed a Receiver Operator Characteristic (ROC) analysis. The area un-

der the ROC curve (AUC) measures the probability that our experiment plan will rank a

randomly chosen positive instance higher than a randomly chosen negative one. The larger

the AUC, the better classification power our algorithm has to detect the right fold. Fig-

ure 4.5 illustrates the simulation results on eight example protein targets (ROC analysis
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Figure 4.4: Sensitivity analysis for three q function values (0.7, 0.8, and 0.9) for target
T0306 and T0383.
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Figure 4.5: ROC curves for eight simulation studies, at different SSE contact fraction
thresholds r. T0304 D1 doesn’t have a predicted model that matches the crystal structure
and thus is analyzed separately (see the discussion for Robustness). x-axis: False Positive
Rate. y-axis: True Positive Rate. AUC: Area under the ROC curve, for r of 0.05, 0.1, 0.15,
and 0.2 respectively.
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for T0304 D1 is not applicable and we will discuss it below). ROC curves are shown for

different thresholds for the percentage r of residues that must be in contact to declare that

the SSE pair is in contact in the structure or model. A high r value results in very few SSE

pairs deemed to be in contact (we found that to happen with r = 0.3), while a low one

yields some fairly weak contacts. As the figure shows, a moderate r value of around 0.2

generally results in quite good fold determination results.

Robustness

One of the merits of the fold determination approach is that it is robust to errors in models,

and can even account for the case when none of the models is correct. The selected targets

provide examples requiring such robustness; we summarize here just a couple. Misalign-

ment. In (4.12) we account for being off by up to δ residues in the SSE locations. In the

case of T0312 D1, there are 23 models of the correct fold, but with δ = 0, only7 of them

agree with the crystal structure regarding all the cross-links in the experimental plan, while

with δ = 1 there are 14 that agree, and with δ = 2 there are 16. The remaining unmatched

models are looser in structure, and the match is sensitive to the threshold we use to measure

SSE contacts. None-of-the-above. For target T0304 D1, none of the models has the same

SSE contact graph as the crystal structure. The GDT [82] scores of predicted models are

in the low 30s, which indicates relatively poor agreement with the crystal structures. As

shown in Figure 4.3, the ν value is relatively high, indicating a potential risk of missing the

right fold. Indeed once we evaluate the models under the simulated data, we find that the

likelihoods are low (< 2 × 10−3), compared to that (≈ 0.66) of the uncovered but correct

fold, which is found by enumeration.
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4.4 Conclusion

This chapter presents a computational-experimental mechanism to rapidly determine the

overall organization of secondary structure elements of a target protein by probing it with

a planned set of disulfide cross-links. By casting the experiment planning process as two

stages of feature selection—SSE pairs characterizing overall fold and residue pairs char-

acterizing SSE pair contact states—we are able to develop efficient information-theoretic

planning algorithms and rigorous Bayes error plan assessment frameworks. Focusing on

fold-level analysis results in a novel approach to elucidating three-dimensional protein

structure, robust to common forms of noise and uncertainty. At the same time, the ap-

proach remains experimentally viable by finding a greatly reduced set of residue pairs (tens

to around a hundred, out of hundreds to thousands) that provide sufficient information to

determine fold.
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4.5 Appendix

4.5.1 Noise model in cross-link experiment planning

In Section 4.2.2, we discussed how to model the noise in the context of threading misalign-

ment and structure flexibility. One of the questions is how to compute Pr(δ) and now we

will elaborate it in this section.

Misalignment model

From Figure 4.2, it is clear that now the likelihood of observing one cross-link for a specific

residue pair not only depends on its own distance measure, but also on those of the neighbor

edges it could “slip” to. Let ∆ be the set of possible offsets of an SSE’s alignment, and

δ∗ be the absolute value of the maximum offset. Then ∆ should contain a total 2δ∗ + 1

misalignment offsets. For example, with δ∗ = 1, we have ∆ = {−1, 0,+1}, where −1, 0,

and +1 mean backward one step, no change and forward one step, respectively. Suppose

the protein target has k SSEs, and each SSE is subject to the misalignment offsets in ∆;

then we have the enumeration of structure-wide misalignments as σ = ∆⊗∆ . . .⊗∆︸ ︷︷ ︸
k

,

where ⊗ is the outer product and |σ| = |∆|k.

In ∆, each possible offset δ may have different probability of happening. For simplicity,

we can either assume that it follows the standard distribution after being normalized to [0, 1]

or we can use a piecewise function to simulate it as below (more details as in Figure 4.6).

Pr(δ) =

 1/2 δ = 0 ;

2(δ∗−|δ|−2)

2δ∗−1
1 ≤ |δ| ≤ δ∗ .

(4.16)

4This section covers supplementary methods and results not included in the BIOKDD paper.
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Figure 4.6: Plot of the probability function for threading misalignment with different offset
limits. x-axis: Offset value (δ). y-axis: Probability.
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Flexibility model

Flexibility comes from protein dynamics. While numerous techniques are available for

simulation (molecular dynamics, etc.), we study here the case of elastic normal mode

(ENM) analysis. ENM provides an analytic description of the dynamics in a macromolecu-

lar system near a minimum energy, by using a harmonic approximation of the potential. In

this work, we use a software called elNémo [63] to generate the normal modes. It allows

the computation of low frequency normal modes for a given protein structure, and provides

an analysis of those models at different levels of detail. Since our goal is to study the noise

caused by major structure flexibility, normal models with low frequencies for non-rigid-

body motion are selected to generate the simulation data. Moreover, each normal mode is

projected over 11 amplitudes of perturbation, leading to 11 snapshots of the target structure.

To simplify the analysis, we illustrate here an analysis with just the 7-th normal mode,

which has the lowest frequency for non-rigid-body motion and counts for the most impor-

tant global conformation change. A similar approach as used for threading misalignment

can be applied here to compute the likelihood of cross-link flexibility at a specific residue

pair. Here δ corresponds to the amplitude of perturbation, and Pr(δ) is derived from a

Hookean potential function Ep = c ·x2 used in the standard ENM, with the spring constant

c equal to 1. δ∗ is the maximum perturbation allowed along the projection of one normal

mode.

Pr(δ) =

∫ δ∗+1

|δ| x2dx

2×
∫ δ∗+1

0
x2dx

(4.17)

4.5.2 Proof sketch of the optimality of mRMR on first-order incre-

mental search

In Section 4.2.1, we briefly introduced the Max-Dependency feature selection problem. It

can be formulated as

maxD(S; c); where D = I(Sm; c) .
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Here S is the feature space, c is the set of class labels, and Sm are the selected features. I

is the function for multivariate mutual information. We can prove the equivalence of this

problem with our (seemingly simpler) mRMR-based problem and algorithm.

Theorem 2 (optimality of mRMR on first-order incremental search) For the first-order

incremental search, mRMR is equivalent to Max-Dependency for the topological finger-

print identification problem.

Proof sketch: This is very similar with the theorem presented in [50]. Here we just

need to change the definition of J(x1, x2, . . . , xm) (“mutual information”’ for multiple

scalar variables) from the continuous data format to the discrete data format. Likewise,

we can also rewrite the definition of Max-Dependency as I(Sm; c) = J(Sm−1, xm, c) −

J(Sm−1, xm). Then Max-Dependency is equivalent to simultaneously maximizing the

first term and minimizing the second term. Applying the same inequality as in [50], we

know that Max-Dependency is reached when all variables are maximally dependent in

J(x1, x2, . . . , xm, c) but the pair-wise inter-dependency of x1, x2, . . . , xm is minimized.

Since Sm−1 = x1, x2, . . . , xm−1 is fixed at the m-th step, the optimality is equivalent to

finding the xm that maximizes (4.7) as described by our algorithm. Thus we have proved

that mRMR is equivalent to Max-Dependency when performed with the first-order incre-

mental search.

4.5.3 Supplementary results

A comparison with the random selection

We also compare our approach with random SSE pair selections, which choose the same

number of SSE pairs as in the fingerprint, but in a stochastic manner. Figure 4.7 illus-

trates the trends for ε, τ , and ν for two protein targets, over a set of ten random selections

each. Again, we see that random selection may have a better ε than our approach in the
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beginning due to a relatively high τ ratio. With more SSE pairs included, ε starts to drop

quickly for our approach, while it doesn’t have the same pattern for random selection. This

shows that our approach has the ability to choose more informative SSE pairs and will beat

random selection by reducing Bayes errors. On the other hand, our approach consistently

outperforms random selection in both τ and ν, which further prove its effectiveness.

The likelihood score distribution of matched models

In Section 4.3, we presented an end-to-end study where we use the protein target’s crystal

structure to simulate cross-link data, and then evaluated the predicted models based upon

the simulated data. As an illustration, Figure 4.8 shows the likelihood scores of models

to match the appropriate crystal structure, given the simulated data. Here misalignment is

allowed to have a higher flexibility of matching a predicted model’s fold with the crystal

structure’s. In general, a larger misalignment offset (δ) will make the match less favorable,

as shown by the lower likelihood score. However, we would like to keep the choice open

while letting experimentalists set their own preferences between match quality and result

completeness.

In addition, Figure 4.9 illustrates how the number of matched true positives (models)

changes given various δ values for misalignment.

Plan evaluation for cross-linking experiments

In Section 4.3, we have elaborated how to select topological fingerprints for protein fold

determination. We also introduced an end-to-end simulation study which includes cross-

link experiment planning to validate those topological patterns in the context of residue

contacts. However, we didn’t show the explicit results of cross-link planning due to the

page limit of paper submission. We include them in this section.

Figure 4.10 illustrates the trend of Bayes error (ε) as more cross-link candidates (residue
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Figure 4.7: Performance comparison for ε (top), τ (middle), and ν (bottom) of random
selections vs. topological fingerprints for protein targets T0306 (left) and T0312 (right).
The green curve is the topological fingerprint selection and the the red curve is the average
result of ten random SSE pair selections. Bars indicate the minimum metric value and the
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pairs) are included in the experiment plan for each SSE pair in the topological fingerprint.

We demonstrate the results by showing only three protein targets in our test data sets, but

the rest of them have very similar patterns. There is a clear trend of descending Bayes

errors when we choose to test more cross-links in our experiment plans. This is of course

expected since we then have more experimental information. However, it is also interest-

ing to observe that different SSE pairs have different slopes to reach a low Bayes error,

indicating the relative difficulties for the cross-link experiments to capture the SSE contact

information. Part of the reason is because of the length of the SSE. For example, SSE pair

4, 5 (pink line) of T0283 D1 has over 13 residues for each SSE, thus making it harder to se-

lect a limited number of cross-links to properly “sample” the SSE contact. Meanwhile, we

also see a overall slowing trend for the reduction in Bayes error, meaning that the marginal

benefit of including more cross-links for test is diminishing. Based on the results we have

seen so far, our plan can generally achieve a state with low Bayes error (< 0.1, as the

default value set for the likelihood computation in topological fingerprint selection), by

including just 8 or 9 cross-links for the experiment.
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Chapter 5

Summary and Future Work

5.1 Summary

This thesis has introduced two significant new applications, contact replacement for NMR

backbone resonance assignment and protein fold determination by disulfide cross-linking,

and developed effective criteria and efficient algorithms based on graph representations of

protein structure.

For the first application, we defined an approach called “contact replacement”, which

performs NMR backbone resonance assignment given a 3D structure and a set of rela-

tively sparse 15N-edited NMR data, with the through-space 15N-edited NOESY as the pri-

mary source of information. Our approach supports high-throughput solution studies of

dynamics and interactions (e.g., ligand binding), when the structure has previously been

determined by crystallography or modeled computationally. It employs a graph matching

approach by identifying correspondence between a given contact graph and a corrupted

version representing the NMR data.

Two complementary algorithms have been developed for contact replacement, address-

ing different practical requirements. One is the Hierarchical Grow-and-Match (HGM) al-

gorithm, which divides the contact graph into sequential fragments with relatively dense
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interactions, and then combines all possible assignments for fragments in a hierarchical

manner, searching over the combinations with effective but conservative pruning. It is guar-

anteed to be complete, returning all solutions consistent with the data within a likelihood

threshold of the optimal solution. It also correctly handles missing edges and unassigned

NMR peaks, which are quite common. Tests on a number of experimental datasets and

simulations with varying noise and sparsity demonstrate that our algorithm can handle sig-

nificant data corruption (2.5–6.0 noisy edges per correct one) and sparsity (10–40% of the

correct edges missing). In addition to the reference solution, the complete ensembles in-

clude a number (up to 30) of alternatives. We use these complete ensembles to characterize

confidence in parts of an assignment.

However, HGM only performs well on well-formed secondary structures (α-helices or

β-strands), and the combinatorics of branch-and-bound search result in the algorithm tak-

ing a long time (and no theoretical guarantees) to return the complete ensemble. To better

serve the need of large-scale NMR studies, we proposed a second algorithm based on a ran-

dom graph approach. It does not guarantee completeness, but can assign the entire protein

backbone and can provably find the best assignment with high probability in an expected

polynomial time. We utilize the random structure of both noisy edges and ambiguous ver-

tex type labels in the NMR graph, compared with the connectivity and type information in

the contact graph, to effectively reduce the uncertainty of assignment. Since the NMR inter-

action graphs we are studying have up to 500% noise edges compared to correct edges, the

ability to handle this degree of noise is important. A reuse paradigm was also introduced

to avoid backtracking when an inconsistency is found during the assignment, and employ

local fix-up rules to modify a solution that is mostly correct. Our empirical results show

that this approach is quite effective in practice, relatively insensitive both to noise/missing

in the NMR graph and structural variation in the contact graph.

For the second application, we defined an approach called “protein fold determina-
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tion”. Different from earlier methods that focused on probing geometry and selecting

a model, it targets a better-defined characterization (overall protein fold). An integrated

computational-experimental method has been presented to determine the fold of a target

protein by probing it with a set of planned disulfide cross-links. We start with predicted

structural models obtained by standard fold recognition techniques. In a first stage, we

characterize the fold-level differences between the models in terms of topological (contact)

patterns of secondary structure elements (SSEs), and select a small set of SSE pairs that

differentiate the folds. In a second stage, we determine a set of residue-level cross-links

to probe the selected SSE pairs. Each stage employs an information-theoretic planning

algorithm to maximize information gain while minimizing experimental complexity, along

with a Bayes error plan assessment framework to characterize the probability of making a

correct decision once data for the plan are collected. By focusing on overall topological

differences and planning cross-linking experiments to probe them, our fold determination

approach is robust to noise and uncertainty in the models (e.g., threading misalignment)

and in the actual structure (e.g., flexibility). We demonstrate the effectiveness of our ap-

proach in case studies for a number of CASP targets, showing that the optimized plans have

low risk of error while testing only a very small portion of the quadratic number of possible

cross-link candidates. Simulation studies with these plans further show that they do a very

good job of selecting the correct model, according to cross-links simulated from the actual

crystal structures. Fold determination can overcome scoring limitations in purely compu-

tational fold recognition methods, while requiring less experimental effort than traditional

protein structure determination approaches.
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5.2 Future work

5.2.1 Contact replacement

We have demonstrated that contact replacement is a powerful and effective approach for

backbone NMR resonance assignment, able to obtain high-quality results, and robust to

noise, missing data, and moderate structure variance. A natural thought is to extend this

method to side-chain NMR assignment. Each amino acid has a unique side chain, differ-

entiating it from other amino acids (and providing a unique chemistry). Indeed, side-chain

NMR data are critical in standard protein structure determination, as they provide substan-

tial information about contacts supporting the overall fold. It would thus be interesting to

again see if the flow of information can be inverted, using a reference structure to assign

the side-chains. Such a mechanism is also useful in the “inner loop” of structure determi-

nation. However, the conformational variability in side-chains is quite different from that

in the backbone, with many relatively independent degrees of freedom, resulting in a larger

search space for possible matches and requiring more tolerance for mismatches caused by

noise or missing.

Another possible extension of our contact replacement approach is to apply it to protein

complexes. Again, x-ray structures or computational models (e.g., from docking) could

be available, providing contact information for some residue pairs. One concern is the

possible difference between unbound and bound forms of the individual proteins in the

complex, with possible systematic structural differences that would need to be accounted

for. One particular complex type of interest is symmetric homo-oligomers, where similar

subunits (protein chains) are arranged symmetrically to form the complex. Some previous

research [53, 54] from our lab and our collaborators has introduced algorithms to conduct

a complete search for all possible conformations, and evaluate them separately for consis-

tency with NMR experimental data and for quality of packing. We are interested to further
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investigate this problem by applying efficient randomized algorithms, like those we devel-

oped in contact replacement, to handle unassigned (and ambiguous) data in this approach.

5.2.2 Protein fold determination

One of the important questions in protein fold determination is how to evaluate an SSE

pair’s contact state. We treat the state as a binary value, determined from the number of

residue contacts between the SSE pairs. However, in practice we found that this definition

may be somewhat over-simplified, since it does not include the potentially crucial infor-

mation of where those residue contacts are located, and their relative “strength” given their

spatial distances. For example, as in Figure 4.2 (right), if most of the residue contacts

are located near a “hinge” formed by the two SSEs, they will be less sensitive to struc-

tural flexibility (and more likely to exist) than those located further away. How to include

location information to address such scenarios will then be critical to more precisely deter-

mining the SSE contact. A possible approach is to divide every SSE into head, center and

tail regions, and mark each residue contact with the location label such as head-to-center,

head-to-tail, etc. Alternatively, we could introduce an additional metric to measure the

strength of a residue contact (e.g., by pairwise distance or number of constituent atoms in

contact), and mark it as a “strong” contact or “weak” contact. Based on how many strong

or weak residue contacts exist for the SSE pair, we would determine the SSE contact as

“strong” or “weak” accordingly.

Likewise, location information could be very important for a cross-link experiment

plan’s quality in term of its “coverage” of the target SSE contact. Our current implementa-

tion uses a sigmoidal function which only considers the number of cross-links when com-

puting the likelihood of cross-link data being generated from an expected SSE contact type.

If the selected cross-links are more broadly distributed throughout the SSEs, we will have

more confidence in their representative power to capture the true SSE contact information.
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We have demonstrated preliminary results in using cross-linking for protein fold deter-

mination, accommodating moderate noise from either threading misalignment or structural

flexibility. However, the determined fold may still be subject to significant errors in the case

of substantial noise. Therefore, it is worthwhile to introduce complementary experimental

techniques, such as mutagenesis [78], to further support our evaluation of models. A mul-

timodal approach that incorporates data from both cross-linking and mutagenesis will be

particularly interesting, since it reduces the risk of choosing a wrong model (fold) unless

it receives consistent support from multiple modes of experimental data. The challenge

is then to combine the two approaches in a quantitative decision framework, with illus-

trative parameters to manage each experimental approach’s impact and the overall joint

contributions. We expect more promising results from the multimodal framework when

the parameters can be estimated more accurately based on the accumulated experimental

data.
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