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Abstract

In order to most effectively investigate protein structure and improve protein function, it is

necessary to carefully plan appropriate experiments. The combinatorial number of possible

experiment plans demands effective criteria and efficient algorithms to choose the one that

is in some sense optimal. This thesis addresses experiment planning challenges in two

significant applications. The first part of this thesis develops an integrated computational-

experimental approach for rapid discrimination of predicted protein structure models by

quantifying their consistency with relatively cheap and easy experiments (cross-linking

and site-directed mutagenesis followed by stability measurement). In order to obtain the

most information from noisy and sparse experimental data, rigorous Bayesian frameworks

have been developed to analyze the information content. Efficient algorithms have been

developed to choose the most informative, least expensive, and most robust experiments.

The effectiveness of this approach has been demonstrated using existing experimental data

as well as simulations, and it has been applied to discriminate predicted structure models

of the pTfa chaperone protein from bacteriophage lambda.

The second part of this thesis seeks to choose optimal breakpoint locations for protein

engineering by site-directed recombination. In order to increase the possibility of obtaining

folded and functional hybrids in protein recombination, it is necessary to retain the evolu-

tionary relationships among amino acids that determine protein stability and functionality.

A probabilistic hypergraph model has been developed to model these relationships, with

edge weights representing their statistical significance derived from database and a pro-
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tein family. The effectiveness of this model has been validated by showing its ability to

distinguish functional hybrids from non-functional ones in existing experimental data. It

has been proved to be NP-hard in general to choose the optimal breakpoint locations for

recombination that minimize the total perturbation to these relationships, but exact and

approximate algorithms have been developed for a number of important cases.
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1. INTRODUCTION

Proteins are ubiquitous in cells and essential to almost all biological processes. Discov-

ering the amino acid composition, structures and functions of proteins is fundamental for

understanding cellular processes, and also supports important applications such as drug de-

sign and enzyme design. With the extensive development of genome projects, more and

more protein sequences have become available. As of April 2007, more than 500 genome

projects, including the human genome project, have been completed, and about 1000 more

genome projects are in progress [67]. The latest release (release 10.3) of the Universal

Protein Resource (UniProt) [3] contains more than 4, 500, 000 protein sequences. While

amino acid sequences define proteins, it only is by folding into specific three-dimensional

structures that proteins are able to perform their functions. Thus structure determination is

essential to gaining a mechanistic understanding of proteins, but unfortunately it is much

harder than sequencing. The number of experimentally-determined structures in the cur-

rent (April 2007) Protein Data Bank [10] counts for only about 1% of the sequences in

UniProt. Consequently, new techniques are required to achieve high-throughput protein

structure elucidation.

Driven by the overwhelming number of targets available for structure determination and
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the difficulties of traditional methods such as x-ray crystallography and NMR, a number

of computational approaches have been developed to predict protein structures from se-

quences. Although the protein sequence space is enormous, the protein fold space is much

more restricted. It has been suggested that there are only about 2000 folds existing among

naturally-occurring proteins [42] and most of them can be found in the current Protein Data

Bank (PDB) [132]. Therefore, it is very likely that a new protein will adopt a fold similar

to that of an experimentally determined protein structure, which provides a starting point or

template for the new structure. Based on this observation, computational methods such as

homology modeling and threading have been developed to predict protein structures from

sequences. Another classes of computational methods, ab initio methods, have also been

developed to predict protein structures from sequence alone, when no template is available.

Computational methods are usually much cheaper and faster than x-ray or NMR and

some of them, especially homology modeling, can produce models with an RMSD (Root

Mean Square Deviation) of 1-3 Å from the corresponding x-ray/NMR structures [116].

However, it is difficult to distinguish (nearly) native structures from incorrect decoys using

energy functions alone [82, 11, 111]. The best model is often among a pool of highly ranked

models but not the highest-ranked one. Furthermore, different methods often have different

scoring functions and different rankings for the same models. Selecting the (almost) correct

one from a given set of predicted protein structural models is a critical step in protein

structure determination by computational methods.

With the understanding of protein sequences and structures, it is possible to modify

existing proteins or design novel ones. Although nature has produced proteins suitable for
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functioning in living organisms, it has not yet explored all possibilities of viable proteins.

Protein engineering techniques can improve existing proteins, e.g. providing increased

stability or modified enzymatic activity. Protein engineering has produced proteins with

desired features not observed in nature [4], and has significant impacts in applications such

as drug design [44], industrial chemical synthesis [112], and nanotechnology [130]. It is

also an important mechanism to gain structural and functional understanding of proteins.

For example, site-directed mutagenesis has been widely used to help determine protein

structures [84] and study binding properties [47].

Both protein structure determination and protein engineering rely on experiments to

investigate structural or functional protein features. Since experiments are usually more

expensive and time-consuming than computational methods, it is advantageous to consider

the possible outcomes before experiments are conducted, in order to optimize experimen-

tal parameters and obtain the most information. However, the combinatorial number of

possible plans causes challenging computational problems in choosing the one that is most

informative and least expensive for a particular application. Noisy experimental data with

sparse information content also places a significant burden on data interpretation, and re-

quires associated planning algorithms to optimize for robustness. Focusing on overcoming

such challenges, we develop experiment planning mechanisms for two significant applica-

tions, protein structure elucidation (Sec. 1.1) and site-directed recombination (Sec. 1.2).
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1.1 Planned RApid eXperimental Investigation of Structure (PRAXIS)

In order to close the gap between protein structure prediction and model selection, we have

developed a comprehensive computational-experimental protocol for the high-throughput

discrimination of predicted protein structure models (Fig. 1.1). The hypothesis here is that

the correct model should be more consistent with the true structure than other decoys, in

many aspects such as geometry and thermodynamic stability. We measure these protein

properties by relatively cheap and easy experimental tests such as cross-linking and muta-

genesis, and confirm predicted protein structural models by quantifying their consistency

with the experimental data. We call such experiments “minimalist” experiments since they

are relatively cheap and easy, and also because the information gained from such exper-

iments is usually sparse and noisy. This information alone is insufficient to determine

protein structures, but it could be sufficient to select the correct model from a set of high

quality predicted ones [128, 62]. The consistency between predicted models and experi-

ments allows selection of the model(s) most likely to be correct (relative correctness). The

consistency of a number of diverse experiments with a single model provides confidence

in its absolute correctness. The challenges in this approach include selecting among the

enormous number of possible experiments that could be done and analyzing the results

accurately. Emphasizing the importance of experiment planning, we call this approach

“PRAXIS” (Planned RApid eXperimental Investigation of Structure). We have developed

specific methodology for experiment planning and data interpretation for cross-linking and

site-directed mutagenesis followed by stability measurement.
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Fig. 1.1: Multimodal PRAXIS. Given predicted structural models, suitable features of the models
are extracted and corresponding protein features (e.g. residue-residue distance, residue local envi-
ronment) are tested in wet-lab experiments (e.g. cross-linking, mutagenesis, solution scattering).
Models are confirmed or selected based on the consistency of their features with experimental data.

Specific sites in protein can be cross-linked (i.e. linked by covalent bonds), either by

employing residue-specific cross-linker molecules or by disulfide bonding of specifically

introduced cysteines. Detection of cross-link formation generally provides only the infor-

mation that some pairs of residues are closer than a maximal cross-linking distance. Since

residue-residue distances can be very different in different predicted models, cross-linking

can be used to test which models correctly modeled a specific residue-residue distance.

Although this information is approximate, sparse and noisy, it has been previously demon-

strated sufficient for discriminating among predicted structural models. In this thesis, we

address the essential question of the information content available from a cross-linking

experiment, a question required to determine the utility of conducting any particular exper-

iment and optimize experiments accordingly. Our analysis also includes consideration of

multiple sources of experimental error such as false positive and false negative identifica-

tion of cross-links. We addressed these requirements with a probabilistic framework that

explicitly accounts for the expected experimental limitations. We also developed associ-
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ated algorithms for selecting the most suitable set of experimental parameters (e.g. different

cross-linkers) and the most informative and least expensive subset of experiments, subject

to trade-offs in experimental design.

In addition to cross-linking, we exploit the known relationship between protein struc-

ture and thermodynamic stability to investigate protein structure. Several methods are now

available for using an atomic model to predict changes in unfolding free energy upon site-

directed mutagenesis (i.e. substitution of one residue type for another at a specific position),

the 11G◦ values. Similar with residue-residue distance, different predicted models tend

to have different thermodynamic properties, and hence different predicted 11G◦ values.

The consistency between predicted and experimentally tested 11G◦ values allows select-

ing the correct model from a given set of models. When experiments are planned ahead

of time, the experiment planner can select an efficient set of mutations whose stability

changes can be most confidently predicted and that differ most greatly between atomic

models. The planned mutations are made in a protein expression system. The stability

of the expressed and purified mutants is determined and compared to wild-type, yielding

experimental 11G◦ data. We call this combination of planned, site-directed mutation and

stability measurement “stability mutagenesis.”

Adopting the framework developed for cross-linking, we demonstrated that the infor-

mation in stability mutagenesis is sufficient for discriminating predicted structural models

of different folds using existing experimental data as well as simulations. Then we devel-

oped new criteria and corresponding planning algorithms specifically for stability mutage-

nesis that take full advantage of the information content in continuous 11G◦ data.
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The main contributions of our PRAXIS approach include:

• Developing rigorous probabilistic frameworks to analyze information content in sparse

and noisy experimental data (cross-linking and stability mutagenesis) for protein

structure elucidation.

• Demonstrating by existing experimental data and simulation that mutagenesis infor-

mation is sufficient for discriminating protein models of different folds.

• Developing efficient algorithms for choosing the most informative and least expen-

sive experiments to discriminate a given set of protein structure models, both for dis-

crete data (cross-linking) and continuous data (mutagenesis). The algorithms allow

experimenters to make explicit trade-off among key properties of practical impor-

tance such as information gain, robustness and experimental cost.

• Putting the PRAXIS approach into practice on the pTfa chaperone protein of bac-

teriophage lambda. Optimal plans for cross-linking and stability mutagenesis have

been selected that have been or are being conducted in wet-lab.

1.2 Site-Directed Protein Recombination

Mutagenesis is an effective mechanism to create new protein variants both in nature and

in the lab [106, 19, 66]. A single mutation in an active site can change protein function

significantly [34]. However, mutagenesis can only yield relatively minor modifications of

existing proteins because the chance of obtaining beneficial mutations is very low and it
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Fig. 1.2: Site-directed recombination experiments mix and match sequential fragments
from homologous parents to construct a library of hybrids with the same basic structure but
somewhat different sequences and thus different functions.

is hard to accumulate more than a couple. A more efficient way to accumulate beneficial

mutations is by recombination of active variants, as occurs naturally during meiosis and has

also been demonstrated to be extremely useful in laboratory protein evolution [105, 30, 77].

Protein recombination in vitro enables the design of protein variants with favorable

properties and novel enzymatic activities, as well as the exploration of the relationships

among protein sequence, structure, and function. In this approach, libraries of hybrid

proteins are generated either by stochastic enzymatic reactions or intentional selection of

breakpoints. Hybrids with unusual properties can either be identified by large-scale genetic

screening and selection, or many hybrids can be evaluated individually to determine de-

tailed sequence-function relationships for understanding and/or rational engineering. Both

screening/selection and individually evaluated experiments benefit from recombination that

preserves the most essential structural and functional features while still allowing variation.

We focus here on site-directed recombination (Fig. 1.2), in which parent genes are re-

combined at specified breakpoint locations, yielding hybrids in which different sequence

fragments (between the breakpoints) can come from different parents. In order to enhance

the probability of obtaining folded and functional hybrids, it is necessary to choose break-
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point locations wisely to retain the evolutionary relationships among amino acids that de-

termine protein stability and functionality. We developed a probabilistic hypergraph model

to represent the evolutionary relationships among amino acids, and a statistical score to

evaluate the significance of multi-order amino acid interactions. In support of this model,

we developed criteria to evaluate the quality of hybrid libraries by considering the effects

of recombination on multi-order amino acid interactions. Intuitively, optimizing the re-

tainment of such relationships after recombination should help identify the best recom-

binants and thus the best locations for breakpoints. However, there are a combinatoric

number of breakpoint location sets, making it difficult to choose the optimal one even with

a naı̈ve optimality criterion. We formulate the optimal selection of breakpoint locations as

a sequentially-constrained hypergraph partitioning problem, i.e. breaking the hypergraph

model of protein structure along the backbone. We proved that this problem is NP-hard in

general and developed exact and heuristic algorithms when the order of amino acid inter-

actions is limited to three and four, respectively.

Our main contributions for the site-directed protein recombination problem include:

• Developing a probabilistic hypergraph model of evolutionary relationships that gen-

eralizes traditional pairwise contact potentials to account for the statistics of multi-

residue interactions in protein structures.

• Evaluating the significance of multi-residue interactions in a multiple sequence align-

ment by analytically calculating their p-values.

• Formulating the breakpoint selection problem in recombination as a sequentially-
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constrained hypergraph partitioning problem, proving that it is NP-complete in gen-

eral, and developing exact and heuristic polynomial-time algorithms for a number of

important cases.

• Validating the hypergraph model by showing its ability to distinguish functional hy-

brids from non-functional one in existing experimental data.
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2. RELATED WORK

2.1 Protein Structure Determination

Traditional experimental methods such as x-ray crystallography and Nuclear Magnetic Res-

onance (NMR) spectroscopy can reveal atomic-detail structures of proteins. In x-ray crys-

tallography [14], proteins crystals are first formed in highly supersaturated solution and

then grown under varied solution conditions. Once a high-quality crystal is obtained, it is

used to diffract x-rays and create diffraction patterns that can be interpreted to determine

the three-dimensional positions of the heavy atoms. The main difficulty of structure de-

termination by x-ray crystallography is in obtaining sufficiently large, high-quality crystals

providing sufficient diffraction to determine the three-dimensional structure. Many pro-

teins are hard to crystallize because it is extremely difficult to predict the proper conditions

for crystal formation and growth [88]. Among 75104 targets (45391 cloned) provided in

phase one of Protein Structure Initiative [95], only 3311 crystallized and only 1307 of these

crystals provided sufficient diffraction.

Nuclear Magnetic Resonance spectroscopy [14] can severely restrict the range of pos-

sible structures by generating a large number of structural restraints evaluated by distance

geometry and molecular dynamics [121, 124]. A protein sample is placed in a strong mag-
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netic field and its nuclear spins (an intrinsic property) are excited by radiation. The excited

spins emit the absorbed radiation at frequencies determined by the electronic environment

around the nuclei. With the technique of Fourier transform NMR (FT-NMR), a range of

frequencies can be probed at once, allowing magnetization transfer between nuclei and,

thereby, the detection of the nuclear-nuclear interactions, either through-bond or through-

space. NMR spectroscopy records data from proteins in solution, rather than in a crystal,

and thus enables the study of dynamic phenomena such as protein-protein interaction, re-

action kinetics, and protein folding [86, 24, 6]. NMR spectroscopy is limited to relatively

small proteins due to the low inherent sensitivity and the high complexity of NMR spec-

tra, although technical advances such as isotopic labeling [101] constantly extend the size

limit [96, 92, 129].

Another experimental technique for protein structure determination is Electron Mi-

croscopy (EM) [8], with the most popular form known as electron cryo-microscopy (cryo-

EM) [33]. Cryo-EM can visualize molecules weighing over 150 kDa at a resolution of

5-15 Å [51, 23]. The information provided by EM alone is generally not sufficient to de-

termine an atomic-detail protein structure, but it can be combined with other techniques

such as x-ray crystallography or NMR to produce atomic-detail structures of macromolec-

ular complexes [87]. When high-resolution x-ray/NMR structures of assembly components

are not available, EM can also be combined with computational prediction methods (see

Sec. 2.2) to produce complex structures at lower resolution [113].
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2.2 Protein Structure Prediction

Driven by the overwhelming number of targets available for protein structure determina-

tion, computational methods such as homology modeling, threading, and ab initio predic-

tion [99, 41, 58, 63] have been developed to compensate the shortcomings of experimental

techniques. Homology modeling (or comparative modeling) relies on the identification of

one or more previously determined protein structures (called templates) whose sequences

are similar to the query sequence [99]. The idea is that protein structures are more con-

served than sequences so that the structure of a new sequence can be derived from the

structure of another similar sequence. The quality of the homology model depends on both

the quality of the template and the similarity of sequences. The inaccuracies in homology

modeling come from errors in the sequence alignment, improper template selection, re-

gions of a model constructed without a template, and errors in side chain packing, among

others [118]. Higher sequence similarity usually implies more significant structural simi-

larity. Proteins with sequence identity over 30% to a known structure can often be modeled

with an accuracy equivalent to a low-resolution X-ray structure [125].

In protein threading, one or more templates of the same fold (i.e. sharing the same ma-

jor secondary structures in the same arrangement and topological connections) of the query

sequence are recognized, and then the query sequence is threaded through the backbone

structures of these templates. A scoring function, such as an empirical energy function de-

rived from known protein structures [13], is used to evaluate the fitness for each sequence-

structure alignment. Since most of protein folds can be found in the current PDB [132], it
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is very likely that a new protein will have a similar fold to that of an existing experimen-

tally determined protein structure and hence a threading model can be built. The quality

of threaded models depends on the extent of structural similarity more than the degree of

sequence similarity [15]. Naturally, protein threading is not very successful when no exist-

ing structure is similar to the query protein [122]. However, with the accumulation of new

folds by the ongoing structural genomics projects [95], the applicability of threading will

continue to expand.

While both homology modeling and threading use experimentally-determined struc-

tures as templates, ab initio methods try to estimate protein structures from sequences

alone based on physical or statistical principles [58, 99]. Although homology modeling

and threading are usually more accurate, ab initio methods are the only alternative in cases

where no useful template is available, and several groups have shown good performance

for ab initio different methods on some targets [59]. Ab initio methods often apply some

stochastic approaches requiring significant computational resources to search possible so-

lutions. Although currently limited to small proteins, this limit should be alleviated with

the development of new algorithms and computing technologies.

The most objective way to evaluate computational modeling methods is to compare pre-

dicted models with the corresponding x-ray or NMR structures. The series of Critical As-

sessment of Structure Prediction (CASP) experiments [76] is dedicated to this purpose. A

“blind prediction” process is adopted by CASP: target information is released to registered

prediction groups and models must be submitted before the experimentally determined

structures become public; submitted models are evaluated through detailed quantitative
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comparisons with experimentally determined x-ray/NMR structures [76].

CASP provides an ideal benchmark for computational modeling methods and has been

very helpful in advancing them. However, x-ray or NMR structures may not be available

for a large number of targets so that we have to resort to other methods for evaluating pre-

dicted models. As we mentioned in Chapter 1, an energy function alone is not sufficient to

distinguish decoys from near-native models [82]. An alternative method for distinguishing

the (almost) correct model from decoys is to evaluate models by some relatively cheaper ex-

perimental tests as we do in this thesis. Several such techniques such as cross-linking [48],

mutagenesis [126], and solution scattering [45], have been used to gain low-resolution

protein structural information. Although the information provided by these techniques is

usually noisy and sparse, it can be sufficient to discriminate correct models from incor-

rect decoys [128, 127]. In this thesis, we employ cross-linking (Sec. 2.3) and mutagenesis

(Sec. 2.4) for model discrimination.

2.3 Protein Structure Elucidation by Cross-linking

The first experimental technique employed in this thesis for protein structure elucidation is

cross-linking. Specific sites in the protein(s) are cross-linked, either by employing residue-

specific cross-linker molecules, such as the lysine-specific bis-sulfo-succinimidyl suber-

ate (BS3) [107, 48, 128, 21, 64, 94, 117], or by disulfide bonding of specifically intro-

duced cysteines whose Cβ approach within 4.6 Å, with proper geometry, during the experi-

ment [18, 55, 64]. Cross-links are then detected by protein chemical means [48, 109] and/or
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mass spectrometry [128, 94, 62, 117], or by alteration in electrophoretic mobility [18, 64].

In these experiments, the cross-linking reaction is determined by the geometric feasi-

bility between pairs of sites and the reactivity and accessibility of individual sites. The

difference of these properties among models provides the base of model discrimination.

In interpreting cross-linking experiments, models have so far been evaluated solely on the

geometric feasibility of observed cross-links [48, 7, 128]. In the simplest case, straight-

line distance between cross-link sites [128] has been used. Alternative methods have been

proposed for computing lower and upper bounds on the lengths of paths exterior to a pro-

tein and thus accessible to a cross-linker without steric clashes [85]. The reactivity of the

protein groups cannot be easily extracted from the model, but can be corrected for by mea-

surements of reactivity with monofunctional reagents [78]. Finally, geometric feasibility

depends on whether or not the cross-linker can bridge the distance between cross-linked

atoms in the model, potentially with consideration for protein dynamics. For example, the

cross-linker BS3 reacts with amino groups, including the N-terminus and the Nζ of Lys

residues, and forms a bridge of up to 11 Å between such pairs.

Several independent experiments have demonstrated successful application of cross-

linking, providing models that correlate with prior or subsequent crystal or NMR struc-

tures. Employing Edman sequencing and mass spectroscopy of the cross-links, Haniu

et al. developed a model of human erythropoietin [48] via lysine-specific cross-linking.

Young et al. pioneered the use of high-resolution mass spectroscopy alone to correctly

discriminate threading models [128, 62]. Cross-linking has also been used to determine

quaternary arrangements of proteins [55, 93, 109, 5, 117]. These methods are particularly
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valuable for proteins, such as membrane proteins [7, 64], that are inherently resistant to tra-

ditional structure determination methods. Large sets of cross-links have also been treated

as distance restraints in an alternative distance geometry structure determination protocol to

determine the arrangement of transmembrane helices in lac permease [103], a case where

no models were available beforehand.

Cross-linking by oxidation of introduced dicysteine residues has a number of favorable

properties for elucidating protein [7] and complex [55] structure and properties. Since each

pair of cysteine substitutions is made and tested directly for cross-linking, independence is

assured and error can be reduced since the approach eliminates the possibility of assign-

ment error in Mass Spectrometry. From the experiment planning point of view, disulfide

trapping also provides more freedom and thus the most informative set of experiments can

be selected in order to discriminate a given set of protein structure models.

2.4 11G◦ Prediction for Point Mutations

Mutagenesis is another experimental technique employed in this thesis for protein structure

elucidation. The effects of mutation on protein stability, i.e. the 11G◦ values, can be

predicted from structural models and measured experimentally. The consistency between

predicted and experimental values provides a criterion for ranking models. The success of

this approach relies on an accurate and reliable prediction of the 11G◦ values. The various

published 11G◦ prediction methods report good results in the aggregate, or for a defined

subset of mutations, demonstrating their value as 11G◦ predictors [13, 114, 46, 20, 39].
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Bowie et al. [13] associated the fitness of amino acid sequences into a known 3D struc-

ture with the frequencies of residues according to specific environment classes. The envi-

ronment of a residue was classified into 18 subclasses according to the area of the residue

buried in the protein (i.e. inaccessible to solvent), the fraction of side-chain area covered by

polar atoms (O and N), and the local secondary structure. This method has been extended

to predict the change of free folding energy upon mutation, using more detailed classifi-

cation of environment classes [114] (thus we refer to this method as “ENV”). A statistical

pseudo-potential score was derived from the frequencies of finding different residue types

in each environment class. The effect of mutation on protein stability was then predicted

by the change of this potential score between a mutant residue and the wild-type residue.

Guerois et al. [46] developed an empirical energy function to predict the stability of

wild-type proteins and site-directed mutants, and the 11G◦ value was then determined as

the difference between them (the FOLD-X method). A number of different energy terms

that contribute to protein stability, including van der Waals, solvation, hydrogen bonding,

and electrostatics, were taken into account in the energy function and weighted using a

large amount of empirical mutagenesis data. FOLD-X achieved a global correlation of

0.83 between the predicted and experimental 11G◦ values for 95% of more than 1000

point mutations, with a standard deviation of 0.81 kcal/mol.

Carter et al. [20] developed a four-body likelihood potential to predict the change of

protein stability for mutations in the hydrophobic core. Three-dimensional protein struc-

tures were tiled with tetrahedra by Delaunay tessellation, where the vertices were the mass

centers of amino acids and tetrahedra types were defined by the amino acid types. The log-
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likelihoods of all 8855 types of possible tetrahedra were computed from a large database of

experimentally determined protein structures. The total change of these log-likelihoods of

all tetrahedra involved in a point mutation was used to predict the change of protein stabil-

ity. Strong correlation between the predicted and experimental 11G◦ values was obtained

for five proteins, but the data set was not as large as those used in other methods such as

FOLD-X.

The PoPMuSiC method [39] considered two types of potential, the torsion angle po-

tential and the distance potential, in order to evaluate protein stability. The potentials were

derived from observed frequencies of sequence and structure patterns in a large dataset

of x-ray protein structures. Correlation coefficients between 0.80 and 0.87 were obtained

between predicted and experimental 11G◦ values on hundreds of mutations in various en-

vironments, for seven different proteins and a synthetic peptide. However, the performance

is relatively poor for mutations with solvent accessibility in the 40-50% range [38].

The area of 11G◦ prediction is still under active development. For example, the web

tool CUPSAT [83] used structural environment specific atom potentials and torsion angle

potentials to predict the 11G◦ values of point mutations. Some other methods also employ

neural networks and support vector machines [16, 17, 22].

2.5 Site-Directed Protein Recombination

Protein recombination takes several forms including DNA shuffling [105], ITCHY [80]

and SCRATCHY [69], StEP [1], and RACHITT [25]. In site-directed recombination, a set

19



of homologous parent genes are recombined at specified breakpoint locations, yielding a

combinatorial set of hybrids [119, 72, 81, 89]. In contrast to stochastic library construc-

tion methods [105, 1, 25], site-directed approaches intentionally select breakpoint locations

to optimize expected library quality, e.g. predicted disruption [72, 31, 127], and thus can

be optimized beforehand in order to increase the possibility of obtaining useful hybrids.

Recombination-based approaches, when combined with high-throughput screening and se-

lection, can avoid the need for precise modeling of the biophysical implications of muta-

tions. They employ an essentially “generate-and-test” paradigm. As always, the goal is to

bias the “generate” phase to improve the hit rate of the “test” phase.

In order to increase the probability of obtaining folded and functional hybrids in site-

directed recombination, it is desirable to retain the evolutionary relationships among amino

acids that determine protein stability and function. The labs of Mayo and Arnold [119, 72]

have established criteria that evaluate retainment of contacting residue pairs after recom-

bination, and demonstrated the relationship between the amount of contact disruption and

functional hybrids. Saraf and Maranas et al. [91] defined residue-residue “clash” based on

charge, volume, and hydrophobicity and demonstrated the correlation between the num-

ber of such residue-residue clashes and the activities of functional hybrids. Such non-

random association of amino acids, as expressed in pairwise potentials, has also been

usefully applied in a number of other situations. For example, pairwise contact poten-

tials [108, 73] play a large role in evaluating the quality of models in protein structure

prediction [70, 99, 58, 41]. It has been suggested, however, that “it is unlikely that purely

pairwise potentials are sufficient for structure prediction” [11, 20].
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To better model the evolutionary relationships that determine protein stability and func-

tionality, it may be necessary to capture the higher-order amino acid interactions that are ig-

nored in simple pairwise models. Researchers have begun to demonstrate the importance of

accounting for higher-order terms. The four-body potential discussed in Sec. 2.4 is a good

example of employing a higher-order potential to predict protein stability changes upon

mutation [20]. Similar formulations have been used to discriminate native from non-native

protein conformations [61]. Geometrically less restricted higher-order interactions have

also been utilized for recognition of native-like protein structures [100]. Recent work on

correlated mutation analysis has moved from identifying pairwise correlations [40] to de-

termining clusters or cliques of mutually-dependent residues that identify subclasses within

a protein family and provide mechanistic insights into function [68, 110].

As we discussed in Chapter 1, the combinatorial number of breakpoint location sets

makes it difficult to choose the optimal even with respect to a naı̈ve criterion. Along with

the search for effective criteria, there is also an on-going search for efficient algorithms to

select the optimal breakpoint locations in site-directed recombination. Endelman et al. [81]

formulated the breakpoint selection problem, using only pairwise potentials, as a shortest

path problem. For choosing n breakpoints from N residues, an N × n matrix of nodes is

built and edges are placed between two nodes in adjacent columns if the right index is larger

than the left index. Breakpoint locations were added one by one from left to right, so the

length of an edge represents the additional number of pairwise amino acid contacts broken

by adding the current breakpoint given the previous one. In this representation, every

feasible n-breakpoint library is represented as a path of length n from left to right, with
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the node visited in column k corresponding to the position of the kth breakpoint location.

The optimal set of breakpoint locations thus corresponds to the shortest path, which can be

identified in polynomial time.

Saraf et al. [90] developed an algorithm OPTCOMB that optimally balances library size

and quality. OPTCOMB employs linear programming technique to determine the optimal

breakpoint locations and which parents can be used for each fragment. The authors iden-

tified an optimal library size for the well-studied dihydrofolate reductase proteins from E.

coli, B. subtilis, and L. casei, minimizing both the number of clashes between the fragments

composing the library and the average number of clashes per hybrid in the library.
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3. MODEL DISCRIMINATION BY CROSS-LINKING

It is advantageous to consider the possible outcomes of cross-linking before an experiment

is conducted, in order to optimize experimental parameters and obtain the most information

from an experiment. Similarly, if interpretation of the results of an experiment proves to

be ambiguous, a subsequent experiment can be optimized to reduce the ambiguity. Vari-

able experimental parameters include the cross-linker (particularly specificity and length)

and the sequence itself, altered by planned mutations that are unlikely to affect the parent

structure. For example, we could make a conservative change to Lys in order to introduce

additional possible cross-links for BS3, or make non-drastic substitutions in two residues to

the widely-accepted Cys in order to test disulfide bond formation. Selecting cross-linker

and mutation can be repeated, generating a family of experiments, each potentially provid-

ing additional information for model selection. This chapter develops experiment planning

and data interpretation mechanisms for cross-linking. We demonstrate that our approach is

extremely efficient and produces high-quality designs.

Our probabilistic cross-link analysis and experiment planning method is summarized

in Fig. 3.1. First, computational analysis assesses feasibility of cross-links on a set of

predicted models of a protein as discussed in Chapter 2. Since a cross-linker can span only
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some maximum distance between a pair of residues, the feasibility of the possible cross-

links varies across models. We perform this geometric feasibility analysis and collect the

information into “cross-link maps”, which indicate the conditional probabilities for cross-

links for each model, under the particular experimental conditions. The example simply

indicates high (H ) or low (L) probability for some potential cross-links on three models.

The potential for cross-linking for some pairs will be hard to evaluate, especially when

significant dynamics are possible. These cross-links can be put into a third, ambiguous (A)

class.

Based on the cross-link maps, our experiment planning algorithm evaluates the relative

potential for positive support in order to select a set of experiments (shown in Fig. 3.1

as ovals) to cover the various possible pair-wise discriminations. Selected sites are cross-

linked and then cross-links are detected in experiments (see Chapter 2).

Once experimental data are collected, characterization of the set of observed (and po-

tentially the unobserved) cross-links provides evidence regarding the consistency of the

models with the data. An observed high feasibility cross-link supports a model. A low

feasibility cross-link that is not observed can also support a model, once the likelihood of

cross-link detection is explicitly considered. Conversely, unobserved high feasibility and

observed low feasibility cross-links provide evidence against a model. To account for lim-

itations in the experimental detection of cross-links and potential experimental errors, we

include two parameters, capture rate κ , indicating the rate of detection of feasible cross-

links (that is, 1− κ equals the rate of false negatives), and noise rate ν, the detection rate of

spurious infeasible ones (i.e. false positives). These rates will depend upon the cross-linker
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Fig. 3.1: Model discrimination by cross-linking. (1) Different predicted models of a protein

have different patterns of feasible cross-links (dotted lines). Cross-link maps capture the

feasibilities (H , L , or A) in terms of conditional relationships for cross-links (rows) given

models (columns). (2) Different experimental choices (cross-linkers, mutations) yield dif-

ferent cross-link maps. An experiment could enable selection of one model, if correct, over

another (e.g. r > s) if the first model has enough potential positive support (H entries in

the cross-link map) where the other doesn’t (L entries). Some experiments provide only

ambiguous information for a particular model (A entries). An experiment plan evaluates

the relative potential for positive support in order to select a set of experiments (ovals) to

cover the various possible pair-wise discriminations. (3) Experimental data, e.g. from mass

spectrometry or gel electrophoresis, provide support for particular cross-links. (4) Exper-

imental identification of cross-link l1,2 provides evidence for and against models r and s,

based on consistency with cross-link maps and modulated by the capture and noise rates of

the experimental method (here constant values κ and ν, for capture and noise respectively).

The discrimination ratio combines terms for both observed and unobserved cross-links.
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and peptides involved, the detection methods, and the experimental effort, but we will con-

sider the simplest case of fixed rates. Support for models provides probabilities (Eq. 3.1),

which are used in a ratio to compare two models (Eq. 3.3). When one model is sufficiently

better than every other, model selection results.

In the rest of this chapter, we first develop a probabilistic framework for reasoning and

data interpretation (Sec. 3.1); followed by the experiment planning metrics and algorithms

(Sec. 3.2). Then we present the planning and simulation results for residue-specific cross-

linking and disulfide trapping on several proteins, followed by a practical application of

discriminating models of the pTfa protein from bacteriophage lambda by disulfide trapping

(Sec. 3.3).

3.1 Probabilistic Framework

This section develops a basic framework for probabilistic reasoning about cross-links. Most

probabilistic functions depend on the choice of experimental parameters; we leave those

terms implicit except where necessary for clarity.

We are given a set S of predicted structure models. Each model s ∈ S has a prior

probability, p(s), which can be uniform or can incorporate scoring information from the

modeling process. The task is to identify the model in S that is best, in terms of the prior

and agreement with experimental data regarding a set L of possible cross-links. We bridge

the gap between model and data in two steps: (1) consistency of cross-links with models,

and (2) evidence for cross-links from data. Consistency of a cross-link li with a model
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s is modeled with a conditional probability p(li | s). Support for a cross-link li from

experimental data d is modeled with likelihood p(d | li ). Since we concentrate on the

information content available via cross-linking, we take as given an interpretation of the

data. For example, in the case of cross-link identification by mass spectrometry, likelihoods

could be computed by predicting expected mass peaks for a given cross-link and comparing

with observed spectra, using a distribution to model measurement error, and a mixture

model to handle experimental complexities (e.g. missed proteolytic cleavage). A key part

of these likelihoods that we explicitly model is the sparsity (false negatives) and noise (false

positives) of the data.

Combining these terms then yields the support for each model from the data, by marginal-

izing over cross-link existence. We treat cross-links as independent, although it is certainly

possible to model dependence due to such effects as common reactivity arising from cross-

links sharing an amino acid side chain. Similarly, a model is conditionally independent of

the data given the cross-links (models are not, for example, optimized with respect to the

data). Thus we have

p(d | s) =
∏
i∈L

∑
`∈{0,1}

p(d | li = `) · p(li = ` | s) (3.1)

In this approach, a model is supported by high feasibility cross-links that are observed

and low feasibility ones that aren’t. It is penalized by low feasibility cross-links that are

observed and high feasibility ones that aren’t. Fig. 3.1, Step 4, has two simple examples for

one observed and one unobserved cross-link. The p(d | li ) terms are the noise and capture

rates, and the p(li | s) terms arise from the cross-link map.

An interesting consequence of this realistic model is that, depending on the number of
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potential cross-links, and their cross-link feasibility (H, L), capture (κ), and noise (ν) val-

ues, we should expect to observe some cross-links that are considered low feasibility in the

correct structure. The expected number of identified cross-links among B low feasibility

ones is (κL + ν(1 − L)) · B. If κ = 1
3 , ν = 0.05, L = 0.1 and B = 25, we expect to

see about 2 infeasible cross-links wrongly identified. The potential identification of incor-

rect cross-links points out the need for multiple possible cross-links supporting a model

selection.

Employing Eq. 3.1, we can reweight the prior distribution p(s) by the information

provided by the data:

p(s | d) ∝ p(d | s) · p(s) (3.2)

and identify the maximum a posteriori model, or maximum likelihood model in the absence

of informative priors.

A posterior ratio allows comparison of the consistency of two models (r, s ∈ S) with

the data.

φrs(d) =
p(d | r)p(r)

p(d | s)p(s)
(3.3)

In the present context, we allow for the possibility of priors, although we treat them as

uniform. When priors are ignored, this ratio becomes a so-called Bayes factor. A model

can be confidently selected when the ratio with respect to every other model is sufficiently

large.
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3.2 Experiment Planning Metrics and Algorithm

The problem of characterizing the utility of an experiment has been well-studied in the sta-

tistical literature; for example, relative entropy (Kullback-Leibler distance) between poste-

rior and prior distributions is one natural approach that would capture the expected effects

of reweighting the models given data. We employ a complementary approach that uses

pairwise differences in cross-link maps so that we can make explicit trade-offs among key

properties of practical importance for our application — discriminability, coverage, bal-

ance, ambiguity, and cost. Cost becomes simply the number of experiments for those with

uniform cost such as disulfide trapping.

Intuitively, a pair of models with very different cross-link maps (i.e. disagreeing about

feasibility of many cross-links) has a higher probability of being discriminated than a pair

with very similar cross-link maps. We separately consider the two directed discriminations

in favor of one or the other model, which we characterize as cross-link map differences,

d(r, s) and d(s, r). Using H and L feasibilities as in Fig. 3.1, d(r, s) would simply be the

size of the set Lr of cross-links that have H in r and L in s, and similarly for d(s, r) = |Ls |

(note that cross-links for which they agree cancel out in the discriminability ratio, Eq. 3.3).

Now we consider whether the discriminability ratio φ is sufficient to select r if r is indeed

correct. Since this analysis is done before data are collected, we must take the expectation

over all possible datasets

E{φrs | r} =
∫

d
φrs(d) · p(d | r) dd (3.4)

In general, this integral cannot be evaluated analytically. However, it can be simplified
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under the assumptions we have been discussing: independent feasibility of cross-links us-

ing fixed H and L , detected under fixed rates for capture κ and noise ν. The probability of

capturing a high feasibility cross-link is then α = Hκ + (1 − H)ν, the sum of capturing

it correctly and of it showing up incorrectly. The probability of capturing a low feasibility

cross-link is β = Lκ + (1 − L)ν. If r is the correct model, then each cross-link from Lr

contributes α
β to the ratio if observed or 1−α

1−β if not (both contribution ratios are reciprocated

for the Ls cross-links). Assuming independence of cross-links, the expected value is multi-

plicative, and we can separately analyze the expected contribution of each cross-link to the

ratio. Each cross-link in Lr contributes

λ = α ·
α

β
+ (1− α) ·

1− α

1− β
(3.5)

Cross-links in Ls have a similar formula with α and β switched, giving γ . Examination

of γ and λ demonstrates that κ must be greater than ν for effective discrimination, and the

greater the difference, the greater the effectiveness of the experimental system.

The expected ratio in Eq. 3.4 then becomes

E{φrs | r} = λ|Lr | · γ |Ls | (3.6)

We can rewrite λ as

1+
(α − β)2

β(1− β)
(3.7)

to see that it is greater than one (assuming κ > ν). Similarly, γ > 1, so the expectation of

the ratio E{φrs | r} increases monotonically with |Lr | and |Ls |. Thus we can use the cross-

link map differences as an easily interpretable measurement of the potential for correctly

making a selection.
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Averaging (or simply summing) the expectation of ratios over all model pairs yields a

measure of the overall expected information provided by an experiment. In our cross-link

map difference approach, we simply sum up the number of model pairs with a cross-link

map difference of at least some threshold 1.

c(S;1) =
∑

r 6=s∈S
I {d(r, s) ≥ 1} (3.8)

where the indicator I takes value 1 if the predicate is true and 0 if it is false. We call this

the discriminable model-pair coverage of the experiment. We note that this metric does

not require the same data to be used to achieve acceptable discriminability for one model

against different models (e.g. r can be better than s and t under two different subsets of

its cross-links). While model selection only requires finding one model to be better than

the rest, the coverage metric seeks to support discrimination of all pairs of models. In the

absence of an informative prior, any model could be the selected one, so we must consider

all pairwise discriminations.

Whether an observed cross-link in Lr or an unobserved cross-link in Ls provides a

larger contribution for r (i.e. whether λ or γ is bigger) depends on the values of H , L ,

κ , and ν. The uncertainty in the relative values of λ and γ provides additional motivation

for a balanced design, i.e. an (approximately) equal number of cross-links in Lr and Ls .

Formally, we evaluate imbalance ib in terms of the potential positive evidence for each pair

of models, as measured by cross-link map differences, with 1 difference considered always

sufficient. Additional discriminability greater than 1 is neither penalized nor selected for
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in our planning algorithm.

ib(S;1) =
∑

r 6=s∈S
|min(d(r, s), 1)−min(d(s, r), 1)| (3.9)

Since variability in H and L arises from modeling uncertainty and protein flexibility,

it is intuitively desirable to use for discrimination only cross-links that are most feasible

in one model and least feasible in the other. We make this property explicit in terms of a

parameter we call the distance ambiguity region A — a range of cross-linking distances

which cannot be associated with strong feasibility or infeasibility with respect to a model.

In the current case of discrete cross-link map differences, we simply don’t include such

positions in the formulas for discriminability and coverage. In the more general case, this

region would be reflected in the choice of distribution for p(li | s).

Our experiment planning mechanism takes as input a set of possible experiments E to be

considered, each with an associated set of cross-link maps p(li | s; e). It then determines

experiments to be conducted E ′ ⊂ E , so as to maximize discriminable model pair coverage

C and minimize imbalance ib and number of experiments N = |E ′|.

The optimization problem can be shown to be a member of the class of NP-hard prob-

lems. NP-hardness follows by reduction from SETCOVER: the objects to be covered corre-

spond to model pairs, the covering sets correspond to experiments, and a binary cross-link

map indicates which objects (model pairs) a particular set (experiment) covers (discrim-

inates). In fact, our problem generalizes many variations on SETCOVER that maximize

coverage and minimize the number of sets. Greedy algorithms have proved effective in

such contexts, both practically and theoretically (e.g. the greedy algorithm for SETCOVER

would provide an approximation to 1+ log |S| in covering a set S [56]). Thus we pursue a
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XLINKPLAN(S, E, 1, A, Nmax, Cmax)
E ′← ∅
P ← {〈r, s〉 r 6= s ∈ S}
P ′← ∅
for each 〈r, s〉 ∈ P

if residue-specific with possible cross-linkable residue pairs L
w(r, s)← 1
for each e ∈ E

let L′ be {li ∈ L ‖li‖r < A. min and ‖li‖s > A. max}
covers(e, 〈r, s〉)← |L′| ≥ 1

else if disulfide
w(r, s)← 1
for each e ∈ E

covers(e, 〈r, s〉)← (‖le‖r < A. min and ‖le‖s > A. max)
repeat

let e be arg maxe∈E−E ′
∑
〈r,s〉∈P w(r, s) · covers(e, 〈r, s〉)

E ′← E ′ ∪ {e}
for each 〈r, s〉 such that covers(e, 〈r, s〉) = 1

w(r, s)← max(0, w(r, s)− 1)
if w(r, s) = 0: P ′← P ′ ∪ {〈r, s〉}

until |E ′| = Nmax or |P ′| ≥ Cmax

Fig. 3.2: Greedy algorithm, XLINKPLAN, given a set S of models, a set E of possible
experiments, desired discriminability 1, ambiguity region A, and maximum number of
experiments Nmax and coverage Cmax. The output is a subset E ′ of experiments covering
a subset P ′ of model pairs. For residue-specific cross-linking plans, a model pair must be
covered by a single experiment at the given 1 level. For disulfide trapping plans, the weight
w on a model pair keeps track of the remaining coverage to complete 1, to be provided by
subsequent experiments.
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greedy approach.

Fig. 3.2 outlines our algorithm, XLINKPLAN. We employ directed pairs of models (i.e.

both 〈r, s〉 and 〈s, r〉), rather than undirected pairs, in order to reach balanced design. A po-

tential cross-link li is informative in discriminating a directed model pair if its cross-linking

distance (denoted ‖li‖) is short enough in the first model and long enough in the second,

relative to the ambiguity region. In this manner, the algorithm considers only positive evi-

dence towards a particular discrimination goal, minimizing imbalance. Negative evidence

will also arise in the experiment and contribute additional discrimination as in Eq. 3.1 (but

this is not considered in planning). For lysine-specific experiments, a particular experiment

is noted as covering a model pair if at least 1 cross-links are informative. For disulfide

experiments, coverage is accumulated over multiple experiments, and so each experiment

is consider as (partially) covering if it has an informative cross-link. The total number

of covering experiments must then reach 1, and a pair’s weight w keeps track of the re-

maining coverage required. The algorithm greedily selects experiments, stopping when the

number of experiments reaches the maximum number Nmax or the desired coverage Cmax is

satisfied. At each point, the marginal utility of an additional experiment is evaluated by the

weighted coverage sum, in which the weight w represents the current importance of cover-

ing a particular model pair. Each pair’s weight is initially simply 1 (residue-specific) or the

desired discriminability 1 (disulfide), and coverage by an experiment then decrements the

weight.

In fact, it can be proved that XLINKPLAN provides an approximation to 1 + log 1 +

log |S| by slightly modifying the amortized analysis for the GREEDY-SET-COVER prob-
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lem described by Cormen et al. [29]. Basically, we assign a cost of 1 to each set (residue

pair) selected by XLINKPLAN, distribute this cost over the elements (model pairs) covered

by the selected set based on their current weights, and then use these costs to derive the

desired relationship between the size of an optimal set cover and the size of the set cover

returned by XLINKPLAN. Usually we would have a 1 much smaller than |S|.

3.3 Results

3.3.1 Residue-specific Cross-link for Model Discrimination

We first studied probabilistic discriminability analysis and experiment planning using lysine-

specific cross-linking and three different proteins. The primary test case is basic fibroblast

growth factor (FGF-2, PDB ids 4FGF, crystal, and 1BLA, NMR), due to its earlier use

in model discrimination by cross-linking [128]. Alternative threading models for FGF-

2, using twelve of the published template structures, were obtained via the protein fold-

recognition meta-server [63]; several of the published templates could not be suitably

matched to the FGF-2 sequence given current threading programs queried by the server.

Two of the models are of the same fold (β trefoil) as the current structure, and the correct

NMR structure (PDB id 1BLA) is also included in the model set. The other test cases were

chosen from CASP4 [75] targets with many high-quality models: deoxyribonucleoside ki-

nase (PDB id 1J90) and α-catenin (PDB id 1L7C). Predicted models that are less complete

than the correct one are ignored. In total we employed 13 models for FGF-2, 85 models for
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deoxyribonucleoside kinase and 50 models for α-catenin.

We consider five commercially-available, water-soluble, and primary amine-reactive

N-hydroxysuccinimide, sulfo-N-hydroxysuccinimide, or imido ester cross-linkers with dif-

ferent lengths between the reactive groups: sulfo-DST cross-links Lys Nζ to Lys Nζ at a

distance of 6.4 Å, DSG at 7.7 Å, DMP at 9.2 Å, BS3 at 11.4 Å, and sulfo-EGS at 16.1 Å.

Previously, only information of geometric feasibility has been employed for making struc-

tural inference from cross-linking. We follow that procedure here, while recognizing that

accessibility and reactivity can be measured separately by reaction with monofunctional

reagents [78].

Following earlier work [128], for each model, we computed LysCα to LysCα straight-

line distance (the position of the reactive Nζ atom is generally both uncertain and mobile);

this requires adding 12.4 (2 ∗ 6.2) Å to the maximal cross-linker length to allow for the

maximal Cα–Nζ side chain length. Because distributions of distances less than maximal

are most highly populated in solution [43], it is reasonable that potential cross-links with

distances that are some value less than the maximum should be considered most feasi-

ble. At the same time, cross-links with distances exceeding the maximum are considered

infeasible, while those in between are considered ambiguous. Our strategy of ignoring

the ambiguous cross-links for model discrimination leads to a smaller number of utilized

cross-links and thus a smaller probability of making a decision. However, it simultaneously

reduces the possibility of utilizing a spurious cross-link and thus increases the probability

that, when a decision is made, it is a correct one.

Chemically, there are two components to the reduction in effective cross-linker length.
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One arises from the relative rarity of the maximally extended conformation of the cross-

linker, and the other from lack of maximum extent and deviation from in-line orientation

of the lysine side chains. For cross-linker BS3, the cross-linker conformation component is

2.5 Å [43], and we estimate the same value for the side chain component. This creates an

ambiguous region 5 Å wide where cross-links are feasible but less probable. For BS3, this

region extends from 19 Å to the maximum Cα–Cα distance of 24 Å. We have checked this

ambiguity region against FGF-2 cross-linking data [128], and have found that, as expected,

the capture rate for geometrically feasible cross-links (< 19 Å) is greater than that for the

ambiguous ones (19–24 Å), 31% vs. 24%. Then, we employ a capture rate κ of 1
3 . In

addition to the expected effect on κ , the application of an ambiguity region is expected to

also improve our ability to accurately classify potential cross-links as feasible or infeasible

(increase the difference between the probabilities H and L). In all subsequent analyses, we

define each cross-linker’s ambiguity region ranging from its maximum extent to 5 Å less.

The discriminability 1 reflects the extent of confidence that we plan for in the selection

of one model over another in a pair. It is the anticipated discriminability value for positive

data if all possible cross-links in a planned set of experiments were detected without errors.

Due to the inevitability of errors, the expected level achievable on average is κ1− ν1 (see

Sec. 3.2). Thus the experimenter must plan for discriminability greater than the level that

is satisfactory for discrimination after collecting experimental data. An extreme example

arises if we expect a low capture rate, as from residue-specific cross-linking; then we must

require a high 1 so that the expected contribution to discrimination is sufficient. Thus

when we plan for 1 = 6 but have a capture rate of κ = 1
3 and noise rate of ν = 0.05,
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Fig. 3.3: Optimal cross-linker lengths for 3 different sets of protein models — FGF-2
(solid line), deoxyribonucleoside kinase (dashed line), α-catenin (dotted line) — over po-
tential lengths from 1 to 65 Å in 1 Å steps. For each length, discriminable model-pair
(directed) coverage was determined at 1 of 3, 6, and 12 respectively. Lengths are indi-
cated (thin dashed vertical lines) for five commercially-available cross-linkers, sulfo-DST
(6.4 Å), DSG (7.7 Å), DMP (9.2 Å), BS3 (11.4Å), and sulfo-EGS (16.1 Å), and results are
tabulated in Tab. 3.2.

Tab. 3.1: Optimal cross-linker length for three proteins of varying size, with 1 at 3, 6, and
12. Among the five commercially available cross-linkers we predict that three of them,
DMP (9.2 Å), BS3 (11.4Å), and sulfo-EGS (16.1 Å), would be variously optimal for these
models.

protein # residues # lysines #models optimal cross-linker length
1 = 3 6 12

FGF-2 146 14 13 9Å 12Å 12Å
deoxyribonucleoside kinase 230 13 85 15Å 14Å 15Å
α-catenin 269 14 50 15Å 14Å 20Å

we can expect to actually observe 1.7 discriminatory cross-links on average in favor of the

winning model.

In Fig. 3.3, we plot the discriminable model-pair percent coverage at 1 of 3, 6, and 12,

while varying potential cross-linker length for the three test proteins. The optimal cross-

linker length, summarized in Tab. 3.1 for our examples, depends on the models and the rela-

tive positions of the reactive sites. Theoretically, with the same number of reactive sites and

a random distribution of them on the protein surface, the optimal cross-linker length would
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Fig. 3.4: Improvement in coverage by multiple-experiment plans for FGF-2. Sets of exper-
iments were planned by XLINKPLAN, choosing for each experiment a cross-linker from
among five commercially-available reagents (dashed line) or choosing both a cross-linker
and a possible conservative mutation to Lys (solid line). Sets of up to five experiments
were planned for the former case, saturating the possibilities of cross-linker choice, while
sets of up to eight were planned for the latter case, which includes mutations. The cover-
age was determined for each plan, at different choices for discriminability 1. The set of 8
experiments selected with choice of mutation at 1 = 12 is listed in Tab. 3.2

be a function of protein size — the larger the protein, the longer the optimal cross-linker

length. The three proteins have a similar number of lysines; hence the larger proteins de-

oxyribonucleoside kinase and α-catenin are better discriminated with longer cross-linkers

than the smaller FGF-2. Our planning method can be used for choosing suitable cross-

linkers for a particular protein or as a guide for designing novel cross-linkers [117]. The

strange right tail of the FGF-2 curve is due to the elongated model based on the D-UTPase

(β-Clip) template, which requires longer cross-linkers for discrimination.

Fig. 3.4 shows the coverage achieved as additional experiments are added to the plan

by XLINKPLAN. For residue-specific cross-linking, data from each experiment are han-

dled independently; that is, each pair is distinguished based on data gathered from a single

experiment. This allows closer approximation to the probabilistic assumption of indepen-

dence. For each experiment, selecting the optimal cross-linker improves coverage, although
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Tab. 3.2: Cross-linking experiment plan for FGF-2. The greedy set of 8 experiments,
each involving one possible Arg, Asn, Gln, or His to Lys mutation, and a choice of
commercially available cross-linker, was determined. Each experiment is shown on a line,
along with the coverage (percentage of directed model-pairs discriminated) at 1 = 12.
The total coverage provided by all 8 experiments is 79.49% of the 156 directed model-
pairs, which is very close to the plateau value of 80.13%.

Experiment Cross-linker (length, Å) Mutated residue Single coverage Cumulative coverage
1 DMP (9.2) Arg69 58.33% 58.33%
2 BS3 (11.4) Arg116 53.85% 69.23%
3 BS3 (11.4) Arg53 58.33% 72.44%
4 sulfo-EGS (16.1) Arg90 41.03% 75.00%
5 DMP (9.2) Arg106 50.64% 76.28%
6 sulfo-EGS (16.1) Arg118 44.23% 77.56%
7 DMP (9.2) Asn110 52.56% 78.85%
8 DMP (9.2) Arg129 55.77% 79.49%

Total 79.49%

a plateau of diminishing returns is reached.

With the ease of making site-directed mutations by high-throughput means, a natural

extension to cross-linking strategies is the creation of new sites for cross-linking reaction.

In particular, conservative mutations (from Arg, Asn, Gln, or His) to Lys can be planned

to add reactive sites. As can be seen, the addition of making just one conservative mutation

as an experimental option allows higher coverage and/or discriminability, demonstrating

that this is a valuable strategy if the number of natural sites is insufficient. Tab. 3.2 shows

a sample planning result for a set of eight experiments with one cross-linker choice and

one mutation possible per experiment, increasing the coverage from 58.3% to 79.5% after

combining eight. In this strategy, if there are k possibilities for conservative changes in a

protein and l choices of cross-linkers, then there are
(kl

N

)
possible experiment plans for N

experiments. For FGF-2 and five potential cross-linkers there were
(22∗5

8

)
≈ 4.1 ∗ 1011

possibilities for this 8-experiment plan; our algorithm provides a valuable tool for selecting
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Fig. 3.5: Coverage of FGF-2 models by (a) lysine-specific and (b) disulfide cross-linking
experiments planned by XLINKPLAN, as a function of desired discriminability 1. (a) The
set of N (from 1 to 5) experiments involving five commercially available cross-linkers were
planned by XLINKPLAN using 1 of 3 (solid line), 6 (dashed line), or 12 (dotted line). The
coverage at the chosen discriminability is indicated for each set of experiments. (b) The
XLINKPLAN set of N (from 1 to 50) disulfide trapping experiments were planned using 1
of 1 (solid line), 2 (dashed line), or 4 (dotted line), and an ambiguity region of 9–21 Å.

the best ones.

The threshold discriminability value 1 has a significant influence on the planning re-

sult. Different levels of 1 affect the choice of experiments, as well as the coverage attain-

able. Fig. 3.5(a) shows the coverage resulting from multiple experiments at different 1

values. While good coverage can be achieved at low 1 values with a smaller number of

experiments, the chance for error is higher.

3.3.2 Disulfide Trapping for Model Discrimination

In planning for disulfide trapping, XLINKPLAN considers pairs of residues for cysteine

mutation (excluding drastic mutations from Phe, Trp, Tyr, Pro, and Gly). As before,

planning parameters include the desired discriminability level 1 and the ambiguity region

A. In this case, we construct A around a model Cβ–Cβ distance of 13 Å, the midpoint of
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a sigmoidal transition of a 3 log difference in rates of disulfide formation [18], and expand

A in increments of −1 and +2 to account for the asymmetry in the distribution of Cβ–Cβ

distances relative to the transition midpoint value. Beyond estimating Cβ–Cβ distances,

we do not construct a full geometric analysis of disulfide geometry [104], since protein

dynamics override these considerations for many proteins [18] and our method does not

require picking those disulfides that impart the greatest stability.

Fig. 3.5(b) shows disulfide trapping experiment plans for FGF-2, produced by XLINK-

PLAN. While, as with residue-specific cross-linking, there are diminishing returns from do-

ing more experiments, the enormous variety of possible disulfide experiments allows nearly

full coverage to be achieved even at high 1 levels if enough experiments are conducted.

Assuming, as above, that κ in lysine-specific cross-linking is about 1
3 , the 1 = 3, 6, 12

curves in Fig. 3.5(a) are analogous to the 1 = 1, 2, 4 curves in Fig. 3.5(b).

Since Phe, Trp, Tyr, Pro, and Gly comprise approximately 21% of the residues in

an average protein, the number of possible disulfide trapping experiments is about
(0.79n

2

)
≈

0.31n2; for N planned experiments, the number of possible combinations is about
(0.31n2

N

)
.

In the FGF-2 case, there are in total 5565 possible dicysteine mutations. The number of

all possible combinations of choosing 5 experiments from these is more than 1016, while

choosing 50 is more than 10120. These numbers are clearly intractable to an exhaustive

search for the optimal plan.

In disulfide trapping, different numbers of experiments generate a wide range of cov-

erage. Depending on the planned 1, 100% coverage is achieved only with a large number

of experiments. However, coverage can be viewed as a conservative estimate of ability to
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N = 19; C = 54% N = 28; C = 86% N = 42; C = 99%

Fig. 3.6: Simulation of disulfide trapping for FGF-2, using a set of planned experiments
for each coverage level, at 1 = 3. Simulations employ high feasibility H = 0.9, low
feasibility L = 0.1, capture rate κ = 0.95, and noise rate ν = 0.05, hence λ = γ = 5.31.
As explained in the text, we plan conservatively for 1 = 3 and discriminate with 1 = 2 to
allow for the anticipated errors. In this case the appropriate threshold for the posterior ratio
is still greater than 400-fold (λ1.8γ 1.8). Shown is the frequency of the size of the top group
in each simulation, over 1000 runs. The failure group (F) indicates cases when the correct
structure has been eliminated from the top group.

discriminate, and practical experiment plans need not attain 100% coverage. To illuminate

the relationship between coverage and experimental success, a simulation of a disulfide

experiment plan at 1 = 3 was conducted, using different numbers of experiments and cor-

responding coverage levels (Fig. 3.6). The result of each disulfide cross-linking experiment

was simulated according to the geometric feasibility in the correct structure. Simulated er-

rors were introduced according to feasibility H = 0.9 and L = 0.1 and capture and noise

rates κ = 0.95 and ν = 0.05. The simulation results are robust to a range of these pa-

rameters (not shown). Models are discriminated based on the posterior ratio exceeding a

selected threshold. If we plan for a particular 1, positive evidence (cross-links expected

by the winning model that correctly show up, minus those expected by the losing model

that spuriously show up) is expected to contribute a factor of γ κ1−ν1 to the posterior ra-

tio, and negative evidence (cross-links expected by the losing model that correctly don’t
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show up, minus those expected by the winning model that fail to show up) contributes

λ(1−ν)1−(1−κ)1 (Eq. 3.6, adjusted for expected error). By planning for 1 = 3, confident

discrimination by a ratio corresponding to 1 = 2 can be expected even in the presence of

this noise. In each simulation, we determined, with respect to the 1 = 2 threshold, which

models were eliminated by losing a pairwise comparison. The remaining “top group” of

uneliminated models typically contains the correct structure and as few as one or two oth-

ers, typically the other β trefoil models. With 86% coverage, the top group contains only

these models in more than 80% of the cases. With sufficiently many experiments (N = 42),

even the two most similar models can be distinguished more than 75% of the time. Due to

false positives and negatives (since κ 6= 1 and ν 6= 0), the correct structure might be elim-

inated. However, in this simulation, elimination of the correct model happens infrequently

(less than 0.01%) since we require a sufficiently high ratio in order to make a decision.

3.3.3 Practical Example: Disulfide Trapping for pTfa Model Discrimina-

tion

We put our planning mechanism into practice on the pTfa protein of bacteriophage lambda.

The pTfa protein and its homologs are chaperones required for the assembly of trimeric

tail fibers in those phage lambda strains (“Ur-lambda”) resembling the original wild-type

isolate [52], and in related phages such as T4 [74, 50]. Genetic data suggest that the ac-

tivity of pTfa and its homologs is an extreme example of chaperone activity, in which the

structure of the final tail fibers (their ability to bind host membrane components) is partially
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determined by the structure of the chaperone [49].

Lambda pTfa is a small 194 amino acid protein, but no structural information is avail-

able for it or any homolog. Crystallization trials of pTfa readily yield crystals, but they

fail to diffract (Hashemolhosseini et al., 1996; van der Woerd and Friedman, unpublished

results). We submitted the pTfa sequence to the fold recognition meta-server [63]. Align-

ments returned from the fold recognition meta-server [63] (see also the references to the

individual methods cited therein) were evaluated based on the agreement between the pat-

terns of secondary structure predicted for pTfa and observed in the potential templates, as

well as via structural assessment of the resulting crude models [60]. Three potential tem-

plates were identified by different fold recognition programs (Tab. 3.3). The DnaK template

(1DKZ) reported by FUGUE [97] was selected as a potential template and used to build

a model of the full-length pTfa protein using the “Frankenstein’s monster approach” [60].

Additional fold recognition analyses were performed using the multiple sequence align-

ment of the pfam02413 family, of which pTfa is a member. Templates 1LIZ and 1CKM

of the OB-fold were found using the pfam alignment and used to generate two additional

models.

A large number of decoy models for the 1–108 residue fragment were also developed

with the ab initio folding program Rosetta [99]. 15456 decoy models were clustered and

100 top clusters were selected for further analysis. Rosetta was only rarely able to generate

decoy models with high contact order, presumably due to the high β-strand content. Poorly

modeled regions provide further incentive for requiring positive data in discrimination.

If our primary concern is to distinguish the three high quality threading models, their
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Tab. 3.3: Three potential templates for pTfa protein, their source, fold, and function.

Index Program Template Fold-type Function
1 Fugue 1dkz DnaK-like Chaperone DnaK substrate binding domain
2 3D-PSSM 1liz OB-fold Heme chaperone Ccme
3 Fugue 1ckm OB-fold mRNA capping enzyme

Tab. 3.4: A full coverage plan for three pTfa models with potential templates in Tab. 3.3
with discriminability 1 = 2, ambiguity region 10–19 Å, and number of experiments N =
6. Each model pair is covered twice (a coverage pattern value of 1 indicates support for
the first model over the second), and each model is expecting the same number (3) of high
feasibility and low feasibility cross-links, a perfect balanced design (ib(S, 1) = 0).

Residue Pair Distances Feasibilities Coverage Pattern
1 2 3 1 2 3 1vs2 1vs3 2vs1 2vs3 3vs1 3vs2

ASN59 VAL68 26.95 28.33 5.63 L L H 0 0 0 0 1 1
ALA40 ALA63 21.19 6.86 40.99 L H L 0 0 1 1 0 0
GLN8 ASP83 8.61 24.04 23.62 H L L 1 1 0 0 0 0
THR75 SER88 6.79 6.92 24.52 H H L 0 1 0 1 0 0
LEU18 ASP83 29.98 8.40 8.95 L H H 0 0 1 0 1 0
LYS13 ASN22 4.94 19.88 3.15 H L H 1 0 0 0 0 1

Total 3H ,3L 3H ,3L 3H ,3L 2 2 2 2 2 2

small number allows explicitly attaining balance by seeking dicysteine mutations for all

feasibility patterns of desired coverage, here 2 (Tab. 3.4). Due to the small number of

models, there are many dicysteine mutations with the same model-pair coverage, so we

employed as a tie-breaking metric the standard deviation of the difference in cross-linking

distance across the model pairs. The final plan with ambiguity region 10–19 Å is sum-

marized in Tab. 3.4. Some automatically-selected residue pairs were manually excluded

from further consideration when the residues were poorly modeled, when there was sub-

stantial protein between two close residues (which would require internal motions to allow

cross-linking) or when there was thought to be insufficient mobility to allow cross-linking.

The optimal experiment plan (Tab. 3.4) for discrimination of the threading models of
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Fig. 3.7: Disulfide cross-linking of mutants (a) H H L and (b) L H H . Oxidation of dicys-
teine mutants by atmospheric oxygen was catalyzed by 15 µM Cu2+ ions for the indicated
time before quenching. Dicysteine mutant H H L has only 11 residues between the two
cysteines, resulting in an unobservable difference in mobility on SDS gels (not shown).
This mutant was thus analyzed by isoelectric focusing (a). The disulfide form runs further
from the anode, which is at the bottom of the gel as shown. Mutant L H H was analyzed
on 20% homogeneous Phast gels (b), where the disulfide form has slightly greater elec-
trophoretic mobility.

the lambda pTfa protein has been conducted by Dr. Patrick K. O’Neil in Alan M. Fried-

man’s lab at Purdue University. The phage lambda pTfa 1-108 fragment was produced from

the intact pTfa protein by PCR subcloning into the pET30 vector (Novagen) using the re-

striction sites NdeI and HindIII, leaving a product without N or C terminal tags. Dicysteine

mutants of the pTfa 1-108 fragment were made by the Quik-Change method (Stratagene),

and confirmed by sequencing both strands of the entire gene. Proteins were overexpressed

in E. coli strain BL21(DE3)/pRIL, and purified by ammonium sulfate precipitation, hy-

drophobic interaction chromatography on Bakerbond HI-Propyl (Baker), followed by ion

exchange chromatography on HiTrap Q (Pharmacia). Purified proteins were more than

95% homogeneous as detected by SDS-PAGE. The results consistently support the DnaK

model. Fig. 3.7 shows the results of oxidizing mutants with patterns H H L and L H H .

Oxidation by atmospheric oxygen, using a Cu2+ catalyst, reveals that H H L oxidizes at

least 20-fold faster than L H H . Concentrations of catalyst from 5 to 25 µM give consis-
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Fig. 3.8: The relationship between coverage percentage C (%), discriminability 1, and
number of experiments N in disulfide experiments planned by XLINKPLAN for 103 pTfa
models with ambiguity region 9–21 Å. (a) Varying all parameters. (b), (c), (d) Varying
pairs of parameters, while fixing the third at the indicated values.

tent results, while mM concentrations of catalyst rapidly oxidize both proteins. A complete

kinetic analysis for the entire experiment plan is beyond the computational focus of this

thesis, however these preliminary results point out the importance of a kinetic analysis to

avoid false positives and thus improve ν.

We have also analyzed the potential to discriminate the entire set of 103 models (3

threading models plus 100 Rosetta decoys) under disulfide cross-linking. We applied our

planning algorithm with an ambiguity region of 9–21 Å. Fig. 3.8 summarizes the results in

terms of the three planning parameters, number of experiments N , discriminability thresh-

old 1, and coverage C(%). The 3D plot of these three variables in shown in Fig. 3.8(a);

2D slices in several directions are shown in Fig. 3.8(b,c,d).

We further focused on the differential ability to discriminate sets of relatively different

models as compared to relatively similar ones. We identified a set of 21 decoys all con-

tained within a single one of the 100 Rosetta clusters. They have pairwise RMSDs ranging

from 4.1 Å to 9.9 Å (mean 7.9 Å) according to a MaxSub [98] superposition. We then iden-

tified a same-size (21-member) random subset of the 100 decoys. These have significantly

larger pairwise RMSDs, ranging from 8.5 to 17.0 Å (mean 13.5 Å) in a MaxSub super-
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Fig. 3.9: The impact of structural similarity on disulfide experiments planned by XLINK-
PLAN. The plots show the relationship between coverage percentage C (%), and number
of experiments N , at various discriminability levels (solid: 1 = 1; dashed: 1 = 2; dotted:
1 = 4). (a) A set of 21 similar pTfa decoys, all contained within one of the 100 Rosetta
clusters, were used for planning. They have a mean pairwise RMSD of 7.9 Å. (b) A ran-
dom subset of 21 of the 100 final Rosetta decoys were used for planning. They have a mean
pairwise RMSD of 13.5 Å.

position. Fig. 3.9 shows the coverage as a function of number of experiments, at different

discriminability thresholds. As would be expected, planning for discrimination of more

similar models reduces the coverage achievable for any given number of experiments, but

significant coverage is still attainable, even within a cluster of similar models.

The trends in Fig. 3.8 make the diminishing returns in experiment coverage very appar-

ent; e.g. for most discriminability levels, moving from 90% to 99% requires a much bigger

investment than moving from 50% to 90% (Fig. 3.8(d)). At the same time, as shown by

the simulations above (Fig. 3.6), full coverage is generally not required. These two results

suggest an efficient semi-sequential experiment planning approach: instead of conducting

over 100 experiments (90% coverage with 1 = 2) as the first step, conduct about 20 exper-

iments (25% coverage with 1 = 2) and then plan additional experiments only if the result

proves to be ambiguous. Since we seek one model which overrides others, the result of
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Fig. 3.10: Relative performance of different approaches to planning lysine-specific experi-
ments for FGF-2 model discrimination. Shown are a “planning-free” expectation over 1000
random plans (mean is shown as dashed line with standard deviation error bars), a random-
ized planning approach (separate circles) considering the best from the set of random plans,
and finally XLINKPLAN (solid line).

these experiments could be sufficient to select such a model unambiguously. If additional

experiments are required, losing models need not be planned for, thereby pruning the plan-

ning problem. As an example, if the results anticipated for threading model 1 were found

in the six experiments of the 3-model plan (Tab. 3.4), then 34 of the 103 models would be

eliminated according to 1 = 2. This process could be repeated, ending in a final experi-

ment that is explicitly balanced as in the 3-model plan, to discriminate the last few, most

similar models.

3.3.4 Algorithmic Considerations

Before this experiment planning method was proposed, investigators might have conducted

cross-linking experiments less systematically. We have compared the effects of non-systematic
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Fig. 3.11: Relative performance of different approaches to planning disulfide trapping ex-
periments for pTfa model discrimination. Shown are a “planning-free” expectation over
1000 random plans (mean is shown as dashed line with standard deviation error bars), a
randomized planning approach (separate circles) considering the best from the set of ran-
dom plans, and finally XLINKPLAN (solid line). Experiments that don’t discriminate any
model pairs are excluded beforehand.

experimentation with our planning method (Fig. 3.10 and Fig. 3.11). One method would

be to simply select experiments without any planning. The expected results and variation

of this “planning-free” approach are illustrated by the mean and standard deviation of 1000

random plans. A better alternative, once the problem has been formulated as here, would

be to randomly generate sets of plans and select the best. This approach is illustrated by the

best of 1000 random plans. Our planning algorithm bests both of these methods, especially

with the enormous degrees of freedom and complex restraints of disulfide trapping planned

at high 1. At the same time, our algorithm also achieves balance.

Our planning algorithm (Fig. 3.2) effectively navigates the design space defined by

discriminability, coverage, balance, and cost. Its direct encoding of these terms offers ad-

vantages over other approaches such as decision trees. For example, multiple coverage of

a particular model pair (to attain desired discriminability) is achieved straightforwardly by

using initial weights greater than 1, and decrementing them with each covering experiment.
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Similarly, balance is achieved automatically by basing our analysis on directed model pairs,

〈r, s〉 and 〈s, r〉, and using only positive evidence for planning. Although we use uniform

initial weights and weight decrements for all pairs in our algorithm, differential weights and

reductions are possible and would provide greater flexibility in trading off among desired

criteria for experimental design, either to focus on models of interest or to avoid spending

resources on barely distinguishable pairs. While there is additional cost in explicitly con-

sidering each pair of models (rather than using a linear-cost metric such as entropy), we

have found that the coverage is sparse, with each experiment covering many fewer than the

possible quadratic number of model pairs. Thus in practice thousands of models can be

handled quite efficiently.

A comparison with the best possible scenario shows that, in practice, our plans propose

a number of experiments near the minimum. The best possible scenario has no experimen-

tal redundancy (i.e. each structure pair is covered by exactly 1 experiments). Therefore

the total number of structure pair discriminations must be at least C1P to reach C per-

centage coverage at discriminability 1 for P pairs. Also under the best possible scenario,

each experiment will discriminate a disjoint set of model pairs. This disjointness can be

approximated by not considering which model pairs an experiment covers, but only taking

the number of expected discriminable pairs. The smallest number of experiments whose

expected discriminable pairs sum to the C1P threshold (again, without considering which

pairs are covered) defines a lower bound on the optimal experiment number. The plans in

Fig. 3.8 are within roughly twice this very simplistic lower bound. Since the true minimum

will be greater than this simplistic bound, the selected experiments are well within two-fold
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of the optimal number.

Our algorithm balances speed and quality. It takes only seconds on a Pentium 4 com-

puter to generate any of the plans in this chapter, even with reasonably large sets of models

and sizes of experiment plans. As previously discussed, the problem is NP-hard, and as

we further illustrate, the combinatorics do not permit an exhaustive exploration even for

the problem sizes studied here. Yet XLINKPLAN results are well within a factor of two of

optimal, and significantly better than a randomized algorithm as the number of degrees of

freedom increase.

3.4 Discussion

In this chapter, we have developed a probabilistic mechanism for analyzing cross-linking

information with respect to a set of protein structure models, estimating the ability of ex-

periments to discriminate among those models, and optimizing experiments accordingly.

A probabilistic framework allows explicit characterization of errors that are present in all

experimental data, enabling careful quantification of the extent of support for a particu-

lar model. The probabilistic approach allows explicit consideration of the experiment in

classical statistical terms of sensitivity and power (type I and type II errors). Under our

mechanism, an experimenter can establish and plan for a sufficient level of evidence re-

quired to support model selection, and thereby avoid false confidence in committing to an

ambiguous decision. Similarly, the ability to select a posterior ratio as well as plan further

discriminatory experiments provides control over type II errors.
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We employ a small set of readily interpretable parameters to characterize key factors

underlying errors in data (κ, ν) and interpretation (H, L). Such parameters remain unstated

in other approaches; for example, a violation-counting approach [128] implicitly assumes

ν = 0 (no false positives), and H = 1 and L = 0 (no errors in interpretation of mod-

els). Although we adopt the simplest possible forms for these parameters (fixed constant

values), we show that they can constitute a rational basis for interpretation and planning.

Furthermore, as we found with Fig. 3.6, the results are fairly insensitive to the exact pa-

rameter values. In general, cross-link map values would be determined by the reactivity of

the protein groups being linked, their accessibility to the cross-linking reagent and the ge-

ometric feasibility of the cross-linking reaction given the finite length of the cross-linking

molecule. The reactivity of the protein groups cannot be easily extracted from the model,

but can be corrected for by measurements of reactivity with monofunctional reagents [78].

For the studies in this thesis, we will assume constant reactivity. Similar considerations

hold for accessibility (although some portion of the relative accessibility of sites may be

extracted from the predicted model). Finally, geometric feasibility depends on whether

or not the cross-linker can bridge the distance between cross-linked atoms in the model,

potentially with consideration for protein dynamics. For example, the cross-linker bis-

sulfo-succinimidyl suberate (BS3) reacts with amino groups, including the N-terminus and

the Nζ of Lys residues, and forms a bridge of up to 11 Å between such pairs. Similarly,

in disulfide trapping, disulfide bonds are formed upon oxidation of cysteines whose Cβ

approach within 4.6 Å, with proper geometry, during the experiment.

Our formulation of experiment planning makes explicit the key factors of discriminabil-
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ity, coverage, balance, ambiguity, and cost. While the experiments we plan here contain

from 1011 to 10120 combinatorial possibilities, our greedy algorithm is efficient and ef-

fective in identifying plans expected to achieve these specified criteria. When confident

selection requires planning larger experiments, a proposed semi-sequential approach, con-

ducting batches of experiments that focus on remaining ambiguities, allows researchers to

balance the desire for conservative plans with the need for experimental efficiency. This

approach can also potentially integrate residue-specific and disulfide cross-linking, once

put on common probabilistic ground, using an initial residue-specific experiment to elim-

inate many models and subsequent disulfide experiments to discriminate remaining ones.

Disulfide cross-linking could also readily be supplemented by the use of cysteine-specific

cross-linkers operating on the same dicysteine mutants to obtain more distance informa-

tion [64]. These semi-sequential and hybrid mechanisms are very general, and we will

study incorporating different types of experimental data, e.g. the combination of cross-

linking and mutagenesis (see Chapter 4). Finally, our planner can be applied to additional

discrimination problems, for example, selecting among models of protein-protein com-

plexes provided by docking procedures.

Our analysis raises some questions about the value of residue-specific cross-linking,

especially when compared with disulfide trapping. If many residue-specific cross-links

can be identified in a single experiment, then residue-specific cross-linking can be very

powerful. However, whenever residue-specific cross-links are difficult to identify, then our

analysis indicates that disulfide cross-linking is a more powerful alternative. We believe a

major practical problem, then, is the low and variable capture rate of residue-specific ex-
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periments. Even extensive experimentation [128] yielded a capture rate κ of only about

1
3 , while less extensive experiments [48] gave far less (< 10%). New cross-linkers and

new detection methods would improve these results, but at present κ is far less than can be

achieved with disulfide cross-linking. As a result of the low capture rate, residue-specific

experiments effectively provide less information. We estimate that under the current κ and

ν, one disulfide cross-link is approximately equivalent to several expected residue-specific

ones. In addition, the coverage of residue-specific experiments “saturates” early and dra-

matically, while disulfide trapping experiments provide enormous degrees of freedom for

further, fine-grained model discrimination.
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4. MODEL DISCRIMINATION BY STABILITY MUTAGENESIS

As the second part of our PRAXIS approach (Fig. 1.1), this chapter develops methods that

exploit the known relationship between protein structure and thermodynamic stability in

order to discriminate protein structure models. Our method of “stability mutagenesis” em-

ploys stability measurements of planned mutants upon denaturant unfolding to evaluate

consistency with predictions made under competing structural models (Fig. 4.1). We first

predict changes in unfolding free energy upon mutagenesis, 11G◦, for the same substi-

tution mutations in each atomic model by one of several available methods. Next, experi-

ments are planned to use an efficient set of mutations whose stability changes can be most

confidently predicted and that differ most greatly between atomic models. The planned

mutations are made in a protein expression system, and the stability of the expressed and

purified mutants is determined and compared to wild-type, yielding experimental 11G◦

data. (Throughout this thesis, 1G◦ is defined as Gunfolded − Gfolded. 11G◦ is 1G◦mutant

− 1G◦wildtype. Thus negative 11G◦ indicates destabilization of the wild-type by the mu-

tation.) The consistency between the predicted and the experimental 11G◦ values allows

evaluation of the confidence in the models, while the ratio of the confidence allows selec-

tion of the model(s) most likely to be correct (relative correctness). The consistency of a
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Fig. 4.1: Illustration of planned mutation and stability measurement for discrimination of
protein structure models. Step 1: 11G◦ predictions are made for possible mutations (L3S,
E25Q, T45G, D57A, and L62N) according to structure models (r , s, t). Mutation L3S is
discriminatory, predicted to be significantly more destabilizing in both r and s than in t ; in
contrast, E25Q has roughly the same effect on each model and is thus not discriminatory.
Step 2: An experimental plan is optimized by selecting sets of experiments discriminat-
ing pairs of models. Schematically, the model pairs discriminated by each mutation are
contained within an oval for that mutation. A plan (mutations underlined) should seek to
discriminate (cover) all pairs. Good plans should also exhibit a balanced design, so that se-
lection decisions are based upon reliable and representative features of a model, and not on
idiosyncratic features or the protein’s overall response to mutation or denaturant. Step 3:
Experimental 11G◦ data for the selected experiments are interpreted to provide evidence
for the models based on consistency of predictions with observations. In the example,
the stability measurements are most consistent with the predictions of model r (greatest
overlapping area between prediction and measurement).
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number of diverse mutations with a single model also enhances confidence in its absolute

correctness.

We first test our method retrospectively on two proteins, T4 Lysosyme and Staphylococ-

cal Nuclease, which have previously been the object of extensive mutagenesis and stability

testing during investigations of the thermodynamics of protein folding. For these two pro-

teins, we demonstrate that the differences between stability predictions based upon crystal

structure and threading models are sufficient to discriminate models of distinct folds, when

the predictions are evaluated using literature 11G◦ data. While protein structure predic-

tion methods have been increasing in accuracy, the value of experimental discrimination

can be seen in the results of the recent CASP6 competition [122]. In the FR/H category,

containing proteins whose homology to an existing template could only be determined by

knowledge of the structure, the correct fold was identified by a majority of the predictors

for only nine of the 22 targets. Furthermore, in the FR/A category, containing proteins anal-

ogous to the most similar templates, the correct majority prediction happened for only one

of the 16 targets. Thus correct fold recognition templates are frequently available for many

sequences, but cannot be reliably distinguished from incorrect ones by current methods.

We applied our method on CASP targets, with mutations planned for models and experi-

mental 11G◦ values simulated on x-ray/NMR structures. The simulation shows promising

results on targets with high-quality models. Then we present prospective experiment plans

for discriminating three high-quality threading models of the bacteriophage lambda pTfa

chaperone protein. At the end of this chapter, we compare mutagenesis plans with disulfide

cross-linking plans (Chapter 3) and study the effect of combined plans.

60



4.1 Probabilistic Prediction of 11G◦

Structure elucidation by stability mutagenesis relies on the accuracy and robustness of

11G◦ prediction. We employ standard linear regression techniques to determine the rela-

tionship between potential score changes and experimental 11G◦ values. A large number

of mutations with experimentally measured 11G◦ values in the ProTherm database [9]

were used to train previously developed 11G◦ predictors. For the regression, all errors

are assumed to be in 11G◦expt and Normally distributed. The regression provides the ba-

sis for evaluating the likelihood, indicating the consistency of experimental data with the

prediction for structure models. We start with two representative scores that potentially

lead to reliable 11G◦ prediction, the residue environment score ENV and the empirical

effective energy potential of FOLD-X (see Sec. 2.4). For 1SENV we use the original table

of 20 residue types times 18 environment classes that depend upon solvent accessibility,

polar fraction, and secondary structure [13]. We use programs NACCESS [54], WHAT-

IF [120], and DSSP [57] to determine accessibility, polar fraction, and secondary structure,

respectively. For 11G◦FOLD−X, we employ WHAT-IF to model the mutant structures that

are used by FOLD-X to calculate the stability of mutant, then compare with and stability

of wild-type proteins to get the 11G◦ values.

Our goal here is to find individual mutations that best discriminate pairs of models.

We thus seek reliable individual predictions, and need not use mutations for which we are

less confident in their predicted effects. We apply restrictions on allowable substitutions

and their locations in the structural models in order to improve the robustness of our ap-
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Fig. 4.2: Correlation analysis, for 1177 mutations on 74 proteins, between the potential
scores, according to the ENV and FOLD-X methods, and the experimentally measured
11G◦ values. The correlation coefficient R, linear regression function, and standard devi-
ation σ of residuals shown are calculated after removing the outliers (red ‘×’s).

proach. While applying restrictions reduces the number of possible experimental plans, the

remaining combinations should yield more reliable predictions and thus more reliable com-

parisons between prediction and experiment. We use only non-augmenting substitutions,

those whose mutant structures are easy to predict because they involve either a substitu-

tion to a smaller sidechain (e.g. Ile→ Val) or direct replacement of atoms (e.g. Asp→

Asn). These mutants can be easily modeled from the parent structure by WHAT-IF. Non-

augmenting mutants form the great majority of mutations in the ProTherm database. Aug-

menting mutants are more difficult to model and their limited numbers provide insufficient

data for training. Cys and Pro are excluded as residues to mutate from or to because of their

special structural roles. We used only those evaluated by thermal denaturation, or by chem-

ical denaturation using either urea or guanidine HCl and monitored by either fluorescence

or circular dichroism at a temperature between 18 and 25 degrees. The ProTherm database
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contains several independent measurements of 11G◦ for the same substitution. For chem-

ical denaturation, the measurement made closest to 20 degrees is selected, followed by the

measurement made closest to pH 7. For the remaining competing measurements (the same

temperature and pH, or both thermal and chemical denaturant), the independent values are

averaged so long as their difference is less than 1 kcal/mol. (If the measured values are

greater than 1 kcal/mol, then the measurements are excluded as unreliable.) When the

FOLD-X program fails to make a prediction for a mutation, the mutation is excluded from

consideration for both ENV and FOLD-X methods, for consistency. For robustness consid-

eration, mutation types with less than 10 instances in the ProTherm database are considered

as unreliable and excluded. Starting from the ProTherm database [9], 1177 mutants in 74

proteins satisfied the restrictions and thus serve as the training set for our 11G◦ predictors.

Selected mutants were used to train predictors by linear regression between potential

score changes and database 11G◦ values (Fig. 4.2). Outlier points were identified as those

whose studentized deleted residuals [28] were greater than 3.0, reflecting approximately

deviations more than 3σ from the mean. Similar regression lines were obtained with or

without outliers removed; removal of outliers primarily affected σ (not shown). For the re-

gression, all errors are assumed to be in 11G◦expt and Normally distributed. The regression

provides the basis for evaluating the likelihood, indicating the consistency of experimental

data with the prediction for structure model.
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Fig. 4.3: Illustration of a Normal distribution for the 11G◦ prediction error. (a) 11G◦

prediction for a mutation on two models, p(d | r) (red dashed) and p(d | s) (blue solid),
with means equal to −0.5 kcal/mol and −3.5 kcal/mol and standard deviation 1.0. An
example experimental value of−2.8 with an error of of 0.3 is also shown (green dash-dot).
The dashed vertical line shows the point at which the data gives no information in favor of
one model over the other. (b) Logarithm (base 10) posterior ratio (φrs) of the two models
(r over s) given each possible experimentally measured 11G◦ value.
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Fig. 4.4: Illustration of a flat-tailed model for the 11G◦ prediction error. (a) 11G◦ pre-
diction for a mutation on two models, truncating the two Normal distributions in Fig. 4.3,
adding flat tails out to −9 and 5, and renormalizing (the raised tail is hard to see at regular
resolution). (b) Logarithm (base 10) posterior ratio of the two models (r over s) given each
possible experimentally measured 11G◦ value.
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4.2 Flat-tailed Distribution of 11G◦

The Normal distribution model catches the main body of 11G◦ value, but it is very in-

accurate in the tails, and it can cause some problems. Fig. 4.3(a) illustrates calculation of

likelihoods for a mutation assuming Normal prediction error. That is, based on the potential

score change (1SENV or 11G◦FOLD−X) for a structure model, we use the regression line to

derive a mean and σ representing the predicted 11G◦ value and uncertainty. If we assume

no experimental error, then with an experimental value d, the likelihood p(d | r) is simply

the value of the Normal distribution at d. We do this in retrospective simulation studies,

since experimental errors are not available. If we do have experimental error (as with our

prospective study), then we integrate the overlapped area, within the allowed limits of −9

to 5 kcal/mol. (An experimental 11G◦ value outside of the −9, 5 range is regarded as an

error and excluded from model discrimination.) For the example in Fig. 4.3(a), we obtain

p(d | r) ≈ 0.305 and p(d | s) ≈ 0.034, for a posterior ratio of 9.042.

Fig. 4.3(b) illustrates the posterior ratio of ≈ 0.96 in favor of s over r that results from

these likelihoods. The plot also shows the posterior ratios for all possible experimental

values. If the predictions from the models have means µ1 and µ2 and the same σ , then the

posterior ratio is exp(
2d(µ1−µ2)−µ2

1+µ2
2

2σ 2 ). This is an exponential function of the experimental

mean d given the fixed µ1, µ2 and σ . Experiments with large positive or negative values

interpreted with a Normal distribution can dominate several experiments with less extreme

values, and thereby skew the analysis.

In order to obtain more realistic posterior ratios in the presence of extreme values of
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d, we modified the Normal distribution to explicitly account for outliers, producing our

“flat-tailed distribution” (Fig. 4.4) for approximating the prediction error. This distribution

is Normal within ±3σ , but uniform outside that interval, at a value equal to the Normal

distribution at 3σ . The values outside ±3σ approximately match the outlier frequency we

observed (Fig. 4.2). The distribution is also truncated beyond the range −9, 5 and then

renormalized. With this flat-tailed distribution, the posterior ratio from one experiment

is bounded at about 100, so the data from a single mutation cannot dominate the others.

Furthermore, the ratio approaches 1 if the experimental 11G◦ is in the tails of both dis-

tributions, in which case either the experimental value or the predictions or both are most

likely outliers and the outcome appropriately does not convey any information to discrimi-

nate these two models. This decreasing and ultimately zero confidence in the most extreme

values is reflected in Fig. 4.4(b). The calculation of p(d | r) likelihoods (with or without

experimental error) proceeds the same as described above for the Normal distribution. For

the example in Fig. 4.4 (a), we obtain p(d | r) ≈ 0.296 and p(d | s) ≈ 0.033, and thus a

posterior ratio of 9.039.

4.3 Evaluation of Mutation Coverage and Utility

Intuitively, among the mutations whose effects can be reliably predicted, those whose pre-

dictions are most different between the potential models are the experiments that should

be conducted. In this section, we formalize that intuition with definitions of the utility of

mutations for discriminating models and their coverage of the discriminations to be made.
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In the context of stability mutagenesis, discrimination is based mostly on relative desta-

bilization. (There are relatively few predicted stabilizing mutants.) We run a risk, however,

of the experimental data having a consistent bias in the difference between experimental

and predicted 11G◦ values, due to some protein-specific properties. Such a bias could

arise from a protein that is relatively easier or harder to destabilize than the proteins against

which the predictor is trained. If we selected mutations in which one model was predom-

inantly predicted to be more destabilized than the other, that model would be favored if

the protein were relatively easy to destabilize. A good experiment plan needs to achieve a

balance in the direction of relative destabilization. We do this by employing the concept of

directed model-pair that we developed in Chapter 3, i.e. separate each pair of models {r, s}

into two directed pairs 〈r, s〉 and 〈s, r〉 and plan separately for these two pairs. By also

evaluating the posterior ratios for the directed discriminations separately, consistent bias in

interpretation is avoided, reducing the likelihood of making an incorrect decision.

Suppose the distributions of expected 11G◦expt for mutation m on two models r and s

are pr and ps (with means µr and µs) respectively. The potential of a mutation m to dis-

criminate the model-pair 〈r, s〉 can be measured by the expected logarithm of the posterior

ratio, which is just the likelihood ratio when the priors are equal. The expected logarithm

of the likelihood ratio is given by the relative entropy between the two prediction distribu-

tions, denoted as D(pr ||ps) and D(ps ||pr ). The relative entropy is a standard measure for

the difference between two probability distributions; here, greater relative entropy indicates

an easier discrimination. The utility of the single mutation m for the directed model-pair
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Fig. 4.5: Relationship between the difference of two prediction means and the informa-
tion provided by mutation, as measured by the mutation utility (solid line, blue circles).
Mutation utility is calculated using the flat-tailed distribution with σ = 1.21 kcal/mol and
assuming that the two prediction means µr and µs are symmetric around the midpoint of
the allowed range. Also shown (dashed line, red ‘×’s) is the maximum logarithm of the
posterior ratio under the flat-tailed distribution, the most information we could obtain from
an experiment assuming experiments that match predictions perfectly.

〈r, s〉 is defined as follows

um,〈r,s〉 = I {µr < µs} ·
D(pr ||ps)+ D(ps ||pr )

2
. (4.1)

where the indicator I {µr < µs} is non-zero (equaling 1) only if µr < µs (model r is more

destabilized than model s by mutation m), thus making um,〈r,s〉 a directed criterion.

An intuitive way to assess the significance of um,〈r,s〉 is that the expected posterior

ratio between models r and s, φrs(d), is 10um,〈r,s〉 . A directed model-pair 〈r, s〉 is called

“discriminable” by mutation m if um,〈r,s〉 ≥ T , where T > 0 is a user-specified threshold.

Fig. 4.5 presents the relationship between um,〈r,s〉 and the difference between prediction

means for a mutant under two models. It is sigmoidal, fairly linear when µs − µr < 4

kcal/mol (evaluated when σ is 1.21 kcal/mol), but displaying diminishing returns for model

discrimination after that. These diminishing returns reflect the influence of the more robust

68



flat-tailed distribution.

Building on the utility of a single mutation for a single model-pair, we can evaluate the

information provided by a single mutation for all model-pairs. The coverage cm measures

how many model-pairs mutation m is expected to discriminate (according to the discrim-

inability threshold T discussed above):

cm =
∑

r,s∈S

I {um,〈r,s〉 ≥ T } (4.2)

Two mutations might have the same coverage, but one might tend to have a greater expected

utility in distinguishing the covered model-pairs. Thus we employ as a second criterion um ,

the average utility for a mutation over all discriminable model-pairs:

um =
1

cm

∑
r,s∈S

um,〈r,s〉 · I {um,〈r,s〉 ≥ T } (4.3)

4.4 Experiment Planning

After identifying a set of possible mutations that are expected to be reliably predicted and

to provide discriminatory coverage for a set of models, we next select a subset of muta-

tions to be conducted, which efficiently discriminate the models. We employ the set cover

formulation developed in Chapter 3 with coverage as the primary criterion for choosing

plans.

cM =
∑

r,s∈S

I {(
∑

m∈M

I {um,〈r,s〉 ≥ T }) ≥ 1} (4.4)

where 1 is a user-specified minimum number of distinct experiments that are desired for

successfully discriminating the two models, as defined in Chapter 3. Since coverage is
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an integral number, many plans may have the same cM . The average expected utility uM

provides a useful tie-breaker, defined by:

uM =

∑
m∈M cm · um∑

m∈M cm
· 21 (4.5)

The fraction in Eq. 4.5 is the average of um,〈r,s〉 over all selected mutations and all discrim-

inable model-pairs, and the 21 factor is the desired number of mutations discriminating

each pair of models {r, s} (1 in each direction). uM provides an intuitive way to assess the

expected posterior ratio between the correct model and a wrong one after measuring the

covering mutants in an experimental plan. The expected posterior ratio is approximately

10uM if both directed model-pairs are covered by exactly 1 mutations. Additional metrics

for finding a plan that is balanced and robust to experimental idiosyncrasies are discussed

in the next section.

If the numbers of candidate mutations and models are small, then a brute force method

suffices to find the best experiment plan. In this case, we simply enumerate all possible

experimental plans (sets of mutations) of the desired size, and evaluate each set according

to cM and uM . If the number of combinations becomes prohibitive, we can employ our

greedy algorithm for multiple-coverage set-cover, which has been demonstrated to yield

high-quality plans in the case of planning cross-link experiments (see Chapter 3).

4.4.1 Robustness Considerations

We have already applied restrictions on mutations in order to obtain the most reliable

11G◦ prediction (Sec. 4.1). Furthermore, in order to choose mutations that are most ro-
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bust to model discrimination, we apply some additional restrictions on selected mutations.

We first exclude the N-terminal residue of the mature protein, whether methionine or not,

to avoid interference with translation or N-terminal processing. We can also apply model-

specific restrictions. We have manually excluded from consideration stretches of residues

in each model that are potentially poorly predicted in our example of three pTfa models.

For a larger number of models, automated criteria are required to exclude poorly modeled

residues such as those based with low contact orders.

Mutations that are predicted to be substantially stabilizing are excluded. While stabi-

lizing substitutions are known, and the structural origins of their stability have been inves-

tigated for some [71], these substitutions are generally quite rare, and only 1% of all mu-

tations investigated in the training set are substantially stabilizing (11G◦> 2 kcal/mol).

Because substitutions that enhance stability are relatively rare, there are not sufficient num-

bers of them in the database to assess the accuracy of the methods for predicting their

stability changes. Thus we have excluded any mutation which is predicted to enhance

stability by more than a nominal amount of 2 kcal/mol.

Mutations predicted to be extremely destabilizing, reducing stability by more than 6

kcal/mol, are also excluded. These extremely destabilizing mutations are also poorly rep-

resented in the database. In addition, mutations that have an extreme effect on structure

may alter the native or denatured state, making it difficult to compare their 1G◦ values

with wild-type. Note that as an additional protection against artifacts arising from sub-

stantial changes in the native or denatured state, we also recommend excluding from the

analysis any mutation whose observed m-value (slope of the denaturation curve) changes
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by more than 15% from wild-type.

The planning approach already seeks robustness in a plan by employing directed model-

pairs and optimizing for coverage of all the directed model-pairs. Furthermore, in order to

ensure that the plan does not focus too much on local aspects of a model but is evaluating

its overall correctness, we also enforce a level of spatial balance: at most one mutation at

each position can be selected, and no two mutations in the same plan can be within 5 Å

(Cβ to Cβ distance). Finally, while not employed here, experimenters might desire to select

mutations from different substitution types or categories (e.g. nonpolar to polar) to reduce

the reliance on specific parameters of the empirical energy model of the 11G◦ predictor.

4.5 Results

4.5.1 Retrospective Testing

To our knowledge, this is the first work studying the effectiveness of mutagenesis and sta-

bility measurement as information for discriminating predicted atomic models. To validate

our method, we performed several retrospective analyses, discriminating crystal structures

and fold recognition models of distinct folds using mutations available in the ProTherm

database [9]. We studied several proteins that have many mutations with experimentally

measured 11G◦ values, and present the results with T4 Lysozyme and Staphylococcal Nu-

clease. Predicted models were obtained via the protein fold-recognition meta-server [63].

Models containing less than 90% of the sequence or having an RMSD vs. the crystal struc-
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ture greater than 20 Å were ignored.

We first identified reliable discriminatory mutations with available experimental 11G◦

values and m-value changes less than 15% from wild-type. Then we selected the most

informative (maximum uM ) balanced set for each model vs. the crystal structure. At most

one mutation was selected for each position. Posterior ratios were computed with these

mutants using the database values for 11G◦expt (no experimental σ values were available)

and our flat-tailed distribution (Sec. 4.2) of prediction error.

Tab. 4.1 illustrates discrimination of one predicted model from the crystal structure of

T4 Lysozyme. We can see that most of the database 11G◦ values are significantly closer to

those predicted from the crystal structure than to those predicted from the model, yielding

a posterior ratio approaching 1 to 4000 against the model. The 〈model, xtal〉 comparison

contributes 0.014× 0.72 ≈ 0.0098, disfavoring the model relative to the crystal structure.

In the 〈xtal, model〉 comparison, one mutation actually slightly favors the model (1.76), but

the other mutation strongly disfavors it (0.015), for a total of 0.026, again disfavoring the

model. Therefore we can select the crystal structure over the predicted model, although

more mutations (or more discriminatory ones than found in the database) might be neces-

sary to increase our confidence in doing so.

Fig. 4.6 shows a set of more extensive tests for T4 Lysozyme and Staphylococcal Nu-

clease. We first considered the effect of the number of mutations, and show discrimination

results between crystal structures and models for (a) 1 = 2 (4 mutations) and (b) 1 = 4

(8 mutations). Although the selection of mutations is limited in the database, Fig. 4.6(a)

and (b) nonetheless demonstrate the effectiveness of using stability mutagenesis for model
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Tab. 4.1: Illustration of model discrimination for T4 Lysozyme (comparing model fugue-
1fch-A(a) vs. crystal structure 2lzm (RMSD = 13.09 Å)

mutation 11G◦model 11G◦xtal um 11G◦expt
p(model | expt)

p(xtal | expt)
N163D -4.01 -0.45 1.21 -0.21 0.014
L39A -1.95 -0.57 0.26 -0.90 0.72
〈model,xtal〉 subtotal 0.0098

L84A -0.25 -3.34 1.02 -3.90 0.015
I3G -0.84 -3.66 0.90 -1.95 1.76
〈xtal,model〉 subtotal 0.026
Overall 2.6× 10−4

(a) Model fugue-1fch-A was derived from threading program FUGUE (Ver2.0) [97] using
as template the C-terminal TPR region of Peroxisomal Targeting Signal 1 Receptor (pdb id:
1fch), which is in a different fold (alpha-alpha superhelix) from T4 Lysozyme (Lysozyme-
like).

discrimination when structures are substantially different, and also indicate the sensitivity

of this approach. As we can see, models with large RMSD from the crystal structure can be

discriminated when using an appropriate number of experiments, while models within 5 Å

are rarely discriminable. With RMSD < 5 Å corresponding to models of the same fold, this

demonstrates that models of different folds are almost always discriminable, while models

within the same fold are almost never discriminable. The confidence of choosing the crystal

structure increases with the number of experiments (compare Fig. 4.6(a) and (b)), indicat-

ing the trade-off between information gain and experimental effort. Since the selection of

mutations is limited to those with database 11G◦ values, the effectiveness of discrimina-

tion shown here can be regarded as a lower bound of that which could be obtained when

the best mutations can be selected and conducted prospectively.

To evaluate the performance of this approach in practice, when no crystal structure

would be available, we also tested discrimination vs. a predicted model of the correct fold,
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Fig. 4.6: Retrospective model discrimination using mutations in the ProTherm database
for T4 Lysozyme (left; 84 mutations considered) and Staphylococcal Nuclease (right; 240
mutations considered). The logarithm (base 10) of the posterior ratio of the predicted model
over the reference crystal structure or model of the same fold is plotted. An indiscriminable
region −2, 2 (posterior ratios less than 100-fold) is indicated by the green dashed lines;
models within the region are considered indiscriminable from the reference structure/model
with the given data, while those below the region are disfavored relative to the reference
structure/model. In rare cases, points above the region indicate that the model is favored
over the reference structure/model. (a,b) Crystal structure vs. models with (a) 4 and (b) 8
mutations. (c) Worst model of the correct fold vs. other models. (d,e) Crystal structure vs.
models, with constant bias added to the data, using either a (d) balanced or (e) unbalanced
plan.
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Fig. 4.6(c). To create a conservative test, we chose the model with the highest RMSD to

the crystal structure. The results illustrate that even in situations where models are being

compared with other models, the model of the correct fold will be chosen.

Finally we tested the value of a balanced plan (directed model pairs) in overcoming po-

tential systematic bias in experimental 11G◦ values. Fig. 4.6(d) shows the discrimination

result of a balanced 1 = 4 plan when all experimental 11G◦ values have been biased to

simulate an easily destabilized protein, using an offset of −1.21 kcal/mol (the prediction

uncertainty). Even with biased data, balanced plans robustly select the crystal structure over

models with distinct folds, with appropriately reduced confidence. In contrast, Fig. 4.6(e)

shows the discrimination result of an unbalanced plan (in which all 8 selected mutations

are more destabilizing in the predicted model than in the crystal structure), tested with the

same biased 11G◦ values. In this situation, models of correct or incorrect fold are some-

times selected over the crystal structure. The balanced plan is thus much more robust to

systematic error in 11G◦ values.

4.5.2 Simulation on CASP Targets

The retrospective testing shows that stability mutagenesis is most useful for discriminating

models of different folds. To evaluate the performance of our approach on larger sets

of high quality, yet different models, we also tested it on Fold Recognition targets from

CASP6 [122]. For a fair comparison between predicted 11G◦ values for models and

those for x-ray/NMR structures, only single-domain targets are selected. For each of the
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Tab. 4.2: Selected FR targets from CASP6. The number of residues is that in the target
sequence, which may be different from that in the x-ray/NMR structure. For example,
residues 1-23 are missing in the NMR structures of target T0215. The third column shows
both the number of mutations and, in parentheses, unique positions. The number of models
is limited to those that passed our filters.

target #residue #mutation #model category method pdb id description
T0213 103 252 (93) 63 FR/H NMR 1te7 Hypothetical protein, E. coli

T0214 110 252 (96) 55 FR/H NMR 1s04 Hypothetical protein, P. fu-
riosus

T0215 76 115 (49) 75 FR/A NMR 1x9b
Hypothetical membrane
protein, T. acidophilum

T0224 87 199 (77) 66 FR/H NMR 1rhx TM0979, T. maritima
T0263 101 201 (84) 62 FR/H x-ray 1wd6 Hypothetical protein, E. coli

T0281 70 129 (53) 67 FR/A x-ray 1whz
Hypothetical protein, T.
thermophilus

selected targets, we chose the first model provided by each prediction group (labeled “1”),

and excluded models that were unrefined (labeled “u”), without sidechains, segmental or

incomplete, or raised exceptions under WHAT-IF or FOLD-X. Target T0206 was excluded

because only the x-ray structure of the C-terminal domain was available; target T0212 was

excluded because WHAT-IF reported a fatal error on the x-ray structure (pdb id: 1tza).

In order to satisfy our “closed world” assumption (see Sec. 4.6 for more discussion),

we only choose targets with high quality models. Specifically, we require that at least one

model has rmsd (of all Cα atoms) within 5Å of the x-ray/NMR structure. Tab. 4.2 lists

the 6 selected targets. Mutations were planned by our greedy algorithm at discriminability

threshold T = 0.7 and coverage threshold 1 = 1, and 11G◦ values were simulated

using the x-ray/NMR structures. Models were evaluated against the model with the highest

posterior probability and those with log posterior ratios of at most −2 were selected. In

other words, a model was discarded if it was 100 fold worse than some other model. In

order to evaluate the performance of our approach, Fig. 4.7 presents the number of models
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selected and the average GDT TS z-score (a relative measurement of the similarity between

model and the corresponding x-ray/NMR structure) [131] of these models w.r.t. a varying

number of mutations used for discrimination. As we can see, in all six targets, the average

z-score of the top models is consistently increasing with the number of mutations. The

median z-score increases roughly in parallel with the mean z-score (not shown). The model

with the highest z-score is included in the selected group for four of six targets (T0215,

T0224, T0263 and T0281), and the model with the second highest z-score is included

for the other two (T0213 and T0214). Fig. 4.7 definitely shows non-random selection of

models by planned mutations, although the GDT TS score is not a hard criterion for model

quality.

4.5.3 Prospective Experiment Planning for pTfa

We put our planning mechanism into practice on the pTfa protein of bacteriophage lambda.

We use the same three high-quality threading models as in Chapter 3: r (template: chap-

erone DnaK substrate binding domain, pdb id 1dkz), s (template: heme chaperone Ccme,

pdb id 1liz), and t (template: mRNA capping enzyme, pdb id 1ckm).

There are altogether 2052 possible substitutions, 19 at each of 108 positions. Our

restrictions immediately excluded Cys, Pro and Met1, poorly modeled regions (residues

97–108 in the two OB-fold models), augmenting mutations, and mutation types poorly

represented in the ProTherm database. The restrictions excluding mutations with extreme

11G◦ predictions (predicted 11G◦ outside of the range −6, 2) had very little impact in
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Fig. 4.7: Model discrimination for targets in Tab. 4.2. The number of models selected
(blue solid line) and the average GDT TS z-score of these models (red dashed line) are
shown w.r.t. a varying number of mutations used for discrimination. The target number is
shown on the top of each plot, followed by the smallest rmsd of a model to the x-ray/NMR
structure and the highest z-score among all models (these numbers are not necessarily from
the same model).
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this case. After applying all these restrictions, we were left with 192 possible mutations at

77 positions. The user-specified threshold T sets a minimum log posterior ratio; a mutation

whose expected log posterior ratio for a model-pair exceeds this threshold is considered

likely to discriminate the model-pair. With T = 0.3 (corresponding to an expected poste-

rior ratio of about 2), we have 28 informative mutations at 21 positions (Tab. 4.3). Plans

were developed by the brute-force algorithm, and the top plan (maximizing cM and uM )

is presented in Fig. 4.8. In fact, each of the mutations in the top plan has um > 0.6,

corresponding to an expected posterior ratio of about 4.

In order to assess the effectiveness of the six selected experiments in Fig. 4.8, we con-

ducted three sets of simulations of the experimental outcomes, assuming in turn that each

of the three models was correct. The simulated 11G◦expt values were randomly drawn from

the prediction distributions according to the model assumed to be correct, and error added

according to an experimental error distribution (0.3 kcal/mol in the initial simulation). We

varied the threshold θ for the posterior ratio, choosing a model over another one if and only

if the posterior ratio exceeded 10θ (otherwise the models were considered indiscriminable).

If we selected the postulated model as the winner, the decision was counted as a correct

one; if either of the other two was selected, it was counted as an error. We calculated fre-

quencies of making correct and incorrect decisions, averaged over the three models with

10, 000 runs each.

Fig. 4.9(a) illustrates the ability of the plan to identify the correct model under different

thresholds. Consider first the case of standard experimental error of σ = 0.3 kcal/mol (blue

solid lines). At θ = 1, the correct model would have about a 90% chance to be selected
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Tab. 4.3: The informative mutations for discriminating three pTfa models, after applying
restrictions and a threshold T = 0.3.

index mutation cm um 11G◦model coverage pattern rank(a)

r s t rs r t sr st tr ts
1 F3A 2 0.86 0.15 -0.09 -2.72 0 0 0 0 1 1 3
2 R10A 2 0.45 -0.99 -0.60 1.07 0 1 0 1 0 0 26
3 R10G 2 0.79 -1.35 -0.84 1.50 0 1 0 1 0 0 7
4 T11A 2 0.33 0.19 0.06 -1.45 0 0 0 0 1 1 28
5 T11G 2 0.59 -0.56 0.19 -2.35 0 0 0 0 1 1 13
6 K13G 2 0.53 0.64 -1.07 1.30 0 0 1 1 0 0 17
7 N16D 2 0.67 -0.71 -2.78 -0.17 0 0 1 1 0 0 9
8 N22D 2 1.22 0.69 -3.27 0.02 0 0 1 1 0 0 1
9 I25A 2 0.51 -2.68 -0.24 -1.15 1 1 0 0 0 0 21

10 I25G 2 0.82 -3.92 -0.79 -1.72 1 1 0 0 0 0 5
11 E27G 2 0.46 -0.54 1.02 -1.17 1 0 0 0 0 1 24
12 D29A 2 0.34 -0.36 1.26 -0.35 1 0 0 0 0 1 27
13 D29N 2 0.63 -0.90 1.62 -0.38 1 0 0 0 0 1 11
14 D29G 2 0.56 -1.42 1.01 -0.79 1 0 0 0 0 1 14
15 I32G 2 0.53 -0.06 -2.47 -1.71 0 0 1 0 1 0 16
16 L38G 2 0.49 -0.39 -2.27 -0.22 0 0 1 1 0 0 23
17 N41D 2 0.80 -2.82 0.13 -0.52 1 1 0 0 0 0 6
18 V55S 2 0.53 -0.17 -0.83 -2.53 0 0 0 0 1 1 19
19 V57S 2 0.50 -0.77 0.75 -1.65 1 0 0 0 0 1 22
20 E62G 2 0.54 1.25 1.29 -0.81 0 0 0 0 1 1 15
21 E69Q 2 0.53 1.82 -0.28 -0.16 0 0 1 0 1 0 18
22 T75A 2 0.63 -2.33 0.11 -0.23 1 1 0 0 0 0 10
23 T75G 2 0.86 -2.99 -0.75 0.27 1 1 0 0 0 0 4
24 T75S 2 0.52 -2.34 -1.77 -0.03 0 1 0 1 0 0 20
25 Y77G 2 1.07 -3.27 0.23 -0.33 1 1 0 0 0 0 2
26 V79S 2 0.60 -2.46 -2.94 -0.50 0 1 0 1 0 0 12
27 D83G 2 0.77 1.74 -1.30 -0.35 0 0 1 0 1 0 8
28 E89Q 2 0.45 -0.48 1.07 -1.11 1 0 0 0 0 1 25

(a) In lexicographic order of cm and um .
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Fig. 4.8: Full coverage plan (cM = 6) at discriminability 1 = 2 for discriminating three
pTfa models, with discrimination utility uM = 3.56.

(upper blue solid line) and an incorrect model would have about a 1% chance (lower blue

solid line), while the remaining 9% of the time, we would not be able to make a decision.

At θ = 2, there is very little chance of choosing the wrong model, but the probability of

making a correct decision is reduced to around 75%.

With modern methods, determination of 11G◦expt can be done with an accuracy of

< 0.3 kcal/mol. Measurements of this quality, however, are dependent upon obtaining

true equilibrium values from well-behaved samples. Since this will not be possible for

all samples of interest, we have simulated the effects of lower quality measurements, by

increasing the simulated experimental error from 0.3 to 0.6 and 1.2 kcal/mol. As Fig. 4.9(a)

shows, the frequency of making a correct decision is reduced from 90% with accurate

measurements to around 75% at θ = 1, σ = 1.2, and from 75% to 54% at θ = 2, σ = 1.2.

The error frequency increases from 1% to 5%, and from almost 0% to 2%, respectively.

While the highest quality data allow for more powerful discrimination, even low quality

data can be useful combined with an appropriate plan.

Fig. 4.9(b) illustrates the importance of carefully planning experiments. We generated
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Fig. 4.9: Simulation of discriminating three pTfa models. (a) Frequency of correct decision
(top three curves) and incorrect decision (bottom three; the remainder are rejections) for
the top plan (Fig. 4.8), with experimental error of 0.3 (blue solid), 0.6 (red dash), and 1.2
(green dot-dash) kcal/model. (b) Frequency of correct decision for the top plan (blue solid)
vs. 1000 randomly chosen 6-experiment plans (green dot-dash shows the mean, with bars
indicating one sigma variation; red dash shows the best out of the 1000).

1000 random plans by selecting from the set of 192 allowed mutations, and computed the

average and best discrimination results for all plans using the same simulated data. The

planned experiment is always significantly more effective than even the best random plan.

In additional simulations (not shown), we found that it takes 24–30 random mutations to

provide results of the same quality as the optimal 6-mutation plan. We note here that

we have already improved the experiment over completely random by considering 192

mutations; a truly random method would be selecting from the entire set of 2052 mutations,

and thus would be expected to do much worse.
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Fig. 4.10: Coverage of greedy plans (1 = 1) on CASP targets, using cross-linking (blue
dashed line), mutagenesis (green dash-dotted line), or both (red solid line). The magenta
dotted line (y-axis on the right) shows the percentage of mutations among selected experi-
ments in the combined approach.
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4.5.4 Multimodal PRAXIS

We have demonstrated that both cross-linking and mutagenesis can be employed to dis-

criminate predicted protein structure models. It is interesting to see which experimental

technique, or combining both, is more informative for model discrimination. Our analysis

in Chapter 3 shows that disulfide trapping is probably more valuable than residue-specific

cross-linking for model discrimination, because it has higher capture rate, lower noise rate

and more freedom to choose experiments (residue pairs). It is more difficult to compare

mutagenesis and cross-linking directly because it is hard to determine the relative signifi-

cance of the information provided by these two experiments. If we use the same parameter

values for cross-linking as in Fig. 3.6 (i.e. H = 0.9, L = 0.1, κ = 0.95 and ν = 0.05),

the expected posterior ratio contributed by one cross-link is 5.31. On the other hand, the

expected ratio contributed by one mutation is by construction at least 10T , where T is the

discriminability threshold (see Sec. 4.3). If we set T = 0.7, we also have an expected ratio

around 5. In other words, under these parameters, single model-pair coverage provided by

cross-linking and mutagenesis are roughly equivalent, at least in terms of expected poste-

rior ratio. Thus we can use the coverage as a consistent criterion to evaluate plans including

cross-links and mutations.

Fig. 4.10 presents the coverage of greedy plans on CASP targets (Tab. 4.2), using cross-

linking or mutagenesis alone, or combined. We allow at most one mutation to be selected

from each position. Restrictions about cross-linking sites can also be applied although we

allow free selection in this analysis. As expected, the combined plans always outperform
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single-mode plans, either cross-linking or mutagenesis alone. A combined plan has more

available degrees of freedom to choose experiments and delays the “diminishing returns”

seen under either experimental type alone. Furthermore, all the plans are well mixed, i.e.

comparable numbers of cross-links and mutations are selected, implying that cross-linking

and mutagenesis are both important in reaching high coverage, at least under the current

parameters.

We also observed that cross-linking provides higher coverage than does mutagenesis on

most of the targets, except for T0224. This is probably due to the fact that cross-linking has

more candidate experiments (residue pairs) than mutagenesis (point mutations). However,

this result does depend on the parameters; e.g. if the capture rate and noise rate are set as

κ = 0.85 and ν = 0.15, the expected ratio contributed by one cross-link would be around

3, comparable to mutagenesis with T = 0.5. In this case, the coverage of mutations would

be significantly increased, and mutagenesis would outperform cross-linking on all targets

(not shown).

In order to simulate the real performance of the selected plans in model discrimination,

rather than the a priori coverage, we conducted the same simulation as in Fig. 4.7, for

each of cross-linking, mutagenesis, and combined. To simulate the cross-linking data, we

evaluated the Cβ − Cβ distances in the x-ray/NMR structures, and considered the cross-

link to be observed for a distance less than 11 Å, not observed for a distance greater than

17 Å, and discarded for a distance within the range of 11, 17 Å, i.e. that cross-link is

not used to support or penalize any model. Fig. 4.11 presents the average GDT TS z-

score of selected models by each type of plan. The average z-score consistently increases

86



0 5 10 15 200

0.5

1

1.5

2

2.5

# experiments

z−
sc

or
e

T0213 (4.75Å, 1.95)

0 5 10 15 200

0.5

1

1.5

2

2.5

# experiments

z−
sc

or
e

T0214 (2.19Å, 5.52)

0 5 10 15 200

0.5

1

1.5

2

2.5

# experiments

z−
sc

or
e

T0215 (3.46Å, 3.73)

0 5 10 15 200

0.5

1

1.5

2

2.5

# experiments

z−
sc

or
e

T0224 (3.78Å, 1.30)

0 5 10 15 200

0.5

1

1.5

2

2.5

# experiments

z−
sc

or
e

T0263 (3.42Å, 2.01)

0 5 10 15 200

0.5

1

1.5

2

2.5

# experiments

z−
sc

or
e

T0281 (2.26Å, 4.06)

Fig. 4.11: Average GDT TS z-score of selected models w.r.t. the number of experiments:
cross-linking (dashed blue), mutagenesis (green dash-dotted), and combined (red solid).
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with the number of experiments in all three approaches. Mutagenesis tends to outperform

cross-linking, although the coverage is lower (see Fig. 4.10). This is probably due to the

partial information in continuous mutagenesis data that were not taken into account in the

calculation of coverage. This motivates our development in the next chapter of criteria

to evaluate continuous data. The more important observation in Fig. 4.11 is that, with a

sufficient number of experiments, the combined approach almost always exceeds single-

mode approaches.

The choice of parameters is only illustrative and we have not take into account the

experimental cost. However, these results nevertheless demonstrate the merit of a multi-

modal approach, i.e. it provides more information with the same number of experiments.

Furthermore, the consistency of multiple modes of experimental data (e.g. cross-linking

and mutagenesis) with a single model also enhances confidence in its correctness. See

Chapter 7 for more discussion of a multimodal approach for model discrimination.

4.6 Discussion

Employing a variation of the framework developed for cross-linking, we demonstrated with

retrospective testing on two proteins and simulation on CASP targets, the effectiveness

of stability mutagenesis for model discrimination. We also demonstrated with simulated

data on CASP targets and illustrative parameters, that a combined approach is valuable for

model discrimination.

Because of the limited state of methods for predicting changes in protein stability upon
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mutation, we have applied a number of restrictions to select those mutants that are most

likely to be accurately predicted by such methods. In the future, residues which are invari-

ant in sequence alignments might also be usefully avoided. Such residues presumably have

special roles in the structure or function of the protein, thus prediction methods, which are

inherently based on average properties, might give misleading predictions.

In the current formulation of our methods, structural models are independently derived

by purely computational methods before experimentation. In this case we can clearly only

test models that are part of the initial prediction set (the “closed world” assumption in the

language of Bayesian analysis). A more correct model would be missed if it were not

included in this set. If the correct model were significantly different from the one we put

forward, we would expect that the experimental data would agree at best only partially

with the predicted features being tested. In such a case, we would still note that the model

we put forward is the best among the alternatives, but it would also not be congruent with

all the expected experimental outcomes. However, this hypothesis was not supported by

our simulation on other CASP targets where no model is within 5 Å of the x-ray/NMR

structure (not shown). Models with poor GDT TS z-scores were found highly consistent

with experimental mutagenesis data for most of these targets. This suggests that either

the GDT TS z-score is not a good criterion for model quality, or stability mutagenesis is

unreliable for model discrimination when no high-quality model is included.

Of course, the more extensively the models are probed to test their congruence with

expectation, the more likely we are to notice serious deviations between the best model

and the experimental outcomes. Methods for predicting protein structure can be wrong
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both locally and globally; both need to be confirmed and/or corrected. Out of practical

concerns, our planning mechanisms attempt to limit the number of experiments conducted;

however, our effort at spatial balance in planning seeks to spread the tests over the entire

structure so that deviations in any part are more likely to be noticed.
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5. MODEL DISCRIMINATION BY CONTINUOUS 11G◦ DATA

We have demonstrated that the information in stability mutagenesis is sufficient for dis-

criminating predicted protein structure models (Chapter 4). However, we discretized the

continuous 11G◦ data in order to fit into the framework previously developed for discrete

cross-linking data (Chapter 3). This discretization threw away some useful information.

Partial information provided by mutagenesis (how close the predicted and experimental

11G◦ values are, not just whether they are within a threshold) was used in data interpre-

tation but was not taken into account in the calculation of coverage. This chapter devel-

ops effective planning metrics (Sec. 5.1) and a multi-phase planning algorithm (Sec. 5.2)

that take full advantage of the information content in continuous 11G◦ data. The new

approach selects a set of mutations that are most informative and robust, based on their

combined ability to effectively discriminate all the models.

In our multi-phase planning algorithm, an initial plan is first selected by a greedy ap-

proach, then a large number of good plans is generated by a branch-and-bound search,

followed by robustness analysis that significantly reduces the number of good plans. If

multiple equivalently good plans are left, as usually happens, one of them will be selected

either by other criteria such as dispersion of selected mutations, or simply by manual in-

91



spection. However, we observe that good plans overlap heavily, which implies that the last

step of selection among good plans is probably not critical to the success of our approach,

at least not as important as the previous steps.

We present prospective experiment plans for discriminating the three high-quality thread-

ing models of the bacteriophage lambda pTfa chaperone protein. We then studied the trade

off between the optimality of selected plan and the speed of the algorithm, on a larger

number of models of the same CASP targets as in Chapter 4.

5.1 Experiment Planning Metrics

Our goal is to select the optimal subset of mutations that is most informative for discrim-

inating a given set of protein structure models. A natural criterion measuring the quality

of plans is the average probability of choosing a wrong model, i.e. the Bayes error as it is

known in the pattern recognition field [35].

Let S = {s1, s2, ...sn} be the given set of predicted protein structure models, and X be a

vector of random variables representing the 11G◦ values with Normal errors. Then each

model can be represented as a conditional density distribution in the multi-dimensional

11G◦ space X , which is assumed to have the following form as discussed in Sec. 4.1.

p(X |si ) = N (µi , σ
2 I ) . (5.1)

In other words, X is a multivariate Normal distribution with mean µ, and its variance is

mutation independent and model independent.

Once the experimental 11G◦ values have been measured, we will choose the model
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with the maximum posterior probability. Since experiment planning is done beforehand,

we consider the Bayes error (or the expected error probability) as follows:

ε =

n∑
i=1

P(si )εi (5.2)

εi =

∫
X

p(X |si ) · I {P(si )p(X |si ) < max
j 6=i

(P(s j )p(X |s j ))}d X (5.3)

where P(si ) is the prior probability of model si , and εi is the conditional error given that

model si is correct. By “correct” we mean that the distributions of X w.r.t. the “true”

protein structure and this model are very similar. The indicator function I {e} returns 1

if Boolean expression e is true or 0 if false. In Eq. 5.3, e indicates if a wrong model is

selected because the experimental data X is misclassified. In the rest of this chapter, almost

all probabilities will be calculated as the integral of the product of p(X |si ) and such an

indicator function. To simplify the notation, we define the probability Pi of a Boolean

expression e w.r.t. model si :

Pi {e} =
∫
X

p(X |si ) · I {e}d X . (5.4)

The goal of experiment planning is to select a subset of mutations from all candidate

mutations minimizing the Bayes error (Eq. 5.2). However, it is hard to calculate with mul-

tiple distributions in multi-dimensional space. Even with our assumptions about p(X |si ) in

Eq. 5.1, we must resort to numerical techniques [35]. In the following sections, we develop

upper and lower bounds on the Bayes error, along with criteria for robustness. These crite-

ria together will allow us to develop planning algorithms (Sec. 5.2) to find (near) optimal

plans that are most informative and robust for discriminating a given set of protein structure

models.
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5.1.1 Bounds on Bayes Error

The problem of estimating and bounding the Bayes error has received considerable atten-

tion [37, 115, 36, 65]. These techniques have been demonstrated to be applicable to a vari-

ety of problems in pattern recognition and other fields. However, we take advantage of the

particular structure of our mutagenesis planning problem in order to derive a tighter bound

on Bayes error. In our experiment planning problem, numerical methods involving inte-

grals in high-dimensional space are not practical due to the large number of combinations,

and simple analytical bounds (such as the union bound) are not tight enough to achieve a

high pruning rate in the branch-and-bound search. In this section, we develop tight upper

and lower bounds on the Bayes error that are specific to our problem, under the Normal

and independence assumptions discussed above. Tighter bounds on Bayes error will help

us plan experiments that are most informative and least expensive for our application. Our

method does involve numerical integration but it is limited to 2D, so that it is efficient. In

order to employ the branch-and-bound algorithm, we also develop a lower bound on the

Bayes error of the optimal plan that can be selected from a given set of candidate mutations.

For simplicity, we assume a uniform prior for models. All discussion in this section

applies to the case of non-uniform priors unless stated otherwise. Under this assumption,

and employing Eq. 5.4, the conditional error in Eq. 5.3 can be rewritten as

εi = Pi {p(X |si ) < max
j 6=i

p(X |s j )} . (5.5)

We start our discussion from the Bonferroni inequalities [27] that provide straightforward
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Fig. 5.1: Tighter upper bound of εi with Normal distributions of a common variance. (a) In
the 1D case, the conditional error εi (given that si is correct) is determined by the closest
neighbors to si on each side, s j and sk . Other models (dashed curves) have no effect on εi .
(b) In higher-dimensional cases, multiple models are unlikely to be collinear. However, if
the angle between −→si s j and −→si sk is small and sk is not closer to si than s j is, adding sk will
only increase εi by a small amount (integral of p(X |si ) over the “#” shaded area).

initial bounds on εi .

εi ≤
∑
j 6=i

Pi {p(X |si ) < p(X |s j )} (5.6)

εi ≥
∑
j 6=i

Pi {p(X |si ) < p(X |s j )} −
∑

j<k 6=i

Pi {p(X |si ) < min(p(X |s j ), p(X |sk))} (5.7)

Eq. 5.6 is just a union bound, or Boole’s inequality, which means that the probability that

at least one of the wrong models beats the correct one is not greater than the sum of the

probabilities of each individual wrong model beating the correct one. The union bound

is easy to calculate and provides a simple minimization criterion for experiment planning;

unfortunately it is often too loose for a large number of models.
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Tighter Bounds on a Particular Plan

As we discussed (Sec. 4.1), we assume a common variance for all mutations in all models;

hence the error probability is completely determined by the relative distances among the

distribution means. Fig. 5.1 provides some intuition about the error probability. In the one-

dimensional case, the conditional error probability εi is determined by the closest neighbor

on each side of the distribution p(X |si ). This is true in higher-dimensional space if the

model distributions are collinear, although that is very unlikely to happen. To relax the

collinear requirement, consider a small angle between two vectors as shown in Fig. 5.1 (b).

As we can see, in such an almost collinear situation (small θ ), εi is much less than the sum

of the individual error probabilities (union bound).

Inspired by the above intuition, we now do a rigorous derivation. Assuming model si

is correct, we can shift the coordinate system so that µi is at the origin and the rest of the

models are represented as vectors from the origin. We cluster these vectors into disjoint

clusters Ct for t = 1, 2, .... Regardless of how the clustering is done, we always have the

following inequality:

εi ≤
∑

t

Pi {p(X |si ) < max
j∈Ct

p(X |s j )} . (5.8)

The difference between Eq. 5.8 and Eq. 5.6 is that the Bonferroni inequality is applied

on clusters instead of individual models. Choosing a representative model s jt from each

cluster Ct , we have

Pi {p(X |si ) < max
j∈Ct

p(X |s j )} = Pi {p(X |si ) < p(X |s jt )} + Pi {p(X |s jt ) < p(X |si ) < max
j∈Ct , j 6= jt

p(X |s j )} (5.9)

≤ Pi {p(X |si ) < p(X |s jt )} +
∑

j∈Ct , j 6= jt

Pi {p(X |s jt ) < p(X |si ) < p(X |s j )} (5.10)

Eq. 5.9 is just a rewriting of the probability; either model s jt beats si or some other models
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correct model si . Suppose that Pi {p(X |si ) < p(X |s j )} ≈ ε for all wrong models s j , j =
1, 2, ..., 8. The lower bound from Eq. 5.7 is about −4ε. If we choose one representative
model from each side, as in Eq. 5.12, the lower bound becomes about 2ε, which is much
tighter.

in cluster Ct beat it. Eq. 5.10 is obtained by applying the union bound on the second term

of Eq. 5.9, where the first and second terms correspond to the integral of p(X |si ) over the

stripe shaded area and the “#” shaded area in Fig. 5.1 (b), respectively.

If two events are highly dependent, the joint probability will be comparable to the in-

dividual probability of either one. Hence Eq. 5.7 could be negative if models are highly

dependent, because the number of pairwise joint probabilities could be much larger than

the number of individual probabilities. This is especially a concern for a large number of

models. The same technique we discussed for the upper bound can also be employed to

derive a tighter lower bound. Fig. 5.2 provides some intuition about obtaining a tighter

lower bound by using a subset of models that are highly independent. In fact, the following

discussion is more general. Still assuming si is correct, let S′ ⊂ S − {si } be a subset of the

remaining models. Then we have

εi ≥ Pi {p(X |si ) < max
j∈S′

p(X |s j )} (5.11)

≥

∑
j∈S′

Pi {p(X |si ) < p(X |s j )} −
∑

j<k∈S′
Pi {p(X |si ) < min(p(X |s j ), p(X |sk))} . (5.12)

Eq. 5.11 is true because the probability that any model in S−{si } beats si is always greater
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Fig. 5.3: Model clustering. Assuming one model is correct and placed at the origin (red
circle in (a)), the remaining models are represented as vectors from the origin. These
vectors are hierarchically clustered w.r.t. their angles. A cutoff π/2 (red dashed line in (b))
gives three clusters (different markers in (a)). The vector with the shortest length is selected
as the representative model for each cluster (bold markers in (a)).

than or equal to the probability that any model in a subset S′ beats it. Eq. 5.12 is just the

Bonferroni inequality applied to S′.

Eq. 5.8 and Eq. 5.10 hold for any clustering of models and any selection of representa-

tive models, and Eq. 5.12 holds for any subset S′. However, the tightness of these bounds

depends critically on the clustering method and the selected representative models. We

employ an agglomerative approach to cluster models, with distance between two clusters

defined as the maximum angle between any two vectors in them, i.e.

d(Ca, Cb) = max
j∈Ca,k∈Cb

∠µ jµiµk (5.13)

See Fig. 5.3 for an example of hierarchical clustering of models. After the hierarchical

tree is constructed, a cutoff θ is used to determine the number of clusters, and then the

model with the smallest distance to si in each cluster is selected as the representative mod-

els. We also use the representative models as S′ for the lower bound in Eq. 5.12, because
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these models are likely to be highly independent, so that the pairwise joint probabilities

are smaller and hence the lower bound is tighter. The optimal value of θ is the one that

gives the tightest upper bound or lower bound. This optimal value could be model specific

and different for the upper bound and the lower bound. While it is hard to determine the

optimal θ value, it is easy to calculate the upper and lower bounds with several θ values

and choose the tightest. In our implementation, we try three values of θ , π/4, π/3, and

π/2. The running time is only three times that of using a fixed cutoff, and we found that

the result is significantly improved in practice.

Lower Bound on the Optimal Plan

If the number of candidate or selected mutations is small, we can enumerate all possible

plans, calculate the upper and lower bounds, and choose a good plan. In terms of Bayes

error, plan A is better than plan B if the upper bound for A is less than the lower bound

for B. In practice, the computational complexity of such a brute force method becomes

prohibitive for even a modest number of mutations (e.g. choosing 10 from 100 mutations

will yield on the order of 1013 possible combinations). In such cases, we can still use a

greedy approach to minimize the upper bound on the Bayes error. A tight upper bound will

allow us to identify a high quality set of selected mutations.

However, we still do not know how close a plan is to the optimal one. In order to

evaluate the optimality of a given plan M , we define the Bayes error of the optimal plan of

size m from a set of candidate mutations, Mc, as follows:

ε(Mc, m) = min
M ′⊂Mc,|M ′|=m

ε(M ′) , (5.14)
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and the optimality of plan M as

Optimality(M, Mc) =
ε(Mc, |M |)

ε(M)
. (5.15)

Since both the numerator and denominator in Eq. 5.15 are hard to calculate, we compute a

lower bound on the optimality as

Optimality(M, Mc) ≥
lb(Mc, |M |)

ub(M)
. (5.16)

where ub(M) is the upper bound we previously discussed (Eq. 5.8, Eq. 5.10) and we de-

velop below lb(Mc, |M |), the lower bound of Bayes error on the optimal plan. If Mc is the

set of all candidate mutations, Eq. 5.16 provides a way to evaluate the quality of plan M .

The larger the score, the better the plan is guaranteed to be. A score close to 1 indicates a

plan that is guaranteed to be near optimal (A plan with a lower score may still be good, but

we just cannot prove it with our bounds). If Mc is a subset of mutations, Eq. 5.16 provides

a criterion to prune subtrees in a branch-and-bound algorithm: we can ignore all combina-

tions in Mc if the score in Eq. 5.16 is greater than 1, because no plan of the same size from

Mc can be better than the plan M that we already have. Let us first prove the following

lemma, which will allow us to derive the lower bound on the optimal plan, lb(Mc, |M |).

Lemma 5.1 Let

d2
=

n∑
i=1

d2
i (5.17)

be the sum of squares of n positive real numbers di , i = 1, 2, ..., n; and let

εi =

∫
−di/2

−∞

1
√

2πσ
e−x2/2σ 2

dx . (5.18)
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be the cumulative density of Normal distribution N (0, σ ) at point −di/2. For a fixed value

of d2,
∑n

i=1 εi is minimized when

di = d j (5.19)

for all 1 ≤ i, j ≤ n.

Proof: Suppose we can find di = b and d j = a that are not equal, say 0 < b < a, and let

c =
√

a2+b2

2 be new equal values for di and d j , so that the sum of squared values d2 is not

changed. The changes in εi and ε j are

1εi = −
1
√

2π

∫ c/2

b/2
e−

x2
2 dx (5.20)

1ε j = +
1
√

2π

∫ a/2

c/2
e−

x2
2 dx (5.21)

It is easy to show that

c − b > a − c , (5.22)

i.e. the integral region of 1εi , b/2, c/2, is larger than that of 1ε j , c/2, a/2. Furthermore,

the density is higher on the first region because it is closer to the mean (b < c < a) (see

Fig. 5.4 for an illustration). Therefore, we have

1εi +1ε j < 0 , (5.23)

i.e.
∑n

i=1 εi is reduced by making di and d j equal. We can continue this process until

di = d j for all 1 ≤ i, j ≤ n and
∑n

i=1 εi is minimized. �

A lower bound on the Bayes error based on pairwise risk functions developed for multi-

hypothesis testing [37] is as follows:

ε ≥

(
2
n

)2

·

n−1∑
i=1

n∑
j=i+1

εi j (5.24)
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Fig. 5.4: Illustration of the proof of Lemma 5.1. The shaded areas indicate the decrement
(upward solid lines) and increment (downward dashed lines) of pairwise Bayes errors by

replacing distances a and b with c =
√

a2+b2

2 . Because region b
2 , c

2 is larger and closer to
the mean, the sum of pairwise errors must be decreased.

Combining Lemma 5.1 and Eq. 5.24, we have

ε ≥
2(n − 1)

n

∫
−r

−∞

1
√

2πσ
e−x2/2σ 2

dx (5.25)

where r = 1
2

√
d2

(n
2)

and d2 is the sum of squared distances among all model distribution

means. When d2 is maximized, the lower bound in Eq. 5.25 is minimized and becomes a

lower bound for any plan of the same size, including the optimal plan. The sum of squared

distances can be rewritten as

d2
=

∑
i< j

∑
k

(µki − µk j )
2 (5.26)

=

∑
k

∑
i< j

(µki − µk j )
2 (5.27)

where µki is the mean of the distribution of model si in the kth dimension, i.e. the predicted

11G◦ value of the kth mutation according to model si . Since the inner sum of Eq. 5.27

is for only one mutation, we can easily maximize d2 by independently choosing mutations

according to their sums of squared distances over all models.
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In summary, to calculate the lower bound for the optimal plan of size k, we first choose

k mutations so that the sum of squared distances d2 is maximized; then the average distance

is used to calculate the lower bound by Eq. 5.25.

5.1.2 Robustness w.r.t. the Inaccuracy of 11G◦ Prediction

As we discussed, discrimination is based primarily on relative destabilization. We run a

risk, however, of the experimental data having a consistent bias in the difference between

experimental and predicted 11G◦ values, due to some protein-specific properties. Such

a bias could arise from a protein that is relatively easier or harder to destabilize than the

proteins against which the predictor is trained. If we selected mutations in which one model

were predominantly predicted to be more destabilized than the others, that model would be

favored if the protein were relatively easy to destabilize. If we knew the bias for a protein,

as a single number or a distribution, we could incorporate it into the prediction distribution

p(X |si ). We assume, however, that we only know the range of bias (i.e. the bias could be

anywhere in the range) because that is probably a more realistic situation in practice.

A good experiment plan needs to be robust w.r.t. such “unknown” bias. In Chapter 4,

we achieved a balance in the direction of relative destabilization by separating each pair

of models {r, s} into two directed pairs 〈r, s〉 and 〈s, r〉. The framework developed in this

chapter allows us to evaluate the robustness of plans in a more systematic way and obtain

a balanced design naturally. Since we do not know whether the bias is present, we will

still use the unbiased distribution for data interpretation. Therefore, the error bounds cal-
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Fig. 5.5: The effect of systematic bias on Pi {p(X |si ) < p(X |s j )}, Pi {p(X |si ) <
min(p(X |s j ), p(X |sk))} and Pi {p(X |s j ) < p(X |si ) < p(X |sk)}. p′(X |si ) is the pro-
jection of the biased distribution onto the line si s j or the plane si s j sk , which replaces
p(X |si ) in the integrals for calculating bounds of Bayes error. However, the integration
areas (shaded areas) are not changed because we do not know where p′(X |si ) is and still
use p(X |si ) for data interpretation.

culation (Sec. 5.1.1) is still valid except that we need to redefine the probability of Boolean

expression e w.r.t. model si (Eq. 5.4) as follows

P ′i {e} =
∫
X

p′(X |si ) · I {e}d X , (5.28)

where p′(X |si ) is the unknown biased distribution of the correct model. Fig. 5.5 illustrates

the effect of bias on error bounds calculation (Eq. 5.10, Eq. 5.12). In order to calculate

the error probabilities, we need to project the biased distribution onto the line µiµ j or

plane µiµ jµk . Regardless of the direction of bias (i.e. the protein is relatively easy or

hard to destabilize), the vector
−−→
µiµ

′

i can be decomposed into two perpendicular vectors,

one parallel and the other orthogonal to line µiµ j or plane µiµ jµk . Since the orthogonal

vector does not provide any information for model discrimination (distributions p(X |si ),

p(X |s j ) and p(X |sk) have the identical projection in this dimension), such projections lose
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no information for discrimination. In our implementation, we try bias values within the

range −2, 2 kcal/mol at a resolution of 0.1 and use the worst case (maximum upper bound

of Bayes error) as the robustness measurement of a plan. A robust plan will have a biased

error bound close to the unbiased one. We choose a plan with small error probability in

both unbiased and biased cases.

5.1.3 Top Group Selection

For a large number of models, simultaneous discrimination of all models may require a

prohibitive number of mutations. In such cases, a sequential approach may be a better

alternative: plan a small set of mutations, measure the experimental 11G◦ values, choose a

subset of top models and repeat until one or a few models stand out. If some models are very

close to each other, our planning metrics may also be problematic. The error probability

may never be made small enough no matter how many mutations are selected. In order to

address these issues, we may decide to choose a “top group” of models rather than a single

best model after the experimental 11G◦ values have been measured. Accordingly, we can

optimize a plan so that the correct model will be included in the top group with a high

probability. The error bounds we discussed above (Eq. 5.10 and Eq. 5.12) can be slightly

modified for this purpose. If we will choose a top group of size t , we should ignore the

closest t − 1 neighbors in calculating the error bounds, because these models are hardest

to distinguish from the correct one. The error bound calculated in this way will bound the

probability that more than t − 1 models beat the correct one, i.e. the probability that the
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MUTPLAN(m, λ1, λ2, η, Mc)
ub, M ← MUTPLAN-Greedy(m, Mc) # Fig. 5.7
ub∗, 9 ← MUTPLAN-BnB(m, λ1, ub, {M},∅, Mc) # Fig. 5.8
9 ← {M ∈ 9|ub(M)/ub∗ ≤ λ2} # test optimality
sort 9 in ascending order of biased upper bounds # robustness

Fig. 5.6: Mutagenesis planning algorithm. The inputs include the desired size of plan (m),
cutoffs for subtree pruning in branch-and-bound algorithm (λ1) and good plan selection in
post-processing (λ2), bias range (η) and the set of candidate mutations (Mc).

MUTPLAN-Greedy(m, Mc)
M ← ∅
while |M | < m

e← arg mine∈Mc ub(M
⋃
{e}) # find next mutation

M ← M
⋃
{e}

Mc ← Mc − {e}
Mc ← {e ∈ Mc|e satisfies all constraints} # optional

return ub(M), M

Fig. 5.7: Greedy algorithm for mutagenesis planning. The inputs are the desired size of
plan (m) and the set of candidate mutations (Mc).

correct model is not included in the top group of size t . Choosing the best model is a special

case for t = 1.

5.2 Experiment Planning Algorithms

Employing the error bounds and robustness analysis discussed in Sec. 5.1, we develop a

multi-phase algorithm for mutagenesis planning (Fig. 5.6). We first find a greedy solution

by selecting mutations one by one minimizing the upper bound on Bayes error at each step

(Fig. 5.7). A branch-and-bound algorithm (Fig. 5.8) then finds a sufficient number of plans

with small error probability in the unbiased case. These potentially good plans are then
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MUTPLAN-BnB(m, λ, ub∗, 9, Ms, Mc)
if |Ms | + |Mc| = m # only one possible plan

Ms ← Ms
⋃

Mc
Mc ← ∅

if constraintsSatisfied(Ms) and lb(Ms
⋃

Mc, m)/ub∗ ≤ λ # subtree worth exploring
if |Ms | = m # a complete plan

9 ← 9
⋃
{Ms}

if ub(Ms) < ub∗ # a tighter upper bound
ub∗← ub(Ms)

else for i from 1 to m − |Ms | + 1 # discard Mci at the i th child
M ′s ← Ms

⋃
Mc1..i − 1 # select mutations before that

M ′c ← Mci + 1..|Mc| # update candidate mutations
ub∗, 9 ← MUTPLAN-BnB(m, λ, ub∗, 9, M ′s, M ′c)

return [ub∗, 9]

Fig. 5.8: Branch and bound algorithm for mutagenesis planning. The inputs include the
desired size of plan (m), pruning cutoff (λ), the best upper bound (ub∗) and good plans (9)
so far, and sets of selected and candidate mutations (Ms and Mc) at the current node.

subjected to post-processing and robustness analysis. If there is more than one good robust

plan, the selection of the final plan is subjective. Other criteria such as the dispersion of

selected mutations in the sequence or 3D structure can also be used to evaluate plans and

help select the best one.

The heart of our algorithm is a branch-and-bound search (Fig. 5.6), which finds all plans

with guaranteed optimality in the unbiased case, according to user-specified parameters.

Fig. 5.9 shows an example of a branch-and-bound search tree for choosing two from six

mutations (at four positions). We enumerate the subsets of discarded mutations [35]. The

path from the root to the current node specifies discarded mutations; all mutations after the

current one are still to be considered; and those before the current node but not shown on

the path are selected.

Fig. 5.8 presents the branch-and-bound algorithm. The function constraintsSatisfied
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Fig. 5.9: A complete search tree of branch-and-bound algorithm for choosing two from
six mutations at four positions, {A2G, F3A, F3L, R4A, R4G, M5A}, indexed from 1 to 6.
Circles are internal nodes and squares leaf nodes. Red crosses indicate violation of the
constraint requiring at most one mutation per position. The mutations on a path from the
root are discarded. The sets of candidate and selected mutations can be derived from the
path: all mutations indexed after the current one are candidate mutations, those indexed
before the current one but not shown in the path are selected. For example, at node A,
mutations A2G, F3A and R4A (indices 1, 2 and 4) have been discarded, mutation F3L
(index 3) has been selected and mutations R4G and M5A (indices 5 and 6) are still to be
considered.

checks satisfaction of user-specified constraints, e.g. at most one mutation per position can

be selected. The width of the search tree is limited by m − |Ms | + 1 because |Ms | ≤ m

and hence the number of mutations selected at current level cannot exceed m − |Ms |. The

output is the best upper bound (ub∗) and a list of potentially good plans (9), which will

be subjected to postprocessing and robustness analysis. We need to calculate the lower

bound of the optimal plan (lb(Ms
⋃

Mc, m)) for each visited internal node, but the upper

bound (ub(Ms)) only for each potentially good plan (i.e. those that cannot be eliminated

under the user-specified parameters). The lower bound is much more efficient to calculate

than the upper bound because it only requires a table lookup of the Normal cumulative

density function (Eq. 5.25), while the upper bound involves numerical integration in 2D
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space (Eq. 5.10). Fortunately, the upper bound does not need to be computed for most

nodes.

The pruning cutoff λ is used to control the speed of the algorithm and the output size. If

λ > 1.0, sub-optimal plans will also be listed. If λ < 1.0, some good plans might be missed

in order to speed up the algorithm. However, plans that are “really” good are guaranteed to

be kept. For example, if λ = 0.5, any plan with Bayes error lower than half of ub∗, the best

upper bound found in the branch-and-bound search, cannot be missed. Since ub∗ bounds

the Bayes error of the optimal plan, any plan with Bayes error lower than half of that of the

the optimal plan cannot be missed. The default value of λ is 1.0, so that all good plans will

be listed. At the end of the branch-and-bound algorithm, all identified plans are filtered by

the best upper bound ub∗ (see parameter λ2 in Fig. 5.6).

In our branch-and-bound algorithm, we assume that user-specified constraints are mono-

tonic. A monotonic constraint is one that is violated by a superset of mutations if it is vio-

lated by any subset. For example, a constraint requiring at most one mutation per position

is monotonic. In fact, we can avoid visiting right siblings if any monotonic constraint is

violated (not shown in Fig. 5.8). We can slightly modify the algorithm in Fig. 5.8 to handle

non-monotonic constraints: only check the satisfaction of constraints on complete plans.

In order to increase the pruning rate, we initially sort all mutations in ascending order

of upper bound on Bayes error (easy to calculate in the 1D case). The branch-and-bound

algorithm (Fig. 5.8) is then applied to this ordered list of mutations. The heuristic here

is to exclude good mutations first, so that the error of the remaining mutations is larger,

as is the chance of pruning left subtrees, which are larger (Fig. 5.9) [35]. This reordering
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improves the pruning rate significantly. Although we can reorder mutations at each level of

the search tree, the cost of the sorting may not worth the benefit, which is not likely to be

as significant as the initial sorting.

5.3 Results

5.3.1 Prospective Experiment Planning for pTfa

We put our new planning mechanism into practice on the three high-quality model of the

pTfa protein of bacteriophage lambda (see Chapter 4). In this three-model case, the upper

bound and the lower bound converge to the exact Bayes error. Therefore all results for this

test case show the Bayes error instead of the bounds. Fig. 5.10 shows the Bayes error and

optimality of the plans selected by the greedy algorithm (Fig. 5.7).

A good initial plan can provide a higher pruning rate and hence improve the efficiency

of our branch-and-bound algorithm. Since we use the greedy plan as the initial plan, the

optimality of the greedy plan provides a clue about the expected efficiency of the branch-

and-bound algorithm. As we can see in Fig. 5.10, the optimality score is about 0.6 for

the greedy plan for the three Tfa models, which means that the Bayes error of the greedy

plan is within a factor of two of the optimal value. Therefore, we expect a high pruning

rate in the branch-and-bound algorithm using this greedy plan as initial solution. Since all

plans are subjected to robustness analysis, we would like to have a sufficient number of

candidate plans selected by branch-and-bound search. If not enough plans are selected, we
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Fig. 5.10: Greedy plan for three Tfa models. (a) Bayes error of greedy plans (blue solid
line, circles) and lower bound of the optimal plan of the same size (red dash-dotted line,
squares). (b) Optimality of greedy plans as defined in Eq. 5.15.

can increase the value of λ1 and λ2 to obtain more.

The greedy plan is good in the unbiased case, with a Bayes error of 1.4%. However,

with a bias range of −2, 2 kcal/mol, the Bayes error goes up to 17%. In order to get a

better plan, we first use our branch-and-bound search to generate a larger number of plans

that are good in the unbiased case, and then apply the robustness analysis on these plans.

Fig. 5.11 (a) shows the plans of six mutations for the three Tfa models selected by our

branch-and-bound search at λ1 = 1 and λ2 = 1.25. A total of 15942 nodes were visited

in about 2 hours, and 73 plans were selected, with a total of 24 unique mutations. As we

can see, the greedy plan happens to have the smallest Bayes error in this case. Fig. 5.11

(b) shows the result of robustness analysis with a bias range of−2, 2 kcal/mol. Good plans

in the unbiased case are not necessarily good in the biased case, and the greedy plan is no

longer the best. Also, the biased Bayes errors are more distinguishable than the unbiased

ones.
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Fig. 5.11: Six-mutation plans for three Tfa models selected by MUTPLAN at λ1 = 1
and λ2 = 1.25. With a total of 192 candidate mutations at 77 positions, there are about
5.7× 1010 possible combinations of six mutations. Plans are shown in ascending order of
Bayes error in (a) unbiased and (b) biased cases. The red circles indicate the Bayes error
of the greedy plan in both cases.

Tab. 5.1 presents three plans — the best, the greedy and the worst among all plans

selected by our branch-and-bound search (“worst-of-bb”). As we can see, these three plans

are comparable without bias (similar Bayes errors). However, the best plan stands out

in the presence of bias (significantly smaller Bayes error). In order to see if the good

plans selected by the automatic robustness analysis are consistent with our heuristics, i.e.

achieving a balance in the direction of relative destabilization, we define a directed distance

between two models as follows.

d〈si , s j 〉 =

√∑
k

I {µki < µk j } · (µki − µk j )2 , (5.29)

where the indicator function I returns 1 if a mutation is more destabilizing (or less sta-

bilizing) in model si than in s j , and 0 otherwise. Tab. 5.1 lists the directed distances for

all model pairs. As we can see, the best plan (smallest Bayes error in the biased case) is

also the most balanced one, i.e. the two directed distances are comparable for each pair
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Fig. 5.12: Frequencies of 24 unique mutations involved in all 73 plans in Fig. 5.11.

of models. The worst-of-bb plan is very unbalanced and the greedy one is in the middle.

Therefore, we conclude that our robustness evaluation is consistent with our heuristics and

can choose good robust plans automatically.

Note that only two mutations are different between the greedy and the best plans in

Tab. 5.1. In fact, all the good plans selected by the branch-and-bound search overlap heav-

ily. Fig. 5.12 presents the frequencies of 24 unique mutations involved in all 73 plans

selected by the branch-and-bound search. We also observed that the best plan shares four

(of six) mutations with the plan selected in Chapter 4 (Fig. 4.8). The Bayes error for the

previous plan in unbiased and biased cases are 1.9% and 2.5%, respectively. It is close to

the Bayes error of the best plan in Tab. 5.1, 1.8% and 2%.

113



Tab. 5.1: Three plans for three Tfa models: the best, the greedy and the worst plan among
those selected. The Bayes errors in both unbiased case (ε) and biased case with a bias
range of −2, 2 kcal/mol (εbiased) are listed. The following three tables show the details of
the three plans. The distances between model means are shown as directed pairs, where
more destabilizing and more stabilizing mutations are separated.

plan ε εbiased
best 0.018 0.020

greedy 0.014 0.170
worst 0.017 0.553

The best plan
mutation 11G◦p d〈si , s j 〉

N22D 0.68 -3.26 0.02 0.00 3.94 0.00 0.66 3.28 0.00
Y77G -3.26 0.23 -0.34 3.49 0.00 2.92 0.00 0.00 0.56
T75G -2.98 -0.75 0.27 2.24 0.00 3.25 0.00 1.02 0.00
F3A 0.15 -0.09 -2.71 0.00 0.24 0.00 2.86 0.00 2.62

D83G 1.73 -1.29 -0.35 0.00 3.02 0.00 2.08 0.94 0.00
T11G -0.56 0.19 -2.34 0.74 0.00 0.00 1.79 0.00 2.53

total 4.21 4.98 4.37 4.02 3.56 3.68

The greedy plan
mutation 11G◦p d〈si , s j 〉

N22D 0.68 -3.26 0.02 0.00 3.94 0.00 0.66 3.28 0.00
Y77G -3.26 0.23 -0.34 3.49 0.00 2.92 0.00 0.00 0.56
T75G -2.98 -0.75 0.27 2.24 0.00 3.25 0.00 1.02 0.00
F3A 0.15 -0.09 -2.71 0.00 0.24 0.00 2.86 0.00 2.62

R10G -1.35 -0.84 1.50 0.51 0.00 2.84 0.00 2.33 0.00
N16D -0.71 -2.77 -0.17 0.00 2.06 0.54 0.00 2.60 0.00

total 4.18 4.46 5.25 2.93 4.90 2.68

The worst-of-bb plan
mutation 11G◦p d〈si , s j 〉

N22D 0.68 -3.26 0.02 0.00 3.94 0.00 0.66 3.28 0.00
Y77G -3.26 0.23 -0.34 3.49 0.00 2.92 0.00 0.00 0.56
T75G -2.98 -0.75 0.27 2.24 0.00 3.25 0.00 1.02 0.00
R10G -1.35 -0.84 1.50 0.51 0.00 2.84 0.00 2.33 0.00
N16D -0.71 -2.77 -0.17 0.00 2.06 0.54 0.00 2.60 0.00
V79S -2.45 -2.93 -0.50 0.00 0.48 1.96 0.00 2.44 0.00

total 4.18 4.48 5.60 0.66 5.47 0.56
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Fig. 5.13: Error probabilities of greedy plans on the 10 models with highest GDT TS z-
score for each CASP target: union bound (black dotted), tight upper bound (blue solid),
tight lower bound (green dashed) and lower bound for the optimal plan of the same size
(red dash-dotted).
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Fig. 5.14: Tightness (blue solid) and lower bound of optimality (red dashed) of the greedy
plans on the 10 models with highest GDT TS z-score for each CASP target.
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5.3.2 Optimality vs. Speed

The branch-and-bound search is the most time consuming step in our approach. The user-

specified parameter λ in Fig. 5.8 (λ1 in Fig. 5.6) is used to control how much effort should

be put in the branch-and-bound search to find good plans. Although we used the default

value λ = 1.0 for the three Tfa models, the branch-and-bound search with the default λ

value may become prohibitive for a larger number of mutations and models. In order to

determine an appropriate value for λ, we first examine the other two factors that determine

the pruning rate of branch-and-bound together with λ: the upper bound for a plan and the

lower bound for the optimal plan (denominator and numerator in Eq. 5.16). We define the

tightness of bounds on a plan M as the ratio between the lower bound and the upper bound.

Tightness(M) =
lb(M)

ub(M)
. (5.30)

The larger the value, the tighter the bounds and the better they bound the Bayes error. This

value approaches 1 as the upper and lower bounds converge to the exact Bayes error.

Fig. 5.13 presents the error bounds of the greedy plans on ten high-quality models

(with the highest GDT TS scores) for each selected CASP target. Fig. 5.14 presents the

corresponding tightness and optimality (actually the lower bound of optimality, Eq. 5.16)

for these greedy plans. As we can see, the tightness score is high for most of the targets,

which means that the upper bound is close to the lower bound, and hence the exact Bayes

error. However, the optimality is low, which may result in a poor pruning rate in branch-

and-bound if the default value of λ (1.0) is used. Since the upper bound is tight, the poor

optimality indicates that either the greedy plan is bad or the lower bound for the optimal
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plan is loose. We also observed that the greedy plan is usually very good in the unbiased

case (Fig. 5.11). Therefore, the most likely reason for the poor optimality is that the lower

bound for the optimal plan is loose.

In order to improve the pruning rate in the branch-and-bound search, we specify a small

value for λ. If we choose λ = 0.1, theoretically we can only guarantee that no plan with

Bayes error lower than ub∗/10 will be missed (see Fig. 5.8), while in practice it may be

much better due to the loose lower bound for the optimal plan. Furthermore, if we take

into account the uncertainties that are not modeled, such as the outliers of 11G◦ values

(see Fig. 4.2) and experimental errors, error probabilities cannot be too small. A plan with

Bayes error (or its upper bound) of 1% is probably not that different, in practice, from

another plan with Bayes error of 0.1%. Therefore, it might be a good idea to sacrifice

some theoretical optimality for real speed. We claim that the main goal of the branch-and-

bound search is to provide a sufficient number of good plans, but not to find the complete

set of good plans or the best one. Since the worst running time of the branch-and-bound

algorithm could be exponential, it can take an unacceptably long time if an inappropriate λ

value is specified. A good way to avoid this situation is to start from a conservative value of

λ, which should be a value close to the optimality of the greedy plan. Then we can increase

it iteratively until we get enough good plans or a robust good plan.
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Fig. 5.15: Upper bound of Bayes error for the greedy plans in Fig. 5.13 w.r.t. top group of
size 1 (blue solid), 2 (green dashed) and 3 (red dash-dotted).
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5.3.3 Top Group Selection

Fig. 5.15 presents the upper bound of Bayes error for the greedy plans in Fig. 5.13, w.r.t.

top group of size 1, 2 and 3. The error bound was significantly improved for targets T0215,

T0224 and T0281 by choosing the two top models instead of one. That is because these

targets contain identical models: models 026 and 027 are identical for T0215 and T0281;

models 501 and 506 are identical for T0224. This example is a little extreme because we

probably should have excluded duplicates of models before experiment planning. However,

it demonstrates the merit of top group selection in the presence of extremely similar models.

5.4 Discussion

In this chapter, we have developed criteria and algorithms that take full advantage of the

information provided by stability mutagenesis. Bayes error provides a natural criterion to

evaluate the quality of plans for continuous data. We develop tight error bounds for Bayes

error and a multi-phase algorithm to choose high-quality plans. In support of the robustness

analysis, the plan selected by minimizing the Bayes error is also heuristically balanced, and

hence justifies the idea of directed model pair in our previous discrete version of planning

algorithm.

Our criteria also handle missing data naturally. If the 11G◦ prediction of a mutation

is missing in some models, it should not be used to discriminate these models from others.

In the calculation of error bounds, what matters is the differences between predictions in

different models. We define the difference between a missing value and any value as zero,
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so that the missing data are not for or against any model regardless of the experimental

value of 11G◦.

In the discrete version, we need to specify a cutoff T to determine if a model-pair is

discriminable by a mutation. As we discussed in Chapter 4, the choice of T has significant

effect on the coverage of mutations. If T is too high, we underestimate the discrimination

information provided by mutagenesis. If T is too low, we overestimate it. Furthermore,

mutations with utility smaller than T also provide some information for model discrimina-

tion. Such partial information is not taken into account by the coverage criterion. These

problems are no longer present in the continuous version. No user-specified cutoff is re-

quired and all information is taken into account.

Although the continuous version of planning has advantages over the discrete one, we

may need the discrete version for the multimodal approach. If mutagenesis is discretized

as in Chapter 4, cross-linking and mutagenesis can be combined easily and the combined

plan can be optimized. For continuous mutagenesis and discrete cross-linking, we can plan

separately and combine them in data interpretation. However, it is not so straightforward

to optimize the combined plan because different criteria are used in the two methods.
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6. SITE-DIRECTED PROTEIN RECOMBINATION

Chapter 3 to Chapter 5 were dedicated to our PRAXIS approach for high-throughput pro-

tein structure elucidation. This chapter addresses the other experiment planning challenge

introduced in Chapter 1: site-directed protein recombination, an important application in

protein engineering. We developed a probabilistic hypergraph model (Fig. 6.1(a)) in which

edges represent pairwise and higher-order residue interactions, while edge weights rep-

resent the degree of “hyperconservation” of the interacting residues (Sec. 6.1). Then we

developed efficient algorithm to choose the optimal breakpoint locations in recombination

that minimize the total perturbation to these interactions.

Our hypergraph model generalizes the traditional representations of sequence informa-

tion in terms of single-position conservation and structural interactions in terms of pairwise

contacts. Hyperconservation can reveal significant residue interactions both within mem-

bers of the family (arising from structural and functional constraints) and generally com-

mon to all proteins (arising from general properties of the amino acids). We then combine

family-specific and database-wide statistics with suitable weighting (Sec. 6.1.1), ensure

non-redundancy of the information in super- and sub-edges with a multi-order potential

score (Sec. 6.1.2), and derive edge weights by mean potential scores (Sec. 6.1.3). We also
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Fig. 6.1: Hypergraph model of evolutionary interactions, and effects of site-directed protein
recombination. (a) Higher-order evolutionary interactions (here, order-3) determining pro-
tein stability and function are observed in the statistics of “hyperconservation” of mutually
interacting positions. The left edge is dominated by Ala,Val,Ile and Val,Leu,Leu interac-
tions, while the right is dominated by Glu,Thr,Arg and Asp,Ser,Lys ones. The interactions
are modeled as edges in a hypergraph with weights evaluating the degree of hyperconser-
vation of an interaction, both generally in the protein database and specific to a particular
family. (b) Site-directed recombination experiments mix and match sequential fragments
from homologous parents to construct a library of hybrids with the same basic structure but
somewhat different sequences and thus different functions. (c) Site-directed recombination
experiments perturb edges that cross one or more recombination breakpoints. The differ-
ence in edge weights derived for the parents and those derived for the hybrids indicates the
effect of the perturbation on maintenance of the evolutionarily preserved interactions.
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evaluate the significance of hyperconservation by calculating their p-values (Sec. 6.1.5).

Testing on previous recombination data of beta-lactamases (Sec. 6.3) shows that the effect

of non-redundant higher-order terms is significant and can be effectively handled by our

model.

Site-directed recombination experiments (Fig. 6.1(b)) seek to create hybrids with the

same basic structure but different functions, by mixing and matching sequential frag-

ments from homologous parents. Optimizing retainment of multi-order interactions after

recombination (Fig. 6.1(c)) should help identify the best recombinants and thus the best

locations for breakpoints. In support of this optimization, we develop criteria to eval-

uate the quality of hybrid libraries by considering the effects of recombination on edge

weights (Sec. 6.1.4). We then formulate the optimal selection of breakpoint locations as

a sequentially-constrained hypergraph partitioning problem (Sec. 6.2), and prove it to be

NP-hard in general (Sec. 6.2.1). We develop exact and heuristic algorithms for a number of

important cases (Secs. 6.2.2–6.2.5), and demonstrate their practical effectiveness in design

of recombination experiments for members of the beta-lactamase family (Sec. 6.3).

6.1 A Hypergraph Model of Evolutionary Interactions

Previous work on breakpoint selection for site-directed recombination (Sec. 2.5) focused

on retaining pairwise residue-residue relationships. In order to more completely model

statistical interactions in a protein, it is necessary to generalize single-position sequence

conservation and pairwise structural contact. We model a protein and its reference struc-
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ture with a weighted hypergraph G = (V, E, w), where vertices V = {v1, v2, · · · , v|V |}

represent residue positions in sequential order on the backbone, edges E ⊆ 2V represent

mutually interacting sets of vertices, and weight function w E → R represents the rel-

ative significance of edges. We construct an order-c edge e = 〈v1, v2, · · · , vc〉 for each

set of residues (listed in sequential order for convenience) that are in mutual contact; this

construction can readily be extended to capture other forms of interaction, e.g. long-range

interaction of non-contacting residues due to electrostatics. Note that subsets of vertices

associated with a higher-order edge form lower-order edges.

The definition of the edge weight is key to effective use of the hypergraph model. In

the case where the protein is a member of a family with presumed similar structures, edge

weights can be evaluated from the general database or a specific family. There are many

observed residue values (across the family or database) for the vertices of any given edge.

We thus build up to an edge weight by first estimating the probability of the residue values,

then decomposing the probability to ensure non-redundant information among multi-order

edges for the same positions. Finally we determine the effect on the pattern of these values

due to recombination according to a set of chosen breakpoint locations.

6.1.1 Distribution of Hyperresidues in Database and Family

Let R = 〈r1, r2, · · · , rc〉 be a “hyperresidue,” a c-tuple of amino acid types (e.g. 〈Ala, Val, Ile〉).

Intuitively speaking, the more frequently a particular hyperresidue occurs in functional pro-

teins, the more important it is expected to be for their folding and function. We can estimate

125



the overall probability p of hyperresidues from their frequencies in the database D of pro-

tein sequences and corresponding structures:

p(R) =
#R in D
|D|

, (6.1)

where |D| represents the total number of tuples of the same order in the database. When

considering a specific protein family F with a multiple sequence alignment (MSA) and

shared structure, we can estimate position-specific (i.e., for edge e) probability of a hyper-

residue:

pe(R) =
#R at e in F
|F |

, (6.2)

where |F | is the total number of tuples at positions forming edge e in the family MSA, i.e.

the total number of sequences in the family MSA.

Estimation of probabilities from frequencies is valid only if the frequencies are large.

Thus the general probability estimated from the whole database (Eq. 6.1) is more robust

than the position-specific one from a single family (Eq. 6.2). However, family-specific

information is more valuable as it captures the evolutionarily-preserved interactions in that

family. To combine these two aspects, we adopt the treatment of sparse data sets proposed

by Sippl [102]:

qe(R) = ω1 · p(R)+ ω2 · pe(R) , (6.3)

but employing weights suitable for our problem:

ω1 =
1

1+ |F |ρ
and ω2 = 1− ω1 , (6.4)

where ρ is a user-specified parameter that determines the relative contributions of database

and family. Note that when ρ = 0, qe(R) = p(R) and the family-specific information is
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ignored; whereas when ρ = ∞, qe(R) = pe(R) and the database information is ignored.

Using a suitable value of ρ, we will obtain a probability distribution that is close to the

overall database distribution for a small family but approximates the family distribution for

a large one.

6.1.2 Multi-order Potential Score for Hyperresidues

Since we have multi-order edges, with lower-order subsets included alongside their higher-

order supersets, we must ensure that these edges are not redundant. In other words, a

higher-order edge should only include information not captured by its lower-order con-

stituents. The inclusion-exclusion principle ensures non-redundancy in a probability ex-

pansion, as demonstrated in the case of protein structure prediction [100]. We define an

analogous multi-order potential score for hyperresidues at edges of orders 1, 2, and 3, re-

spectively, as follows:

φvi (rα) = log qvi (rα) , (6.5)

φviv j (rαrβ) = log
qviv j (rαrβ)

qvi (rα) · qv j (rβ)
, (6.6)

φviv jvk (rαrβrγ ) = log
qviv jvk (rαrβrγ ) · qvi (rα) · qv j (rβ) · qvk (rγ )

qviv j (rαrβ) · qvivk (rαrγ ) · qv jvk (rβrγ )
. (6.7)

Here, φvi (rα) captures residue conservation at vi ; φviv j (rαrβ) captures pairwise hypercon-

servation and is zero if vi and v j are not in contact or their residue types are completely

independent; φviv jvk (rαrβrγ ) captures 3-way hyperconservation and is zero if vi , v j , and

vk are not in mutual contact or their residue types are completely independent. The poten-
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tial score of higher-order hyperresidues can be defined similarly. The potential score of a

higher-order hyperresidue contains no information redundant with that of its lower-order

constituents.

An alternative understanding of the hyperconservation score is as a measurement of

over/underrepresentation of hyperresidues. Let q ′e(R) be the probability of hyperresidue R

at edge e assuming no order-|R| conservation (there might be lower-order conservation).

Then we can write the general definition of the hyperconservation score as follows,

φe(R) = log
qe(R)

q ′e(R)
, (6.8)

which includes Eq. 6.5 – 6.7 as special cases.

6.1.3 Edge Weights

In the hypergraph model, edge weights measure evolutionary optimization of higher-order

interactions. For a protein or a set of proteins S ⊆ F , we can evaluate the significance

of an edge as the average potential score of the hyperresidues appearing at the positions

forming the edge:

w(e) =
∑

R

#R at e in S
|S|

· φe(R) . (6.9)

6.1.4 Edge Weights for Recombination

We can view recombination as a two-step process: decomposing followed by recombining.

In the decomposing step, each protein sequence is partitioned into n+1 intervals according
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to the breakpoints, and the hypergraph is partitioned into n+1 disjoint subgraphs by remov-

ing all edges spanning a breakpoint. The impact of this decomposition can be individually

assessed for each edge, using Eq. 6.9 for the parents S.

In the recombining step, edges removed in the decomposing step are reconstructed with

new sets of hyperresidues according to all combinations of parent fragments. The impact of

this reconstruction can also be individually assessed for each edge, yielding a breakpoint-

specific weight:

w(e, X) =
∑

R

#R at e in L
|L|

· φe(R) . (6.10)

X = {x1, x2, · · · , xn} is a set of breakpoints at which parent sequences S are recombined,

where xt = vi indicates that breakpoint xt is between residues vi and vi+1. In this case,

the potential score of hyperresidue R is weighted by the amount of its representation in

the library L. Note that we need not actually enumerate the set of hybrids (which can be

combinatorially large) in order to determine the weight, as the frequencies of the residues

at the positions are sufficient to compute the frequencies of the hyperresidues.

The combined effect of the two-step recombination process on an individual edge, the

edge perturbation, is then defined as the change in edge weight:

1w(e, X) = w(e)− w(e, X) . (6.11)

If all vertices of e are in one fragment, we have w(e) = w(e, X) and 1w(e, X) = 0. The

edge perturbation thus integrates essential information from the database, family, parent

sequences, and breakpoint locations, and serves as a guide for breakpoint selection in site-

directed recombination (Sec. 6.2).

129



6.1.5 Significance of Multi-order Hyperconservation

We estimated the probabilities of hyperresidues from their frequencies (Eq. 6.1, Eq. 6.2),

and the risk of doing so is that the estimation is valid only if the frequencies are sufficiently

large. In this section, we evaluate the statistical significance of hyperresidues by calculat-

ing their p-values. The p-value of an order-c (c = 2, 3, 4) hyperresidue is defined as the

probability of obtaining the exact or a more extreme number of occurrences, assuming that

there is no order-c hyperconservation but that the hyperconservation of its lower-order con-

stituents (if any) is retained. By retaining the hyperconservation of lower-order constituents

in the calculation of p-values, we are able to separate multi-order hyperconservation and

avoid spurious higher-order hyperconservation that is merely a combination of lower-order

hyperconservation. Therefore, we can identify higher-order hyperconservation that is sig-

nificant.

The p-value of a hyperresidue is determined by its number of occurrences and those

of its lower-order constituents, independent of the particular residue types. For example,

if we are calculating the p-value of hyperresidue 〈Ala, Val, Ile〉 at positions 〈i, j, k〉 of a

MSA, we only care that Ala is at position i , Val is at position j , and Ile is at position k.

Therefore, without losing any generality, we use “A” to represent the residue type of interest

and at each position and “O” to represent other residue types. We also use “X” as a wild

card, either “A” or “O”. For example, in this representation, there are four possible types for

order-2 hyperresidues, “AA”, “AO”, “OA” and “OO”; “AX” represents either “AA” or “AO”,

and “XX” represents all four types. Higher-order hyperresidue types can be represented
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Fig. 6.2: Illustration of random permutation of residues. (a) Order-2: given any permutation
of the first column, randomly permute residues in the second column. The residues within
each group (red and black) are free to re-permute at the second column without violating the
constraint x12 = k. (b) Order-3: given any permutation of the first two column, randomly
permute residues in the third column. The red, blue and green groups correspond to three
terms in Eq. 6.15. The residues within each group (red, blue, green and black) are also free
to re-permute as long as all constraints are enforced.

similarly.

Let n be the size of the MSA (i.e. the total number of residues in each column) and let ne

be the number of occurrences of a hyperresidue of interest at hyperedge e (a set of position

indices). We also define a random variable xe as the number of occurrences of the hyper-

residue assuming that there is no order-|e| hyperconservation but that the hyperconservation

of lower-order constituents (if any) is retained. In order to retain the hyperconservation of

lower-order constituents, we derive the conditional probability distribution of xe. For ex-

ample, the conditional probability of x123 is p(x123|n, n1, n2, n3, n12, n13, n23), where the

conditions indicate the size of the MSA and the number of occurrences of lower-order

constituents. For simplicity, the conditions are made implicit in the rest of this section.

Let us start from order-2 hyperconservation. The distribution of x12 is determined by
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permutations of the residues in these two columns. Hence we have

p(x12 = k) =
n
(n2

k

)(n−n2
n1−k

)
n1(n − n1)

nn
=

(n2
k

)(n−n2
n1−k

)( n
n1

) (6.12)

The numerator in Eq. 6.12 is the number of permutations with x12 = k, and the denom-

inator is the total number of possible permutations. In fact the number of permutations

of the first column (n) cancels out in the numerator and denominator. For any particular

permutation of the first column, k “A”s and n1 − k “O”s are chosen from the second col-

umn
(

yielding
(n2

k

)(n−n2
n1−k

)
possibilities

)
to match the n1 “A”s in the first column, so that

the number of “AA”s is x12 = k. The residues within each group (n1 and n − n1) can

be permuted (n1(n − n1) possibilities) without violating this constraint. Fig. 6.2 (a) illus-

trates the calculation of p(x12 = k). Since the observed value of x12 is n12, the p-value is

calculated as p(x12 ≥ n12) or p(x12 ≤ n12), whichever is smaller. The former indicates

over-representation of hyperresidues and the latter under-representation, and they are not

independent for the same hyperedge (see Sec. 6.3).

As the reader may have noticed, Eq. 6.12 is a hypergeometric distribution [32]. The

hypergeometric distribution arises when a random selection without replacement is made

among objects of two distinct types (“A” and “O” in our case). If there are p good objects

among n total and we take q samples, the probability of obtaining r good ones is

h(n, p, q, r) =

(p
r

)(n−p
q−r

)(n
q

) . (6.13)

Now we can rewrite Eq. 6.12 as an h function with p = n2, q = n1 and r = k, i.e. by

randomly taking n1 residues from the second column (n2 of n are “A”s) to match the n1
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“A”s in the first column, the probability of obtaining k “AA”s is

p(x12 = k) = h(n, n2, n1, k) (6.14)

The calculation of p-value for order-3 edges is slightly more complicated because we

need to retain the hyperconservation of its order-2 constituents. As seen in Eq. 6.12, the

permutation of the first column has no effect on p(x12) — p(x123) is independent of the

permutation of the first two columns as long as we have x1 = n1, x2 = n2 and x12 = n12.

We first derive the following joint probability by randomly permuting the third column.

p(x123 = k, x13 = n13, x23 = n23) = h(n, n3, n12, k)

= ·h(n − n12, n3 − k, n1 − n12, n13 − k)

·h(n − n1, n3 − n13, n2 − n12, n23 − k)(6.15)

i.e. the probability of obtaining k “AAA”s, n13 “AXA”s and n23 “XAA”s. Fig. 6.2 (b)

illustrates how this joint probability is derived. The three terms in Eq. 6.15 enforce three

constraints, x123 = k, x13 = n13 and x23 = n23. The last two constraints must be satisfied

in order to retain the potential hyperconservation of lower-order constituents. In fact, these

three constraints are just variants of Eq. 6.12 that each enforces one constraint and all adopt

the hypergeometric distribution. The first term of Eq. 6.15 enforces the order-3 constraint

x123 = k, i.e. choosing n12 residues from the third column (n3 of n are “A”s) to match

the n12 “AA”s in the first two columns; the probability of obtaining k “A”s, and thus k

“AAA”s, is h(n, n3, n12, k). The second and third terms enforce the two order-2 constraints,

x13 = n13 and x23 = n23, where the argument values of the hypergeometric functions are

updated after each constraint is applied. These four parameters are: number of residues
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Tab. 6.1: Calculation of parameters in Eq. 6.15. Starting from any permutation of the first
two columns with x1 = n1, x2 = n2 and x12 = n12, satisfy the constraints one by one
by permuting residues in the third column. The remaining columns of the table represent
the number n of residues to choose from, the number p of type “A”, the number q to be
selected, and the number r of type “A” among the selected ones. Each row corresponds to
parameters of one hypergeometric function and the probability p(x123 = k) is the product
of all these hypergeometric functions.

constraint n p q r
x123 = k n n3 n12 k
x13 = n13 n − n12 n3 − k n1 − n12 n13 − k
x23 = n23 n − n1 n3 − n13 n2 − n12 n23 − k

Tab. 6.2: Extension of Tab. 6.1 to order-4.

constraint n p q r
x1234 = k n n4 n123 k

x124 = n124 n − n123 n4 − k n12 − n123 n124 − k
x134 = n134 n − n12 n4 − n124 n13 − n123 n134 − k
x234 = n234 n − n12 − n13 + n123 n4 − n124 − n134 + k n23 − n123 n234 − k
x14 = n14 n − n12 − n13 − n23 + 2n123 n4 − n124 − n134 − n234 + 2k n1 − n12 − n13 + n123 n14 − n124 − n134 + k
x24 = n24 n − n1 − n23 + n123 n4 − n14 − n234 + k n2 − n12 − n23 + n123 n24 − n124 − n234 + k
x34 = n34 n − n1 − n2 + n12 n4 − n14 − n24 + n124 n3 − n13 − n23 + n123 n34 − n134 − n234 + k

remaining, number of “A”s remaining in the third column, number of samples to take, and

number of “A”s to take at each step, corresponding to the four parameters n, p, q, and r in

Eq. 6.13.

We tabulate the calculation of parameters of Eq. 6.15 in Tab. 6.1. The method for filling

entries in Tab. 6.1 is straightforward. The first row has n as the size of the MSA, n3 as the

number of type “A” residues in the third column, n12 as the number of “AA”s in the first

two columns, and k as the number of “AAA”s desired. Then the last two columns can be

filled by employing the inclusion-exclusion principle because the k “AAA”s also count as

“AXA”s and “XAA”s, and the number of “A”s remaining in the first two columns need to
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subtract the number of “AA”s. Finally, the first two entries of each row (other than the first)

can be obtained from the numbers in the previous row, by subtracting the last two entries

from the first two.

Once we have the conditional probability in Eq. 6.15, we can calculate the probability

p(x123 = k) by normalization.

p(x123 = k) =
p(x123 = k, x13 = n13, x23 = n23)∑min(n12,n13,n23)

i=0 p(x123 = i, x13 = n13, x23 = n23)
. (6.16)

Then the p-value can be calculated as p(x123 ≥ n123) or p(x123 ≤ n123), whichever is

smaller. The summation range used here, 0, min(n12, n13, n23), may not be tight, i.e. not

all values in this range are possible in practice. For Eq. 6.13 to be meaningful, we have

to satisfy constraints 0 ≤ r ≤ p and 0 ≤ q − r ≤ n − p, and these constraints have to

be satisfied for all rows in Tab. 6.1 and Tab. 6.2. Tight ranges can be derived by solving

series of inequalities. Alternatively, we can artificially define h(n, p, q, r) = 0 if any of

these constraints is violated, so that unrealistic numbers of occurrences have no effect on

the probability distribution of xe.

The probability p(xe) and hence the p-value of higher-order hyperresidues can be cal-

culated in the same way. Tab. 6.1 can be extended to higher-order hyperresidues and the

same method for filling entries applies. Tab. 6.2 presents the table for order-4 hyper-

residues. Starting from any permutation of the first three columns such that xe = ne,

where e ∈ {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, we randomly permute the fourth

column (x4 = n4) to satisfy seven constraints one by one. The joint probability p(x1234 =

k, x124 = n124, x134 = n134, x234 = n234, x14 = n14, x24 = n24, x34 = n34) is the product

of seven hypergeometric functions whose argument values correspond to the seven rows
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in Tab. 6.2. Similarly, p(x1234) can be calculated by normalization and the p-value can be

calculated as p(x1234 ≥ n1234) or p(x1234 ≤ n1234), whichever is smaller.

A hyperresidue is considered significant if its p-value is less than a user specified sig-

nificance level α. A hyperedge is considered significant if it contains at least one signifi-

cant hyperresidue. Since there are multiple hyperresidues at each hyperedge, the testing of

hyperedge significance may be subject to the Bonferonni correction for multi-hypothesis

testing [12] in order to avoid spurious positives. In other words, we should adjust the

significance level based on the number of tests.

αe ≈
α

N
(6.17)

where N is the number of possible hyperresidues at the current hyperedge. However, we

also know that hyperresidues for the same hyperedge are highly dependent (see Fig. 6.6 in

Sec. 6.3), and thus the Bonferonni correction may be too conservative and some significant

hyperedges may be missed.

The computational complexity of p-value calculation is as same as that of the hyperge-

ometric function h(n, p, q, r), which involves factorial functions, making it hard to obtain

the exact value for large parameters. The Gamma function g(n) =
∫
+∞

0 xn−1e−xdx is used

to interpolate the factorial n. We use the Matlab function hygepdf in the stats toolbox to cal-

culate h(n, p, q, r). This function obtains the logarithm of g(n) without computing g(n),

and also avoids the underflow and overflow that may occur if it is computed directly [26].

An order-c hyperresidue is considered if and only if all its order-(c − 1) constituents have

non-zero occurrences. Note that a considered hyperresidue may have zero occurrences it-

self. The number of order-c hyperresidues that must be considered is usually much less

136



than 20c, so that the computation is not very time-consuming in practice.

6.2 Optimization of Breakpoint Locations

As we mentioned (Sec. 6.1.4), the edge perturbation serves as a guide for breakpoint se-

lection in site-directed recombination. Given parent sequences, a set of breakpoints de-

termines a hybrid library. The quality of this hybrid library can be measured by the total

perturbation to all edges due to the breakpoints. The hypothesis is that the lower the per-

turbation, the higher the representation of folded and functional hybrids in the library. We

formulate the breakpoint selection problem as follows.

Problem 6.1 c-RECOMB. Given Gc = (V, Ec, w) and a positive integer n, choose a set

of breakpoints X = {x1, x2, · · · , xn} minimizing
∑

e∈Ec
1w(e, X).

We use notation Gc to indicate a hypergraph with edge order uniformly c. Since lower-

order edges can be regarded as a special kind of higher-order ones, Gc includes “virtual”

lower-order edges.

This hypergraph partitioning problem is significantly more specific than general hyper-

graph partitioning, so it is interesting to consider its algorithmic difficulty. As we will see

in Sec. 6.2.1, c-RECOMB is NP-hard for c = 4 (and thus also for c > 4), although we

provide polynomial-time solutions for c = 2 in Sec. 6.2.2 and c = 3 in Sec. 6.2.4.

A special case of c-RECOMB with even more structure provides an efficient heuris-

tic approach to minimize the overall perturbation. By minimizing the total weight of all

edges removed in the decomposing step, fewer interactions need to be recovered in the
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Fig. 6.3: Construction of hypergraph G4 = (V, E4, w) from an instance of 3SAT φ =
(z1∨ z̄2∨ z3)∧ (z2∨ z3∨ z̄4). Type 1 edges e1 and e2 ensure the satisfaction of clauses (−1
perturbation iff there is a breakpoint iff the literal is true and the clause is satisfied), while
type 3 edge e3 and type 2 edge e4 ensure the consistent use of literals (−1 perturbation iff
the breakpoints are identical or complementary iff the variable has a single value).

recombining step.

Problem 6.2 c-DECOMP. Given Gc = (V, Ec, w) and a positive integer n, choose a set

of breakpoints X = {x1, x2, · · · , xn} minimizing
∑

e∈EX
w(e), where EX ⊆ Ec is the set of

edges spanning X.

c-DECOMP could also be useful in identifying modular units in protein structures, in which

case there is no recombining step.

6.2.1 NP-hardness of 4-RECOMB

4-RECOMB is combinatorial in the set X of breakpoints and the possible configurations

they can take relative to each edge. The number of possible libraries could be huge

even with a small number of breakpoints (e.g. choosing 7 breakpoints from 262 posi-

tions for beta-lactamase results in combinations on the order of 1013). The choices made

for breakpoints are reflected in whether or not there is a breakpoint between each pair of

sequentially-ordered vertices of an edge, and thus in the perturbation to the edge. We first

138



give a decision version of 4-RECOMB as follows and then prove that it is NP-hard. Thus

the related optimization problem is also NP-hard. Of course edges are not arbitrary in real

protein structures; it remains interesting future work to determine if the problem is still

NP-hard in such “geometrically-constrained” situation.

Problem 6.3 4-RECOMB-DEC. Given G4 = (V, E4, w), a positive integer n, and an inte-

ger W , does there exist a set of breakpoints X = {x1, x2, · · · , xn} such that
∑

e∈E4
1w(e, X) ≤

W .

Theorem 6.4 4-RECOMB-DEC is NP-hard.

Proof: We reduce from 3SAT. Let φ = C1∧C2∧· · ·∧Ck be a boolean formula in 3-CNF

with k clauses. We shall construct a hypergraph G4 = (V, E4, w) such that φ is satisfiable

iff there is a 4-RECOMB-DEC solution for G4 with n = 3k breakpoints and W = −|E4|

(see Fig. 6.3). For clause Ci = (li,1 ∨ li,2 ∨ li,3) in φ, add to V four vertices in sequential

order vi,1, vi,2, vi,3, and vi,4. Elongate V with 3k trivial vertices (v′j in Fig. 6.3), where we

can put trivial breakpoints that cause no perturbation. Let us define predicate b(i, s, X) =

vi,s ∈ X for s ∈ {1, 2, 3}, indicating whether or not there is a breakpoint between vi,s

and vi,s+1. We also use indicator function I to convert a boolean value to 0 or 1. We

construct E4 with three kinds of edges: (1) For the 4-tuple of vertices for clause Ci , add an

edge e = 〈vi,1, vi,2, vi,3, vi,4〉 with 1w(e, X) = −I {b(i, 1, X) ∨ b(i, 2, X) ∨ b(i, 3, X)}.

(2) If two literals li,s and l j,t are identical, add an edge e = 〈vi,s, vi,s+1, v j,t , v j,t+1〉 with

1w(e, X) = −I {b(i, s, X) = b( j, t, X)}. (3) If two literals li,s and l j,t are complementary,

add an edge e = 〈vi,s, vi,s+1, v j,t , v j,t+1〉 with 1w(e, X) = −I {b(i, s, X) 6= b( j, t, X)}.
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There are 7k vertices and at most k + 3
(k

2

)
= O(k2) edges, so the construction takes

polynomial time. It is also a reduction. First, if φ has a satisfying assignment, choose

breakpoints X = {vi,s |li,s is TRUE} plus additional breakpoints between the trivial vertices

to reach 3k total. Since each clause is satisfied, one of its literals is true, so there is a

breakpoint in the corresponding edge e and its perturbation is −1. Since literals must be

used consistently, type 2 and 3 edges also have −1 perturbation. Thus 4-RECOMB-DEC is

satisfied with n = 3k and W = −|E4|. Conversely, if there is a 4-RECOMB-DEC solution

with breakpoints X , then assign truth values to variables such that li,s = b(i, s, X) for

s ∈ {1, 2, 3} and i ∈ {1, 2, · · · , k}. Since perturbation to type 1 edges is −1, there must

be at least one breakpoint in each clause vertex tuple, and thus a true literal in the clause.

Since perturbation to type 2 and 3 edges is −1, literals are used consistently. �

We note that 4-RECOMB-DEC is in NP, since given a set of breakpoints X for parents

S we can compute 1w(e, X) for all edges in polynomial time (see Sec. 6.2.6), and then

must simply sum and compare to a provided threshold.

6.2.2 Dynamic Programming Framework

Despite the NP-hardness of the general sequentially-constrained hypergraph partitioning

problem c-RECOMB, the structure of the problem (i.e. the sequential constraint) leads

to efficient solutions for some important cases. Suppose we are adding breakpoints one

by one from left to right (N- to C-terminal) in the sequence. Then the additional pertur-

bation to an edge e caused by adding breakpoint xt given previous breakpoints X t−1 =
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Fig. 6.4: All breakpoint configurations that cause additional perturbation to an edge as
breakpoints are added one by one from left to right in the sequence. The dynamic pro-
gramming formulation requires that we be able to distinguish these configurations from
each other and from configurations with no additional perturbation. For an order-2 edge
〈vi , v j 〉, there is additional perturbation if and only if the current breakpoint (right bar) is
added between vi and v j and the previous breakpoint (left bar) is to the left of vi . Similarly,
the configurations on an order-3 edge 〈vi , v j , vk〉 can be distinguished by the positions of
the current breakpoint and the preceding one with respect to the intervals vi , v j and v j , vk .
However, for an order-4 edge, configurations 6 and 7 are ambiguous with respect to the
intervals of 〈vi , v j , vk, vl〉. We cannot be certain about the (non-)existence of a breakpoint
between vi and v j without potentially looking back at all previous breakpoints (ellipsis).

{x1, x2, · · · , xt−1} can be written:

11w(e, X t−1, xt) = 1w(e, X t)−1w(e, X t−1) , (6.18)

where X0 = ∅ and the additional perturbation caused by the first breakpoint is 11w(e, X0, x1) =

1w(e, X1). Reusing notation, we use 11w(E, X t−1, xt) to indicate the total additional

perturbation to all edges. Now, if the value of 11w(E, X t−1, xt) can be determined by

the positions of xt−1 and xt , independent of previous breakpoints, then we can adopt the

dynamic programming approach shown below. When the additional perturbation depends

only on xt−1 and xt , we write it as 11w(E, xt−1, xt) to indicate the restricted dependence.

Let dt, τ be the minimum perturbation caused by t breakpoints with the rightmost at

position τ . If, for simplicity, we regard the right end of the sequence as a trivial breakpoint

that causes no perturbation, then dn + 1, |V | is the minimum perturbation caused by n
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breakpoints plus this trivial one, i.e. the objective function for Problem 6.1. We can

compute d recursively:

dt, τ =


1w(E, {τ }), if t = 1 ;

min
λ≤τ−δ

{dt − 1, λ+11w(E, λ, τ )}, if t ≥ 2 .

(6.19)

where δ is a user-specified minimum sequential distance between breakpoints. The recur-

rence can be efficiently computed bottom-up in a dynamic programming style, due to its

optimal substructure. In the following, we instantiate this dynamic programming formula-

tion with different forms of 11w for different cases of c-RECOMB and c-DECOMP.

The special case of 2-DECOMP (disruption of pairwise interactions) has been pre-

viously solved as a shortest path problem [31]. A complexity analysis accounting for

both the edge weight calculation and dynamic programming shows that the total time is

O(SE + V E + nV 2) (see Sec. 6.2.6).

The instantiation for 2-RECOMB is as follows. Each order-2 edge 〈vi , v j 〉 has two

states: either there is breakpoint between vi and v j or not (Fig. 6.4). The state of e is

changed by adding breakpoint xt iff xt−1 < vi < xt < v j . Thus the additional perturbation

caused by adding xt can be determined by the positions of xt−1 and xt , and is indepen-

dent of previous breakpoints. Our dynamic programming framework Eq. 6.19 is therefore

applicable to 2-RECOMB; the time complexity is O(S2 E + V E + nV 2) (see Sec. 6.2.6).
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6.2.3 Reduction from c-DECOMP to 2-DECOMP

A significant property of our multi-order potential score (Sec. 6.1.2) is that the score of

a higher-order edge captures only higher-order hyperconservation and contains no infor-

mation about its lower-order constituents. Thus in the decomposition phase, a higher-

order edge is broken if there is a breakpoint anywhere in the set of residue positions it

spans. The lack of breakpoints between any adjacent pair of its vertices will be cap-

tured by the weight of the appropriate lower-order constituent edge. By this reasoning,

we can reduce the c-DECOMP problem to the 2-DECOMP problem: given hypergraph

Gc = (Vc, Ec, wc), construct graph G2 = (V2, E2, w2) such that V2 = Vc and each edge

ec = 〈v1, v2, · · · , vc〉 ∈ Ec is mapped to an edge e2 = 〈v1, vc〉 ∈ E2 connecting the first

and last vertex of ec, putting weight wc(ec) on w2(e2). There is a breakpoint decompos-

ing ec in Gc iff there is one decomposing e2 in G2. G2 can be constructed in O(V + E)

time, and optimal solutions for c-DECOMP on Gc correspond to optimal solutions for 2-

DECOMP on G2. Under this reduction (which adds only O(E) computation), the total

time complexity for c-DECOMP is O(SE + V E + nV 2) (see Sec. 6.2.6). Thus protein

modules can be computed under c-DECOMP in polynomial time for any order of edge.

6.2.4 Dynamic Programming for 3-RECOMB

We have seen that the c-RECOMB problem is NP-hard when c ≥ 4 (Sec. 6.2.1) and solvable

in polynomial time when c = 2 (Sec. 6.2.2). In this section, we instantiate our dynamic

programming framework to give a polynomial-time solution when c = 3.
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An order-3 edge has four possible states, according to whether or not there is at least

one breakpoint between each pair of its vertices listed in sequential order. As Fig. 6.4

illustrates, given only xt−1 and xt , all breakpoint configurations that cause additional per-

turbation can be uniquely determined, and the additional perturbation can be computed

as in Eq. 6.18. This edge perturbation calculation meets the restriction required for our

dynamic programming framework, and Eq. 6.19 and be used to optimize 3-RECOMB in

O(S3 E + V E + nV 2) time (see Sec. 6.2.6).

6.2.5 Stochastic Dynamic Programming for 4-RECOMB

Tetrahedra are natural building blocks of 3D structures, and Delaunay tetrahedra in the

protein core have been shown to capture interactions important for protein folding [20].

Our potential scores show significant information in general order-4 hyperconservation

(Sec. 6.3). Although the p-value analysis (Sec. 6.1.5) identified few significant hyper-

edges of order-4 in one protein family, that could be due to the small size of the MSA.

With more information available, we would expect more significant order-4 hyperedges.

In order to solve 4-RECOMB problems, we develop here a heuristic approach based on

stochastic dynamic programing. Unlike 2-RECOMB and 3-RECOMB, the additional per-

turbation of a breakpoint cannot always be determined by reference just to the current and

previous breakpoint locations. As Fig. 6.4 shows, given xt−1 and xt , there is ambiguity

only between configurations 6 and 7.

We can still employ the dynamic programming framework if we move from a deter-
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ministic version, in which both the additional perturbation and next state are known, to a

stochastic version, in which they are predicted as expected values. In the ambiguous case of

configurations 6 and 7 with t ≥ 2, let us assume that breakpoints before xt−1 are uniformly

distributed in the sequence. Then the probability of finding no breakpoint between vi and

v j , i.e. being in configuration 6 rather than 7, is

p =
(

1−
v j − vi

xt−1

)t−2

, (6.20)

since v j−vi
xt−1

is the probability of a breakpoint being located between vi and v j and t − 2 is

the number of breakpoints before position xt−1. Therefore, for the ambiguous cases, the

expected additional perturbation to e caused by adding xt is

11w(e, xt−1, xt , t) = p ·11w6(e, X t−1, xt)+ (1− p) ·11w7(e, X t−1, xt) , (6.21)

where the subscript of 11w indicates the configuration. Note that, unlike our previous

formulations, the additional perturbation depends on the number of previous breakpoints.

Thus the time complexity of this stochastic dynamic programming is increased to O(S4 E+

nV E + nV 2) (see Sec. 6.2.6). This stochastic dynamic programming technique can also

be applied to c > 4 c-RECOMB problems, but the effectiveness of the approximation is

expected to decrease with an increasing number of ambiguous states.

6.2.6 Time Complexity Analysis

Since c-DECOMP is a special case of c-RECOMB and is always easier, we focus on the

time complexity of c-RECOMB. The hyperresidue potential score φe(R) needs to be com-
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puted only once for each family and requires time polynomial in the size of the database

and family. Thus we assume that φe(R) is precomputed before breakpoint selection. Then

the time complexity of the dynamic programming algorithms includes three parts:

1. Computation of 1w(e, X) for all edges.

Although w(e, X) is defined over the whole library, we do not really need to enu-

merate all hybrids because the number of hyperresidues is bounded by O(Sc), when

all vertices in an order-c edge are separated by breakpoints and can combine freely.

Since each combination shows up exactly the same number of times in the library,

the time complexity of computing w(e, X) is O(Sc). In fact, this bound can be

improved if |S| > 20. We first count the frequencies of residues at each posi-

tion in O(S) time, and then compute the frequencies of hyperresidues in O(20c)

time, thereby improving the time complexity of computing w(e, X) to a total of

O(S + 20c). Doing either of these computations for all edges results in total time

of O(min {Sc E, (S + 20c)E}). For 2-DECOMP, we only need to compute w(e),

which takes O(SE) time.

2. Computation of 11w(E, λ, τ ) for λ ∈ {1, 2, · · · , |V | − δ} and τ ∈ {δ + 1, δ + 2, · · · , |V |}.

In a naı̈ve approach, we can check which edges are broken for each combination of

λ and τ , and compute the additional perturbation; this takes time O(V 2 E). This

time complexity can be improved to O(V E) as follows. For each position of λ, first

compute 11w(E, λ, λ + δ), in O(E) time. Then in sweeping from λ + δ to |V |,

the state of an edge e will be changed at most 2c−1
− 1 times. Thus 11w(E, λ, τ )
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for τ ∈ {λ+ δ, · · · , |V |} can be computed in total O(E) time in an incremental

manner by adjusting it at each step for those edges whose weight changes from τ to

τ + 1. Thus the total time complexity is O(V E) for 2-RECOMB and 3-RECOMB,

and O(nV E) for the stochastic dynamic programming of 4-RECOMB since we need

to compute the additional perturbation for t ∈ {2, 3, · · · , n}.

3. Computation of dn + 1, |V | in Eq. 6.19.

We must compute dt, τ for t ∈ {1, 2, · · · , n, n + 1} and τ ∈ {δ + 1, δ + 2, · · · , |V |}.

Each evaluation takes O(V ) time to choose the minimum, so the time complexity is

O(nV 2).

Therefore, the time complexity of dynamic programming for c-RECOMB is O(Sc E +

V E + nV 2) for 2 ≤ c ≤ 3 and O(Sc E + nV E + nV 2) for c = 4, where the first term in

each can be improved to O((S + 20c)E) for large S.

6.3 Results

We demonstrate our hypergraph model and recombination planning algorithms in analysis

of the beta-lactamase protein family, since previous site-directed recombination experi-

ments have employed beta-lactamase parents TEM-1 and PSE-4 [72]. We identified 136

beta-lactamases for F , including TEM-1 and PSE-4, with no more than 80% sequence

identity, and constructed a multiple sequence alignment with at most 20% gaps in any se-

quence. PDB file 1BTL was used as the representative family structure. Vertices were

considered as located at the average position of non-hydrogen side-chain atoms (Cα atoms
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Fig. 6.5: Multi-order potential scores, derived from the database (top) and the beta-
lactamase family (bottom). For each order c of hyperresidues, the distribution of potential
scores among bins of size 0.2 is shown (pooled over all edges for the family version). Base
2 logarithm is used for computing potential scores.

not included except for Glycines), and edges formed for sets of vertices whose positions

were within 8 Å of each other.

For the database D, we started with a subset of sequences culled from the protein data

bank according to structure quality (R-factor less than 0.25) and mutual sequence identity

(at most 60%) by PISCES [123]. To minimize the effect of structural errors on statistical

results, chains with nonconsecutive residue numbers, gaps (Cα-Cα distance greater than

4.2 Å between consecutive residues), or incorrect atom composition of residues were ex-

cluded [20]. This left 687 chains. Contact maps were constructed as with the family.

We first considered the information content in higher-order interactions. Fig. 6.5 shows
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(a) c = 2, N = 1176 (b) c = 3, N = 1447 (c) c = 4, N = 604

Fig. 6.6: Number of significant edges with respect to various significance levels. c is
the order of an edge, and N is the total number of order-c edges. The significance level
is shown in a logarithmic scale. The numbers of edges with significant over-represented
(red dashed, diamonds), under-represented (green dashed, squares), and both (blue solid,
circles) hyperresidues are shown.

the distributions of hyperresidue potential scores in both the database and family, for in-

creasing hyperresidue order. By the non-redundant decomposition, a higher-order potential

score would be 0 if the lower-order terms were independent. Non-zero scores represent

positive and negative correlation. The figure shows that there is clearly information in the

higher-order constraints. Note that the family distribution is biased (µ not at zero) because

many sets of amino acid types are not observed in the MSA. It is also more informative

(larger σ , with those for higher-order interactions comparable to that for pairwise interac-

tions). Dicysteine pairs are expected to be informative (i.e., cysteines are not independent),

and they are clear outliers marked in the c = 2 database potential.

We next considered the significance of hyperconservations in the beta-lactamase family.

Fig. 6.6 shows the number of hyperedges containing at least one significant hyperresidue

with respect to various significance levels. Over/under-represented hyperresidues are sep-

arated and the number of hyperedges containing both types is also shown. As expected,
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the higher the order, the smaller the number of significant edges. Among all hyperedges

(1176, 1447 and 604 for order 2, 3 and 4), the numbers of significant edges at α = 0.01

are 1125, 338 and 10, respectively. These numbers become 879, 84 and 1 at α = 0.001.

If we considered a Bonferonni correction for multiple hypothesis testing [12], the number

of significant edges would be even smaller. Another observation from Fig. 6.6 (a) is that

the set of edges containing under-represented hyperresidues is roughly a subset of those

containing over-represented ones. One possible explanation of this phenomenon is that

under-representation of a hyperresidue for an edge is just a side effect of over-represention

of another hyperresidue for that edge.

A limited amount of data is currently available for evaluating the experimental effec-

tiveness of the hyperconservation score for a recombination plan. Here, we use the beta-

lactamase hybrid libraries of [72, 53]. For each hybrid in a library, we computed both the

total potential score and the mutation level. The total potential score is the sum, over all

edges up to order-4, of the edge potential (Eq. 6.5 – 6.7) for the residues in the hybrid

sequence. The mutation level is the number of residues in the hybrid that are different

from the closest parent. Hybrids with small mutation levels are expected to be functional.

Fig. 6.7 shows that, especially for high mutation levels, the hybrids with better potential

scores are enriched in measured functional activity. Similar performance can be obtained

by using only the significant hyperedges (Fig. 6.7 (c, d)), although the number of edges is

much smaller (Fig. 6.6).

Next we applied our dynamic programming algorithms to optimize 7-breakpoint sets

for different beta-lactamase parents (Fig. 6.8), using minimum effective fragment length
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Fig. 6.7: Potential score φ(E) (sum over all interactions up to order-4) vs. mutation level m
(to the closest parent) for all hybrids in a beta-lactamase library with (left) 13 breakpoints
and (right) 7 breakpoints. Dots indicate hybrids, and circles those determined to be func-
tional [72, 53]. The potential score is shown when (a, b) using all hyperedges and (c, d)
only significant (α = 0.01) hyperedges.

151



50 100 150 200 250

12

2

1

Fig. 6.8: (Left) Optimized breakpoint locations for beta-lactamase when planning with 1,
2, or 12 parents. The sequence is labeled with residue index, with helices in black and
β-sheets in gray. (Right) Fragments of beta-lactamase in 3D structure (PDB id: 1BTL)
according to optimized breakpoint locations for the 1-parent case.

δ = 10, database/family weight ρ = 0.01, and all edges until order c = 3. We found

the results to be insensitive to ρ, beyond very small values placing all the emphasis on the

database (not shown). In the 1-parent case, the plan amounts to decomposing the protein

(PDB file 1BTL as representative family structure) into modules preserving multi-order

interactions. The 2-parent and 12-parent cases illustrated here would be useful in site-

directed recombination experiments. We note that some locations can “float” due to parent

sequence identity (e.g. in positions 17–20 with 2 parents). These all represent viable ex-

periment plans, optimizing multi-order interactions according to sequence characteristics

of different parents.

Finally, we considered the error that could be caused by the stochastic approximation
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Fig. 6.9: Distribution of differences in edge perturbations in ambiguous 4-RECOMB cases.
The differences are expressed in terms of perturbation standard deviations ε.

in solving 4-RECOMB. Fig. 6.9 shows the distribution, over all order-4 edges, of differ-

ences in perturbations between the ambiguous states. The differences are expressed in

terms of perturbation standard deviations ε = |11w6−11w7|
(std(11w6)+std(11w7))/2 . Edges with identi-

cal residues at vi or v j are excluded, since the perturbation is necessarily the same. Even so,

in a majority of cases the heuristic would lead to no or very small error. Thus the stochastic

dynamic programming will provide a near optimal solution, which makes it reasonable to

include 4-way interactions in practice.

6.4 Discussion

We have developed a general hypergraph model of multi-order residue interactions in pro-

teins, along with algorithms that use the model to optimize site-directed recombination

experiments. Our multi-order potential provides a natural means for identifying and rep-

resenting conservation across sets of residues. Our experiment planning algorithms take

advantage of the structure of this potential, along with the sequential constraint imposed

153



by recombination experiments, in order to efficiently determine optimal sets of breakpoints

maintaining important interactions.

The design of an optimal library for recombination must account for and balance multi-

ple criteria of optimality. Various approaches have been explored such as making trade-off

between the diversity and activity of all hybrids and the best hybrid in a library [79], or

minimizing the average number of clashes per hybrid [90]. Our approach focuses on ob-

taining a high representation of folded and functional hybrids, by preserving significant

interactions observed in the family and database. We take the diversity of hybrids into ac-

count only indirectly, by limiting the minimum effective fragment length. To more directly

account for diversity, it may be helpful to weight our potential to provide varying amounts

of freedom to maintain or perturb different interactions. Once we have learned the rules,

we know how to break them. Alternatively, a planning algorithm may keep these aspects

separate in a multi-dimensional optimization.

Finally, after the planned recombination experiments have been conducted, we may

desire to improve the model according to consistency with experimental data. Some inter-

actions determined to be important from the database and family information may prove to

be highly conserved in the folded, functional hybrids, while some may have more flexibil-

ity. An improved model can then be used in subsequent rounds of planning.
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7. SUMMARY AND FUTURE WORK

This thesis has developed effective criteria and efficient algorithms to plan experiments for

two significant applications in protein science, predicted protein structure model discrim-

ination and site-directed protein recombination. In order to conduct the experiments that

are in some sense optimal, either for most effectively selecting among a given set of protein

structure models or for increasing the probability of obtaining folded and functional hybrids

in recombination, it is necessary to do careful planning. Efficient planning algorithms are

demanded by the combinatorial number of possible experiment plans in both cases. The

experiment planning algorithms developed in this thesis not only can choose the most in-

formative and least expensive experiments efficiently, but also allow experimenters to make

explicit trade-offs among key properties of practical importance such as information gain,

robustness and cost.

The PRAXIS (Planned RApid eXperimental Investigation of Structure) approach, em-

phasizing the importance of planning, was developed in order to close the gap between

protein structure prediction and evaluation. Associated data interpretation frameworks

have also been developed for the model discrimination problem in order to handle noisy

and sparse experimental data. We applied two complementary experimental techniques,
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cross-linking and mutagenesis, to investigate protein structure characterization in terms of

residue-residue distance and local residue environment, respectively. We demonstrated that

each method can provide sufficient information to discriminate predicted protein models.

We also illustrated the value of combining cross-linking and mutagenesis for model dis-

crimination, although it remains future work to determine their relative weights.

The methods described clearly cannot reveal a structure in the same deterministic way

as the “direct” methods of EM and x-ray crystallography. Nor can they severely restrict the

range of possible models in the same way as the “indirect” method of NMR generating a

large number of structural restraints evaluated by distance geometry and molecular dynam-

ics. Thus we claim only that the “inverse” PRAXIS methods of cross-linking and stability

mutagenesis are capable of elucidating important features of a protein structure in solution

(e.g. its fold) as revealed in the predicted structural models that are being tested.

Many factors limit the elucidation of protein structure no matter the method employed,

including the limited resolution of deterministic data, the limited number of experimental

restraints in indirect and inverse methods, the conformational differences between experi-

mental states, and the dynamics of molecules. When all of these factors are considered, it

is clear that no biochemical, biophysical, or computational method can provide a perfectly

correct and complete model of a protein in solution. Even if a perfectly correct model of a

protein in solution were available, it is not required for many purposes. Short of structures

used to understand chemical mechanisms, small variations don’t impede many of the ef-

forts of biologists and biochemists in understanding protein function and interaction with

other molecules. Thus we expect the methods we describe to be useful for the practical
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task of confirming predicted models to guide future experiments with greater confidence.

Applications span a wide range of biological investigations, including investigations of ho-

mology and protein family relationships, site-directed mutagenesis to probe function, and

bioinformatics-driven investigations into the associations of molecules into complexes.

The second part of this thesis addressed the breakpoint location selection problem in

site-directed protein recombination. A probabilistic hypergraph model was developed to

represent the evolutionary relationships among amino acids that determine protein stability

and functionality, with edge weight representing the significance of these relationships.

After validating the effectiveness of this edge weight by showing its ability to distinguishing

functional hybrids from non-functional ones, the total edge weight after recombination was

used as the quality measurement for possible sets of breakpoint locations. The breakpoint

selection problem was formulated as a sequentially-constrained hypergraph partitioning

problem and proved NP-hard in general. However, dynamic programming was applied to

develop a polynomial time algorithm when the edge order is up to three. When order-4

(or higher) edges are taken into account, stochastic dynamic programming was applied to

develop a polynomial time algorithm that is expected to produce good plans.

The breakpoint locations selected by our algorithm are optimal with respect to the com-

putational criteria. Although the effectiveness of such criteria has been validated using the

limited amount of experimental data that is currently available, the optimality of selected

breakpoint locations has not been fully validated with a sufficient amount of experimen-

tal data. An ideal benchmark would be comparing the experimental output of two sets of

breakpoint locations, one designed to be good and the other designed to be bad. Alter-
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natively, the optimal set could be further compared with sets of randomly selected break-

points, but that would require a substantial amount of experimental effort.

7.1 Future Work for PRAXIS

7.1.1 Multimodal PRAXIS

We have demonstrated preliminary results for a multimodal PRAXIS by combining cross-

linking and stability mutagenesis for model discrimination (Sec. 4.5.4). The merits of a

multimodal approach include the additional information provided with the same number

(or cost) of experiments, the delay of diminishing returns from additional experiments, and

the enhanced confidence in the absolute correctness of selected model(s) provided by the

consistency of multiple modes of complementary experimental data. Although we have

tried to choose the set of experiments that is most robust to experimental errors, the wrong

model(s) can also be selected if significant errors are present. For example, compact mod-

els may be favored in cross-linking since such models tend to have high feasibilities for

all cross-links and will receive more positive support from the experimental data. Wrong

models may also be favored in the stability mutagenesis approach if the protein is sub-

stantially easier (or harder) to destabilize than the proteins used for training the 11G◦

predictor. A multimodal approach is expected to reduce such risks because we may decide

not to choose any model and plan more experiments until some models receive consistent

support from multiple modes of experimental data. Although combining cross-linking and
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stability mutagenesis under illustrative parameters was not very successful for this purpose

(not shown), we expect more promising results from multimodal PRAXIS when the pa-

rameters can be estimated more accurately from accumulated experimental data, and when

extra experimental techniques, such as solution scattering [45] and hydrogen-deuterium

exchange [2], are introduced.

7.1.2 Model Improvement

Where disagreement between prediction and experimental outcomes is noted, we can be-

gin a process of “model improvement.” The best model would be used as the basis for

developing additional models (e.g. by modification of sequence alignment and template

conformation in models derived by fold recognition). These revised models would be in-

cluded in the set for further planning and experimentation. Planning would focus on the

new models. If this process is successful in achieving good congruence between expected

and experimental outcomes after one or more iterations, then much enhanced confidence in

the correctness of the improved model would result. If the process does not result in better

agreement, then the most likely conclusion would be that the correct structure is signifi-

cantly different from the one originally put forward as best, and attempts to find a better

initial model would be launched. In some sense each succeeding model is a “structural

hypothesis” that is tested and then refined further.
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7.2 Future Work for Site-directed Recombination

7.2.1 Data interpretation

One of the main advantages of an integrated computational-experimental mechanism is to

refine criteria and algorithms and optimize experiments iteratively. For example, further

experiments can be planned focusing on the models that are ranked high by the output

of the previous experiments. Similarly, previous recombination data should provide some

information about the quality of breakpoints and help select better breakpoint locations for

next experiment. For example, if breakpoints observed in functional hybrids are strongly

biased [119, 72], it might suggest that breakpoint selection needs to be improved or too

many breakpoints were selected (Sec. 7.2.2).

However, unlike the experimental data in PRAXIS that is usually sparse, the experi-

mental data in recombination is overwhelming for a modest number of parent sequences

and breakpoint locations. A library of n parent sequences and k breakpoints contains nk+1

different hybrids. Furthermore, the number of amino acid interactions, i.e. the number of

edges in the hypergraph model, is also large. It remains a challenging problem to derive

explicit relationships between folded, functional, or novel hybrids and the perturbation of

these interactions. It is thus difficult to improve further selection of breakpoints using pre-

vious experimental data. One possible approach is to treat all functional hybrids as a new

MSA and derive new hyperconservation scores from it. It would be interesting to compare

the new score with the one derived from the original MSA.
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7.2.2 Optimal Number of Breakpoints

Intuitively, with increasing library size, we will obtain more folded and functional hybrids.

From this point of view, larger libraries are always better since they offer more opportu-

nity to find interesting variants. However, increasing the library size also increases the

experimental cost. Due to the diminishing return effect, it is advantageous to determine

the optimal size of library, i.e. the optimal number of breakpoints for given parent se-

quences. Furthermore, an excess of breakpoints can also overwhelm the good breakpoint

locations and make them hard to identify even by effective criteria, because most hybrids

in the library will include some bad breakpoint locations and be non-functional. An aver-

age score of all hybrids in a library will be dominated by non-functional ones and lose its

effectiveness for distinguishing different sets of breakpoint locations.

Average-based criteria such as average perturbation and average mutation level of all

hybrids in a library are widely used to measure the quality (stability or diversity) of a

library. Unfortunately, such average-based criteria could be misleading. An observation

from existing experimental data is that only a very small fraction of hybrids in a library

are folded and functional [119, 72, 31]. While we are interested in folded and functional

hybrids, average-based criteria could easily be dominated by unfolded or nonfunctional

ones, which are usually the majority in a library. A deeper look into hybrid libraries will

probably reveal more meaningful criteria for measuring the quality of such libraries, hence

provide us new criteria for optimizing breakpoint locations.
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7.2.3 Diversity of Hybrids

Designing an optimal library for recombination is a complicated task and must consider

multiple criteria of optimality and make trade-offs among them. Ostermeier discussed

the trade-off between diversity and average activity of libraries and the best hybrid in a

library [79]. Saraf et al. tried to optimize a library by minimizing the average number of

clashes per hybrid [90].

While focusing on perturbation minimization in the breakpoint selection problem here,

we take diversity into account indirectly, by limiting the minimum effective fragment

length. In order to improve the frequency of obtaining hybrids with novel functionality, it is

necessary to explicitly plan for diversity in site-directed recombination. We have recently

developed effective metrics for characterizing the diversity of a planned hybrid library and

efficient algorithms for optimizing experiments accordingly [133]. It remains interesting

future work to optimize stability and diversity simultaneously, along with selecting the op-

timal parent sequences (Sec. 7.2.4). Most likely we need to make an appropriate trade-off

between these two aspects: obtaining more folded and functional hybrids (stability) and

obtaining hybrids with improved or novel functionality (diversity).

7.2.4 Parent Sequence Selection

We have assumed that parent sequences are given, and have focused on breakpoint se-

lection. Endelman et al. have shown the influence of parent sequences on the library

quality based on a simple pairwise potential [31]. They compute a RASPP curve for ev-
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ery possible set of parents by varying the minimum effective fragment length and solving

the 2-DECOMP problem multiple times, and then compare choices of parents at multiple

mutation levels. This brute force approach becomes infeasible even for a medium sized

problem. For example, choosing 10 parent sequences from 100 candidates will result in

1.7×1013 combinations. More sophisticated approaches such as greedy, branch and bound,

or heuristic algorithms are demanded for parent sequence selection.

Since our potential score integrates essential information from the database, family,

parent sequences, and breakpoint locations, it can be used as a criterion for parent sequence

selection. Parent sequences and breakpoint locations can be selected simultaneously in

order to optimize the average stability of hybrids. Other factors such as diversity also need

to be taken into account while selecting parent sequences.

7.2.5 Other Applications of the Hypergraph Model

Our model of multi-order interactions may be productively applied to other problems, after

suitable parameterization. For example, our multi-order potential generalizes the four-

body interactions employed in prediction of 1G◦ of unfolding [20], and may prove useful

in prediction of stability mutagenesis. To apply our approach to functionality mutagene-

sis (mutation followed by functionality measurement), it may be necessary to separate and

appropriately weight the contributions to stability and functionality from the multi-residue

interactions (e.g. accounting for relationships with known functional sites). The hyper-

edges and their weights are by no means limited to spatially proximate sets of residues,
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and non-contacting interactions may also be usefully incorporated for these contexts. In-

deed, studies of pairwise residue coupling have identified many important non-contacting

relationships [68, 110]. Finally, multi-order interactions may also be applied to identify

modular units of protein structure (finer-grained than domains). Optimization of break-

points for modularity may require a potential that appropriately balances intra-fragment

interactions with inter-fragment interactions.
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