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Abstract

Symmetric homo-oligomers (protein complexes with similar subunits arranged symmetri-

cally) play pivotal roles in complex biological processes such as ion transport and cellular

regulation. Structure determination of these complexes is necessary in order to gain valu-

able insights into their mechanisms. Nuclear Magnetic Resonance (NMR) spectroscopy is

an experimental technique used for structural studies of such complexes. The data avail-

able for structure determination of symmetric homo-oligomers by NMR is often sparse

and ambiguous in nature, raising concerns about existing heuristic approaches for struc-

ture determination. We have developed an approach that is complete in that it identifies

all consistent conformations, data-driven in that it separately evaluates the consistency of

structures to data and biophysical constraints and efficient in that it avoids explicit consider-

ation of each of the possible structures separately. By being complete, we ensure that native

conformations are not missed. By being data-driven, we are able to separately quantify the

information content in the data alone versus data and biophysical modeling. We take a con-

figuration space (degree-of-freedom) approach that provides a compact representation of

the conformation space and enables us to efficiently explore the space of possible confor-

mations. This thesis demonstrates that the configuration space-based method is robust to

sparsity and ambiguity in the data and enables complete, data-driven and efficient structure

determination of symmetric homo-oligomers.
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1. INTRODUCTION

Symmetric homo-oligomers are a class of protein complexes that have similar subunits ar-

ranged symmetrically. These complexes play pivotal roles in complex biological processes

including ion transport and regulation, signal transduction, and transcriptional regulation.

Structure determination of symmetric homo-oligomers is necessary in order to gain valu-

able insights into their mechanisms. For example, phospholamban is a symmetric homo-

oligomer that is known to regulate the calcium levels between cytoplasm and sarcoplasmic

recticulum and hence aids in cardiac muscle contraction and relaxation. Structure determi-

nation of phospholamban (Figure 1.1 [119]) enables us to understand how it regulates the

intracellular calcium levels and how it could function as an ion channel. Malfunctioning

of phospholamban could lead to congestive heart failure and cardiomyopathy. Knowledge

of the structure not only enables understanding function but also aids in design of drugs to

target such diseases.

The increasing availability of experimentally determined protein sequences and indi-

vidual protein structures now allows research to focus on protein interactions and structure

determination of protein complexes. Through a series of post-translational modifications

and gene splicing mechanisms, the∼30, 000 genes of the human genome are speculated to

1



(a) (b)

Fig. 1.1: Structure of phospholamban in two different views with different subunits shown

in different colors.

give rise to 106 proteins [122]. The majority of these proteins interact with other proteins

in processes that impact cellular structure and function driving the need for sophisticated

approaches to understand these interactions.

The data available for determining structure of symmetric homo-oligomers from ex-

periments such as Nuclear Magnetic Resonance (NMR) spectroscopy is often sparse and

ambiguous in nature. This makes it necessary to develop algorithms which deal with the

sparsity and ambiguity in a robust manner and which guarantee that native conformations

are not missed. It is important to identify all structures consistent with the data and avoid

false precision. Furthermore, there is need for approaches that accurately identify the struc-

tural constraint that the data provides and quantify the information content in the data.

2



1.1 Necessary Features

The features necessary in a structure determination method for protein complexes given

data from experiments and structures of interacting proteins are as follows:

Complete: Despite the structural knowledge of the interacting proteins of a protein

complex, the space of possible conformations of the complex is immense. To avoid miss-

ing native conformations a structure determination method must be complete in exploring

the conformation space and evaluating each of the possible conformations. This becomes

especially important when the experimental data available is sparse. Sparseness in the data

could cause a structure determination method which is incomplete to be trapped in local

minima. Requiring a structure determination method to be complete avoids any bias in the

search and ensures that native conformations are not missed.

Efficient: The vast number of possible conformations makes explicit consideration of

each of them computationally infeasible. This calls for approaches that are efficient in

that they avoid this explicit enumeration and allow us to determine the complete set of

structures.

Data-driven: Experimental data by itself is typically insufficient to determine a struc-

ture and needs to be complemented with information from biophysical constraints. Struc-

tures that satisfy both the data and and the biophysical constraints must be identified; this

is typically done by subjecting the structures to energy minimization, a process we call

“modeling”. The lower the energy, the greater the satisfaction of the biophysical con-

straints. Such modeling involves choosing model parameters, and the final structure could

3



be biased by these choices. We need approaches that are data-driven in that conformations

are first tested for consistency with data and only the consistent conformations are later

evaluated for modeling. Being data-driven avoids over-reliance on subjective choices of

parameters for modeling, and consequent false precision in determined structures. It also

allows us to independently identify the amount of the structural constraint provided by data

alone versus data and modeling. Independently identifying the structural constraint enables

us to quantify the information content in the data which helps find redundant data as well

as inconsistencies in the data which warrant further investigation.

Robust: The difficulty in dealing with complexes makes the experimental data avail-

able for structure determination of complexes sparse and ambiguous. Further, as with any

experimental technique, the data is subject to experimental errors. Structure determination

methods must be robust in that limited amount of inaccuracies and deficiencies in the data

do not affect the correctness of the method.

1.2 Our Approach

1.2.1 Configuration Space

The focus of the current thesis is on structure determination of one class of protein com-

plexes, homo-oligomers with cyclic-fold (Cn) symmetry, using data from NMR experi-

ments. We have developed a structure determination method for symmetric homo-oligomers

that has the necessary features of completeness, efficiency, data-drivenness and robustness.
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We achieve this by developing a configuration space-based approach. The configuration

space is formed from a minimal number of parameters that represent a complex, that is, its

degrees of freedom. For example, a complex with two subunits of known structure has six

degrees of freedom—three for translation and three for rotation of one subunit with respect

to the other. Every possible conformation of the complex can be represented by a point

in an n-dimensional space, where n is the number of degrees of freedom of the complex.

Determining the complex structure then becomes a search in this n dimensional space.

The thesis statement is as follows:

Configuration space analysis enables complete, data-driven and robust struc-

ture determination of symmetric homo-oligomers.

1.2.2 Architecture

Our method for structure determination of symmetric homo-oligomers takes as input a set

of inter-subunit Nuclear Overhauser Effect (NOE) restraints, the subunit structure, and the

oligomeric number of the complex. Here, inter-subunit NOE restraints refers to the data

obtained from NMR experiments, subunit structure refers to the structure of one unit in

the complex and oligomeric number refers to the number of subunits forming the complex.

Each inter-subunit NOE restraint constrains the distance between atoms on the adjacent

subunits. Throughout this thesis, we will assume that the backbone symmetry is exact and

that the backbone of the subunit is known. The subunit structure could be available either

from determining the “bound” structure of a monomer within the complex or from deter-
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Perform complete SCS search

and evaluate satisfaction scores
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Fig. 1.2: The overall architecture for determining structures of symmetric homo-
oligomers. The input to the protocol includes the subunit structure, the NOE restraints and
the oligomeric number. The first phase of our two-phase approach involves a complete
data-driven search using a branch-and-bound algorithm in the symmetry configuration
space (SCS), the space of symmetry axis parameters. The 4-dimensional SCS is rep-
resented here as two 2D regions, a sphere representing the orientation space S2 and a
rectangle representing the translation space R2. The output from the branch-and-bound
algorithm is a set of consistent regions in SCS that represent all structures satisfying
the restraints. Representative structures are chosen from the consistent regions. These
structures are evaluated for quality of restraint satisfaction, and those that are good enough
are identified as satisfying structures. Regions corresponding to the satisfying structures
in the consistent regions form the satisfying regions (represented by the dark regions). In
the second phase, each of the satisfying structures is energy minimized and evaluated for
quality of vdW packing. The output from this step is a set of well-packed satisfying (WPS)
structures and WPS regions that represent conformations that are consistent with data and
have high-quality vdW packing.
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mining the structure of the monomer in its apo form. Experimentally it is possible to deter-

mine the subunit structure in complex prior to computing the oligomeric assembly [119].

The subunit structure in these cases is determined by using intra-molecular distance re-

straints from NOEs, backbone orientation restraints from residual dipolar couplings, and

side-chain χ1/χ2 restraints from three-bond scalar couplings. In this dissertation, the mod-

eling term we consider in evaluating structures is inter-subunit van der Waals (vdW) energy.

Note that this can be replaced with other modeling terms such as electrostatics by consid-

ering the appropriate solvent models.

The key to our approach is the observation that, given the structure of a subunit, the

structure of a Cn symmetric homo-oligomer is completely determined by identifying the

position (t ∈ R2) and orientation (a ∈ S2) of the symmetry axis. (We discuss other pos-

sible representations in Chapter 7.) Geometrically, the axis of symmetry is a line parallel

to the unit vector a that intersects the xy-plane at the point t. For a given axis, rotating

the subunit n times by the angle of symmetry (360◦/n) around the symmetry axis yields

the structure. Hence there are four degrees of freedom for a Cn symmetric homo-oligomer

given the structure of the subunit (under the assumptions described in the previous para-

graph), making its configuration space S2
×R2. We refer to this configuration space as the

symmetry configuration space (SCS). Each possible conformation of the symmetric homo-

oligomer is represented by a point in the 4-dimensional SCS. Hence, a complete search in

the SCS allows us to identify all conformations consistent with the data.

Figure 1.2 shows the overall architecture. The approach consists of two phases. In the

first phase, we perform a configuration space analysis by a complete data-driven search
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in the 4D space of symmetry axis parameters, pruning out regions representing confor-

mations that are inconsistent with the data. SCS is too large to search naı̈vely or exhaus-

tively. Therefore, we have developed a novel branch-and-bound algorithm that is efficient

and provably conservative in that it examines and conservatively eliminates non-satisfying

regions. Without this algorithm, a complete, data-driven search would not be computation-

ally feasible. At the end of the configuration space analysis, we return regions in SCS, the

consistent regions, which contain all conformations that are consistent with the data. We

choose representative structures from the consistent regions such that every conformation

in the consistent regions is within an RMSD of τ0 Å to at least one representative structure

(τ0 is a user-specified parameter). Due to the conservative bounds used in our search, the

representative structures might contain conformations that are inconsistent with the data.

The set of satisfying structures includes only those representative structures with restraint

satisfaction scores below a chosen threshold. In the second phase of the overall approach,

each of the satisfying structures is energy-minimized and scored based on van der Waals

packing. The set of WPS structures includes those energy-minimized satisfying structures

with van der Waals packing scores below a chosen threshold.

The following summarizes the contributions that the thesis makes

1. Chapter 3: We developed algorithms for complete, data-driven SCS search given the

data and the subunit structure. We call this the “core algorithm” and developed it

assuming that there is no noise, uncertainty or ambiguity in the NOE restraints and

the subunit structure.
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2. Chapter 4: In NMR experiments, ambiguity could exist in the identity of the atoms

that correspond to a distance restraint. NOE assignment refers to the process that

resolves the ambiguity as to which pairs of protons generated the observed data, and

thus should be restrained in structure determination. We extended the core algorithm

to handle ambiguous NOE data and perform NOE assignment.

3. Chapter 5: We extended the core algorithm to handle side-chain uncertainty in the

subunit structure. We allow for side-chain uncertainty during the search through the

SCS rather than only at the stage of energy minimization.

4. Chapter 6: We extended the core algorithm to be robust to noise and uncertainty in

the NOE data. We provided algorithms to enable structural inference of symmetric

homo-oligomers, that is, to probabilistically reason about the degree of agreement

that possible conformations have to data and biophysical constraints.

In each of these chapters, the overall architecture is as shown in Figure 1.2. The chapters

differ mainly in the search through the SCS. Chapters 4, 5 and 6 provide extensions of the

core algorithm, enabling us to handle ambiguity in data, uncertainty in subunit structure

and uncertainty in data respectively. Each of these chapters extends the core algorithm

independent of the other extensions, demonstrating the applicability of our approach to

handle noise, ambiguity and uncertainty in the input.
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1.2.3 Validation of Our Approach

We validate our approach by testing it on a number of different symmetric homo-oligomers.

The structures of each of these complexes have been determined either by X-ray crystal-

lography or NMR. In structures determined by crystallography, the subunit structure was

chosen as the structure of the first unit of the complex and the NOE data was simulated.

Protons were added to the reference structure using the software CNS [23]. We simulated

the NOE restraints by finding pairwise distances between protons on adjacent monomers.

Every pair that had a distance less than 5 Å and almost exact symmetry (the mean of dif-

ference in distances across adjacent subunits is within 0.5 Å) was chosen as a restraint and

an uncertainty of ±1 Å was added. Choosing restraints with almost exact symmetry sim-

ulates the scenario of choosing inter-subunit restraints that have significant signal overlap.

In structures determined by NMR, the subunit was chosen from the best representative con-

formers of the ensembles. Following is a brief description of each of the protein complexes

we used to validate our approach. Table 1.1 summarizes the test cases.

In Chapter 3, we tested our approach on symmetric homo-oligomers with different

oligomeric numbers. Phospholamban, is a symmetric homo-pentamer that satisfies the

assumption that the subunit structure can be determined in complex. We chose as the

reference structure the best representative conformer (as indicated in [119]) among the

deposited 20 NMR structures (PDB id: 1ZLL). Nine inter-subunit NOE restraints were

obtained [119] by using a mixture of labeled and unlabeled subunits and filtering NOE

signals appropriately. The subunit structure was determined by a simulated annealing pro-
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Tab. 1.1: Test Cases

Protein (symmetry) PDB id No. of restraints

Glycophorin A (2) 1AFO 6 (expt)

MinE (2) 1EV0 183 (expt)

Chicken cartilage matrix protein (CCMP) (3) 1AQ5 49 (expt)

Haemagglutinin (3) 1HTM 85 (simulated)

Kv1.2 potassium channel (4) 1QDV 32 (simulated)

Phospholamban (5) 1ZLL 9 (expt)

Gp31 co-chaperonin (7) 1G31 85 (simulated)

tocol using intra-molecular distance restraints from NOEs, backbone orientation restraints

from residual dipolar couplings, and side-chain χ1/χ2 restraints from three-bond scalar

couplings [119].

Human glycophorin A (PDB id: 1AFO) is a symmetric dimer. Six experimental NOE

restraints were available. The authors reported twenty NMR structures and we chose as

the subunit structure the first chain from the structure that best satisfies the restraints. Ad-

ditional test cases in Chapter 3 include haemagglutinin (PDB id: 1HTM), a trimer; Kv1.2

potassium channel (PDB id: 1QDV), a tetramer; Gp31 co-chaperonin (PDB id: 1G31),

a heptamer. These structures were determined by x-ray crystallography. Our simulations

yielded 85 simulated restraints for haemagglutinin, 32 for the Kv1.2 potassium channel,

and 85 for the Gp31 co-chaperonin.

We used two test cases to validate our ambiguity resolution and NOE assignment al-

gorithms in Chapter 4. We could not use phospholamban or glycophorin A here, since we
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could not simulate ambiguity for these complexes due to unavailability of required chem-

ical shift data. We chose as test cases homo-dimeric MinE and homo-trimeric CCMP, for

which inter-subunit NOE distance restraints and assigned chemical shift data were avail-

able in the BioMagResBank (BMRB) [131]. In both cases, isotopic labeling strategies were

used to separate NOEs between atoms within a subunit from NOEs between subunits. We

use the “bound” subunit structures and focus on determining the complex from the remain-

ing ambiguous inter-subunit NOEs. We used as the subunit the first chain of the reference

structures (stated by the authors to be the best representative conformers). The homo-

dimeric topological specificity domain of Escherichia coli MinE [89] has a novel dimeric

αβ-sandwich fold that has previously been determined (PDB id: 1EV0) by using both

DYANA [64] and the NCS-symmetry potential of X-PLOR (with the ARIA method) [23].

Each subunit has 50 residues, and a total of 183 inter-subunit NOE restraints were de-

posited. The structure of the trimeric coiled-coil domain of chicken cartilage matrix pro-

tein (CCMP) [148] was originally determined using X-PLOR [23] (PDB id: 1AQ5). Each

subunit has 47 residues, and a total of 49 inter-subunit NOE restraints were deposited.

We used the same two test cases, MinE and CCMP in Chapters 5 and 6.

The rest of the document is organized as follows. Chapter 2 reviews related work in

structure determination of proteins, NOE assignment, side-chain uncertainty and structural

inference. Chapter 3 describes our core algorithm in detail. Chapter 4 extends the core

algorithm to handle ambiguity and perform NOE assignment. Chapter 5 discusses our

approach to handle uncertainty in subunit structure. Chapter 6 presents our approach for

structural inference and Chapter 7 presents conclusions and future work.
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2. RELATED WORK

2.1 Protein Complex Structure Determination

2.1.1 Experimental Techniques

Traditionally, an atomic detail structure of a protein complex is determined using one of

the two experimental techniques: X-ray crystallography or Nuclear Magnetic Resonance

(NMR) spectroscopy. In X-ray crystallography [20], proteins are crystallized by slowly

changing the conditions in a super-saturated protein solution. Electron density maps are

then obtained from the diffraction patterns formed by beaming X-rays at the crystal. The

structure of the protein complex is obtained from the diffraction patterns taken at several

angles of rotation of the crystal. The main problems in structure determination by X-ray

crystallography lie in production of sufficient quantities of the sample and in crystalliza-

tion. Formation of crystals is a difficult and time-consuming process and is dependent on

several parameters such as pH of the solution, purity of the protein, temperature, protein

concentration, nature of the solvent and precipitant, and presence of added ions or ligands

in the protein. Also, crystallization of membrane proteins is extremely difficult [25, 118].

Nuclear Magnetic Resonance (NMR) spectroscopy [20] is the other experimental tech-
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nique that is widely used for protein complex structure determination. When placed in a

strong magnetic field the hydrogen atoms in the protein complex spin in an equilibrium

alignment with the field. With the application of radio frequency (RF) pulses, the nuclear

spins become excited. When reverting to the equilibrium state, each atom emits a differ-

ent frequency based on the electronic environment around its nucleus. By varying the RF

pulses, multi-dimensional NMR spectra give information about angles and through-space

and through-bond interactions between nuclei. These restraints help in identifying the 3D

structure of the protein. The main problem with NMR is that it is restricted by the protein

size. However, recent technical advances have allowed its application to systems as large

as the 900 kDa GroEL-GroES complex [50].

Electron microscopy (EM) [130] is another experimental technique that provides low-

resolution structural information for complexes. There are several variants of electron mi-

croscopy (EM), including single-particle EM [50], electron tomography [15] and electron

crystallography of regular two-dimensional arrays of a sample [114]. In single-particle

cryo-EM, the three-dimensional structure is reconstructed from two-dimensional projec-

tions taken from different angles. Small quantities of the sample are sufficient for cryo-EM.

Cryo-EM can determine the electron density for complexes weighing greater than 200-500

kDa at low resolutions of approximately 5 Å [54, 72, 79, 155]. Although one cannot get

atomic-level detail from cryo-EM density maps, the maps provide insights into the mech-

anism of large complexes. Electron tomography allows for the study of structures at a

resolution of a few nanometers using multiple tiled views of the same object. It enables

visualization of complexes in a cellular context [14, 61].
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Several minimalist experiments, though not comprehensive enough to determine com-

plex structures by themselves, provide low-resolution information about the relative posi-

tions of units in a complex. Proximity information between adjacent units in a complex can

be obtained from experiments such as mutagenesis [2, 3, 19, 35, 43, 93, 110], hydrogen-

deuterium exchange [9, 94], chemical cross-linking [12, 47, 68, 92, 135, 132, 137], Flu-

orescence Energy Transfer (FRET) [138, 152], Fourier transform infra-red spectroscopy

(FTIR) [84]. Small angle X-ray scattering (SAXS) is another method that can provide

low-resolution information about the shape of a complex [105, 134].

2.1.2 Biophysical Modeling

Any structure determination method must ensure satisfaction of certain biophysical con-

straints. The energy of the structure gives a measure of how well the biophysical constraints

are satisfied and is typically obtained as [85],

E = Ecovalent + Enoncovalent (2.1)

Ecovalent = Ebond + Eangle + Edihedral

Enoncovalent = Eelectrostatic + EvanderWaals

There can be several implementations for each of these terms. Typically, the bond and

angle terms are modeled as harmonic potentials centered around the “ideal” bond length

derived either from experiment or theory. The dihedral or torsional terms typically have

multiple minima and their actual form varies with the implementation. The class of cova-

lent terms could also include an “improper” dihedral term to account for the planarity of
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aromatic rings.

The non-covalent or non-bonded terms are much more computationally costly because

they include many additional pairwise interactions per atom. The van der Waals term is

typically modeled using a “6-12 Lennard-Jones potential”, where the attractive forces fall

off with distance as r−6 and repulsive forces as r−12, where r represents the distance be-

tween two atoms. Generally a cutoff radius is used so that atom pairs whose distances are

greater than the cutoff have a van der Waals interaction energy of zero. For the electrostatic

terms, the basic functional form is the Coulomb potential, which depends on the effective

dielectric function for the medium and falls off as r−1.

The energy terms include parameters for force constants, van der Waals multipliers,

and other constant terms. These parameters, together with the equilibrium bond, angle,

and dihedral values, partial charge values, atomic masses and radii, and definitions of the

energy terms, are collectively known as a force field [102]. The parameters are typically

obtained from agreement with experimental values or theoretical calculations results. Two

widely used force fields are AMBER [26, 33] and CHARMM [21].

2.1.3 Structure Determination by NMR

The standard protocol for structure determination by NMR [150], given spectra, involves

the successive steps of peak picking, chemical-shift assignment, NOE assignment and col-

lection of other conformational constraints, and finally structure calculation and refinement.

Peak picking refers to the identification of peaks in each collected NMR spectrum. Each
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peak corresponds to an interaction between a pair of atoms. The challenge of peak picking

is that peaks often overlap. Stronger spectrometer magnets and multidimensional NMR

experiments could make peak-picking easier, but are expensive. The variation in the reso-

nance frequency of a nucleus due to its chemical environment is called the chemical shift.

The coordinates of a peak in an NMR spectrum correspond to the chemical shifts of the

interacting nuclei that generated that peak. Chemical shift assignment is the process of

assigning observed chemical shift values to specific atoms. NOESY spectra contain peaks

corresponding to magnetic interactions between nuclei through space. NOE assignment is

the process of identifying the atoms involved in generating NOE peaks in a NOESY spec-

trum. Generally, the backbone and side-chain chemical shifts are assigned from a variety

of 3D NMR experiments. This information is then used to assign NOEs and derive distance

restraints for structure calculation. Each distance restraint exists between pairs of atoms

and constrains the distance between the corresponding pairs of atoms. Also, torsion angle

restraints and residual dipolar couplings are obtained from NMR experiments. The struc-

ture calculation and refinement process identifies structures that satisfy all the restraints

and are also consistent with physical modeling terms.

Given data from NMR experiments in the form of restraints between atoms in the com-

plex, structure determination is typically done by simulated annealing and molecular dy-

namics protocols. The protocols could either be performed in the cartesian space [22, 23,

24] or in torsion angle space [63, 64]. The energy function that is minimized includes both

physical energy terms such as those discussed in the previous section and pseudo-energy

terms to check for consistency with experimental data. The advantage of torsion angle
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dynamics over cartesian space dynamics is that the number of degrees of freedom is de-

creased since the covalent structure parameters (such as bond lengths and bond angles) are

kept fixed during the minimization process. The rugged landscape of the energy function

could cause the simulated annealing / molecular dynamics mechanisms to get trapped in

local minima. Furthermore, the precision in the determined structure is strongly affected

by the “temperature” used in the simulated annealing protocols.

In the context of symmetric homo-oligomers, the simulated annealing / molecular dy-

namics protocols have been extended for determining structure by incorporating additional

constraints to ensure symmetry, e.g., by penalizing differences between the subunits [126]

or by fixing multiple copies of the backbone and allowing only the side chains to move to fit

the restraints [119]. DYANA [64] and CYANA [71, 62] have been extended for homo-dimer

structure determination, while the symmetry-ADR method [112, 116, 117] is applicable

to higher-order oligomers. When the data available is sparse and ambiguous, as is typ-

ically the case for symmetric homo-oligomers, the problems of local minima are further

exacerbated.

2.1.4 Computational Techniques

Computational techniques [130] for predicting the structures of complexed proteins mainly

fall into two categories: homology modeling and docking. In homology modeling for com-

plexes [5, 7, 106], a structural model for a complex is constructed based upon a template

protein complex, another protein complex with good sequence similarity and whose struc-
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ture is known. The question that arises is how similar the sequences must be. It was found

that proteins of the same fold interact in a similar way if the sequence identity is above ap-

proximately 30% [6]. The applicability of homology modeling is limited by the availability

of a structure with high sequence similarity.

Docking-based approaches model the structures of the complex given the structures

of the subunits involved in the complex. Docking strategies usually involve a two-stage

approach: generate a set of possible docked structures, and then score them. The possible

structures are typically generated by sampling the space of rotations and translations of

the docked subunit with respect to the fixed subunit [28, 52, 59, 104, 48, 128, 140]. The

fast Fourier transform (FFT)-based method developed by Katchalski-Katzir et al. [86] is

used by most of the docking algorithms to efficiently sample the space of possible docked

configurations. Alternatively, geometric hashing [115] samples conformations consistent

with shape complementarity.

Scoring a docking prediction is usually based on some kind of a force field (Sec-

tion 2.1.2), which assigns an energy to all atom or residue pairs after subjecting the pre-

dicted model to energy minimization [60]. Due to the cost involved in energy minimization,

faster scoring functions [66, 75, 133] are also used to discriminate among predicted mod-

els which include elements such as geometric complementarity [40], contact and overlap

checks [13, 55] and counts of hydrogen bonds [10]. When experimental structures for

the subunits of a complex are not known, docking is applied on homology models of the

individual subunit [136].

Docking-based methods are immediately applicable to symmetric homo-oligomers, by
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docking two subunits of the homo-oligomer. Pierce et al. [121], Duhovny et al. [41], and

Comeau et al. [32] have all used docking-based approaches followed by filtering based

on symmetry and scoring by minimizing energy functions to predict structures of homo-

oligomers. In each of the above-mentioned approaches, it is desirable to use use data from

experiments to validate the structures predicted.

Several docking-based approaches have been developed that use experimental data.

These approaches can be divided into two classes: techniques that use the data during

the scoring stage and techniques that use the data during the search stage. Techniques

that use the data during the scoring stage generate a set of possible candidate structures

and then filter them based on the consistency with the data. Adams et al. generated a

set of possible candidates by sampling and then scored them using mutagenesis data for

structure determination of two transmembrane proteins, glycophorin A and phospholam-

ban [2, 3]. Mutagenesis data [11, 53] was used to evaluate the structures obtained from

the docking programs HEX [128] and GRAMM [140]. Similarly, mass spectrometry hy-

drogen/deuterium exchange data [9] was used with the program DOT [104]. Also, NMR

chemical shift perturbation data and residual dipolar couplings [38, 97, 109] were used

with the programs FTDOCK [52], AUTODOCK [111] and BIGGER [120]. In approaches

that use the experimental data during the search stage, the most popular technique is to

incorporate the data in an energy term which is low if the restraints that the data provides

are satisfied [31, 34, 39, 51, 58, 107, 112, 129, 139]. TREEDOCK [45] uses anchor points

based on experimental data. Another approach to incorporate the data during the search

stage is by assigning residues that are restrained by the data more weight in fast Fourier
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transform-based rigid body docking approaches (weighted geometric docking) [16].

Wang et al. [144] developed another approach for structure determination of protein

complexes using restraints from NMR experiments. They propose a branch-and-bound

algorithm [4], AMBIPACK, to determine structures of protein complexes using potentially

ambiguous inter-subunit distance restraints obtained from NMR experiments. AMBIPACK

assumes that the subunit structures are rigid. It finds a set of transformations of the rigid

substructures that satisfy the restraints. It uses a hierarchical subdivision of the space of

possible conformations and a branch-and-bound algorithm to eliminate infeasible regions

of the space of possible transformations. Local search methods then focus on the remaining

space.

None of the existing approaches for structure determination come with guarantees of

completeness, and they all fail to take advantage of the ‘closed-ring’ constraint of a sym-

metric homo-oligomer. The closed-ring constraint arises from the fact that in Cn symmetric

homo-oligomers, the subunits are arranged in a ring. This implies that a restraint existing

between subunits 1 and 2 also exists between subunit n and 1, where n is the number of sub-

units. As we will see, our approach uses the oligomeric number to enforce an a priori sym-

metry constraint. In this sense it is analogous to the manner in which non-crystallographic

symmetry is handled in molecular replacement for x-ray crystallography [98]. Our ap-

proach directly exploits the kinematics of the ‘closed-ring’ constraint, and thereby derive

an analytical bound for pruning inconsistent conformations, which is tighter and more ac-

curate than previous randomized numerical techniques [144].
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Fig. 2.1: Different possible assignments (arising from subunit and atom ambiguity) for one

ambiguous NOE are illustrated for a homo-trimer. The NOE could be ordered between

subunits as 1-2-3 or 1-3-2, and has chemical shift degeneracy between atoms a, b, and c.

2.2 NOE Assignment

Automated NOE assignment is a key bottleneck in structure determination by NMR. Be-

cause of the limited accuracy of chemical shift values, many NOE peaks cannot be at-

tributed to a single pair of atoms. In symmetric homo-oligomers, this problem is fur-

ther complicated by the additional ambiguity that arises in the identity of the subunit and

whether the peak is between atoms within a subunit or between subunits.

The sources of ambiguity in inter-subunit NOE assignment for symmetric homo-oligomers

are (Figure 2.1): intra- vs. inter-subunit ambiguity, whether the restrained atoms are within

the same subunit in the complex or in different ones; subunit ambiguity, the subunits to

which the restrained atoms of an inter-subunit NOE belong; atom ambiguity, the identities
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of the restrained atoms among those with chemical shifts similar to the NOE peak. Intra-

vs. inter-subunit ambiguity can be resolved experimentally, by a combined analysis of 3D

15N-edited, double 13C-filtered NOESY of a mixed sample and standard 3D 13C-edited

NOESY of a homogeneous 15N, 13C-labeled sample [156, 142]. Atom ambiguity can (in

principle) be resolved experimentally by using 4D or higher dimensional NOESY spec-

tra [87, 49]. However, in general, subunit ambiguity, and atom ambiguity for 3D NOESY

spectra, require computational solutions.

Subunit ambiguity is a fundamental problem in dealing with homo-oligomers. While

in some special cases it might be possible to manually resolve the ambiguity by identifying

a self-consistent direction (e.g., in coiled coils [148]), in general an NOE could involve a

subunit i and any one of subunits i + 1, i + 2, . . . . We call a determination of the relative

positions of the subunits the subunit assignment of the NOE. Most previous attempts at re-

solving subunit ambiguity have done so simultaneously with resolving atom ambiguity, and

have employed heuristic techniques (see below). As we discuss below, these approaches

risk being trapped in local minima and missing correct assignments.

One previous approach that rigorously deals with subunit ambiguity is AMBIPACK [144]

(see Section 2.1.4). AMBIPACK explicitly enumerates combinations of subunit assign-

ments, but only for a limited number of the least ambiguous NOEs. Furthermore, AMBI-

PACK handles only (counter)clockwise subunit ambiguity. By (counter)clockwise subunit

ambiguity we mean that an NOE could either go clockwise or counterclockwise in a ring of

monomers, resulting in 2 possible assignments. Arbitrary subunit ambiguity means that an

NOE could go to any of the other n−1 monomers, resulting in n−1 possible assignments.
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Also, the presented AMBIPACK algorithm and results do not consider atom-ambiguous

NOEs.

Atom ambiguity in NOEs is caused by chemical shift degeneracy. We call a determi-

nation of the atoms the atom assignment of the NOE. A number of techniques, such as

ARIA [113], NOAH/DIAMOND [151], AUTOSTRUCTURE [73], and PASD [83], have been

developed to address atom ambiguity in the context of monomer structure determination.

These techniques follow an iterative assignment strategy: an initial set of unambiguous

NOEs is used to generate some number of structures, which are then used to evaluate

the consistency of atom assignments of the remaining ambiguous NOEs. The NOEs that

are inconsistent with the ensemble are pruned. The remaining NOEs are incorporated in

subsequent rounds of structure ensemble determination, and the process is repeated until

no further improvements in atom assignments or structures can be obtained. An alterna-

tive approach to assign NOE restraints in monomer structure determination using a rotamer

ensemble-based algorithm and residual dipolar couplings was developed by Wang and Don-

ald [145].

Previous approaches for dealing with both subunit and atom ambiguity in symmet-

ric homo-oligomers perform a tight loop of NOE assignment and structure determination

as described in the previous paragraph for monomers. Atom ambiguity is handled using

approaches described in the previous paragraph and subunit ambiguity is handled by incor-

porating additional constraints to ensure symmetry [112].

The iterative techniques discussed above all follow a best-first strategy without back-

tracking, and thus must contend with the problem of multiple local minima. The large
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rearrangements potentially required to escape local minima are difficult to identify by local

search techniques. The order in which assignments are chosen may affect the outcome,

because the determined ensemble attempts to satisfy the chosen assignments, and the en-

semble is then used to evaluate subsequent assignments. For example CYANA uses the

heuristic of choosing the most consistent NOEs at each iteration, but of course this does

not guarantee correctness. To ensure settling into the proper minimum, these techniques

typically require a significant amount of over-restraint (e.g., ARIA requires > 5 NOEs per

residue). However, with higher-order oligomers, available inter-subunit data can be quite

sparse, due to the size of the proteins and the decrease in sensitivity of peaks, along with

the decrease in peak intensity due to double filtering and editing strategies. Finally, as the

number of ambiguous NOEs increases, the ruggedness of the potential landscape increases,

making it much more difficult and time-consuming to find valid solutions. Consequently,

the level of atom ambiguity that current techniques can handle is also limited (e.g., CYANA

requires a 1H chemical shift match tolerance ≤ 0.03 ppm). Furthermore, the presence of

subunit ambiguity in higher-order oligomers makes all NOEs inherently ambiguous and

exacerbates the landscape ruggedness.

2.3 Side-chain Uncertainty

In structure determination of protein complexes given the structures of the subunits, the

uncertainty in subunit structure is a key issue. The uncertainty could arise either from flex-

ibility or from deficiencies in the experimental data. When subunits form a complex, they
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could undergo conformational change. The conformational change could be either small-

scale, fast motions in their side-chains, or large-scale, slow motions in their backbones.

In this thesis we assume that the backbone undergoes no conformational change and no

backbone uncertainty is considered. We consider only side-chain uncertainty.

Rigid docking is an area of research that determines structures of complexes assuming

that the structures of the subunits in complex are exactly known and no conformational

changes occur. Flexible docking [66] on the other hand deals with conformational changes

in the subunits. There are several approaches that handle flexibility in the side-chains. One

approach first performs rigid docking to get a set of possible candidate structures. Flexi-

bility is introduced only at the later stage when each of the candidates is subjected to en-

ergy minimization [1, 32]. Jackson and co-workers [74] used a self-consistent mean field

approach to iteratively refine the side-chain conformations generated by their rigid-body

docking program, FTDOCK. In order to avoid discarding valid solutions during rigid dock-

ing, the rigid docking employs a “soft” potential, considering only a portion of each residue

(such as just the backbone) [141, 153]. HADDOCK [39] introduces flexibility increasingly

in three stages. In the first stage, the subunits are assumed to be rigid; in the second stage,

side-chains are allowed to move; and in the third stage, both side-chains and backbones are

made flexible. The classical approaches [112] of structure determination by NMR handle

flexibility by iteratively refining the side-chain conformations based on energy functions.

Another approach to handle flexibility is to consider ensembles of the subunits and dock

the ensemble rather than single conformers [30]. The ensembles could be obtained from

experiments by collecting either crystal structures (apo or bound to different ligands) or
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the set of structures obtained from NMR experiments [90]. They could also be obtained

by subjecting existing conformations to molecular dynamics simulations [18, 29]. Each of

these approaches fails to be complete in exploring the space of backbone conformations

while handling side-chain flexibility.

One could imagine applying techniques developed for handling side-chain uncertainty

in protein-ligand docking to docking protein complexes. In protein-ligand docking, only

ligand flexibility and/or flexibility only at the binding site is considered and all possible

conformations can be explicitly considered [57, 80, 91, 95, 108, 125, 146]. SLIDE [154]

is an approach where the authors follow a minimal rotation hypothesis (side-chains move

minimally from existing conformations). Such protein-ligand docking approaches would

not work as well for protein-protein docking because of the combinatorial explosion in the

number of possible conformations.

Another approach to handle side-chain flexibility is to restrict side-chain conformations

to a limited set of possibilities. Certain side-chain conformations are higher in energy than

others due to possible steric clashes [66]. This causes the distributions of side-chain angles

to be non-uniform, with preference towards low-energy conformations. This property of

side-chains being non-uniformly distributed is exploited by modeling side-chains with a

discrete set of possible conformations called rotamers. Rotamers provide a reduced repre-

sentation of the side-chain conformational space. In a rotamer library [100, 123, 82] each

amino acid is represented by a set of common low energy conformations. A rotamer library

could be backbone-independent, that is, not depending on the backbone conformation, or

backbone-dependent, that is, depending on the backbone conformation. The libraries are
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typically obtained by statistical analysis on high resolution protein structures in the protein

databank [17] by clustering observed conformations, or by dividing dihedral angle space

into bins, and determining an average conformation in each bin [81].

Rotamer libraries have been used in determination of side-chain conformations mainly

in the context of single protein structure determination. In this case, the backbone is as-

sumed to be known and rotamers are used in determining side-chains. Leach and Lemon [96]

have developed one such approach that explores the side-chain conformational space given

the backbone. Each residue has a set of possible conformations, arising from the different

rotamers considered. A rotamer is pruned, that is removed from a residue’s set, if the con-

tribution to the total energy is reduced by using an alternative rotamer of that residue. The

so-called dead-end elimination criterion developed by Desmet et al. [37] (in the context

of protein design) was used to provably prune such rotamers. Among the set of remain-

ing rotamers, an A∗-search [69] is done to identify side-chain conformations that lead to

low-energy structures. Althaus et al. [8] developed an approach where side-chain opti-

mization (pruning rotamers) is done by either (a) fast heuristic approach or (b) an exact but

slower integer linear programming based approach. None of the mentioned rotamer-based

approaches have been applied in the context of protein complex structure determination.

One approach that has used rotamers in determining protein complexes is ROSETTA-

DOCK [143]. The rotamer libraries are supplemented with side-chain conformations taken

from the unbound subunit structures. This approach performs side-chain optimization by

torsion-angle space minimization. The energy-minimization techniques used by this ap-

proach could fail to explore the space of all possible conformations and hence could miss
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native conformations.

2.4 Structural Inference

The classical approaches for structure determination by NMR [22, 23, 64, 62] formulate

structure determination as an optimization problem. The value that is optimized is the

energy term that includes the physical energy of the molecule (Section 2.1.2) and pseudo-

energy that represents agreement with the data. Formulating structure determination as an

optimization problem implies that there exists a unique solution, that is a unique confor-

mation satisfying the data and biophysical constraints. When data is of high quality, this

assumption leads to valid solutions. But, the uncertainty and noise typically present in the

data makes this assumption questionable. To overcome this, an ensemble of structures are

calculated by repeating the optimization procedure several times. This, however, does not

take into account the noise and uncertainty in the data and makes it difficult to evaluate

the quality of the ensemble of structures. Furthermore, it is not obvious how to choose

parameters such as the relative weight between the physical energy and the pseudo-energy.

The Inferential Structure Determination (ISD) approach developed by Wolfgang et

al. [149] addresses these concerns by formulating NMR structure determination as an infer-

ence problem. Their approach deals with noise and uncertainty in data in a robust manner

using probabilistic inference techniques, where each structure is assigned a probability

measure based on its agreement with the data and prior biophysical information. This ap-

proach was developed in the context of protein structure determination by NMR. Using
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Bayes theorem [77], the posterior probability in a structure is given as the product of the

likelihood of the data and the prior support for the structure. A structure that is in better

agreement with the data is given a higher probability. In this approach no assumptions

about the existence of a unique solution are made. Although the framework is robust in

handling uncertainty and noise in the data, the approach fails to come with the guarantee of

being complete. Possible conformations are obtained by sampling the posterior distribution

using a stochastic Markov Chain Monte Carlo [27] method. The sampling could miss con-

formations with high posterior density. The conclusions on precision of structures, though

better than the classical approaches, still fail to be completely accurate due to the stochastic

sampling.
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3. CONFIGURATION SPACE ANALYSIS OF SYMMETRIC

HOMO-OLIGOMERS

This chapter describes the core of our complete, data-driven algorithm for structure deter-

mination of symmetric homo-oligomers using distance restraints from NMR. Section 1.2.2

gave a high-level description of our algorithm and here we describe each of the steps in

detail.

3.1 The Core Algorithm

3.1.1 Complete Search of SCS

Given the subunit structure, a set of inter-subunit distance restraints and the oligomeric

number as the input, we must identify all possible symmetry axis parameters, (a, t) ∈

(S2
× R2), such that corresponding structures satisfy all the restraints. Here, a repre-

sents the orientation of the axis and t represents the relative position between the axis and

one of the subunits. An exact algebraic formulation for identifying all possible values of

(a, t) is possible, but it would yield high-degree polynomials that are expensive to solve

exactly. Hence, we develop here a branch-and-bound algorithm that searches the SCS
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and conservatively eliminates regions that provably cannot satisfy all the restraints. The

branch-and-bound approach facilitates a complete search over all possible conformations

and ultimately returns consistent regions in SCS.

As Figure 3.1 shows, the branch-and-bound search follows a tree structure and performs

a recursive search through regions in SCS. Each node in the tree is an SCS cell—a 4-

dimensional hyper-cuboid defined by values representing extrema along each of the four

dimensions. At each node of the branch-and-bound search, we test whether any point in the

cell represents a consistent conformation. If such a point possibly exists, we branch and

partition the cell into smaller sub-cells. We continue branching until we can either eliminate

or accept each cell. We eliminate a cell by computing bounds on the conformations it

represents and determining that they all violate at least one restraint or contain significant

steric clashes. We conservatively accept a cell as part of the consistent regions when all the

structures it represents either provably satisfy all the restraints or are within an RMSD of

τ0 Å of each other and each restraint is satisfied by at least one conformation represented

by the cell.

Bounding

We evaluate a cell for potential steric clash only when the cell is “small” enough (≤ 5◦

in S2 and ≤ 0.5 Å in R2). In testing for a steric clash, we separately consider each of

the 16 structures represented by the corners of the 4D cell. A cell is pruned only when

each of the 16 structures has severe steric clashes (see Section 3.2) between its atoms. This
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Fig. 3.1: The branch-and-bound algorithm proceeds as a tree search in SCS, the space of
orientations and translations of the symmetry axes (S2

× R2). (left) The 4-dimensional
SCS is represented as two 2D regions, a sphere representing the orientation space S2 and a
rectangle representing the translation space R2. The dark shaded regions at each node of the
tree represent the region in SCS being explored (A×T ⊂ S2

×R2). Ultimately (bottom left
of the tree) the branch-and-bound algorithm returns regions in 4D space representative of
structures that possibly satisfy all the restraints. (middle) At each node, we test satisfaction
of each restraint of form ‖p − q′‖ ≤ d by testing intersection between the ball of radius
d centered at p and the convex hull bounding possible positions of q′. If there exists an
intersection between the ball and the convex hull for each restraint, further branching is
done (as for node 1); otherwise, the entire node and its subtree are pruned (as for node 2).
(right) The orientations and translations for a node restrict the possible positions of q′. For
each node, the four colored curves represent all possible positions of q′ when considering
the node’s orientation space at each of the four corners of the node’s translation space. The
colored boxes represent the corresponding axis-aligned bounding boxes (AABBs). The
convex hull of the four AABBs (the black box) bounds the positions of q′ for the node.
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soft pruning allows for conformations with a few steric clashes in side chains that can be

overcome through energy minimization performed later. (A provably correct test for steric

clashes is presented in Chapter 5.)

To test whether we can eliminate a cell G due to restraint violation, we independently

consider each restraint, ‖p − q′‖ ≤ d, where p and q′ are positions of atoms in adjacent

subunits in clockwise order. Let position q correspond to q′ in the same subunit to which p

belongs. We then compute Gq, the set of all possible positions of q′ under the symmetries

defined by G. If there is an empty intersection between Gq and the ball of radius d centered

at p, then none of the structures represented by G satisfy the restraint. Formally, let B(p, d)

be the solid ball in R3 which has radius d and is centered at the point p. If Gq∩B(p, d) = ∅

then G is eliminated. Under the assumption of exact symmetry, each restraint ‖p−q′‖ ≤ d

implies another restraint ‖p′ − q‖ ≤ d, where q and p′ are atoms on the adjacent subunits

in counterclockwise order. The satisfaction of this restraint is tested in a similar manner.

The region Gq is characterized by high-degree polynomials and it is computationally

expensive to test for intersections with Gq. Hence we approximate Gq by a conserva-

tive bounding region, W (G, q), that completely contains Gq (i.e., Gq ⊂ W (G, q)), but

is simpler to compute than Gq. The conservative nature ensures that intersection tests be-

tween W (G, q) and B(p, d) provably prune out only structures inconsistent with data. If

W (G, q) ∩ B(p, d) = ∅, then we know Gq ∩ B(p, d) = ∅. We compute W (G, q) by

first deriving a bounding region from the orientation space (S2) and then finding the bound

from SCS (S2
× R2). The details are as follows.

Bound from orientation space: Let A ⊂ S2 be a part of the unit sphere representing the
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set of orientations in G. Let Ak represent the new positions of k ∈ R3 after rotation around

each axis in A by the angle of symmetry, α = 360◦/n. Since rotations preserve distances,

Ak must lie on a sphere of radius ‖k‖ centered at the origin. We bound Ak by a spherical

cap (region of a sphere which lies above or below a given plane) formed by the intersection

of the sphere and a ball. The center and radius of the ball are obtained as follows. Let a

be an axis in A passing through the origin such that all other axes in A lie within a ball of

radius ra centered at a. Hence, A ⊂ S2
∩ B(a, ra). Let k′ be the position of k rotated by

α radians around axis a. The position k′ is the center of the ball approximating Ak and is

obtained as follows:

k′ = (k · a)a+ (sin α)(a× k)+ (cos α) (k− (k · a)a) . (3.1)

The radius, rk , of the ball approximating Ak is computed as

rk = ra

(√
(sin α)2‖k‖2 + (1− cos α)2(k · a)2 + |1− cos α| ‖k‖

)
. (3.2)

Finally, we define our bounding region to be the spherical cap C = B(k′, rk) ∩ S(0, ‖k‖)

where S(0, ‖k‖) denotes the sphere of radius ‖k‖ which is centered at the point 0, the

origin. By construction, Ak ⊂ C . We approximate C with a bounding box that is aligned

along the x-, y- and z-axes—an axis-aligned bounding box (AABB), which we refer to as

V (A, k). We use V (A, k) to help us perform a quick test for intersection. If this quick test

is passed, we then perform a second, more careful and expensive test for intersection using

a tighter bounding region for Ak. This tighter bound is the smallest axis-aligned bounding

box (AABB) that contains Ak. The dimensions of the box are found by performing a

numerical global minimization (and maximization) on the x-, y- and z-coordinates of k′.
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The global optimization is done by gridding A and starting a gradient descent from each of

the points. The details of both our intersection tests and the Equations (3.1) and (3.2) are

provided in Supplementary materials of Potluri et al. [124].

Bound from SCS: Let T ⊂ R2 and A ⊂ S2 denote the sets of translations and orien-

tations in G. The region Gq represents the positions of q on rotation around each axis in

A× T by the angle of symmetry α. To bound Gq and determine W (G, q), we need to find

the orientation-based bound (as above) for each translation t ∈ T . We choose our bound-

ing region W (G, q) as an approximation of the convex hull of Gq. Using the properties of

convex hulls and the fact that T is convex, we are able to prove that the convex hull of Gq

is determined by just the corners of T (see Supplementary materials [124] for proof). Let

H(U ) be the convex hull of U ⊂ R3. It can be shown that H(Gq) = H(
⋃4

i=1{Aqti + ti })

where ti are the four corners of T and qti denotes the position (q− ti ). We use our bounds

on regions of Ak, the AABB V (A, k), to bound Aqti . We then bound Gq by finding the

convex hull of the AABBs at the corners of T . This convex hull is our bounding region

W (G, q). It can be proved that W (G, q) is a conservative bounding region for Gq (see

Supplementary materials [124]). That is, Gq ⊂ W (G, q). Hence, testing satisfaction of a

restraint ‖p−q′‖ ≤ d requires testing for the intersection of the convex hull of the AABBs

at the corners of T (which is a bounding region for Gq), with a solid ball centered at p

with radius d. We test the intersection between a ball and a convex polyhedron using the

method described in [44].

36



Branching

In partitioning a cell into sub-cells, we considered two approaches to choose the dimension

to branch along. In the first approach, we seek to divide the cell into two regions along

the dimension that will cause one of the restraints to be violated by all the conformations

represented by one of the sub-cells. This kind of a division will allow us to efficiently

eliminate the sub-cell. We use the following heuristic to achieve this. For each restraint

‖p − q′‖ ≤ d, we compute q′ for each of the corners of the cell. We then identify the

dimension that has the largest difference in ‖p − q′‖ distances for its pair of corners. We

partition along that dimension.

In the second approach, we seek to partition a cell, G = A × T , into sub-cells along

the dimension that will make our conservative bound as tight as possible. In finding the

conservative bound, we approximate the orientation space, A, by a spherical cap. Hence,

the bound is tightest when the orientation space is as “square” as possible. Let Vc denote

the volume occupied by Gq, the bound from G. Let Vr denote the sum of the volumes of

the bounds from A at the four corners of T . We choose to partition along the translation

space instead of the orientation space when the ratio of Vc to Vr is larger than 1. To partition

the translation space, we divide along the x or y dimension, whichever is larger. Similarly,

we choose the dimension of maximum length when the orientation space is chosen. In

practice, we have found the second heuristic to work better than the first.
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Time Complexity of the Search

The time complexity of the hierarchical subdivision depends on the number of nodes ex-

plored and the time spent at each node. First let us get an estimate of the number of nodes

explored. Let C denote the set of satisfying cells (leaf cells of the hierarchical subdivision)

and d be the depth of the search tree. First let us estimate the number of nodes explored

when the geometric bound, Gq, is perfect, that is we can exactly compute the region of Gq.

In this case, a worst-case bound on the number of nodes explored is O(Cd). This comes

from the fact that at each level of the search tree, we would in the worst case accept |C |

cells. The cells that cannot be part of C at each level are immediately eliminated, leading

to a constant time to explore the eliminated nodes.

In the case that the bound is conservative, additional nodes are explored. This is because

some invalid nodes, nodes that cannot be part of C , are not immediately eliminated. The

question then is for each invalid node, k, how many subdivisions must occur for all the

sub-cells of k to be eliminated. Given that k is at level l, we need to identify the level at

which k is eliminated. Figure 3.2(a) shows the correlation between the level at which the

perfect bound and the conservative bound eliminate invalid nodes for one of the test cases

(glycophorin A). (Similar results were obtained on other test cases.) As can be seen, the plot

is mostly diagonal. The farther away from the diagonal a point is, the greater the number

of additional levels. The number of additional levels explored (say m) does not imply that

the number of additional nodes explored is exponential (2m+1
− 1). Figure 3.2(b) indicates

the number of additional nodes explored due to the conservative nature of the bound. As
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Fig. 3.2: Empirical analysis of the conservative nature of the bound on glycophorin A.

Relationship between the level at which the perfect bound would have eliminated an

invalid node to (a) the level at which the conservative bound eliminates it and (b) the

number of additional nodes explored due to the conservative bound.
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seen, for all invalid nodes beyond level 10, less than 100 additional nodes are explored.

Now, let us look at the time complexity for testing our geometric bound in a cell of the

SCS.

Theorem 3.1 The time complexity for checking satisfaction of a restraint for a pair of

atoms in a cell of the 4D SCS is O(1).

Proof: Consider checking satisfaction of a restraint of the form ‖p−q′‖ ≤ d (p and q′ are

atoms on different subunits and d is the distance of the restraint) in a cell of the 4D SCS,

G = A × T ⊆ S2
× R2. This requires determining if there is a non-empty intersection

between a ball (centered at p and of radius d) and Gq, the region of possible positions of

q′ when the symmetry axis is in G. Since Gq is hard to compute exactly, we approximate

it by computing a bound on Aq at the four corners of T and then taking the convex hull of

the four bounds (Section 3.1.1). The resulting convex hull is a superset of Gq, which we

use in our conservative tests for restraint satisfaction. The bound on Aq is obtained as an

axis-aligned box (AABB). The time complexity, t , for checking satisfaction of a restraint in

a cell, would then be the sum of (a) the time complexity, tb, for computing the bound on Aq

at each of the four corners of T , (b) the time complexity, tc, for computing the convex hull

of the bounds at the corners, and (c) the time complexity, ti , for computing the intersection

between the convex hull and a ball.

(a) The time complexity, tb, for computing a bound on Aq includes evaluating an an-

alytical expression to compute the center and radius of a bounding ball (Equations 3.1

and 3.2) and computing an axis-aligned box (AABB) of the intersection of the bounding
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ball and a sphere. This requires constant time, tb = O(1). Since the bound on Aq must be

obtained at each of the four corners of T , tb = 4 · O(1) = O(1).

(b) The time complexity, tc, for computing the convex hull of the AABBs obtained at

the four corners of T would be O(s log s) in the worst case where s is the number of input

points to compute the hull. Since we are finding the convex hull of four AABBs, each with

eight vertices, s in our case would be 32. Hence, tc = O(1).

(c) The time complexity, ti , for computing the intersection between the convex hull

and a ball is proportional to the number of triangles of the convex hull. For each triangle,

we test if it intersects the ball. Since the complexity for testing each triangle is constant,

ti = O( f ), where f is the number of triangles of the convex hull. Using Euler’s formula,

we can prove that the number of triangles for the convex hull in 3D is at most 2p − 4 [36].

Here p is the number of vertices of the convex hull which is at most the number of input

points, 32 in our case. Hence, f ≤ 2 · 32− 1, obtaining ti = O(1).

Hence the time complexity for checking satisfaction of a possible NOE assignment in

a cell of the 4D SCS, t = tb + tc + ti = O(1). �

3.1.2 Determining Satisfying Structures

Our algorithm guarantees that the consistent regions it returns represent every conforma-

tion of the symmetric homo-oligomer that is consistent with the data. Because we prune

conservatively, they might also represent additional structures inconsistent with the data.

To identify the most consistent conformations, we generate representative structures from
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the consistent regions. Choosing good representatives ensures that we do not miss native

structures (as can occur with sampling-based docking approaches; see Section 2.1.4). We

choose the set of representative structures as follows. A cell is accepted as part of the con-

sistent regions only when all structures it represents are within τ0 Å of each other. We first

obtain the structures from the centroids of the cells in the consistent regions. We then clus-

ter these structures using an agglomerative complete linkage hierarchical clustering [67]

that allows two structures to be within a cluster only if their backbone RMSD is within

τ0 Å. The centroids of the clusters then form the set of representative structures. This pro-

cedure ensures that every structure of the consistent region is within τ0 Å of at least one

representative structure.

Some representative structures might be inconsistent with the data, due to the conserva-

tive bounds used when pruning regions. We define the satisfaction score for each structure

as the sum over the violated NOE restraints of the difference in the expected and the ob-

served distance.

The set of satisfying structures are those representative structures with satisfaction

scores below a threshold. Note that each satisfying structure represents a set of cells in

the consistent regions. The union of all such cells form the satisfying regions.

3.1.3 Determining WPS Structures

Having obtained the set of satisfying structures, we now evaluate each of them for packing

quality. We first energy-minimize them with the LBFGS conjugate-gradient minimization
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algorithm (10,000 minimization steps) in CNS [23]. The energy function being minimized

includes the NOE restraint energy terms as well as the modeling energy terms of vdW (6-12

Lennard-Jones potential), bond length, bond angle, dihedral, and improper energies [23].

We harmonically restrain the backbone and the NOE restraints to ensure that we maintain

the symmetry and satisfy the restraints. The minimization accounts for flexibility, uncer-

tainty and asymmetry in the side chains and should help obtain conformations of the side

chains that provide good van der Waals packing.

We define the packing score of an energy-minimized structure as the difference between

the vdW energy of a subunit in the structure when it is in the complex, and the vdW energy

of the subunit when it is not in the complex. The difference ensures that only the vdW

energy of the inter-subunit surfaces is taken into consideration and indicates the preference

of the subunit to be in its apo form versus holo form. A positive value for the difference

implies that the subunit prefers its apo form and that the complex is not well-packed.

We then define the set of WPS structures as those satisfying structures with packing

scores below a threshold, chosen here as 0 kcal/mol since well-modeled structures should

have negative packing scores. We refer to the union of cells in the consistent regions cor-

responding to the WPS structures as the WPS regions.

Evaluating Structural Constraint

Our data-driven approach allows us to evaluate the constraint in structure provided by data

alone versus data and modeling. We use two metrics. The first metric evaluates the variance
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Fig. 3.3: Correlation of the level of the search tree with (a) log SCS volume and (b)

average backbone RMSD of structures represented by the cells.

in the position of each atom across the set of satisfying (or WPS) structures. The second

metric finds the 4D volume of the satisfying (or WPS) regions. By comparing these mea-

sures for satisfying versus WPS structures and regions, we evaluate the structural constraint

from data alone versus both data and packing together. In order to get an intuition of how

the volume corresponds to uncertainty in the conformations, we obtained the correlation

between volume and RMSD to the level of the search tree. Figure 3.3(a) indicates the cor-

relation between the 4D volume and the level of the search tree and Figure 3.3(b) indicates

the correlation between the average backbone RMSD among conformations represented by

cells at a level and the level of the search tree. (These figures were obtained by running

the core approach on each of our test cases and taking the average over all test cases.) The

log (volume) decreases linearly as the level of the tree increases. Similarly, the average
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backbone RMSD decreases as the level of the tree increases. From these two figures we

can deduce that the volume is roughly proportional to the RMSD of the structures.

Determining Oligomeric Number

Our method also allows computational determination of the oligomeric number of the com-

plex. The confidence in the determined oligomeric number depends on the information

content in the available data. We can determine whether the available data suffices to deter-

mine the oligomeric number with high confidence. For each possible oligomeric number,

we determine a set of WPS structures. We place higher confidence in the oligomeric num-

ber that has WPS structures with better vdW packing. Thus we determine the oligomeric

number using the NMR data and vdW packing. Our approach provides for an independent

verification of the oligomeric state, which is typically determined using experiments such

as chemical cross-linking followed by SDS-PAGE, or by equilibrium sedimentation.

We expect structures obtained from the correct oligomeric number to satisfy the data

and have vdW packing better than structures from other possible oligomeric numbers.

Hence, restraint satisfaction and vdW packing should help discriminate among putative

oligomeric numbers. We test this possibility by searching in the extended symmetry config-

uration space (ESCS), Z9 × S2
× R2, where Z9 is the set of possible oligomeric numbers

of 2 to 9. We first obtain the set of WPS structures for each oligomeric number. We im-

mediately prune out those oligomeric numbers that have no WPS structures. This allows

us to determine the oligomeric number with high certainty when only a single oligomeric
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number has WPS structures. When several oligomeric numbers have WPS structures, we

determine the oligomeric number as follows. Let El(m) and El(n) represent the lowest

packing scores of the WPS structures from oligomeric numbers of m and n respectively. If

El(m) < El(n), the difference El(n) − El(m) indicates the confidence we have in prefer-

ring m versus n as the oligomeric number.

3.2 Results

We validated our core SCS algorithm by testing it on a number of proteins of different

oligomeric numbers (Section 1.2.3) describes these test cases). The subunit structure was

placed with its center of mass at the origin and its principal axis along the z-axis. The

translation parameters, x and y, indicate the position of the symmetry axis relative to the

origin. Similarly the orientation parameters theta and phi indicate the orientation of the

symmetry axis on a unit sphere. Theta denotes the latitude and phi denotes the longitude on

the unit sphere. We declared a structure to have a steric clash when there were at least five

pairs of atoms such that each pair was separated by less than 1.5 Å. Energy minimization

of structures, in the second phase of our approach, allows side chain flexibility such that

one or two steric clashes can be eliminated. The value of τ0 , the user-defined similarity

level, was chosen as 1 Å2. The threshold for the satisfaction score was chosen as 1 Å.

We will first discuss our results on phospholamban, the homo-pentamer that motivated the

research in this thesis, and then discuss the results on several other proteins: glycophorin A,

haemagglutinin, potassium channel and co-chaperonin.
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Fig. 3.4: Phospholamban Results: Consistent regions using the nine experimental

restraints and an oligomeric number of 5. Subplot (a) indicates the translation param-

eters of the consistent regions. Subplots (b) and (c) indicate orientation parameters of

consistent regions both on a sphere and when projected onto a plane of theta and phi angles.

3.2.1 Results on phospholamban

The branch-and-bound algorithm was run on phospholamban using the nine available ex-

perimental restraints. The algorithm returned a set of 5195 cells corresponding to the leaves

remaining after pruning infeasible regions (restraint violation or steric clash) of the 4D con-

figuration space. The solution cells are shown in Figure 3.4. A huge chunk of the 4D space

(approximately 45238 Å2-rad2) was pruned leaving consistent regions as shown in the fig-

ure. The remaining volume in SCS is 1.24 Å2-rad2.

Figure 3.5(a) plots the packing scores versus the satisfaction scores for phospholamban.

The set of satisfying structures has an overall range of 1.07 Å to 8.85 Å backbone RMSD

to the reference structure. This range indicates the diversity in structures possible using just
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(a) (b)

Fig. 3.5: Phospholamban results: (a) Restraint satisfaction score vs. packing score for all

representative structures. The vertical and horizontal lines indicate the chosen cutoffs for

WPS structures: 1 Å for the satisfaction score and 0 kcal/mol for the packing score. The

green stars and the blue crosses indicate the set of satisfying structures. The magenta points

indicate the set of representative structures that are eliminated due to high satisfaction

scores. The green stars indicate the set of WPS structures and the red star indicates the

reference structure. (b) Histogram of backbone RMSD to the reference structure for the

WPS structures.
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(a) (b)

Fig. 3.6: Phospholamban structures: (a) The set of WPS structures after alignment to the

structure with lowest packing score. Different chains are in different colors. (b) Variance

of the backbone atoms illustrated by the color scale shown with blue indicating maximum

variance and red minimum variance.

the nine experimental inter-subunit NOE restraints. The average variance in the positions

of the atoms in the set of satisfying structures is 12.32 Å2. The satisfying region volume

(1.24 Å2-rad2) and the average variance indicate the constraint on structure provided by the

data alone.

Figure 3.5(a) also shows the scores of the WPS structures. The reference structure has

a satisfaction score of around 0.8 Å and packing score of −17 kcal/mol, and it lies in the

WPS region. Figure 3.5(b) shows the backbone RMSD of the reference structure to each

of the WPS structures. Incorporating packing quality reduces the maximum RMSD to the

reference structure from 8.85 Å to 6.24 Å. The area of the translation space is reduced from
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290 Å2 to approximately 135 Å2 and that of the orientation space from 0.40 radian2 to ap-

proximately 0.23 radian2. The volume of the 4D space is reduced from 1.24 Å2-radian2 in

the set of satisfying structures to approximately 0.51 Å2-radian2. All these values indicate

the additional constraint that packing quality imposes on the structure of phospholamban.

The average variance in the positions of the atoms is reduced from 12.32 Å2 to 6.80 Å.

Figure 3.6(a) illustrates all the WPS structures and Figure 3.6(b) illustrates the variance of

each of the backbone atoms. The figures show that there is more uncertainty in the amphi-

pathic helices than the transmembrane helices. The average variance in the amphipathic

helices is 10.75 Å2 whereas that in the transmembrane helices is 2.96 Å2. This is because

the experimental restraints are between residues in the transmembrane helices. This agrees

with the observation in [119] that the amphipathic helices are less well determined. From

this we conclude that we need more restraints in the amphipathic helices to determine the

structure with greater precision.

We further tested whether the experimental data available are sufficient to choose one

oligomeric number over others with reasonable confidence. When we applied our approach

to determine the oligomeric number on phospholamban, WPS structures were present

only for oligomeric numbers of tetramer, pentamer, hexamer, and heptamer. The low-

est packing scores obtained were El(4) = −21.80 kcal/mol, El(5) = −28.44 kcal/mol,

El(6) = −19.28 kcal/mol, and El(7) = −15.52 kcal/mol. El(5) has the lowest pack-

ing score, correctly suggesting that the pentamer is the most feasible oligomeric num-

ber. We expect that with the availability of more experimental data, we can determine the

oligomeric number with greater confidence.
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3.2.2 Results on other proteins

The branch-and-bound algorithm was run on each of the four proteins: glycophorin A,

haemagglutinin, potassium channel and co-chaperonin (Section 1.2.3). The results are

shown in Figures 3.7, 3.8, 3.9, 3.10. For the dimer case (glycophorin), the search is

performed on half of the orientation space. This is because symmetry axes oriented exactly

reverse of each other lead to the same dimer structure. Note the small region in configu-

ration space (translation space 1.10 Å2 and rotation space 0.001 rad2) for haemagglutinin.

The reason for this is the presence of 85 restraints and the coiled-coil fold of the com-

plex. The tetramer and the heptamer, having more pancake-like folds, have considerable

spreads in translation and rotation spaces even with the availability of 32 and 85 restraints

respectively.

Tables 3.1 and 3.2 summarize the results. Figure 3.11 shows for each test case a plot

of packing scores versus satisfaction scores. Table 3.1 shows the results on the satisfying

regions and satisfying structures and Table 3.2 shows the results on WPS regions and WPS

structures. The tables and figure clearly show that except for human glycophorin A, the

remaining test cases have identical sets of satisfying structures and WPS structures. Further,

the spread in the satisfying region and the WPS region is almost the same. The reason for

this similarity might be that we have used all possible restraints (85, 32, and 85) for these

test cases. This use of all restraints causes almost all the satisfying structures returned by

the branch-and-bound algorithm to have high-quality vdW packing and hence to belong to

the set of WPS structures.
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Fig. 3.7: Glycophorin A Results: Consistent regions using the six experimental restraints

and an oligomeric number of 2. Subplot (a) indicates the translation parameters of the con-

sistent regions. Subplots (b) and (c) indicate orientation parameters of consistent regions

both on a sphere and when projected onto a plane of theta and phi angles.

Fig. 3.8: Haemagglutinin Results: Consistent regions using the 85 simulated restraints and

an oligomeric number of 3. Subplot (a) indicates the translation parameters of the consis-

tent regions. Subplots (b) and (c) indicate orientation parameters of consistent regions both

on a sphere and when projected onto a plane of theta and phi angles.
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Fig. 3.9: Kv1.2 Potassium Channel Results: Consistent regions using the 32 simulated

restraints and an oligomeric number of 4. Subplot (a) indicates the translation parameters

of the consistent regions. Subplots (b) and (c) indicate orientation parameters of consistent

regions both on a sphere and when projected onto a plane of theta and phi angles.

Fig. 3.10: Gp31 co-chaperonin Results: Consistent regions using the 85 simulated re-

straints and an oligomeric number of 7. Subplot (a) indicates the translation parameters of

the consistent regions. Subplots (b) and (c) indicate orientation parameters of consistent

regions both on a sphere and when projected onto a plane of theta and phi angles.
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Fig. 3.11: Restraint satisfaction score vs. packing score for all satisfying structures of

(a) human glycophorin A (dimer:1AFO), (b) influenza haemagglutinin (trimer:1HTM), (c)

Kv1.2 potassium channel (tetramer:1QDV), and (d) Gp31 co-chaperonin (heptamer:1G31).

The vertical and horizontal lines indicate the chosen cutoffs for WPS structures: 1 Å for the

satisfaction score and 0 kcal/mol for the packing score. The green stars and the blue crosses

(when present) indicate the set of satisfying structures. The magenta points indicate the set

of representative structures that are eliminated due to high satisfaction scores. The green

stars indicate the set of WPS structures and the red star indicates the reference structure.
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Tab. 3.1: Satisfying structure results: backbone RMSD of the set of satisfying structures

to the reference structure, the uncertainty in SCS represented by the area of the translation

(T ) and orientation (A) space for the satisfying region and the 4D volume of the satisfying

region, and finally the variance in the position of atoms for the set of satisfying structures.

Protein (symmetry) PDB id No. of RMSD (Å) Uncertainty in SCS Variance in atoms (Å2)

restraints min max T (Å2) A (rad2) Volume (Å2rad2) min max mean

Glycophorin A (2) 1AFO 6 (expt) 0.61 1.77 4.72 0.06 0.06 0.34 2.62 0.97

Haemagglutinin (3) 1HTM 85 (simulated) 0.86 1.08 1.10 0.001 4e-4 0.07 0.64 0.22

Kv1.2 potassium channel (4) 1QDV 32 (simulated) 0.92 2.85 7.47 0.07 0.13 0.24 4.91 1.24

Phospholamban (5) 1ZLL 9 (expt) 1.07 8.85 289.53 0.40 1.24 2.87 43.97 12.32

Gp31 co-chaperonin (7) 1G31 85 (simulated) 0.40 2.72 21.20 0.07 0.15 0.36 7.73 1.66

Tab. 3.2: WPS structure results: backbone RMSD of the set of WPS structures to the

reference structure, the uncertainty in SCS represented by the area of the translation (T )

and orientation (A) space for the WPS region and the 4D volume of the WPS region, and

finally the variance in the position of atoms for the set of WPS structures.

Protein (symmetry) PDB id No. of RMSD (Å) Uncertainty in SCS Variance in atoms (Å2)

restraints min max T (Å2) A (rad2) Volume (Å2rad2) min max mean

Glycophorin A (2) 1AFO 6 (expt) 0.61 1.77 2.97 0.09/2 0.04 0.07 1.51 0.47

Haemagglutinin (3) 1HTM 85 (simulated) 0.86 1.08 1.10 0.001 4e-4 0.07 0.64 0.22

Kv1.2 potassium channel (4) 1QDV 32 (simulated) 0.92 2.85 7.47 0.07 0.12 0.24 4.91 1.24

Phospholamban (5) 1ZLL 9 (expt) 1.07 6.24 135.50 0.23 0.51 1.52 24.96 6.80

Gp31 co-chaperonin (7) 1G31 85 (simulated) 0.40 2.72 21.20 0.07 0.15 0.36 7.73 1.66

Figures 3.12, 3.13, 3.14, and 3.15 illustrate the uncertainty in the set of WPS structures

for each of the test cases. Despite using 32 and 85 restraints, the potassium channel and co-

chaperonin have considerable spread in the translation space. The variance in the position

of the atoms is also high, with a maximum as high as 4.9 Å2 and 7.7 Å2, respectively. The

higher uncertainty is because the chosen restraints (restricted to those with exact symmetry)

are not distributed all along the inter-subunit surface, but are concentrated toward one end

of the surface (Figure 3.16(a)). On the other hand, haemagglutinin is a long helical trimer

and the 85 restraints are distributed across the entire inter-subunit surface, thereby yielding

less uncertainty (Figure 3.16(b)). This indicates the effect of independence of restraints on

the uncertainty.
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(a) (b)

Fig. 3.12: Glycophorin A (1AFO) structures: (a) The set of WPS structures after alignment
to the structure with lowest packing score. Different chains are in different colors. (b)
Variance of the backbone atoms illustrated by the color scale shown with blue indicating
maximum variance and red minimum variance.

The reference structure lies in the WPS region for all cases, and Table 3.2 indicates the

range of RMSDs to the reference structure. Figure 3.17 plots histograms of the backbone

RMSD of the set of WPS structures to the reference structure. The histograms peak at 1 Å

RMSD, which indicates that the structures obtained are close to the reference structure. The

potassium channel (1QDV) and co-chaperonin (1G31) have larger ranges. It is interesting

to note that the dimer, with as few as six experimental restraints, provides for comparatively

much less uncertainty. This smaller uncertainty might be because the restraints are spread

out across the subunit.

To test the hypothesis that the position of the restraints affects the uncertainty in the

structure, we performed the following test. We tested the change in structural uncertainty
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(a) (b)

Fig. 3.13: Haemagglutinin (1HTM) structures: (a) The set of WPS structures after align-
ment to the structure with lowest packing score. Different chains are in different colors. (b)
Variance of the backbone atoms illustrated by the color scale shown with blue indicating
maximum variance and red minimum variance.

(a) (b)

Fig. 3.14: Kv1.2 potassium channel (1QDV) structures: (a) The set of WPS structures
after alignment to the structure with lowest packing score. Different chains are in different
colors. (b) Variance of the backbone atoms illustrated by the color scale shown with blue
indicating maximum variance and red minimum variance.

57



(a) (b)

Fig. 3.15: Gp31 co-chaperonin (1G31) structures: (a) The set of WPS structures after
alignment to the structure with lowest packing score. Different chains are in different
colors. (b) Variance of the backbone atoms illustrated by the color scale shown with blue
indicating maximum variance and red minimum variance.

(a) (b)

Fig. 3.16: The spread of simulated restraints across the first two chains in the reference
structure of (a) Kv1.2 potassium channel (1QDV) (b) haemagglutinin (1HTM). The red
and blue segments indicate the first two chains with the green lines indicating the restraints.
The red and blue balls are the atoms on the chains between which the restraints exist.
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Fig. 3.17: Histogram of backbone RMSD to the reference structure for the WPS struc-

tures returned by our approach for (a) human glycophorin A (dimer:1AFO), (b) influenza

haemagglutinin (trimer:1HTM), (c) Kv1.2 potassium channel (tetramer:1QDV), and (d)

Gp31 co-chaperonin (heptamer:1G31).
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(a) (b) (c)

Fig. 3.18: Change with number of simulated restraints of (a) translation spread of WPS

regions, (b) orientation spread of WPS regions, and (c) average variance in atomic

positions for influenza haemagglutinin (1HTM).

of haemagglutinin as the number of relatively independent restraints changed. We refer

to a set of restraints as relatively independent if the restraints have no common atoms and

are far apart from each other. We choose the set of independent restraints by the follow-

ing heuristic. We consider midpoints of each possible restraint and represent distances

between the restraints by distances between their midpoints. We choose as the first two

members of the set, the two restraints that have their midpoints farthest apart. We choose

the third restraint as the one whose midpoint has the largest minimum distance from the

first two members. We continue this process iteratively to choose the remaining restraints.

Figure 3.18 illustrates the change in the translation spread, orientation spread, and average

variance in position of atoms with an increasing number of independent restraints. The

average variance in the atom positions decreases from 0.9 Å2 to 0.2 Å2 as the number of

independent restraints increases. This analysis helps us quantify the minimum number of
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independent restraints required to determine the structure of the homo-oligomer up to a

specified precision. For example, if we are willing to tolerate approximately 1 Å2 uncer-

tainty in the positions of the atoms, about eight independent restraints will be sufficient. On

the other hand, if we want high precision and are not willing to tolerate uncertainty above

0.3 Å2 in the positions of atoms, we need as many as 64 independent restraints.

We also applied our method for determination of oligomeric number to the four pro-

teins. For glycophorin A, haemagglutinin, and the Kv1.2 potassium channel we could

determine the oligomeric number with high certainty because the set of WPS structures

was empty for oligomeric numbers other than the correct one. Glycophorin A is espe-

cially interesting since we determined the correct oligomeric number using just six re-

straints. For the co-chaperonin, oligomeric numbers of hexamer, heptamer, and octamer

have WPS structures with El(6) = −69.09 kcal/mol, El(7) = −72.19 kcal/mol, and

El(8) = −68.92 kcal/mol. In this case too, since El(7) is the lowest packing score, we

correctly conclude that the oligomeric number is 7.

We continued our study of the effect of number of independent restraints for haemag-

glutinin (1HTM). When the number of restraints chosen was 85, 64, or 32, WPS structures

were absent for oligomeric numbers other than 3, allowing us to determine with high con-

fidence that haemagglutinin is a trimer. With only 16 or 8 restraints, we obtained WPS

structures for oligomeric numbers other than 3. As expected, as the available experimental

data increases, our confidence in determining the oligomeric number increases.
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3.3 Conclusions

In this chapter, the core algorithm of our complete, data-driven approach for structure de-

termination of symmetric homo-oligomers was presented. We showed that our approach

identifies all conformations that are consistent with NOE restraints and that display high-

quality vdW packing from our results on five test cases. From our results on phospholam-

ban which had 9 experimental NOE restraints, we showed that our approach is particularly

important in sparse-data cases, where relying on an incomplete, biased search (as in the

classical approaches) may result in missing well-packed, satisfying conformations. By be-

ing complete and data-driven, our approach enables objective evaluation of the amount of

structural uncertainty provided by data versus by data and modeling. We show that the

average variance in structures is decreased from 12.32 Å2 to 6.80 Å2 for phospholamban

and 0.97 Å2 to 0.47 Å2 for glycophorin A when data alone versus data and packing are

considered. By first searching for regions of conformation space consistent with the NOE

restraints, and then filtering these regions according to predicted quality of packing, our

approach makes good use of the relatively greater discriminatory information content in

sparse NOEs to focus on plausible conformations for subsequent analysis by relatively

finer-grained packing metrics.

The approach discussed in this chapter assumes that the inter-subunit NOEs are unam-

biguously assigned. In the next chapter, we extend the approach discussed in this chapter

to handle ambiguity in NOEs in a robust manner and perform NOE assignment.
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4. RESOLVING AMBIGUITY FOR INTER-SUBUNIT NOE

ASSIGNMENT

This chapter extends the core algorithm described in Chapter 3, relaxing the assumption

that the NOEs are correctly assigned, and dealing with the ambiguity present in assign-

ing NOEs. As mentioned in Chapter 2, the sources of ambiguity in inter-subunit NOE

assignment are intra- vs. inter-subunit ambiguity, whether the restrained atoms are within

the same subunit or in different subunits, subunit ambiguity, the subunits to which the

restrained atoms of an inter-subunit NOE belong, atom ambiguity, the identities of the

restrained atoms among those with chemical shifts similar to the NOE peak. Intra- vs.

inter-subunit ambiguity can be resolved experimentally by labeling strategies while both

subunit ambiguity and atom ambiguity require computational solutions. In this chapter, we

develop a complete approach that simultaneously resolves subunit and atom ambiguity in

inter-subunit NOE assignment and determines Cn symmetric homo-oligomeric structures,

given the subunit structure.

As discussed, a configuration space representation allows us to be complete, data-driven

and efficient. We extend the configuration space to include not only symmetry axis param-

eters, but also all possible assignments of the NOEs in terms of atom and subunit identities.
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Our algorithm considers NOEs sequentially, i.e., one after the other, pruning parts of the

configuration space in which axes and assignments are mutually inconsistent. Furthermore,

the results of our algorithm are deterministic and not affected by the order in which NOEs

are considered. Pruning occurs only due to provable inconsistency and thereby avoids the

pitfall of local minima that could arise from best-first sampling-based approaches. Ulti-

mately, we return a mutually-consistent set of conformations and NOE assignments. The

developed algorithm is complete, as in the previous chapter, in that it identifies structures

representing, to within a user-defined similarity level, every structure consistent with the

available data (ambiguous or not). However, it avoids explicit enumeration of the expo-

nential number of combinations of possible assignments. It requires time only linear in the

number of ambiguous NOEs, the number of possible assignments for each, and the set of

4D cells in the SCS. Our algorithm can draw two types of conclusions not possible under

existing methods: (a) that different assignments for an NOE would lead to different struc-

tural classes, or (b) that it is not necessary to assign an NOE since the choice of assignment

would have little impact on structural precision. Note that our approach focuses on inter-

subunit NOE assignment and currently cannot be applied to intra-subunit NOE assignment

for monomer structure determination.

4.1 Problem Formulation

The problem that we must solve is the following. We are given a set of inter-subunit NOEs

(each possibly atom- and subunit-ambiguous), the subunit structure and the oligomeric
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number. Our goal is to determine a mutually-consistent set of NOE assignments and re-

gions in the SCS (symmetry configuration space), such that the regions represent all confor-

mations consistent with the assignments, and the assignments are all those consistent with

the regions. Recall (Section 2.2), that a subunit assignment of the NOE specifies the rela-

tive positions of the subunits and atom assignment of the NOE specifies the atoms involved

in the NOE. Let us first formalize the representation of subunit and atom assignments.

Subunit assignment: An NOE could capture an interaction between any pair of protons

in any pair of subunits. Under Cn symmetry, each interaction is “mirrored”, i.e., holds

between each pair of subunits that are indistinguishable under Cn rotation. Thus a subunit

assignment for an NOE specifies the difference (1 to n− 1) in the positions of the involved

subunits within the symmetric order.

Atom assignment: In typical approaches to NMR structure determination, the chemical

shift assignments of the various atoms are obtained in an earlier analysis, and are then

used to determine which atoms’ interactions might have generated the NOE peaks. The

possible identities of the interacting protons are determined by comparing the chemical

shift coordinates of an NOE peak with the assigned chemical shifts (the same for each

subunit, by Cn symmetry). In the 3D spectra used here, there are two coordinates (15N/13C

and 1H) by which to determine one side of the interaction and one coordinate (1H) for the

other. Since two coordinates generally result in a unique assignment, we here consider only

one-sided atom ambiguity, although our approach can readily be generalized. Thus an atom

assignment for an NOE specifies the identity of the ambiguous atom, from the entire set A

of atoms (here we consider only protons) in a monomer. Typically a user-specified match
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tolerance ε (e.g., 0.04 ppm) limits the possible protons to those with similar chemical shift

to the peak coordinate.

In summary, the assignment for an NOE specifies a pair (i, j) ∈ Zn−1 × A where i

assigns the relative positions of the subunits in the complex and j assigns the proton in the

subunit. Here Zn−1 represents Sn , the symmetric group of n elements. Each element of Sn

is represented by an integer in {1, . . . , n − 1}.

Recall from Chapter 3 that the SCS is the space of all symmetry axis parameters, each

defining a homo-oligomeric complex structure. Thus we seek to simultaneously assign

NOEs (both subunit and atom assignment) and determine structure (by identifying regions

in SCS), in a manner that guarantees that we find all consistent assignments and structures.

In order to make such a guarantee, we must carefully formulate what it means for an NOE,

or one of its possible assignments, to be inconsistent with respect to a given set of NOEs

and the structures that they define. In the process, we are also able to formulate what it

means to be redundant. In addition to helping us prove (see Section 4.3) that our approach

is correct, these formulations allow us to characterize (Section 4.5) the information content

provided by a set of NOEs regarding a homo-oligomeric structure.

Let R be a set of (possibly ambiguous) NOEs. Let rkl represent the l th possible as-

signment of kth NOE of R, and let skl ⊂ S2
× R2 be the region of the SCS in which rkl

is satisfied. A determined structure must satisfy all ambiguous NOEs; it satisfies each by

satisfying one or more of its assignments. In the SCS, this translates into finding the region
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p(R) defined as:

p(R) = (s11 ∪ s12 ∪ s13 ∪ . . .) ∩ (s21 ∪ s22 ∪ . . .) ∩ . . . =

‖R‖⋂
k=1

( tk⋃
l=1

skl

)
(4.1)

where tk is the number of possible assignments for the kth NOE.

Using Equation (4.1), we can give the definition for redundant and inconsistent NOEs

and assignments. Let Q ⊂ R be a set of NOEs. Let rk be an (arbitrary) ambiguous

NOE (not in Q) with tk assignments. As above, let rkl be its l th possible assignment and

skl be the region of the SCS in which the distance restraint rkl is satisfied. We say rkl is

redundant with respect to Q if and only if p(Q) ⊂ skl . We say rkl is inconsistent with

respect to Q if and only if p(Q) ∩ skl = ∅. We can extend these notions from assignments

to NOEs as follows. Let Sk =
⋃tk

l=1 skl be the region of the SCS which satisfies at least

one assignment of rk (the kth NOE). We then declare rk to be redundant with respect to Q

if and only if p(Q) ⊂ Sk , and declare rk to be inconsistent with respect to Q if and only if

p(Q) ∩ Sk = ∅. Our algorithm eliminates inconsistent NOEs and assignments, and is able

to detect redundant ones.

4.2 Ambiguity Resolution Algorithm

Although we would like to compute exactly the region p(R) (Equation 4.1) defining all

consistent structures, it is a semi-algebraic set characterized by high-degree polynomials

that are expensive to solve exactly. Our ambiguity resolution algorithm computes a su-

perset of p(R) by using the conservative analytical bounds developed in Chapter 3 to test

satisfaction of possible NOE assignments. We say that our method is complete because ev-

67



a
b
c
d

b
c

d

abcd

a

Ambiguity Consistent Regions in SCS Assigned NOE

c

d c
b a

d
cb

a

Subunit 1a b
dSubunit 2

Subunit 3

Subunit 3

Subunit 2
Subunit 1

d b a

d
c

a
b

c
d

a b

c

(Three possible atom assignments each)

Ambiguity resolution algorithm

Subunit assignment #2Subunit assignment #1

(one restraint illustrated)

Branch-and-bound search

Possible assignments of ambiguous NOEs

Consistent regions in SCS

Oligomeric Number.
Subunit Structure,
Subset of the NOEs,

Fig. 4.1: Resolving ambiguous NOEs in structure determination of symmetric homo-
oligomers. Different possible assignments (arising from subunit and atom ambiguity) for
one ambiguous NOE are illustrated for a trimer. The NOE could be ordered between
subunits as 1-2-3 or 1-3-2, and has chemical shift degeneracy between atoms a, b, and
c. Phase 1: Consistent regions in the symmetry configuration space (SCS), the space of
symmetry axis parameters, are obtained using our previously developed branch-and-bound
algorithm (Chapter 3), taking a subset of available NOEs (typically atom-unambiguous
NOEs if any) as input. The 4-dimensional SCS is cartoon-represented as two 2D regions,
a sphere representing the orientation space S2 and a rectangle representing the translation
space R2. Phase 2: Our ambiguity resolution algorithm takes as input the consistent
regions output from our branch-and-bound algorithm and possible assignments of the
ambiguous NOEs to determine a mutually-consistent, complete set of NOE assignments
and ambiguity consistent regions (ACR) in SCS.
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ery element of p(R) is provably guaranteed to be in the superset returned by our algorithm.

More specifically, our method takes as input an initial region of the SCS (represented as a

set of non-overlapping cells, each of which is a hyper-cuboid region in S2
× R2, in a hier-

archical decomposition), and outputs the intersection between that region and a superset of

p(R). In this way, it is possible to sequentially compute a superset of p(R) by sequentially

“intersecting” more and more (possibly ambiguous) NOEs.

Our approach to identifying the mutually-consistent, complete set of NOE assignments

and SCS regions is summarized in Figure 4.1. Our algorithm has two phases. In the first

phase, branch-and-bound, we perform a complete search of the SCS, as in Section 3.1.1,

using a subset of the NOEs (typically atom-unambiguous NOEs). (We note that subunit

ambiguity always exists for oligomers with more than two subunits.) This phase identi-

fies the consistent regions (a subset of the SCS), which contain symmetry axes defining all

complexes consistent with the chosen subset of the NOEs. In the second phase, ambiguity

resolution, we apply our ambiguity resolution algorithm (Figure 4.2) that considers each

of the remaining ambiguous NOEs sequentially, that is, one after the other. At each step,

we use our ordering criterion (next section) to choose the NOE considered most informa-

tive. Each SCS cell of the consistent regions is checked, using our conservative bound, to

ensure that some assignment of the NOE is consistent with the structures represented by

the cell. A cell is eliminated if every assignment of any of the NOEs is violated by all

the conformations represented by that cell. We then continue with the next NOE chosen

using our ordering criterion and the remaining cells. This process of choosing, updating,

and resolving is continued until all the NOEs have been considered. The remaining cells
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Input:
R: Set of NOEs
U ⊂ R: Subset of the NOEs (typically atom-unambiguous NOEs)
C : Set of cells from branch-and-bound with U
N :R→ Zn−1 × A: Possible assignments for each NOE

due to subunit ambiguity (subunit offset 1 to n − 1)
and atom ambiguity (proton in the set A).

Output:
C ′ ⊂ C : Remaining cells
N ′ ⊂ N : Remaining assignments

Algorithm:
initialize R′← R −U, C ′← C
while R′ 6= ∅

// Determine the next NOE to assign according to our criterion
S← representative structures for C ′

q ← arg max
r∈R′

average
a∈N (r)

|{s ∈ S | r under assignment a is violated in s}| (*)

R′← R′ − {q}

// Remove inconsistent cells
C ′← {c ∈ C ′ | ∃a ∈ N (q) s.t. c is consistent with q under assignment a}

end while

// Remove inconsistent assignments
N ′← {(r, a) | r ∈ R, a ∈ N (r), ∃c ∈ C ′ s.t. c is consistent with r under assignment a}

return N ′, C ′

Fig. 4.2: Ambiguity resolution algorithm.
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form the ambiguity-consistent regions (ACR) and contain symmetry axes defining all com-

plexes consistent with some assignment for each NOE. Finally, we resolve the ambiguity in

the NOEs by eliminating assignments inconsistent with the ACR. As we formally defined

above, this process allows us to label assignments as inconsistent (violated everywhere in

the ambiguity-consistent regions) or redundant (does not provide any additional constraint

for the regions). Our ambiguity resolution algorithm hence identifies every mutually con-

sistent set of assignments and ambiguity-consistent regions.

We represent both consistent regions and ambiguity-consistent regions with cells in a

hierarchical decomposition of the symmetry configuration space. Thus the volume of these

cells allows us to characterize the progress in structure determination, as the algorithm fo-

cuses on consistent symmetry axes. We generate representative conformations from these

cells such that any structure in any cell is within τ0 Å RMSD (the user-defined similarity

level as before) of at least one representative structure. As in Chapter 3, we evaluate the

representatives for quality of NOE restraint satisfaction, and then energy-minimize them

and evaluate them for quality of van der Waals packing, ultimately identifying the set of

well-packed satisfying structures. The average variance in atomic positions in these con-

formations allows us to evaluate the structural precision attained by the two phases of the

algorithm.
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4.3 NOE Ordering Criterion

We use a particular ordering criterion to choose the next NOE in our sequential strategy.

Ordering of the NOEs only affects the efficiency of our approach, and not the result.

Claim 4.1 Re-ordering the NOEs in R does not affect the completeness of our sequential

algorithm.

Proof sketch: This is a direct consequence of the fact that set intersection is commutative,

and the fact that our method returns a superset of p(R) (Equation 4.1). �

However, the order does impact the efficiency and we want to identify the NOE that

causes the largest decrease in the SCS, in order that fewer consistency tests are performed.

Identifying such an NOE will decrease the number of satisfaction checks required for the

remaining assignments, and hence decrease the overall time complexity. To find the next

NOE to assign, we first generate a set of representative structures, one from each cell.

For each assignment of an NOE, we compute its scores as the number of representative

structures that violate the NOE under the assignment. This is indicative of the portion of the

SCS that would be eliminated under the assignment. Each NOE’s score is then the average

of the scores of all of its possible assignments (the line marked (*) in Figure 4.2). We

choose the next NOE to assign as the one with the maximum score. Although our ordering

criterion does not guarantee optimal efficiency, our results show that it does very well in

practice and allows for the identification of redundant NOEs. We also tried evaluating

an NOE by the minimum of its assignment scores, but found this approach to be inferior

(results not shown).
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4.4 Computational Complexity

When there are r NOEs with a assignments each, we have ar possible combinations of

assignments. An advantage of our algorithm is that it avoids the potentially exponential

enumeration of all ar possible combinations of NOE assignments.

We first run the core branch-and-bound algorithm with a subset of the available NOEs

(typically atom-unambiguous NOEs) as input. The output from the search is then input to

our ambiguity resolution algorithm to ultimately return a mutually consistent set of ACR

and NOE assignments.

Claim 4.2 Given c cells as consistent regions from the branch-and-bound search with a

subset of the NOEs, the time complexity of our algorithm is O(rac) where r is the number

of ambiguous NOEs, and a is the number of assignments for each NOE.

Proof sketch: Let t be the time complexity for checking satisfaction of an NOE in one

cell. Assigning a particular NOE requires a satisfaction test in each of the cells for each of

the assignments (i.e., whether some conformation in the cell is consistent with the assigned

NOE) and thus a total time of O(atc) in the worst case where no assignments and no cells

have been eliminated. The time complexity for a satisfaction test is constant, t = O(1)

(see Theorem 3.1). Therefore, assigning one NOE has a time complexity of O(ac). Our

algorithm considers a total of r NOEs, and in the worst case each is independent of the

others (i.e., no pruning occurs), for a total time of O(rac). �

The number of cells, c, depends on the complexity of the well-packed satisfying regions

in the SCS. These regions are bounded by algebraic hyper-surfaces. In principle, a worst
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case bound could be obtained based on the combinatorial complexity of this 4-dimensional

arrangement [42]. In practice, we have characterized c empirically for the test cases in

this chapter (c = 70 for the homo-dimeric MinE and c = 4006 for the homo-trimeric

CCMP with atom-unambiguous NOEs as input) and report that our algorithm is efficient

in practice. In general for ambiguous NOE assignment problems, a bottleneck in combi-

natorial complexity lies in the potentially exponential number ar of possible assignments,

and for this reason our methodology in this chapter has focused on developing an algorithm

that can provably make correct and consistent assignments while only considering a linear

number of possible assignments, ar .

4.5 Results

4.5.1 Ambiguity Resolution and Structure Determination of Homo-dimeric

MinE

The first test case is the homo-dimeric topological specificity domain of MinE. This com-

plex has no subunit ambiguity, since subunit ambiguity is absent in homo-dimers. Atom

ambiguity was simulated for each of the inter-subunit NOE restraints, according to the de-

posited chemical shifts, using a chemical shift match tolerance for 1H of ε = 0.04 ppm.

Our approach for simulating atom ambiguity (Section 1.2.3) resulted in atom ambiguity

for 168 of the 183 inter-subunit NOEs, as illustrated in Figure 4.3(a). Note that there is

ambiguity as high as 12 (i.e., 12 possible assignments) for two of the NOEs.
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Fig. 4.3: Ambiguity resolution for homo-dimeric MinE (1EV0). Plotted is the number of

assignments for each NOE (a) after the branch-and-bound algorithm but before ambiguity

resolution and (b) after ambiguity resolution.
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Fig. 4.4: Progress in ambiguity resolution for homo-dimeric MinE (1EV0). The NOE

considered at each step is chosen either by our ordering criterion (red) or at random (blue:

mean and error bars over 100 random trials). Plotted is the decrease in total volume of the

SCS cells with number of NOEs chosen.
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We first ran our branch-and-bound algorithm on homo-dimeric MinE for a complete

SCS search with the 15 atom-unambiguous NOEs. The consistent regions output from

this step included a volume of 0.030 Å2 rad2 represented by 70 cells in SCS. We then

ran our ambiguity resolution algorithm. Figure 4.4 shows the decrease in the SCS volume

over the number of NOEs chosen. The running time for the branch-and-bound search

(Chapter 3) on a Intel Pentium Linux desktop machine with a 3.20GHz CPU was under

9 hours, while that for the ambiguity resolution algorithm was under 1 hour. The SCS

volume after 30 NOEs were chosen using our ordering criterion was 0.025 Å2 rad2. No

further decrease in SCS volume occurred after this, indicating that the NOEs chosen later

are redundant with respect to the chosen ones. Note that about 90% of the reduction in

volume occurred after three NOEs were chosen, an indication that our ordering criterion

does focus on more informative NOEs. Our ambiguity resolution algorithm eliminates

the inconsistent assignments and Figure 4.3(b) shows the number of possible assignments

remaining for each NOE after all the inconsistent assignments have been eliminated. On

comparison with Figure 4.3(a), we see that the ambiguity is considerably reduced, from an

average of 5.0 assignments per NOE to an average of 1.9.

Figure 4.5 illustrates the effect of ambiguity resolution on the resulting conformations

(WPS structures): the average variance is decreased from 0.34 Å2 (WPS structures after

branch-and-bound but before ambiguity resolution) to 0.22 Å2 (after ambiguity resolution),

and the average RMSD to the reference structure is reduced from 0.95 Å to 0.73 Å. There

are no experimental NOEs observed between atoms in the N- and C-termini; consequently,

the termini display higher uncertainty. Note that ambiguity resolution does decrease the
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Variance (Å2) (a) (b)

Fig. 4.5: Variance in WPS structures of homo-dimeric MinE (1EV0): (a) after the

branch-and-bound algorithm but before ambiguity resolution and (b) after ambiguity

resolution. Each backbone atom is colored by the variance in the position of the atom

according to the shown color scale.
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Fig. 4.6: Histogram over 100 random trials of the computational cost of ambiguity reso-

lution for homo-dimeric MinE (1EV0). The red star indicates the number of consistency

tests made using our ordering criterion.

uncertainty in these regions, by way of restraint from NOEs involving other atoms. While

the assignment is not unique (Figure 4.3(b) shows NOEs with as many as eight possible

assignments remaining), the remaining assignments are consistent with the determined set

of WPS structures and their effect is minimal.

Our algorithm employs a particular criterion to determine the order in which to consider

NOEs. We showed that the order does not affect the results, but only the efficiency in ob-

taining them (Claim 4.1). To evaluate the efficiency of our ordering criterion, we compared

it against a strategy in which the order of NOEs is chosen randomly. Figure 4.4 shows that

our criterion prunes the SCS much faster than random ordering. Our ordering criterion has
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fully constrained the SCS volume with the first 30 NOEs, earlier than all but one of 100 ran-

dom runs. We showed (Claim 4.2) that the time spent for each NOE is linear in the number

of cells tested for consistency. Our ordering criterion prunes inconsistent cells much earlier

than random ordering, thereby allowing us to spend time on the regions most likely to be

part of the ACR. Figure 4.6 shows a histogram of the total number of consistency tests for

the 100 random orderings. The number of consistency tests using our ambiguity resolution

algorithm is also shown. The figure illustrates that our ordering criterion requires many

fewer consistency tests than most of the 100 random trails, and is thus much faster.

4.5.2 Ambiguity Resolution and Structure Determination of Homo-trimeric

CCMP

The second test case, the trimeric coiled-coil domain of chicken cartilage matrix protein

(CCMP), displays subunit ambiguity in addition to atom ambiguity. The subunit ambiguity

was previously resolved by manual identification of a self-consistent subunit identity for

all 49 inter-subunit restraints. We ignored the subunit assignment of the authors [148], and

simulated atom ambiguity as in the homo-dimer case (with ε = 0.04 ppm). Figure 4.7(a)

illustrates the number of assignments that arise from subunit and atom ambiguity for each

of the 49 inter-subunit NOEs. Two of the NOEs have as many as 36 possible assignments,

when considering the combination of subunit and atom ambiguity.

Complete SCS search was performed for the homo-trimeric CCMP with the five NOEs

that had no atom ambiguity. The search identified a volume of 0.27 Å2 rad2 represented by
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Fig. 4.7: Ambiguity resolution for homo-trimeric CCMP (1AQ5). Plotted is the number of

assignments for each NOE (a) after the branch-and-bound algorithm but before ambiguity

resolution and (b) after ambiguity resolution.
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Fig. 4.8: Progress in ambiguity resolution for homo-trimeric CCMP (1AQ5). The NOE

considered at each step is chosen either by our ordering criterion (red) or at random (blue:

mean and error bars over 100 random trials). Plotted is the decrease in total volume of the

SCS cells with number of NOEs.
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4006 cells in SCS. Note that the presence of subunit ambiguity caused a larger set of cells

in comparison to the dimer case. We then ran our ambiguity resolution algorithm. Our

ambiguity resolution algorithm reduced the volume to 0.037 Å2 rad2. The running time for

the branch-and-bound search on a Intel Pentium Linux desktop machine with a 3.20GHz

CPU was around a couple of days, while that for the ambiguity resolution algorithm was

around 7 hours. As Figure 4.8 shows, no further decrease in SCS volume occurred after

32 NOEs were chosen, with the bulk of the reduction (99%) occurring after 5 NOEs were

chosen. The flat regions in Figure 4.8 for number of chosen NOEs 5–10 and 14–28 indi-

cate that the NOEs considered then were redundant in the presence of the already handled

NOEs. Our ambiguity resolution algorithm eliminated all the inconsistent assignments and

Figure 4.7(b) illustrates the surviving assignments, significantly reduced (average of 18.2

to average of 4.3) from Figure 4.7(a).

Figure 4.9 illustrates the impact of ambiguity resolution on WPS structures. Even

though many NOEs have not been resolved to a single assignment, the final set of WPS

structures has high precision: the average variance is decreased from 1.92 Å2 (after the

branch-and-bound but before ambiguity resolution) to 0.54 Å2 (after ambiguity resolution),

and the average backbone RMSD to the reference structure is reduced from 1.82 Å to 0.6 Å.

As Figure 4.9(b) shows, our ambiguity resolution algorithm reduced the uncertainty in the

positions of all the atoms to less than 1 Å2. Our algorithm reduced the high uncertainty that

was present at the N- and C-termini of the chains after the branch-and-bound algorithm to

below 1 Å2.

Figure 4.8 compares the number of consistency tests under our ordering criterion vs.
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Variance (Å2) (a) (b)

Fig. 4.9: Variance in WPS structures of homo-trimeric CCMP (1AQ5): (a) after the

branch-and-bound algorithm but before ambiguity resolution and (b) after ambiguity

resolution. Each backbone atom is colored by the variance in the position of the atom

according to the shown color scale.
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Fig. 4.10: Histogram over 100 random trials of the computational cost of ambiguity

resolution for homo-trimeric CCMP (1AQ5). The red star indicates the number of

consistency tests made using our ordering criterion.
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under a random choice, and Figure 4.10 shows the distribution of number of cells checked

for consistency. As with the homo-dimer, the ordering criterion leads to significantly less

work than most of the random trails.

4.5.3 Effect of Maximum Ambiguity Level in Branch-and-Bound Input

The results so far have used only the atom-unambiguous NOEs as input to the branch-and-

bound phase of our algorithm. Here we study the use of NOEs with varying amounts of

ambiguity for that phase. Note that using any different set of NOEs as input to the branch-

and-bound phase will always ultimately lead to the same results. It affects efficiency, not

correctness. We define the set of NOEs with maximum ambiguity level k to include all

NOEs having k or fewer possible assignments. We would expect that, with increasing max-

imum ambiguity level, more work would be done in the branch-and-bound search (since it

has to deal with more ambiguity) and less work would be done in the ambiguity resolution

algorithm (since the branch-and-bound search has eliminated some ambiguity).

Figure 4.11 shows that this is indeed the case for MinE, measuring the amount of work

as the number of consistency tests performed. The figure also shows that the extra work

in the branch-and-bound search with increased maximum ambiguity level is not worth it—

the number of tests summed across both phases increases with the maximum ambiguity

level. When all NOEs are used as input to the branch-and-bound search, the total number

of consistency tests required is 7.8 times more than the number required when only atom-

unambiguous NOEs are used. It is more efficient to start with only the atom-unambiguous
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Fig. 4.11: Effect of the amount of ambiguity in the branch-and-bound search, for MinE

(1EVO). The maximum ambiguity level limits the NOEs used in the search phase. The

plot shows the total number of consistency tests during the branch-and-bound search and

during the ambiguity resolution algorithm.
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NOEs.

Our approach is applicable even when no atom-unambiguous NOEs are available. To

demonstrate this, we ignored the 15 atom-unambiguous NOEs for MinE, and ran the

branch-and-bound search with the 34 (out of 168) NOEs with maximum ambiguity level

2. The output from this step was an SCS volume of 0.042 Å2 rad2 represented by 94 cells.

We then ran our ambiguity resolution algorithm with the remaining 134 NOEs. This re-

duced the SCS volume to 0.034 Å2 rad2. The ambiguity in the 168 NOEs was reduced

from an average of 5.3 assignments per NOE to an average of 2.0. The average variance in

WPS structures was decreased from 0.37 Å2 (after branch-and-bound but before ambiguity

resolution) to 0.22 Å2 (after ambiguity resolution). The final structural precision after the

ambiguity resolution algorithm, 0.22 Å2 is the same as when we started with the 15 atom-

unambiguous NOEs. Thus there was enough redundant information in the atom-ambiguous

restraints to compensate for the loss of the 15 atom-unambiguous ones.

4.5.4 Effect of Spurious NOEs

So far, we have assumed that each NOE peak is true; that is, that every NOE has at least one

correct assignment. However, our approach is readily extended to handle a small number

of spurious NOEs, NOEs for which all assignments are wrong. In this case, we eliminate a

cell when at least a specified number (which is one in the presented algorithm) of the NOEs

are violated. An NOE is identified as spurious if it is inconsistent with all the remaining

cells of the ACR. Note that we may not be able to identify those spurious NOEs that are
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consistent with the remaining cells of the ACR.

We tested this approach with MinE, simulating spurious NOEs from the reference struc-

ture by randomly choosing pairs of protons that were more than 10 Å apart. Atom ambi-

guity was simulated for each of the spurious NOE as before (with 1H chemical shift match

tolerance ε = 0.04 ppm). We performed 100 random runs for each number of spurious

NOEs, from one to five.

Figure 4.12(a) illustrates the detection rate for the spurious NOEs. In the case when

one spurious NOE is added, the detection rate is 93%. This means that in 93% of the

cases, the spurious NOE has no effect on the remaining cells in the ACR or the remaining

assignments. The sets of mutually consistent cells and assignments are the same as that

with no spurious NOEs. The failure of detection in the remaining seven cases is due to the

presence of an atom assignment for the spurious NOE that is consistent with the remaining

conformations. The detection rate decreases to 62% as the number of spurious NOEs is

increased from one to five.

However, as illustrated in Figures 4.12(b), (c) and (d), even if a spurious NOE cannot

be detected, it has minimal effect on the volume in SCS, the structural precision (indicated

by average variance) and the structural quality (indicated by the average backbone RMSD

to the reference structure). Note that even with as many as five spurious NOEs, the mean

of the average variance after the ambiguity resolution algorithm is around 0.30 Å2 and is

less than the average variance of the ACR before use of the ambiguity resolution algorithm

(0.34 Å2). This indicates that we can obtain information and improve structural precision,

in spite of the presence of spurious NOEs.
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Fig. 4.12: Effect of spurious NOEs on ambiguity resolution for MinE (1EVO). The effect

was studied on an increasing number of simulated spurious NOEs, with 100 random runs

each. (a) The detection rate of spurious NOEs. (b) The mean and error bars for the volume

of ACR. (c) The mean and error bars for the average variance of representative structures

of ACR. (d) The mean and error bars for the average backbone RMSD of representative

structures of ACR to the reference structure.
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4.6 Conclusions

In this chapter, we have extended the core algorithm to resolve the atom and subunit am-

biguity inherent in NOEs, and used the extended approach to simultaneously assign NOE

peaks and determine structures of symmetric homo-oligomers. We showed from results

on two test cases that our approach reduces ambiguity in NOE assignment and increases

precision in structures. Using our approach, atom ambiguity was reduced by a factor of

2.6 in our first test case (MinE) and combined subunit/atom ambiguity by a factor of 4.2 in

our second test case (CCMP). Incorrect NOE assignments tend to be mutually inconsistent,

and therefore are eliminated by our algorithm. Using our ambiguity resolution algorithm

we obtained structures with high precision: the average variance in positions of atoms is

reduced to 0.22 Å2 for MinE and 0.54 Å2 for CCMP. Our sequential strategy to choose

NOEs that appear informative allowed us to prune a significant number of bad cells (about

90%) early, and hence results in greatly reduced time complexity. Our sequential strategy

also helped elucidate the information content in ambiguous NOEs—many NOEs may be

redundant with other (previously handled) NOEs. We identified that 138 of the 183 NOEs

in MinE and 12 of the 49 NOEs in CCMP were redundant with respect to the chosen NOEs

and caused no further improvement in structural precision. We also showed that our ap-

proach can work with NOEs at different maximum ambiguity levels provided as input to

the branch-and-bound search, and can handle a reasonable number of spurious NOEs.

Assignment of NOE data is a key bottleneck in structure determination by NMR and

NOE assignment can be difficult to fully automate. At the same time, the structure de-
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termination of symmetric proteins by NMR can be challenging. It is interesting that by

combining these two difficult problems, we have obtained an algorithm that solves both

simultaneously, and that enjoys guarantees on its completeness and complexity.

In this chapter and the previous chapter, the subunit structure was assumed to be known

correctly without any error. In order to make our approach broadly applicable, we extend

our approach to handle subunit side-chain uncertainty in the next chapter.
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5. SIDE-CHAIN UNCERTAINTY

This chapter extends the core algorithm to handle uncertainty in the side-chain conforma-

tions of the subunit. Side-chain uncertainty could arise either from insufficiency of the

data in accurately determining the side-chain conformations or from flexibility in the side-

chains. In the previous chapters, no form of side-chain uncertainty was considered during

the search through the SCS. Uncertainty in the side-chains was incorporated only during

the energy-minimization stage and energy minimization was used only to refine the ex-

isting side-chain conformations. The heuristic techniques used for energy minimization

might miss sampling low-energy side-chain conformations that require crossing high en-

ergy barriers. This leads to energy minimization being useful only for fine-tuning existing

side-chain conformations. In this chapter, we develop an approach that handles side-chain

uncertainty during the search through SCS and that allows for sampling of low-energy con-

formations across high-energy barriers. Since we incorporate side-chain uncertainty during

the search, our approach is also applicable to cases where we know the subunit structure

only in its apo form and no change in backbone occurs between the apo and holo forms.

We handle uncertainty in side-chains by discretizing the space of side-chain confor-

mations using rotamers (Section 2.3) and extending the configuration space accordingly.
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Rotamers provide “classes” of side-chain conformations, that is, a sampling of side-chain

conformations across high-energy barriers, which can later be fine-tuned by energy min-

imization. We incorporate side-chain uncertainty during the search through the SCS by

extending the configuration space to include rotamers. We handle side-chain uncertainty

simultaneously with “docking” uncertainty, that is, the uncertainty in the docked position

of the backbone of the adjacent subunit with respect to the fixed subunit. This is in con-

trast to existing docking-based approaches which follow a two-stage approach of identify-

ing backbone conformations by rigid docking before considering side-chain flexibility (see

Section 2.3). By considering both side-chain and docking uncertainty simultaneously we

take into account the dependency between the backbone and the side-chains.

We maintain the guarantee of completeness, identifying all conformations that are

within a user-defined similarity level (backbone RMSD) to native structures even when

there is uncertainty in subunit side-chain conformations. We also guarantee that all ro-

tamers that are part of valid conformations are identified. In symmetric membrane pro-

teins accurate determination of side-chain conformations is especially crucial for analysis

of transmembrane helical packing [101, 119]. By being complete, as before, we avoid

false precision in the set of determined structures and are able to accurately quantify the

structural constraint from the data. We are also able to determine all pair-wise interactions

between residues on adjacent subunits. Such interactions suggest candidates for single or

double mutant experiments to better understand the function of the complex.
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5.1 Algorithm

Given the subunit structure of a symmetric homo-oligomer, we augment the existing side-

chain conformations of each residue with the several rotameric conformations from the ro-

tamer library. (Note that our approach is applicable to any rotamer library and we currently

use the penultimate rotamer library of Lovell et al. [100].) Thus, the four-dimensional sym-

metry configuration space (SCS), is extended to form the symmetry configuration space

with rotamers (SCSR), S2
×R2

× R1× R2× . . .× Rn , where R1, R2, . . . , Rn represent the

set of rotamers considered for residues 1, 2, . . . , n.

We search through the SCSR by hierarchically subdividing the SCS, eliminating regions

of the configuration space that provably do not represent valid conformations. We apply a

set of pruning operators (discussed below) to regions of the configuration space to prune

rotamers that either violate restraints, or lead to steric clashes (that is, “significantly” high

vdW energies). We say a restraint is violated if all pairs of positions (arising from rotamers

and symmetry axes) of the corresponding atoms violate the restraint. Pruning all possible

rotamers for any residue implies that no valid conformation exists in the cell; hence the

configuration region is eliminated.

At the end of the hierarchical subdivision, we have a set of leaves that could have at

least one valid conformation (of backbone and side-chains), that is, a conformation that

satisfies all the restraints and has no steric clashes. We choose representative structures

from the centers of the leaf cells. Each representative structure has sets of possible side-

chain conformations for each of the residues, arising from the remaining rotamers. Due
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to the conservative nature of our bounds, we could have kept rotamers that cannot be part

of valid conformations. So, we test rotamers for restraint satisfaction and steric clashes

in each of the representative structures, pruning rotamers that cannot be part of at least

one valid conformation. On each of the representative structures, we also apply the DEE

criterion developed by Desmet et al. [37] to eliminate rotamers that provably cannot lead

to energies within a specified threshold of the lowest possible energy. We currently use

the Goldstein DEE criterion [56], but can readily use any other DEE criterion. Note that

elimination of rotamers could lead to elimination of some of the representative structures.

We refer to the set of remaining representative structures as satisfying structures. We then

apply an A∗ search [96] to choose the rotamers that give the lowest energy for the backbone

of each satisfying structure. We finally obtain, as in previous chapters, a set of well-packed

satisfying structures (WPS) by clustering the satisfying structures according to backbone

RMSD, and subjecting each of the clustered structures to energy minimization.

In addition to generating conformations, we use our approach to obtain an interface

map indicating possible pairwise interactions between residues on adjacent subunits. These

interactions could then be used to plan mutagenesis experiments that would provide insights

into the function of the complex. Given a set of structures, we obtain the interface map as

follows. We say that a pair of residues is in contact when any of their atoms are within a

specified distance of each other. For each pair of residues on adjacent subunits, we identify

the frequency that the pair is in contact in the given set of structures. The interface map

is a matrix of rows and columns with each block indicating the contact frequency for the

corresponding residues on adjacent subunits.

96



Restraint-based pruning operator:
Input:

K × RK 1 × RK 2 × . . .× RK n , where K ⊂ S2
× R2 and RK i is the set of rotamers

allowed for residue i in cell K
D: Set of inter-subunit distance restraints

Method:
do

for each ‖p − q ′‖ ≤ dNOE ∈ D, where p ∈ residue i of fixed subunit and q ′ ∈
residue j of adjacent subunit (q ′ corresponds to q in the fixed subunit)

RK i ← {r ∈ RK i | ∃s ∈ RK j where ∀ z ∈ K , ‖r(p)− T z(s(q))‖ ≤ dNOE}

RK j ← {s ∈ RK j | ∃r ∈ RK i where ∀ z ∈ K , ‖r(p)− Tz(s(q))‖ ≤ dNOE}

while (any RK is updated)

Backbone steric-based pruning operator:
Input:

K × RK 1 × RK 2 × . . .× RK n , where K ⊂ S2
× R2 and RK i is the set of rotamers

allowed for residue i in cell K
B: Set of backbone atoms of the fixed subunit

Method:
for each residue i in the fixed subunit

RK i ← {r ∈ RK i | ∀ atom a ∈ residue i, ∀ atom b ∈ B, ∃z ∈ K such that
‖r(a)− Tz(b)‖ > dsteric}

for each residue j in the adjacent subunit
RK j ← {s ∈ RK j | ∀ atom b ∈ residue j, ∀ atom a ∈ B, ∃z ∈ K such that

‖a − Tz(s(b))‖ > dsteric}

Fig. 5.1: Description of pruning operators
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Side-chain steric-based pruning operator:
Input:

K × RK 1 × RK 2 × . . .× RK n , where K ⊂ S2
× R2 and RK i is the set of rotamers

allowed for residue i in cell K
Method:

do
for each residue i in the fixed subunit

RK i ← {r ∈ RK i | ∀ residue j in the adjacent subunit, ∀s ∈ RK j , ∀ atom b ∈
residue j , ∀ atom a ∈ residue i , ∃z ∈ K such that ‖r(a)− Tz(s(b))‖ > dsteric }

for each residue j in the adjacent subunit
RK j ← {s ∈ RK j | ∀ residue i in the fixed subunit, ∀r ∈ RK i , ∀ atom a ∈
residue i , ∀ atom b ∈ residue j , ∃z ∈ K such that ‖r(a)− Tz(s(b))‖ > dsteric }

while (any RK is updated)

Fig. 5.2: Description of pruning operators

5.1.1 Description of the Pruning Operators

Figures 5.1 and 5.2 describe the pruning operators. Here, q is the identity of the atom, s(q)

is the position, in the fixed subunit, of atom q with respect to rotamer s, and Tz(s(q)) is the

position of atom q in the adjacent subunit with respect to rotamer s under the symmetry

axis z. dNOE denotes the maximum distance between an NOE-restrained pair of atoms and

dsteric denotes a minimum steric allowed distance.

Restraint-based pruning operator: The restraint-based operator eliminates rotamers

that violate at least one of the inter-subunit NOEs in all the conformations represented by

the cell. Consider a restraint of the form ‖p − q ′‖ ≤ dNOE where p is an atom of residue

i on the fixed subunit and q ′ is an atom of residue j on the adjacent subunit. The set of

possible positions for p is determined by the remaining rotamers in the cell K , r ∈ RK i .

For q ′, the set of all possible positions is obtained as the union of our geometric bound
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over remaining rotamers s ∈ RK j . The operator eliminates a rotamer r ∈ RK i when r(p)

violates the restraint with all possible positions of q ′. Similarly, the operator eliminates a

rotamer s ∈ RK j when all possible positions of s(q) on the adjacent subunit violate the

restraint with all possible positions of p. The operator eliminates rotamers according to

each restraint individually and repeatedly loops over all restraints until no further rotamers

are eliminated.

Backbone steric-based pruning operator: The backbone steric-based operator elimi-

nates rotamers that would be involved in a steric clash with backbone atoms of another

subunit for any conformation represented by a cell. The operator considers each rotamer

of each residue on the adjacent subunit with respect to a given SCS cell. The possible po-

sitions of each atom on the adjacent subunit for a given rotamer s are obtained using our

geometric bounds. The operator eliminates s if all positions of any of its atoms are too close

to any of the backbone atoms in the fixed subunit. Similarly, each rotamer of each residue

on the fixed subunit is considered and tested for steric clash with the possible positions of

the backbone atoms of the adjacent subunit.

The backbone steric-based operator must test all pairs of atoms on adjacent subunits for

steric clash twice: once for eliminating rotamers on the fixed subunit and once for elimi-

nating rotamers on the adjacent subunit. In order to avoid all atom pairwise tests between

atoms on the adjacent subunit and backbone atoms of the fixed subunit, we pre-calculate

the region occupied by the backbone of the fixed subunit. This region, the subunit map M ,

is a union of balls of radius equal to the steric clash threshold. The operator then prunes a

rotamer if the geometric bound on positions of any of its atoms on the adjacent subunit lies
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entirely within M . Obtaining such a subunit map for the backbone of the adjacent subunit

is not possible, since the map changes depending on the cell under consideration. Due to

the cost involved in explicitly testing all pairs, in practice we do not perform these tests

during the hierarchical subdivision but perform them only for the representative structures

at the leaves.

Side-chain steric-based pruning operator: The side-chain steric-based operator elimi-

nates rotamers that would be involved in a steric clash with side-chain atoms of the subunit

for any conformation in a cell. The operator independently considers each rotamer of each

residue in the adjacent subunit. As in the case of the backbone steric-based operator, the

set of all possible positions of each atom on the adjacent subunit for a given rotamer s is

obtained using our geometric bound. The operator eliminates s if all possible positions of

any of its atoms are too close to all rotameric positions of any of the side-chain atoms in

the fixed subunit. Similarly, each rotamer of each residue on the fixed subunit is considered

and tested for steric clash with the possible positions of the atoms of the adjacent subunit.

Note that the side-chain operator requires tests with all possible positions (arising from

different rotamers) of side-chain atoms in both the subunits and is hence more expensive

than the backbone steric-based operator. As we did for the backbone operator, in order to

avoid all pairwise tests, we pre-calculate the occupied regions, here by the rotamers of each

of the residues of the fixed subunit. These regions, formed by the union of balls of radius

equal to the steric clash threshold, are referred to as rotamer maps. We denote the rotamer

map of rotamer r ∈ RK i by QK ir . The operator then prunes a rotamer if the bound on any

of its atoms lies entirely within the QK ir of any residue i , ∀r ∈ RK i . As in the case of
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the backbone operator, obtaining such rotamer maps for atoms on the adjacent subunit is

not possible. So, tests to eliminate rotamers on the fixed subunit that are involved in steric

clashes with the side-chain atoms of the adjacent subunit are performed only at the leaf

level.

5.1.2 Correctness of the Operators

In this section we show the correctness of the operators in eliminating invalid rotamers and

keeping valid rotamers. For this, we first define what we mean by invalid rotamers, then

we define what we mean by blockages and show that when blockages are absent and the

bounds are perfect, the operators are guaranteed to eliminate all invalid rotamers.

Let O represent the operator under consideration. When O represents the restraint-

based operator, we seek to enforce the constraint that a rotamer satisfy all the distance

restraints. For the backbone-based steric operator, the constraint is that the rotamer does

not have a steric clash with the backbone of another subunit. For the side-chain steric-

based operator, the rotamer must not have a steric clash with the side-chains of another

subunit. We say a rotamer r is an O-valid rotamer in a given cell K if it is the side-chain

conformation of at least one backbone conformation represented in K that satisfies the

constraint specific to O. Every rotamer that is not O-valid is called an O-invalid rotamer.

We say a cell K is an O-invalid cell when all rotamers of some residue are O-invalid

rotamers.

Let us consider a graph for each operator O in each cell, with vertices for the residues
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Fig. 5.3: Blockages between rotamers.

on the fixed and an adjacent subunit in the protein complex. In a given cell of the config-

uration space, let each vertex have sub-vertices corresponding to the O-valid rotamers of

the residues in that cell. An edge exists between a sub-vertex a of vertex A on the fixed

subunit and sub-vertex b of vertex B on the adjacent subunit when a and b are consistent

with each other with respect to the operator O, and can be part of the same valid confor-

mation. Existence of a simple path between two rotamers implies that there exists a valid

conformation involving all the rotamers in the path. Let us denote a simple path between

two rotamers r and r ′ as r ∼ r ′. We say that we have a blockage (Figure 5.3) when given

two sub-vertices r and r ′ of a vertex, there exists a simple path r ∼ r ′ but not r ∼ r .

Claim 5.1 In the absence of blockages and assuming that the bounds are perfect, the

restraint-based operator will keep a rotamer in a given cell iff it is O-valid in the cell.

Proof: only if: Let us consider an O-valid rotamer, r . From the definition of an O-valid

rotamer, for each constraint that r is involved in, there exists a rotamer on the adjacent
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subunit with which r satisfies the constraint. Then, it follows from the definition of the

operator represented by O that r is not eliminated by the operator.

if: (Proof by induction). We say a rotamer r is k-valid when it is O-valid for the first k

constraints. (Recall that the constraints vary depending on the operator that O represents.)

Let us consider the base case, k = 1, where the constraint involves residues i and j . The

operator O keeps r only when there exists a rotamer t ∈ R j with which r satisfies the

restraint. Since only one constraint exists, r and t are part of a valid conformation making

them O-valid rotamers.

For the inductive hypothesis, let the rotamer r be k-valid. To complete the proof, we

need to prove that on adding the (k + 1)th constraint, the operator O still only keeps ro-

tamers that are O-valid. Let us first consider the case where the (k + 1)th constraint is

independent of the existing k constraints, that is, it does not involve any of the residues in

the k constraints. Since the operator O checks each constraint independently, it follows

from a similar argument as in the base case that the operator keeps only O-valid rotamers.

Let us now consider the other case where the (k + 1)th constraint involves residues in

the previous k constraints (recall that we require that it cannot lead to blockages). Let the

(k + 1)th constraint be between residues i and j . Note that from the inductive hypothesis

it follows that i and j have only O-valid rotamers. The operator O now keeps a rotamer

r ∈ Ri only when there exists an O-valid rotamer, t ∈ R j , with which r satisfies the

(k + 1)th constraint. If r and t were part of at least one valid conformation before the

(k + 1)th constraint was considered, then they continue to be O-valid rotamers. On other

hand, suppose that r and t did not belong to the same valid conformation in the first k
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constraints (that is, a simple path t ∼ r does not exist). Then, since t is an O-valid rotamer,

it would be part of a valid conformation, say C ′, including some other rotamer, say r ′, of

the residue to which r belongs to. Since r is kept because of t , there would exist a simple

path r → t ∼ r ′, but not r → t ∼ r , causing a blockage. This would contradict our

assumption that no blockages exist. Thus it must be the case that the operatorO only keeps

rotamers that are O-valid.

�

5.1.3 Cost of the Operators

Claim 5.2 The time complexity for applying the restraint-based operator in an SCS cell is

O(ndn2
r ), where nd is the number of distance restraints and nr is the maximum number of

rotameric positions for atoms involved in a restraint.

Proof: Testing satisfaction of a restraint between a pair of atomic coordinates takes con-

stant time (see Claim 3.1). The satisfaction tests must be performed between all rotameric

pairs for each restraint, for a total cost of O(n2
r ). Testing for all the distance restraints

yields a total cost of O(ndn2
r ). �

Claim 5.3 The time complexity for applying the backbone steric-based pruning operator

in an SCS cell to eliminate rotamers on the adjacent subunit, is O(nant tb), where na is the

number of atoms in the subunit, nt is the maximum number of rotameric positions for atoms
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in the subunit and tb is the time complexity for testing if a rotameric coordinate of an atom

is involved in a steric clash with the backbone.

Proof: The time for testing whether an atom, a, is involved in a steric clash requires (a)

computing bounds on all possible positions of a and (b) testing if the bounds lie within the

subunit map. Computing bounds on all possible positions of an atom takes constant time

(Claim 3.1). Testing whether a bound lies within the map takes time tb, which is the time

for testing if a convex hull lies completely inside a union of balls. We perform the test for

inclusion by voxelizing the subunit map and the convex hull and testing if all the voxels of

the convex hull lie inside the map. This makes tb = O(VbVh), where Vb is dependent on

the backbone atoms of the subunit and Vh is dependent on the volume of the hull which is

in turn dependent on the cell under consideration. Vh in the worst case is obtained from

the largest hull possible and is dependent on the input translation and orientation space

considered. The steric clash test must be performed for all rotameric positions of all the

atoms in the subunit making the complexity O(nant tb). �

Claim 5.4 The time complexity for applying the side-chain steric-based pruning operator

in an SCS cell to eliminate rotamers on the adjacent subunit is O(nanr n2
t ts), where na

is the number of atoms in the subunit, nr is the number of residues in the subunit, nt is

the maximum number of rotameric positions for atoms in the subunit and ts is the time

complexity for testing if a rotameric coordinate of an atom is involved in a steric clash with

the side-chain.

Proof: The time for testing whether an atom, a, is involved in a steric clash requires (a)
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computing bounds on all possible positions of a and (b) testing if the bounds lie within

maps of all rotamers of all residues. Computing bounds on all possible positions of an

atom takes constant time (Claim 3.1). Testing whether a bound lies within a single map

takes time ts , which is the time for testing if a convex hull lies completely inside a union

of balls. The time ts is similar to tb above except that Vb is now dependent on the number

of side-chain atoms forming the map. The number of maps that need to be considered is

nr nt , making the time complexity for testing whether an atom is involved in a clash nr nt ts .

The steric clash test must be performed for all rotameric positions of all the atoms in the

adjacent subunit, making the complexity O(nantnr nt ts) = O(nanr n2
t ts). �

5.1.4 Conservativeness of the Operators

The presence of blockages could prevent elimination of O-invalid rotamers and hence in-

valid cells. Partitioning a region of the SCSR along one of the residue’s set of rotamers is

the only way to eliminate these invalid rotamers. So, given sets of rotamers for each residue

in a SCS cell, we choose one of the residues, say i and partition the space such that the two

children have the same SCS cell, but differ in the rotamers for i . Some of the rotamers of

i are now in the first child and the remaining are in the second child. In practice, we find

that blockages are not very common and so do not test for them during the hierarchical

subdivision so as to avoid the additional cost of the test. By assuming that there are no

blockages, we could accept cells that would otherwise been eliminated, causing us to be

conservative in accepting cells.
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Claim 5.1 states that the operators ensure that all invalid rotamers and cells are elimi-

nated as long as we have perfect bounds. Since our bounds are conservative, we continue to

subdivide the invalid cells, leading to exploration of additional nodes. The invalid rotamers

and hence all sub-cells of the invalid cells are eliminated at the level that the conservative

bounds get tight enough to eliminate them. Please refer to Section 3.1.1 for a discussion on

the number of additional levels that need to be explored due to the conservative nature of

our bound.

5.2 Results

We validated our approach on two test cases: homo-trimeric CCMP and homo-dimeric

MinE. For each of the test cases, we assumed that no subunit or atom ambiguity exists

and test our approach to handle side-chain uncertainty independent of subunit and atom

ambiguity. The algorithms developed here and in Chapter 4 can be combined to handle both

side-chain uncertainty and ambiguity in NOE data simultaneously. We used the threshold

for deciding whether two Cβ atoms are in contact as 8 Å [46] and that for deciding whether

any pair of atoms are in contact as 4.5 Å [88].

For each test case we show that: (1) the rotamer approach avoids false precision in the

set of satisfying structures and (2) applying the operators during the hierarchical subdivi-

sion is more efficient than applying them at the end of the search.
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5.2.1 Results on Homo-dimeric MinE

Our first test case is the homo-dimeric topological specificity domain of Escherichia coli

MinE [89]. The subunit structure, the set of inter-subunit distance restraints and the ro-

tamers from the Lovell rotamer library [100] are taken as input to our algorithm.

To verify that it is necessary to account for side-chain uncertainty, we first tested our

core algorithm on the subunit structure with incorrect side-chains. We randomly chose sets

of rotamers for the side-chain conformations of the subunit and then ran our core algorithm

of Chapter 3. We generated 100 such structures, and found that the set of consistent struc-

tures was empty for each of them. In fact, of the 7.50327 × 1044 different combinations

of rotamers, our results below show that 7.50331 × 1044 are invalid. This implies that the

core approach would fail to identify any consistent structures for any fixed subunit structure

using one of these 7.50331× 1044 rotamer combinations.

Figure 5.4 shows the satisfying regions obtained using the rotamers approach and com-

pares these regions with those obtained from the core approach. As the figure shows, all

the cells returned by the core approach are completely included in the rotamers approach,

indicating that the rotamers approach does not miss any valid solutions. The volume of

the SCS taken as input to the hierarchical subdivision was 22619.47 Å2-rad2, out of which

0.01335 Å2-rad2 is returned as satisfying regions, indicating the constraint that the 183

restraints are providing.

Figure 5.5 shows the effectiveness of our approach in eliminating invalid rotamers. The

plot compares the average number of rotamers for each residue before and after identifying
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Fig. 5.6: Backbone variance in the set of satisfying structures for the homo-dimeric MinE

(1EV0): (a) core algorithm (b) with rotamers when operators are applied during the search.

Each backbone atom is colored by the variance in the position of the atom according to the

color scale on the left.

the set of satisfying structures. Note that the number of rotamers remaining varies depend-

ing on the backbone conformation of the satisfying structure. The error bar for each residue

indicates the variance in the number of rotamers remaining for that residue over the set of

satisfying structures. Most of the residues for MinE have several rotamers pruned. For

residues that either have distance restraints or lie along the interface, as many as half of the

rotamers are pruned. All the rotamers remaining at the end of our approach are valid and

belong to at least one conformation that is not involved in steric clashes and satisfies all the

data.

Figure 5.6 compares the backbone variance in the set of satisfying structures with the
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core algorithm versus the rotamers approach. The side-chains in the core algorithm are

fixed and are obtained from the subunit structure chosen. The figure shows that the back-

bone variance is increased by considering rotamers. The average backbone variance in-

creases from 0.13 Å2 using the core algorithm to 0.19 Å2 using the rotamers approach.

This illustrates that considering uncertainty in the side-chain during the configuration space

search allows identification of backbones that would have otherwise been missed and hence

avoids false precision in the set of satisfying structures.

In the rotamers approach, we apply the pruning operators at each cell of the hierarchical

subdivision. Figure 5.7 illustrates the advantage of applying the pruning operators during

the hierarchical subdivision. Not applying an operator in a cell leads to no rotamers being

eliminated due to that operator in that cell. This causes a cell to be eliminated only when

all rotamers of any residue either violate a restraint or are involved in steric clash. This

implies that a cell could be kept even when it has no valid conformation, leading to more

cells being explored and the output being more conservative. As Figure 5.7(a) shows, the

number of nodes explored increases from 9888 when operators are applied to 14646 when

no operators are applied. Figures 5.7(b) and (c) compare the average backbone variance

and average backbone RMSD in the satisfying structures, and illustrate the conservative

nature of the output when no operators are applied. The average backbone variance is 1.7

times more and average backbone RMSD is 1.32 times more when no operators are applied.

Figure 5.7(d) illustrates the average number of rotamers remaining in the set of satisfying

structures. All rotamers taken as input are remaining (average of 8.3 per residue) when no

operators are applied whereas on a average 4.6 rotamers per residue are remaining when
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Fig. 5.7: Empirical analysis of the effect of the operators for the homo-dimeric MinE

(1EV0) on (a) total number of nodes explored, (b) average backbone variance in the set

of satisfying structures, (c) average backbone RMSD in the set of satisfying structures,

(d) average number of rotamers over all residues and structures at the end of the hierarchi-

cal subdivision. Here R indicates the restraint-based operator, S indicates the steric-based

operators, and “no ops” indicates no operators.
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Fig. 5.8: Empirical analysis of the number of rotamers eliminated by the operators at each

level of the search tree for the homo-dimeric MinE (1EV0). The number of rotamers elimi-

nated at each level is calculated by finding, for each residue, the average number of rotamers

eliminated in all nodes at that level, and then summing over all residues. The last level in-

dicates the number of rotamers eliminated by applying the operators on the representative

structures.

operators are applied. These results clearly indicate that applying the operators during the

search is more efficient than applying them at the end of the search. A comparison between

the core algorithm and the other cases shows that the core algorithm, though efficient in

terms of the nodes explored, leads to false precision in the set of satisfying structures.

Figures 5.8 and 5.9 illustrate the effectiveness of the operators in eliminating rotamers

and nodes at each level of the search tree. The plots show how many rotamers and nodes

are pruned by each operator at each level of the search tree. As shown, the restraint-based
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Fig. 5.9: Empirical analysis of the number of nodes eliminated by the operators at each

level of the search tree for the homo-dimeric MinE (1EV0). The last level indicates the

number of nodes eliminated by applying the operators on the representative structures.
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operator is the most effective operator in eliminating rotamers and cells higher up in the

tree. The steric operators start eliminating rotamers at level 25 when the average volume

of the cell is around 3.5× 10−5 Å2-rad2 and the average backbone RMSD in the structures

represented by each cell is 1.05 Å. The side-chain steric-based operator eliminates rotamers

only at the leaf level and for the representative structures. In general, there is a linear

increase in the number of rotamers eliminated as the level of the tree increases, due to

tighter bounds at deeper levels of the tree. Enough nodes are eliminated by the operators

at each level to prevent the exponential increase in the number of nodes to be explored at

the next level. This is clear from the nodes remaining at each level of the tree as shown in

Figure 5.9.

As mentioned in Section 5.1, the DEE criterion is used to eliminate rotamers that lead

to conformations with energy worse than a threshold within that of the best. The threshold

was chosen as 10 kcal/mol (about 1% of the total vdW energy of the complex) for the

current test cases. The average number of rotamers per residue eliminated by the DEE

criterion in the set of representative structures was 2.1 while that for the restraint-based

operator (over all levels) was 5.4. A larger energy threshold would lead to fewer rotamers

being eliminated. Note that the DEE criterion does not cause elimination of nodes since the

criterion ensures that the lowest energy (this includes the pseudo-energy term from restraint

satisfaction) conformation is always present in each representative structure.

Figure 5.10 illustrates the interface maps for MinE for the set of satisfying and WPS

structures. Recall that the set of satisfying structures includes sets of valid rotamers for

each residue, while the set of WPS structures includes one rotamer (as decided by the A∗-
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Fig. 5.10: Inter-subunit interface map for the homo-dimeric MinE (1EV0). The color scale

indicates the frequency of contact between pairs of residues on adjacent subunits in the set

of (a) satisfying structures and (b) WPS structures.

search and energy minimization) for each residue. In the set of satisfying structures, a pair

of rotamers is considered to be in contact if any of their corresponding atoms are in contact.

For each pair of residues in each structure, we first calculate the fraction of the rotameric

combinations in which the pair of residues is in contact. We then average these values over

all satisfying structures. Figure 5.10(a) illustrates the interface map for the set of satisfying

structures. Twenty-eight pairs of residues are always in contact (in all structures). These

pairs of residues indicate the regions of the subunits that interact with each other and could

help understand the function of the complex. Further, thirty-four pairs of residues have a

contact frequency of greater than or equal to 0.5. These pairs of residues could be targets for

mutagenesis experiments to study their effect in the functionality of MinE. Unfortunately,

there was no experimental mutagenesis data available with which to correlate our results.
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The interface maps help gain insight into the arrangement of secondary structures at the

interface of the complex. From the interface maps, it is clear that the pairs of residues that

are in contact are mainly present in two regions. One of these regions involving residues

41 to 53 forms an anti-parallel beta sheet while the other region involving residues 12 to

23 forms an anti-parallel alpha helix. The anti-parallel nature is evident from the cross-

diagonal nature of these blue(dark)-colored regions.

Figure 5.10(b) illustrates the interface map for the set of WPS structures. As before,

a pair of residues is considered to be in contact if any of their corresponding atoms are in

contact. The difference of this interface map from the interface map of the satisfying struc-

tures is that here we have only one rotamer per residue per structure. We now calculate

the frequency of contact for each pair of residues as the ratio between the number of WPS

structures in which the residues are in contact to the total number of WPS structures. As

Figure 5.10(b) shows, 59 pairs of residues are always in contact. The 28 pairs of residues

identified to be in contact in the set of satisfying structures are all included in the 59 pairs.

This places greater confidence in the results obtained from the set of satisfying structures.

The remaining 31 pairs do not have a contact frequency of 1 in the set of satisfying struc-

tures, since there exist valid rotamers for these pairs which are not in contact.

5.2.2 Results on Homo-trimeric Chicken Cartilage Matrix Protein (CCMP)

Our second test case is the homo-trimeric coiled-coil domain of the chicken cartilage matrix

protein (CCMP). The subunit structure, the set of inter-subunit distance restraints and the
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Fig. 5.11: Results on CCMP trimer (1AQ5): Comparison of satisfying regions using the

rotamers approach and the core algorithm with the 183 experimental restraints. (a) Trans-

lation parameters. (b) Orientation parameters when projected onto a plane of theta and phi

angles. (c) Translation parameters with a line from the center of each cell indicating the

orientation of the symmetry axis.

rotamers from the Lovell rotamer library are taken as input to our approach. We also used

the set of intra-subunit NOEs and the χ -angle restraints available for CCMP and eliminated

rotamers a priori that violate any of these restraints.

As before, we studied the importance of handling side-chain uncertainty by running our

core algorithm on subunits with randomly chosen sets of rotamers for the side-chain con-

formations. No consistent structures were found for any of 100 such generated structures.

From our results below, we find that 2.7933× 1031 of the 2.7926× 1031 possible different

rotameric conformations are invalid. Hence, the core approach would fail to identify any

consistent structures for any subunit structure with one of the 2.7933× 1031 combinations.

Figures 5.11 and 5.12 compare the satisfying regions and structures obtained using the

rotamers approach and the core approach. The volume taken as input was 45238.93 Å2-
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Fig. 5.12: Backbone variance in the set of satisfying structures for the homo-trimeric

CCMP (1AQ5): (a) core algorithm (b) with rotamers when operators are applied during

the search. Each backbone atom is colored by the variance in the position of the atom

according to the color scale on the left.
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Fig. 5.13: Average number of rotamers for each residue for the homo-trimeric CCMP

(1AQ5) before and after the branch-and-bound search.

rad2. The satisfying regions are in one continuous region occupying a volume of 0.00358 Å2-

rad2 and the satisfying structures have an average variance of 0.30 Å2, indicating the con-

straint that the 49 restraints are providing. The average variance in the satisfying structures

using the core approach was only 0.15 Å2, showing the false precision that the core ap-

proach causes. The satisfying regions of the core approach are completely contained in

the satisfying regions of the rotamers approach, showing the correctness of the rotamers

approach.

Figure 5.13 compares the average number of rotamers for each residue before and after

identifying the set of satisfying structures. Note that for some of the residues such as

residues 1 and 2, no pruning occurs. This is because these residues are not involved in any

restraints and do not lie along the inter-subunit interface. Neither the data nor vdW packing
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affect side-chain conformations of these residues. For residues that either have distance

restraints or lie along the interface, as many as half the rotamers are pruned. All invalid

rotamers are eliminated and the rotamers remaining at the end of our approach belong to at

least one valid conformation.

Figure 5.14 illustrates the advantage of applying the pruning operators during the hi-

erarchical subdivision. As the Figure 5.14 shows, the number of nodes explored is almost

three times more, the average variance is 3.4 times more, the average backbone RMSD is

1.8 times more and on a average 2.5 rotamers remain per residue when no operators are

applied. These results clearly indicate that applying the operators during the search is more

efficient than applying them at the end of the search. On comparing the results between the

core algorithm and the other cases, we see that the core algorithm leads to false precision

in the set of satisfying structures though it is efficient in terms of the nodes explored.

Figures 5.15 and 5.16 show the levels in the search tree at which each of the operators

is effective in pruning invalid rotamers and nodes. The restraint-based operator starts elim-

inating rotamers at level 6 whereas the steric operators start eliminating rotamers at level

24 when the average volume of the cell is around 7× 10−5 Å2-rad2 and average backbone

RMSD in the structures represented by the cell is 1.32 Å. The nodes eliminated prevent

an exponential increase in the number of nodes explored. Only 16736 nodes are explored

at the leaf level instead of the 2.6 × 108 number of nodes that would have been explored

without nodes being eliminated. The average number of rotamers per residue eliminated

by the DEE criterion (threshold chosen as 10 kcal/mol as in the case of MinE) in the set

of representative structures was 0.96 while that for the restraint-based operator (over all
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Fig. 5.14: Empirical analysis of the effect of the operators for the homo-trimeric CCMP

(1AQ5) on (a) total number of nodes explored, (b) average backbone variance in the set

of satisfying structures, (c) average backbone RMSD in the set of satisfying structures,

(d) average number of rotamers over all residues and structures at the end of the hierarchical

subdivision. Here R indicates the restraint-based operator, S indicates the steric-based

operators, and “no ops” indicates no operators.
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Fig. 5.15: Empirical analysis of the sum of the average number of rotamers per residue

eliminated by the operators at each level of the search tree for the homo-trimeric CCMP

(1AQ5). The last level indicates the number of rotamers eliminated by applying the opera-

tors on the representative structures.
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Fig. 5.16: Empirical analysis of the number of nodes eliminated by the operators at each
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Fig. 5.17: Inter-subunit interface map for the homo-trimeric CCMP (1AQ5). The color

scale indicates the frequency of contact between pairs of residues on adjacent subunits in

the set of (a) satisfying structures and (b) WPS structures.

levels) was 4.3.

Figure 5.17 illustrates the interface maps for CCMP for the set of satisfying and WPS

structures. Figure 5.17(a) illustrates the interface map for the satisfying structures. Sixteen

pairs of residues are always in contact. One pair among these is residue 11 on the fixed

subunit and residue 9 on the adjacent subunit. It has been shown experimentally that these

two cysteine residues are indeed in close contact. Each pair of the cysteines on adjacent

subunits form a ring of three (since CCMP is a trimer) inter-subunit disulfide bonds [70].

Seventeen other pairs of residues have a frequency of contact greater than or equal to 0.5.

All these pairs are located along the diagonal of the interface map confirming the coiled-

coil fold of the trimer. These pairs of residues could be targets for mutagenesis experiments

to study their effect in the function and structure of the coiled coil.
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Figure 5.17(b) illustrates the interface map of all pairs of residues in the set of WPS

structures. As the figure shows, 36 pairs of residues have the frequency of contact as 1.

The 16 pairs of residues identified to be always in close contact in the set of satisfying

structures are all included in the 36 pairs. The remaining twenty pairs do not have a contact

frequency of 1 in the set of satisfying structures, since there exist valid rotamers for these

pairs which are not in contact.

5.3 Conclusions

In this chapter, we presented an approach to handle uncertainty in side-chain conformations

of the input subunit structure. The developed algorithm extends the core algorithm of

Chapter 3 and continues to have the features of being complete and data-driven. We defined

a set of operators to eliminate invalid rotamers and cells during the search. We showed from

our results on two test cases that our complete, data-driven approach is now applicable

to scenarios where the subunit structure is not exactly known in complex. In both test

cases, we showed that considering side-chain uncertainty during the search through the SCS

avoids false precision in the output. Using our approach we identify that on an average 3.7

rotamers per residue for MinE and 2.5 rotamers per residue for CCMP are invalid. We also

showed that applying the pruning operators to eliminate invalid rotamers during the search

is more efficient than applying them at the end of the search. By applying the operators

during the search rather than at the end of the search, the number of nodes explored is 1.5

times less for MinE and 3 times less for CCMP.
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In this chapter and the previous chapters, the presented algorithms assumed limited or

no uncertainty in the NOE data. In the next chapter, we present a probabilistic framework

that is not only robust to noise and uncertainty in the NOE data, but also enables structural

inference.
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6. HOMO-OLIGOMERIC STRUCTURAL INFERENCE

In this chapter, we develop algorithms that enable structural inference on symmetric homo-

oligomers, so that we can reason probabilistically about the degree of agreement between

possible conformations and both data and biophysical constraints. Our approach for sym-

metric homo-oligomeric structural inference is not only complete, but also robust to exper-

imental noise and uncertainty. The algorithms developed in the previous chapters assumed

that there was no uncertainty in the available NOE data, that is, the upper bound on the

distance between the restrained atoms provided a hard threshold. The presence of a few

noisy (or spurious) NOEs (false positives), was considered in Chapter 4. As we show in

the results, that approach would fail to identify consistent structures when the number of

false positives in the data is greater than a preset number. Also, in previous chapters, we

assumed that well-packed satisfying structures were all equally likely and evaluated them

for restraint satisfaction and vdW packing independently. In this chapter, we handle spuri-

ous NOEs in a robust manner and assign a posterior probability to each structure indicating

how well it satisfies both the data and the biophysical constraints. The likelihood of the

structure captures the consistency of the structure to the data, while the prior captures the

biophysical constraints.
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Our approach is closely related to the Inferential Structure Determination (ISD) method

of Wolfgang et al. [149], developed for protein structure determination by NMR (Sec-

tion 2.4). The posterior probability of each conformation is obtained as the product of

the likelihood of the data and the prior support for the structure. Due to the difficulties

in estimating the posterior density over the entire conformation space, the ISD approach

simulates the posterior density over possible conformations using a Markov Chain Monte

Carlo (MCMC) algorithm based on the replica-exchange method [65]. These simulation

techniques could miss native conformations. Our approach, on the other hand, takes a

configuration space viewpoint. We perform a complete analysis of the configuration space

and guarantee that native conformations are not missed, hence allowing for a more reliable

structural inference than the ISD approach. Our complete approach identifies all cells in

the SCS that are likely to have high posterior density. Regions are rejected only when they

are not supported by the data or have extremely bad steric clashes, and thus would have

negligible posterior density.

6.1 Algorithm

Given a particular conformation x and set of NOE restraints R, from Bayes theorem, the

posterior probability of conformation x is given by

p(x, σ | R) ∝ p(R | x, σ ) p(x) p(σ ), (6.1)

where σ indicates the error in the system and includes both the experimental noise and

systematic effects such as internal dynamics [99] and spin diffusion [103]. The σ is a
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nuisance parameter redundant, so we obtain the marginal posterior distribution p(x | R)

by marginalizing over σ . Hence,

p(x | R) =

∫
p(x, σ | R) dσ . (6.2)

From Bayes theorem again,

p(x | R) =

∫
p(x, σ | R) dσ (6.3)

∝

∫
p(x | R, σ ) p(σ ) dσ (6.4)

∝

∫
p(R | x, σ ) p(x) p(σ ) dσ (6.5)

In our approach, since we take a configuration space viewpoint, we consider the poste-

rior for a point k in the configuration space and obtain it as,

p(k | R) ∝

∫
p(R | k, σ ) p(k) p(σ ) dσ (6.6)

As in the ISD approach [149], we assume that the restraints in R are conditionally inde-

pendent given the structure and that they follow a log-normal distribution with mean di and

variance σ for restraint ri . The log-normal distribution was shown to be a natural choice

for modeling errors in NOE distances by Rieping et al. [127]. The log-normal distribution

is restricted to positive values and hence gives equal weight to over- or under-estimating

the true value. This is not the case for error distributions defined on both positive and neg-

ative values, such as a Gaussian, which assign a non-vanishing probability to unobservable

negative distances.

Under the assumptions of conditional independency and log-normal distribution, the
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likelihood for a conformation represented by a point k in the SCS, p(R | k, σ ) is given by

p(R | k, σ ) =

n∏
i=1

p(ri | k, σ ) (6.7)

=

n∏
i=1

1

‖pi − Tk(qi )‖
√

2πσ
exp

{
−

1
2σ 2 log2

(
‖pi − Tk(qi )‖

di

)}
(6.8)

where n is the number of restraints, ri : ‖pi −Tk(qi )‖ ≤ di is the i th restraint, pi is the atom

on the fixed subunit and Tk(qi ) is the atom on the adjacent subunit corresponding to qi in

the fixed subunit in the homo-oligomer conformation represented by k.

As in the ISD approach [149], assuming that experiments are carried out at a constant

temperature T and following the principle of Maximum Entropy [76], the prior p(k) is

obtained by

p(k) =
1

Z(T )
exp{−E(k)/(BT )}, (6.9)

where E(k) is the physical energy of conformation represented by k, B is the Boltzmann’s

constant. Employing Jeffrey’s prior [78], the commonly used prior for nuisance parameters

such as σ , we set p(σ ) = σ−1.

In our approach for structural inference, we would like to estimate the posterior density

of the conformation space of a given protein complex. We do this by searching through the

configuration space of the complex and eliminating regions (and hence sets of conforma-

tions) that provably have low posterior density. We hierarchically subdivide the configu-

ration space (as in the previous chapters), and in each cell, K , estimate the maximum and

minimum posterior probability among all the conformations represented by the cell. Let

pmax(K | R) and pmin(K | R) denote the maximum and minimum posterior of a single
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conformation possible in the cell K given the set of restraints R. In other words,

pmax(K | R) = max
k∈K

p(k | R) (6.10)

pmin(K | R) = min
k∈K

p(k | R). (6.11)

The value of p(k | R) can be obtained from Equation 6.6. One way to compute the exact

values of pmax(K | R) and pmin(K | R) in a cell K is to enumerate all the conformations

represented by K . This would be computationally infeasible. Hence we get an overestimate

for pmax(K | R) and an underestimate for pmin(K | R) (shown below).

In the hierarchical subdivision, we would like to identify all structures that have their

posterior within a threshold of the best. Let 1 (a fractional value less than 1) denote

this user-defined threshold. We use two bounds (discussed below) to prune a cell in the

hierarchical subdivision. The order in which the cells are explored affects the tightness

of the bounds and hence when cells with low posterior are eliminated. In order to make

the bound tight as early as possible, we bias the search towards cells with high posterior

by exploring the nodes in the order of their pmax(K | R), maintained in a priority queue.

As in the core algorithm, we stop subdividing cells and accept a cell when all structures

represented by a cell are within a user-defined similarity level, τ0 Å.

Bounds: The two bounds used to eliminate cells are as follows. The first bound elim-

inates a cell K1 when pmax(K1 | R) is 1 times worse than the pmin(K | R) of any K . In

other words, we

Eliminate K1 when, pmax(K1 | R) < 1 · max
K2∈W

pmin(K2 | R) (6.12)

where W is the set of cells explored so far. The second bound is obtained as follows.
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For a leaf cell (an accepted cell), the posterior of the representative structure is considered

representative of all the structures in the cell. Let us denote by pbest the maximum posterior

probability among the representative structures of the accepted cells. On accepting a cell,

pbest provides the second bound that can be used to eliminate cells which is

Eliminate K1 when, pmax(K1 | R) < 1 · pbest (6.13)

We found that in practice, the first bound is useful to eliminate cells until a cell is accepted,

and once a cell is accepted, the second bound provides for a tighter bound.

Estimates of maximum and minimum posterior in a cell: The over- and under-estimates

for the posterior are obtained by considering the over- and under-estimates of the likelihood

and the prior separately and then using Equation 6.6 to obtain the posterior.

Estimates for prior: The over- and under-estimates for the prior for a cell K are given

by

pmax(K ) =


1− fstericMax(K ), when R(K ) > τ0Å

exp{−E(x)/kB T }, when R(K ) ≤ τ0Å
(6.14)

pmin(K ) =


1− fstericMin(K ), when R(K ) > τ0Å

exp{−E(x)/kB T }, when R(K ) ≤ τ0Å
(6.15)

where R(K ) denotes the maximum backbone RMSD among all the structures represented

in K , E(x) denotes the minimized energy of the structure x ∈ X that is representative of

all the structures in K , and τ0 is the usual user-defined similarity level. For cells that are

higher up in the search tree (RMSD greater than τ0), the prior is the probability that the

represented conformations are involved in steric clashes. The cell gets a prior of zero if

all the conformations represented by the cell are involved in a steric clash. Conformations
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having steric clashes could satisfy the restraints better, which could lead to incorrect bounds

and elimination of valid cells. Accounting for steric clash during the search prevents this

problem and avoids accepting conformations with steric clashes. Due to the cost involved

in performing energy minimization at each cell during the search, we perform it only for

the representative structures of the accepted cells. We use the same energy functions as in

the previous chapters.

The functions fstericMin(K ) and fstericMax(K ) are obtained as follows.

fstericMin(K ) = min
(

1,
|{a ∈ A: ∃b ∈ B ∃k ∈ K , ‖Tk(a)− b‖ ≤ dsteric}|

δ

)
(6.16)

fstericMax(K ) = min
(

1,
|{a ∈ A: ∃b ∈ B ∀k ∈ K , ‖Tk(a)− b‖ ≤ dsteric}|

δ

)
(6.17)

where A is the set of atoms on the adjacent subunit, B is the set of atoms on the fixed

subunit, ‖x− y‖ denotes the distance between x and y, dsteric denotes the threshold distance

for declaring a pair of atoms to be involved in a steric clash and δ denotes the user-defined

value which indicates the minimum number of atoms that must be involved in a clash for

a structure to be eliminated due to steric clash. The numerator of fstericMin(K ) denotes the

number of atoms that are involved in a steric clash in at least one of the conformations

represented in K , while the numerator of fstericMax(K ) denotes the number of atoms that

are involved in a steric clash in all the conformations represented in K . Dividing these

numerators by δ gives estimates for the fraction of atoms that are involved in steric clashes.

We take a linear form for these functions since the larger the number of atoms clashing in

a conformation, the more likely that the conformation will have high vdW energy and be

eliminated due to steric clash.
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Estimates for likelihood: The overestimate on the likelihood for a cell K is obtained as

follows. We have

pmax(R | K , σ ) ≤

n∏
i=1

pmax(ri | K , σ ) (6.18)

where n is the number of restraints and for each restraint ri ,

pmax(ri | K , σ ) = max
k∈K

p(ri | k, σ ) (6.19)

= max
k∈K

1

‖pi − Tk(qi )‖
√

2πσ
·

exp
{
−

1
2σ 2 log2

(
‖pi − Tk(qi )‖

di

)}
(6.20)

where each restraint ri is of the form ‖pi − Tk(qi )‖ ≤ di with pi as an atom on the fixed

subunit and Tk(qi ) as an atom on the adjacent subunit in the conformation represented by

k. (Note that the form of Equation 6.20 is same as that of Equation 6.8.) Let mini and maxi

denote the minimum and maximum possible values of ‖pi − Tk(qi )‖ in K . Estimates for

mini and maxi are obtained using our geometric bound (convex hull) on the possible posi-

tions of Tk(qi ), ∀k ∈ K (see Section 3.1.1). Since the mode of a log-normal distribution

with mean log di and variance σ is at exp(log di − σ 2), the maximum possible probability

for any log-normal distribution is obtained by substituting this value for ‖pi − Tk(qi )‖ in

the above equation. Hence the pmax(ri | K , σ ) is obtained as

pmax(ri | K , σ ) =



1
exp(log di−σ 2)

√
2πσ

exp
{
−

1
2σ 2 log2

(
exp(log di−σ 2)

di

)}
,

when mini ≤ exp(log di − σ 2) ≤ maxi

1
mini
√

2πσ
exp

{
−

1
2σ 2 log2

(
mini

di

)}
, when exp(log di − σ 2) < mini

1
maxi
√

2πσ
exp

{
−

1
2σ 2 log2

(
maxi

di

)}
, when exp(log di − σ 2) > maxi

(6.21)
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Similarly the underestimate on the likelihood is obtained as

pmin(R | K , σ ) ≥

n∏
i=1

pmin(ri | K , σ ) (6.22)

where

pmin(ri | K , σ ) = min
(

1

mini
√

2πσ
exp

{
−

1
2σ 2 log2

(
mini

di

)}
, (6.23)

1

maxi
√

2πσ
exp

{
−

1
2σ 2 log2

(
maxi

di

)})

Moments of the posterior distribution

At the end of the hierarchical subdivision, we have a set of leaf cells, where each leaf cell

represents structures with high posterior probability. Recall that each point in these leaf

cells represents a conformation. Let us denote the regions represented by the union of the

leaf cells as P . We are interested in obtaining the moments of the posterior distribution

over the configurations, the expected value and variance in the positions of the atoms. Let

us consider the position of a particular atom, m. Since each point in P represents one

possible position for m, we obtain the expected value and variance in m by integrating over

P . Hence,

E(m | R) =

∫
k∈P

E(Tk(m) | k, R) p(k | R) dk

=

∫
k∈P

Tk(m) p(k | R) dk (6.24)

var(m | R) =

∫
k∈P

(Tk(m)− E(m | R))2 p(k | R) dk (6.25)

where Tk(m) denotes the position of m in the structure represented by k. The p(k | R)

above is obtained from Equation 6.6. Note that Tk(m) for the atom m on the adjacent
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subunit is obtained by using the vector equation (Section 3.1.1)

Tk(m) = ((m− t) ·a)a+(sin α)(a×(m− t))+(cos α)((m− t)−((m− t) ·a)a)+ t (6.26)

where m denotes the position of m in the fixed subunit, α denotes the angle of symmetry,

a denotes the vector corresponding to the orientation parameters and t denotes the vector

corresponding to the translation parameters of k = (a, t) ∈ P. Obtaining an analytical

expression for the integrals in Equations 6.24 and 6.25 is hard, given the values for Tk(m)

and p(k | R) as mentioned.

Since obtaining the integrals is hard, we approximate it by sampling. We could obtain

the set of samples of the posterior distribution by choosing one point from each of the leaf

cells. The problem with this is that the nature of the hierarchical subdivision (specifically

the branching) could place points representing similar conformations in different cells. This

would cause such a sampling to be biased. We avoid this bias by clustering the leaf cells

based on similarity of their representative conformations and choosing representatives from

each of the clusters (as in the core algorithm). The number of samples of the conformations

is hence equal to the number of clusters. This sampling does not have similar conformations

being overly represented and is hence not biased. As in the previous chapters, we refer to

this clustered set of structures as well-packed satisfying (WPS) structures. Note that this

sampling is different from the stochastic sampling of the ISD approach [149]. Our samples

come with the guarantee that a native conformation (of sufficient posterior) is within a user-

defined similarity to at least one of the samples. Let us denote the set of points in the SCS
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representing the samples by C . The above equations now become

E(m | R) =
∑
c∈C

Tc(m) p(c | R) (6.27)

var(m | R) =
∑
c∈C

(Tc(m)− E(m | R))2 p(c | R) (6.28)

6.2 Results

We validated our approach on two test cases: homo-dimeric MinE (1EV0) and homo-

trimeric CCMP (1AQ5). We extended the core algorithm of Chapter 3 for structural infer-

ence, assuming that there is no ambiguity in the NOE data and no uncertainty in the subunit

structure. We chose as subunit structure the first chain of the most representative conformer

of the ensemble of structures deposited in the Protein Data Bank [17]. The experimental

error, σ , was obtained from the deposited NOE data. The value of 1, the threshold for

rejecting cells (Equations 6.12 and 6.13), was chosen for the following tests as 10−3 (that

is, we eliminate cells 1000 times worse than the optimal). In order to deal with extremely

small values of probabilities, we replace probabilities by log (base e) probabilities in all the

equations.

6.2.1 Results on Homo-dimeric MinE

Figure 6.1 shows the satisfying regions obtained using our structural inference approach

with the 183 available inter-subunit NOEs. As seen, the 183 restraints lead to a very small

satisfying region indicating the constraint that they provide. Figure 6.2 compares the sat-
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Fig. 6.1: Satisfying regions for the MinE dimer (1EV0) using the inference approach. (a)

Translation parameters. (b) Orientation parameters, projected onto a plane of theta and

phi angles. (c) Translation parameters with a line from the center of each cell indicating

the orientation of the symmetry axis. Regions are colored by the log(likelihood) of the

representative structures according to the color scale shown on the left.
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Fig. 6.2: Comparison of satisfying regions for the MinE dimer (1EV0) using the inference

approach versus the core algorithm. (a) Translation parameters. (b) Orientation parameters,

projected onto a plane of theta and phi angles. (c) Translation parameters with a line from

the center of each cell indicating the orientation of the symmetry axis.
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Fig. 6.3: Log posterior probabilities of the set of structures for the MinE dimer (1EV0).

isfying regions obtained using the inference approach and the core algorithm (Chapter 3).

The volume of the satisfying regions using the inference approach is 0.0032 Å2-rad2 while

that for the core approach is 0.0094 Å2-rad2. The overlap in the volume returned by the

two approaches is 0.0006 Å2-rad2. The inference approach eliminates the remaining cells

(volume 0.0088 Å2-rad2) since their posterior is more than loge 103 times worse than the

maximum posterior.

Figure 6.3 illustrates the posterior probabilities of the set of WPS structures under the

inference approach. The maximum log posterior probability is -553.1. As the figure shows,

after the first two structures with maximum posterior, the distribution is almost flat until all

structures within loge 10−3 of the maximum posterior are identified. This indicates that the

first two structures mostly determine the position of the atoms. These posterior probabilities

are used to calculate the expected value and variance in the position of the atoms.
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Fig. 6.4: Mean positions of the backbone atoms in the set of WPS structures for MinE

dimer (1EV0). The variance in the position of each atom is illustrated by the color scale

shown on the left.
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Fig. 6.5: Histogram of backbone RMSD for the MinE dimer (1EV0) between the reference

structure and the set of structures obtained using the structural inference approach.
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The structural inference approach enables us to infer the posterior probability of every

possible conformation given the set of experimental restraints and the prior information

(incorporating biophysical modeling). Using the inferred probability we estimate the ex-

pected value and variance in the positions of the atoms (Equations 6.27 and 6.28). Fig-

ure 6.4 shows the expected value and variance in the position of the backbone atoms in

the set of WPS structures. As the figure illustrates, the 183 NOE restraints constrain the

position of most of the atoms, leading to an average backbone RMSD of 0.28 Å and an

average backbone variance of 0.05 Å2. In the core algorithm we evaluate each conforma-

tion by a satisfaction score and a packing score, and consider a conformation to be valid if

it has good scores. The well-packed satisfying structures were considered equally likely.

This resulted in an average variance in the positions of the atoms of 0.26 Å2, compared

to 0.05 Å2 under the inference approach. This indicates that by considering all conforma-

tions as being equally likely, we are being overly conservative in evaluating the structural

constraint provided by the data and packing.

Figure 6.5 shows the distribution of the backbone RMSD of the structures to the refer-

ence structure. As the histogram shows, the peak lies below 1 Å and we identify structures

as close as 0.75 Å to the reference structure. The tightness of the distribution is a clear

indication of the structural constraint that the 183 experimental restraints provide.

Tests for Robustness to Noise:

In this section we test how our approach performs when false positives and experimental

error exist in the NOE data. We simulate noise in the NOE data in the following way. We
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have an ensemble S of structures determined by NMR. We simulate a set of inter-subunit

distance restraints, R, from one structure s1 ∈ S. We identify the subset of the R restraints,

T , that are violated by the subunit of another structure s2 ∈ S. We then use our structural

inference approach to determine the structure of the complex using as input the subunit

structure from s2 and the experimental restraints augmented with T . Since the set T is not

exactly satisfied by s2 , adding these restraints to the experimental restraints simulates false

positives and uncertainty in the input data. This kind of a simulation is closer to real-world

scenarios and better than adding random noise.

We applied this approach to the MinE dimer, choosing as s1 model 9 from the ensemble

of 15 deposited structures and as s2 the reference structure (most representative conformer).

We chose model 9 since it had the maximum all-atom RMSD of 3.74 Å to the reference

structure. We simulated inter-subunit NOE restraints from model 9 by finding pairwise

distances between protons on adjacent monomers. Every pair that had a distance between

5 Å and 6 Å was chosen as a restraint and an uncertainty of ±1 Å was added. Twenty-two

of these restraints were violated in the reference structure (16 by more than 1 Å and 2 by

about 19 Å). The set of 183 experimental restraints was augmented with these 22 restraints

to yield a set of 205 restraints.

We first tested the performance of a simple extension of the core approach (Chapter 3).

The original core algorithm produced an empty set of solutions since a cell in the hierar-

chical subdivision is eliminated if even one NOE is violated. We extended that approach

to handle false positives, as in Chapter 4, accepting a cell until a fixed number of NOEs is

violated. Let us denote by δ the number of NOEs that can be violated in a cell. Figure 6.6
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Fig. 6.6: SCS volume for the MinE dimer (1EV0) using the core algorithm, with an in-

creasing number of allowed violations.

shows the change in SCS volume as δ is increased from 15 to 20. (No solutions were ob-

tained when fewer than 15 NOE violations were considered.) When δ = 15, no structure

within 1 Å RMSD to the reference structure is identified. As δ is increased, we do get struc-

tures close to the reference structure, but along with them we also accept several structures

that might not be valid. This is indicated by the non-overlapping SCS regions between the

original core algorithm using the 183 experimental restraints versus the extended core algo-

rithm with 205 restraints. The non-overlapping volume increases from 0.0025 Å2-rad2 to

0.0206 Å2-rad2 as δ increases from 15 to 20. Depending on the choice of δ, the correctness

of the solutions varies and the best value for δ is unclear a priori.

We then tested the robustness to noise of the inference approach. Figure 6.7 illus-

trates the satisfying regions obtained using our structural inference approach with the noisy
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restraints (183 experimental and 22 simulated restraints). The small satisfying regions re-

turned indicate the constraint provided by the data. The distribution of backbone RMSD

to the reference structure (not shown) peaks at below 1Å, as expected from the overlap in

SCS volume between the regions obtained using the 183 experimental restraints versus the

those using the 205 restraints (discussed below). We are able to identify structures with

backbone RMSD of 0.75 Å to the reference structure, in spite of the noise present in the

data.

Figure 6.8 compares the satisfying regions obtained with the 183 experimental restraints

versus the 205 restraints. As seen, most of the regions obtained with the 183 restraints

are also obtained with the 205 restraints. The volume of the satisfying regions using the

183 restraints is 0.0032 Å2-rad2 while that using the 205 restraints is 0.0023 Å2-rad2. The

overlap in the volume returned by the two approaches is 0.0019 Å2-rad2. This indicates that

in spite of the noise, the regions identified are almost all valid. Also, all satisfying regions

obtained using the 183 restraints and having log posterior within 10−4 of the maximum

posterior are included in the satisfying regions obtained using the 205 restraints. This

indicates the robustness of our approach to noise in the NOE data. The structural inference

approach does not need parameters such as δ and enables us to identify the structures that

best satisfy the available data.
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6.2.2 Results on Homo-trimeric CCMP

Our second test case was the homo-trimeric CCMP, which had 49 experimental restraints.

Figure 6.9 shows the satisfying regions obtained using our structural inference approach

with the 49 available inter-subunit NOEs. The satisfying regions, though small, are not as

small as the MinE, indicating the relatively smaller constraint that the 49 experimental re-

straints provide. Figure 6.10 compares the satisfying regions obtained using the inference

approach and the core algorithm. As seen, most of the regions obtained by the core algo-

rithm are also obtained with the inference approach. The volume of the satisfying regions

using the inference approach is 0.019 Å2-rad2 while that for the core approach is 0.0058 Å2-

rad2. The overlap in the volume returned by the two approaches is 0.0051 Å2-rad2. The

inference approach does not identify the remaining cells (with volume 0.0007 Å2-rad2)

since these cells have a likelihood more than loge 103 times worse than the maximum like-

lihood.

Figure 6.11 illustrates the log posterior probabilities of the set of WPS structures using

the inference approach. The maximum posterior probability is -119.0. As the figure shows,

the distribution is smooth and has a small slope indicating the gradual decrease in the

posterior. This causes the concern that the threshold chosen does not capture the posterior

distribution well enough. But, note that (as mentioned in the previous paragraph) a volume

of 0.0051 Å2-rad2 of the 0.0058 Å2-rad2 obtained using the core approach is also obtained

by the inference approach indicating that almost all of the valid conformations are captured.

Figure 6.12 shows the expected value and variance in the position of the backbone
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Fig. 6.9: Satisfying regions for the CCMP trimer (1AQ5) with 49 experimental restraints.

(a) Translation parameters. (b) Orientation parameters, projected onto a plane of theta and

phi angles. (c) Translation parameters with a line from the center of each cell indicating

the orientation of the symmetry axis. Regions are colored by the log(likelihood) of the

representative structures according to the color scale shown on the left.
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Fig. 6.10: Comparison of satisfying regions for the CCMP trimer (1AQ5)using the in-

ference approach versus the core algorithm. (a) Translation parameters. (b) Orientation
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eters with a line from the center of each cell indicating the orientation of the symmetry

axis.
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Fig. 6.11: Log posterior probabilities of the set of structures for the CCMP trimer (1AQ5).

Fig. 6.12: Mean positions of the backbone atoms in the set of WPS structures for the

CCMP trimer (1AQ5) using the inference approach with the 49 experimental restraints.

The variance in the position of each atom is illustrated by the color scale shown on the left.
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Fig. 6.13: Histogram of backbone RMSD for the CCMP trimer (1AQ5) between the refer-

ence structure and the set of structures obtained using the structural inference approach.

atoms in the set of WPS structures. As the figure illustrates, the 49 NOE restraints constrain

the positions of most of the atoms, leading to an average backbone RMSD of 0.61 Å and

an average backbone variance of 0.51 Å2. The average variance in the positions of the

atoms when weighting by probability versus the core approach when no weighting is done

increases from 0.51 Å2 to 0.94 Å2. This indicates, as before, that structural inference

enables a more precise characterization of structural uncertainty than the core algorithm.

Figure 6.13 shows the distribution of the backbone RMSD of the structures to the refer-

ence structure. As the histogram shows, the peak lies below 1 Å and we identify structures

as close as 0.4 Å to the reference structure. The distribution ranges from 0.5 Å to 2 Å

indicating the constraint provided by the 49 experimental restraints.

Tests for Robustness to Noise:

We simulated noise as in the case of the MinE dimer. We chose as s1 model 10 from the
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Fig. 6.14: SCS volume for the CCMP trimer (1AQ5) using the core algorithm, with an

increasing number of allowed violations.

ensemble of 20 deposited structures and as s2 the reference structure (most representative

conformer). We chose model 10 since it had the maximum all-atom RMSD of 1.46 Å to

the reference structure. The set of 49 experimental restraints was augmented with the 11

restraints from model 10 violated in the reference structure, yielding a set of 60 restraints.

As in the case of MinE, we first tested the performance of a simple extension of the

core approach. The original core algorithm with no violations, that is, δ = 0, produced an

empty set of solutions. Solutions were obtained when the core algorithm was extended to

allow for δ > 0. Figure 6.14 shows the change in SCS volume as δ is increased from 4

to 9. (No solutions were obtained when fewer than four NOE violations were considered.)

When δ = 4, no structure within 1 Å RMSD to the reference structure is identified. The

non-overlapping volume between the original core algorithm with 49 restraints and the core
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Fig. 6.15: Satisfying regions for the CCMP trimer (1AQ5) with 49 experimental and 11

noisy restraints. (a) Translation parameters. (b) Orientation parameters, projected onto

a plane of theta and phi angles. (c) Translation parameters with a line from the center

of each cell indicating the orientation of the symmetry axis. Regions are colored by the

log(likelihood) of the representative structures according to the color scale shown on the
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49 experimental restraints versus 49 experimental + 11 noisy restraints. (a) Translation
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the symmetry axis.
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algorithm with δ violations and 60 restraints increases from 0.0004 Å2-rad2 to 0.0081 Å2-

rad2 as δ is increased from 4 to 9. This indicates as δ increases, the conservative nature of

the core approach increases. The results clearly show that the output varies depending on

the choice of δ.

We then tested the robustness to noise of the inference approach. Figure 6.15 illus-

trates the satisfying regions with 49 experimental and 11 noisy restraints. The distribution

of backbone RMSD to the reference structure (not shown) using the inference approach

continues to peak at below 1 Å, in spite of the noise. The small satisfying regions and the

tightness of the RMSD distribution indicate that the constraint from the data is not obscured

by the noise.

Figure 6.16 compares the satisfying regions obtained with the 49 experimental restraints

versus the 60 restraints. As seen, most of the regions obtained with the 49 restraints are also

obtained with the 60 restraints. The volume of the satisfying regions using the 49 restraints

is 0.0188 Å2-rad2 while that using the 60 restraints is 0.0111 Å2-rad2. The volume overlap

is 0.0110 Å2-rad2 and all regions within 10−4 of the maximum posterior using the 49 re-

straints are present in the satisfying regions obtained using the 60 restraints. This indicates

the robustness of our approach to noise in the NOE data.

6.3 Conclusions

In this chapter we have developed an approach for structural inference of symmetric homo-

oligomers that is complete and robust to noise and uncertainty in the experimental data.
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We showed from our results on MinE that our approach is robust to as many as 22 false

positives in the data. We also showed that our structural inference approach allows us to

give a probability measure to each structure, hence allowing for a more accurate assessment

of structural constraint from the data. Using our approach we can identify all conforma-

tions within a threshold of the conformation that best satisfies the data and biophysical

constraints.
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7. SUMMARY AND FUTURE WORK

This thesis has developed a method for structure determination of symmetric homo-oligomers

that is (1) complete in that it identifies all conformations (within a user-defined similar-

ity level) which are consistent with NOE restraints and which display high-quality vdW

packing; (2) efficient in that by following a configuration space-based approach, it avoids

explicit enumeration of all conformations; (3) data-driven in that the structural constraint

from data and modeling can be separately quantified; (4) robust in that it can deal with

noise and ambiguity in the input. We showed that our approach is particularly important in

cases where the data available is sparse and ambiguous, where relying on an incomplete,

biased search may result in missing well-packed, satisfying conformations. Extending our

core algorithm of searching the four-dimensional symmetry configuration space to handle

ambiguity in NOE data, uncertainty in the side-chains of subunit structure and noise or un-

certainty in the NOE data makes our approach applicable to the structure determination of

a broad range of homo-oligomeric complexes. By using our approach, one can accurately

identify the information content in the data. We show from our results on test cases that

the number of restraints is not a very good indication of the information in the data. Apart

from identifying the three-dimensional positions of the atoms, our approach also enables
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identification of pair-wise interactions between atoms on adjacent subunits.

The developed approach allows for a number of directions for future research which we

present in the remainder of this chapter.

7.1 Future Work

7.1.1 Complete SCS Search

Currently, we perform a hierarchical subdivision of the entire configuration space. Other

approaches to search through the space might be possible. A “flood-fill” kind of an ap-

proach in the configuration space could be used if we know a point in the configuration

space (a “seed point”) representing a structure that is consistent with both data and bio-

physical constraints. Regions around the seed point are tested until cells with no solution

are obtained. This approach would work if all WPS structures are guaranteed to be in one

contiguous region in the configuration space surrounding the structure. If not, one seed

point from every contiguous region must be known. It might be possible to obtain these

seed points using heuristic approaches such as simulated annealing.

Our current analytical bounds provide bounds in conformation space, given a region

in the configuration space. Another way to look at this is to try to identify bounds in

configuration space, given a region in conformation space. This kind of an inverse map

could enable for more efficient bounds and better information content analysis. Given a

restraint of the form ‖p− q′‖ ≤ d, where p is an atom on the fixed subunit and q′ is an

156



atom on the adjacent subunit, the set of possible positions for q′ to satisfy the restraint is in

a ball of radius d around p. The inverse map aims to find regions in configuration space that

would place q′ in the ball. The inverse map would hence enable identification of regions

in the configuration space corresponding to each restraint and would allow for quantifying

the information content in each restraint.

Our branch-and-bound approach currently uses conservative analytical bounds and sim-

ple branching techniques. Tighter bounds and better partitioning techniques will allow a

more efficient search of SCS. At each node in our search, our current tests for restraint

satisfaction are conservative, in that we individually test whether for each restraint there

exists at least one point in the cell, such that the structure represented by the point satisfies

the restraint. A better bound would be to test for simultaneous restraint satisfaction by

checking whether there exists at least one point in the cell, that simultaneously satisfies all

the restraints.

In our current method to determine oligomeric number (Chapter 3), we run our branch-

and-bound search on each different putative oligomeric number. One way to extend this is

to incorporate the oligomeric number into the search space and perform our search in the

ESCS, Z9 × S2
× R2 rather than using 8 sequential searches of the SCS, S2

× R2.

Currently we provided extensions of the core algorithm to handle ambiguity, noise and

side-chain uncertainty independent of the others. Algorithms that simultaneously consider

all kinds of uncertainty in input and perform structural inference could be developed by

combining the extensions.

157



7.1.2 Extensions to Other Protein Complexes

The developed approach is applicable to any Cn symmetric homo-oligomer irrespective of

its size, given the subunit structure. Our approach could be extended to handle other kinds

of symmetry, such as a dimer of dimers, a trimer of dimers, or improper symmetry, by

defining appropriate configuration spaces and searching them in an analogous manner. For

instance, in the case of dimer of dimers (D2 symmetry), the space of symmetry axes would

be represented by seven dimensions (four dimensions for one symmetry axis and three

dimensions for the symmetry axis perpendicular to the first), and bounds analogous to the

bounds we have previously obtained for the 4-dimensional case (Chapter 3) would have to

be developed. The developed bounds would then be used in the hierarchical subdivision of

the configuration space.

Similarly, we could apply our approach to docking subunits that have no symmetry.

In this case, we have a six-dimensional configuration space. By formulating the six-

dimensions as three translation and three rotation parameters, with an axis-angle represen-

tation for the rotation parameters we can extend and use our developed analytical bounds

(Section 3.1.1). As the number of dimensions increase, the complexity increases and calls

for more efficient branching and tighter bounding techniques.

7.1.3 Extensions to Other Experimental Data

The only experimental data the developed approach uses is inter-subunit NOEs. Proximity

information from other experiments such as mutagenesis and chemical shift perturbation
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could be used instead. The proximity information can be formulated as a set of “or” dis-

tance restraints—every atom will have a distance restraint to one of several atoms rather

than just to one atom. We then eliminate cells based on violation of any of the “or” re-

straints.

Residual dipolar couplings (RDCs) are another type of experimental information that

could be used. When the dynamics of a symmetric homo-oligomer allow determination

of high-quality RDCs, the orientation of the symmetry axis lies along the director of the

alignment tensor and can be easily obtained. The structure determination problem then

reduces from a 4D search in S2
× R2 to a search in the 2D translation space, R2, and can

be efficiently solved.

7.1.4 Other Extensions

Our approach for quantifying information content in the experimental data could be used

to plan future experiments. Our approach enables us to identify the structural constraint

provided by a set of restraints. Using this, we could identify residues in need of additional

constraint to obtain better precision in the structures, and plan experiments involving these

residues using isotopic labeling strategies.

Currently, we assume that we know the backbone of the subunit structure when it is

in complex and that it is not flexible. It is possible to extend the approach to account

for flexibility in the subunit structure by establishing additional dimensions that represent

concerted motions in the backbone.
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