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Abstract

Improving Large-Scale Network Traffic Simulation

with Multi-Resolution Models

Dartmouth Computer Science Technical Report TR2005-558
by

Guanhua Yan
Doctor of Philosophy in Computer Science

Dartmouth College, Hanover, NH
September 2005

Simulating a large-scale network like the Internet is a challenging undertaking because of the
sheer volume of its traffic. Packet-oriented representation provides high-fidelity details but is com-
putationally expensive; fluid-oriented representation offers high simulation efficiency at the price
of losing packet-level details. Multi-resolution modeling techniques exploit the advantages of both
representations by integrating them in the same simulation framework. This dissertation presents
solutions to the problems regarding the efficiency, accuracy, and scalability of the traffic simula-
tion models in this framework. The “ripple effect” is a well-known problem inherent in event-
driven fluid-oriented traffic simulation, causing explosion of fluid rate changes. Integrating multi-
resolution traffic representations requires estimating arrival rates of packet-oriented traffic, calculat-
ing the queueing delay upon a packet arrival, and computing packet loss rate under buffer overflow.
Real time simulation of a large or ultra-large network demands efficient background traffic simu-
lation. The dissertation includes a rate smoothing technique that provably mitigates the “ripple ef-
fect”, an accurate and efficient approach that integrates traffic models at multiple abstraction levels,
a sequential algorithm that achieves real time simulation of the coarse-grained traffic in a network
with 3 tier-1 ISP (Internet Service Provider) backbones using an ordinary PC, and a highly scalable
parallel algorithm that simulates network traffic at coarse time scales.
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Chapter 1

Introduction

The size of the Internet has undergone rapid growth over the past several decadses. When it was
born in 1969, it had only four nodes, connected with 56kbps circuits [99]. But from the Internet
domain survey done by Internet Systems Consortium1 , the number of nodes that are connected to
the Internet has increased exponentially from 1.3 million in January 1993 to 317 million in January
2005. At the same time, the traffic volume carried by the Internet also increases at a high rate. In
[110], it is estimated that the traffic on Internet backbones in U.S. has grown from 1.0 TB/month
in 1990 to 80,000-140,000 TB/month in 2002. It is predicted that Internet traffic will continue to
grow vigorously at a rate close to 100% per year [110][36]. In addition, although the Internet was
designed for data communications, emerging applications such as Voice over IP(VoIP) and video-
conferencing are providing increasingly versatile services to the end users.

The changes that have occurred to the Internet in the past several decades suggest its increas-
ingly important role in people’s daily routines. When its scale goes up, however, unprecedented
challenges arise on many of its aspects. A few of them are briefly discussed as follows.

� Congestion control. TCP governs a dominant fraction of the current Internet traffic. The
measurements on a backbone link show that 95% of the bytes, 90% of the packets and 80%
of the flows attribute to the TCP protocol [25]. As the Internet continues to evolve, it will
incorporate more and more high-bandwidth optical links and large-delay satellite and wire-
less links. In the context of high bandwidth-delay product networks, TCP becomes oscilla-
tory and prone to instability, regardless of what queueing schemes are deployed in the net-
work [87][60]. In addition, TCP is essentially an additive-increase-multiplicative-decrease
(AIMD) protocol. Therefore, when a congestion signal(e.g., packet losses) is detected in a
high bandwidth-delay network, TCP shrinks its congestion window size immediately as a re-
sult of its multiplicative-decrease policy, and it then has to suffer a large number of Round Trip
Times(RTTs) before its congestion window ramps up to a high size because of its additive-
increase policy. This may severely affect the TCP throughput in high bandwidth-delay prod-
uct networks. All these issues raise significant performance concerns in the future Internet.

1http://www.isc.org
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� Routing. Routing protocols in a packet-forwarding network like the Internet discover paths
along which packets are directed to their destinations. Routing is an important means of
traffic engineering, which deals with “performance evaluation and performance optimization
of operational IP networks” [4]. The objectives of routing decisions can be manifold. They
include balancing traffic load to prevent congestions, minimizing the amount of computation
resource for packet processing, and satisfying the QoS(Quality of Service) requirements of
end applications, and so on. Dynamic routing aiming to achieve these goals in an online
fashion is particularly challenging [22]. One reason is that in a large, dynamic network such
as the Internet, the knowledge of its up-to-date global state is hard to obtain at each router.
On the other hand, the QoS requirements imposed by applications like video conference and
Internet telephony are so diverse that it is NP-hard to satisfy some combinations of QoS
constraints simultaneously [140].

BGP(Border Gateway Protocol) [123] is the de facto standard protocol that currently governs
the inter-domain Internet routing between Autonomous Systems(ASs). Although ubiquitous,
BGP has severe problems if the Internet continues its exponential growth. First, route os-
cillations can happen because of the propagation of unstable route updates. The route flap
dampening scheme, which is widely deployed on core BGP routers, is found to possibly
“significantly exacerbate the convergence times of relatively stable routes [91]”. Second, the
experiments in [69] show that inter-domain routers may need tens of minutes to converge to
a consistently stable state after a failure. Third, there is a concern regarding the scalability
of BGP protocol because its routing table size has increased dramatically in the recent years
[50]. As its result, packet forwarding becomes slower and more memory space are demanded
to accommodate the expanding BGP routing table. Finally, because BGP was not designed
to facilitate traffic engineering tasks, inter-domain traffic engineering is still at its infancy
[4][33].

� Security. Over the last decade, the Internet has witnessed a surge of malicious attacks like
worm and DDoS(Distributed Denial of Services) attacks. For instance, during the week of
February 7th through 11th in 2000, many sites including Yahoo, Amazon, eBay and CNN
became unreachable because of DDoS attacks [43]; more than 359,000 Microsoft IIS servers
were infected by Code Red worm version 2 in less than 14 hours on July 19th, 2001 [97]; and
the more recent SQL Slammer worm took only 10 minutes before infecting more than 90%
of all the vulnerable machines [96]. The malware has caused enormous economic losses to
the society. From the estimation by vnunet.com2 , the total cost of malware, including viruses,
worms, and Trojans, totaled 166 billion dollars in 2004.

The pressing threats from the increasingly rampant malware code pose significant challenges
to the existing security architectures. For instance, conventional perimeter firewalls have
been an important means of access control and protection from attacks on corporate computer
networks for many years. However, the vastly expanded Internet connectivity gradually blurs
the boundary between an enterprise Intranet and its outside network. Therefore, traditional
“boundary firewalls” are losing their effectiveness as a growing number of hackers are able

2http://www.vnunet.com
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to sneak such a single point of protection. On the other hand, distributed firewalls [52][7],
proposed recently based on the “defense-in-depth” principle [45], are not a panacea, because
they bring concerns over the potential vulnerabilities due to policy conflicts in middle- or
large-sized enterprise networks [2].

� Resource sharing. As the Internet continues growing rapidly, there are vastly heterogeneous
computing resources, such as processing power, storage, and communication bandwidth, that
are scattered across multiple administrative domains. In order to facilitate efficient resource
sharing, new computing platforms like peer-to-peer and Grid computing are deployed. The
SETI@Home project [3], which searches for extraterrestrial intelligence by utilizing process-
ing powers over the Internet, is such an example. Evaluating these platforms is a challeng-
ing task. For instance, a fundamental problem in designing a resource sharing system is
its workload scheduler that can “adapt to a wide spectrum of potential computational envi-
ronments [9]”. Because such systems may span over multiple WANs(Wide Area Networks)
geographically, dynamics in the underlying networks can severely impact the effectiveness
and robustness of a resource scheduler. It is hard, though, to characterize the behavior of a
large, dynamic network like the Internet, making it difficult to evaluate the performance of a
workload scheduler.

In the above, we have only covered a few problems that need to be addressed when the Internet
continues to grow. As the recent enthusiasm in networking research suggests, there are many others
that still remain to be solved.

1.1 Motivations

Many methodologies, including theoretical analysis, measurements, and simulation, have been ap-
plied in investigating the large body of Internet-related problems. In this section, we highlight
the advantages of simulation, after discussing the limitations of the alternative solutions, and then
describe the research challenges in large-scale network simulation.

1.1.1 Limitations of Alternative Solutions

Successfully addressing the challenges facing the current Internet is contingent on a deep under-
standing of its system-wide network behavior. Directly monitoring network state is able to provide
an accurate description of the network dynamics, such as the time-variation of traffic intensity,
queueing delays, and packet loss rates. However, traffic monitoring at fine time scales on high-
speed links itself impose heavy burdens on both processing and storage. In addition, we are still
lack of a coordinated measurement framework because of the decentralized, administratively au-
tonomous nature of the Internet. An alternative technique, network tomography, is sometimes used
for network state estimation in a large-scale network. Statistical methods, including expectation-
maximization, likelihood-based analysis and sequential Monte Carlo algorithms, have been applied
to infer network attributes such as traffic matrix [138][17], delay [26][27], bandwidth [70], and loss
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rates [14]. Although network tomography is a promising tool to characterize the internal network
attributes, it has its own limitations. The knowledge by way of statistical inference from end-to-end
measurements is still incomplete and prone to inaccuracy; deploying measurement/probe schemes
and inference algorithms in Internet-scale networks is difficult, requiring close cooperations among
multiple locations; active probing packets used for network tomography may consume excessive
communication resources, and they may also be filtered by some firewalls because of policy viola-
tions [18].

Any proposed solution to a specific problem in the current Internet should be rigorously and ex-
tensively evaluated before its wide deployment. A flawed protocol design or implementation may be
vulnerable to malicious attacks, or result in severe performance degradation; techniques that work
well for small networks may have poor scalability, and hence fail noticeably when the network size
scales by several orders of magnitude. Therefore, the capability of evaluating the performance, se-
curity, or dependability of networks with controllable configurations is highly demanded in network
design, procurement, and protection.

Theoretical analysis, based on mathematical constructs, is one of the basic techniques used for
this purpose. For instance, queueing theory has been widely applied to quantify the performance of
computer systems and communication networks [67][72][57]. Although mathematical analysis is a
powerful tool to achieve a thorough understanding of the system behavior, a large network like the
Internet is often too complex to be within its reach. On the other hand, the mathematics become
complicated in solving certain types of problems. In queueing theory, non-Markovian customer
arrivals, such as self-similar inputs observed from realistic networks, render analysis of finite buffer
systems difficult, and queueing analysis of feedback control systems, exemplified by TCP closed-
loop congestion control, is also an arduous undertaking [114]. Mathematical models, in many cases,
are simplified or approximated for the sake of tractability, from which inaccuracy can result.

Another evaluation approach is to build real experimental testbeds. The PlanetLab project3 is
such an example that provides an real overlay network platform for developing, deploying, and ac-
cessing distributed services, such as content distribution networks, routing overlay networks, and
peer-to-peer file sharing [23]. As of December 2004, it has covered more than 500 nodes, which are
located in many countries. Experimental testbeds like PlanetLab offer the realism that can hardly be
entirely captured by other methods; they are not, however, equivalent to real networks. For instance,
the virtualization mechanism adopted by PlanetLab is only a means of achieving scalability and pro-
viding security on this computing platform, and resource contentions among processes on the same
node may distort the accuracy of the experimental results. In addition, building a large real testbed
requires a significant amount of investment on hardware equipments. Finally, experiments done on
real testbeds suffer poor repeatability because the computing environment cannot be replicated.

1.1.2 Advantages of Simulation

As alternative solutions are insufficient to fully appreciate the dynamic network behavior or accu-
rately evaluate the new solutions proposed, simulation stands out as an important tool to fulfill these

3http://www.planet-lab.org
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tasks. Simulation can help us gain deep insights into the Internet’s complicated operational charac-
teristics. It not only eliminates the necessity of deploying network measurement or probing tools
at a large scale in the Internet, but offers more important details that are often ignored by mathe-
matical analysis. For example, worm scanning traffic can spread over the whole Internet address
space. Owing to operational complications, it is difficult to form a global worm traffic monitoring
framework that involves all the autonomous systems in the Internet. On the other hand, the classical
epidemic model [31], which has been widely applied to study worm propagation [78][98][145], can
only conceptually depict the whole process. Some important factors in real networks can hardly
be captured: worm traffic may be throttled because of limited communication bandwidths [96];
improved scanning strategies [133] can make it difficult to apply mathematical analysis directly;
some effects caused by worm traffic (e.g., BGP routing instability [53]) can impact the propaga-
tion process in return, which thus forms a feedback system. Rather, simulations can be easily set
up in laboratory settings, and variables that are suspicious of impacting worm propagation can be
configured in a controlled way. Bearing these advantages, simulation has been an important tool
to investigate worm behavior, and it has been shown able to closely reproduce the effects of work
attacks observed from real networks [77][117][145].

Network simulation has played an important role in evaluating new protocol designs during
the course of the Internet’s evolvement. It enables new theories and techniques to be fully tested
under varied network conditions before their wide deployments in the Internet. In laboratory setups,
testing scenarios can be generated in a cheap way. For example, the ns4 network simulator has been
widely applied in designing new protocols or modifying old protocols. Such protocols include TCP,
Internet service models, scheduling or queue management in routers, multimedia, multicast, web
caching, wireless sensor networks, satellite networks, and so on5. In addition, a lot of research on
improving the convergence, security, or scalability of the BGP protocol used the BGP simulator
developed by the SSFNet project6 for evaluation purpose ([115][107][20], to list a few here).

1.1.3 Challenges in Large-Scale Network Simulations

As simulation has established itself as an indispensable tool for Internet-related research, it naturally
comes to the question: is simulation of an Internet-scale network feasible? As described at the
beginning of this chapter, the current Internet has hundreds of millions of nodes, and its traffic still
grows vigorously at a high rate. How much computation, memory, and disk space will be required
if we want to simulate it? The calculation has been done in [124]. It conservatively estimates the
number of hosts, routers, links, and traffic loads in the Internet. An discrete event packet-oriented
network simulator(e.g., ns network simulator) is considered. The requirements on memory and disk
space are roughly calculated based on measurements from the ns network simulator. It is estimated
that simulating an Internet-scale network for a single second generates
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4http://www.isi.edu/nsnam/ns/
5Refer to http://www.isi.edu/nsnam/ns/research/ for a representative list of papers that use ns simulator.
6http://www.ssfnet.org/
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to gain more confidence in the results from a simulation, a long simulation run or many independent
simulation runs are necessary; this can further prolong the whole execution time. All these lead
to a conclusion that packet-oriented simulation of an Internet-scale network is a computationally
prohibitive task.

Given the importance of simulation in networking research, it demands more efforts on im-
proving the performance of network simulation. This thesis is motivated by the current challenges
in simulating large-scale networks like the Internet. Significant consequences include but are not
limited to the following:

� the times spent in waiting for simulation results are reduced dramatically, and less investments
on hardware device are required;

� researchers are equipped to explore issues that are indistinct in small networks but manifest
themselves in large networks;

� simulations that can be executed in real time can be employed to emulate the real network
conditions for protocol testing;

� simulations that satisfy real-time constraints can be used in online cyber-exercises that involve
human interactions;

� simulations that can be executed faster than real time can be applied to control and optimize
a real operational network in an online manner.

1.2 Research Objectives and Contributions

As illustrated in Section 1.1.3, simulating large-scale network traffic at the level of individual pack-
ets is both time- and memory-consuming. With a discrete event packet-oriented simulator, a vast
number of simulation events are inevitable in order to model the behavior of the large population of
packets in an Internet-scale network. Following such an observation, a question comes naturally:

Question 1 can the network traffic, or at least part of it, be represented and simulated more effi-
ciently without loss of accuracy in other forms rather than at the level of individual packets?

Packet-level descriptions depict the traffic behavior directly observed from physical networks,
but they are not the only form that is able to capture the network dynamics under analysis. Fluid-
based modeling, which represents network traffic as continuous functions of packet rates with time,
is another technique to characterize network behavior. Although unable to produce some packet-
level details such as jitter, it can still help us study network characteristics like bandwidth consump-
tion [109] or flow throughput [95]. Conceivably, computation costs vary with the traffic represen-
tations used in the simulation. From a performance perspective, it is natural to describe network
traffic in such a way that the whole computation expense is minimized, as long as the network be-
havior being investigated can be reproduced as what happen in real networks. This may require that
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network traffic be represented at different abstraction levels in the same simulation. The second
question, then, is:

Question 2 can different representations of network traffic be integrated into the same framework
without distorting the network characteristics under analysis?

Conventional wisdom on scaling simulation is on putting more hardware resources for this pur-
pose. It is important to parallelize simulation of network traffic at multiple resolutions on a dis-
tributed computation architecture so that more processing power and memory space can be lever-
aged. In this way, advantages from both fields of high-performance computing and multi-resolution
modeling can be combined to improve the performance of large-scale network simulation. It then
comes to the third question:

Question 3 can simulation of network traffic represented at multiple abstraction levels be scaled
on a distributed memory multiprocessor?

This thesis is aimed to address the above three questions, and its primary objective is to inves-
tigate efficient techniques for simulating network traffic at multiple resolutions in both sequential
and distributed computing environments. The major contributions made in this dissertation are
summarized as follows.

� A rate-smoothing technique is developed to mitigate the “ripple effect” in event-driven fluid-
oriented simulation. The “ripple effect”, if not controlled, can severely undermine the advan-
tages of fluid-oriented traffic models. The rate-smoothing technique effectively prevents the
explosion of simulation events by exploiting the “insensitive” period that fluid rate changes
have to suffer when traversing a link. This approach can provably dampen the “ripple effect”.

� A mechanism is developed to seamlessly integrate multi-resolution network traffic represen-
tations into the same event-driven simulation framework. Mutual interactions between traffic
represented with packet-based models and fluid-based models are taken into consideration.
Empirical results with a fluid-based TCP model show that hybrid simulation can achieve sig-
nificant execution speedups against the pure packet-oriented simulation.

� A time-stepped fluid-oriented simulation technique is developed to simulate network traffic in
large networks at coarse time scales. It aggressively searches for ports at which all input flow
rates can be calculated, and then applies fixed point iteration to determine the unknown flow
rates. This approach enables real-time coarse-grained traffic simulation of a network with 3
top-tier ISP backbones using an ordinary PC.

� The time-stepped fluid-oriented simulation technique mentioned above is parallelized on a
distributed memory processor. Non-committal barriers are used to synchronize participating
processors. Problem-specific knowledge is exploited to reduce the synchronization cost. Ex-
cellent scalability has been observed in the experiements with both fixed and scaled network
sizes.
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1.3 Thesis Organization

The remainder of this dissertation is structured as follows. Chapter 2 provides background informa-
tion for this thesis. In the first part, it introduces the definition of simulation and different simulation
models. In the second part, it summarizes existing approaches to improving the performance of net-
work simulation, including model simplification, simulation event management algorithms, parallel
and distributed simulation, computation sharing, and variance reduction.

Chapter 3 provides an overview of this dissertation. It describes the multi-resolution traffic
simulation framework, and also presents some details on its implementation in the iSSFNet network
simulator.

Chapter 4 starts by introducing an implementation of a fluid FIFO multiplexer, and the “rip-
ple effect” is explained thereafter. A rate-smoothing technique that provably mitigates the “ripple
effect” is then described. In this chapter, we also describe the algorithms to integrate both fluid-
and packet-oriented models into the same framework. This chapter further introduces a modified
fluid-based TCP model, and presents experimental results on the performance gain from the hybrid
simulation of TCP traffic against pure packet-level simulation.

Chapter 5 describes a time-stepped fluid simulation technique that simulates network traffic at
coarse time scales, and then uses empirical experiments to illustrate the convergence property and
performance of the algorithm. Afterwards, this chapter discusses how to parallelize the time-stepped
fluid-oriented simulation technique on a distributed memory multiprocessor.

Finally, Chapter 6 summarizes the conclusions made in this dissertation and sketches the direc-
tions for future research.
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Chapter 2

Background

Simulation is an important tool in networking research. As the connectivity of the Internet continues
to grow rapidly, simulation helps us understand its operational dynamics and evaluate new theorems
and algorithms that are brought forward to improve its performance, security and robustness. This
chapter provides background knowledge on what is simulation, what is involved in a simulation
study, and how to accelerate simulation, particularly network simulation.

This chapter is structured as follows. Section 2.1 provides the definition of simulation, its life
cycle, and different system simulation models. Section 2.2 presents some general approaches to
simplifying simulation models and also discusses how to reduce the complexity of traffic models
and routing protocols in network simulation. Section 2.3 gives a brief survey on simulation event
management algorithms; an optimization in network simulation is also discussed. In Section 2.4,
two general approaches to parallelizing simulation are presented; it further presents two families
of synchronization protocols in parallel and distributed simulation; thereafter, this section gives
a brief introdution to existing parallel network simulators and some load balancing techniques in
parallel network simulation. Section 2.5 describes how to share computation in simulation. Section
2.6 summarizes some general approaches to reducing the variance in simulation results. The final
section gives a summary on this chapter.

2.1 Simulation

2.1.1 Definitions, Motivations and Procedures

Simulation can be defined in different ways. Two representative definitions are given as follows.

Definition 1 “A simulation is the imitation of the operation of a real-world process or system over
time.” [6]

Definition 2 “Simulation is the process of designing a model of a real system and conducting exper-
iments with this model for the purpose either of understanding the system or of evaluating various
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strategies (within the limits imposed by a criterion or set of criteria) for the operation of the system.”
[129]

The first definition interprets the primary task of a simulation as reproducing the evolution of a
real system. The second one, rather, emphasizes its motivations and the procedures involved.

Simulation can help us obtain deep insights into the behavior of a real system, especially of one
that is too complicated to be mathematically tractable, and evaluate alternative plans in system de-
sign. Analytical methods, albeit capable of producing results quickly when they are mathematically
well-studied processes, become intractable in studying large, complex systems. Therefore, simplifi-
cations or approximations, unavoidably, have to be introduced for the sake of tractability; inaccuracy
may result from this process. Simulation also requires simplifications when the simulation model
is built. Hence, it is usually not a perfect “clone” of the real system. However, simulation is capa-
ble of solving some mathematical models numerically that are analytically intractable. This power,
therefore, eliminates the necessity of over-simplifying the models as in many analytical methods.

Simulation is also helpful in prototyping new system designs. Even though the system has not
been built and is still in the design phase, simulation can be used to predict possible execution paths
and expose potential design flaws. Simulation is also able to foretell the consequences of replacing
an existing solution with a new one in an already running real system without interrupting its normal
operation.

By Definition 2, a typical simulation study roughly consists of two stages: model development
and experiments. In the first stage, a real-world system is formalized into a set of simulation models
that not only characterize the relationships inherent in the system, either mathematically, logically,
or symbolically, but also are recognizable and executable by computers; these simulation models
are executed on computers in the second stage to run experiments and generate results that expose
the system characteristics of interest. The detailed steps involved in a simulation study are illus-
trated in Figure 2.1, adapted from [71]. A simulation project begins by formulating the problem
under analysis so that the project objective can be clearly understood. In the next step, information
concerning the organization and the activities of the system is gathered and then used to construct a
conceptual model, which is a set of assumptions and algorithms that characterize the behavior of the
system; at the same time, the data serving as the input parameters to the model are also collected.
The conceptual model derived so far can be incomplete, or even wrong; it is necessary to validate
the model before building an executable model. It is also necessary to validate the programmed
model in order to ensure the correctness of the simulation results. When the programmed model has
been validated as an accurate representation of the real system, it can be used to run simulation ex-
periments. While designing the experiments, modelers should make careful decisions on how long
a simulation run should be, how many times a simulation run should be replicated, and what sim-
ulation results should be collected. Finally, the simulation results are analyzed and the conclusions
are documented.
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2.1.2 Classifications of Simulation Models

Simulation models can be classified into two broad categories, continuous models and discrete-
event models, based on how the state variables in a model are updated throughout the simulation.
In a continuous simulation model, state changes occur continuously as simulation time elapses; by
contrast, a discrete-event model changes its states only at discrete time points in simulation. It is
important to distinguish means of simulation modeling from the properties of real-world systems.
A continuous system like the water in a river can be modeled with both continuous models and
discrete-event models; discrete systems such as banks and transportation systems are not restricted
to discrete-event simulation models – they can also be characterized by appropriate continuous sim-
ulation models. Sometimes, the essential features of a complex system are captured more effectively
and efficiently if hybrid simulation models are used. The decision on model selection is contingent
on both the properties of the system being modeled and the goal of the simulation study.

Simulation models can also be distinguished by the time management mechanisms used in sim-
ulation: event-driven simulation (or discrete-event simulation), time-stepped simulation, and real
time simulation [6]. In event-driven simulation, simulation events are organized into a list in non-
descending order of the fire time of each event. The list is often called future event list (FEL).
The event at the head of the list (i.e., the one with the earliest fire time) is always processed first.
After that, the event is removed from the list, the simulation state is updated, and the simulation
time advances to the fire time of the next event. Such a process iterates until the event list becomes
empty or the simulation time exceeds the intended simulation length. Event-driven simulation has
been applied in simulation of many real systems, such as transportation systems and communica-
tion networks, because of its ability to handle asynchrony among objects or entities in a system.
In time-stepped simulation, simulation time advances periodically by a constant simulation time
unit, which is often called a time step. Simulation time moves to the next time step only when
all the simulation activities associated with the current time step have been finished. Time-stepped
simulation is particularly useful when simulating continuous systems whose dynamics can hardly
be characterized with discrete events. The last type of simulation models is driven by wallclock
time, a computer’s hardware clock time during the execution of a simulation. Real time simulation
progresses in synchrony with wallclock time, pacing either in exact real time or in scaled real time;
it is mostly suitable for simulation projects in which simulators interact with the real world, such as
hardware-in-loop simulation and human-in-loop simulation.

There are some other ways to classify simulations models. For instance, a simulation model
can be identified as either static or dynamic based on whether the simulation time advances in the
simulation, or either deterministic or stochastic based on whether random processes are used in the
simulation.

When simulation modelers develop a discrete-event simulation model, there are three choices
of simulation modeling paradigm: event scheduling, process-interaction, and activity-scanning [6].
The event scheduling approach centers on events and how system states change after an event is
processed. The event scheduling view conforms to the basic nature of discrete-event simulation
and thus easy to understand. However, modelers may find it difficult to abstract the behavior of a
complex system into events directly. The process-interaction approach focuses on processes and
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their activities, including their interactions with resources. By its root, it is an object-oriented mod-
eling approach; therefore, models developed from this view are well-suited to objected-oriented
programming languages. The activity-scanning approach, which concentrates on activities and the
preconditions that trigger them, adopts a rule-based mechanism. In this method, simulation time
advances at a fixed pace; at each time step, once all the preconditions for an activity are satisfied, it
will be executed immediately. Petri Nets models, which are well-studied in Europe, are examples
generated from this paradigm.

As simulation has been widely employed to understand the behavior of real systems or evaluate
alternative strategies in system designs, it is a nontrivial problem to improve simulation perfor-
mance, especially when the system being simulated is very complicated. Various techniques exist
for this purpose. Based on the methodologies used, they broadly fall into the following categories:
model simplification, efficient simulation event management, parallel/distributed simulation, com-
putation sharing and variance reduction. The following sections give a brief introduction to these
techniques and their applications in network simulation.

2.2 Model Simplification

The systems that are investigated with simulation tools grow in both size and complexity. If every
detail in the real system under study is captured in the simulation model, the simulation itself can
be too computation-intensive with existing computing power. In [112], for example, it is pointed
out that the � -body simulation problem is difficult, because the computation workload involved
increases more than proportionally with the number of bodies. Complexity of simulation models
results from many factors, including both non-technical and technical ones, but the most important
one among them is unclear simulation objectives [24]. In many cases, the same simulation objective
can be achieved much more efficiently with a simplified model as opposed to a complex one. Hence,
given a large, complex real system, it is important to develop a simulation model that contains
appropriate level of details so that the computation required is minimized but its validity with respect
to the simulation objective is still ensured.

2.2.1 General Techniques

In [38], model simplification techniques, based on which components in the model are modified,
are classified into three categories: boundary modification, behavior modification, and form modifi-
cation.

� Boundary modification. This approach aims to reduce the input variable space. It is done
by either delimiting the range of a particular input parameter or minimizing the number of
input parameters. The latter case conforms to the parsimonious modeling principle, which
prefers compact models among those that produce equally accurate results. Model sensitivity
analysis can be used to identify input variables that hardly affect the simulation results, and
these variables can be eliminated from the simulation model.
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� Behavior modification. In this approach, the states of a simulation model are aggregated,
in either space or time domain. At some time point in a simulation, the system state can
be decomposed into a vector of state variables. Those variables that are closely correlated
with each other in certain ways can be aggregated and then replaced with a single one in the
simplified model. This is particularly useful when the dynamics of each state variable before
aggregation is of little interest to the modeler and the property of the merged variable after
aggregation can be easily defined. State aggregation in space domain is illustrated in Figure
2.2.
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Figure 2.2: State Aggregation in Space Domain

Aggregation in time domain, sometimes, can also reduce the complexity of simulation mod-
els. For example, time-stepped simulations of a continuous system vary in their complexity
with the time steps chosen to advance the simulation time. Actually, the simulation state at
any time step can be seen as the aggregation of all the system states before the simulation
time is advanced to the next time step. Therefore, the larger time step, the higher-level ab-
straction the model provides. On the other hand, temporal aggregation can also happen in
event-driven simulation. This is illustrated in Figure 2.3. Discrete simulation events may
be aggregated together when their occurrence times are considerably close and they are thus
deemed to happen simultaneously.

� Form modification. The simulation model in this approach is considered as a “black box”,
which generates simulation results when inputs are fed into it. In contrast to the previous two
approaches, this one replaces the original simulation model or sub-model with a surrogate one
that takes a different, but much simpler, form that does the same or approximate input-output
transformation. An oft-used technique that adopts this strategy is to generate a lookup table
that maps from inputs to outputs directly. If the table size is small, this method provides an
efficient substitute for the original model or sub-model; however, as the latter grows in size
and complexity, the lookup table can become extremely large. An alternative technique is
called metamodeling [19]. It seeks a simpler mathematical approximation that statistically
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Figure 2.3: State Aggregation in Time Domain

approaches the original model or submodel. Such a mathematical model can be inferred
from the input/output data observed in real systems or deduced from the rules that govern the
dynamics of real systems. Once such a mathematical model is established, it can be used in
simulation to do input-output transformations and generate statistically equivalent results as
with the original model.

Model simplification techniques offer the possibility of accelerating simulation of large, com-
plex systems. However, it comes at a price. With details removed from a simulation model, its
validity sometimes becomes doubtful. Therefore, it is always necessary to quantify loss of accuracy
when a simplified model is adopted, especially in the regions of the input space that are of mod-
eler’s interest. On the other hand, in order to minimize computation cost, that real-system objects
of the same type are often modeled at different abstraction levels, which is called multi-resolution
modeling. Seamlessly integrating sub-models represented at multiple abstraction levels in the same
simulation model is not always easy to accomplish.

2.2.2 Simplification of Traffic Models in Network Simulation

In a data communication network like the Internet, the packets traversing in it form the network
traffic. Simulation capturing high-fidelity details in real networks requires that the behavior of each
individual packet be modeled. In packet-oriented network simulators like ns-2, network traffic is
represented as discrete packet events and the activity associated with such an event usually involves
packet forwarding or application-layer processing. Packet-oriented traffic simulation models, al-
though close to the reality, generate too many events when a large network is simulated. Under
this observation, some alternative models have been proposed to reduce the complexity of network
traffic simulation models.
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The Flowsim simulator [1] adopted a packet train model to represent network traffic. A sequence
of packets that appear on the same link or reside in the same switch buffer are differentiated into
flows according to the conversations or sessions from which they come. A packet train is used to
indicate a sequence of closely spaced packets that belong to the same flow. Flowsim approximates
a packet train with a sequence of evenly spaced packets; a packet train can then be represented
with a few fields, including how many packets are carried in this packet train and the occurrence
times of the first packet event and the last one. Apparently, if packets are randomly distributed in a
packet train, the details on the occurrence time of each particular packet are ignored in this packet
train simulation model. The approximation can lead to savings on both execution time and memory,
especially when on average many packets are contained in each packet train.

Using event-driven fluid-oriented traffic models to simulate ATM (Asynchronous Transfer Mode)
networks was mentioned in [39]. A more thorough discussion on the same topic was given in [61].
Later in [68], similar models were applied to simulate a shared buffer management system. Com-
mon to all these models, network traffic is represented as piece-wise constant rate functions of
simulation time. Whenever a flow undergoes a rate change, a discrete event that carries the new rate
is created to indicate such a change. This is illustrated in Figure 2.4. An on/off traffic source gener-
ates three packet bursts, whose rates are � � , ��� and � � respectively. In total, there are 13 packets.
In a packet-oriented simulator, a packet event is generated for each packet when it is emitted from
the source; hence, 13 packet events are needed in the simulation. In the event-driven fluid-oriented
simulator, the three packet bursts are captured with their respective rates. The packets within each
burst are assumed to be constantly spaced. Therefore, event-driven fluid-oriented simulation needs
only 6 simulation events, among which 3 events carry the packet rates indicating the heads of the
3 packet bursts and 3 events carry rate 0 indicating their tails. This simple example shows that
event-driven fluid-oriented simulation, in some cases, can reduce the number of simulation events
in network simulation.

When multiple fluid flows multiplex at the same port, the bandwidth allocated to each fluid flow
is regulated by the scheduling policy of that port. As first observed in [61], event-driven fluid-based
models, when applied to some scheduling policies, suffer the ripple effect. When a change occurs
to a flow arrival rate at a congested port that implements, say, a work-conserving FIFO queueing
policy, it causes the departure rates of all other flows to change as well. These changes can trigger
more rate changes when they are propagated to downstream ports that are also congested. Such
a chain of rate changes leads to explosion of simulation events, and thus significantly impair any
performance benefit that fluid-based models can offer. Analysis in [79] shows that, under some
conditions, packet-oriented simulation even outperforms event-driven fluid-oriented simulation in
terms of simulation event rate in a feed-forward FIFO network. We will discuss this phenomenon
in more detail in Chapter 4.

Time-driven fluid-oriented traffic models were adopted in [141][15][85]. Like event-driven
fluid-oriented models, time-driven fluid-oriented models also represent network traffic as fluid rate
functions with simulation time. However, they discretize simulation time into non-overlapping time
units. Time-driven fluid-oriented traffic simulation is illustrated in Figure 2.5. At every time step,
some fluid-oriented traffic models are sampled to generate fluid rates into the network being simu-
lated. The simulation state of the network at this time step is updated based on both its state at the
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Figure 2.4: Event-Driven Fluid-Oriented Traffic Model from an On/Off Source

previous time step and the newly generated fluid rates. For some closed-loop traffic models like the
fluid-based TCP model in [85], the updated network state provides feedback to the fluid-oriented
traffic models. Therefore, some of their input parameters will be modified for the next time step. An
appealing property of time-driven fluid-oriented models is that the time-driven mechanism naturally
provides a sampling process for the fluid-oriented models which are usually continuous functions.

It has been observed that the previous traffic model simplification techniques entirely remove
the details of individual packets. This, sometimes, may obscure the simulation’s objective. Hence, a
hybrid approach called time-stepped hybrid simulation (TSHS) technique is proposed in [46]. As in
time-driven fluid-oriented simulation, TSHS also discretizes simulation time into small time inter-
vals of equal length. In contrast to time-driven fluid simulation in which only fluid rate information
is maintained at each time step, TSHS keeps not only the fluid rate information but also modified
packet-level details. Within a time step, packets from the same session within a time step are ap-
proximated as evenly spaced so that a fluid rate captures its current traffic pattern. In the meantime,
all the packets are linked into a list, which is put in the same data structure with the fluid rate in-
formation. The fluid rate information is used for bandwidth competition with other flows in the
network as in time-driven fluid-oriented simulation. But when loss happens to this flow, not only
the fluid rate should be shrunken, but also some packets in the list be dropped accordingly. The
packets, if not dropped in the network, are delivered to the destination. The hybrid mechanism pro-
vided by TSHS improves the simulation performance by exploiting abstract fluid-oriented models
in the network but is still able to provide packet-level details to the end applications.
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2.2.3 Simplification of Routing Protocols in Network Simulation

The current Internet consists of more than 16,000 autonomous systems (ASes) that are connected
with interdomain links. An AS, usually an ISP or a large organization, is a collection of IP networks
under a single administrative authority. Typical intradomain routing protocols within an AS include
OSPF [100], RIP [47], and IS-IS [16]. These protocols, essentially, compute the shortest path
between every pair of nodes in a distributed fashion. On the other hand, BGP [123] is the de-facto
interdomain routing protocol used in the current Internet.

Then, how should we model the routing protocols in a network simulator? One approach is to
implement them as close as what they are in real networks. Such a strategy is adopted, for exam-
ple, in the SSFNet simulation package1 . Apparently, a full-fledged implementation of real routing
protocols in a network simulator is helpful in investigating their behavior in dynamic network en-
vironments. In many situations, however, this is not the simulation objective. Implementing all the
details in a routing protocol is a tedious task and thus prone to errors. Even if all routing protocols
can be reproduced in a simulator exactly as in the real networks, inefficiency can result: a lot of
computation is spent on route calculation and a lot of memory space is required to store routing
tables.

Some simplified routing models were thus proposed. The NIx-Vectors technique [125] elimi-
nates the necessity of maintaining full routing tables on routers. Instead, it computes shortest paths
on demand at source nodes and lets each packet carry a vector of routing indices along the path.

1http://www.ssfnet.org
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At every router, all its Network Interface Cards(NICs) are numbered in order. If a packet carries
a vector whose � -th element is � , then when this packet arrives at its � -th hop router, the � -th NIC
will be used to forward the packet. Obviously, such an on-demand source routing scheme does not
conform to the reality where protocols like OSPF or RIP are used. However, in simulations where
routes are static, the NIx-Vectors technique is able to achieve significant savings on both memory
usage and execution time.

[49] uses an alternative approach, algorithmic routing, to minimizing memory requirement for
routing purpose. This technique maps the network topology under study into a � -ary tree. This
process is done by traversing the network with the Breath First Search (BFS) algorithm. For every
source-destination pair, there exists only one path in the auxiliary tree structure; this path can be
computed with �������	� ��
 time, where � is the number of nodes in the network topology. Path
computation is not done on demand, so when a packet arrives at a router, ������	� ��
 time is required
to decide to which outgoing NIC this packet should be forwarded. Because the algorithmic routing
mechanism does not maintain any routing table, the memory space required in the simulation is
reduced. However, as pointed out in the same paper, this approach cannot guarantee that the shortest
paths are found between sources and destinations.

Similar to the NIx-Vectors technique, the routing mechanism in [76] also computes routes on
demand, and no routing tables are thus necessary. The route is carried with every packet in the
simulation. Therefore, at each hop along the path, only ��� � 
 time is needed to identify the outgoing
NIC. The primary contribution of this approach is that it exploits the business relationships between
ASes to compute interdomain paths. In previous work, it is shown that in order for BGP protocol
to converge, interdomain path selection should obey certain rules [42]. These rules are exploited
to compute routing paths in network simulations where BGP routes can be assumed to be stable.
Empirical results show that such an on-demand policy-based routing scheme is able to achieve sig-
nificant reduction on execution time and memory usage as opposed to the full BGP implementation.

2.3 Simulation Event Management

As described in Section 2.1.2, discrete event simulation is centered on a future event list in which
simulation events are organized based on their fire times. Typical operations on this list include
“schedule-new-event”, “extract-next-event”, and “remove-event”. When a new event is generated,
the “schedule-new-event” operation is executed and the event is inserted at a proper position in the
list; the “extract-next-event” operation extracts the event with the smallest fire time from the list; the
“remove-event” operation removes an event with a given identifier from the list. In simulation of a
complex real system, the computation cost on manipulating simulation events in the future event list
can be significant. Analysis of discrete event simulation of a large-scale computer network shows
that, under various conditions, more than 30 percent of the instruction execution counts ascribe to
the basic simulation event manipulation operations [29]. Therefore, improving the efficiency of
simulation event set algorithms is an important approach to accelerating discrete event simulation.
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Schedule-New-Event Extract-Next-Event
Data Amortized Max Amortized Max

Structures Expected Worst Expected Worst
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 ��� � 
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 ��� � 

Skip List ������� � ��� 
 
 �������	� ��� 
 
 ����� 
 ��� � 
 ��� � 
 ��� � 


Henriksen’s �������	� ��� 
 
 ����� ��� � 
 ����� 
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 ��� � 

SPEEDESQ ��� � 
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 ��� � 
 ����� 
 ����� ��� � ��� 
 

Lazy Queue ��� � 
 ����� 
 ����� ���	� ��� 
 
 ��� � 
 ����� 
 ����� ��	� ��� 
 


Implicit ��� � 
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 �������	� ��� 
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Skew Heap ������� � ��� 
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 ����� 

Calendar ��� � 
 ����� 
 ����� 
 ��� � 
 ����� 
 ����� 

Queue

Table 2.1: Analytical Performance of Event Set Algorithms

2.3.1 Simulation Event Set Algorithms

A wide range of data structures have been proposed for managing simulation events in the fu-
ture event list. Based on the core data structure used, they broadly fall into three categories: list-
based implementations, tree-based implementations, and calendar-based implementations. List-
based implementations include simple linked lists, skip list [118], Henriksen’s data structure [48],
SPEEDESQ [134], and lazy queue [122]. Tree-based implementations include implicit

�
-heap,

splay tree [132], and skew heap [131]. An example of calendar-based implementations is calendar
queue [12]. The analytical performance regarding these data structures is depicted in Table 2.1,
which is adapted from [121]. It shows expected and worst case amortized cost for both “schedule-
new-event” and “extract-next-event” operations; it also gives their maximum costs. The table sug-
gests that no implementation performs dominantly better than all the others. For instance, calendar
queue has expected amortized cost ��� � 
 on both “schedule-new-event” and “extract-next-event”
operations, but these two operations also suffer worst case cost ����� 
 when it is necessary to resize
the calendar.

Although the analytical performance results presented in Table 2.1 are helpful in understanding
the asymptotic behavior of simulation event manipulation algorithms with different data structures,
it is also important to examine how they perform empirically when used to simulate real systems.
From the experimental results in [121], it is concluded that performance of simulation event manip-
ulation algorithms is application-dependent. More specifically, three observations are made. First,
when the average number of simulation events in the future event list is smaller than 1,000, splay
tree, skew heap, Henriksen’s data structure all behave well in terms of average access times. Second,
calendar queue is superior to the other implementations when that number exceeds 5,000. Finally,
both splay tree and skew heap show good amortized worst case performance.
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2.3.2 An Optimization for Network Simulation

As the Internet evolves, it incorporates more and more high-bandwidth optical links and large-delay
satellite and wireless links. A link with high bandwidth-delay product means that many packets can
be carried on it simultaneously. When a large network with high bandwidth-delay product links is
simulated, putting every packet event into the future event list inevitably leads to a long future event
list. From Section 2.3, we know that given any simulation event set algorithm, an increased number
of events always mean that more computation is spent on event manipulations in the simulation. An
optimization is proposed in [1] to shorten the future event list under such circumstance. It creates a
FIFO event queue for each link. At any time, if there are one or more packets on a link, it puts the
event representing the packet with the earliest occurrence time on this link into the future event list
and all others into the associated FIFO event queue in time order. After a packet event in the future
event list is processed, the packet event that is located at the head of the corresponding FIFO event
queue is extracted and put into the future event list. This is illustrated in Figure 2.6. Suppose that in
a simulation, there are 33 packets that traverse on the link from node A to node B simultaneously.
Without the optimization, all these 33 packet events are inserted into the future event list. If the
optimization is applied, however, only one packet event appears in the future event list and all
the others are temporarily stored in the FIFO event queue. Hence, the optimization significantly
shortens the future event list in simulation of high-bandwidth-delay-product networks.

���
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���
�
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33 packet events

...

Future Event List

FIFO link queue

Figure 2.6: Packet Events on A High Bandwidth-Delay Product

2.4 Parallel and Distributed Simulation

Moore’s law predicts that the computing power of sequential processors will continue growing
rapidly in the near future. However, simulation has been gradually applied to simulate unprecedent-
edly complex systems such as Internet-scale networks and human brains. Sequential simulation of
these systems at fine granularities requires long execution time, even if today’s fastest processor is
used. Given this, it is natural to accelerate these computation-intensive simulations by leveraging
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the computational power of a number of processors. Many real systems can be broken down into
individual components which operate in parallel to each other. For example, a computer network
is composed of multiple routers that work simultaneously. Such parallelism inherent in real sys-
tems can be exploited to improve simulation performance by parallelizing the entire computation
workload on multiple processors.

2.4.1 General Techniques

There are two broad approaches to parallelizing a simulation task: temporal parallelization and spa-
tial parallelization. Temporal parallelization divides the time domain of a simulation model into a
number of time intervals. Each time interval is simulated on a processor independently. It is likely
that the initial states of a time interval mismatch the final states obtained from the previous time
interval. Under such circumstance, some fix-up computations are needed to reduce the error. Tem-
poral parallelization was used in [65] to simulate road traffic. However, its success largely depends
on whether it is possible to predict accurately the initial states of each time interval; additionally, be-
cause simulation models are partitioned in time domain, this method is not suitable for those models
that cannot be fit into a single memory space. In spatial parallelization, a simulation model is de-
composed into a number of components in space domain, and then each component is mapped onto
a single processor. The interactions among components in the original model are accomplished with
some communication mechanisms like messages. For example, in parallel simulation of a computer
network, packets traversing through routers mapped onto different processors can be delivered with
communication messages. Spatial parallelization has its own challenges. One of them is that it is
not always an easy task to partition the original simulation model in the space domain. In addition,
the viability of this approach is contingent on how much parallelism is available in the original
simulation model. Despite these challenges, spatial parallelization is a comparatively promising
approach to scalable simulation of many real systems, especially when the memory demanded by
the original simulation model cannot be accommodated in a single memory space. The following
discussions in this section are limited to spatial parallelization.

In the parlance of parallel simulation, a logical process corresponds to a sub-model after the
original simulation model is partitioned in space domain; interactions between sub-models are rep-
resented as event messages between the corresponding logical processes delivered over the under-
lying communication systems. The architecture of logical process simulation is illustrated in Figure
2.7. The world view it has adopted is the process-interaction paradigm (See Section 2.1.2). With
respect to this architecture, the most important problem is: how do logical processes synchronize
with each other?

There are two families of synchronization protocols, conservative and optimistic, according to
whether logical processes conform to local causality constraint: each logical process only processes
its events in nondecreasing time orders [41]. Meeting this constraint is sufficient to ensure that simu-
lation results produced be consistent with those obtained from the counterpart sequential simulator.
This is the basic foundation of all conservative synchronization protocols; they strictly adhere to
this rule so that causality error never occurs. However, nonconformity with this constraint does
not necessarily lead to causality errors, because execution of some events within the same logical
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process in different time orders may produce the same results. Optimistic synchronization protocols
allow violation of the local causality constraint. Once they detect the occurrence of causality errors,
the whole simulation rolls back to a previous safe state.

2.4.1.1 Conservative Synchronization

The Chandy-Misra-Bryant (CMB) synchronization mechanism, among the first several parallel sim-
ulation algorithms, was developed in late 1970s based on the conservative principle [21][13]. In this
approach, each logical process maintains an incoming link for every other logical process that might
send event messages to it. Each link has a FIFO queue that accommodates incoming event messages,
and is also associated with a local clock that is set to be the earliest occurrence time among all the
event messages in the queue, if it is not empty, or otherwise the occurrence time of the latest event
message seen so far. A logical process iteratively picks the first event message from the queue
whose local clock time is the smallest; if the queue is empty, the process blocks itself. Straightfor-
ward implementation of this mechanism, however, may suffer deadlock. Therefore, some deadlock
avoidance or detection techniques were proposed to tackle this problem. For example, null mes-
sages were used to break the circular dependence among empty queues so that deadlock could be
avoided [94].

By its root, CMB algorithm is an asynchronous parallel simulation technique. There is another
branch of conservative synchronization mechanisms which use synchronous barrier operations. In
these protocols, each logical process iteratively determines a set of events that can be processed
safely without violating the local causality constraint. Examples of such protocols include Nicol’s
conservative protocol [102] and Lubachevsky’s bounded-lag protocol proposed [88]. In comparison,
asynchronous synchronization algorithms can more fully exploit intrinsic lookaheads, which will be
discussed momentarily, but their performance deteriorates when the models involve high connec-
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tivity; rather, synchronous mechanisms provide better scalability but they behave poorly when the
lookaheads pertaining to the simulation models exhibit high variations. A composite synchroniza-
tion protocol is proposed in [106] to search an optimal operating point between these two extremes
given a specific application.

The success of a conservative synchronization mechanism largely depends on how well it can
predict what will, or will not, happen in the future. This capability is also called lookahead. The
lookahead information can be exploited to determine whether it is safe to process a simulation event.
The more such knowledge a logical process can derive, the more simulation events it can possibly
process before being blocked to wait for incoming event messages or null messages. The lookahead
properties are application-specific. For example, an appointment algorithm is proposed in [101] to
improve the lookahead ability in simulation of stochastic FCFS queueing networks; the possibilities
of lookaheads in wireless network simulation are investigated in [81].

2.4.1.2 Optimistic Synchronization

Time Warp [59][58], developed in the 1980s, was the pioneering optimistic parallel simulation
mechanism. As a logical process is allowed to process events without adherence to the local causal-
ity constraint, it is likely that later an external event message carrying a time stamp smaller than the
local clock arrives. Such a message is called a strangler message in Time Warp. The appearance
of a strangler message forces the receiving logical process to roll back to a history state earlier than
the time stamp carried by this message. In order to recover from causality errors correctly, every
logical process in Time Warp has to store its history states and the messages that have been sent and
received. On the other hand, some messages may have already been sent to other logical processes
before an arriving strangler message invalidates them. Under such circumstance, anti-messages
need to be sent to the same logical processes in order for them to cancel the erroneous messages
received earlier.

As simulation progresses, some history states become unuseful and the storage allocated to them
can thus be reclaimed. In order to determine whether a history state recorded at some time point
can be discarded, all participating logical processors have to compute collectively the global virtual
time (GVT), which is the smallest time stamp among all unprocessed event messages. Given the
current GVT, a logical process can safely reclaim the storage allocated for all those history records
earlier than GVT. Such a process is called fossil collection.

The original Time Warp adopted aggressive cancellation strategy; that is, once a logical process
decides to roll back, anti-messages, if necessary, are sent out immediately. However, sometimes
the same positive messages (as opposed to anti-messages) are regenerated after the process rolls
back. Lazy cancellation exploits this possibility and an anti-message is sent only if the previous
positive message is not recreated after recomputation. Another optimization technique, called lazy
reevaluation, applies a similar idea. If the arrival of a strangler message does not alter the state of
the process, it is unnecessary to reexecute the events that have been rolled back and the state simply
remains as what was before the strangler message was received. There are some other optimization
techniques that aim to minimize the storage space used for state saving. For example, incremental
or infrequent state saving strategy can reduce the history records that need to be logged [11][86].
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In addition, for some specific applications, the state of a process after rollback can be restructured
by computing inversely each individual event-processing operation. This technique has been shown
able to lessen the computation overhead on state saving in optimistic parallel simulation of some
real physical systems [136].

Both conservation and optimistic synchronization mechanisms have their advantages and dis-
advantages2 . Compared with optimistic approaches, conservative approaches are usually easier to
implement and impose less constraints on memory. However, the performance of conservative syn-
chronization protocols is heavily contingent on lookaheads, whose exploration requires application-
domain knowledge; sometimes, it is also sensitive to the changes in simulation models. In addition,
owing to the conservative principle, conservative synchronization algorithms cannot exploit the par-
allelism inherent in simulation models as adequately as optimistic synchronization algorithms. In
comparison, optimistic approaches do not rely on explicit lookaheads to achieve good performance,
and they aggressively exploit the intrinsic parallelism in simulation models. The flip side of opti-
mistic synchronization protocols includes their relatively high demands on memory space and the
complications involved in their implementations.

2.4.2 Parallel and Distributed Network Simulation

In Section 1.1.3, we have described that simulating a large-scale network like the Internet at high
fidelity imposes heavy computation burden on a packet-oriented simulator. It is natural to leverage
more hardware power and existing parallel and distributed simulation techniques to accelerate this
process. The existing parallel network simulators are briefly introduced as follows. The ns network
simulator has been extended by pdns(Parallel/Distributed ns)3 to run in a distributed computation
environment. The SSFNet project4 , from its very beginning, aimed to simulate large-scale networks
with parallel simulation technology. Its underlying simulation engine, iSSF(previously known as
DaSSF)5, adopts a composite synchronization protocol, which combines the advantages of both
synchronous and asynchronous synchronization schemes [106]. The Telecommunications Descrip-
tion Language (TED) [116], a language for modeling telecommunication networks, has been used
to simulate some large and complex networks, such as ATM Private Network to Network Inter-
face (PNNI) signaling networks and wireless networks; the underlying parallel simulation engine is
Georgia Tech Time-Warp [40], which is based on an optimistic synchronization scheme. The Global
Mobility Simulation (Glomosim) [143] aims to simulate an extensive set of wireless networks with
a modular design; the underlying simulation engine, Parsec [5], can be configured to support both
conservative and optimistic parallel simulation. The TeleSim framework [137] provides an environ-
ment for simulating large-scale telecommunication networks and it works on an optimistic parallel
simulation engine. The USSF simulator [120], based on the optimistc WARPED simulation engine
[119], is also able to simulate large-scale network models.

Load balancing is an important problem in parallel simulation, because the simulation perfor-

2For more comprehensive discussions on this topic, refer to [41][105][35].
3http://www.cc.gatech.edu/computing/compass/pdns/
4http://www.ssfnet.org
5http://www.crhc.uiuc.edu/ jasonliu/projects/issf/
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mance is directly affected by how well the computation load is distributed over all the processors;
a poorly designed load balancing algorithm may bring little performance gain from parallel simu-
lation, or lead to even worse performance than sequential simulation because of its extra synchro-
nization cost. In [83], application-specific information is exploited to enhance load balancing in
parallel network simulation. The work is based on a conservative synchronization protocol in which
processors periodically exchange and process event messages. The time step is so chosen that event
messages can be executed without leading to causality errors; in network simulation, its selection is
positively correlated with the minimal link latency (MLL) across partitions. One observation is that
a larger time step leads to less frequent communication among processors. Hence, a topology-based
approach uses static information such as network topology, link bandwidth, and link latency to max-
imize the MLL across partitions. The extension in [84] adds a threshold on the MLL. The selected
MLL across the final partitions are then guaranteed to be larger than this threshold. The second
observation is that in order to minimize the communication cost among processors, the amount of
traffic that traverses partitions should be minimized. A profile-based approach is thus proposed:
traffic profiles are collected from pilot simulation experiments and then used to search an optimal
partition plan that minimizes traffic across partitions.

2.5 Computation Sharing

Another approach to improving simulation performance is to share redundant computations. In
many situations, multiple simulation runs share the same or similar input data. For example, in
sensitivity analysis of a simulation model, a small change is imposed on an input parameter to
examine the degree to which it impacts on the simulation outcomes. Evaluation of the sensitivity
of a model to an input parameter may require many simulation runs in which the parameter takes
sampled values from its feasible region. It is possible that there is only slight difference in the
initial settings of these simulations and thus a lot of computations are shared among them. Another
example is that in some online simulations, several alternative simulation execution paths diverge
from the same decision point. Computations prior to that decision point are exactly the same across
all the execution paths.

Based on these observations, some techniques have been proposed to reuse sharable compu-
tations across multiple simulation runs. In [44], a splitting mechanism is developed to accelerate
rare event simulation. The sample path of a simulation is splitted when its execution approaches
the occurrence of rare events; therefore, the computations before splitting are shared among the
branching execution paths. The cloning mechanism in [51] also reuse redundant computations be-
fore the branching points at which multiple execution paths diverge. This approach, however, does
not physically replicate the whole simulation state at each branching point, which can be expen-
sive in simulation of large, complex systems. Instead, it divides the whole simulation state into
finer-grained components called virtual logical processes. A clone of the whole simulation state is
actually composed of a set of virtual logical processes. Multiple virtual logical processes can be
mapped onto the same physical logical processes. Therefore, physical logical processes are shared
among different simulation clones. As a simulation clone progresses at its own pace, it may need
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to modify the states in some virtual logical processes that are mapped to a common physical logical
process shared by other clones. At this time, it replicates the shared physical logical process. The
idea is similar to the “copy-on-write” principle in virtual memory management. Another approach,
called updateable simulation technique [34], exploits application-specific knowledge to improve
reusability of shared computations. An initial execution path of the simulation is checkpointed for
each event processing. Subsequent simulation runs can reuse those stored states if verification based
on application-specific knowledge ensures that no errors are introduced.

In [139], it has been observed that for some applications, computations can also be shared in a
single simulation run. For example, in the motivating wireless network simulation, frequent neigh-
borhood calculations can be very computation-expensive. However, mobile nodes, in many cases,
move slowly at small time scales and the neighborhood relationships among them thus do not change
dramatically. This suggests that the neighborhood computations can be reused in order to improve
the simulation performance. A staged simulation framework is proposed to exploit computation
redundancy in wireless network simulation. In its simplest form, it caches every event, including
its function body and a mapping table from the inputs to the corresponding results; therefore, these
results can be reused directly when the simulator processes events calling the same event function
body with equivalent input data. It is also realized that inputs are often not identical across com-
putations. Therefore, the simulation code is restructured carefully with some techniques so that the
redundant computations can be isolated and thus become reusable. In addition, simulation events
are sometimes reordered if the final results thereof are not affected but simulation efficiency can be
improved.

2.6 Variance Reduction

Simulations involving random components usually produce stochastic outputs. Thanks to law of
large numbers, mean of an output process can be estimated by averaging over a number of random
simulation trials. Variance, besides mean, is another important statistical measure that evaluates
the precision for a series of repetitive experiments. An estimator that produces the same mean
but exhibits smaller variance provides better accuracy. An unbiased estimator of variance from �

random samples, � � � � � �
� � � � ��� , is given as follows:

� ��� �

��� �
�� 	

 � ���

	
��� 
 � � (2.1)

where �� � ���� �
	

 � �

	
. Equation (2.1) suggests that the estimator is inversely proportional to the

number of independent sample points. A simple approach to reducing variance is, therefore, to
increase the number of independent simulation trials. But this is not efficient, especially when a
single simulation run takes a long time to finish.

Common variance reduction techniques discussed below aim to improve the quality of outputs
without increasing the number of simulation runs.
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� Common random numbers(CRN). This technique is usually used to compare the perfor-
mance measures of two (or more) alternative systems. Its basic idea is that both systems are
evaluated with the same or similar realization of random components. The rationale behind
this is as follows. If � � and � � are output variates of the two systems, then

Var ��� � ��� � 
 � Var ��� � 
�� Var ��� �	
 � �
Cov ��� � � � � 
 � (2.2)

where Var ��� 
 is the variance of � and Cov ��� ��� 
 is the covariance of � and
�

. With
common random numbers, it is expected that stochastic processes � � and � � are positively
correlated (i.e., Cov ��� � � � � 
�� 	

), and then Var ��� � �	� � 
 can be reduced. Effective imple-
mentation of this technique requires synchronization of the random-number usages in both
simulation runs; otherwise, increased variances may be observed instead.

� Antithetic variates(AV). In this technique, besides output variate � under study, its anti-
thetic variate, denoted as ��
 , is also used. ��
 has the same mean as � . The variance of their
mean, ������ 
 
�� � , is

Var � ������� 
 
�� ��� � Var ��� 
�� Var ����
 
�� �
Cov ��� � �	
 


�
�

(2.3)

With this technique, it is expected that Cov ��� � ��
 
�� 	
so that Var � ��������
 
�� ��� is reduced.

In other words, the negative correlation between � and � 
 is the precondition to its effec-
tiveness. Applications of this method usually assume that output variate � is a monotonic
function of a uniformly distributed variate � . The antithetic variate � 
 ��� 
 � � ��� 
 can
then be used in the complementary simulation run for ��
 . Under the AV technique, instead
of generating � independent outcomes, ��� � pairs of outcomes are generated

��� �
	
� � ��� �

	

�� ��� � � ���
� � � �

��� ��� (2.4)

where � �
	

is the antithetic variate of � �
	
� � computed as above.

� Control variates(CV). This approach exploits the positive or negative correlation between
the output variate under study and one (or more) control variate to reduce the variance. Sup-
pose the output variate under study is � and the control variate is

�
with a known mean � � 
 . A controlled estimator, �"! , can be written as �#! � � ��$ � � �  � � 
 
 . The value of

$ so picked that
 ���%! 
 is equal to

 ��� 
 . As for the variance of �"! , we have

Var ��� ! 
 � Var ����
��&$ � Var � � 
 � � $ Cov ��� ��� 
 � (2.5)

The probabilistic rationale of CV is that $ � Var � � 
 � � $ Cov ��� ��� 
 should be negative and
then Var ���%! 
 is smaller than Var ����
 . Therefore, if � and

�
are positively correlated, $

should be positive; otherwise if � and
�

are negatively correlated, $ should be negative. The
most important problem with the CV technique is how to choose an appropriate value for $ .
The control variate

�
can be another output variate from the same simulated system, or come

from an external system that is similar to, but simpler than, the one being simulated.

28



� Conditioning. Suppose the output variate under study is � and there is another random
variable � . Then,  ��� 
 �  �� �  ������� 
 
 (2.6)

and

Var ����
 �  � � Var ������� 
 
 � Var �  ������� 
 
 � (2.7)

where
 � � � 
 is the expectation of � � 
 over the space of � . Because

 � � Var ������� 
 
 in Equa-
tion (2.7) must be nonnegative, we have

Var ����
�� Var �  ������� 
 
 � (2.8)

Equation (2.8) suggests that if
 ������� 
 is known, simulating � and thus

 ������� 
 and then
estimating the mean of

 ������� 
 can achieve variance reduction as opposed to simulating �
directly.

� Stratified sampling. The stratified sampling technique partitions the sample space into non-
overlapping subgroups or strata, each of which is relatively homogeneous, and draws samples
randomly from every stratum. The most important problem with stratified sampling is how to
distribute samples over different strata. Common strategies include: (1) proportionate alloca-
tion, in which the fraction of samples allocated to a particular stratum is proportional to that of
its population; (2) optimum allocation, in which the fraction of samples allocated to a particu-
lar stratum is proportional to the standard deviation of the distribution of the output variate in
this region so that the overall sampling variance can be minimized. Proportionate allocation
is simpler but may not produce optimal results in terms of variance reduction; under optimum
allocation, because the variances of the output variate are not known before simulation, pilot
simulations are necessary to gain this knowledge. Stratified sampling can bring significant
variance reduction if the subgroups are heterogeneous and appropriate allocation schemes are
adopted.

� Importance sampling. This approach is particularly useful in rare event simulation, in
which events of interest occur only with an small probability. For example, in an ATM net-
work, cell loss rates are typically very small (e.g., smaller than

�
	 �
	
). In order to observe such

rare events, either a large number of simulation runs or a long simulation run is necessary,
unless some variance reduction techniques like importance sampling are applied. As its name
suggests, the importance sampling technique concentrates on the most important regions in
the sample space.

Suppose we want to estimate � �  � ��� ��� 
 � where the PDF (probability density function)
function of input variate � is � � � 
 . Another PDF function � � � 
 satisfies that � ��� 
��� 	

when-
ever � ��� 
��� 	

. Then, � can be rewritten as

� �  �� � � ��� 
�� ��� 
� ��� 

���

(2.9)
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In order to estimate � , � samples of � from PDF � � � 
 are generated. The importance sampling
estimator of � , denoted as ��

	
� , is

��
	
� � �� 	


 � � ���
	

�� ���

	



� � ���
	



�
(2.10)

Note that the original estimator without the importance sampling technique, denoted
���� , is

���� � �� 	

 � � ���

	



�

�
(2.11)

The selection of sampling distribution � � � 
 plays a critical role in the importance sampling
technique because it decides whether variance reduction (i.e.,

� ��� ���
	
� 
 � � ��� ��� � 
 ) can be

achieved. For example, if � ��� 
 is related to an rare event, � � � 
 should be so chosen that the
regions where � ��� 
 �� 	

are sampled more frequently.

In summary, CRN, AV, CV, and conditioning techniques exploit the already known property
of the correlations among the output variates or between the output variates and some auxiliary
variates to reduce the variances; stratified sampling and importance sampling techniques, however,
restructure inputs into the simulation to achieve the same goal.

2.7 Summary

The first part of this chapter starts by giving two definitions of simulation. The two objectives
of a simulation study are summarized as understanding real-life systems and evaluating alterna-
tive strategies. The life cycle of a simulation study is also discussed in this part. Because some
terms regarding types of simulation models are used throughout this thesis, this part gives a brief
introduction to different classifications of simulation models.

The second part of this chapter depicts a big picture on general approaches to accelerating
simulation; they include model simplification, efficient event management algorithms, parallel and
distributed simulation, computation sharing, and variance reduction. All these techniques play an
important role in improving simulation performance. Since the main topic of this thesis is on large-
scale network simulation, some application-specific techniques in this domain are also discussed.
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Chapter 3

Multi-Resolution Traffic Simulation
Framework

The main contribution of this dissertation is to provide a simulation framework that integrates multi-
resolution traffic models and also address issues regarding the performance, accuracy, and scalabil-
ity of these models. This chapter presents an overview of the multi-resolution traffic simulation
framework; an example is used to illustrate how to develop traffic models within this architecture.
Some implementation details are briefly discussed in this chapter. This chapter is structured as
follows. Section 3.1 presents the multi-resolution traffic simulation framework; it also highlights
some important problems with respect to it. Section 3.2 briefly discusses some details when we
implement this architecture in iSSFNet1. The final section summarizes this chapter.

3.1 Multi-Resolution Traffic Simulation Framework

The multi-resolution traffic simulation framework proposed in this dissertation contains traffic mod-
els represented at different abstraction levels. Traffic models at high abstraction levels capture the
characteristics of network traffic at coarse time scales and ignores details within fine time scales;
hence, they are usually less computationally intensive than traffic models at low abstraction levels.
On the other hand, traffic models at low abstraction levels provide high-fidelity details of the traffic
but may cause relatively high computation workload. Given a particular simulation objective, we
should differentiate the network traffic into multiple parts, each of them represented at an appropri-
ate abstraction level according to the simulation objective so that the overall simulation efficiency
is optimized.

At the lowest abstraction level, network traffic is modeled at each individual packet, as in a
common packet-oriented network simulator like ns. Packet-oriented traffic models are necessary
when the packet-level details are our interest. For example, some applications like VoIP (Voice
Over IP) are sensitive to delay jitters between packets. Simulating traffic generated from such

1http://www.crhc.uiuc.edu/ jasonliu/projects/ssfnet/index.html
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Figure 3.1: Multi-Resolution Traffic Simulation Framework

applications cannot adopt higher abstraction-level traffic models which ignore the behavior of each
individual packet. On the other hand, traffic models at this resolution are computationally expensive,
because for every packet arrival at a network device, a simulation event needs to be scheduled and
processed in the simulation engine.

At the next abstraction level, this framework supports event-driven fluid-oriented traffic models
(see Section 2.2.2). Recall that in these models, network traffic is represented as piece-wise constant
rate functions of simulation time. A simulation event indicates a rate change for a particular flow.
When fluid flows multiplex at the same port, their departure rates are regulated by the scheduling
policy adopted by that port. As a fluid rate change arrives at its destination, it is processed by
the corresponding application. Event-driven fluid-oriented traffic models are particularly useful for
those applications that adapt their sending rates based on feedbacks from the network, such as rate-
adaptive multimedia applications. They, however, assume that packets are evenly spaced between
rate changes. Such approximations make them unsuitable for situations where packet-level details
are of essential importance.

At the highest abstraction level, this framework provides a time-stepped fluid-oriented traffic
simulation technique, which models network traffic at coarse time scales. In the space domain,
many individual flows are aggregated as long as they correspond to the same source-destination
pair; in the time domain, the traffic with regard to the same aggregate flow is further averaged over a
large time interval. At this resolution, the simulation time advances in constant time steps. At each
time step, each aggregate flow emits a new rate into the network from its source. Because network
traffic is modeled at large time scales, what is of our interest is the final state after all aggregate
flows converge to a steady state in each time step. The strategy proposed in this dissertation peri-
odically computes the traffic distribution on each link. Compared with event-driven fluid-oriented
traffic models, this abstraction level further eliminates the necessity of using discrete events to rep-
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resent transient rate changes for individual flows. The time-stepped fluid-oriented traffic simulation
technique is particularly useful for background traffic generation in a large-scale network, which is
a computation-intensive undertaking if traffic models at lower abstraction levels are used.
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From A to C: PING packets
From B to D: file transfer

Figure 3.2: An Example Topology with Multi-Resolution Traffic Representations

The example network illustrated in Figure 3.2 is used to explain these multi-resolution traffic
models. There are 7 routers, from R1 to R7, and 4 hosts, A, B, C, and D, in the network. The traffic
patterns are described as follows. A user at host A randomly sends PING packets to host C. Host
B is a file server for a client at host D; when it receives a request from host D, it sends back a file
at a constant rate. Host B is not working at a multi-thread mode, so at any time there can be only
one ongoing file transfer. Some other traffic is also traversing through the network. The simulation
objective is to understand the average delay and loss rate of the PING packets from host A to host
C. In the multi-resolution traffic simulation framework, PING packets from host A to host C can be
represented with a packet-oriented model. Traffic corresponding to the file transfers from host B to
host D can be modeled as an ON/OFF process, in which an ON period corresponds to an ongoing
file transfer and an OFF period corresponds to the period when the file server is waiting for another
request. An event-driven fluid-oriented traffic model is able to characterize the traffic pattern from
host B to host D: when an ON period starts, an event carrying the sending rate is emitted from
host B, and when an OFF period starts, an event carrying rate 0 is sent to host D. The remaining
traffic, which is distributed on every link in the network, can be very intense compared with the
traffic discussed above. Although its behavior is not of interest here, it may impose a significant
impact on the PING packets from host A to host D. For example, intense background traffic may
lead to severe congestion in the network, causing PING packets to be dropped. This part of the
traffic should, therefore, also be taken into consideration. In the framework, we can aggregate the
traffic between the same source-destination pair and ignore their dynamics at fine time scales. The
time-stepped fluid-oriented traffic simulation technique can then be used here to simulate them as
background traffic.
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An important problem in the multi-resolution traffic simulation framework is how to integrate
multi-resolution traffic models seamlessly. Following the previous example, we can see that in
Figure 3.2, both the PING packets from host A to host C and the fluid rate change events from
host B to host C will traverse through port Q, which is on router R4 and associated with the link
connected to router R7. Part of all-to-all background traffic can also pass this port. Therefore,
throughout the simulation port Q will witness traffic at all three different abstraction levels. Ideally,
the bandwidth allocation at ports multiplexing multi-resolution traffic should be blind to how the
traffic is represented; in other words, it should work as if all traffic is modeled at the finest time
scale.

The multi-resolution traffic simulation framework has been parallelized on a distributed memory
multiprocessor. High abstraction-level traffic models do not rule out the possibility that the power
of parallel computation can be leveraged to improve simulation performance. Instead, the combi-
nation of both offers a promising approach to accelerating simulation of large-scale networks. This
is particularly important when a simulation model is so complex that it cannot be accommodated
in a single memory space. The most difficult part of this aspect in our framework lies on how to
parallelize the time-stepped fluid-oriented traffic simulation technique. This is because the traf-
fic load computation at every time step is a global operation and its parallelization thus requires
synchronization among processors.

3.2 Implementation in iSSFNet

The multi-resolution traffic simulation framework has been implemented in iSSFNet (the descen-
dent of DaSSFNet). iSSFNet is a network simulator aimed at scalable high-performance network
modeling and simulation. It uses the Domain Modeling Language2 to describe and configure net-
work simulation models. It supports various network protocols, including IP, TCP, UDP, and some
physical layer implementations. It also provides several routing schemes, including direct loading
of forwarding tables, a static version of OSPF routing protocol, and on-demand policy-based routing
protocol [76] (See Section 2.2.3).

The example in Figure 3.3 illustrates how fluid flows are maintained and coexist with other
modules in iSSFNet. All fluid-oriented applications are designed on top of the original IP module.
Fluid headers are the only means of interaction between IP and fluid-oriented applications. When a
fluid-oriented application needs to emit a new rate, a fluid header carrying the new rate is created.
Besides the rate, a fluid header also specifies the source port number and the destination port number.
When IP layer receives a fluid header from a fluid-oriented application, it treats it as a normal
message header like a TCP or UDP header: it simply puts an IP header ahead of it, and after route
lookup, pushes it down to the corresponding outgoing NIC. When a NIC receives a regular packet
without a fluid header, it processes it as in a common packet-oriented network simulator: compute
the queueing delay and schedule a packet event with an occurrence time when this packet departs
from the NIC. However, when a NIC receives an IP packet that carries a fluid header, it first forms
a session identifier, which is a tuple of protocol identifier, source IP address, source port number,

2http://www.ssfnet.org/SSFdocs/dmlReference.html
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Figure 3.3: Implementation in iSSFnet

destination IP address, and destination port number. It then uses this session identifier to look up
a table which maps from session identifiers to local flow identifiers. If the corresponding session
identifier cannot be found in the table, a fast flow path setup process is activated: the IP packet is
forwarded towards its destination within zero delay in simulation time; every outgoing NIC through
which this packet traverses allocates a unique local flow identifier for the corresponding session
and also keeps information regarding the next outgoing NIC (if the next hop is the destination, the
incoming NIC will be kept instead) and the next local flow identifier; the final incoming NIC also
allocates a unique local identifier for this session and keeps the session identifier. For the example
in Figure 3.3, the IP packet traverses through outgoing port ��� at host A, outgoing port

� � at router
B, outgoing port � � at router C, and incoming port

�
� at host D along its path. The unique local

flow identifiers allocated to the corresponding session are 3, 5, 7, and 1 respectively. These flow
identifiers form a static path for this session. Later when host A pushes down new fluid rate changes
for this session, these changes are propagated to host D along this static path. As a new rate arrives
at NIC

�
� , the session identifier corresponding to local flow identifier 1 is used to create an IP packet

with a fluid header carrying the new rate. This IP packet is then popped up to the IP layer and then
to the receiving application.

This implementation works for both event-driven fluid-oriented traffic simulation and time-
stepped coarse-grained traffic simulation. In the interior network, fluid-based computation can use
local flow identifiers to locate quickly the next outgoing NIC or the incoming NIC at the destination.
This improves simulation performance because it avoids entering IP modules to find an outgoing
NIC for every fluid rate change that is propagated across a link.
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3.3 Summary

The first part of this chapter has described the multi-resolution traffic simulation framework. In this
framework, traffic models at three different abstraction levels are briefly introduced. This part has
also discussed how to develop traffic models within this framework. The second part of this chapter
uses an example to illustrate how the framework is implemented in an existing network simulator.

The multi-resolution traffic simulation framework described in the chapter integrates two low-
resolution traffic modeling approaches in addition to the conventional packet-oriented modeling
technique. The next chapter will delve deeply into the details on event-driven fluid-oriented traffic
simulation and its integration with packet-oriented traffic simulation.
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Chapter 4

Event-Driven Fluid-Oriented Traffic
Simulation

In this chapter we describe event-driven fluid-oriented traffic models in the multi-resolution traf-
fic simulation framework discussed in Chapter 3. In event-driven fluid-oriented traffic simulation,
a rate change that occurs to a flow is represented with a discrete event. If such rate changes ap-
pear relatively infrequently compared with the number of packets in the simulator, it is expected
that event-driven fluid-oriented traffic simulation outperforms the counterpart packet-oriented traffic
simulation. However, as events representing rate changes of multiple flows multiplex at congested
queues, many new events may be created because of bandwidth sharing. This phenomenon, often
called ripple effect, offsets any performance gain from using event-driven fluid-oriented traffic mod-
els. In this chapter, we present a rate smoothing technique to prevent this from happening. With
this method, an upper bound can be established on the number of fluid rate changes received by
network components. Another contribution made in this chapter is to seamlessly integrate event-
driven fluid-oriented models and conventional packet-oriented models at the same port. Given this
integration model, hybrid simulation of TCP traffic is also discussed.

The rest of this chapter is structured as follows. The next section provides background knowl-
edge on event-driven traffic models. Section 4.2 is focused on pure event-driven fluid-oriented traffic
simulation. In Section 4.2.1, we introduce an implementation of a fluid multiplexer. The “ripple
effect” inherent in event-driven fluid-oriented traffic simulation is discussed in Section 4.2.2. In
Section 4.2.3, we describe a rate smoothing technique that provably dampens the ripple effect in
event-driven fluid-oriented traffic simulation. In Section 4.3, we present how to integrate mixed
traffic representations at the same port. Section 4.4 describes the hybrid simulation of TCP traffic.
The related work is introduced in Section 4.5 and the chapter is summarized in Section 4.6.
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Figure 4.1: Illustration of MMFM Traffic Model

4.1 Background

Fluid-oriented traffic models represent network traffic as a continuous rate function. They are appro-
priate in cases where the behavior of individual traffic units are of little interest to the modeler. There
is a long history of using fluid models to characterize traffic in both telecommunication networks
and data communication networks. For example, the Markov Modulated Fluid Model (MMFM) has
been applied to model VBR (Variable Bit Rate) video traffic sources [90][128]. The emission rate
of a source modeled with MMFM is contingent on its current state in the underlying Markov chain.
Associated with each state is a constant rate at which the source emits traffic. In Figure 4.1(a), we
give a MMFM model with seven states in the Markov chain. An arrow in the graph represents a
state transition with the transition probability shown close to it. Associated with state �

	
(
��� � ��� )

is constant rate �

	
. In Figure 4.1(b), a sample sequence of fluid rate changes generated from this

model is presented.

TCP traffic can also be described with fluid-based models. We consider a simple case where
TCP protocol is in the slow start phase and no loss occurs in the network. In the first round, TCP
sender sends out a single data packet at the line speed of the outgoing NIC, denoted by � � . In the
fluid-oriented TCP model, the rate corresponding to the starting bit of the packet is � � , the rate
corresponding to the ending bit of the packet is 0, and the time interval between these two rate
changes is the transmission time of this data packet. When the packet reaches the TCP receiver, an
acknowledgment (ACK) packet is sent out. Suppose that the line speed associated with the outgoing
interface is ��� . Similarly, in the fluid-oriented TCP model, the rate corresponding to the starting
bit of the ACK packet is ��� , the rate corresponding to the ending bit of the ACK packet is 0, and
the time interval between these two rates is the transmission time of the ACK packet. When the
sender receives the ACK packet, it sends out two back-to-back data packets. Hence, in the fluid-
oriented TCP model, the rate corresponding to the starting bit of the first data packet is � � , the
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rate corresponding to the ending bit of the second data packet is 0, and the time interval between
these two rates is two times the transmission time of a data packet. Suppose that the TCP receiver
acknowledges every data packet that arrives, and if back-to-back data packets arrive in a batch,
ACK packets are released after all of them arrive. Then, two ACK packets are sent to the TCP
sender in the second round. In the fluid-oriented TCP model, the rate corresponding to the starting
bit of the first ACK packet is � � , the rate corresponding to the ending bit of the second ACK packet
is 0, and the time interval between these two rates is two times the transmission time of an ACK
packet. The following rounds are similar to the first two rounds until TCP enters the congestion
avoidance phase. A much more complicated fluid-based TCP model is introduced in [104]. This
model considers both slow start and congestion avoidance phases, maximum TCP window size, lost
traffic in the network, fast retransmit, and retransmission timeouts.

Both MMFM and the simple fluid-oriented TCP model described above can be deemed as a traf-
fic source model that injects discrete rate changes into the network. In event-driven fluid-oriented
simulation, these rate changes can be represented with discrete events. As the traffic traverses
through the interior network, these rate changes are propagated toward their destinations. The ques-
tion then becomes how to create, schedule, and process fluid rate changes in the network. If there is
infinite bandwidth in the network, the problem is trivial – when a discrete event representing a rate
change is fired, a new one is created and scheduled to fire at the exact time when the corresponding
rate change occurs at the next network device. However, in a network whose finite bandwidth is
shared among multiple flows, complications may result from the following two reasons:

� When multiple fluid flows traverse through the same multiplexer, if the bandwidth associated
with it cannot serve all the traffic, some traffic needs to be backlogged in the buffer, or even
dropped owing to buffer overflow.

� When fluid flows share bandwidth with flows represented with packet-oriented models at the
same multiplexer, the bandwidth associated with it should be allocated to fluid flows and
packet-oriented flows according to its service discipline.

In the next two sections, we discuss how to address these complications. We particularly focus
on the performance aspect of proposed solutions, because under some circumstance, fluid-oriented
traffic simulation may be even outperformed by the counterpart packet-oriented simulation [79].

4.2 Fluid Multiplexer

In this section, we discuss how to multiplex multiple fluid flows at the same port. We first give
an implementation of a discrete-event fluid port with FIFO scheduling discipline in Section 4.2.1.
Then follows a discussion on the ripple effect, a phenomenon inherent in any multiplexer whose
bandwidth is shared among multiple fluid flows. We further propose a rate smoothing technique
which provably dampens the ripple effect.
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Notation Meaning�
logic and�
logic or� ��� � s.t. � ��� 
 there exists � in � that satisfies proposition � ��� 
� ��� ���	� ��� 
�
 for every � in � , it satisfies proposition � ��� 
� ��� � s.t. � ��� 
�� � � ��� 
 �
� � � � �� ��� 
�
 for every � in � , if it satisfies proposition � ��� 
 ,

perform action � � ��� 
 , ..., and ��� ��� 
 in order
��� �

assign
�

to �

Table 4.1: Notations

4.2.1 A Discrete Event Fluid FIFO Port

The dynamics of a fluid FIFO port with a finite buffer is described as follows. We assume that
packets abstracted in fluid flows are of equal size. We let � denote the set that contains all the flow
destinations in the network and � denote the set that contains all the ports in the network. Consider
FIFO port � . Let ��� denote the link bandwidth associated with this port. We also let

� � be the sum
of the propagation delay of the link to which port � is connected and the delay needed to transmit
a packet by port � . We call

� � the insensitive latency of port � . Let � � be the buffer size in port� . The backlog in the buffer at time � is denoted by � � ��� 
 . We let � � ��� 
 denote the set of flows
that traverse through port � at time � . Note that flows may join and leave the network dynamically
and thus the set of flows traversing through a port may change as simulation time elapses. If flow �
traverses port � , then its arrival rate into port � and departure rate from port � at time � are denoted
by ���

	
����! � ��� 
 and �"� �$#&%'��! � ��� 
 respectively. We define function ( � � � � 
 , where �)�*� � ��� 
 , as follows:

( � � � � 
 �,+ � 
 if � 
 ( � 
 ��� ) is the next output port on flow � ’s path after leaving port �
�

if flow � arrives at its destination
�

(
� �*� ) after leaving port � (4.1)

The sum of all arrival rates into port � at time � , � ��-/.�0 � %'� � �
	
����! � ��� 
 , is written as 1 �

	
���� ��� 
 . Vari-

able 2�43 is used to record the last time the flow variables were updated. In addition, we let notation� � be the time immediately before time � and notation �65 be the time immediately after time � .
We define one type of event and two types of timer: rate change event, buffer overflow timer,

and buffer empty timer. Their meanings are suggested by their names: when a rate change event
fires, some flow rates are changed; when a buffer overflow timer fires, the backlog in the buffer
exceeds the buffer size since that time; when a buffer empty timer fires, the backlog in the buffer
becomes 0. Note that timers are actually a special form of discrete event in the implementation. Let7 �98 
 denote the set of flows that change their arrival rates associated with rate change event 8 . If
�)� 7 �98 
 , let �

� �98 
 denote the new rate of flow � carried in rate change event 8 .
In the algorithm setup, � � 	 
 � 	

and 2�43 � 	
; at every port, the arrival rate and the departure rate

of each flow are initialized to be 0. The source of each flow schedules rate change events according
to the traffic model characterizing it.
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Case 1 Condition � � ��� 
 � 	 � 1 �
	
� �� ��� 5 
 � �

Action
� � � 7 �98 
�� � � �4# %'��  � ��� 5 
 � � �

	
����! � ��� 5 
�
� � �*� � � s.t. � � � � 7 �98	
 s.t. ( � � � � 
 � � 
� schedule rate change event 8�
 with fire time ��� � � at � �7 �98 
 
 � � � � �)� 7 �98 
 � ( � � � � 
 � � 
� � � 7 �98 
 
�� � � �98 
 
 � � � �4# %'��  � ��� 5 
�
 


Case 2 Condition � � ��� 
 � 	 � 1 �
	
� �� ���	5 
�� � � .

Action
� � �*� � ��� 
�� �"� �4# %'��  � ���	5 
 � ���

	
����! � ��� 5 
 � � � �/1 �

	
���� ��� 5 
�


schedule buffer overflow timer with fire time��� � � � � 1 �
	
� �� ���	5 
 � � � 
� � �*� � � s.t. � � � �*� � ��� 
 s.t. ( � � � � 
 � � 
� schedule rate change event 8 
 with fire time ��� � � at � �7 �98 
 
 � � � � �)�*� � ��� 
 � ( � � � � 
 � � 
� � � 7 �98 
 
�� � � �98 
 
 � �"� �4# %'��  � ���	5 
�
 


Table 4.2: Formalization of Cases 1 and 2

Now we discuss how to process a rate change event when it fires. Suppose rate change event 8
fires at port � at time � . For every flow � in

7 �98 
 , we update its arrival rate into port � immediately

after time � , �"�
	
����! � ��� 5 
 , to be �

� �98 
 . We also update 1 �
	
����  � ��� 5 
 correspondingly. The backlog in the

buffer can then be calculated as follows:

� � ��� 
 ��� � � � � � � � � � � 	�� � � � 2� 3 
�� � 1 �
	
� �� � 2� 3 5 
 �)� � 
 ��� � 2�43 
 
 
 (4.2)

In Equation (4.2), term � 1 �
	
� ��! � � 2�43 5 
 � � � 
 ��� � 2� 3 
 is the number of bytes that have arrived into

the buffer minus the number of bytes that are released from the buffer since time 2� 3 . In other words,
this is the absolute change on the number of bytes in the buffer since time 2�43 . The backlog in the
buffer, apparently, should never exceed the buffer size or be less than 0.

After the backlog in the buffer is updated, we cancel any buffer overflow timer or buffer empty
timer if one has been scheduled. Since the aggregate arrival rate into the port has changed, the
time that a backlogged buffer needs to drain completely or that an unfilled buffer needs to become
overflowed may alter correspondingly. Therefore, if a buffer empty timer or a buffer overflow timer
is scheduled before, we need to reschedule it. The computation of flow departure rates is based on
the updated backlog in the buffer and the relationship between the aggregate arrival rate into the port
and the link bandwidth associate with it. We distinguish four non-overlapping cases, each described
as a condition and a set of actions. When the condition to a case is satisfied, the corresponding
set of actions are performed, in which new rate change events or timer events may be scheduled.
Description of the four cases requires new notations. They are listed in Table 4.1.

We formalize the four cases in Tables 4.2 and 4.3. Case 1 applies when there is no backlog in
the buffer and all the input traffic can be served without buffering. The departure rate of each flow is
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Case 3 Condition � � ��� 
 � 	 � 1 �
	
� �� ��� 5 
 � � � .

Action
� � �*� � ��� 
�� �"� �4# %'��  � � ����� � � ��� 
�� � � 
 5 
 � �"�

	
� ��  � ���	5 
 � � � �/1 �

	
� �� ���	5 
�


schedule buffer empty timer with fire time��� � � ��� 
�� ��� � � 1 �
	
� �� ��� 5 
 
� � �*� � � s.t. � � � �*� � ��� 
 s.t. ( � � � � 
 � � 
� schedule rate change event 8 


with fire time ��� � � � � � ��� 
�� � � at � �7 �98 
 
 � � � � �)��� � ��� 
 � ( � � � � 
 � ��
� � � 7 �98 
 
�� � � �98 
 
 � � � �4# %'��  � � ��� � ���	��� 
�� � � 
 5 
 

Case 4 Condition � � ��� 
 � 	 � 1 �

	
� �� ���	5 
 � � � .

Action
� � �*� � ��� 
�� � � �4# %'��  � � ����� ��� ��� 
�� � � 
 5 
 � � �

	
� ��  � ��� 5 
 � � � �/1 �

	
� �� ��� 5 
�


schedule buffer overflow timer with fire time��� � � � � � � ��� 
 
�� � 1 �
	
���� ��� 5 
 ��� � 
� � �*� � � s.t. � � � �*� � ��� 
 s.t. ( � � � � 
 � � 
� schedule rate change event 8 


with fire time ��� � � � � � ��� 
�� � � at � �7 �98 
 
 � � � � �)��� � ��� 
 � ( � � � � 
 � ��
� � � 7 �98 
 
�� � � �98 
 
 � � � �4# %'��  � � ��� � � � ��� 
�� � � 
 5 
 

Table 4.3: Formalization of Cases 3 and 4
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then equal to its arrival rate. Since some flows change their arrival rates, these rate changes should
be propagated to the next ports on their paths, or their destinations if they disappear into a sink, after
the corresponding link latencies. Note that � in the action part can be a port or a destination node.

Case 2 applies when there is no backlog in the buffer and the aggregate arrival rate exceeds the
link bandwidth associated with the port. Then, according to the FIFO service discipline, all flows
share the bandwidth in proportion to their arrival rates. Similarly, we need to schedule rate change
events at the next ports on their paths, or their destinations if they disappear into a sink at the next
hop. In addition, since the aggregate arrival rate exceeds the link bandwidth associated with the
port, the backlog keeps increasing; therefore, a buffer overflow timer is scheduled at the exact time
when the buffer becomes full.

Case 3 applies when there is backlog in the buffer and the aggregate arrival rate does not exceed
the link bandwidth associated with the port. Under such circumstance, the backlog in the buffer does
not grow. The traffic that arrives after time � but before the buffer becomes empty will be buffered;
when it is served, all flows share the bandwidth in proportion to their arrival rates during the above
time period. In addition, since the aggregate arrival rate does not exceed the link bandwidth asso-
ciated with the port, a buffer empty timer is scheduled at the exact time when the buffer becomes
empty. Note that if 1 �

	
���� ��� 5 
 is equal to ��� , the backlog does not change, so the fire time scheduled

for the buffer empty timer is actually in the infinite future. Similarly, we schedule rate change events
at the next hops on the paths of the flows. A special case is that 1 �

	
� �� ��� 5 
 is equal to 0. When this

occurs, we only need to schedule a buffer empty timer with fire time ��� � � ��� 
�� ��� � ��1 �
	
� �� ���	5 
 
 .

Case 4 applies when there is backlog in the buffer and the aggregate arrival rate exceeds the
link bandwidth associated with the port. Under such circumstance, the backlog in the buffer keeps
growing. The traffic that arrives after time � will be buffered, or lost after the buffer overflows;
all flows share the bandwidth in proportion to their arrival rates during the above time period. In
addition, since the aggregate arrival rate exceeds the link bandwidth associated with the port, a
buffer overflow timer is scheduled at the exact time when the buffer becomes full. Similarly, we
schedule rate change events at the next hops on the paths of the flows.

Now we discuss how to update the state variables when a buffer empty timer fires. Suppose
a buffer empty timer fires at time � . We update the departure rate of every flow to be exactly the
same as its arrival rate and schedule rate change events at the downstream ports correspondingly.
We define the action as follows:

Action:
� � �*� � ��� 
�� ��� �4# %'��! � ���	5 
 � �"�

	
� ��  � ���	5 
�
� � s.t. � � � �*� � ��� 
 s.t. ( � � � � 
 � � 
� schedule rate change event 8�
 with fire time ��� � � at � �7 �98 
 
 � � � � �)�*� � ��� 
 � ( � � � � 
 � � 
� � � 7 �98 
 
�� � � �98 
 
 � � � �4# %'��! � ��� 5 
�
 


When a buffer overflow timer fires, we do not need to update the flow departure rates. A buffer
overflow timer can be used to generate some traffic loss signals for end-host applications that are
sensitive to them (e.g., TCP protocol).
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Figure 4.3: Illustration of A Discrete Event Fluid FIFO Port
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We use a simple example to explain the dynamics of a discrete event fluid FIFO port. It is
illustrated in Figure 4.3. Both traffic source � and sink � are connected to port � with latency

�
.

We ignore the packet transmission time. Source A emits rate � at time 0, rate
�
� at time

�
, and rate

0 at time
� �

. The buffer size in port � is
�
�
�
. At time

�
, rate � from source � arrives at port � . Case

(1) applies: a rate change event carrying rate � is scheduled to fire at time
� �

at sink � . At time
� �

,
rate

�
� from source � arrives at port � , and Case (2) applies: a rate change event carrying rate � is

scheduled to fire at time �
�

at sink � , and a buffer overflow event is scheduled at time
� �

. At time
�
�
, rate 0 from source � arrives at port � . The scheduled buffer overflow timer is canceled and the

backlog is updated as �
�
. Then Case (3) applies: a buffer empty timer is scheduled to fire at time� �

. Note that it is a special case because the aggregate arrival rate into port � is 0. Hence, no rate
change event is scheduled at this time. At time

� �
, the scheduled buffer empty timer at port � fires

and a rate change event carrying rate 0 is scheduled to fire at time �
�

at sink B. This event finally
fires at the scheduled time.

4.2.2 Ripple Effect

Consider a rate change event arriving at port � . From Cases (2) and (4) discussed in the previous
section, we know that if the new aggregate rate into the port exceeds the link bandwidth associated
with it, then for every flow traversing through port � , its departure rate must be updated and then
propagated to the next hop (after some delay), and for every port on the machine at the other endpoint
of the link associated with port � , if it is on the path of any flow traversing through port � , there
must be a rate change event scheduled at that port. Moreover, if port � is congested, backlog is
accumulated in the buffer. From Cases (3) and (4) discussed in the previous section, we also know
that whenever a rate change event arriving at a port with backlog, we have to update the departure
rate of every flow traversing through the port and propagate it to the next hop. When the changes on
the departure rates are propagated to the downstream ports, they may also encounter congested ports
and trigger new flow rate changes there. In a network where many ports are overloaded, the number
of flow rate changes may grow dramatically as simulation time elapses. Such a phenomenon is
called “ripple effect” in some literature [61][80].

Ripple effect is inherent in any event-driven fluid-oriented simulation of networks which al-
low bandwidth sharing among multiple flows. Besides FIFO service discipline, GPS (Generalized
Processor Sharing) [113] is another such example. Although GPS scheduling principle provides
bandwidth isolation among flows because every flow is provided a guaranteed service rate, it is
work-conserving: if a flow does not consume all of its guaranteed service rate, the residual service
rate will be shared among other flows whose input traffic cannot be served by their guaranteed ser-
vice rates. Owing to the possible bandwidth sharing among such flows, event-driven fluid-oriented
simulation of a network with GPS service discipline may also suffer the ripple effect.

We use a feed-forward network to illustrate the ripple effect. In this topology, there are 16 flows,
from � � to � ��� . Flow �

	
(
� � � � �

) traverses 3 ports; flow �
	

( � � � ���
) traverses 2 ports; flow

�
	

(
� � � � ���

) traverses 1 port. Apparently, no circular dependence is formed by these flows in
the topology. Such a topology is sometimes called a feed-forward network. Suppose that a change
occurs to the arrival rate of flow � � into congested port A. Then the arrival rates of flows � � and � �
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Figure 4.4: A Feed-Forward Topology

into port B and the arrival rates of flows � � and � � change after some delays. If ports B and C are
also congested, these rate changes will be propagated further to ports D, E, F, and G, where flows
��� , � � , ��� , and ��� join them as ones that undergo rate changes. Similarly, if ports D, E, F, and G are
also congested, there is a rate change event delivered to every flow’s destination.

From the perspective of simulation efficiency, ripple effect imposes adverse impact on the event-
driven fluid-oriented traffic simulation. As we have seen from the above example, a single rate
change at an upstream port may trigger a chain of rate changes downstream in a network where
there exist multiple congested ports. Such an explosion of flow rate changes may cause heavy
computation cost on processing these rate changes in the simulation.

It is possible that event-driven fluid-oriented traffic simulation that suffers severe ripple effect is
outperformed by its counterpart packet-oriented simulation. A thorough comparison between their
performance in tandem queueing networks and feedback queueing networks is provided in [79].
Both mathematical analysis and simulation results suggest that when the ripple effect occurs in the
network, the rate at which simulation events are generated in event-driven fluid-oriented simulation
may exceed that in the counterpart packet-oriented simulation. Recall that the motivation for event-
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driven fluid-oriented simulation is to achieve better simulation efficiency by abstracting packet-level
details. If it is unable to provide the performance comparable to the packet-oriented simulation, this
motivation is undermined.

4.2.3 Rate Smoothing

In this section, we present a rate smoothing solution that provably mitigates the ripple effect in event-
driven fluid-oriented traffic simulation. From the four cases when a rate change event is processed
at a port, we have observed that once the departure rate of a flow from this port is updated, the
new rate is bound to appear at the next hop on the flow’s path after a delay. This delay is simply
derived as the sum of the insensitive latency of the port and the time needed to release the backlog
accumulated before the rate change event arrives. We call this delay an insensitive period of a flow
rate change.

r1

r2
r3

r4

r5

t5 t1t2t3t4

� � �
� � �
� � �

� �
� �
� �

� � � �
� � � �
� � � �
� � � �

� � � �� � �� �
� �
� �

�
�
�

Port pPort q
d

(1) Before rate smoothing

r5

t5 t1

r’1� � � � � � � � � �
� � � � � � � � � �

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

Port pPort q
d

(2) After rate smoothing

Figure 4.5: Rate Smoothing

It is possible that multiple rate changes of the same flow, after departing from a port, all appear
in the insensitive period at some simulation time point. This is illustrated in Figure 4.5(1). There
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is a flow that traverses from port � to port � . The insensitive latency from of port � is
�
. Suppose

at some time point, there are 5 flow rate changes that have departed from port q but are still in the
insensitive period. These rates are denoted as � � , � � , � � , � � , and � � , and their fire times scheduled
at port � are � � , � � , � � , � � , and � � respectively. If we flatten the bumpy rates between the flow rate
changes whose fire times are � � and � � , as illustrated in Figure 4.5(2), then only 2 rate changes are
necessary. That is, the flow rate changes whose fire times are � � , � � , and � � at port � can be removed
from the simulation. The rate change whose fire time is � � at port � is replaced with one with rate
� 
 � , where

� 
 � � � � ��� � � � � 
�� � � ��� � � � � 
 � � � ��� � ��� � 
�� � � ��� � � � � 
 � (4.3)

Note that the total volume of traffic that arrives at port � does not alter at simulation time � � after
the rates are smoothed. However, the number of flow rate changes is reduced by three.
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Figure 4.6: Rate Change Matrix

In order to incorporate this idea, we need to modify the implementation in Section 4.2.1. At
every port, we maintain a list of pending rate changes for each flow that traverses it. On the other
hand, rate changes that occur at the same time are concatenated across flows. Therefore, all the
pending rate changes form a matrix-like structure as depicted in Figure 4.6. When processing a
rate change event that updates the departure rates of some flows, we create a new column with the
appropriate fire time, and concatenate all the new departure rate changes together. When we add a
new departure rate change for a flow, we check whether there are more than one flow rate changes
whose fire times are no larger than the new one’s in the matrix. If there are, we smooth the rates as
discussed above and remove the rate changes that happen between the earliest one and the new one.
In Figure 4.6, suppose that the column corresponding to fire time � � is newly added. Then we can
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apply the rate smooth technique on flow
�

and remove � �
 �

from the matrix; similarly for flow � , we
can smooth the rate between fire times � � and � � , and thus remove �

	  �
from the matrix.

We introduce a rate change delivery timer, which recursively fires at the earliest occurence time
among all rate changes in the matrix. When a rate change delivery timer fires, we process it as
follows. We put all the rate changes of flows that go to the same next port into a rate change event,
and deliver that event to the corresponding port; that port processes this event instantaneously in the
same way as discussed in Section 4.2.1. If there are flow rate changes destined for the node at the
other end of the link, we create a rate change event containing all these rate changes and deliver it
to the destination node.

From the above description, we can easily obtain the following lemma:

Lemma 1 Consider any flow traversing through a port with an insensitive latency
�
. If the rate

smoothing technique is applied as described, there are at most 2 departure rate changes within any
period of

�
units of simulation time.

Proof. We prove it by contradiction. If there are more than 2 departure rate changes within a period
�

units of simulation time, these rate changes must appear in the rate change matrix simultaneously
at some simulation time point. Based on the above description, they can be smoothed and only two
are left. This contradicts the assumption. �

With aid of Lemma 1, we can establish the upper bound on the total number of flow rate changes
that are received by network components in an event-driven fluid-oriented simulation. We use � � to
denote the set that contains all the output ports along flow � ’s path. Recall that

� � is the insensitive
latency of port � .

Theorem 1 Consider an event-driven fluid-oriented traffic simulation. Let set � contain all the
fluid flows in it, and let � be the simulation duration time. Then the number of rate changes observed
by network components in the simulation is no greater than�

�/-/. �� -���� �
� �
� � � � (4.4)

where
� � � is the smallest integer that is no less than x.

Proof: For any flow � in the network, the number of its departure rate changes from port � ( ����� � )
that is observed at the next network component after port � is at most

� � � � � � � based on Lemma
1. Then the number of departure rate changes observed by all the network components on flow � ’s
path is at most � � -	��� � � � � � � � . By aggregating over all the flows, we can derive the upper bound
on the total number of rate changes observed by network components in the simulation as Formula
(4.7). �

From Formula (4.7), we know that the upper bound is entirely dependent on the simulation
duration time, the network topology and how flows are routed in the network. Therefore, with the
rate smoothing technique applied, it is ensured that uncontrolled exponential explosion of flow rate
changes cannot happen.
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Figure 4.7: The POP-Level ATT Backbone

We use the ATT backbone1 , which is illustrated in Figure 4.7, to empirically study the perfor-
mance and accuracy of the rate smoothing technique. The topology has 27 POPs (Point of Pres-
ences), connected with 100Mbps links. In order to study the impact that link latencies have upon
the performance and accuracy of the rate smooth technique, we vary the link latencies in the experi-
ments between 0.1 second, 1 second and 10 seconds. The buffer size in an output port is the product
of the bandwidth and the propagation delay of the link associated with the port. For every pair of
POPs, we use the MMFM model discussed in Section 4.1 to generate its ingress traffic. Therefore,
there are 702 (

� ��� � �
) fluid flows in total. Each source traffic model is modulated by a Markov

chain with two states: in the “on” state, the sending rate is a positive constant � , and in the “off”
state, the sending rate is 0. The holding time in each state is exponentially distributed with the same
mean that is 1 second. In the experiments, we adjust constant rate � in the “on” state to achieve
two levels of traffic intensity in the network, one having average link utilization � 	�� and the other
having average link utilization

��	��
.

From the experiments, we collect how many flow rate changes have been received by network
components. Note that a network component can be either a router or a flow sink. Figure 4.9(a)
presents the relative reduction on the flow rate changes observed by network components when the
unconstrained rate smoothing technique is applied as opposed to when it is not. It is clear that
when the link latency increases, the number of flow rate changes received by network components
decreases. This is obvious because a larger link delay leads to more flow rate changes that are
smoothed before they take effect at the receiving network components. Moreover, as the traffic
intensity level in the network increases, the number of flow rate changes in the simulation also
increases because of congestion, causing the number of flow rate changes that are smoothed out to
increase. This explains the large gap between the number of flow rate changes under different traffic
loads in Figure 4.9(a).

1http://www.ssfnet.org/Exchange/gallery/usa/index.html
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The number of flow rate changes that are generated in an event-driven fluid-oriened traffic sim-
ulation is an important factor in determining its performance. However, there are some other im-
portant factors that cannot be ignored. In our implementation, for example, the performance is also
affected by the number of timer events fired in the simulation. A timer event is inserted into the
future event list in the underlying simulation engine when a rate change delivery timer, a buffer
overflow timer, or a buffer empty timer is scheduled. In addition, a traffic source also needs to
schedule simulation events to indicate its rate changes. All these suggest that the factors affecting
the overall performance of event-driven fluid-oriented traffic simulation are manifold. In Figure
4.9(a), we also present the relative reduction on the execution time when the unconstrained rate
smoothing technique is applied as opposed to when it is not. The results tell us that the overall trend
of the simulation execution time agrees well with that of the number of fluid rate changes observed
by network components in the simulation, but under both traffic loads, the reduction on the total
simulation execution time is less impressive than that on the number of fluid rate changes observed
by network components.

The performance improvement from the rate smoothing technique has a cost. In order to study
how the rate smoothing technique affects the accuracy of the simulation results, for every flow in
the topology, we collect the volume of traffic it has received within non-overlapping time intervals
of equal length � . In the following experiments, we set � to be 1 second. Let

� � � � 
 or
� �� � � 


( � � ��� ���
� � � �
) denote the processes that characterizes the volume of traffic received by flow � ’s

destination within the � -th time interval. Then the average relative error on the volume of traffic
received by flow � is defined as

 �� � �
�

��� 
 � �
� � � � 
 � � �� � � 
 �� � � � 


�
(4.5)

where
�

is the total number of non-overlapping timer intervals. In the experiments mentioned later
in this section,

�
is 3,600.

The overall measure of the relative error is obtained by averaging the above relative errors of all
the flows:

 � � �  �� � �
� � �

�
�

�� � 
 � �
� � � � 
 � � �� � � 
 �� � � � 


�
(4.6)

where � � is the total number of fluid flows. In order to reduce the variance in this accuracy mea-
sure, we adopt the common random number technique discussed in Section 2.6: when computing
a sample of

 
, the same random numbers are used in the simulations that derive

� � � � 
 and
� �� � � 
 .

In addition, we remove all the samples that are extremely small; otherwise, the unreasonably large
relative error of a single sample can cause a very high average relative error.

The experimental results are presented in Figure 4.9(b). It is evident that with larger link delays,
more inaccuracy is introduced. For example, when the link delay is as large as 10 seconds, the rela-
tive error measured by Formula 4.6 is higher than 300% mark. This suggests that the rate smoothing
technique, if used without any constraint, may adversely affects accuracy, especially when the link
delays are relatively large. On the other hand, as we mentioned above, a higher traffic intensity
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level in the network makes it more possible that flow rate changes are smoothed in the simulation.
Therefore, we observe the relative error measure corresponding to average link utilization 80% is
higher than that corresponding to average link utilization 50%. However, compared with link de-
lays, the traffic intensity level imposes relatively smaller impact on the relative error measure. This
is because a heavier traffic intensity level in the network also leads to more traffic received at the
egress nodes within each time interval, thus reducing the relative error measure.

From the experimental results, we have realized that there exists a tradeoff between performance
and accuracy when deciding whether the rate smoothing technique should be used. In particular,
when the link delays in the network are large, applying the rate smoothing technique without any
constraint leads to high inaccuracy. This may not be acceptable under some circumstance. In order
to avoid this problem, we can put a time constraint when smoothing flow rate changes. Let � be the
longest time interval within which flow rate changes are allowed to be smoothed. In other words,
we do not smooth rate changes at time scales beyond � . Selection of � reflects a tradeoff between
simulation accuracy and efficiency. A larger � can bring better performance but may impair the
simulation accuracy to a larger degree.

With the constrained rate smoothing technique, the upper bound on the total number of flow
rate changes received by network components in Formula 4.7 should be modified correspondingly.
Consider port � of insensitive latency

� � and any flow � that traverses it. If the constrained rate
smoothing technique is applied, at most two rate changes are received at the next network compo-
nent with any time period

� � � � � � � � 
 . Therefore, we can establish the upper bound on the total
number of rate changes in the simulation as in Theorem 1.

Theorem 2 Consider an event-driven fluid-oriented simulation in which the constrained rate smooth
technique is applied as described. Let set � contains all the fluid flows in it, and let � be the sim-
ulation duration time. Then the number of rate changes observed by network components in the
simulation is no greater than �

�/-�. �� -	� � �
� �

� � � � � � � � 
 � � (4.7)

where
� � � is the smallest integer that is no less than x.

We redo the previous experiments by setting � to be 1 second. The simulation results are
presented in Figure 4.9. As before, the relative reduction on the simulation execution time when the
constrained rate smoothing technique is applied is less impressive than that when it is not. This still
suggests that the number of fluid rate changes in the simulation is an important but not the only factor
that affects the overall simulation performance. Comparing the results obtained by unconstrained
and constrained rate smoothing techniques, we have made the following observations:

� When the link delays are 0.1 second, which is much less than time constraint � on rate
smoothing, the simulation results are hardly affected by whether rate smoothing is con-
strained;

� When the link delays are 1 second, if rate smoothing is constrained, the relative error de-
creases but the number of flow rate changes increases slightly. Recall that the insensitive
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latency of a port includes both the link propagation delay and the transmission delay of a sin-
gle packet. Hence, it is actually longer than 1 second. When no time constraint is imposed,
the probability with which fluid rates are smoothed is higher than that when time constraint
is imposed.

� When the link delays are 10 seconds, if the constrained rate smoothing technique is applied,
the relative error drops significantly, but fewer flow rate changes are removed because of the
time constraint on rate smoothing. We also observe that as the insensitive latencies of ports
exceed time constraint � , both the relative error due to rate smoothing and the reduction on
flow rate changes remain relatively insensitive to the link propagation delays.

We conclude that the constrained rate smoothing technique, with a careful selection of time
constraint � , provides flexibility in balancing accuracy and efficiency of event-driven fluid-oriented
traffic simulation. The decision on time constraint � is application-specific. One important factor
that should be taken into consideration is how end applications respond to the inaccuracy due to rate
smoothing in the network.

The key idea of rate smoothing technique is to exploit the insensitive latencies that flow rate
changes have to suffer when traversing through a link; if they are in the insensitive period simul-
taneously, we can flatten the rates so that some rate changes can be removed from the simulation.
However, there are some complications when the link under consideration crosses timeline bound-
aries in parallel and distributed simulation (see Section 2.4.1).

� If optimistic synchronization protocol is used, the rate smoothing technique can work as usual.
When a rate change delivery timer fires, we pack the rate change events created in the cor-
responding action part into messages, carrying a proper firing time, and send them to the
timelines that contain the receiving network components. When a message carrying flow rate
changes arrives at the receiving timeline, if the time these flow rate changes are supposed to
fire occurs earlier than the local clock time, the message is treated as a “strangler” event and
the receiving timeline rolls back to the time stamp that the message carries.

� If conservative synchronization protocol is used, the rate smoothing technique may not work.
Note that in the rate smoothing technique, rate changes are held at the port from which they
depart until they take effect at the receiving network components. However, typical conser-
vative synchronization protocols in network simulation exploit the link propagation delays as
lookaheads and use them to predict whether it can be ensured that no events will arrive within
these delays in the future. The rate smoothing technique violates the assumption on such
lookahead, and therefore, potentially causes causality errors. Hence, in parallel or distributed
simulation based on conservative synchronization principle, we deactivate the rate smoothing
technique on every port that is associated with a link crossing timeline boundaries.
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Figure 4.8: Results on Unconstrained Rate Smoothing

55



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1  1  10

R
at

io
 (

w
ith

 r
at

e 
sm

oo
th

in
g 

/ w
ith

ou
t r

at
e 

sm
oo

th
in

g)

Link propagation delay (sec)

rate changes, link util 50%
rate changes, link util 80%

execution time, link util 50%
execution time, link util 80%

(a) Ratio of flow rate changes and execution time (simulation with constrained rate smoothing /
simulation without rate smoothing)

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.1  1  10

R
el

at
iv

e 
er

ro
r

Link propagation delay (sec)

link util 50%
link util 80%

(b) Relative error

Figure 4.9: Results on Constrained Rate Smoothing

56



4.3 Integration with Packet-Oriented Flows

In this section, we discuss how to integrate fluid-oriented and packet-oriented flows at the same port.
This is illustrated in Figure 4.10. The interaction between fluid-oriented and packet-oriented flows
is mutual: when they compete for both bandwidth and storage in the buffer, traffic represented by
fluid-oriented models affects traffic represented by packet-oriented models and vice versa. Ideally,
the resource allocation at the multiplexing point should be fair; that is to say, the behavior of the
traffic should be transparent to the way in which it is represented. In our approach, we model the
effect that fluid flows have on packet flows separately from the opposite effect. These models are
discussed in the following subsections.

Fluid rate changes

Packets Port 

Figure 4.10: Integration of Packet And Fluid Flows

4.3.1 Effect of Packet Flows on Fluid Flows

At a port that handles traffic mixing packet flows and fluid flows, we treat the aggregate packet flow
as a special fluid flow: it arrives at the port with an input rate that is equivalent to the aggregate
rate of packet flows but immediately disappears into a sink after departing from the port. With
addition of this special fluid flow, we are able to apply the event-driven fluid simulation as described
in Section 4.2.1 directly except that it is unnecessary to compute departure rates for the special fluid
flow. The rate smoothing technique discussed in Section 4.2.3 can still be applied to mitigate the
ripple effect that occurs to regular fluid flows.

The remaining question, then, is how to estimate the arrival rate of the aggregate packet flow.
An ideal estimation mechanism should satisfy the following principles:

� The estimated rate of the aggregate packet flow should be sufficiently accurate so that the
competition for bandwidth and storage in the buffer between the aggregate packet flow and
the regular fluid flows is “fair”. Fairness here means that the final service rates and buffer
occupancy are relatively insensitive to the way in which the traffic is represented.

� The computation cost on estimating the rate of the aggregate packet flow should be as low
as possible. From this perspective, the naive solution that fluidizes each packet arrival with
two rate changes, one corresponding to its starting bit and the other to its ending bit, is too
computationally costly.
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� The estimated rates of the aggregate packet flow should not change too frequently. In a con-
gested port, frequent changes on the estimated rates lead to a lot of computation on deriving
the departure rates for regular fluid flows.

In order to estimate the input rate of the aggregate packet flow, we define an adjustable mea-
surement window � . When a packet with

�
bytes arrives at time � after no packet appears during

time interval [ � ��� , � ), we set the instantaneous rate of the aggregate packet flow as
� ��� , and then

schedule a packet rate estimation timer that fires at time ����� . As simulation time elapses, other
packets may arrive before the timer fires. We use � to denote the total number of bytes that arrive
within time interval ��� � � ��� � . Then, when the packet rate estimation timer fires at time � ��� ,
the instantaneous rate of the aggregate packet flow is updated as � ��� , and we decide whether to
reschedule the packet rate estimation timer in the following way: if � is not zero, the packet rate
estimation timer is rescheduled to fire after another measurement window elapses, or otherwise, the
timer is simply canceled. Note that when the rate of the aggregate packet flow changes, there exists
a delay before it is detected by the above estimation method. The selection on the measurement
window � reflects a tradeoff between accuracy and efficiency. If a larger measurement window is
used, the packet rate estimation timer fires relatively less frequently, thus causing less computation
cost, but the estimation method is less responsive to the rate changes of the aggregate packet flow.
In the implementation, we use an adjustable measurement window. When the packet rate estimation
timer fires, the next measurement window spans the time for approximately � packet arrivals, based
on the current estimate on the rate of the aggregate packet flow. In addition, in order to avoid a too
large or too small measurement window, an upper bound �����
	 and a low bound ���

	
� are imposed

on � . In brief, the measurement window � is updated as follows:

� ��� � � � � � � �	� � � �� � � ����	 
 � � � 	 � 
 � (4.8)

where ��� is the current estimate on the rate of the aggregate packet flow.

4.3.2 Effect of Fluid Flows on Packet Flows

Recall that in the implementation described in Section 4.2.1, each fluid port has a state variable to
keep the current backlog in the buffer. When mixed traffic representations are supported, we fluidize
the aggregate packet flow and the backlog is updated as if the aggregate packet flow is a regular fluid
flow. Upon a packet arrival, the backlog as calculated can be used to determine whether the packet
should be dropped due to buffer overflow, and if there is enough vacancy in the buffer, how much
waiting time this packet has to suffer.

However, as mentioned before, the rate estimation for the aggregate packet flow has some delay
in responding to its rate changes. This may lead to inaccuracy in the backlog computation if the de-
lay is very large. Since the backlog calculated in this way serves the purpose of making decisions on
packet dropping and computing queueing delays, the inaccuracy may be amplified. In our approach,
therefore, a separate state variable is maintained to keep the current backlog from the perspective of
packet flows. Let � � be this state variable at port � . We use another state variable, � 
 3 , to store the
last time when this backlog is updated.
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Another observation is that while a packet is being served, traffic that has arrived during this
period time is accumulated in the buffer until the packet has fully departed from the port. Hence,
we introduce a state variable � ��� � to denote the residual time the packet being served requires to get
fully transmitted. We initialize � ��� � to be 0 in the simulation setup.

Backlog � � is updated whenever a rate change event fires. Suppose rate change event 8 fires at
port � at simulation time � . We update backlog � � as in the following two cases:

� Case � � : � � � 
 3 � � ��� � . This means that at simulation time � , the last packet must have
fully departed from port � . Then, the backlog changes differently between time intervals [ � 
 3 ,� 
 3 � � ��� � ) and [ � 
 3 � � ��� � , t). The traffic that arrives in the first one has to wait in the buffer,
causing the backlog to increase, but in the second interval, the backlog may drain, accumulate,
or remain unaltered, depending on the relationship between the aggregate arrival rate into the
port and the link bandwidth associated with the port. Hence, we update the backlog at time �
as follows:

� � ��� 
 ��� � � � � � � � � � � 	�� � � ��� 
 3 
 � 1 �
	
���� � ��� 
 3 
 5 
 � � ��� � � � 1 �

	
� �� � ��� 
 3 
 5 
 � � � 
 � ��� � � 
 3 � � ��� � 
 
 �

(4.9)
Note that the backlog in the buffer should not be negative or exceed the buffer size. After
computing the new backlog, we update � ��� � to be 0 and � 
 3 to be � .

� Case � � : � � � 
 3 � � ��� � . This means that at simulation time � , the last packet has not fully left
port � yet. Traffic that arrives after ��
 3 has to wait in the buffer. Hence, we update the backlog
as follows:

� � ��� 
 ��� � � � � � � � � ��� 
 3 
 � 1 �
	
���� � ��� 
 3 
 5 
 � ��� � � 
 3 
 � (4.10)

After computing the new backlog, we decrease � ��� � by � � � 
 3 and update � 
 3 to be � .
Now we discuss how to handle a packet arrival into a port. Consider a packet with length � �

arrives at port � at simulation time � . First, we update the backlog in the buffer in the same way as
processing a rate change event and let � ��� � decrease by � � � 
 3 . Based on the current backlog, we then
process the new packet as follows:

� Case � � : � � ��� 
 � 	
and � ��� � � 	

. In this case, there is no backlog in the buffer and no
packet is being served. Hence, the packet is served at the instant time when it arrives. We set� ��� � to be � � � � � , which is the transmission time of the new packet. The new packet does not
suffer any delay, and it departs from the port entirely at time ��� � � � � � .

� Case ��� : � � ��� 
 � 	
and � ��� � � 	

. In this case, there is no backlog in the buffer but a packet
is being served by the port. Hence, the new packet has to wait until the previous one is fully
served. We then put the new packet into the buffer by resetting � � ��� 
 to be � � . The exact
time when the new packet fully departs from the port is � � � ��� � � � � � � � . That is to say, the
new packet leaves the port after the time for the packet currently being served to finish its
transmission plus its own transmission time.
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� Case � � : � � ��� 
 � 	
and � � ��� 
�� � � � � � . In this case, there is backlog in the buffer, and

the new packet has to wait for the transmission of itself until this backlog drains completely.
If there is a packet being served, it also has to wait for its residual service time. Moreover,
there is enough vacancy in the buffer to accommodate the new packet. Then, we add � � to
the current backlog � � ��� 
 . Similarly, the exact time when the new packet fully departs from
the port is � ��� ��� � ��� � ��� 
�� � � (note that the transmission time of the new packet has already
been counted because � � ��� 
 includes � � ).

� Case � � : � � ��� 
 � 	
and � � ��� 
 � � � � � � . In this case, the new packet cannot be served

at the instant time when it arrives at the port because there is backlog in the buffer. Further-
more, the calculated backlog does not leave enough storage space to hold the new packet. A
naive solution is to simply drop the packet. This, however, does not conform to the reality
because even at an overloaded port, there is some probability for a fraction of traffic to get
into the buffer. Let � � ��� 
 and � � ��� 
 denote the aggregate packet arrival rate and the instant
fluid arrival rate at simulation time � respectively. When the newly arrived packet cannot be
accommodated in the buffer, we drop the packet with probability

� 3 � � � � � � � � � � ��� � �
� � ��� 
�� � � ��� 
 
 � (4.11)

The packet loss probability formed as above can be explained as follows. If the port is over-
loaded when the packet arrives (i.e., � � ��� 
 � � � ��� 
 � � � ), the overloaded portion is dropped;
otherwise, the packet is put into the buffer and the backlog is set equal to the buffer size. In
addition, we ensure that the packet dropping probability is a nonnegative. From a lot of exper-
imentation, though, we find that the packet dropping probability presented in Formula (4.11)
is slightly lower than that in the equivalent packet-oriented simulation. Therefore, we add a
constant scaling factor to compensate for this difference. The packet dropping probability in
our implementation is

� 3 � � � � � ��� � � � � � ��� � �
� � ��� 
 � � � ��� 
 
 � (4.12)

where � is 0.9 in all the experiments discussed later.

An important problem with the packet dropping probability in Formula (4.12) is how to de-
termine the current aggregate packet rate � � ��� 
 . In section 4.3.1, we have given an approach to
estimating the aggregate packet arrival rate for bandwidth allocation among packet flows and reg-
ular fluid flows. In order to balance the computation cost and responsiveness to the rate change of
real packet flows, in that method we have adopted an adaptive measurement window that spans the
time for a constant number of packet arrivals. If the packet rate measured in that method is applied
in Formula (4.12) for estimating packet loss probability, the packet loss probability behaves very
sensitively with respect to the measurement window. If the window is relatively large, the real ag-
gregate packet arrival rate may differ significantly from the current estimate and the derived packet
dropping probability is imprecise. If an overly small measurement window is applied, not only high
computation cost is required to measure the packet rate, but also the estimated packet rate may be
unreasonably high, thus causing an overestimation of the packet loss rate.
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In order to achieve a robust and accurate estimation on the current packet arrival rate, we apply
the approach used in [135] to measuring the arrival rate of the aggregate packet flow in Formula
(4.12). Suppose a packet of length � arrives at time � . Let �63 � � % be the time when the previous packet
arrives. We use � 3 � � %� be the packet flow arrival rate estimated when the last packet arrived. The new
packet flow arrival rate is then estimated by

� � ���� � � � � 8 ��� � �

 � �

�
� 8 ��� � �

� 3 � � %�
�

(4.13)

where � is the last packet interarrival time (i.e., � ��� 3 � � % ) and
�

is a constant. Compared with the
aforementioned window-based rate estimation method, this one is able to capture the most recent
packet arrival rate intantaneously (the first item on the right side of Equation (4.13)). On the other
hand, this approach also distinguishes itself from the normal exponential averaging method in which
a constant exponential weight is used. In [135], it has been observed that the normal approach
behaves relatively sensitive to the packet length distribution and the derived packet rate estimate
differs from the real rate by a factor. Instead, the approach with weight 8 ��� � �

avoids this problem.
Some guidelines on selecting

�
have been given in the same paper. For example,

�
should be large

enough to dampen the effect that packet delay-jitters have on the estimation process; on the other
hand, a smaller

�
responds better to the rapid packet rate fluctuations. In the experiments discussed

later, we let
�

be 100 ms.

Note that the original approach is used to estimate the arrival rate of an individual flow. In such a
context, it is ensured that the packet interarrival time is at least no less than the packet transmission
time. Therefore, the estimated rate of a flow never exceeds the bandwidth of the link associated
with the input port where the packet flow arrives. However, our problem requires estimating the
aggregate packet flow rate at an output port. It is thus possible that multiple packets arrive at an
output port at the same time or within a very small time frame in the simulation, and the derived
estimate on the aggregate packet flow arrival rate is too high. In order to solve this problem, we
estimate the aggregate packet flow arrival rate from each input port at every output port. It is thus
guaranteed that the estimated rate of the aggregate packet flow from a particular input port does
not exceed the bandwidth of the link associated with that port. In addition, packets may also be
originated from the local machine. Hence, we also estimate the arrival rate of the packet traffic
sent by the local machine. The aggregate packet flow rate estimate used in Equation (4.12) is then
obtained by summing the arrival rate estimates of packet-oriented traffic from the local machine and
all the input ports.

4.3.3 Simulation Results

In this section we evaluate our model with simulation experiments. The topologies used in these
experiments involve the classical “dumbbell” topology shown in Figure 4.11 and the more complex
ATT backbone network shown in Figure 4.7. Given a particular topology, we change some of its
configuration parameters or rates at which flows inject traffic into the network. The accuracy and
performance of our approach are studied under varied network configurations.
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Figure 4.11: Dumbbell Topology

4.3.3.1 Experiment 1: Dumbbell Topology with MMFM Traffic

In this part, we present the simulation results with the dumbbell topology depicted in Figure 4.11. In
this topology, a set of clients are connected to router A and a set of servers are connected to router
B; router A and router B are directly connected by a bottleneck link. The links in the topology
are homogeneous – they have the same bandwidth and propagation delay. The buffer size at the
bottleneck port is set to be the bandwidth-delay product of the bottleneck link.

We vary the number of client-server pairs in the topology. One set of experiments has 1 TCP
stream, 1 UDP stream, and 10 background flows. In the TCP stream, the TCP client requests a file
of 5M bytes from the corresponding TCP server. After the TCP server has successfully delivered
the requested number of bytes, the TCP client “sleeps” for an exponentially distributed period with
mean of 5 seconds. After the off period, the TCP client initiates another transfer of the same file size.
The process repeats itself until the simulation is over. In the UDP stream, the UDP client requests a
file of 5M bytes from its peer server. When the UDP server receives the request, it transfers the file to
the client at a constant rate. In the experiments, we let the rate be equal to the 10% of the bottleneck
link bandwidth. In addition, when the request is initiated, the UDP client schedules a user timer,
whose fire time is set slightly later than the time for the server to finish the data transfer. When the
user timer fires, the UDP client remains “silent” for an exponentially distributed period with mean of
5 seconds. After the off period, the UDP client sends another file transfer request to its peer server.
This process repeats itself until the simulation terminates. The background flows are unidirectional
from the servers to their peer clients. In the hybrid simulation, we use the MMFM traffic model to
generate fluid rates for each background flow. Each MMFM traffic source is an on/off process: in
the “on” period the source sends traffic at a constant rate, and in the “off” period it does not send
traffic. We fix each MMFM traffic source’s emission rate in the on period to be 2Mbps; the mean
times of both the “on” state and the “off” state are 1 second. In the pure packet-level simulation, the
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MMFM traffic model is replaced with an equivalent packet-oriented model which generates packets
at the same rates in its fluid-oriented counterpart. In the experiments, we vary the link bandwidth
between 12.5Mbps, 20Mbps, and 50Mbps; correspondingly, the traffic loads contributed by the
background traffic flow are 20%, 50%, and 80% of the bottleneck link bandwidth. We also vary the
link propagation latency between 5 ms, 50 ms, and 500 ms.

We measure the packet loss probability at the bottleneck port. Figure 4.12 describes the results
with 95% confidence interval. The ranges are very small and we thus hardly see them in the figure.
In the pure packet-level simulation, we collect the packet loss probabilities of foreground traffic
flows (i.e., the TCP stream and the UDP stream). Hence, packet loss probabilities of the same
portion of traffic are compared between the pure packet-level simulation and the hybrid simulation.
From the graph, we find that the packet loss probabilities from two simulation approaches match
closely. When the bottleneck bandwidth is 12.5Mbps, the average relative error on the packet loss
probabilities is 4.7% with standard deviation 2.6%; when the bottleneck bandwidth is 20Mbps or
50Mbps, the packet loss probabilities are close to 0, which makes the derived relative errors hardly
meaningful.
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Figure 4.12: Packet Loss Probability under 10 Background Flows

Figure 4.13 gives the average goodput of TCP streams. The goodput of a TCP stream is de-
fined to be the average number of bytes successfully delivered per simulation time unit using TCP
protocol. The average relative errors on the TCP goodputs corresponding to the bottleneck band-
width are 20.9% with standard deviation 9.3% at 12.5Mbps, 6.6% with standard deviation 6.4% at
20Mbps, and 0.14% with standard deviation 0.22% at 50Mbps. It is clear that a higher bottleneck
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link bandwidth causes less errors. From Figure 4.12, we know that the packet loss probability on the
bottleneck link is very small when its bandwidth is high, and therefore, the complicated congestion
control mechanism in TCP is seldom triggered. This explains the decreasing relative errors when
bottleneck bandwidth increases. In Figure 4.14, we present the results on the average round trip
time for the TCP stream. An excellent agreement is achieved because the relative error on every
simulation configuration is below 1%.
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Figure 4.13: TCP Goodput under 10 Background Flows

Figure 4.15 describes the simulation results on how much traffic has been successfully delivered
by the UDP protocol. It is clear that the pure packet-level simulation and the hybrid simulation
produce very close results. The relative error on every simulation configuration is less than 1%.
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Figure 4.14: TCP Round Trip Time under 10 Background Flows
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Figure 4.15: Delivered Fraction of UDP Traffic under 10 Background Flows
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In the second set of experiments, we increase the number of both foreground and background
flows, but the ratio of the former to the latter remains the same as in the first set. In these experi-
ments, there are 10 TCP streams, 10 UDP streams, and 100 background flows. The traffic pattern
of each TCP stream is unaltered. The traffic pattern of a UDP stream is also the same, except that
the sending rate of each UDP server is only one tenth of the rate in the first set. Hence, the overall
peak traffic load on the bottleneck link contributed by UDP traffic is still 10% of the bottleneck
link bandwidth. Similarly, a background flow from a server to its peer client is also modeled by a
MMFM model in the hybrid simulation, and a packetized MMFM model in the pure packet-level
simulation; when an MMFM source is in the “on” state, its sending rate is 0.2Mbps. Therefore,
the average traffic load of the background traffic on the bottleneck link is 20% at 12.Mbps, 50% at
20Mbps, and 80% at 50Mbps.

As before, we measure the packet loss probability at the bottleneck port. The simulation results
are depicted in Figure 4.16. The average relative errors corresponding to the bottleneck link band-
width are 4.6% with standard deviation 0.3% at 12.5Mbps, 16.4% with standard deviation 3.0% at
20Mbps, and 33.7% with standard deviation 8.5% at 50Mbps. We have noticed that the high relative
error under high bottleneck link bandwidth results from the relatively small packet loss probability
in this range.
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Figure 4.16: Packet Loss Probability under 100 Background Flows

The average TCP goodputs under varied network configurations are described in Figure 4.17.
The average relative errors corresponding to bottleneck link bandwidth are 16.45% with standard
deviation 6.8% at 12.5Mbps, 32.5% with standard deviation 16.1% at 20Mbps, and 16.5% with
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standard deviation 3.3% at 50Mbps. Compared with the results under 10 background flows, the
relative errors under 100 background flows are relatively higher. Note that although we scale the
sending rate of the UDP servers and the background traffic flows so that they offer the same loads on
the bottleneck link, there is much heavier TCP traffic load on that link under 100 background flows.
Because of the increased overall traffic load on the bottleneck link, TCP behaves more dynamically
when responding to the relatively higher congestion in the network. This explains the increased
relative errors on TCP goodputs under 100 background flows. In addition, we also measure the
round trip times of the TCP packets. The results are shown in Figure 4.19. The relative errors
corresponding to the bottleneck link bandwidth are 1% with standard deviation 0.8% at 12.5Mbps,
0.4% with standard deviation 0.4% at 20Mbps, and 0.8% with standard deviation 0.9% at 50Mbps.
Obviously, the two simulation approaches have achieved excellent agreements on the round trip
times.
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Figure 4.17: TCP Goodput under 100 Background Flows

The accuracy results on UDP traffic under 100 background flows are presented in Figure 4.19.
It depicts the successfully delivered UDP traffic in the simulation. The average relative errors cor-
responding to the bottleneck link bandwidth are 3.2% with standard deviation 0.4% at 12.5Mbps,
5.3% with standard deviation 1.2% at 20Mbps, and 1.3% with standard deviation 1.4% at 50Mbps.
These results suggest a close match on this UDP flow metric between the hybrid simulation and the
pure packet-oriented simulation.

The execution speedups of hybrid simulation over pure packet-level simulation under varied
network configurations are depicted in Figure 4.20. From the results, we see that hybrid simulation
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Figure 4.18: TCP Round Trip Time under 100 Background Flows

outperforms pure packet-level simulation under all configurations. The lowest execution speedup
is 1.4, when there are 100 background flows and the bottleneck link has bandwidth of 12.5Mbps
and propagation latency of 5 milliseconds; the highest execution speedup, which is 90, occurs when
there are 10 background flows and the bottleneck link has bandwidth of 50Mbps and propagation
latency of 500 milliseconds.

Now we discuss the impact that the network configurations have on the execution speedup of
hybrid simulation over pure packet-level simulation. When the bottleneck latency increases and
other conditions are the same, the execution speedup gained from hybrid simulation also increases.
Since the UDP traffic and the background flows are non-responsive, that is, they do not adapt to the
network condition dynamically, changes on bottleneck latency hardly affects their traffic. Rather,
TCP traffic is sensitive to the round trip times of packets – its throughput is roughly inversely pro-
portional to the average round trip time [92]. Therefore, increasing the bottleneck latency reduces
the fraction of packet-oriented TCP traffic in hybrid simulation; hence, it is able to achieve a higher
execution speedup against the pure packet-level simulation.

The effects of the varied bottleneck bandwidth on the performance gain from the hybrid simu-
lation are mixed when other conditions are the same. First, as the bottleneck bandwidth increases,
the packet loss probability at the bottleneck port decreases and thus more packet-oriented traffic is
able to get through the port. From this perspective, the pure packet-level simulation should be out-
performed by the counterpart hybrid simulation. Second, increasing the bottleneck bandwidth also
increases the fraction of packet-oriented foreground traffic. Recall that the offered load of UDP traf-
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Figure 4.19: Delivered Fraction of UDP Traffic under 100 Background Flows

fic on the bottleneck link is 10 percent of its bandwidth. Furthermore, a relatively large bottleneck
bandwidth reduces the packet loss probability at the bottleneck port; an increase on the throughput
of TCP stream results because it is roughly inversely proportional to the square root of the packet
loss rate [92]. Third, increasing the bottleneck bandwidth also affects the interaction between fluid
flows and packet flows in the hybrid simulation. A low bottleneck bandwidth causes relatively more
congestion. Under congestion, changes on the aggregate packet flow rate trigger computation of
departure rates of fluid flows. On the other hand, heavy congestion also causes more packet losses,
which demands more time on computing the packet loss probability as described in Equation (4.13)
in hybrid simulation. These reasons result in mixed effects that varying bottleneck bandwidth im-
poses on the performance gain from the hybrid simulation. In most cases, the first factor dominates
over the other two because the background flows contribute to the most significant fraction of the
whole traffic. However, some exceptions occur when the bottleneck latency is small. In this range,
the last two factors play a more important role than the first one, and the effect of increasing the
bottleneck bandwidth on the performance gain of hybrid simulation is therefore slightly negative.

When we increase the number of flows (both foreground and background flows) in the simula-
tion, it is clear that the relative execution speedup achieved by hybrid simulation over pure packet-
level simulation drops. Although we configure the network in a way so that the offered load on the
bottleneck link from background flows and packet UDP flows is maintained at the same level, the
TCP traffic load under 100 background flows is heavier than that under 10 background flows. Since
the fraction of packet-oriented traffic in hybrid simulation is higher in the former case, lower relative
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Figure 4.20: Speedup of Hybrid Simulation over Pure Packet-Level Simulation under Dumbbell
Topology

execution speedup can be achieved from hybrid simulation. On the other hand, the performance of
fluid-oriented traffic simulation depends on the number of flows. When there are 100 fluid-oriented
background flows in the hybrid simulation, more computation workload is inevitably needed to
propagate their flow rate changes than that when there are only 10 fluid-oriented background flows.
All these explain the observation that the relative execution speedup of hybrid simulation over pure
packet-level simulation diminishes as the number of flows in the network increases.

4.3.3.2 Experiment 2: ATT Backbone with MMFM Traffic

In this section, the realistic ATT backbone network depicted in Figure 4.7 is used to study the
accuracy and performance of our approach to handling mixed traffic representations. The back-
ground flows in the topology are “all-to-all”: for every pair of routers in the topology, there exists
a background flow whose ingress traffic is modeled by the MMFM source model. As in previous
experiments, the model is actually an on/off process; both the “on” state and the “off” state have
mean duration of 1 second. The emission rate in the “on” state is the same for all the background
traffic sources. We adjust this rate to achieve two average background traffic loads on each link,
50% utilization and 80% utilization.

In the original topology, we attach an end host to every router. Every end host has installed
a TCP client, a UDP client, a TCP server, and a UDP server on it. In each experiment setting,
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every TCP client randomly chooses a TCP server from all the end hosts but itself, and requests a
file transfer of size 5M bytes from the selected server. When the client receives the requested file,
it remains “silent” for an exponentially distributed duration with mean of 5 seconds; after waking
from the “silent” period, it initiates another request to the same server it has chosen. The above
process repeats until the simulation finishes. Similarly, in each experiment setting, every UDP
client randomly chooses a UDP server from all other end hosts and requests a file transfer of 5M
bytes from there. After receiving a request, a UDP server sends back the requested bytes at the rate
of 5Mbps. When a UDP client sends out its request, it schedules a user timer which fires slightly
later than the time when the corresponding server finishes its transfer. When the user timer fires,
the UDP client goes to the “silent” period, which also conforms to an exponential distribution with
mean of 5 seconds.

We randomly generate 10 experiment settings, in which each TCP client randomly selects a
TCP server and a UDP client randomly selects a UDP server. In every experiment, there are 27
TCP streams and the same number of UDP streams, all represented with packet-oriented models.
We measure the average goodput of the 27 TCP streams and the average delivered fraction of UDP
traffic throughout the simulation. The results with 95% confidence interval on the average TCP
goodputs are given in Figure 4.21. The x-axis represents the 10 experiment settings. The average
relative errors corresponding to the average background traffic loads are 6.3% with standard de-
viation 2.0% at 50% and 3.4% with standard deviation 1.7% at 80%. The results on the average
delivered fraction of UDP traffic under the 10 experiment settings are given in Figure 4.22. The rel-
ative errors corresponding to the average background traffic load are 0.6% with standard deviation
0.3% at 50% and 0.9% with standard deviation 0.8% at 80%. All these results suggest that pure
packet-level simulation and hybrid simulation produce well-matched results on the flow metrics
discussed.

We present the relative speedup of hybrid simulation over pure packet-level simulation in Figure
4.23. We run each experiment setting for 3600 seconds, and each simulation run is replicated for 10
times. From the graph, we have observed that when the average background traffic load is 50% of
the link bandwidth, the relative execution speedup is approximately 4; when the average background
traffic load is 80% of the link bandwidth, the relative execution speedup is approximately 8. The
difference between these two numbers can simply be explained as follows. If background traffic
load in the network is heavier, then a relatively larger portion of the whole traffic is as fluid flows,
which thus brings better relative speedup from the hybrid simulation.

The average execution times under two background traffic loads are given in Table 4.4. It is
clear that the pure packet-level simulation cannot be accomplished in real time, but the hybrid sim-
ulation is finished within less than half the real time. This suggests that pure packet-oriented traffic
simulation is inappropriate in cases where meeting real time constraint is of crucial significance.
In addition, with increasing background traffic load, the execution time by hybrid simulation de-
creases. This may be counter-intuitive because a higher fluid traffic load in the network usually
leads to heavier congestion and thus more computation on fluid rate propagation. In the hybrid
simulation, however, a higher background traffic load may cause more packet losses because of
congestion, thus reducing the overall computation load from this perspective. The experimental
results tell us that the simulation performance is affected by the latter factor to a heavier degree.
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Figure 4.21: TCP Goodput under ATT Topology

Background Traffic Load Hybrid Simulation Pure Packet-Level Simulation

0.5 984.85 (sec) 4013.08 (sec)

0.8 639.92 (sec) 5193.92 (sec)

Table 4.4: Average Execution Time for Simulating ATT Topology
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Figure 4.22: Delivered Fraction of UDP Traffic under ATT Topology
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4.4 Hybrid Simulation of TCP Traffic

In Section 4.3, we have discussed how to integrate event-driven fluid-oriented traffic simulation
and packet-oriented traffic simulation, and in the experiments, the non-responsive MMFM model
is used to generate traffic represented as fluid rate changes. In this section, we continue the discus-
sion in the context of TCP traffic simulation. As a large portion of the current Internet traffic uses
TCP, it is thus important to understand both how TCP responds to the dynamic network conditions
and how its traffic affects network dynamics. Simulation is a tool that is widely applied to achieve
these objectives. It is, therefore, a meaningful undertaking to investigate how to accelerate simu-
lation of TCP traffic. In this section, we discuss the possibility of using hybrid simulation, which
integrates fluid-oriented and packet-oriented TCP models, to achieve performance improvement. In
the hybrid simulation, we have implemented Nicol’s fluid-based TCP model [104][108], with some
simplifications in order to improve simulation efficiency.

4.4.1 Nicol’s Fluid Modeling of TCP

Prior to the description of Nicol’s Fluid-Based TCP model, a brief introduction to TCP’s flow con-
trol and loss recovery mechanism provides necessary background knowledge. TCP’s flow control
mechanism is centered on a sliding congestion window, whose size is adapted to reflect the current
network condition. A TCP agent works in one of two modes: slow start and congestion avoidance
[54]. In the slow start mode, TCP sender increases its congestion window size by the size of that
data segment after receiving every data segment acknowledged by the receiver. In a topology where
the round trip time is large enough to accommodate the transmission of all data segments within
a congestion window, the congestion window size doubles every round trip time. The continuing
growth of congestion window size at an exponential rate may cause congestion in the network. If
a packet loss is detected, or the congestion window size exceeds a threshold called mode transition
threshold, TCP enters the congestion avoidance mode. In this mode, TCP increases its congestion
window size much more slowly compared with how it does in the slow start mode: the conges-
tion window size is expanded by only one data segment after the volume of data segments equal to
the current congestion window size has been acknowledged by the receiver. Hence, in a topology
where the round trip time is large enough to accommodate the transmission of all data segments in
a congestion window, the congestion window size increases by a single data segment every round
trip time.

TCP’s response to congestion in the network is manifold. The simplest approach existing in
all TCP variants is to use retransmission timers: if a packet sent out has not been acknowledged
when a retransmission timer scheduled for it fires, the packet is assumed to be lost in the network
and TCP reacts as follows: it sets its mode transition threshold as half of the current congestion
window size and its congestion window size as a single data segment, then re-enters the slow start
mode. Relying on only retransmission timeouts for loss recovery, sometimes, severely limits the
throughput of the TCP traffic, especially in a network that is only slightly congested. Hence, a
fast retransmission mechanism [56] is adopted in many TCP variants. In this mechanism, when
more than three duplicate acknowledgement packets are received in a row, a packet is assumed to
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be dropped by the network. However, TCP variants differ in how to recover from packet losses
detected from a fast retransmission. TCP Tahoe reacts to such a packet loss in the same way as that
after a retransmission timeout. In TCP Reno, a fast recovery mechanism [55] is introduced: after
a fast retransmit, TCP reduces its current congestion window size by half and uses new incoming
duplicate ACKs to expand its congestion window size; after half a window of duplicate ACK packets
are received, it increases the congestion window size by one MSS (Maximum Segment Size) and
transmits a data segment after each additional ACK packet is received. Besides TCP Tahoe and
TCP Reno, other variants like TCP New-Reno and SACK further aim to improve the performance
of TCP protocol under varied circumstances. Among all these variants, TCP Reno is the most
widely deployed because it has been implemented in the popular BSD 4.3 operating system. All the
experiments in this thesis regarding packet-oriented TCP protocol use the Reno variant.

In the following paragraphs, we introduce Nicol’s fluid modeling of TCP from three aspects:
how to update the emission rate from the TCP sender, how to schedule timers, and how to respond
to packet losses in the network.

4.4.1.1 Sending Rates

In Nicol’s fluid-based TCP model, a data transfer governed by TCP protocol is abstracted into a fluid
stream of bytes, indexed from 0 in byte sequence order. At the TCP sender side, two state variables
regarding the current transfer status are maintained:

� � � ��� 
 and
� ��� ��� 
 keep the number of bytes

that have been sent and the number of bytes that have been received respectively up to simulation
time � . It is obvious that at any simulation time

� � � ��� 
 should be no less than
� � � ��� 
 . We

have mentioned that TCP’s flow control mechanism is centered on its sliding congestion window
and the mode transition threshold. Their values at simulation time � are denoted by ��� �

� ��� 
 and� � � � � 8 � � ��� 
 respectively.

Similar to the MMFM traffic model, Nicol’s fluid-based TCP model also injects discrete fluid
rate changes into the network. Let � � � ��� ��� 
 be the data rate sent from the TCP sender at simulation
time � , and � � ! � ��� 
 be the acknowledged byte rate received from the network at simulation time � .
Both � � � ��� ��� 
 and � � ! � ��� 
 are piece-wise constant rate functions of simulation time � . One important
goal of the model is to determine � � � ��� ��� 
 , that is, the data transmission rate from the TCP sender.
First, if the current congestion window is not filled (i.e.,

� � � ��� 
 � � � � ��� 
 � ��� �
� ��� 
 ), the

TCP sender can send out data as fast as it can. The maximum emission rate is constrained by
both the data rate from the upper application, denoted by � � �
� ��� 
 , and the available transmission
bandwidth, denoted by ��� � ��� 
 . Second, when the congestion window size is tight (i.e.,

� � � ��� 
 �
� � � ��� 
 � ��� �

� ��� 
 ), the sending rate is further contingent on both � � ! � ��� 
 , and the rate at which
the congestion window size increases. The latter is denoted by � ! � ��� ��� 
 . As we have said, the TCP
sender increases its congestion window size differently in two modes. In slow start, the congestion
window size increases by one MSS after one data segment has been acknowledged. Therefore, the
rate at which the congestion window changes in this mode is equal to the rate at which data segments
are acknowledged. That is to say, � ! ����� ��� 
 is exactly � � ! � ��� 
 . If the TCP sender is in congestion
avoidance mode, we simply let � ! ����� ��� 
 be 0, because as we will see later, the congestion window
size is changed in a discontinuous manner. Third, it is possible that the current congestion window
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size is smaller than
� � � ��� 
 � � � � ��� 
 . This may occur when the TCP sender shrinks its congestion

window size after some packet losses have been detected. In this case, the sending rate is constrained
to be 0. In summary, the rule on updating � � � ��� ��� 
 is described as follows:

� � � ��� ��� 
 �
�������� �������

� � � � � � � ��� 
 � � � �
� ��� 
�
 if � ��� 
�� � � �
� ��� 


� � � � � � � ��� 
 � � � �
� ��� 
 � � � ! � ��� 
 � � ! ����� ��� 
�
 if � ��� 
 � � � �
� ��� 


	
if � ��� 
�� � � �

� ��� 

(4.14)

where � ��� 
 is equal to
� � � ��� 
 � � ��� ��� 
 .

4.4.1.2 Timers

A few timers are necessary for updating the internal state variables in the model. The first one
is called Constrained timer. It is scheduled when the congestion window size is unfilled (i.e.,
� � � ��� 
 � � � � ��� 
 � ��� �

� ��� 
 ). The purpose of this timer is to notify when the congestion win-
dow becomes full. From Equation (4.14), we know that the data transmission rate may need to be
changed when the entire congestion window is filled. Suppose that the timer is scheduled at time � .
Its fire time, � ! , is then � ! � ��� � � �

� ��� 
 � � � � ��� 
�� � � � ��� 

� � � ��� ��� 
 � � � ! � ��� 
 � � ! ����� ��� 
 � (4.15)

When the Constrained timer fires at time � , the sending rate � � � ��� ��� 
 is updated according to the
second case in Equation (4.14).

Another timer called ModeTransition timer is responsible for mode transition from slow start
to congestion avoidance. It is scheduled only when the TCP sender is in slow start mode. When
scheduled at simulation time � , its fire time is

� � � ��� � � � � � 8 � � ��� 
 � ��� �
� ��� 


� ! � ��� ��� 
 �
(4.16)

As mentioned before, the congestion window size is changed discontinuously in congestion
avoidance mode. A timer called IncreaseCWND timer is used to notify when the congestion window
size should be increased. Let � # � � ! � ��� 
 be the amount of unacknowledged data in the congestion
window since its size changes last time in congestion avoidance mode. Note that the first time the
congestion size changes in congestion avoidance mode is when TCP transmits from slow start mode
to congestion avoidance mode. This timer, when scheduled at time � , is to fire at time

� 	 � ��� � # � � ! � ��� 

� � ! � ��� 
 �

(4.17)

In order to avoid firing the IncreaseCWND frequently, an optimization is employed in the model.
The timer is only running when

� � � ��� 
 � � � � ��� 
 � ��� �
� ��� 
 because otherwise it does not affect

76



the data transmission rate � � � ��� ��� 
 based on Equation (4.14). But the current congestion window
size needs to be known when the Constrained timer is scheduled. It can be reconstructed as follows.
Let � be the congestion window size when TCP enters the congestion avoidance mode. Suppose
that at the point of calculation, 1 bytes have been acknowledged since the mode transition from
slow start to congestion avoidance. We then solve the following equation:

1 � � � � ��� � � � � ��� � � 
�� ��� (4.18)

Let � 
 be the positive solution to the above equation. The current congestion window size is then
reconstructed as

��� �
� � � ��� � 
�� � � � � � (4.19)

where � � 
 � is the largest integer that is no greater than ��
 .
4.4.1.3 Loss Recovery

TCP has an adaptive mechanism for responding to packet losses in the network. Nicol’s fluid model-
ing of TCP takes it into consideration as well. In order to analyze lost bytes in the fluid stream, fluid
rate changes carry extra information, including the delivered fraction and flow position components.
The delivered fraction indicates the fraction of the raw fluid traffic that is successfully delivered;
hence, the loss rate of the raw fluid flow can be easily inferred. Flow position components provide
information on the current byte sequence that is being delivered. From such information fed back
to the TCP sender along with the ACK flows, the amount of lost traffic can be inferred. It is then
possible to model the fast retransmit logic in TCP. Besides fast retransmit, Nicol’s fluid TCP model
also considers retransmission timeouts. The TCP agent fires the retransmission timer every 500
milliseconds. It computes the time at which the current acknowledged byte sequence (i.e.,

� � � )
was transmitted. If that is earlier than the last time the retransmission timer was fired, all the bytes
in the current congestion window are retransmitted.

We have discussed Nicol’s fluid modeling of the TCP sender. The behavior of the counterpart
TCP receiver is relatively simple. One of its primary tasks is to transform the received data byte
rates into the acknowledgment byte rates. There may be some discrete information that needs to be
passed in a flow. For example, when the TCP sender wants to terminate a flow, it needs to notify the
corresponding receiver of it. Such information is carried in extra data structures called corks. When
a TCP receiver receives a cork, it simply pass it back along with the ACK flow.

4.4.2 Modifications

In some cases, we need to simulate many TCP flows but the high-fidelity behavior of only a small
number of them are of interest to us. In such circumstance, we can use a hybrid model to simulate
TCP traffic. The TCP flows whose packet-level characteristics are being studied can be represented
with packet-oriented models. We can represent the remaining TCP flows with Nicol’s fluid TCP
model to improve the simulation efficiency. As said in Section 4.4.1, Nicol’s fluid TCP model cap-
tures rich details of real TCP behavior, including both its window-based flow control mechanism
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and its retransmission logic. At the same time, it provides some optimizations to improve its effi-
ciency, such as “lazily” updating the congestion window size when the TCP agent is in congestion
avoidance mode. However, we need to make some modifications on it in the hybrid simulation.
First, its modeling of TCP’s response to packet losses, if detected by fast retransmit logic, is com-
plicated. Furthermore, in order to implement the retransmission timeouts, this model requires that
every TCP agent be interrupted every 500 milliseconds to check whether it is necessary to retrans-
mit the entire congestion window. Therefore, although Nicol’s model is loyal to the behavior of the
real TCP protocol, it can still be simplified to achieve better simulation efficiency. Since the behav-
ior of the fluid-oriented TCP traffic is not of our interest in the hybrid simulation, a precise model
characterizing very details of TCP protocol is unnecessary. The bottom line is that the fluid-based
TCP model is able to generate the background traffic that is accurate enough for packet-oriented
TCP traffic.

From a lot of experimentation, however, we know that the fluid TCP model, if simplified in an
improper way, results in significant “unfairness” between fluid-oriented and packet-oriented TCP
traffic. For example, if we totally ignore retransmission timeouts in the fluid model and any packet
loss detected causes TCP to re-enter transmission mode immediately, then after some congestion
occurs on a bottleneck link that packet-oriented and fluid-oriented TCP flows share on their paths,
fluid TCP traffic exhibits more aggressive behavior and the packet-oriented TCP flows may thus ob-
tain much less throughput than they should have. On the other hand, totally ignoring fast retransmit
is also problematic. Suppose that in the fluid-based TCP, any lost byte is retransmitted when the
retransmission timeout occurs. Then in a lightly congested network where most of packet losses
are recovered by fast retransmit in reality, packet-oriented TCP flows may obtain a much higher
throughput in the hybrid simulation than what they do in pure packet-level simulation.

We have also made another observation from the experiments. This occurs when many fluid-
oriented TCP flows traverse through the same congested bottleneck port. Given the FIFO policy
as described in Section 4.2.1, the lost traffic spans over every fluid-oriented TCP flow that has a
positive input rate. When losses are detected by the corresponding fluid TCP senders, they shrink
their congestion window sizes in a way that depends on how they respond to the lost traffic. In the
pure packet-level simulation, however, some TCP flows may be so “lucky” that their packets are not
dropped when the congestion occurs at the port. If the congestion lasts long enough, these flows may
still suffer packet losses, but at a time later than when the congestion starts at the port. Therefore,
the fluid-oriented TCP agents in hybrid simulation decrease their congestion window sizes earlier
than the packet-oriented TCP agents do in pure packet-level simulation. We call this observation
early window reduction syndrome. Note that this problem is rooted from the continuous feature of
the fluid FIFO port, and thus irrelevant of whether a full-fledged fluid TCP model is adopted. This
phenomenon may cause unfairness between packet-oriented and fluid-oriented TCP flows in hybrid
simulation. The packet-oriented TCP flows may not suffer losses as the congestion starts. Then
fluid-oriented TCP flows deflate their congestion window sizes, leaving packet-oriented TCP flows
the opportunity of inflating their congestion windows up to a higher size than in the equivalent pure
packet-level simulation.

All the above observations lead us to establish an empirical model on how a fluid-based TCP
agent recovers from lost bytes. When the buffer in a port overflows, a special signal is sent to
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every fluid-based TCP flows that traverses that port. When such a signal arrives at a TCP sender,
say at time � , it immediately strangles existing flows. That is to say, the transmission rate � � � ��� ��� 

is changed to 0. Unlike the original model, the new model eliminates the necessity of detecting
when loss finishes. Rather, it sends a special cork, called loss clearance cork, along with the latest
rate change (i.e., rate 0). This cork traverses through the network, reaches the corresponding TCP
receiver, and is finally passed back to the TCP sender. Suppose the cork is returned to the TCP
sender at time � 
 . Let �!3 � � � be the difference between

� � � ��� 
 and
� � � ��� 
 
 :

� 3 � � � � � � � ��� 
 � � ��� ��� 
 
 � (4.20)

It is clear that � 3 � � � is the number of lost bytes because no traffic is sent out since time � . A heuristics
is applied here to decide whether the lost traffic is detected by retransmission timeout or fast retrans-
mit by a real TCP protocol. If more packets in the same congestion window have been dropped in
the network, it is relatively less likely that the packet losses can be recovered from the fast retransmit
and fast recovery mechanism in TCP Reno, and thus more possibly, lost packets are retransmitted
when the retransmission timer fires. If only slight congestion occurs in the network, it is relatively
likely that the packet losses are recovered from the fast retransmit and fast recovery mechanism.
Based on such heuristics, we use the following rule to decide the way in which the lost traffic is
retransmitted: if �!3 � � � is larger than a MSS, lost bytes are recovered at retransmission timeouts, or
otherwise, they are recovered from fast retransmit and fast recovery mechanism. With this heuris-
tics, if the network is only slightly congested and some fluid TCP flows thus mistakenly receive
traffic loss signals from the network, they are able to recover their original congestion window sizes
after only a few round trip times, instead of suffering the long retransmission timeouts and the slow
start phase.

In the modified model, we do not fire the retransmission timer every 500 milliseconds. Rather,
a retransmission timer is scheduled by a TCP agent only when the recovery from some lost traffic
attributes to retransmission timeouts. If a loss clearance cork arrives at the TCP sender and � 3 � � �
is found to be greater than a MSS, a retransmission timer is scheduled to fire after a particular
delay � � � 8 ��� � . Then, it comes to how to calculate � � � 8 ��� � . The TCP protocol derives the
retransmission timeout with the following equations [28]:������������ �����������

� 7 � � � � � � � �98 � � � � � � � � � �

� � � �/� � 8 � � � � � � � � � � ��� $ � � 7 � �
�  � � � � � �  � � � � � � 7 � � � � � � � �  � 

� � � 8 ��� � � � � � �/��� 8 � � � �&��� � �  �

(4.21)

where � � � � �98 � � � is the sampled RTT, � � � � � � is the old estimate on the mean of RTT,
� � � �/��� 8 � � � � is the new estimate on the mean of RTT, � � � �  �

is the old estimate on the stan-
dard deviation of RTT, �  �

is the new estimate on the standard deviation of RTT, and � � � 8 ��� � is
the retransmission timeout. In 4.4 BSD Unix, $ , � , and � are 1/8, 1/4, and 4 respectively. In order
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to obtain an approximate estimate on � � � 8 ��� � in the fluid-based TCP model, the TCP sender needs
to sample the current RTT. This is done by sending RTT sampling corks along with rate changes.
When such a cork is sent, the TCP sender notes down the simulation time at that moment. There is
at most one RTT sampling cork on the fly. That is to say, before a RTT sampling cork already sent
out is returned to the TCP sender, no other RTT sampling corks are sent. When a RTT sampling
cork is passed back to the TCP sender, the RTT is estimated by the difference between the current
simulation time and the time when the cork was sent. Equation (4.21) can then be applied to com-
pute the current retransmission timeout. However, recall that rate smoothing technique may smooth
out the rate change with which a RTT sampling cork is associated. In order to prevent the compli-
cations involved in correcting such errors, a policy is added at every FIFO port that smoothing out
any rate change that carries a RTT sampling cork is forbidden.

When the retransmission timer fires after � � � 8 ��� � , the mode transition threshold � � ��� � 8 � � is
set to be half of the congestion window size, and the congestion window size ��� �

�
is set to be one

MSS. In order to retransmit the lost bytes,
� � � is simply set equal to

� ��� .

As a loss clearance cork is returned to the TCP sender, �/3 � � � is calculated as Equation (4.20).
If � 3 � � � is less than a MSS, then the TCP sender applies the fast retransmit logic: shrink the mode
transition threshold � � � � � 8 � � to be half of the current congestion window size, set the congestion
window size ��� �

�
to be � � � � � 8 � � plus 3 MSSes, and set the mode to be congestion avoidance. In

order to retransmit the lost bytes,
� � � is set equal to

� ��� .

4.4.3 Simulation Results

The dumbbell topology depicted in Figure 4.11 is used to study the accuracy and performance of the
hybrid simulation of TCP traffic. Every link in the topology has the same bandwidth and propagation
latency. Two sets of experiments are designed. In the first set of experiments, we use 10 TCP clients
and 10 TCP servers. Each TCP client requests a file transfer of 5M bytes from its peer server;
After a client receives all the requested bytes from the counterpart server, it keeps “silent” for an
exponentially distributed period with mean of 5 seconds. In the second set of experiments, there
are 100 TCP clients and 100 TCP servers; the traffic pattern of every client-server pair is the same
as in the first set of experiments. In each set of experiments, we vary the link bandwidth between
5Mbps, 50Mbps and 500Mbps; we also vary the link propagation latency between 5 ms, 50 ms
and 500 ms. Therefore, each set of experiments has 9 configurations. The simulation length of
each configuration is 3600 seconds. We use the hybrid simulator and pure packet-level simulator to
simulate each configuration independently.

In the hybrid simulation, we represent 20 percent of TCP flows with packet-oriented models
and the other 80 percent of TCP flows with fluid-oriented models. Therefore, in the first set of
experiments, 2 TCP flows are modeled as packet-oriented TCP and 8 TCP flows as fluid-oriented
TCP; in the second set of experiments, there are 20 packet-oriented TCP flows and 80 fluid-oriented
TCP flows. In the simulation, we are interested in packet-level TCP statistics like TCP goodput
and round trip times. We also consider network statistics like average packet loss probability at the
bottleneck port. The relative speedup of the hybrid simulation over the pure packet-level simulation
is also studied because it offers us insights into the performance gain from the fluid-oriented TCP
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model used in the hybrid simulation.

4.4.3.1 Accuracy

As we will see later from the simulation results, when there are many TCP flows traversing through
the same bottleneck port, the behavior of each individual TCP flow is dynamic, causing the collected
samples, except the round trip times, to exhibit high variation. Hence, it is difficult to quantify the
accuracy of the statistics collected from the hybrid simulation using methods like relative errors.
Instead, we focus on whether the results collected from the hybrid simulation are reasonable. If
their mean falls within the range in which the samples are collected from the pure packet-level
simulation, the results are viewed as totally reasonable; otherwise, the distance that it is from that
range suggests how reasonable it is.
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Figure 4.24: Packet Loss Probability under 10 TCP Flows

Statistics on average packet loss probabilities, TCP goodputs, and round trip times are described
in Figures 4.24-4.29. From the simulation results, we have observed that in most cases the hybrid
simulation and the pure packet-level simulation achieve excellent agreement on all collected statis-
tics, but there is a visible discrepancy on average packet loss probability and TCP goodput when
the bottleneck bandwidth is the lowest. The exception can be explained as follows. If the bottle-
neck bandwidth is higher, there is less mutual interaction between packet-oriented and fluid-oriented
traffic at the bottleneck port, thus reducing the impact of any error caused by the model integrating
hybrid traffic as discussed in Section 4.3. On the other hand, if the bottleneck link bandwidth is
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Figure 4.25: TCP Goodput under 10 TCP Flows

lower, the congestion level at the bottleneck port becomes higher and more bytes are thus lost from
the fluid-based TCP streams. As discussed in Section 4.4.2, the fluid-based TCP model’s response to
lost traffic is a heuristics-based approximation to the real TCP’s behavior. Increasing the congestion
level thus increases the likelihood that higher errors result from that loss recovery model.

A closer examination reveals that the hybrid simulation overestimates the packet loss probability
when the bottleneck port is under heavy TCP traffic load. For example, when the bottleneck latency
is 5 milliseconds, the average packet loss probability in hybrid simulation is higher than the highest
packet loss probability that an individual TCP stream suffers in the pure packet-level simulation,
regardless of the number of TCP flows in the simulation. The phenomenon results from the early
window reduction syndrome mentioned in Section 4.4.2. If the congestion level at the bottleneck
port is very high, all the fluid TCP flows suffer either retransmission timeouts or fast retransmit
after some congestion is detected at the bottleneck port. In either case, the congestion window
sizes of some fluid TCP flows deflate earlier than they should. This allows some packet-oriented
TCP flows to inflate their congestion windows up to a higher size than that in the pure packet-
level simulation. Therefore, it is observed from the simulation results that in the region of low
link bandwidth and low bottleneck latency, hybrid simulation produces higher average packet-level
TCP goodputs than pure packet-level simulation. This seems to contradict the higher packet loss
probabilities observed in hybrid simulation. Actually, because packet-oriented TCP flows are able
to reach a higher congestion window size, the burstiness of their traffic results in more TCP packets
being dropped at the bottleneck port in later rounds.

82



0.03

0.3

3

0.005 0.05 0.5

A
v
e
r
a
g
e
 
R
T
T
 
(
s
e
c
)

Bottleneck latency (sec)

bandwidth 5Mbps, hybrid
bandwidth 5Mbps, packet
bandwidth 50Mbps, hybrid
bandwidth 50Mbps, packet

bandwidth 500Mbps, hybrid
bandwidth 500Mbps, packet

Figure 4.26: TCP Round Trip Time under 10 TCP Flows

Although the hybrid simulation overestimates the packet loss probabilities at the bottleneck port
under heavy load, most of the TCP goodputs observed from the simulation results are feasible.
In addition, the hybrid simulation also predicts well the average round trip times of TCP packets.
Regardless of the number of TCP flows in the network, the relative error on this metric is below
4.0% under every network configuration.

In summary, the simulation results tell us that our hybrid model works fairly well under light
and medium TCP traffic load in the network. But when the TCP traffic load in the network is high,
the hybrid model is prone to overestimate the packet loss probability at the bottleneck port, but
still produces feasible predictions on the average TCP goodputs and round trip times. However, for
many applications whose behavior is sensitive to TCP statistics not network statistics, our hybrid
model provides a good solution.

4.4.3.2 Execution Speedup

In this section, we discuss the relative execution speedup of the hybrid simulation over the pure
packet-level simulation. Note that all the TCP flows are homogeneous. Hence, we can establish
the upper bound on the execution speedup. Let ������� �

	
� be the total execution time of the hybrid

simulation. It consists of three parts:

����� � �
	
�
� � � � ! � �$% � � � 3 # 	 � � �

	
� % � � � !9% 	 � � (4.22)
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Figure 4.27: Packet Loss Probability under 100 TCP Flows

where � � � ! � �$% is the execution time consumed on simulating packet-oriented TCP flows, � � 3 # 	 � is
the execution time consumed on fluid-oriented TCP flows, and �

	
�/% � � � !9% 	 � � is the execution time

consumed on processing the interactions between packet-oriented and fluid-oriented TCP flows at
the bottleneck port. In an extreme case where � � 3 # 	 � and �

	
� % � � � !9% 	 � � can be totally ignored, the

execution time of the hybrid simulation is equivalent to that of simulating only the packet-oriented
TCP flows. Since the proportion of the packet-oriented TCP flows is 20% in the hybrid simulation,
its execution speedup over the pure packet-level simulation is bounded by 5 from the upper side.

Figure 4.30 describes the execution speedup of hybrid simulation over pure packet-level sim-
ulation for both sets of experiments. There are 3 curves that have execution speedups close to the
upper bound throughout all three bottleneck latencies. They correspond to bottleneck bandwidth
500Mbps under both 10 and 100 TCP flows, and bottleneck bandwidth 50Mbps under 10 TCP
flows. Common to them is relatively high bottleneck bandwidth with respect to the number of TCP
flows traversing through the bottleneck port. Another 2 curves have low speedups when the bottle-
neck latency is the lowest, but their speedup is close to the upper bound when the bottleneck latency
is 50 or 500 milliseconds. They correspond to bottleneck bandwidth 5Mbps under 10 TCP flows
and bottleneck bandwidth 50Mbps under 100 TCP flows. Common to these two curves is medium
bottleneck bandwidth available with respect to the number of TCP flows traversing through the bot-
tleneck port. The last one, which corresponds to bottleneck bandwidth 5Mbps under 100 TCP flows,
has low speedups when the bottleneck latency is 5 or 50 milliseconds, and its speedup increases up
to about 3.5 when the bottleneck latency is 500 milliseconds.
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Figure 4.28: TCP Goodput under 100 TCP Flows

One trend observed from the simulation results is that a higher bottleneck bandwidth and a
longer bottleneck latency are both helpful in achieving better relative speedup from the hybrid sim-
ulation. As we have seen in Figures 4.24 and 4.27, the congestion level at the bottleneck port
increases as the bottleneck bandwidth or the bottleneck latency decreases. An increased congestion
level causes the hybrid simulator to spend more computation time on processing fluid-oriented TCP
traffic at the bottleneck port, but for the pure packet-level simulator, increasing the congestion level
leads to more packets dropped at the bottleneck port and thus reduces the execution time. Therefore,
both a higher bottleneck bandwidth and a longer bottleneck latency bring better execution speedup
from the hybrid simulation over the pure packet-level simulation.

It has been noticed that the hybrid simulator is outperformed by the pure packet-level simula-
tor when there are 100 TCP flows and links have bandwidth 5Mbps and latency 5 milliseconds.
Under this configuration, simulating the network for one hour with the hybrid simulator requires
96 seconds, but that using the pure packet-level simulator requires only 76 seconds. This suggests
that under extremely heavy traffic load, packet-oriented simulation may be a better choice from the
performance perspective.
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Figure 4.29: TCP Round Trip Time under 100 TCP Flows
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4.5 Related Work

The ripple effect associated with event-driven fluid simulation has been observed in early work on
fluid simulation such as [61]. In [79], an approach to dampening ripple effect is described. In
the method, flows in a network are combined into fewer aggregate flows. Hence, when the input
rate of the aggregate flow changes, only one rate change is propagated to the downstream network
component. The viability of this solution is contingent on two premises. On one hand, flows being
aggregated must be destined for the same place; otherwise, when an aggregate flow splits into
multiple destinations, we are unable to restore the rate change destined to a particular destination
from the aggregate flow. On the other hand, the destination of each flow should not respond to the
rate changes it receives in the simulation. Otherwise, if a fluid flow uses a responsive protocol like
TCP, aggregating it into a larger flow in the network inevitably loses its detailed flow rate change
information needed by the corresponding end application.

In [63], an alternative solution called fluid threshold policy is proposed to mitigate ripple effect.
In this method, a new departure rate of a flow is propagated to the next network component only
if it differs from the old departure rate by a percentage higher than a given threshold. In other
words, if the two consecutive departure rate changes corresponding to the same flow are very close
to each other, the one that occurs later in simulation time is ignored. This solution disobeys the
flow conservation principle, which dictates that after a flow traverses through a lossless network,
the destination should receive exactly the same amount of traffic as the source has sent out after a
finite delay in simulation time. If the fluid threshold policy is applied as described, the destination
may receive less or more than what the source has sent out. Hence, this method makes it difficult to
implement some volume-aware applications like large file transfers unless the network provides the
error information to the end applications. In addition, as pointed out by the author, errors derived
from this method can propagate through the network. An error that happens at a port is embodied in
the arrival rate at the next hop, where it may cause further errors due to the fluid threshold policy. In a
network where a flow suffers errors at multiple ports on its path, the accumulated error at its receiver
may be significant. Finally, in contrast to our rate smoothing technique, the fluid threshold policy
lacks a strict upper bound on the number of rate changes that are received by network components
in event-driven fluid simulation.

There are a few examples that integrate packet-oriented and event-driven fluid-oriented traffic
simulation into the same network simulator. In [126], integration of fluid-oriented and packet-
oriented network simulations is considered. The HDCF-NS (Hybrid Discrete-Continuous Flow
Network Simulator) [93], which models behavior of fluid flows with discrete events, is used to gen-
erate fluid-oriented background traffic for the packet-oriented foreground traffic simulated with the
pdns simulator2 . The two simulators simulate the same topology simultaneously in separate address
spaces, and the fluid-oriented background traffic simulation, as it evolves, updates the buffer occu-
pancy in the packet-oriented foreground traffic simulator. In contrast to our approach, their method
does not consider the impact that packet flows have on fluid flows. It thus eliminates the necessity of
estimating flow rates for packet-oriented traffic, as is needed in our approach. The accuracy of their
approach is contingent on the premise that the packet-oriented foreground traffic can be ignored

2http://www.cc.gatech.edu/computing/compass/pdns/index.html
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when competing for bandwidth and buffer storage with fluid-oriented background traffic. If the
packet-oriented foreground traffic is significant as opposed to the fluid-oriented background traffic,
the communication bandwidth allocated to fluid flows will be overestimated.

The work in [64][63] bears some similarities to ours. The integration of fluid-oriented and
packet-oriented traffic is done in the IP-TN simulator [130]. It also models the mutual interaction
between fluid-oriented and packet-oriented traffic when they multiplex at the same port. In this
method, a single state variable is used to keep the current buffer occupancy at each port, and this
variable has dual purposes: determining the queueing delay when a packet arrives at the port and
determining the fire time of fluid departure rate changes spawned by a fluid input rate change. This
differs from our approach which uses two separate variables, one serving for each of the above
purposes. Although our approach brings more complication to the implementation, it reduces the
negative impact that the errors resulting from packet rate estimation impose on the calculation of
buffer occupancy. In their approach, the packet arrival rate is estimated by summing the sizes of the
last � packets and then dividing the sum by the time interval in which these packets arrive. Under
extreme cases, the estimation approach may suffer significant inaccuracy. For example, if the last �
packets arrive from � different input ports at the same time in the simulation, the time interval is 0
and the packet rate estimate is infinitely large. This conforms to the observation we have made from
our own experiments: estimating packet rate is a delicate process and it may make the simulation
results very sensitive to the parameter settings. In our approach, we use separate methods to esti-
mate packet rates, one for competing bandwidth and the other for computing dropping probability,
because from a lot of experiments we have done, it is observed that the accuracy of the simulation
results is less sensitive to the former than the latter, especially when the fluid-oriented traffic is a
dominant portion of the overall traffic.

4.6 Summary

In this chapter, we have discussed event-driven fluid-oriented traffic simulation and its integration
with packet-oriented traffic simulation. There are some fluid-oriented traffic sources like MMFM
and fluid-based TCP that generate fluid rate changes at discrete times. When fluid rate changes from
more than one source multiplex at the same port in the network, they affect each other’s departure
rates if the port is overloaded. In a network where there exist multiple congested ports, “ripple
effect” may occur in event-driven fluid-oriented traffic simulation, causing explosion of fluid rate
changes in it. We have proposed a rate smoothing technique to mitigate “ripple effect”. The key idea
of this approach is that it exploits the insensitive latency of a port when fluid rate changes traverse
through the associated link so that rate changes corresponding to the same flow within a short time
interval can be flattened. We noticed that unconstrained rate smoothing may cause too much error
to the simulation results, an adjustable time constraint on this technique offers a tradeoff between
accuracy and efficiency.

We also have presented an approach to integrating fluid-oriented and packet-oriented traffic
simulation in the same discrete event simulator. In our model, both the effect that packet-oriented
traffic has on fluid-oriented traffic and the effect vice versa have been modeled. We have done
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some experiments, using the MMFM model to generate fluid-oriented traffic. From the simulation
results, close agreements have been observed between the hybrid simulation and the counterpart
pure packet-oriented simulation. We have also seen execution speedups at varying orders from the
hybrid simulation over the pure packet-oriented simulation.

Finally, we have studied the accuracy and performance of hybrid TCP traffic simulation. Nicol’s
fluid-based TCP model has been modified to generate fluid-oriented traffic bearing TCP character-
istics. From the simulation results with the dumbbell topology, we conclude that under light and
medium traffic load, the hybrid simulator is able to achieve both reasonable accuracy results and
good execution speedups against the pure packet-level simulator, but under heavy traffic load, the
hybrid simulator is prone to overestimate the packet loss probability and can possibly be outper-
formed by the pure packet-level simulator.
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Chapter 5

Time-Stepped Coarse-Grained Traffic
Simulation

In Chapter 4, we have seen that event-driven fluid-oriented traffic simulation is able to achieve
significant execution speedup over pure packet-level traffic simulation. Such performance gain
results from the capability of fluid-oriented representations to abstract packet-level details within
certain time scales. As the time scale of interest becomes coarser, flow rate changes can further be
aggregated in the time domain, making event-driven time advancement inefficient.

Motivated by this observation, a time-stepped technique is proposed in this chapter to simulate
network traffic at coarse time scales. It periodically updates the demand discharged by each fluid-
oriented traffic source. At every time step, traffic is assumed to converge to a steady state in the
network within a relatively short time as opposed to the time scale being considered. This eliminates
the necessity of using discrete events to propagate new rates through the network; instead, the
aggregate traffic load on each link is directly computed with an optimized algorithm. In order to
achieve further scalability, the algorithm is parallelized on a distributed memory multiprocessor.
The PPBP traffic model, which exhibits self-similarity observed in various types of networks, is
used to generate the traffic demands for each fluid-oriented traffic source.

The remainder of this chapter is organized as follows. Section 5.1 discusses the motivation
behind the time-stepped coarse-grain traffic simulation. In Section 5.2, the outline of our solution is
provided. In Section 5.3, we formulate the problem to be investigated. In Section 5.5, a sequential
algorithm is presented, followed by a discussion on its convergence behavior, performance and
accuracy. In Section 5.7, we describe how to parallelize the sequential algorithm on a distribued
memory multiprocessor; simulation results on the scalability of the parallel algorithm with both
fixed and scaled problem size are also presented. Section 5.8 discusses how to modify the algorithm
in a network that implements the GPS service discipline [113]. In Section 5.9, some related work is
discussed. Section 5.10 summarizes this chapter.
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5.1 Background

The motivating application for time-stepped coarse-grained traffic simulation is the RINSE (Real-
Time Immersive Network Simulation Environment) project, which provides a real-time network
simulation platform for cyber-security exercises and training [75]. Owing to human participation
in RINSE, the underlying network simulator must run as fast as real time. Therefore, it poses a
significant performance challenge to the simulator. The traffic in a network simulation can break
down into two parts. Foreground traffic is the part whose behavior is of essential interest to the user,
and background traffic is the part that itself is not concerned by the user but may affect the behavior
of foreground traffic. For example, when RINSE is used to study how malicious worm traffic affects
the ongoing financial transaction services, the transaction traffic is treated as foreground traffic.

In network simulation, background traffic usually constitutes a large fraction of the network
traffic, or in many cases most of the network traffic. Hence, it is not a trivial problem to simulate
background traffic efficiently in a real-time simulation environment like RINSE. The simplest way
of simulating background traffic is to use a random traffic generator to generate the background
traffic load on each link. This approach, although efficient and scalable, loses spatial correlation
among background traffic on different links.

The ( � � � � � ) model [89] is a WAN (Wide Area Network) background traffic generation model.
In its first phase, the FGN (Fractional Gaussian Noise) model [8], a self-similar traffic model, is used
to generate a sequence of aggregated traffic traces from every traffic source in the network. Such a
sequence is called an aggregate stream. In the second phase, an aggregate stream is decomposed
into individual substreams, one for each destination campus network access point, by sampling
some probability models. In the final phase, the packet-train model discussed in Section 2.2.2 is
applied to convert each of these substreams to short-term packet arrivals. Although the ( � � � � � )
model achieves execution time savings because of the aggregated traffic stream per source campus
network, the large number of packets generated after the final phase can make it difficult to satisfy
the real time constraint.

An alternate way of simulating background traffic is using fluid-oriented models. Since TCP
traffic dominates the current Internet traffic, fluid-based TCP models can be exploited to improve
background traffic generation as observed in Chapter 4. However, modeling traffic in a large net-
work at session level is still an arduous undertaking because of the enormous TCP sessions in it. In
[85], a fluid-based TCP model using stochastic differential equations, combined with a time-stepped
time advancement mechanism, is applied to simulate a ring topology with 1,045 nodes. The experi-
mental results show that simulating 176,000 TCP flows in this network for 100 seconds takes about
74 minutes, which is far from real time.

5.2 Solution Outline

Since existing background generation methods are unable to satisfy the real time constraint required
in RINSE, a time-stepped coarse-grained traffic simulation technique is developed to achieve this
objective. Aggregation, a strategy often adopted to simplify simulation models (See Section 2.2.1),
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is the key idea. In the space domain, all flows that traverse between the same source-destination pair
are aggregated and treated as a single aggregate flow in the simulation. In a large network, usually
many sessions between an ingress-egress pair use the same path. Under such circumstance, the flow
aggregation technique can significantly reduce the number of flow states and thus the computation
complexity. On the other hand, aggregation is also applied in the time domain. Simulating large-
scale background traffic at fine time scales is computationally costly, but is sometimes unnecessary
with regard to the simulation objective. Our approach, driven by constant time steps, simulates the
network traffic at coarse time scales. At every time step, a new traffic matrix that contains traffic
demands among all ingress-egress pairs is generated. The traffic demand between an ingress-egress
pair is assumed to be unaltered between any two successive time steps. The transient behavior that
occurs before the whole network traffic converges to a steady state is ignored because of the coarse
time scale considered. Hence, this technique numerically computes the background traffic load on
each link given the current traffic matrix, and this load remains unchanged until the next time step.

The relationship between foreground traffic simulation and background traffic computation is
illustrated in Figure 5.1. Background traffic can affect how foreground traffic behaves. As men-
tioned before, after the background traffic computation at a time step, a background traffic load is
calculated on every link in the network. It is this load that imposes impact on the foreground traf-
fic traversing on the same link. Actually, from the perspective of foreground traffic, the aggregate
background traffic traversing through a port can be viewed as a virtual event-driven fluid-oriented
flow that immediately disappears into a virtual sink after departing from the port. Moreover, this
virtual flow periodically updates its arrival rate as the background traffic load at this port computed
at every time step. This virtual flow competes for bandwidth and buffer space with foreground traf-
fic as if it were a regular event-driven fluid-oriented flow. In this way, background traffic can shape
the behavior of foreground traffic.

On the other hand, foreground traffic can also affect background traffic. This conforms to the
principle that traffic behavior should be transparent to the way in which traffic is represented in
the simulation. If foreground traffic is as intense as background traffic, ignoring its impact on
background traffic may introduce significant inaccuracy to the simulation results. In our approach,
when the background traffic load on a link is computed, the volume of foreground traffic that it has
“seen” since the previous time step is collected. Moreover, it is assumed that between the current
time step and the next time step, the same amount of foreground traffic will traverse on this link.
This simple model may not predict the real foreground traffic closely. It, however, can be easily
replaced with a more powerful but more complicated prediction model like ARIMA (Autoregressive
Integrated Moving Average) traffic model [10]. When we compute the background traffic load at
an output port, it is assumed that there exists a virtual aggregate flow, which comes from the router
associated with this port, crosses the link, and then immediately disappears into a sink; at every time
step, this virtual aggregate flow injects an ingress rate that is equal to the total volume of foreground
traffic seen since the previous time step divided by the time step size. Therefore, our approach also
captures the impact of foreground traffic on background traffic in the simulation.
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Figure 5.1: Relationship between Foreground Traffic Simulation and Background Traffic Computa-
tion

5.3 Problem Formulation

In the time-stepped traffic simulation, the simulation time is discretized into units of length � , and
we use �	� to denote ��� � ( � � 	�� ��� ���
� � �

). We assume that the network being studied consists of �

POPs, denoted by
� � , � � , ...,

� � . We use �
	  �

to represent the aggregate flow between ingress-egress
pair � �

	
� � � � . For any ingress-egress pair � �

	
� � � � (

� � � ��� � � ), we use �
	  � ��� 
 to denote

ingress rate of the corresponding aggregate flow at time � . Since the simulation time advances by
constant time intervals, we need to discretize the ingress rate for every aggregate flow. During the
time interval [ �	� , �4� 5 � ], the traffic volume emitted from ingress node

�
	

to egress node
� �

is

� %����
	%�� �
	  � ��� 
 d � � (5.1)

We smooth the burstiness at time scales smaller than � . In order to ensure that the same amount
of traffic is injected into the network, the ingress rate of aggregate flow �

	  �
at discretized time ��� �

is �

� �
� % ���
	% � �

	  � ��� 
 d � � (5.2)

The network is modeled as a collection of routers connected with uni-directional links. The
sending endpoint of a link is associated with a router’s output port. At an output port, there is an
output buffer. We assume that every router adopts the output buffering strategy, although we under-
stand that other buffering strategies can be easily incorporated with minor modifications. Routing
protocols are used to direct traffic for each aggregate flow. The routing decisions are assumed to
be static within any discretized time interval. In addition, the time step size � is relatively large
with respect to the typical end-to-end latency of an aggregate flow. Therefore, all link latencies are
assumed to be zero in the network model.
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Let set � denote the whole set of output ports in the network. The sequence of output ports an
aggregate flow �

	  �
traverses at discretized time � � is denoted by � ��� � � ���4� 
 . Obviously, � ��� � � ��� � 
 is a

subset of � . � � ���4� 
 is used to denote the whole set of aggregate flows that traverse port � ( ��� � ) at

discretized time � � . We use �"�
	
� ��  � ��� � 
 ( � � � � ��� � 
 ) to denote the arrival rate of aggregate flow � at

output port � at discretized time ��� . The sum of all the arrival rates into port � , � ��-/.�0 � % � � � �
	
� ��  � ��� � 
 ,

is written as 1 �
	
� �� ��� � 
 . In addition, we use

�
� � ��� � 
 to denote the ingress rate of aggregate flow �

from its traffic source at discretized time � � .
When multiple aggregate flows traverse the same output port, the bandwidth is allocated to each

is governed by the port’s queueing policy. Consider an output port � with the FIFO queueing policy.
Let � � denote the link bandwidth associated with � . According to the FIFO service discipline, the

departure rate of flow � ( � ��� � ��� � 
 ) at discretized time �	� , denoted by � � �$#&%'��! � ��� � 
 , is as follows:

� � �4# %'��  � ��� � 
 � � �
	
����  � ���4� 
 � min � ��� � �1 �

	
� �� ��� � 
 
 � (5.3)

When the aggregate arrival rate does not exceed the link bandwidth, the output port can serve all
input traffic; otherwise, congestion occurs and traffic that cannot be served has to be dropped; the
FIFO queueing policy dictates that the loss that occurring to each flow be proportional to its arrival
rate. In Equation (5.3), we do not model the queueing delay, and therefore, there is no time shift
between the departure rate and the arrival rate. This is a reasonable assumption because a coarse
time scale is being considered.

As discussed in Section 5.2, one objective is to compute the aggregate traffic load at each port:

� ��-/. 0 � %�� � �"�
	
� ��  � ��� � 
 for every ��� � � � (5.4)

For some applications, the egress rate of each aggregate flow needs to be reported to its sink.
For example, the emission rate of an aggregate flow at a time step may be a function of the rate at
which the ingress node receives traffic from the network at the previous time step. Hence, another
objective is to compute the aggregate egress rate from each POP. In order to formulate this objective,
we introduce another notation. We define function ( � � � � 
 , where �)� � � ��� � 
 , as follows:

( � � � � 
 �
���� ��� � 
 if � 
 ( � 
 � � ) is the next output port on flow � ’s path after leaving port �
�

if flow � arrives at its destination
�

(
� �)� � 	 
 ��� 	 � � ) after leaving port �

(5.5)

We formulate the second objective as computing�
� -	�  �/-�. 0 � %�� �  	 � �  � � 
�
 � �

�$#&%'��! � ��� � 
 � for every
�

:
� � � � 	 
 ��� 	 � � � (5.6)
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5.4 Solutions in Specific Settings

Given the problem formulated in Section 5.3, we introduce three types of networks and discuss how
to solve the problem on these networks. Some examples are presented to help us understand the
characteristics of the problem under varied settings.

5.4.1 Networks with Sufficient Bandwidth

We define a network with sufficient bandwidth as one in which the bandwidth associated with any
link is no less than the sum of the ingress rates of all the flows that traverse on it. It is worthy of
noting that a network with sufficient bandwidth does not necessarily have high-bandwidth links; a
low-bandwidth network, if little traffic traverses through it, can still be deemed as a network with
sufficient bandwidth. Networks with sufficient bandwidth are not uncommon in the Internet. In
order to avoid deploying complicated QoS mechanisms, many network operators prefer to over-
provision link bandwidth in their networks. This renders it possible that congestion seldom occurs
in such networks. Moreover, after a new network is deployed, its traffic load is usually very low from
the beginning. Such a network at its initial operational stage can also be deemed to have sufficient
bandwidth. It is thus meaningful to discuss how to solve the problem formulated in Section 5.3
efficiently when the traffic load is so low that no congestion occurs in the network.

In a network with sufficient bandwidth, the solution can actually be very simple. Because
no congestion should happen in the network, every flow is able to push all its traffic towards its
destination without any loss. The aggregate traffic load at each output port can be simply calculated
by adding the ingress rates of all the flows that traverse it. Hence, the aggregate traffic load at each
port can be computed as �

�/-�.�0 � % � �
�
� � ��� � 
 for every ��� � � � � (5.7)

Similarly, the egress rate at a POP can be computed by adding the ingress rates of all the flows
that are destined to it. At POP

�
(
� �)� � 	 
 ��� 	 � � ), its aggregate egress rate is�
� -��  �/-�.�0 � % � �  	 � �  � � 
�


�
� � ��� � 
 � (5.8)

For each flow that traverses in the network, the above solution reads or updates the state of every
port on its path for a constant number of times. If we use � and � to denote the total number of
flows in the network and the average number of ports on a flow’s path, then the time complexity is
simply ��� � � � 
 .

5.4.2 Feed-Forward Networks with Limited Bandwidth

When the links in a network have limited bandwidth, it is likely that some of them are congested
because the limited bandwidth cannot serve all the input traffic. The topology discussed in this

95



example is the feed-forward network shown in Figure 4.4. As we mentioned in Section 4.2.2, no
cycle is formed in this network.

After the setup of every time step, we know the ingress rate from each flow’s source. It is
observed that at port A, the arrival rates of all the flows that traverse it are already known. Therefore,
the departure rate of flow �

	
(
� � � � �

) from port A can be determined using Equation (5.3). We
say that we resolve a port if we use Equation (5.3) to compute the departure rates of all the flows
traversing through it after all their arrival rates are known. After port A is resolved, the arrival rates
of flows � � and � � into port B are known, and the arrival rates of flows � � and � � into port C are also
known. Thereafter, we can further apply Equation (5.3) on ports B and C in an arbitrary order. Once
port B is resolved, we know the arrival rates of flows � � and � � into port D, and the arrival rates of
flows � � and � � into port E; then, we can resolve ports D and E in an arbitrary order. Once port C is
resolved, we know the arrival rates of flows � � and � � into port D, and the arrival rates of flows � �
and � � into port E; then, we can resolve ports F and G in an arbitrary order. After any of ports D, E,
F, and G has been resolved, we can determine the departure rates of all the flows traversing through
it.

A generalized algorithm for solving the problem formulated in Section 5.3 in feed-forward
networks is described as follows. List

�
is used to maintain a collection of output ports. For every

flow in the network, we put the first output port on its path onto list
�

. We then iterate over the ports
on the list. In each iteration, we grab an arbitrary output port from

�
, resolve it, and settle the arrival

rate of each traversing flow at the next output port on its path if it does not disappear into a sink;
if we find an unresolved port to which the arrival rates of all the input flows are known, it is added
onto

�
. Iterations terminate when

�
becomes empty. In this algorithm, the state of every output port

is read or updated for a constant number of times and so does the flow variable associated with each
of its input flows. Therefore, the time complexity of this algorithm is � � � � � 
 , where � and �
denote the total number of flows in the network and the average number of output ports on a flow’s
path.

5.4.3 Networks with Circular Dependencies

When flows form circular dependencies, the solution to the problem formulated in Section 5.3
becomes more complicated. In the five-port topology shown in Figure 5.2 has 5 ports, A, B, C, D,
and E. There are are 5 flows, � � , � � , � � , � � , and ��� , each traversing throughput 2 ports. We say ��� �
if the resolution of port � depends on that of port � . We then have: ��� ��� ��� ���  

� � .
Hence, resolution of the 5 ports is circularly dependent, making the solutions discussed in Section
5.4.1 and Section 5.4.2 inapplicable here.

Following the notations in Section 5.3, we use � �
	
����  � ���4� 
 to denote the arrival rate of flow � into

port � at discretized time � � and ��� to denote the link bandwidth associated with port � . Using
Equation (5.3), we form a group of equations as follows:
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Figure 5.2: A Five-Port Ring Topology
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(5.9)

where � �
	
� �� 	  � , � �

	
������  � , � �

	
������  � , � �

	
� �� 	  
 , and � �

	
� ����  � are flow variables whose values are to be determined.

Equation (5.9) is actually a system of non-linear equations, because of the components on the right
side that shape traffic when congestion occurs. In a generalized network, it can be abstracted into

� �
� 
 � � �

(5.10)

where
�

is a vector of
�

variables, � � , � � , ..., � � , and
� � � 
 is a

�
-dimension vector-valued function.

Each variable in vector
�

corresponds to the arrival rate of a flow at an output port. In addition,
for every output port on a flow’s path, there is a variable in vector

�
that corresponds to the flow’s

arrival rate into that port.
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Equation (5.10) suggests that its root is actually a fixed point of function
� � � 
 . This opens

the avenue of applying fixed point iterations to solve the original problem. More specifically, an
iterative algorithm works as follows:

(1) Pick an initial estimate
��� ���

;

(2) For � � 	�� ���
� � � �
,
� � � 5 � � � � �

� � � � 
 .
(3) The iteration in (2) terminates as some norm of distance between

� � � �
and

� � � 5 � � is closer
than a tolerance � .

We carefully implement step (2) to ensure that in each iteration every flow variable in
�

is read
or updated for only a constant number of times. We use

� �
to denote the whole set of ports that

have at least one input flow. Then we have � � � � � � � � . Consider the iteration when � is ��� . Given

the current estimate
� � ��� �

, we compute the sum of all the input flow rates at each port in
� �

. Hence,
every flow variable in

�
is read once so far. After the aggregate input rate into a port is known, we

apply Equation (5.3) to compute the departure rate of each flow that traverses the port and then use
it to update the estimate on the input flow rate at the next hop for the next iteration. Each input flow
variable in

�
is read or updated for only a constant number of times in the implementation.

We call the algorithm implemented as discribed the fixed point algorithm. We still use � and �
to denote the total number of flows in the network and the average number of ports on a flow’s path
respectively. The number of flow variables in

�
is thus � � � . Then we can establish the following

lemma:

Lemma 2 The time complexity of each fixed point iteration in the fixed point algorithm is � � � � � 
 .

In addition to the computation cost on each iteration, the performance of the fixed point algo-
rithm is contingent on how many iterations are done before it terminates. There are some important
issues regarding the iterative solution to Equation (5.10). They include whether the algorithm con-
verges, whether there exists a unique fixed point solution, and how fast the algorithm converges.
The behavior of fixed point iterations can vary widely: it may converge rapidly, converge slowly, or
even diverge, depending on the problem under analysis. We will continue this discussion in Section
5.5.2. For the moment, we assume that the fixed point algorithm terminates after a finite number of
iterations.

The simplest estimate on the root of Equation (5.10) is that all variables in
� � ���

are 0, that is,��� ��� � �	
where

�	
is a

�
-dimension vector of all zeros. In other words, the initial network state

is assumed to be empty: no flow has injected any traffic into the interior network except at its
ingress port. The fixed point iterations, then, gradually propagate every flow’s ingress rate towards
its destination. When Equation (5.3) is applied on some flow at a port, its aggregate input rate may
be 0. We let

	 � 	 be 1 in the computation when that occurs.

If the fixed point algorithm takes
�

iterations to find a fixed point, Lemma 2 tells us that its
time complexity is � � � � � � � 
 . The fixed point algorithm can be applied on any type of networks
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to solve the problem formulated in Section 5.3. Since the fixed point algorithm provides a general
solution to the problem, how does it perform in the specific networks discussed in Section 5.4.1 and
Section 5.4.2? The following lemmas answer this question.

Lemma 3 Given a network with sufficient bandwidth, if the longest flow path has � ports, then the
fixed point algorithm with initial estimate

�	
finishes after � iterations.

Proof: In each iteration in the fixed point algorithm, the ingress rate of any flow is propagated one
hop further towards its destination because the link bandwidth associated with any port is sufficient
to serve all its input traffic. Provided that the longest path of a flow is � , the ingress rate of any flow
must have been propagated to its sink after � � �

iterations. At this time, every variable in
�

must
have been set to be the ingress rate of the corresponding flow. An extra iteration is needed to ensure
that the termination criterion can be satisfied. Therefore, the fixed point algorithm terminates after
� iterations. �

From Lemma 3, we can obtain the following corollary:

Corollary 3 Given a network with sufficient bandwidth, if the longest flow path has � ports, the time
complexity of the fixed point algorithm is ����� � � � � 
 .

Recall that the solution in Section 5.4.1 has asymptotic time complexity � � � � � 
 . Corollary
3 tells us that the fixed point algorithm, if directly applied on networks with sufficient bandwidth,
does not have the optimal performance.

Given a network topology and the flows that traverse it, we construct a graph whose vertices are
the output ports in the network: if there exists a flow that traverses output ports � � and � � consec-
utively, then there is a directed edge from � � to � � in the graph. We say the graph constructed as
described is the condensed graph of the original topology. We define the diameter of the condensed
graph to be the length of the longest directed path in the graph on which no output port appears
more than once. For example, the condensed graph of the feed-forward network shown in Figure
4.4 is illustrated in Figure 5.3.

Lemma 4 Given a feed-forward network and the flows that traverse it, if its condensed graph has
diameter � , the fixed point algorithm with initial estimate

�	
finishes after at most � iterations.

Proof: In the condensed graph, we define the depth of a port � , denoted by � � , as the number of
ports on the longest path from any other port to port � by following directed edges in the graph.
Given a feed-forward network, there must exist at least one port whose depth is 1, and no port
appears on any path more than one times.

We claim that the arrival rates to every port whose depth is no greater than
�

do not change after� � �
iterations, where

� � ��� ���
� � �
. We prove it by induction. When

�
is 1, any port whose depth

is 1 must be the ingress port for all the flows traversing through it. Obviously, the ingress rate of a
flow does not change in later iterations. We assume the arrival rates to every port whose depth is
no greater than � do not change after � � �

iterations. Consider any port, say port � , whose depth is
� � �

. We use � � 8�� � � 
 to denote the whole set of ports that have a directed edge pointing to port � in
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Figure 5.3: The Condensed Graph of The Feed-Forward Network Shown in Figure 4.4

the graph. We claim that for any port in � � 8 � � � 
 , its depth must be no greater than � . We prove it by
contradiction. Suppose the depth of port � 
 in � � 8 � � � 
 is greater than � . According to the definition
of a port’s depth in the condensed graph, there must exist a path that has more than � ports and also
has port � 
 as its endpoint. In a feed-forward network, port � must not appear on this path because
there exists an edge from port � 
 to port � . Then, a new path can be constructed by combining the
path to port � 
 and the edge from port � 
 to port � . This new path has more than ��� �

ports on it
and the depth of port � must be greater than � � �

. This contradicts the assumption that the depth of
port � is � � �

. Therefore, for any port in � � 8�� � � 
 , its depth must be no greater than � . Based on the
assumption that arrival rates to every port whose depth is no greater than � do not change after � � �

iterations, we know that arrival rates to port � should not change after � iterations. By induction,
arrival rates to every port whose depth is no greater than

�
must not change after

� � �
iterations,

where
� � ��� ���
� � �

.

If the diameter of the condensed graph is � , then the largest depth that a port can have is at
most � . Therefore, no arrival rates change after � � �

iterations based on the above claim. An extra
iteration is used to ensure that the termination criterion can be satisfied. Therefore, the fixed point
algorithm terminates after at most � iterations. �

We have the following corollary regarding the time complexity of the fixed point algorithm
when it is applied on a feed-forward network:

Corollary 4 Given a feed-forward network and the flows that traverse it, if the directed graph
constructed as described has diameter � and the longest flow path has � ports, the time complexity
of the fixed point algorithm is ��� � � � � � 
 and

� ��� � � � � 
 .

Proof: From Lemma 4, we know that the time complexity of the fixed point algorithm is ��� � � � �
� 
 . On the other hand, because the longest flow path has � ports, at least � � �

iterations are needed
to ensure that the ingress rate of each flow has been propagated to every port on its path. Therefore,
the time complexity of the fixed point algorithm is

� ��� � � � � 
 . �
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Recall that the list-based solution discussed in Section 5.4.2 has asymptotic time complexity
� � � � � 
 . Corollary 4 tells us that the fixed point algorithm is not an optimal solution when the
network being considered is a feed-forward network.

If there exists circular dependency in the network as shown in Figure 5.2, the fixed point algo-
rithm is able to find the solution. Under some circumstance, however, the upper bound information
on the arrival rates can be exploited to break the circular dependence among flow variables, making
fixed point iterations unnecessary. Use the five-port ring topology shown in Figure 5.2 as an exam-
ple. Suppose that the ingress rate of every flow is 1Mbps. The link bandwidth associated with port
A is 2Mbps, and the link bandwidth associated with any other port is 1Mbps. Although we cannot
compute the departure rate of either of � � and ��� from port D, we can establish the upper bound
on the departure rate of � � from there. From Equation (5.3), the departure rate of � � should be no
greater than the arrival rate of � � into port D, which is 1Mbps. If this information is known to port
A, the upper bound on the arrival rate of flow � � into port A can also be established. Now we know
that the aggregate arrival rate into port A is at most 2Mbps, which means that all input traffic from
flows � � and ��� can be served without any loss. Therefore, the departure rate of flow � � from port
A must be 1Mbps, and so is its arrival rate into port B. With knowledge of the arrival rates of both
flows � � and � � into port � , we can derive their departure rates from port � as both (1/2) Mbps
using Equation (5.3). We then know the arrival rate of flow � � into port � to be (1/2) Mbps, and we
can thus derive the departure rates of flows � � and � � from port � as (1/3) Mbps and (2/3) Mbps
respectively. Similarly, we can derive that the arrival rate of flow � � into port

 
is (2/3) Mbps, the

arrival rate of flow � � into port � is (3/5) Mbps, and the arrival rate of flow � � into port � is (5/8)
Mbps.

The above example suggests that even though circular dependency may exist among the flow
variables in some networks, their upper bound information can be exploited to identify some ports
whose aggregate arrival rates are no greater than the link bandwidths associated with them. We call
such ports transparent. Once a transparent port is identified, all the arrival rates that have already
been determined can safely be propagated to the downstream ports because no congestion occurs
to this transparent port. These settled rates may render some downstream port resolvable and may
even break the whole circular dependency in the network, as we have seen in the above example.

The idea of aggressively identifying transparent ports by setting tight upper bounds on flow
variables may not remove all the circular dependencies among unsettled flow variables. In order to
determine their values under such circumstance, the fixed point algorithm is still necessary. How-
ever, this strategy minimizes the number of unsettled flow variables involved in the fixed point
algorithm. As we have analyzed above, the performance of the fixed point algorithm is contingent
on both the number of iterations executed before the termination criterion is satisfied and the number
of flow variables that are involved in each iteration. Hence, if many variables in

�
are determined

before the fixed point algorithm is applied, the computation cost on the fixed point iterations can be
significantly reduced.
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5.5 Sequential Algorithm

In the previous section, we have observed that some algorithms have relatively good performance
on specific networks like feed-forward networks and ones that have sufficient bandwidth, but are
unsuitable for the networks that have circular dependencies. On the other hand, the fixed point algo-
rithm works on any type of networks, including ones that involve circular dependencies, but suffers
poor performance on some specific networks. A natural question following the above observations
is:

Question 4 Is there any solution to the problem formulated in Section 5.3 that not only provides
good performance on the aforementioned specific networks but also solve the problem on networks
involving circular dependencies?

This section presents such a solution and thereafter discusses its convergence behavior, per-
formance, and accuracy. We are limited to sequential computing architectures here and leave its
parallelization in Section 5.7.

5.5.1 Algorithm Description

We use the same notations in the previous sections. A state variable is associated with each flow
variable in

�
. � � �

	

 is used to denote the state variable associated with flow variable �

	
, where� � � � � � � . There are three possible states for state variable � � �

	

 : unsettled, bounded, and

settled. The meanings of these states are explained as follows:

� for a flow variable in an unsettled state, we know neither its exact rate nor its upper bound;

� for a flow variable in a bounded state, we do not know its exact rate but know its upper bound;

� for a flow variable in a settled state, we know its exact rate.

As introduced in Section 5.2, a new ingress rate is generated for every flow in the network at the
beginning of every time step. Then, for every flow variable in

�
that corresponds to the arrival rate

of a flow at its ingress port, we set its state to be settled and its value to be the ingress rate; for any
other variable in

�
, we set its state to be unsettled and its value to be 0. Throughout the algorithm,

the state transition of a flow variable can only be from unsettled to bounded, from unsettled to
settled, or from bounded to settled. This is illustrated in Figure 5.4. Hence, a state transition of a
flow variable always means that more knowledge on it has been gained. In addition, we say that we
settle a flow variable if we determine the rate of that variable and change its state to settled.

We also associate a state variable with every output port in the network. Without introducing
confusion, we use � � � 
 to denote the state variable of output port � . Three possible states for a port
are: unresolved, transparent, and resolved. Initially, the state of every port is unresolved; once a
port has been identified as transparent, its state is changed to transparent; after an output port has
been resolved using Equation (5.3), its state is changed to resolved.
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Figure 5.4: State Transition of a Flow Variable

The sequential algorithm consists of three phases: rule-based flow update computation, reduced
graph generation, fixed point iterations and residual flow update computation. In order to explain
the algorithm, we use a simple example to illustrate how it works. The network topology is shown
in Figure 5.5; in the network, there are 8 output ports, � � - � � , and 7 flows, � � - � � . In the network,
the path of flow � � is obviously not the shortest because the alternative one that does not visit port� � is one hop shorter. It is intentionally so configured to show that routing decisions in our approach
are flexible. After the time-step setup, every port in the topology is in the unresolved state; � �

	
� ����� ��� ,

�"�
	
���� 	  � � , �"�

	
������  � � , �"�

	
���� �6 � � , �"�

	
� �� 	  � 	 , �"�

	
� ����  � � , and �"�

	
� ��
�
 � � are all in the settled state; � �

	
���� �  � � , �"�

	
���� �  � 	 , �"�

	
� �� 	  � 	 , �"�

	
� �� 	  � � ,

�"�
	
������  � � , �"�

	
� ����6 � 	 , ���

	
������  � � , �"�

	
� ����  � � , and �"�

	
� ����6 � � are all in the unsettled state. We drop the discretized time in

the above notations without causing any confusion.

Phase I: Rule-Based Flow Update Computation. In this phase, the goal is to settle as many
flow variables in

�
as possible based on a set of prioritized rules. We use the same notations in

Section 5.3 and Table 4.1.

Rule 1 is illustrated in Table 5.1. The pre-condition to trigger this rule is that there exists a port
whose state is still unresolved but all its input flow variables have been settled. When this condition
is satisfied, this port can be resolved: we change its state to resolved, and for each flow that traverses
it, we compute its departure rate and use that to settle the corresponding input flow variable at the
next output port on its path if it does not disappear into a sink.

Rule 2 illustrated in Table 5.2 still considers an output port in the unresolved state. It says that
if all the input flow variables of this port are not in the unsettled state and its aggregate input rate
does not exceed the link bandwidth associated with this output port, then this port can be identified
as transparent. The pre-condition requires that every input flow variable must be in the settled or
bounded state; otherwise, we cannot establish the upper bound on the aggregate input rate into this
port. In addition, note that if all the input flow variables are in the settled state, Rule 1 can be applied
on this port because it has higher priority. As a new output port is identified as transparent, we first
change its state to transparent, and then for every input flow variable in the settled state, if it does
not disappear into a sink after departing from the port, settle the corresponding input flow variable
at the next output port on its path.
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Precondition
� � � � � � � �

� � � 
 � � � � 8 � � � ��8 � �� � �*� � ��� � 
�� � � � �
	
� ��! � ���4� 
 � � 8!�4� �98 � 
�


Action � � � 
 � � 8 � � � � 8 �� �)� � � ���4� 
 � � � � ( � � � � 
 � �
� � � � �! 	 � �  � � ���4� 
 � � � 8!�4� �98 � �
���
	
����! 	 � �  � � ��� � 
 � ���

	
����! � ���4� 
 ������� � ��� � � �/1 �

	
� �� ��� � 
�


Table 5.1: Rule 1

Precondition
� � � � � � � �

� � � 
 � � � � 8 � � � � 8 � �
� � � �)��� � ���4� 
 � � � � � � � �

	
� ��  � ��� � 
 
 � � � � 8!�4� � 8 � 
 �

1 �
	
���� ���4� 
 � � � �� �)� � � ���4� 
 � � � � � � � �

	
� ��  � ��� � 
 
 � � ��� � � 8 � 


Action � � � 
 � � � � � � � ��� 8 �"� �� � �*� � ��� � 
 � � � � � � � �
	
����! � ���4� 
 
 � � 8!�4� � 8 � � ( � � � � 
 � �

� � � �"�
	
� ��  	 � �! � � ��� � 
 � � � 8 �$� �98 � �

� �
	
� ��  	 � �! � � ���4� 
 � � �

	
� ��  � ��� � 
�


Table 5.2: Rule 2
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Figure 5.5: An Eight-Port Topology

Rule 3 is illustrated in Table 5.3. It is applied when a new input flow variable is settled from a
bounded state at an output port in the transparent state. Because a transparent port can serve all its
input traffic, the settled arrival rate into this port can be propagated downstream without any loss. If
this flow does not disappear into a sink after departing from this port, the settled arrival rate can be
used to settle the corresponding input flow variable at the next output port on its path.

Rule 4 still considers an output port in the transparent state. It is applied when an upper bound
is established on an input flow variable in the unsettled state or a tighter upper bound is found on an
input flow variable already in the bounded state. Because a transparent port has sufficient bandwidth
to serve all its input traffic, the departure rate of this flow is equal to its arrival rate. Therefore, the
upper bound on its arrival rate into the port can also be applied on its departure rate from the port.
If this flow does not disappear into a sink after departing from the port, then the new upper bound
can be used to bound the corresponding input flow variable at the next output port on its path.

In order to illustrate Rule 5 and Rule 6, we add a new notation. � �
	
� �� ��� � 
 is used to denote the

sum of all the arrival rates into port � that have already been settled. Apparently, we have

� �
	
���� ���4� 
 � 1 �

	
� �� ��� � 
 � (5.11)

Rule 5 is present in Table 5.5. It describes when an input flow variable is settled at the port,
how the upper bound is set on the arrival rate into the next output port. The following lemma is
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� � � � � � � �

� � � 
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��� � � 0 � % � � 
 � � 8!�4� �98 � �
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� ��  	 � �! � � ���4� 
 
 � � 8!�4� � 8 � 


Action � � �"�
	
� ��  	 � �! � � ���4� 
 
 � � 8!�4� � 8 � �

�"�
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Table 5.3: Rule 3

Precondition
� � � � � � � �

� � � 
 � � � � � � � � � 8 �"� �� � � � � ��� � 
 � � � �
� � � �

	
��� � � 0 � % � � 
 � � ��� � � 8 � �

( � � � � 
 � � �
� � � �"�

	
����  	 � �  � � ���4� 
 
 � � � � 8 �$� �98 � � ���

	
� ��! 	 � �  � � ��� � 
������

	
� ��! � ��� � 
 


Action � � �"�
	
� ��  	 � �! � � ���4� 
 
 � � ��� � � 8 � �

� �
	
����  	 � �  � � ���4� 
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����  � ���4� 


Table 5.4: Rule 4
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� � � 
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 � � � �
� � �"�

	
� ��  � ��� � 
 
 � � 8 �$� �98 � �

( � � � � 
 � � �
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� ��  	 � �! � � ��� � 
 
 � � � � 8!�4� �98 � �

�"�
	
� ��  	 � �! � � ���4� 
�� �"�

	
� ��  � ��� � 
 � ����� � ��� � � � � �

	
� �� ��� � 
�
 


Action � � � �
	
����! 	 � �  � � ��� � 
 
 � � ��� � � 8 � �

���
	
� ��! 	 � �  � � ��� � 
 � ���

	
� ��! � ��� � 
 ������� � ��� � � � � �

	
� �� ��� � 
�


Table 5.5: Rule 5

established for this purpose.

Lemma 5 Given an input flow variable with a settled rate � at port � , its departure rate from port� is no greater than � ����� � � ��� � � � � �
	
� �� ��� � 
�
 .

Proof: If � �
	
� �� ��� � 
 � � � , then the departure rate of the flow does not exceed its arrival rate � .

If � �
	
� �� ��� � 
�� � � , then 1 �

	
���� ���4� 
 � � �

	
� �� ��� � 
�� � � from Equation (5.11); the departure rate,

� � � � �/1 �
	
� �� ��� � 
 , must be no greater than � � � � � � �

	
� �� ��� � 
 . �

Lemma 5 tells us how to compute the upper bound on the departure rate for a settled input flow
variable, when we have only partial knowledge with respect to other input flow variables. If the
flow does not disappear into a sink, we can use this upper bound on the departure rate to bound the
corresponding input flow variable at its next output port.

Rule 6, illustrated in Table 5.5, is a complementary to Rule 5. It describes given an input flow
variable in the bounded state, how the upper bound should be set on the arrival rate into the next
output port. The following lemma is established for this purpose.

Lemma 6 Given an input flow variable with a bounded rate � at port � , its departure rate from
port � will be no greater than � ������� � ��� � � � � � � � �

	
���� ���4� 
 
�
 .

Proof: We use � 
 to denote the true arrival rate of the flow into port � , and ��
 
 to denote the true
departure rate of the flow from port � . Then, � 
 � � . We distinguish three cases.

107



Precondition
� � � � � � � �

� � � 
 � � � � 8 � � � � 8 � �� � ��� � ���4� 
 � � � �
� � ���

	
����! � ���4� 
 
 � � ��� � � 8 � �

( � � � � 
 � � �
� � � � �

	
����! 	 � �  � � ��� � 
 
 � � � � 8!�4� � 8 � �

���
	
� ��! 	 � �  � � ��� � 
������

	
� ��! � ��� � 
 ������� � ��� � � � � � �

	
� �� ��� � 
 � ���

	
����! � ���4� 
 
�
 


Action � � � �
	
� ��  	 � �! � � ���4� 
 
 � � ��� � � 8 � �

�"�
	
����  	 � �  � � ��� � 
 � �"�

	
����  � ���4� 
 ����� � � ��� � � � � � �

	
���� ���4� 
�� �"�

	
� ��  � ��� � 
 
�


Table 5.6: Rule 6

� Case 1: if � � � �
	
���� ���4� 
 � � � , then the departure rate � 
 
 satisfies the following:

� 
 
 � � 
 � � (5.12)

� Case 2: if �%� � �
	
� �� ��� � 
 � � � and 1 �

	
� �� ��� � 
 � � � , then the departure rate � 
 
 satisfies the

following:

� 
 
 � � 
 � � �1 �
	
� �� ��� � 


� � 
 � � �
� 
 � � �

	
���� ���4� 
 � because 1 �

	
���� ���4� 
 � � 
 � � �

	
� �� ���4� 
 


� � �
� �

���
�
���0 � %��6����

� � �
� �

� �
�
���0 � %��6��

� because � 
 � � 


� � � � �
� � � �

	
���� ��� � 
 � (5.13)
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� Case 3: if �%� � �
	
� �� ��� � 
 � � � and 1 �

	
� �� ��� � 
 � � � , then the departure rate � 
 
 satisfies the

following:

� 
 
 � � 

� � � � � �

	
���� ���4� 


� � � � � �
	
���� ���4� 
 � � �

� �
	
� �� ��� � 
�� � � because � � � �

	
� �� ��� � 
�� � � 


� � � � �
� � � �

	
���� ��� � 
 � (5.14)

Combining all three cases, we prove the lemma. �
Lemma 6 informs us how to compute the upper bound on the departure rate for an input flow

variable in the bounded state. If the flow does not disappear into a sink, we can use this upper bound
on the departure rate to bound the corresponding input flow variable at its next output port.

Note that the ultimate objective of the algorithm is, actually, to resolve every output port in the
topology under consideration. Rule 1 has the highest priority because every time it is applied, a
new output port is resolved and some flow variables in

�
may be settled. Although Rule 2 does not

resolve a port, it identifies a transparent port and propagates its settled flow rates downstream, which
possibly leads to new ports found applicable to Rule 1. Rule 3 neither resolves a port nor identifies
a transparent port, but it propagates already-settled flow rates through a transparent port. The next
3 rules establish upper bounds on flow variables. Because the first 3 rules have higher priority, flow
variables tend to be settled before the last 3 rules are applied. Once no port is applicable to the first
3 rules, we try the last 3 rules, in the hope of identifying more transparent ports with tighter upper
bounds.

Let �

	
denote Rule � , where

� � � � �
. In the implementation, for each rule �

	
, we maintain

a list of ports, denoted by
� � � . The ports on list

� � � must satisfy the precondition to rule �

	
. After

the time step setup, we check all the ports that have input flows: if a port � is the ingress port of
all the flows that traverse it, it is added onto list

� � 	 . We then iterate over the ports on the 6 lists.
Each time, we grab an arbitrary port � from the list with the highest priority and process it as the
corresponding rule, say rule � , indicates. After the port is processed, we remove it from list

� � .
Because we update the states of the input flow variables at downstream ports, some of them may
satisfy the precondition to a rule. If we find such a port, we put it onto the corresponding port list if
it is not there yet. The above iteration terminates when all the 6 port lists are empty. At this time,
Phase I finishes.

In order to check whether a port satisfies the precondition to a rule in constant time, we need to
be careful in the implementation. Some auxiliary variables are introduced for this purpose. At each
port, we keep both the number of input flow variables in the settled state and the number of input
flow variables in the bounded state. After updating the state of one or more input flow variables at
a port, we update these two variables correspondingly. We can then compare the number of settled
input flow variables and the total number of input flow variables at this port and decide whether
Rule 1 is applicable. If Rule 1 cannot be applied, we can check whether all the input flow variables
are in either settled or bounded state and then determine whether Rule 2 is applicable. With aid of
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the two auxiliary variables, we can check whether a port satisfies the precondition to Rule 1 or Rule
2 in constant time.

Note that for each of the last four rules, its precondition requires that at least one input flow
variable satisfy certain conditions. Hence, for each of these rules, we use a list to keep all the input
flow variables that satisfy these conditions. After we process a port and update the state of an input
flow variable at the corresponding downstream port, we check whether that flow variable satisfies
the conditions in the precondition to any of the last four rules. If so, we put the flow variable onto
the corresponding list. When a port that satisfies one of these rules is processed, we choose an
arbitrary flow variable from the corresponding list, remove it from there, and process it as the rule’s
action indicates. In this way, it is unnecessary to traverse the states of all the input flow variables
and check whether there exists an input flow variable that satisfies certain conditions.

In order to apply Rule 5 or 6, we need to know the sum of all the input flow rates that are settled
so far. We introduce another variable to keep this value at each port. Once an input flow variable is
settled, we add the settled input rate onto this variable. Hence, we need only constant time to obtain
the sum of all the input flow rates that are settled.

From the above discussion, we have the following property:

Lemma 7 After a port is processed, if there exists at least one unprocessed port in Phase I, we need
only constant time to decide which port can be processed next.

The following lemma tells us the possible states which a flow variable may have after Phase I.

Lemma 8 After Phase I, every flow variable must be in the settled or bounded state.

Proof: We prove it by contradiction. Suppose that flow variable � is in the unsettled state after
Phase I. We search the first flow variable that is not in the unsettled state along the upstream di-
rection on the flow’s path. There must exist such a flow variable because at least the flow variable
corresponding to the ingress rate of the flow is in the settled state. Let ��
 be this flow variable. Sup-
pose that � 
 belongs to port � , and the next port on the flow’s path is � . If port � is in the resolved
state, then the corresponding flow variable at port � must be settled from Rule 1; if port � is in the
transparent state, then either Rule 3 or Rule 4 can be applied on flow variable � 
 ; if port � is in the
unresolved state, then either Rule 5 or Rule 6 can be applied on flow variable ��
 . In either case, a
contradiction follows. �

We use the example network in Figure 5.5 to illustrate the application of the 6 rules. Given the
two configurations shown in Table 5.7, our algorithm works as follows in Phase I:

� Configuration 1: Table 5.8 presents how the rule-based flow update computation process
works on this configuration. Step 1 applies Rule 1 to resolve port � � . Step 2 applies Rule 5 to
compute the upper bound on � �

	
� �� �  � 	 . Because � �

	
���� �  � 	 � � �

	
� �� 	  � 	 � � � � , port � � can be identified

as transparent; hence, the settled arrival rate of flow � � into port � � can be propagated through
it and then used to settle � �

	
� �� 	  � � . Thereafter, Rule 1 can be used to resolve ports � � , � � , � � , � � ,� � , and � � successively.
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Configuration 1 Configuration 2

� �
	
� �� �  � � � � �

	
� �� 	  � � � � � � � �

	
� �� �  � � � � �

	
���� 	  � � � � � �

� �
	
� ����6 � � � � �

	
� �� �  � � � � � � � �

	
� ����6 � � � � �

	
���� �  � � � � � �

� �
	
� �� �  � � � � �

	
� �� 	  � � � � � 	 � �

	
� �� �  � � � � �

	
���� 	  � � � � � 	

� �
	
� ����  � � � � �

	
� �� 	  � � � � � � � �

	
� ����  � � � � �

	
���� 	  � � � � � �

���
	
� ����  � � � �"�

	
� ����� � � � � � � �"�

	
� ����  � � � ���

	
������  � � � � � �

���
	
� ����6 � � � �"�

	
� �� 	  � 	 � � � 	 �"�

	
� ����6 � � � ���

	
���� 	  � 	 � � � 	

� �
	
� ����  � � � � �

	
� ����� � � � � � � � �

	
� ����  � � � � �

	
������  � � � � � �

���
	
� �� �  � � � �"�

	
� ��
�
 � � � � � � �"�

	
� �� �  � � � ���

	
����
�
 � � � � � �

Table 5.7: Two Configurations

� Configuration 2: Table 5.9 presents how the rule-based flow update computation process
works on this configuration. Step 1 applies Rule 1 to resolve port � � . Step 2 applies Rule
5 to compute the upper bound on � �

	
���� �  � 	 . Because � �

	
���� �  � 	 � � �

	
� �� 	  � 	 � � � � , port � � cannot be

identified as transparent as on the previous configuration. Step 3 applies Rule 5 to compute
the upper bound on � �

	
� �� 	  � � ; Step 4 applies Rule 5 to compute the upper bound on � �

	
� ����  � � ; Step 5

applies Rule 5 to compute the upper bound on � �
	
���� �6 � 	 . In step 6, because � �

	
���� 	  � 	 � �"�

	
���� �  � 	 � � � 	 ,

port � � is identified as transparent. Step 7 uses Rule 4 to compute the upper bound on � �
	
� ����� � � .

The final step applies Rule 5 to compute the upper bound on � �
	
������6 � � and � �

	
� ����  � � .

Both Tables 5.8 and 5.9 provide only a sample execution path for each configuration because
after some steps there exist multiple choices on which ports should be processed. With configura-
tion 1, all ports in the topology are resolved after Phase I; it is evident that with aid of transparency
of port � � , the circular dependence among flow variables in the network can be entirely removed.
When this occurs, the algorithm stops after Phase I. With configuration 2, however, all ports but port� � are still unresolved; although port � � is also identified as transparent, it does not help reduce the
whole circular dependence. When there still exist some unresolved ports, the algorithm proceeds
into Phase II.

Phase II: Dependence Graph Generation. Owing to circular dependence, some output ports
still remain unresolved after Phase I. As discussed in Section 5.4.3, the fixed point algorithm stands
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Step Rule Processing

1 1 � � � � 
 � � 8 � � � ��8 � � � � �"�
	
� �� �  � � 
 � � 8!�4� �98 � � � � �"�

	
� �� 	  � 	 
 � � 8!�4� �98 �

2 5 � � � �
	
���� �  � 	 
 � � ��� � � 8 � � � �

	
���� �  � 	 � � �

	
���� �  � �

3 2 � � � � 
 � � � � � � � ��� 8 �"� � � � �"�
	
���� 	  � � 
 � � 8!�4� �98 � � �"�

	
���� 	  � � � ���

	
� �� 	  � 	

4 1 � � � � 
 � � 8 � � � ��8 � � � � �"�
	
� ����  � � 
 � � 8!�4� �98 � �

� �
	
������  � � � � �

	
� ����  � � ������� � ��� � � � �/1 �

	
� �� � 


5 1 � � � � 
 � � 8 � � � ��8 � � � � � �
	
� �� �  � 	 
 � � 8!�4� �98 � �

� �
	
������6 � 	 � � �

	
� ����6 � � ������� � ��� � � � �/1 �

	
� �� � 


6 1 � � � � 
 � � 8 � � � ��8 � � � � � �
	
� ����6 � � 
 � � 8!�4� �98 � �

���
	
������6 � � � �"�

	
� ����6 � 	 ������� � ��� � � 	 �/1 �

	
� �� 	 


7 1 � � � � 
 � � 8 � � � ��8 � � � � �"�
	
� ����6 � � 
 � � 8!�4� �98 � �

� �
	
������6 � � � � �

	
� ����6 � � ������� � ��� � � � �/1 �

	
� �� � 


� � �"�
	
���� �  � � 
 � � 8 �$� �98 � � ���

	
� �� �  � � � �"�

	
� �� �  � � ������� � ��� � � � �/1 �

	
� �� � 


8 1 � � � � 
 � � 8 � � � ��8 � � � � � �
	
� �� �  � 	 
 � � 8!�4� �98 � �

� �
	
���� �  � 	 � � �

	
� �� �  � � ������� � ��� � � � �/1 �

	
� �� � 


Table 5.8: Flow Update Computation for the Network in Figure 5.5 (Configuration 1)
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Step Rule Processing

1 1 � � � � 
 � � 8 � � � � 8 � � � � � �
	
� ����  � � 
 � � 8 �$� �98 � � � � � �

	
� �� 	  � 	 
 � � 8!�4� � 8 �

2 5 � � � �
	
� �� �  � 	 
 � � ��� � � 8 � � � �

	
� �� �  � 	 � � �

	
� �� �  � �

3 5 � � �"�
	
� �� 	  � � 
 � � ��� � � 8 � � �"�

	
� �� 	  � � � �"�

	
� �� 	  � 	

4 5 � � � �
	
� ����  � � 
 � � ��� � � 8 � � � �

	
� ����  � � � � �

	
� ����  � �

5 5 � � �"�
	
� ����6 � 	 
 � � ��� � � 8 � � �"�

	
� ����6 � 	 � �"�

	
� ����� � �

6 2 � � � � 
 � � � � � � � � � 8 �"�
7 4 � � � �

	
� �� �  � � 
 � � ��� � � 8 � � � �

	
� �� �  � � � � �

	
� �� �  � 	

8 5 � � � �
	
� ����6 � � 
 � � ��� � � 8 � � � �

	
� ����6 � � � � �

	
� ����� � �

� � �"�
	
� ����  � � 
 � � ��� � � 8 � � �"�

	
� ����  � � � �"�

	
� ����  � �

Table 5.9: Flow Update Computation for the Network in Figure 5.5 (Configuration 2)
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out as the only practical solution to determining the rates of those unsettled flow variables in
�
.

In order to reduce the computation cost on fixed point iterations, we try to minimize the number of
flow variables that are involved. The example network with the second configuration is used to build
some intuition on which flow variables should be considered. After Phase I, we still do not know the
exact rates of flow variables � �

	
���� �  � 	 , � �

	
� �� 	  � � , � �

	
� ����  � � , � �

	
� ����6 � 	 , � �

	
� ����6 � � , � �

	
� ����  � � , and � �

	
������� � � . Remember that

port � � has been identified as transparent, which suggests that � �
	
� �� �  � 	 must be equal to � �

	
���� �  � � . On the

other hand, � �
	
� ����6 � � actually does not stay in any cycle: settling it entirely depends on the resolution

of port � � . These two observations lead to the following optimizations:

� Optimization 1: We exclude every flow variable associated with a transparent port from the
fixed point iterations;

� Optimization 2: We exclude every flow variable that is not on any circular dependency from
the fixed point iterations;

Now we discuss how to implement these two optimizations by constructing dependence graph
�

. First we construct set
�

, which contains all the output ports in the unresolved state:

� � �&� �4� � � � � � � 
 � � � � 8 � � � ��8 � 
 � (5.15)

Note that some output ports whose states are transparent may still have some unsettled input
flow variables, but they are excluded from set

�
based on the first optimization. The ports in

�

form the vertices in dependence graph
�

. We use
 

to denote the set of edges in graph
�

. This set
is initialized to be empty. Every edge 8 is associated with a set of flow variables, denoted by ��� �98	
 .
For every port � in

�
, we process each of its input flow variables as follows: search the first output

port � 
 downstream on the flow’s path that is also included in set
�

; if such a port can be found, a
directed edge from port � to port � 
 , denoted by 8 � � � � 
 
 , is added to

 
(if it is not in

 
yet) and the

corresponding input flow variable at the receiving port is added into set ��� �98 � � � � 
 
 
 . After all ports
in

�
have been processed, the resulting graph

�
has the following property: no port in graph

�
has

indegree 0. If there exists a port with indegree 0, then its resolution does not depend on any other
port’s state, and therefore, it must have already been resolved in Phase I, which contradicts it being
in set

�
.

However, it is likely that some ports in
�

have outdegree 0. This happens when input flow
variables associated with these ports are not in any circular dependence. In the example network,
port � � has outdegree 0 because flow variable � �

	
������  � � is not in the circular dependence formed by

other variables. According to the second optimization, we remove the ports with outdegree 0 from
graph

�
and all the edges that point to them. After removing a port with outdegree 0, we decrease

the outdegrees of those ports that have an edge pointing to it by 1; if the outdegree of a port becomes
0 thereby, it should also be removed from graph

�
. Then the above process repeats, until no port

with outdegree 0 exists in dependence graph
�

. Phase II finishes when the process terminates. Note
that when we prune the ports with outdegree 0 from the graph, no port with indegree 0 should be
introduced. Hence, the following lemma should hold after Phase II:
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Lemma 9 In the final graph
�

, no port has indegree 0 or outdegree 0.

As for the example network with the second configuration, the final dependence graph
�

is
shown in Figure 5.6.
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λf q,5 0

λf q,0 1

λf q,1 2

λf q, 32
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q5
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(in)
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(in)

λf3 q 5,
(in)

Figure 5.6: Dependence Graph for the Example Network with Configuration 2

Phase III: Fixed Point Iterations and Residual Flow Update Computation. The fixed point
algorithm described before operates on all the input flow variables in the network except those
that correspond to the ingress rates of flows. Our approach aims to minimize the number of flow
variables involved in the fixed point iterations. We construct another vector

� �
to contain all the

flow variables that need to be settled by the fixed point algorithm. For every edge 8 in dependence
graph

�
(i.e., 8��  ), we put all the flow variables in � � �98	
 into

� �
. Using Equation (5.3), we

can form a set of equations of variables in
� �

. The fixed point algorithm is then applied to find the
root of this group of equations. As discussed in Section (5.4.3), the algorithm starts from an initial
estimate on

� �
. The simplest estimate is

�	
, in which all the variables in

� �
are 0. This estimate may

be very far from the real fixed point; a lot of iterations are, therefore, necessary before that fixed
point is approached. Hence, our solution adopts an alternative estimate: since every flow variable
in

� �
must have an upper bound when Phase I finishes, these upper bounds on the variables in

� �
form the initial estimate. Therefore, tighter upper bounds on flow variables found in Phase I may
help reduce the number of iterations required in the fixed point algorithm.

The fixed point iterations terminate when the maximum relative difference between successive

estimates on any flow variable in
� �

is less than a tolerance � . We use
� � �
	 � � � � , � � 	�� ��� ���
� � �

and
��� � � � � � � to denote the estimate on the

�
-th variable in

� �
after iteration � . Then, the termination

criterion is

� ���
��� � ������
	 �

� � � �
	
5 � � � � � � � � �

	
5 � � � � � �

� � �
	 � � � � �

�
�

(5.16)

Once the fixed point algorithm terminates, we change the state of each flow variable in
� �

to settled.
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In the example,
� �

is constructed as

� �"�
	
� �� �  � 	 � �"�

	
� �� 	  � � � ���

	
������  � � � �"�

	
���� �6 � � � �"�

	
� ����  � � � �

(5.17)

Using Equation (5.3), we form a group of equations as follows:

���������������� ���������������

���
	
� �� �  � 	 � �"�

	
� �� �  � � � min � ��� � � � � � �"�

	
� �� �  � � � �"�

	
������  � � 
�


� �
	
� �� 	  � � � � �

	
� �� 	  � 	 � min � ��� � � 	 � � � �

	
� �� 	  � 	 � � �

	
���� �  � 	 
�


� �
	
� �� �  � � � � �

	
� �� �  � � � min � ��� � � � � � � �

	
� �� �  � � � � �

	
���� 	  � 	 
�


� �
	
� ����6 � � � � �

	
� ����  � � � min � ��� � � � � � � �

	
� ����6 � � � � �

	
������  � � 
�


� �
	
� ����  � � � � �

	
� ����� � � � min � ��� � � � � � � �

	
� ����  � � � � �

	
���� �6 � � 
�


(5.18)

The fixed point algorithm is then applied to solve Equation (5.18), starting from an initial estimate
in which every flow variable in

� �
uses its upper bound obtained in Phase I. Recall that in Phase II,

transparent ports and ports with outdegree 0 are excluded from
�

. At these ports, therefore, some
input flow variables are still unsettled after the fixed point iterations. We can resume the rule-based
flow update computation and resolve all the unresolved ports. In the example, � �

	
� �� �  � � and �"�

	
���� �  � 	 are

not settled after the fixed point iterations. Because both input flow variables at port � � are settled,
Rule 1 can be used to compute ���

	
������  � 	 ; �"�

	
� ����6 � � can also be calculated by applying Rule 1 on port ��� .

After Phase III, all output ports in the network have been resolved. The algorithm then ends
here. In the following sections, we will discuss the issues regarding the convergence behavior,
performance, and accuracy of our algorithm.

5.5.2 Convergence Behavior

If the flows in the network form circular dependencies that cannot be resolved in Phase I, the fixed
point algorithm is necessary to settle the unsettled flow variables associated with these circular
dependencies. As mentioned in Section 5.4.3, the convergence behavior of the fixed point iterations
directly affects the performance of our algorithm. For example, if the fixed point iterations diverge,
then our algorithm may never terminate and its foundation is thus severely undermined.

In mathematics, two fixed point theorems are often used to prove the existence of fixed points
[30]. The Brouwer fixed point theorem states that every continuous function from a nonempty,
compact and convex subset of � � to itself must have at least one fixed point. Although elegant,
the Brouwer fixed point theorem is non-constructive: it does not describe how to find the fixed
points. Rather, the Banach fixed point theorem provides an approach to discovering fixed points
for functions that are contraction mappings. A function � � � � � is said to be a contraction
mapping if there exists a constant � with

	 � � � �
such that

� � � ��� 
 � � ��� 
 
 � � � � ��� � � 
 (5.19)
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where the real valued function
� � � � � � � is a distance function or metric. The Banach

fixed point theorem states that every contraction mapping has a unique fixed point. For an arbitrary� � � � � � , iterate as � � � 5 � � � � ��� � � � 
 . The sequence converges to the unique fixed point. Hence,
the Banach fixed point theorem provides a constructive approach to finding the fixed point. In
order to use the Banach fixed point theorem to guarantee convergence of our algorithm, we need
to prove that function

�
in Equation (5.10) is a contraction mapping. As discussed in Section

5.4.3, however,
� � � 
 is a multi-dimension nonlinear system of equations containing

� � � functions,
whose mathematical analysis is well known to be difficult, especially when there are a large number
of variables in the system.

In [62], a related problem has been investigated in the context of multi-class networks with FIFO
service disciplines. The main theorem in it establishes the existence of a unique fixed point solution
for a reentrant line that traverses multiple stations whose service rates are independent of the line’s
stage. A reentrant line and a station resemble a flow and a port in our problem respectively. In the
final remark of the paper, it is also claimed that the theorem can be extended for the cases in which
multiple reentrant lines exist.

The theoretical results in [62] may be helpful in establishing the existence of a unique solution
to our problem. Even so, however, we are still unclear of whether the fixed point iterations finally
converge to that fixed point. Furthermore, even if they converge, how fast they converge still remain
as a mystery to us; a slowly convergent algorithm may lead to poor performance because a lot
of computation work is spent on the iterations before a fixed point is reached. Provided these
challenges on understanding the convergence behavior of our algorithm, we put an upper bound on
how many iterations are allowed in a time step. In a real network, traffic traversing across a link
suffers some delay. We assume that all the edges in the dependence graph built in Phase II are
associated with a universal delay

�
. Then, iterations in the fixed point algorithm can be considered

as periodically updating the states of flow variables every
�

simulation time units. Recall that the
time step size is � simulation time units. Therefore, there are at most � �%� � � iterations permissible
within one time step, where � � � is the largest number no greater than � . The selection on

�
in our

approach is given as follows. Let
� � �98	
 denote the aggregate delay from the node where edge 8

starts to the node where edge 8 ends on flow’s � ’s path in the real network. For each edge 8 in
 

,
we associate with it the largest aggregate delay that any flow across it suffers. Then among all the
edges in the dependence graph, we pick the one that has the largest aggregate delay. We choose

�

as follows:
� � � ���

�

- 
 � ����/-�.�� � �"� � � �98	
 � (5.20)

The above upper bound is aimed at avoiding excessive number of iterations that the fixed point
algorithm has to take before the fixed point is found or when the fixed point cannot be found through
iterations. In all the following experiments, we actually find that the fixed point algorithm converges
within a small number of iterations, and the upper bounds have never been reached.

In Table 5.10, we summarize four real topologies that are used in the simulation experiments
in this section and the following sections. Top-1, which is illustrated in Figure 4.7, is a POP-level
ATT USA backbone network. A flow is created between any pair of POPs, which thus leads to
702 flows in total. The bandwidth of each link is set to be 100Mbps. This topology later will
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Topology # nodes # directional links # flows Link bandwidth

Top-1 27 88 702 100 Mbps

Top-2 244 1080 12200 2488 Mbps

Top-3 610 3012 61000 2488 Mbps

Top-4 1126 6238 168900 2488 Mbps

Table 5.10: 4 Topologies Used in the Simulations

be used in Section 5.5.3 to do performance comparison between the time-stepped coarse-grained
traffic simulator and the packet-oriented simulator; a comparatively low link bandwidth enables us
to finish a certain number of simulation runs with the packet-oriented simulator in a reasonable
period of time. The other three topologies are obtained from the Rocketfuel project1 . Top-2 is
the router-level Exodus backbone; Top-3 consists of two router-level ISP backbones, the Exodus
backbone and the Above.Net backbone, which are connected through some peering links; Top-4
further augments Top-3 by adding another router-level ISP backbone, Sprint backbone, to it. In
Top-2, Top-3, and Top-4, every router picks 50 routers from its own backbone and directs a flow to
each of them; it also picks 50 routers from each other backbone in the topology and directs a flow
to every one of them. Hence we get the total numbers of flows shown in the table. We use the PPBP
traffic model to generate the ingress rate for each flow. The Hurst parameter is 0.8. The coefficient
of variance (COV), which is the ratio of the standard deviation to the mean, is a common measure
of traffic burstiness [74]. In our experiments, we test two COVs, 5 and 0.5. The tolerance � , which
is used to determine whether fixed point iterations should be terminated (See Equation (5.16)), is
0.001.

In the experiments studying the convergence of our algorithm, we simulate Top-2, Top-3, and
Top-4 for 200 time steps, each spanning 5 seconds. Figures 5.7 - 5.11 give the histogram of the
number of ports on the dependence graph in Phase III of a time step, and the number of iterations
used to reach fixed point solutions, on single runs of 200 time steps with 2 COVs. The simulation
results can be analyzed from the following aspects:

� The same COV, the same link utilization, different topology sizes. Under this setting, we
consider how the topology size affects the convergence behavior. When the simulated topol-
ogy contains more nodes and thus more flows, more ports may appear on the dependence
graph in Phase III. Although the traffic load at each port is maintained at the same level, such
growth is observed to be sup-linear with the topology size, measured by the number of nodes.
For example, consider the results when the link utilization is 50% and the COV is 5. The

1http://www.cs.washington.edu/research/networking/rocketfuel/
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average number of ports on the dependence graph in Phase III is 14 for Top-2, 39 for Top-3,
and 128 for Top-4, but the sizes of Top-3 and Top-4 are 2.5 and 4.6 times as that of Top-2
respectively. This can be explained as follows. As the topology size increases, although the
average link utilization is maintained at the same level, congested ports are more likely to be
dependent on each other because on average more flows traverse a port. Another observation
from the simulation results is that as the topology size increases, the average number of iter-
ations required to reach a fixed point increases slightly; this is reasonable because more ports
are on the dependence graph in Phase III.

� The same COV, the same topology, different link utilizations. The impact that the traffic
load in the network has on the convergence behavior of our algorithm is clear: if the average
link utilization is higher , then it is more likely for a port to be congested and thus more
ports appear on the dependence graph in Phase III. This is also observed from the simulation
results. For example, consider the results when the COV is 5. If the link utilization is 20%,
the average number of ports on the dependence graph in Phase III corresponding to Top-2,
Top-3, and Top-4 is 0, 5, and 55 respectively, but if the link utilization is 50%, the average
number of ports on the dependence graph in Phase III corresponding to Top-2, Top-3, and
Top-4 is 14, 39, and 128 respectively.

� The same topology, the same link utilization, different COVs. The COV is a metric of
traffic burstiness. Its impacts on the convergence behavior of our algorithm vary with the
traffic load in the topology. When the link utilization is 20%, if the COV is higher, more
ports appear on the dependence graph in Phase III; when the link utilization is 50%, if the
COV is higher, it seems that fewer ports appear on the dependence graph in Phase III. This
observation can be explained as follows. When the link utilization is low, the traffic needs
to be highly bursty to cause congestion in the network. When the link utilization is high, a
certain level of burstiness is enough to cause congestion. However, if the mean is the same
and the COV is relatively large, then the bursty traffic pattern generated at the ingress node
of a flow has high peak rates, followed by long “silent” periods (i.e., the flow has rate 0).
The peak rates, if exceeding the link bandwidth associated with the ingress port, are reduced,
causing the ports on the flow’s path to see less traffic. Therefore, when the link utilization and
the COV are both high, it is observed that fewer ports appear on dependence graph in Phase
III from the simulation results. Another observation is that when the COV is higher and the
traffic is thus more bursty, the number of ports that appear on the dependence graph in Phase
III over the 200 time steps vary in a larger range. This is because if the traffic is less bursty,
the change on the aggregate arrival rate into a port is less dynamic across the time steps and
congestion occurs more regularly in the network.

In summary, our algorithm is able to significantly reduce the number of ports in the fixed point
iterations. Under any traffic load and any COV, the largest proportion of ports that appear on the
dependence graph in Phase III is 4.4%, 2.8%, and 3.4% for TOP-2, TOP-3, and TOP-4 respectively.
Furthermore, the fixed point solution in our algorithm can converge within a small number of iter-
ations. In all the experiments, we have observed that at most 12 iterations are necessary to reach a
solution that satisfies the termination criterion (5.16).
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5.5.3 Performance

In Section 5.4, we have discussed the performance of some specific solutions in diverse settings.
Corollaries 3 and 4 tell us that the fixed point algorithm does not provide the optimal performance
if it is applied on some specific networks like feed-forward networks or ones that have sufficient
bandwidth. Then how does our algorithm perform on these networks? Following the same notations
there, we use � and � to denote the total number of flows in the network and the average number
of output ports on a flow’s path. The following theorem establishes the time complexity of our
algorithm when applied on a feed-forward network.

Theorem 5 Given a feed-forward network, the time complexity of the algorithm described in Sec-
tion 5.5.1 is � � � � � 
 .

Proof: There is no circular dependence among flow variables in a feed-forward network. Hence,
all ports are resolved in Phase I. In our implementation, Rule 1 is iteratively used to resolve all the
output ports in a feed-forward network because it has the highest priority. The state of every output
port in the topology is read or updated for a constant number of times when it is resolved with Rule
1; correspondingly, every input flow variable is also read or updated for a constant number of times
in the course of the computation. Lemma 7 tells us that after a port is processed, only constant
time is needed to find the next unprocessed port. Therefore, the time complexity of the algorithm is

� � � � � 
 . �
The next theorem establishes the time complexity of our algorithm when it is applied on a

network with sufficient bandwidth.

Theorem 6 Given a network with sufficient bandwidth, the time complexity of the algorithm de-
scribed in Section 5.5.1 is � � � � � 
 .

Proof: When our algorithm is used to resolve the ports in a network with sufficient bandwidth, all
the flow variables are settled in Phase I because transparency can make the ingress rate of every
flow be propagated to its destination. Only the first three rules are applied because they have the
higher priorities than the other three. The state of each input flow variable changes exactly once
from unsettled to settled. Since there are � � � � � 
 input flow variables, the total computation cost
on updating the states of the input flow variables is � � � � � 
 . On the other hand, whenever a rule
is applied on a port, we propagate the settled rate of at least one input flow through it and settle
the corresponding input flow variable at the next hop. The total computation cost on reading or
updating the states of the ports is thus ��� � � � 
 . Therefore, the time complexity of the algorithm
is thus � � � � � 
 . �

Theorems 5 and 6 tell us that on some specific networks, our algorithm requires less asymptotic
computation cost than the original fixed point algorithm. It actually has the same asymptotic time
complexity as the particular solutions discussed in Sections 5.4.1 and 5.4.2. However, our algorithm,
like the original fixed point algorithm, has the power to solve the problem on networks involving
circular dependencies.
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If circular dependencies cannot be completely removed from the topology after Phase I, ana-
lyzing the time complexity of our algorithm becomes more complicated for two reasons. First, it is
difficult to establish exactly how many times the upper bound of a flow variable is updated in Phase
I. Our strategy is to lower the upper bound of every flow variable as much as we can, in the hope that
more transparent ports can thus be exposed in Phase I; in addition, a tighter upper bound on a flow
variable will provide a better initial estimate on it later for the fixed point algorithm. This strategy,
however, makes it difficult to establish how many times the upper bound of a flow variable has been
changed, especially in a large topology where many ports are in circular dependence. On the other
hand, the performance of our algorithm is also contingent on how many ports remain unresolved
after Phase I and how many iterations have been done in the fixed point algorithm. Both factors
are topology-dependent, and the latter also depends on the precision tolerance � in the termination
criterion (5.16).

We therefore empirically investigate the performance of our algorithm under realistic topologies.
The four topologies in Table 5.10 are simulated at two traffic intensity levels: 20% average link
utilization and 50% average link utilization. The time step we choose is 5 seconds, which is much
larger than the typical end-to-end delays even in a large network. We use the PPBP traffic model
to generate the ingress rate for each flow. The Hurst parameter is 0.8. As we said in Section 5.5.2,
traffic burstiness can be measured with COV. In our experiments, we test two COVs, 5 and 0.5. All
the experiments are done on a 1.5GHz PC with 2Gb of memory. The average execution times per
time-step for these four topologies under different traffic loads are presented in Table 5.11. Because
the variations on these execution times are all quite small, we do not show the confidence interval in
the table. We do not have the results for Top-4 when the COV is 0.5 because the memory required
in the simulation exceeds the physical limit.

All the simulations are completed within less than 5 seconds, the time step we choose. It sug-
gests that these simulations are finished in real time. From the results shown in Table 5.11, it seems
that if the traffic is more bursty, less simulation execution time is required. This is counter-intuitive
because high variation usually cause more congestion, thus putting more ports on the dependence
graph in Phase III. We explain this observation as follows. When the COV is large, traffic generated
from the PPBP model is actually very bursty. As said in Section 5.5.2, if the COV is larger, the peak
rates in the bursts are higher, followed by longer “silent” periods. In our implementation, when a
flow does not have traffic to emit at a time step, we do not push rate 0 along its path because it does
not affect the computation of flow variables. Obviously, if more flows have ingress rate 0 at a time
step, there are fewer flow variables that need to be settled. In addition, from the simulation results
shown in Section 5.5.2, we know that when the link utilization is high, higher burstiness actually
reduces the number of ports on the dependence graph in Phase III. These two observations both
explain why simulations configured with higher COVs take less time to finish.

We have also done some experiments on Top-1 to obtain the relatively execution speedup of the
time-stepped coarse-grained traffic simulator against a pure packet-level network simulator. The
Hurst parameter is 0.8. We test two COVs: 5 and 0.5. We also vary the ingress rates of flows
to obtain different average link utilizations in the network. The relative execution speedups, as a
function of average link utilization, are presented in Figure 5.12. It is clear that time-stepped coarse-
grained traffic simulation has achieved execution speedups at several orders of magnitude under
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COV = 5 COV = 0.5

Topology secs/round secs/round secs/round secs/round

(20% link util) (50% link util) (20% link util) (50% link util)

Top-1 0.0026 0.0026 0.0051 0.0052

Top-2 0.051 0.051 0.1988 0.2380

Top-3 0.283 0.285 1.4895 1.8740

Top-4 0.852 0.907 - -

Table 5.11: Average Execution Time per Time-Step

both traffic loads. We have also observed that with increasing average link utilization, the speedup
over the pure packet-level simulator also improves. This is because the performance of a packet-
level traffic simulator is directly affected by the amount of traffic traversing through the network,
but performance of the time-stepped coarse-grained traffic simulator is relatively insensitive to the
absolute traffic load in the network.

From Figure 5.12, we have noticed that the relative speedup curve grows sublinearly as the
average link utilization exceeds 50%. There are two reasons for this. First, when the traffic load
increases up to a high level, the pure packet-level traffic simulator drops a portion of traffic owing
to congestion. Second, heavy traffic load causes more output ports to become circularly dependent
and the fixed point algorithm thus has to operate on more unsettled flow variables in Phase III.

In addition, comparing the two curves with different COVs, we can find that a larger COV leads
to less relative speedup from the time-stepped coarse-grained traffic simulator. When a pure packet-
level simulator is used, if the traffic is more bursty, more packets are dropped in the network, which
significantly reduces the execution time. Although from Table 5.11 we know that with a larger
COV, the time-stepped coarse-grained simulation also needs less execution time, it has a smaller
impact on the speedup than the reduced execution time due to packet losses by the pure packet-level
simulator.

5.5.4 Accuracy

In this section, we discuss the accuracy of our approach as a background traffic generator against
the pure packet-oriented approach. We modify topology Top-1 by attaching an end host to each
POP node in it. The background traffic is simulated with two different techniques: our time-stepped
coarse-grained simulation and conventional packet-level simulation. We vary the average back-
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ground traffic load on a link from 10% to 80%.. The PPBP traffic model is used to generate ingress
traffic for each flow. The Hurst parameter is 0.8. The COV is 1.0 throughout all the experiments.

Each end host has installed a TCP server, a TCP client, a UDP server, and a UDP client. For
every background traffic load, we simulate 10 experiment settings. In each experiment setting,
a TCP client randomly pick a TCP server on any other end host. A TCP client’s behavior can
be modeled as an ON/OFF process: it connects with the TCP server it has chosen, requests a
data transfer of 5M bytes and then wait for the requested bytes from the server; after the client
receives all the data it has requested, it remains idle for an exponentially distributed period with
mean of 5 seconds; when it wakes up, it starts another request and the above process repeats until the
simulation is over. Upon receiving a request, a TCP server uses TCP protocol to transfer requested
bytes to the client from which the request comes. In each experiment setting, a UDP server also
randomly chooses a UDP client on any other host. A UDP server’s behavior can also be modeled as
an ON/OFF process: it uses UDP protocol to send a file of 5M bytes at the constant rate of 1Mbps,
and after it finishes the transfer, it remains idle for an exponentially distributed period with mean
of 5 seconds; after the off period finishes, it sends another 5M bytes at the same rate and the above
process repeats until the simulation is over. Every experiment setting is simulated for 1000 seconds.

Figure 5.13 presents the average TCP goodput, which is the number of bytes that have been
successfully transferred per second, as a function of average background traffic load on a link. The
average relative error on this metric over all the background traffic loads is 3.9% with standard de-
viation 1.3%. Figure 5.14 gives the successfully delivered fraction of UDP traffic as a function of
the average background traffic load on a link. The average relative error on it over all the back-
ground traffic loads is 0.6% with standard deviation 0.9%. Apparently, the two background traffic
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generation methods achieve excellent agreement on both the statistics. Therefore, the time-stepped
coarse-grained traffic simulation technique, when used to generate background traffic in realistic
topologies, is able to produce simulation results close to those from pure packet-level network sim-
ulators.

5.6 Flow Merging

The simulation results in Section 5.5.3 tell us that as the size of the network under analysis grows,
its simulation requires more computation and memory space. From Table 5.11, we have seen that
simulation of Top-4 cannot be accomplished on the given hardware because of its memory limita-
tion. In this section, we introduce the flow merging technique that can help reduce both memory
usage and execution time.

The key idea of the flow merging technique is that if multiple flows traversing through an output
port are destined for the same egress node, they can be merged into an aggregate flow. Such aggre-
gation, apparently, does not affect the accomplishment of the two objectives discussed in Section
5.3 because both of them consider only the aggregate traffic behavior. We use the feed-forward net-
work in Figure 4.4 as an example. The new network with merged flows is illustrated in Figure 5.15.
Flows � � and � � leave the system at the same place, so they merge into aggregate flow � 
�  � before
entering port A. Similarly, flows � � and � � are merged into aggregate flow � 
�  � before entering port
A, flows ��� and � � are merged into aggregate flow ��
�  � before entering port B, and flows � � and ���
are merged into aggregate flow � 
�  � before entering port C. Aggregate flow can further be merged
with other flows to form a larger flow. For example, aggregate flow � 
�  � merges with flows � 	 and
� � 	 into � 
�  �  	  � � before entering port D.

After multiple flows are merged at an output port, only the aggregate flow departs from the port.
Therefore, the flow merging technique reduces the memory required to maintain the flow states. On
the other hand, note that the performance of our algorithm is contingent on how many flow variables
need to be settled. The flow merging technique is also helpful in reducing the simulation execution
time. In the following discussion, we quantify the reduction on memory usage offered by the flow
merging technique. Recall that in Section 5.4.3, we have described how to construct the condensed
graph given a network topology and the flows traversing it.

Theorem 7 Let a network have � nodes,
�

POPs, and a flow from every POP to every other POP.
If the average number of nodes on a flow’s path is � and the number of edges in the condensed
graph is

�
, then the ratio of the memory space needed for keeping flow states when the flow merging

technique is applied to that when it is not is

��� � � � � ��� �
� � � 
 
 and

� �
�

� � � � 
 � (5.21)

Proof: Let � be the memory space needed to keep a flow’s state on a node. Note that in total
there are

� � � � � 
 flows in the network if they are not merged. If the flow merging technique
is implemented as described, on any node at most one merged flow state is maintained for each
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Figure 5.15: Flows Merged in the Feed-Forward Network Shown in Figure 4.4

destination POP; hence, the overall memory space required for keeping flow states is at most
� �

� � � . On the other hand, if the flow merging technique is not applied, the overall memory space
needed to keep flow states is

� � � � � 
 � � � � . Also note that the memory space needed for
keeping flow states when the flow merging technique is applied should not exceed that when it is
not. Therefore, the ratio of the memory space needed for keeping flow states when the flow merging
technique is applied to that when it is not is ��� � � � � �������� � 
 
 .

Recall that if there is an edge from port � to port � in the condensed graph, there must exist a
flow that traverses ports � and � consecutively. Hence, when the flow merging technique is applied,
if there is an edge starting from a port, at least one flow state is maintained at that port. Because
there are

�
edges in the condensed graph, the total number of flow states is then at least

� � � in the
flow merging case. Therefore, the ratio of the memory space needed for keeping flow states when
the flow merging technique is applied to that when it is not is

� �
�

�
�
� � 
 . �

In some POP-level topologies, every node is a POP. From Theorem 7, we have the following
corollary:

Corollary 8 Let a POP-level topology have
�

POPs and a flow from every POP to every other
POP. If the average number of nodes on a flow’s path is � and the number of edges in the condensed
graph is

�
, the ratio of the memory space needed for keeping flow states when the flow merging

technique is applied to that when it is not is ��� � � � 
 and
� �

�
�
�
� � 
 .

131



COV = 5 COV = 0.5

Topology secs/round secs/round secs/round secs/round

(20% link util) (50% link util) (20% link util) (50% link util)

Top-1 0.0020 0.0020 0.0031 0.0032

Top-2 0.049 0.049 0.1093 0.1175

Top-3 0.249 0.256 0.5064 0.5997

Top-4 0.755 0.787 1.5437 1.7789

Table 5.12: Average Execution Time per Time-Step Using Flow Merging Technique

Using the flow merging technique, we re-simulate the four topologies in Table 5.10. The average
execution times per time-step are given in Table 5.12. Comparing these results with those in Table
5.11, we can see that the flow merging technique reduces the simulation execution times under all
settings. Further observations are made as follows:

� The performance gain from the flow merging technique with a high COV is less impressive
than that with a low COV. As mentioned before, a high COV may cause relatively high peak
rates followed by long “silent” periods. Because in our implementation, the flows with ingress
rate 0 are ignored in the computation, whether they are merged on their paths does not affect
the performance.

� The flow merging technique achieves higher relative speedup when the traffic load in the
network is heavier. Increasing traffic load in the network causes more congested ports and
thus more flow variables on the dependence graph in Phase III. Because the flow merging
technique reduces the total number of flow variables in the topology, in a network with heav-
ier traffic load, fewer flow variables appear on the dependence graph in Phase III and less
computation is thus done in the fixed point iterations.

� The flow merging technique achieves higher relative speedup when a larger topology is simu-
lated. Note that when the network size grows, the average number of flows traversing through
a port also increases. If more flows traverse a port, it is more likely that flows destined for
the same destination can be merged to form larger aggregate flows and thus the flow merging
technique can work more effectively.

� Without the flow merging technique, we are not able to simulate Top-4 when COV is 0.5 on
the given hardware because of its memory limitation. The flow merging technique, however,
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Figure 5.16: Execution Speedup of Simulation with Flow Merging over Simulation without Flow
Merging

not only makes it possible to simulate this topology on the given machine, but also simulates it
in real time under both traffic loads. Recall that the time step is 5 seconds in the experiments.

In order to gain further understanding on how much performance improvement we can obtain
from the flow merging technique, we have designed another set of experiments. We use the same
topologies in Top-2 and Top-3 but vary the number of flows that a node directs to other nodes.
In the experiments, every router in the new topologies directs � flows to the routers in its own
backbone and � flows to the routers in each other backbone, where � is varied between 25, 50, 75,
and 100. The PPBP traffic model is still used to generate ingress rates for each flow. The COV is
0.5 and the Hurst parameter is 0.8. We simulate two traffic loads, one with average link utilization
20% and the other with average link utilization 50%. Figure 5.16 gives the relative speedup of the
simulation with the flow merging technique over the simulation without it. From the results, we can
see that simulation speedup obtained from the flow merging technique is approximately linear with
the number of flows that a node directs to other nodes. It also confirms the two observations made
earlier: we can achieve better performance gain from the flow merging technique by increasing
either the traffic load in the network or the topology size.

5.7 Parallel Algorithm

The sequential algorithm we have described in Section 5.5 offers the capability of simulating a
reasonably large network on a uni-processor. However, when the size of the network continues to
grow, the limited computation and memory resources possessed by a uni-processor will ultimately
become the bottleneck. It is natural, therefore, to parallelize the sequential algorithm on a distributed
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memory multiprocessor. We can then combine both advantages of high abstraction-level models and
high-performance computing to improve the performance of large-scale network simulation. Some
new notations are introduced in this section. Let

�
be the collection of processors used in the

parallel simulation. The processors in
�

are denoted as � � , � � , ..., and � � 
 � , where � � � is the total
number of processors.
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Figure 5.17: Partitions of the Topology in Figure 5.5

The example shown in Figure 5.5 is also used to illustrate how we parallelize each phase in
the sequential algorithm. Suppose that the original topology is divided into three partitions, each
simulated by a single processor. The partition is shown in Figure 5.17. Flow � � ’s path is on both
processors, � � and � � ; flow � � ’s path is on both processors � � and � � ; flow ��� ’s path is on both
processors � � and � � .

In the following subsections, we first describe how to parallelize the three phases in the sequen-
tial algorithm, especially the synchronization protocol among processors. After that, we investigate
the scalability of the parallel algorithm under both fixed and scaled problem sizes.
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5.7.1 Algorithm Description

The parallel algorithm keeps the basic structure of the sequential algorithm. Now we discuss how
to parallelize each phase in the sequential algorithm.

Phase I: Rule-Based Flow Update Computation. At the beginning of every time step, there is
no necessity for all the processors to synchronize with each other. Each processor starts by applying
the prioritized rules on the ports maintained locally. As in the sequential algorithm, after a processor
applies a rule on a flow traversing through a local output port, it updates its state at the next output
port. However, it is possible that the next output port is located on another processor. We use flow
update messages to deliver such flow update information. For example, after resolving port � � on
processor � � , the flow variable � � 	  � � can be settled. Since � � is located on processor � � , a message
carrying the settled rate of � � 	  � � is sent from processor � � to processor � � . Every processor keeps
monitoring arriving flow update messages. When such a message is received, the processor pro-
cesses the message according to the specified action. In the example, when processor � � receives
the flow update message from processor � � , it immediately settles the flow variable � � 	  � � with the
rate carried in the message.

At some point, a processor may find that no local port satisfies the pre-condition to any rule.
It should not leave Phase I unless it ensures that no flow update messages will come from other
partitions in the current time step. Ignoring such messages may cause the following problems when
a processor enters Phase II:

� a flow variable is not settled even though the upstream port on the flow’s path has already
been resolved;

� a flow variable is not settled even though the upstream port on the flow’s path has been iden-
tified as transparent and the corresponding input flow variable at that port has been settled;

� a port is in the unresolved state even though a tighter upper bound on an input flow variable
established by the upstream port on the flow’s path can make it transparent;

� a flow variable is still in the unsettled state.

These issues can lead to more flow variables that appear on the dependence graph in Phase
III. It is necessary, therefore, to ensure that when a processor enters Phase II, all other processors
have also finished Phase I. This can be done with barrier synchronization that is widely used in
parallel computation. A standard barrier primitive is a function that blocks the execution of the
calling processor until all other participating processors also invoke the function, at which time
all processors are allowed to continue. As to our problem, in order to ensure that a processor can
safely enter Phase II, a barrier should be invoked after it finishes all the work in Phase I. However,
a standard barrier algorithm described as above is inappropriate here for the following two reasons.
First, if a processor, after finding that no local ports satisfy the precondition to any rule, decides to
enter the barrier, it cannot process any flow update message that arrives later. Second, as far as our
problem is concerned, it is difficult for a processor to determine whether a new flow update message
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will arrive later. In the example topology shown in Figure 5.17, suppose that processor � � receives
a message from processor � � that bounds the rate of flow variable � �

	
� ����  � � . At this point, it cannot

determine whether it is safe to enter the barrier because it is likely that processor � � will send it
another flow update message in the future (e.g., one that sets a tighter upper bound on � �

	
� ����  � � or one

that settles its rate).

Such dilemma is solved with non-committal barrier synchronization [103]. In contrast to a
standard barrier, non-committal barrier makes it unnecessary for a processor to enter the barrier
with the guarantee that all its pre-synchronization computation must have been completed. Rather,
a processor invoking a non-committal barrier is allowed to further receive computation messages if
only it is still in the barrier. In the non-comittal barrier algorithm, every processor maintains both
counts on the computation messages it has sent and received. With aid of a tree structure, each
processor keeps a set of neighbor processors in different dimensions. A dimension can be viewed
as a level in the auxiliary tree. Each processor exchanges the counts on computation messages
sent and received with its neighbor processors from the lowest dimension to the highest dimension;
it is able to progress past the barrier only after it has agreed on the counts on the computation
messages sent and received with its neighbor processors in all the dimensions. A processor may
receive a computation message while it is checking the counts on the computations messages sent
and received with the neighbor processor in a dimension; when this occur, the algorithm rolls back
to the lowest dimension. This idea is similar to the optimistic synchronization protocol discussed in
Section 2.4.1. The non-committal barrier algorithm requires �������	� � � � � 
 space on each processor,
and in the absence of rollbacks, requires ������	� � � � � 
 parallel execution time (recall that � � � is the
number of participating processors).

Non-committal barrier synchronization solves our problem by allowing processors to process
the computation messages received after it has invoked a non-committal barrier primitive. How-
ever, if rollbacks occur frequently in the algorithm, its performance may deteriorate significantly.
When a processor rolls back to the lowest dimension, it has to exchange again the counts on the
computation messages sent and received with all its neighbors. This process itself requires commu-
nication messages to exchange synchronization information. Hence, if rollbacks occur frequently, a
significant part of computation is consumed on processing the synchronization messages. In short,
the optimistic feature of non-committal barriers provides high flexibility for the processors to syn-
chronize with each other, but their performance is affected by how frequently rollbacks happen.

In order to avoid unnecessary rollbacks after premature entrance to the non-committal barrier,
we let Phase I invoke the barrier primitive after it finishes as much pre-synchronization computa-
tion as possible. The following two conditions must be satisfied before a processor enters a non-
committal barrier in Phase I:

(1) no ports on the local partition satisfy the pre-condition to any of the 6 rules described in Tables
5.1-5.6;

(2) no flow variable on the local partition is in the unsettled state.

Condition (1) is evident because if there exists a port satisfying the pre-condition to any of the
6 rules,, we can simply apply that rule on it. Condition (2) is based on Lemma 8. From that lemma,
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we know that every flow variable must be in the settled or bounded state after Phase I. Hence, if
there exists a flow variable still in the unsettled state in Phase I, a flow update message must arrive
later from another processor that updates its state to either settled or bounded. In order to avoid
the unnecessary rollback in the non-committal barrier when that occurs, the processor postpones
entering the barrier until that message is received.

Phase II: Dependence Graph Generation. Recall that in the sequential algorithm, this phase
is divided into two steps. In the first step, the dependence graph is created by putting every port in
the unresolved state into its vertex set and then adding directional edges that reflect the dependence
relationship among the unsettled flow variables. In the second step, all the vertices (or ports) with
outdegree 0 are iteratively pruned from the dependence graph.

On a distributed computing platform, the ports in the unresolved state can be located on multiple
partitions, each of which then has only partial knowledge of the whole dependence graph. Consider
that processor � � processes port � � in Phase II. For every input flow variable � �

	
� ��! ��� ( � � � � ) in the

unsettled state, the local processor needs to find the next port ��	 on flow � ’s path that is also in
the unresolved state (if such � 	 exists). Port � 	 , however, may not be found on the local partition.
When this occurs, the local processor sends a query message to the processor to which flow � goes
after departing from processor � � . Let ��� denote the processor that receives this query message.
Processor � � , after receiving the message, continues searching port ��	 on the piece of flow � ’s path
that it keeps. If port � 	 is found on processor � � , then processor � � sends a positive reply message
to processor � � and adds a backward inter-processor edge from � � � � � ��� to � ��� � � 	 � to the
part of dependence graph that is maintained locally; if � 	 is not found and flow � goes to a sink
on processor ��� , then a negative reply message is sent back to processor � � ; if � 	 is not found on
processor ��� and flow � goes to another processor � ! , then processor � � forwards the query message
from processor � � to processor � ! . When processor � ! receives the query message, it processes it in
the same way as processor � � . Finally, if processor � � receives a positive reply message from, say
processor � 	 , it adds a forward inter-processor edge from � � � � � �"� to � � 	 � � 		� to the part of
the dependence graph that is maintained locally; if processor � � receives a negative reply message,
it simply ignores it.

In the sequential algorithm, the two steps in this Phase can be finished in strict time order. In
the parallel algorithm, however, serializing these two steps requires extra synchronization after the
first step. In order to avoid such synchronization cost, we combine these two steps in the parallel
algorithm. Every port in the dependence graph keeps counts on both how many query messages
have been sent and how many reply messages have been received. When the two counts at a port
match at some point, we know all query messages sent out from this port have been replied; in this
way, we are able to determine whether its out-degree is 0: a port with outdegree 0 must have neither
intra-processor edges pointing to it nor forward inter-processor edges. After a port is identified as
having outdegree 0, it is specially marked as detached and also removed from the vertex set of the
dependence graph; all the intra-process edges pointing to it is removed from the partial dependence
graph maintained locally. Some forward inter-processor edges on other processors may still point
to this port. For each of such edges, an edge-removing message is sent to the port at the other
end. When that port receives this message, it removes the corresponding forward inter-processor
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edge and also checks whether its own out-degree decreases to 0; if so, it repeats the above process.
In addition, owing to asynchrony, a query message may arrive at a port that is marked as detached.
When this occurs, a negative reply message is simply sent to the port that initiates the query message.
We illustrate messages communicating between processors in Figure 5.18.

All the processors are synchronized before they proceed into Phase III. A similar problem arises
because it is difficult for a processor to ensure that no more messages will arrive in the future. Unless
a processor has no queues with forward inter-processor edges, some edge-removing messages may
arrive later. Hence, non-committal barrier synchronization is also used here before a processor
decides to proceed into the next phase.

In Phase I, we mentioned that frequent rollbacks in a non-committal barrier will negatively affect
its performance. For the same reason, we let a processor invoke a non-committal barrier primitive
only after it finishes as much pre-synchronization computation as possible. More specifically, a
processor must satisfy the following three conditions before it is allowed to enter the barrier:

(1) no port in the partial dependence graph locally maintained has out-degree 0;

(2) for every query message sent out from a port, an either positive or negative reply message
corresponding to it must have been received;

(3) for every flow � that traverses a sequence of ports in the partial dependence graph maintained
on the local partition, denoted by ( � � �
� � � � � � ), if flow variable ���

	
����  � 	 is not in the settled state,

then: (a) there exists an intra-processor edge between any two successive ports in sequence
( � � �
� � � � � � ); (b) if flow � comes from another processor, then a query message for this flow
must have been received at port � � ; (c) if flow � goes to another processor, then a query
message for this flow must have been sent from port � � to that processor.

Condition (1) is directly derived from Lemma 9. Condition (2) states that the counts on query
and reply messages at a port must match. Case (a) in Condition (3) ensures that all the intra-
processor edges must have been added before the processor enters the barrier; Case (b) in Condition
(3) states that if no variable corresponding to a flow is in the settled state at any port in the de-
pendence graph maintained locally, this flow must come from another processor and thus a query
message is expected; Case (c) in Condition (3) means that if a flow leaves for another processor with
an unsettled rate, a query message should be sent to it for this flow. Prediction on message arrivals
enables a processor to postpone entering the non-committal barrier until necessary.

Phase III: Fixed Point Iterations and Residual Flow Update Computation. In this phase,
the fixed point solution is applied to determine the remaining unsettled flow variables which are
associated with the ports in the dependence graph. We have considered the following two methods
to implement the fixed point iterations on a distributed memory multiprocessor:

� Migration-based approach: We migrate the whole dependence graph onto the same mem-
ory space, apply the fixed point solution to determine the unsettled flow variables, and when
the iterations converge or the number of iterations reaches the upper bound, migrate the settled
flow variables to their original memory space.
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� Message-passing-based approach: In every iteration in the fixed point solution, we use
communication messages to deliver updated estimates on the unsettled flow variables associ-
ated with the ports in the dependence graph.

Migration-based approach produces a relatively small number of communication messages
compared with message-passing-based approach. In a computation architecture where communica-
tion bandwidth is the performance bottleneck, this approach is an appealing solution. The scalability
of this approach is, however, very limited. As the problem size grows, the size of the dependence
graph may also increase. Hence, it is possible that the dependence graph has too many ports in it so
that a single memory space cannot accommodate it. On the other hand, if only a single processor
is involved in the fixed point iterations and all the others are waiting for the results, significant load
balancing problem results. In our implementation, therefore, the second approach is adopted.

Now we discuss some details on the message-passing-based method. Two specific questions
regarding it needs to be answered. One is how a processor knows it should start a new iteration,
and the other is how a processor knows it should terminate the fixed point iterations when the
termination criterion is satisfied. As for the first question, a processor knows exactly how many
local flow variables not in the settled state from the partial dependence graph it maintains. For the
sake of explanation, we use

� � � � 
 to denote the vector of unsettled flow variables in the partial
dependence graph maintained on processor � . After processor � finishes an iteration, it updates
some estimates on flow variables in

� � � � 
 , and also sends out messages to update the estimates
of unsettled flow variables in the partial dependence graph maintained on the other processors.
Afterwards, the estimates on some flow variables in

� � � � 
 may not have been updated for the next
iteration. Under such circumstance, the processor has to wait for messages from other processors
to have them updated. It is until the estimates on all the flow variables in

� � � � 
 have been updated
that processor � starts the computation for the next iteration.

Concerning the second question, we address it as follows: after finishing an iteration, all the
processors exchange the maximum relative difference between the successive estimates on the un-
settled flow variables in the partial dependence graph maintained locally. This can be efficiently
implemented with a standard max reduction operator on a typical distributed memory architecture
[111]. If the termination criterion uses other distance norms like the Euclidean distance norm, extra
work besides a standard reduction operator may be necessary. Once a processor knows the global
maximum relative difference between estimates on unsettled flow variables in the successive itera-
tions, it can decide whether it should terminate the fixed point iterations.

After the fixed point iterations terminate, the processors can resume the flow update computa-
tion in Phase I to settle the remaining unsettled flow variables. For the same reason presented in
Phase I, we put a non-committal barrier at the end of this phase. Therefore, it is ensured that all
computation messages communicated at the current time step have been successfully received by
their destinations before it finishes.
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5.7.2 Scalability Analysis

In this section, we use simulation experiments to demonstrate the scalability of the parallel al-
gorithm. The performance of a parallel program is relevant to several parameters, including the
problem size, processor count, and the architecture on which it is executed. All the experiments
discussed in this section are executed on Tungsten, a multiprocessor supercomputer at the National
Center for Supercomputing Application (NCSA)2. A brief technical introduction to Tungsten is
given as follows. It has 1480 computation nodes, each of which has a 32-bit 3.2GHz Intel Xeon
dual-processor and 3GB memory; the nodes are interconnected with Myrinet 2000. The operating
system used on each node is Linux 2.4.20 (Red Hat 9.0).

In the following subsections, we study how the scalability of our parallel program is affected
by the processor count and the problem size. Two sets of experiments are discussed, one with fixed
problem size and the other with scaled problem size.

5.7.2.1 Scalability with Fixed Problem Size

The purpose of the first set of experiments is to evaluate how effectively the parallel algorithm
described in Section 5.7.1 performs with an increased number of processors. We extend the ATT
backbone depicted in Figure 4.7 in the experiments. The extended topology contains 32 ATT back-
bones. Each ATT backbone has 27 nodes, which are numbered from 1 to 27. From the 27 nodes, we
choose the three ones with the highest degrees as bordering nodes through which the backbone is
interconnected with other backbones. Between every two backbones, we use a link to directly con-
nect pairs of bordering nodes that have common node identifiers. Hence, all the bordering nodes that
have the same node identifiers in the topology form a clique. The internal links in each backbone
have bandwidth 100Mbps, and the external links that connect two bordering nodes have bandwidth
1000Mbps. The traffic pattern in the experiments is “all-to-all”: from each node in the topology,
there is a flow directed to every other node. Since there are 864 (i.e., � � � � � ) nodes in the topology,
the total number of flows is 745,632 (i.e.,

� � ��� � � � ). The ingress traffic of each flow is modeled
with a PPBP traffic model, whose COV (i.e., ratio of standard deviation to mean) is 1 and Hurst
parameter is 0.8. We vary the mean of each flow’s ingress rate to obtain two traffic intensity levels
in the network, one having average link utilization 50% and the other having average link utilization
80%.

The number of processors onto which the topology is partitioned varies between 1, 2, 4, 8, 16,
and 32. In most cases, we run the parallel program to execute 200 time steps. When there is a
single processor, we execute only 20 time steps for the following reason. In order to isolate the
computation cost on generating sample ingress rates for each flow using the PPBP model from the
computation cost of our parallel program, we precompute the sample ingress rates for each flow
and store them throughout the simulation. However, when a single processor is used, the memory
associated with it cannot accommodate the simulation for 200 time steps. Hence, only 20 time steps
are simulated in this case. We observe only small variance on the execution time per time step. The
accuracy of the simulation results is thus hardly affected.

2http://www.ncsa.uiuc.edu/
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In Figures 5.19 and 5.20, we give the scalability results when the average link utilization is 50%
and 80% respectively. Each figure depicts the average execution time and the relative speedup of the
parallel algorithm as we vary the number of processors from 1 to 32. From the simulation results,
we observe that as the number of processors increases, the average execution time per time step
decreases monotonically regardless of the traffic load in the network. This suggests that increasing
the number of processors up to 32 is always productive. Note that in some cases it may not be true
because as the number of processor grows, the increased communication and synchronization cost
may offset the performance gain from parallelizing the computation.

Throughout all the experiments, good efficiency has been observed. The efficiency of a parallel
program is defined to be its relative speedup over the corresponding sequential program divided by
the number of processors used [37]. A high efficiency means that processors are effectively used
in the parallel execution. In our experiments, when the average link utilization is 50%, the mean
efficiency from using more than one processor is 0.766, and when the average link utilization is
80%, the mean efficiency from using more than one processor is 0.755. However, we have also
observed that the efficiency of our parallel program is not a monotonically decreasing function of
the number of processors used in the simulation. It is only a general trend because exceptions
happen in some cases. For example, when the average link utilization is 50%, if 8 processors are
used, the efficiency is 0.653, but if 16 processors are used, the efficiency is 0.814; when the average
link utilization is 80%, if 8 processors are used, the efficiency is 0.660, but if 16 processors are used,
the efficiency is 0.774. This is counter-intuitive because usually, when we increase the number of
processors, the cost on processing computation and synchronization messages also increases, thus
decreasing the efficiency of the parallel program.

A close examination of the simulation results reveals that the above phenomenon actually orig-
inates from the first phase, whose execution time dominates the overall execution time. Note that
as the number of processors varies in the simulation, each processor actually behaves differently in
the first phase. In our implementation, a processor gives higher priority to processing local ports
that are applicable to any of the 6 rules than sending flow update messages to other processors. The
heuristics behind this implementation is that a processor is able to aggregate flow update informa-
tion of many flows into the same physical communication message if they are destined to the same
processor. Then, given the same problem, the average size of a computation message when there
are fewer partitions is relatively larger than that when there are more partitions. The performance
of MPI point-to-point communications, which are used in our implementation, is known to be con-
tingent on the message size. Empirical results show that such performance gap can be significant
with different message sizes and the communication throughput is not a monotonic function of the
message size3. This suggests that the efficiency of our parallel algorithm may not be a monotoni-
cally decreasing function of the number of partitions in the simulation, as we have observed from
the simulation results.

Table 5.13 presents the proportion of the execution time consumed by each phase to the average
execution time per time step. From the results, we can see that given a certain traffic intensity
level, the proportion corresponding to each phase alters only slightly as we vary the number of

3http://www.mhpcc.edu/training/workshop2/mpi performance/MAIN.html
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Figure 5.19: Scalability Results with Fixed Problem Size (Link Utilization 50%)
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Load Phase Timelines

1 2 4 8 16 32

I 79.9% 76.6% 78.0% 81.2% 77.0% 74.5%

50% II 5.7% 7.1% 7.2% 6.5% 7.9% 9.9%

III 14.3% 16.3% 14.8% 12.3% 15.2% 15.6%

I 71.8% 71.6% 70.0% 75.3% 73.2% 73.3%

80% II 7.8% 8.8% 9.5% 8.2% 9.1% 9.4%

III 20.4% 19.6% 20.6% 16.5% 17.7% 17.3%

Table 5.13: Proportion of Execution Time Consumed by Each Phase w.r.t the Average Execution
Time per Time Step

processors in the simulation. It is also evident that the execution time by Phase I dominates over
the other two phases by taking more than 70.0% of the average execution time per time step under
both traffic intensity levels. This is explicable in that our algorithm aggressively searches for ports
that can be settled in Phase I and thus minimizes the number of ports involved in later fixed point
iterations. The number of ports involved in fixed point iterations is approximately 5% and 8% of
the total number of ports when the average link utilization is 50% and 80% respectively. Another
observation is that as the traffic load in the network increases, the proportion of the execution time
taken by Phases II and III to the average execution time per time step also increases. When the
traffic intensity level in the network increases, a larger fraction of ports are congested and more
computation and communication are thus necessary to form the dependence graph in Phase II and
update the estimates of the unsettled flow variables in the dependence graph in Phase III.

5.7.2.2 Scalability with Scaled Problem Size

In the previous section, we discussed how our parallel program performs in a given problem using
varied number of processors. When the scalability of a parallel program is analyzed, it is an impor-
tant objective that increasing the number of processors in the simulation can shorten the execution
time. On the other hand, there is another motivation for using large parallel computers, that is, to
solve larger problems with more computation resources. It is, therefore, also important that par-
allel programs are able to sustain its efficiency under scaled problem size. In this section, we use
experiments to demonstrate the scalability of our parallel algorithm from this perspective.

In the new experiments, we extend the router-level Exodus backbone, which is listed as Top-2

145



in Table 5.10. In the simulation that runs on � processors, the topology has � Exodus backbones,
each of which is a partition handled by one processor exclusively. The Exodus backbone has 244
routers, whose identifiers are numbered from 1 to 244. From these routers, we select the 17 routers
that have the highest degrees in the backbone as its bordering routers. Among the topology with �
backbones, every pair of bordering routers with a common identifier are directly connected with an
inter-domain link; hence, all the bordering routers with the same identifier form a clique of � nodes.
Each link that interconnects two backbones has bandwidth 2,488Mbps. For the sake of explanation,
we number the � backbones from 1 to � . The intra-domain traffic pattern is “all-to-all”, that is, from
each router in any backbone, there is a flow directed to every other router in the same backbone.
Hence, there are � ��� ����� � � (i.e., � � � � � ��� ���

) intra-domain flows. The inter-domain traffic
pattern is circular: from each router in the � -th backbone (

� � � � � ), there is a flow directed to
every router in the

�
-th backbone, where

�
is � � �

if � is not equal to � or
�

otherwise. Hence, there
are � ��� � � � � � (i.e., � � � ��� � � ��� ) inter-domain flows. The total number of flows in the simulation
using � processors is

������� ��� � � � . As before, the ingress traffic of every flow is modeled with a
PPBP traffic model whose COV parameter is 1 and Hurst parameter is 0.8. We vary the mean of the
ingress rate of each flow to obtain two traffic intensity levels, one with average link utilization 50%
and the other with average link utilization 80%.

In the experiments, we vary the number of processors from 2 to 32. In each experiment, 200
time steps are simulated. The average execution times per time step for both traffic intensity levels
are depicted in Figure 5.21. We do not give the results with only one processor because there is
no inter-domain traffic and the workload on it thus differs from the average workload per processor
when there are more than one processors in the simulation. It is evident that under both traffic
intensity levels, the average execution time per time step hardly changes as the problem size scales.
When the average link utilization is 50%, the average execution time per time step increases from
780.6 milliseconds with 2 timelines to 794.7 milliseconds with 32 timelines, only by 1.8%; when
the average link utilization is 80%, the average execution time per time step increases from 807.9
milliseconds with 2 timelines to 844.6 milliseconds with 32 timelines, only by 4.5%.

We also notice the trend that the average execution time of Phases II and III increases slightly
with growing number of processors. However, we do not observe the same trend for the first phase.
This is because the rule-based flow update computation, whose execution is contingent on the orders
of flow update message arrivals, brings relatively high variation to its performance. This contrasts
with the other two phases, in which the workload on each processor is comparatively stable once the
states of all the flow variables and all the ports have been determined after the first phase. Hence,
the performance of the last two phases is more significantly affected by the synchronization cost,
which increases with a growing number of processors.

In Figure 5.22, we give the average count on the messages sent by each processor under two
traffic intensity levels. The curves for the synchronization message counts in Phases II and III are so
close that they overlap with each other in the both graphs. It is clear that the count on the synchro-
nization messages sent by each processor grows with increased number of processors. Recall that
processors in Phase I synchronize with each other using non-committal barriers before they enter
Phase II. The key idea of non-committal barrier synchronization is that processors reach a consen-
sus on counts on computation messages sent and received. Without any rollback, a processor has to
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synchronize with ���	� � � � other processors, where � � � is the total number of processors. Therefore, as
more processors are used, each processor has to synchronize with more other processors, increasing
the number of synchronization messages. However, we have also observed an exception when the
average link utilization is 50%: the count on the synchronization message sent in Phase I under 8
processors is smaller than that under 4 processors. Note that there are more computation messages
sent by each processor under 4 processors than under 8 processors. As the number of computation
messages grows, rollbacks can occur more frequently in the non-committal barrier, and therefore,
more synchronization messages are generated.

Concerning the computation messages, we have observed that the numbers of computation mes-
sages sent in both Phases II and III remain almost unaltered as the number of processors varies.
Recall that the traffic pattern a processor observes in the simulation is the same across all the cases
with different number of processors. Therefore, the distribution of congested ports exhibits a simi-
lar structure across timelines, regardless of the number of timelines the topology is partitioned into.
Once the congested ports have been identified in Phase I, the work done in Phases II and III bears
close resemblance across partitions, each though the number of partitions varies in the experiments.
This explains the small variation on the number of computation messages send in Phases II and III.

It has also been noticed that the number of computation messages in Phase I decreases as the
number of processors increases in the simulation. As we mentioned before, a processor’s behav-
ior in Phase I is relatively more dynamic compared with in Phases II and III, because it depends
on the order in which flow update messages are received. When we increase the number of pro-
cessors in the simulation, the total number of messages, including both computation messages and
synchronization messages, grows dramatically. Therefore, when there are only a small number of
processors, computation messages are delivered to their destinations within a shorter time than when
there are a large number of processors. In Phase I, after a processor receives a flow update message,
it first updates the corresponding flow variables indicated by the message; after that, it processes
the ports that satisfy the precondition to any of the 6 rules; when no local ports can be processed,
it sends out flow update messages to other processors. If the communication throughput is lower,
the above process happens less frequently and relatively more flow variables are packed in the same
physical communication messages and thus fewer computation messages are generated in the sim-
ulation. This explains the overall trend that an increased number of processors generates decreased
number of computation messages per timeline in Phase I, regardless of the traffic intensity levels in
the network.

From the simulation results, it can be safely concluded that our parallel program achieves ex-
cellent scalability as the problem size scales up to 32 processors. Note that in all the experiments,
the average execution time per time step takes less than 1 second. As we have discussed in Section
5.1, the time-stepped fluid-oriented traffic simulation is suited for large-scale background traffic
simulation at coarse time scales. In many cases, the time step is configured at orders of seconds or
even minutes. Hence, our parallel algorithm opens the avenue of real-time simulation of ultra-large
network topologies, which are exemplified by one with 32 tier-1 backbones in our experiments.
However, we have also realized some other important problems towards this objective. For exam-
ple, in our experiments, we assume that the partition is identical in terms of both topology and traffic
pattern across all the participating processors. It is imaginable that given a more realistic topology

147



and traffic pattern, it may not be an easy task to achieve perfect load balancing across partitions.
Therefore, an important problem is how to achieve ideal load balancing under realistic topology
and traffic. There has been some work in this field [83][84], but a general solution that works well
under varied simulation configurations still remains as an open problem. Furthermore, an ideal par-
titioning algorithm should be aware of the traffic representations. For example, the computation
workload for fluid-oriented models may be different from packet-oriented models when they are
used to represent the same traffic. In order for our parallel algorithm to perform efficiently, it is
important to find a partitioning algorithm that takes its execution property into consideration. In
any event, the simulation results demonstrated in this section offer great hope that simulation of
ultra-large realistic networks can be accomplished in real time.
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Figure 5.21: Average Execution Time with Scaled Problem Size
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5.8 Rule Modifications for Multi-Class Networks

The rules presented in Tables 5.1-5.6 are suited for networks that have deployed the FIFO scheduling
policy. In networks where there are multiple classes of traffic, the scheduling policy in ports may
not conform to the FIFO service discipline. However, with some modifications on the rules, the
main body of the algorithm can still be used. In this section, we discuss how to change the rules for
ports that implement GPS scheduling policy [113]. GPS is a work-conserving scheduling discipline
that provides guaranteed service rate for each traffic class, but if some traffic classes do not consume
their guaranteed service rates, allows the residual service rates to be shared by other traffic classes.
We use the same notations in Section 5.3. We consider a simple case in which there is only one flow
in each traffic class. Suppose that � flows traverse port � with GPS scheduling policy. These flows
are denoted by � � , � � , ..., � � respectively. Associated with flow � (

� � � � � ) is a non-negative
weight,

�

	
, which specifies the guaranteed service rate for flow �

�"� � �	 � �

	
� �� 
 � � � � � � (5.22)

Recall that � � is the service rate of port � . The guaranteed service rate for each flow provides
the service isolation among traffic classes. After distributing the guaranteed service rate to each
flow, there may still exist some excess service rate. It is reallocated among the backlogged flows
in proportion to their weights. With the GPS scheduling discipline, if flow � is backlogged in the
system, then

�"� �4# %'����9 �
�"� �4# %'��
�
 � �

�

	
� � � � � ��� ���
� � � � � �

(5.23)

Note that the departure rate is actually the service rate received by a flow.

The GPS scheduling discipline can be implemented as in Table 5.14. Residual bandwidth � is
initialized to be � � , the bandwidth associated with port � . Set � consists of flows whose departure
rates have not been determined (lines 1 and 2). � is initialized to contain all the flows from � �
to � � . The departure rate of each flow is initialized to be its guaranteed service rate (lines 3 and
4). Lines 5 to 9 determine the flows whose traffic can all be served, allocate bandwidth to these
flows, and then compute the residual bandwidth. Line 10 removes those flows whose departure
rates are determined from set � . If all the departure rates have been determined, the algorithm ends
(line 11). Otherwise, the residual bandwidth is allocated to the flows whose departure rates are still
unsettled according to their bandwidth share weights. After the allocation, it is possible that some
flows receive more bandwidth than their arrival rates. Then, the process repeats itself until all the
departure rates are determined. It is proven in [73] that the algorithm realizes the GPS scheduling
policy. In the following discussion, we call this the GPS algorithm.

Given the GPS scheduling discipline, we discuss how to modify the rules in the algorithm
presented in Section 5.5.1. Rule 1 in Table 5.1 states that for a port in the unresolved state, if
all its input flow variables are settled, the departure rates can be determined according to the FIFO
policy. When the GPS scheduling discipline applies, we only need to change the way in which the

151



1. � � � � ;
2. � � � � 	 
 ��� 	 � � ;

3. for every � � in �

4. � � �4# %'��
�
 � � � � � � � � ��� -�� �

	
;

5. ��� � � � ��� � ��� and � �
	
� ��
�
 � � � � � � � � ��� -�� �

	 
 ;
6. if � is empty, the algorithm finishes;

7. for every � � in �

8. ��� �4# %'��
�
 � � ���

	
� ��
�
 � ;

9. � � � � ���
	
����
�
 � ;

10. � � � � � ;

11. if � is empty, the algorithm finishes;

12. for every � � in �

13. � � �4# %'��
�
 � � � � � � � � ��� -�� �

	
;

14. goto line 5;

Table 5.14: Implementation of GPS Scheduling Policy
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Precondition
� � � � � � � �

� � � 
 � � � � 8 � � � � 8 � �� � � �*� � ��� � 
 � � � �
� � �"�

	
����
�
 � ���4� 
 � � 8!�4� �98 � �

���
	
����
�
 � ��� � 
 � � � � � � � � ���9-�. 0 � %�� � �

	

Action � � � � �  	 � � �  � � ��� � 
 � � � 8!�4� �98 �
�"�
	
����
�
 	 � � �  � � ��� � 
 � ���

	
� ��
�
 � ��� � 


Table 5.15: Rule 2’

departure rates are computed from Equation (5.3) to the GPS algorithm. The modified rule is called
Rule 1’.

Because the GPS scheduling discipline provides bandwidth guarantee, if a flow’s arrival rate
does not exceed this guaranteed service rate, all its traffic can traverse the port. Therefore, we
introduce a new rule here whose priority is just below Rule 1’. The pre-condition to trigger the new
rule is the existence of a flow that has a settled arrival rate no greater than its guaranteed service rate.
When this condition holds, the settled arrival rate can be propagated through the port and then used
to settle the corresponding flow variable at the next port on the flow’s path. The new rule, called
Rule 2’, is illustrated in Table 5.15.

Rules 2, 3 and 4 in the original algorithm are relevant to a transparent port. Since GPS schedul-
ing policy is work-conserving, if the aggregate arrival rate into a port is known not to exceed the
link bandwidth associated with it, all the input traffic can be served. This suggests that all these
rules are still effective on a port with the GPS scheduling policy.

Rule 5 in Table 5.5 establishes the upper bound on a flow variable at a port when the corre-
sponding flow has a settled arrival rate at the upstream port that is in the unresolved state. In order
to compute the upper bound, we assume that all flow variables not in the settled state at the upper-
stream port have arrival rate 0. Then, we apply the corresponding scheduling discipline to compute
the departure rate for the flow under consideration. The derived departure rate must be no smaller
than the real departure rate, because if flows whose arrival rates into the upstream port are not settled
have positive rates, they will only squeeze bandwidth from flows whose arrival rates have already
been settled. Therefore, the derived departure rate must be an upper bound on the real departure
rate. The GPS scheduling discipline does not violate the above reasoning, which suggests that Rule
5 in Table 5.5 is still effective after modifying the way to compute the departure rate from Equation
(5.3) to the GPS algorithm.

Similarly, we can modify Rule 6 in Table 5.6 to reflect the GPS service discipline. Recall that
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this rule establishes the upper bound on a flow variable at a port when the corresponding flow vari-
able at the upstream port is in the bounded state. The upper bound is computed by assuming that all
flow variables in the bounded state but the one under analysis have rate 0. Their true rates may be
positive, but this will only take away portion of bandwidth allocated to the flow under consideration,
making its true departure rate smaller than the derived departure rate under the assumption. There-
fore, when the GPS scheduling policy is considered, we can simply change the way to compute the
departure rate in Rule 6 from Equation (5.3) to the GPS algorithm.

5.9 Related Work

There are a few fluid-oriented simulation models in which simulation time advances by constant
time steps. The time-driven fluid-oriented model in [141] simulates the behavior of every queue in
the network by forming the upper and lower bounds for both its backlog and its departure process.
At every time step, the ingress process at a queue is modeled by two extreme cases: all traffic
arrives immediately after the previous time step or all traffic arrives immediately before the current
time step. Apparently, this differs from our approach in which ingress traffic of a flow is flattened
between any two successive time steps. Their method establishes the upper and lower bounds on the
backlog and the departure process with the upper and lower bounds on the arrival process at every
queue. In a feed-forward network, the method assumes that the propagation delay of any link is
0; in a network with feedbacks where circular dependence might exist, non-zero propagation delay
is assumed. The utility of the method is contingent on the closeness between the upper and lower
bounds established on the backlogs or the departure processes: if the difference is sufficiently small
throughout the simulation, then a good estimate on the sample path of the system is obtained. In
addition, there is a tradeoff between the simulation efficiency and the time step size: a larger time
step size reduces the frequency of the computation but may introduce larger gaps between the upper
and lower bounds for some processes, and a small time step size improves the simulation accuracy
but imposes more computation load.

In [85], a time-stepped fluid-oriented algorithm is proposed to simulate TCP traffic in large-scale
IP networks. The foundation of this algorithm is a few sets of closely coupled nonlinear differential
equations. The first set of equations characterizes how TCP adapts its congestion window size to
the current network condition, including the round trip time and packet loss rate. Another set of
equations captures the dynamics of the backlog in a queue as a function of its aggregate arrival
rate. In their approach, AQM (Active Queue Management) policies such as RED (Random Early
Dropping) are considered; hence, the dropping probability at a queue, as a function of the backlog,
can also be described with differential equations. The differential equations that are applied on all
the TCP flows and all the queues in the topology form a system of nonlinear differential equations.
A time-stepped algorithm is proposed to derive the sample path of every component in the network
throughout the simulation. At every time step, the Runge-Kutta algorithm [32] is applied to solve
the system of differential equations numerically. Then, all state variables, including congestion
window sizes, queue lengths, and loss probabilities at congestion links, are updated for the next
time step. In order to reduce the complexity of the model, an optimization similar to transparent

154



port identification in our approach is applied: at every time step, uncongested links are identified
and then removed from the network model, reducing the number of equations that need to be solved.
A link is identified as uncongested if the sum of two components does not exceed its capacity: one
component is the sum of the capacities of all upstream queues, and the other is the sum of the arrival
rates of all the TCP flows originating from the starting endpoint of the link. Compared with our
approach which establishes upper bounds on the flow variables on each flow’s path, their method is
less aggressive on reducing model complexity. As other time-stepped simulation techniques, their
approach needs to find a tradeoff between accuracy and performance. A smaller time step provides
more accurate solution, but needs more computation work. Moreover, owing to TCP’s sensitivity to
the round trip time, any step size larger than average round trip time inevitably affects the simulation
accuracy. This differs from our approach which considers traffic behavior at coarse time scales.

An example of integrating time-stepped fluid-oriented traffic simulation into the same network
simulator as packet-oriented traffic simulation is MAYA [142][144]. The analytical fluid-based TCP
model in [95] and a packet-oriented simulator, QualNet4, coexist in the same framework. Statistics
of traffic flows represented as packet-oriented models are averaged over each time step, and they
affect the network parameters associated with the fluid-based TCP model. On the other hand, the
analytical fluid-based TCP model is periodically resolved with an ODE(Ordinary Differential Equa-
tion) solver to produce new network statistics like queue length and packet dropping probabilities.
Hence, the packet-oriented traffic is affected by these results in the next time step. The model to
integrate time-stepped fluid-oriented traffic and packet-oriented traffic in MAYA bears a lot of sim-
ilarity to ours, although in our approach the foreground traffic involves not only packet-oriented
traffic but event-driven fluid-oriented traffic.

Fixed point solutions are not new in the area of networking research. For instance, in [15], the
fixed point approach is used to study the performance of a large number of TCP flows traversing
through a network of AQM queues. In this approach, the throughput of a TCP flow is expressed as
a function of network condition metrics, such as packet loss rate and queue lengths. For a typical
AQM queueing policy like RED, the probability with which a packet is dropped or marked is a
function of the current queue length. The objective is to find a fixed point solution to all the relevant
equations, in which queue lengths are variables to be determined. When all the queue lengths
at the fixed point are known, the throughput of each TCP flow can be derived. Although it was
shown that the fixed point approach is able to approximate TCP behavior in AQM networks, its own
efficiency is not particularly considered. This is different from our approach, in which performance
is emphasized because of the motivated applications. In addition, fixed point method is a tool
often used in estimating blocking probabilities in circuit switched networks [127]. In [82], fixed
point approach is used to approximate the end-to-end blocking probability in a lossy multi-class
network adopting a least loaded routing mechanism. The performance is evaluated with empirical
experiments, because it is found difficult to theoretically establish the number of iterations needed
before a fixed point is reached. This is similar to the challenge we have also encountered.

4http://www.scalable-networks.com
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5.10 Summary

In this chapter, we have presented a time-stepped coarse-grained traffic simulation technique. The
work is motivated by the real time constraint on simulating background traffic in large-scale network
simulation. The sheer volume of background traffic in a large network excludes alternative methods
such as packet-oriented traffic simulation. We propose an approach to computing background traffic
load on each link periodically, assuming that traffic demands among ingress-egress pairs are updated
at every time step. Solutions in diverse settings are analyzed, and they form the foundation of our
algorithm.

The key idea of our algorithm is to establish upper bounds on the input flow variables at every
port, hoping more ports can be identified as transparent. Port transparency enables us to settle some
flow variables without resolving the ports. Only after this method fails to settle some flow variables,
will fixed point iterations be applied to compute their rates. While we have not proved convergence
of our algorithm, divergence has never been observed in experiments with realistic topologies,.

The algorithm is parallelized on a distributed-memory multiprocessor. Non-committal barrier
synchronization is necessary for isolating different phases in the algorithm. It is observed that en-
tering the barrier prematurely may lead to a lot of synchronization messages. We exploit some
application-specific knowledge to postpone a processor’s entrance into the barrier. From the exper-
imental results with both fixed and scaled problem sizes, excellent scalability has been observed.

The algorithm is given in the settings of FIFO networks. However, with minor modifications,
it can be used in other types of networks. We discussed how to modify the algorithm in a network
which deploys the GPS scheduling discipline.
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Chapter 6

Conclusions and Future Work

Research on issues in large-scale networks like the Internet demands high performance simulation
tools. Real-time network simulation has been the foundation of many applications such as net-
work emulation, online network control, and cyber-exercise. As simulation of large-scale networks
at packet level imposes too much computation workload on the simulator, multi-resolution traffic
modeling offers a viable solution. The main theme of this thesis is to develop an framework in
which traffic represented at multiple abstraction levels can be efficiently simulated. In this chapter,
we summarize the contributions made in this thesis and give some limitations. Finally, we envision
the potential research directions along which the current work can be extended.

6.1 Contributions

In this dissertation, we have presented a multi-resolution traffic simulation framework that integrates
traffic models represented at three abstraction levels: packet-oriented models, event-driven fluid-
oriented traffic models, and time-stepped fluid-oriented traffic models. The major contributions
made in this dissertation is to address some important problems regarding the efficiency, accuracy,
and scalability of this framework.

A well known efficiency problem with event-driven fluid-oriented traffic simulation is the “rip-
ple effect”. This phenomenon can cause explosion of fluid rate changes when multiple ports are
congested in the network. We have proposed a rate smoothing technique to mitigate this phe-
nomenon. This approach exploits the insensitive period which fluid rate changes have to suffer
when they traverse on a link. In order to prevent overly high errors resulting from this method, we
further bring forward a constrained version to balance accuracy and efficiency.

Integrating mixed traffic representations at the same port is a delicate process. It involves how to
compute the backlog in the buffer, how to allocate bandwidth to packet-oriented and fluid-oriented
traffic, and how to determine the packet loss rate when the buffer overflows. Through a lot of
experimentation, we have implemented a hybrid port model that is able to produce accurate results
under varied conditions. Speedups at orders of magnitude over pure packet-level simulation have
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been observed from the simulation results.

Given the dominance of TCP traffic in the Internet, it is a consequential objective to improve the
efficiency of its simulation. We have extended an existing fluid-based TCP model in our framework.
Simulation results tell us that under light or medium traffic load, the hybrid simulator provides
significant speedups over the pure packet-level simulator without impairing the accuracy. Under
extremely heavy traffic load, however, the hybrid simulator may be outperformed.

Real-time simulation of the huge amount of traffic in a large-scale network is a highly challeng-
ing undertaking. We have developed a time-stepped simulation technique that simulates large-scale
network traffic at coarse time scales. This approach assumes that traffic reaches convergence within
an ignorable time interval compared with the large time step. It addresses how to efficiently com-
pute the traffic load on each link when the traffic demands at the edge of the network change. Our
approach relies on fixed point iterations when flow variables form circular dependencies, but ag-
gressively reduces their number before the iterative solution is applied. A further optimization is
to merge flows that are destined to the same place in the computation. The technique renders it
possible to simulate a topology with 3 ISP backbones in real time on an ordinary PC.

We have developed a parallel algorithm to simulate coarse-grained network traffic in a large-
scale network. Non-committal barrier synchronization has shown to be necessary in the algorithm.
In order to reduce the synchronization cost, we have exploited application-specific knowledge to
postpone a processor’s entrance into the barrier. Simulation results with both fixed and scaled
problem sizes illustrate that our parallel algorithm can be excellently scaled up to a fair number of
processors.

6.2 Limitations

Throughout this dissertation, we have seen that simulation techniques developed in the multi-
resolution traffic simulation framework have achieved performance improvement over traditional
packet-oriented traffic simulation at varied orders of magnitude. However, we are also aware of the
following limitations of the solutions proposed in this thesis work.

1. Some models proposed in this thesis have one or more input parameters. In order to achieve
efficient simulation with these models, we need configuration of the input parameters prop-
erly. For instance, the constrained rate smoothing technique discussed in Section 4.2.3 re-
quires to configure the constraint on the time interval within which fluid rate changes are
allowed to be smoothed. If this constraint is too large, the simulation may be equivalent to
the unconstrained rate smoothing technique and thus produce results with high errors. If this
constraint is too small, fluid rate changes are seldom smoothed, providing little help on im-
proving the simulation efficiency. Proper configuration on such parameters, though, needs a
full understanding of both the topology and the end application’s requirements.

2. As many experimental results in this thesis suggest, there often exist a tradeoff between simu-
lation efficiency and simulation accuracy. Sometimes, it is difficult, however, to establish the
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bounds on the errors resulting from an approximation or simplification. Intensive experiments
are necessary to examine its impact under diverse settings, which itself can be computation-
ally expensive.

3. The discrete event fluid port discussed in Section 4.2.1 is limited to the FIFO queueing pol-
icy. It can also be extended for other queueing disciplines like GPS. However, we have also
realized that it is difficult to model a fluid port implementing some AQM queueing policies
like RED in our framework. Under these policies, the packet loss rate is nondeterministic
function of the current backlog in the buffer. Hence, the departure rate of a flow is no longer
a piece-wise constant rate function, making it difficult to apply discrete event models.

4. The time-stepped coarse-grained traffic simulation technique described in Section 5.5 lacks a
theoretical foundation on its convergence behavior. Although we have never observed diver-
gence behavior of the algorithm in experiments, we are unable to provide a rigorous proof on
its convergence property in this thesis. Currently we set a heuristic-based upper bound on the
number of itreations allowed in the fixed point computation.

5. We lack an effective and efficient topology partitioner for the parallel algorithm that simulates
large-scale network traffic at coarse time scales in a time-stepped fashion. It is imaginable that
the algorithm, when used to simulate a realistic topology with realistic traffic patterns, may
suffer significant performance degradation, if the computation workload over the participating
processors are not balanced.

These limitations suggest that the techniques proposed in this thesis have not provided an end
solution to the motivating problems mentioned in the opening chapter. Some related problems still
need to be addressed. However, as the results in the thesis tell us, multi-resolution traffic modeling
offers hope that a realistic large-scale network like the Internet can be efficiently simulated with
fidelity.

6.3 Future Work

One direction for future research is to address the limitations mentioned in Section 6.2. Besides
that, we identify several directions along which the work in this thesis can be extended.

6.3.1 Simulation-Based Online Network Control

A lot of simulation results presented in this thesis show that a large-scale network can be simulated
faster than real time. This suggests a promising field in which faster-than-real-time network sim-
ulation can be exploited to control the network operation in an online manner. For instance, in a
network that supports multi-path routing, how to split traffic among alternative paths is a decision
that depends on the current traffic demands and the operational objective of the network. One ob-
jective commonly used is to balance the traffic load among the links in the network so that packet
losses are minimized. A faster-than-real-time network simulator can be used in the optimization

159



process to evaluate alternative routing plans. Compared with some other online network control
methods in which the optimization process is done on real networks, the simulation-based approach
isolates the optimization process from real networks, thus minimizing its effect on ongoing network
services.

6.3.2 Load Balancing in High-Fidelity Network Simulation

Modeling network traffic at high abstraction level usually provides better simulation performance,
but in many cases, such execution speedup comes at a cost on compromising the simulation accuracy
or losing details at a certain level. When high-fidelity simulation is necessary, parallel simulation
may remain as the only viable solution to its scalability. In order to optimize the efficiency of the
parallel network simulation, balancing the workload over all the processors is of crucial importance.
Traffic simulation at high abstraction level can be utilized to profile the traffic load throughout the
simulation within a relatively short time, and such a traffic profile is helpful in improving workload
balancing in the high-fidelity network simulation.

6.3.3 Large-Scale Distributed Application Traffic Simulation

In this thesis, we have developed a multi-resolution traffic simulation framework. This framework
provides a platform for simulating not only the interaction among the traffic injected from the dis-
tributed applications at the edge of the network but also the interaction between the distributed
application traffic and other types of traffic existing in the network. There are many high-end appli-
cations that are widely spread in the Internet and have contributed or will contribute to a significant
portion of the Internet traffic, such as peer-to-peer file sharing and Grid applications. Simulation
has been an important tool in gaining deep insight into their behavior, but the network model used
in the simulation is often overly simplified because the high fidelity simulation requires long exe-
cution time. One research direction is to model the behavior of these distributed applications with
fluid-oriented models and simulate their traffic in our multi-resolution traffic simulation framework.
Currently we are working on large-scale worm traffic simulation. It is a perfect example of such
distributed applications.

6.3.4 Multi-Resolution Wireless Network Simulation

Throughout this thesis, we limit our discussion to traffic simulation in wireline networks like the
Internet. One research direction that can be pursued is to simulate wireless network traffic with
multi-resolution models. Some analytical fluid-based models have been developed in [66] for wire-
less network simulation. It remains further investigation whether event-driven fluid-oriented models
are a viable approach to improving its performance.
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6.4 Final Remarks

In this dissertation we have presented a multi-resolution traffic simulation framework in which net-
work traffic represented at different abstraction levels can be simulated. We have addressed some
important issues in this framework, including its efficiency, accuracy and scalability. Our work has
provided a powerful simulation tool for researchers to investigate Internet-related problems.
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