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Abstract

RNA secondary structure prediction is an area where computational techniques have shown great

promise. Most RNA secondary structure prediction algorithms use dynamic programming to com-

pute a secondary structure with minimum free energy. Energy minimization algorithms are less

accurate on larger RNA molecules. One potential reason is that larger RNA molecules do not fold

instantaneously. Instead, several studies show that RNA molecules fold progressively during tran-

scription. This process could encourage the molecule to fold into a structure that is not at the global

lowest energy level. Additionally, dynamic programming algorithms do not allow for a important

type of structure called a pseudoknot. Secondary structure prediction allowing pseudoknots was

recently shown to be NP-complete.

We have created a simulation that captures these biological insights. Our simulation uses a prob-

abilistic approach to fold the molecule progressively as it is synthesized. This thesis evaluates

the performance of the simulation and presents several enhancements to improve efficiency and

accuracy. Our results show that our progressive folding algorithm did not improve on current tech-

niques. Additionally, we found that a simulated annealing algorithm using our probability models

was more accurate than our progressive folding algorithm.
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Chapter 1

Introduction

1.1 Background

High-throughput genome sequencing is one of the most exciting technical achievements in modern

science. Today, many sequencing projects, most notably the Human Genome Project, have over-

whelmed Biologists with raw sequence data. With the genome available through a few mouse clicks,

“proteomics”, or the quest to understand the function of all the proteins expressed by a particular

organism, has become the most important challenge in Molecular Biology. The specific shape of a

macromolecule determines how it interacts with other components and therefore, its function. In

order to understand the machinery of life, we need to solve the three-dimensional structures of tens

of thousands of interesting macromolecules.

Unfortunately, the leading technologies for structural biology, X-Ray crystallography and NMR,

have not scaled to keep up with the explosion of genomic data. This situation creates a pressing need

for Computer Scientists to devise new algorithmic approaches for predicting structural information
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from nucleic or amino acid sequences. This thesis describes a new approach for predicting the

secondary structure of RNA molecules. We hope that this research will help improve on our

understanding of RNA folding by simulating the underlying Biology more faithfully.

1.2 RNA

Ribonucleic Acids (RNAs) are one of the most important classes of molecules in the cell. An RNA

molecule is a polymer made up of four types of nucleotides: adenine, uracil, guanine and cytosine.

RNA differs from DNA in three important ways: it contains the sugar ribose instead of deoxyribose,

it contains uracil instead of thymine, and most importantly it usually exists as a single strand, while

typically DNA is double stranded. DNA’s double stranded structure is the famous double helix

discovered by Watson and Crick and provides the basis for genetic replication. Since RNA is single

stranded, it can form into a variety of different shapes that allow it to carry out different functions

in the cell.

RNA is an important part of the “Central Dogma of Molecular Biology,” which describes how

information encoded in DNA is used to make proteins. In this process, an RNA polymerase

enzyme binds to a stretch of DNA and transcribes genetic information from the DNA to a messenger

RNA molecule (mRNA). Since RNA and DNA share the same alphabet of nucleotides (with the

substitution of uracil for thymine), RNA is a natural medium for carrying genetic information.

Once transcribed, mRNAs travel outside of the nucleus into the cytoplasm. In the cytoplasm,

ribosomes translate the information coded in the mRNA to synthesize a specific sequence of amino

acids called a protein. Since mRNA molecules are intermediary messengers, their structures are

thought to be uninteresting, aside from a possible role mRNA in splicing.
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“Non-coding” RNAs have interesting 3-D structures that allow them to participate in critical

cellular reactions. Different types of non-coding RNA molecules perform a variety of important

tasks in the cell. Transfer RNAs (tRNAs) carry amino acids to ribosomes where they are assembled

into proteins. Ribosomal RNAs (rRNAs) make up parts of the ribosome in conjunction with

ribosomal proteins and carry out enzymatic reactions that form peptide bonds. Five small nuclear

RNAs make up part of the spliceosome, a protein/RNA complex that removes introns from pre-

mRNA transcripts in eukaryotes [2]. The signal recognition particle, which allows proteins to be

secreted, is an RNA/protein complex [11]. Some RNA molecules are part of metabolic pathways

that create other RNAs. These molecules include small nuclear RNAs, which help process ribosomal

RNAs [14] and RNAse P molecules, which are involved in the production of tRNAs from precursor

RNAs. Finally, RNAs also play a part in several post-transcriptional genetic regulatory mechanisms

[15, 16, 21].

RNA molecules may also hold the key to understanding the origin of life. In 1986, Walter Gilbert

proposed the “RNA World” hypothesis, which posits that RNA molecules formed the basis for

primordial life forms [9]. In the RNA world, organisms consisted of RNA genomes that were

replicated by catalytic RNA molecules. Gilbert’s hypothesis also proposes that modern structural,

catalytic RNAs may be “molecular fossils” that modern organisms inherited from the RNA World.

Biologists describe the structure of an RNA molecule at three different levels. The primary structure

is the sequence of nucleotides in the molecule from the 5′ to the 3′ direction. The secondary structure

consists of the particular base pairings between the nucleotides. Finally, the tertiary structure

refers to the specific 3-D spatial arrangement of all the atoms in the RNA molecule. The tertiary

structure of an RNA molecule determines its function. Thus, mis-folding can lead to disease states.

Unfortunately, the “RNA folding problem”, determining the specific tertiary structure of an RNA

3



given its sequence, is a daunting computational task that is at the frontier of the techniques of

modern Computer Science and Biophysics.

RNA secondary structure prediction is a much more tractable problem. Currently there exist

polynomial time algorithms that can accurately predict the secondary structure of small RNAs.

These predictions can give important clues about the molecule’s tertiary structure, aiding Biologists

in the wet lab.

1.3 RNA Secondary Structure

The secondary structure of an RNA molecule refers to the specific base pairing of “complementary”

nucleotides. A “base pairing” refers to the interaction between complementary bases through

hydrogen bonding. Complementary nucleotides include G and C, which interact through three

hydrogen bonds, A and U, which interact through two hydrogen bonds, and G and U, which

interact through a single hydrogen bond. Other base pairings exist, and are called “non-canonical.”

Non-canonical pairs distort regular A-form helices formed by the G-C and A-U pairings. These

distortions help proteins recognize specific RNAs [8].

Contiguous base pairs are referred to as stems. The three-dimensional shape of a base pair is

approximately planar. When base pairs stack upon each other in a stem, the three dimensional

shape is a double helix. Single stranded subsequences between stems are called loops. If the loop is

between two halves of a stem, it is called a hairpin loop. Some loops occur in the middle of stems.

A loop only on one side of the stem is called a bulge, while a pair of loops on each side of the stem

is called an interior loop. Finally, multi-branched loops have three or more stems radiating from

them. Secondary structures can be represented by a two-dimensional picture such as the one in
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figure 1.1.

Figure 1.1: Secondary structure diagram [27]

Base pairs are usually nested. Formally, base pairs (i, j) and (i ′, j ′) are nested if: i < i ′ < j ′ < j

or i ′ < i < j < j ′. Non-nested base pairs are called pseudoknots. While the number of pseudoknots

is usually small, they are an important feature for accurate three dimensional structure prediction.

Biologists analyze new protein and DNA sequences by searching for similar sequences, known as

“homologs”. Homologous sequences can give clues to an unknown sequence’s function and offer

evidence about evolutionary relationships. Many popular algorithms have been developed for this

task, including BLAST [1] and FASTA [20].

RNA sequence analysis is more complicated, because non-coding RNA molecules sometimes con-

serve secondary structure more than primary sequence. This task is further complicated because

an RNA sequence may have a very large number of plausible structures. For example, a sequence

of just 200 nucleotides can have as many as 1050 possible base paired structures [8]. Today, the
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Figure 1.2: A pseudoknot [27]

most accurate RNA secondary structure prediction is done by comparative sequence analysis, a

tedious manual process [30]. This method is time-consuming and requires significant expertise. In

practice, most biologists use the leading secondary structure prediction algorithm, MFOLD [31].

1.4 Motivations

Algorithms for automated RNA secondary structure prediction have been an active area of research

in Computational Biology for close to twenty years. A review of the literature is provided in chapter

two. Generally speaking, secondary structure prediction algorithms have shown some success in

predicting the secondary structures of smaller RNAs.

The most sophisticated secondary structure prediction algorithm, MFOLD, uses a free energy

minimization function on the entire RNA sequence [32]. We hypothesize that this assumption may

account for a degradation in accuracy on larger RNAs. In nature, RNAs fold progressively as they
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are transcribed. This allows the molecule to form local states that may not be part of the structure

with the global lowest energy. This effect is likely to be more pronounced on larger molecules that

have more possible structures.

Our hypothesis is supported by several studies. In 1993, Mougey, et al. [17] took electron microscope

photographs showing that RNA molecules begin to fold during transcription. Then in 1999, Pan,

et al. [19] provided biochemical evidence for transcriptional folding. Their experiments showed

that a denatured B.subtilis RNAse P molecule folded into a different structure than one produced

in vivo.

To test our hypothesis, we created an RNA folding simulation, “ProFold,” that contains a pro-

gressive folding algorithm and a stochastic model for forming and breaking stems. We hoped that

our progressive folding algorithm would model the underlying folding mechanism more faithfully.

Additionally, by using a stochastic approach for creating and breaking stems, our algorithm can

predict pseudoknots, which are ignored by current methods. The general problem of predicting

RNA secondary structures with pseudoknots allowed was shown to be NP-complete by Lyngsø and

Pederson [12].

1.5 Contributions of this Thesis

Scot Drysdale and Bob Gross have been working on progressive folding algorithms for RNA sec-

ondary structure prediction with several Dartmouth students. The most recent, Charlie DeZiel ’01,

implemented the first complete version of the folding algorithm in Java. Charlie’s code improved

on the organization and robustness of the previous efforts, which were written in C. Charlie also

refined the algorithms and probability models as he implemented the simulation. Along with the
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implementation he wrote a program to test various combinations of parameters and used it to

evaluate the simulation on an S.cerevisiae alanine tRNA molecule.

Since picking up where Charlie left off in Winter 2002, I have made progress in several areas.

First, I spent a lot of time optimizing and debugging the code. This makes folding larger RNAs

faster. Second, I made several improvements to the folding algorithm and probability models to

more accurately reflect the underlying biology. To help better understand the working of the

algorithm, I developed two visualization tools and an intuitive GUI-based front end. Next, I tested

the simulation on a variety of different RNA molecules, including tRNAs, RNAse Ps, and 5S, 16S,

and 23S rRNAs. The results of these experiments show that our algorithm gets most of its accuracy

from simulated annealing in “cleanup mode,” rather than during transcription. Additionally, the

accuracy of our algorithm degrades on larger RNA molecules. We were disappointed to find that our

results contradicted our hypothesis, but we hope that this work provides a first step in creating an

architecture for further efforts to develop heuristic methods for RNA secondary structure prediction

including pseudoknots.

Briefly, here is a sketch of the remaining chapters:

• Chapter 2 reviews previous work in RNA secondary structure prediction algorithms

• Chapter 3 introduces our folding algorithm and probability models

• Chapter 4 provides details on how our simulation was implemented

• Chapter 5 describes our visualization tools

• Chapter 6 lists the results of our experiments

• Chapter 7 presents our conclusions and outlines directions for future research

8



Chapter 2

Previous Work

Biologists, Mathematicians and Computer Scientists have been researching algorithms for RNA

secondary structure prediction for nearly twenty-five years. To date, the most effective algorithms

are based on energy minimization methods [24]. Base pairing lowers an RNA’s free energy compared

to its single stranded state. This increases the molecules’ stability, so this approach is a meaningful

approximation of the underlying biophysics. Dynamic programming techniques provide an efficient

means to generate optimal structures (without pseudoknots) given a particular energy minimization

function. This chapter discusses three algorithms based on dynamic programming and a proof

that the general RNA secondary structure prediction problem is NP-complete if pseudoknots are

included. We also mention some alternative approaches in the literature. Durbin and Eddy [8] et

al. present a well-written introduction to the field.
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2.1 Base Pairing Maximization

In 1978, Ruth Nussinov and colleagues presented an efficient dynamic programming algorithm that

maximizes set of base pairings in a nucleic acid [18]. This is a very coarse energy minimization

model, since base pairs lower the free energy of the molecule. Since the free energy function is so

simple, it does not make very accurate predictions. Additionally, it is limited by the fact that it

does not allow for pseudoknots or non-canonical base pairs.

The Nussinov algorithm has two parts: fill stage, which computes the dynamic programming matrix,

and a traceback stage which finds the optimal path through the matrix. Traceback stage runs in

linear time and memory, while the fill stage runs O(n3) in time and O(n2) memory. Interestingly,

the authors note that the O(n2) memory requirements are a “practical difficulty” for larger RNAs

with n in the few thousand. How times have changed!

Nussinov’s algorithm can be defined as follows. Given a sequence x of length N with symbols

x1, . . . xN . Define the function δ(i, j) = 1 if xi and xj are a complementary base pair; else δ(i, j)

= 0. We recursively calculate a table of maximum matching size MMS(i, j) which represent the

secondary structure with the maximum number of base pairs for the subsequence xi, . . . xj .

Initialization:

First, the MMS table is initialized, to account for the fact that nucleotides are not allowed to base

pair with themselves or their neighbor.

for i = 2 to N do

MMS(i, i − 1) = 0;

end for
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for i = 1 to N do

MMS(i, i) = 0;

end for

Fill Stage:

The fill stage operates recursively. It finds the maximum number of base pairings for a subsequence

(i, j) by evaluating four possible operations: adding the unpaired nucleotide i onto the best structure

for the subsequence (i + 1, j), adding the unpaired nucleotide j onto the best structure for the

subsequence (i, j − 1), adding the base pair between i and j to the best structure for (i + 1, j − 1),

and combining two neighboring optimal substructures (i, k) and (k + 1, j), where i < k < j. These

four operations do not allow for pseudoknots.

for all subsequences of length 2 to length N: do

MMS(i, j) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MMS(i + 1, j),

MMS(i, j − 1),

MMS(i + 1, j − 1) + δ(i, j),

max
i<k<j {MMS(i, k) + MMS(k + 1, j)}.

end for

After the fill stage computes the dynamic programming tables, MMS(1, N) contains the number

of base pairs in the structure with the maximum matching. There can be more than one structure

with this many base pairs. In order to enumerate one of these maximally base paired structures,

we use a traceback procedure common to many dynamic programming algorithms.

Traceback stage:
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push (1, L) onto the stack.

repeat

pop (i, j).

if i >= j then

continue.

else if MMS(i + 1, j) = MMS(i, j) then

push (i + 1, j).

else if MMS(i, j − 1) = MMS(i, j) then

push (i, j − 1).

else if MMS(i + 1, j − 1) + δi,j = MMS(i, j) then

record i, j base pair.

push (i + 1, j − 1).

else

for k = i + 1 to j − 1 : do

if MMS(i, k) + MMS(k + 1, j) = MMS(i, j) then

push (k + 1, j).

push(i, k).

break.

end if

end for

end if

until the stack is empty.
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2.2 Energy Minimization

Michael Zuker’s MFOLD [31] algorithm is the most popular method for RNA secondary structure

prediction. Zuker’s algorithm is implemented in the programs MFOLD and ViennaRNA [10] and

is included in the popular GCG Wisconsin package [6]. Like Nussinov’s work, Zuker’s algorithm

is an efficient dynamic programming algorithm for finding the secondary structure with the lowest

free energy [32]. It runs in O(n3) time and requires O(n2) space for sequence of length n. The

two major limitations of Zuker’s algorithm are that it does not calculate pseudoknots and is less

accurate for larger RNAs, which often in reality do not fold into their global lowest energy state.

Zuker’s work is a more sophisticated version of the energy minimization approach introduced by

Nussinov. It assumes that the correct structure has the lowest equilibrium free energy (△G).

The free energy is calculated by summing the energy of the various features of the secondary

structure. The algorithm also introduces a mechanism to deal with “stacking,” the interaction

between neighboring base pairs. Experimental data suggests that stacked base pairs lower △G, so

Zuker’s algorithm calculates the energy of a stem with length n as the sum of n − 1 base stacking

terms.

Zuker’s algorithm uses estimates of △G based on experimental evidence with small RNAs [28].

These tables include parameters for most of the secondary structure features mentioned in Section

1.3, including hairpin loops, bulge loop lengths, interior loop lengths, multi-branch loops and single

dangling nucleotides. Pseudoknots are notably absent. Improved parameters were determined in

1999 [13] and are included in MFOLD version 3.1.

Zuker’s algorithm is very similar to Nussinov’s dynamic programming algorithm. It recursively
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calculates three arrays: V (i, j), which records the minimum energy for a secondary structure on

substring i, . . . , j when i and j form a base pair, WM(i, j), when the structure for i, . . . , j is part

of a multi-branched loop, and W (i), which records the minimum energy structure on the substring

(1, . . . , i).

MFOLD uses several energy functions to account for different types of secondary structure features.

These include eH for hairpin loops, eS for stacking base pairs, eL for internal loops and bulges and

eM for multi-branched loops. The energy function for stacking base pairs, eS, calculates △G based

on the interaction between the base pair i, j and a neighboring or ”stacked” base pair, i + 1, j − 1.

The function for internal loops and bulges is given a base pair i, j, which represents one side of

the internal loop and the base pair i′, j′, which represents the first base pair at the other side of

the internal loop. This function enforces the condition that i′ − i + j′ − j > 2 in order to ensure

there is at least one (for a bulge) or more (for an internal loop) unpaired nucleotides between the

two base pairs i, j and i′, j′. Lastly, the energy function for multi-branched loops, eM , take two

parameters, k and k′, which represent the number of helices and number of unpaired bases in the

multi-branched loop, respectively.

V (i, j) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eH(i, j),

eS(i, j, i + 1, j − 1) + V (i + 1, j − 1),

min
i<i′<j′<j

i′−i+j−j′>2
{eL(i, j, i′, j′)}

min
i+1<k<j {WM(i + 1, k − 1) + WM(k, j − 1) + a}

14



WM(i, j) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (i, j) + b,

WM(i, j − 1) + c,

WM(i + 1, j) + c

min
i<k<=j {WM(i, k − 1) + WM(k, j)}.

W (i) = min

⎧
⎪⎪⎨

⎪⎪⎩

W (i − 1),

min
0<=k<i {W (k) + V (k + 1, i)}.

In later work, Zuker further extended his algorithm to calculate suboptimal folds [31]. This gave

researchers the ability to incorporate experimental constraints into the fold and to see a wider range

of structures. This is very useful since the actual structures of RNA molecules usually are not at

the global lowest energy level.

2.3 The Pseudoknot Problem

Rivas and Eddy extended Zuker’s algorithm to predict most types of pseudoknots [22]. This is

the first algorithm to calculate minimum energy foldings including pseudoknots with the accepted

RNA thermodynamic model used by MFOLD. Rivas and Eddy use gap matrices in addition to

dynamic programming matrices and attempt to line up the gap matrices recursively in order to

find pseudoknots. Their algorithm runs in O(n6) time and requires O(n4) storage. The authors note

that the algorithm’s high polynomial complexity makes it impractical for RNAs with more than

140 nucleotides. Folding a 100 nucleotide RNA takes four hours and 22.5 megabytes of memory on

a SGI R10K Origin 200. Considering pseudoknots leads to a much larger search space of possible

structures, so their algorithm is less accurate than Zuker’s on RNAs that do not have pseudoknots.
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Lyngsø and Pedersen extended Rivas and Eddy’s work by devising a secondary structure predic-

tion algorithm that handles pseudoknots that runs in O(n5) time with a O(n3) space requirement

[12]. The reduced runtime makes their algorithm practical on RNAs with length up to 350-375

bases. To make this improvement possible, they restrict their algorithm to only allow one pseudo-

knot of arbitrary complexity. Their algorithm splits the sequence into four subsequences, forms a

non-pseudoknotted secondary structure between alternating sequences and then combines the two

secondary structures to produce the entire secondary structure.

In the same paper, [12] Lyngsø and Pederson also present a proof that the general case of sec-

ondary structure prediction is NP-complete. They present a simplified secondary structure model,

the Nearest Neighbor Pseudoknot Model, which calculates energy based on a base pair and its sur-

rounding bases. To further simplify the model they restrict it to Watson and Crick base pairings.

The proof is based on a restricted 3SAT form. Based on this result, the authors contend that the

secondary structure prediction with the energy model used by Rivas and Eddy is NP-hard.

2.4 Other Approaches

RNA secondary structure prediction is an active area of inquiry and many researchers have proposed

algorithms in addition to the ones we have previously described [18, 31, 22, 12]. While dynamic

programming techniques, specifically MFOLD, have become the de facto standard, there have been

several other interesting approaches to the problem. Many of these are similar to our work in that

they are heuristics that allow for pseudoknots.

Tabaska et al. formulated the problem as a maximal weighted matching problem [26]. His algo-

rithm predicts RNA secondary structures with pseudoknots in O(n3) time, but requires extensive
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statistical information on the secondary structures of similar RNAs in order to generate the weight-

ing function. Several researchers have explored genetic algorithms [29, 25]. Eddy and colleagues

implemented Nussinov’s algorithm using a stochastic context free grammar [8] and published a

formal grammar for RNA secondary structure [23].
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Chapter 3

Overview

This chapter introduces our folding algorithm and the probability models it employs. A detailed

description of how the algorithm is implemented is provided in Chapter 4.

3.1 Folding Algorithm

Unlike other secondary structure prediction algorithms, our algorithm folds the molecule as it is

transcribed. The folding algorithm has two stages: transcription mode and cleanup mode. During

each stage, we generate possible form and break stem actions based on the molecule’s current

state. An action represents a change in the molecule’s secondary structure through the forming or

breaking of a stem. Each action has an associated probability. We store the actions in a queue,

sorted in descending order of probability. Actions are performed stochastically, if a random number

is equal to or less than the probability associated with the action. The rules for generating actions

are described in section 3.2.
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Transcription Mode:

Transcription mode models the state of the molecule as it is transcribed.

for all nucleotides in the RNA molecule do

transcribe the nucleotide

if the nucleotide can lengthen a stem then

lengthen the stem

update queue by removing outdated actions, generating new actions

else

add any form stem actions involving this nucleotide to the action queue. Use current time

as start time so they can be performed during this iteration

end if

update the probabilities of all of the actions in the action queue.

for all actions in the queue in decreasing order of probability do

generate a random number n

if the probability of the current action is ≤ n then

perform the action

update queue by removing outdated actions and generating new actions

end if

increment the RNA molecule’s internal time.

end for

end for

Cleanup Mode:

Cleanup mode models the molecule’s continued folding once it is fully transcribed. It performs the
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same operations as transcription mode. Cleanup mode iterates for an arbitrary number of times

before exiting. In Chapter 6, we describe the results of experiments we performed in order to

determine the best length for cleanup mode.

for i = 1 to Params.CLEANUP ITERATIONS do

update the probabilities of all of the actions in the action queue.

for all actions in the queue in decreasing order of probability do

generate a random number n

if the probability of the current action is ≤ n then

perform the action

update queue by removing outdated actions, generating new actions

end if

end for

increment the RNA molecule’s internal time.

end for

return the molecule’s secondary structure

3.2 Probability Models

Actions represent changes to the RNA’s secondary structure via the forming and breaking of stems.

This section describes the models used to compute the probability of the action occurring.

20



3.2.1 Forming Stems

The FormStemAction probability model depends on two variables, distance and stem length. In

order to simplify our algorithm, we enforce the restriction that a FormStemAction must contain at

least three consecutive nucleotides with no skips. This covers most of the stems found in nature

and excludes “bulges” that we defined in Chapter 1. Three-nucleotide stems is referred to as

“minimum-sized’.’

A “minimum-sized” stem has the probability p(d) = c m
d(i,j) , where d(i, j) is the distance between

nucleotides i and j, m is the minimum distance between the two halves of any possible stem and

and c is the form stem probability parameter. The nucleotides i and j are the middle nucleotides in

the respective halves of the stem. The value of m is five since we require at least three nucleotides

between the two halves of a hairpin loop and measure from the middle nucleotide in the half stem.

The form stem probability c is in the range [0, 1] and is used as a scaling parameter for this function.

Additionally, both m and d(i, j) are converted to polymer distances using the formula in section

4.4.1.

To calculate the probability of a larger form stem action, we treat it as a set of independent

minimum-sized form stem actions. The set consists of each pair of minimum-sized subsets of the

larger form stem action. If any of these minimum-sized actions were to occur, the resulting stem

would “zip up,” producing the larger form stem action.

Formally, the model can be expressed as follows:

P (l, i, j) = 1 −
l−2∏

n=1

(1 − c
m

d(i + n, j − n)
)
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where l is the length of the stem, i is the first nucleotide in the lower stem, and j is the last

nucleotide in the higher stem (in regards to the 5′ to 3′ direction). The terms m, d(i, j), and c have

the definitions from the previous paragraph. The model is shown in figure 3.1.

3.2.2 Breaking Stems

Our simulation is different than other secondary structure prediction algorithms because it allows

for stems to break as well as form. We think this may reflect the underlying biological process more

accurately, by allowing the RNA to form intermediate structures before settling into its final state.

Our concept of stem breaking is based on the idea that hydrogen bonds periodically “breathe,”

which temporarily weakens the bond. We assume that the probability of a stem breaking is the

probability that all of the hydrogen bonds in that stem will be “breathing” simultaneously. This

makes longer stems more stable than shorter ones.

The probability of a BreakStemAction is defined as: ch, where c is the break stem probability and

h is the number of hydrogen bonds in the stem. The break stem probability lies in the range [0, 1],

and represents the probability that one hydrogen bond will be “breathing” at a given time. If a

BreakStemAction’s start time is greater than the current time, it is assigned a probability of 0. This

is to disallow stems from forming and breaking in the same iteration. The probability distribution

for various values of the break stem probability is shown in figure 3.2.

3.3 Parameters

The simulation has four parameters that can be set by the end user.
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• Form stem probability - the term c from section 3.2.1. Used as a scaling factor for the

form stem probability distribution.

• Break stem probability - the probability that a single hydrogen bond is ”breathing” at a

given time.

• Diffusion rate - when a stem breaks, we assume that the two half stems are initially still

in the same vicinity. Each clock tick thereafter, we increment the distance between formerly

base paired nucleotides by this parameter.

• Cleanup iterations - the number of iterations in cleanup mode.

We performed a series of experiments to try to determine the best values for each parameter. For

both the form stem and break stem parameters, we tested ten values in the range [0, 1]. For the

diffusion parameter, we tested the values 4.0, 8.0, 12.0and16.0. We tested six different values of

cleanup iterations the range [0, 2000].

Evaluating the parameter space helped us understand the working of the simulation. Early on in

the testing process, we discovered that the diffusion rate did not make a significant impact on the

simulation’s accuracy, and in later experiments left it fixed at four. In Chapter 6, we describe the

experiments we performed to understand the effects of the length of cleanup mode as well as the

form stem and break stem probabilities.

3.4 Architecture

The simulation consists of four main components: an RNAFolder class, an ActionQueue class, an

RNAMolecule class and a DistanceCalculator class. The RNAFolder class contains the implemen-
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tation of our folding algorithm. The ActionQueue class contains a list of all the form and break

stem actions that can operate on the molecule, sorted in decreasing order of probability. The

RNAMolecule class maintains the state of the molecule and contains methods to generate actions

based on this state. It contains an array of Nucleotides and a DistanceCalculator object, which

maintains a graph that approximates the spatial relationships between the nucleotides in the RNA.

The architecture of the simulation is shown in figure 3.3.
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Figure 3.1: Form stem probability model, c = .5
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Figure 3.2: Break stem probability model

Figure 3.3: Simulation architecture
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Chapter 4

Implementation

This chapter describes the details of the algorithms and data structures used in the implementa-

tion of our simulation. The simulation is implemented in Java, which facilitates code re-use and

encapsulation. The choice of Java helped us write clean, bug-free code but also hurt performance

compared to other algorithms that are implemented in C [31, 22].

In our description of each class, we cover the object’s member fields and important algorithms.

Trivial methods for accessing member fields are not included. These descriptions were adopted

from the original javadoc documentation [7] and reflect the changes I have made to the code.
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4.1 Nucleotide

The Nucleotide class describes the state of a single nucleotide in the RNA. This information includes

the base type and information about base pairing, such as the nucleotide’s present and previous

partners.

Fields:

• char baseType - the type of nucleic acid.

• int partner - index of base paired nucleotide, if any.

• int previousPartner - index of the nucleotide this nucleotide was previously base paired to, if

any.

• double distanceToPartner - distance to the nucleotide this nucleotide is base paired to, if any.

• double distanceToPreviousPartner - distance to the nucleotide this nucleotide was previously

base paired to, if any.

• Subsequence parentSS - the subsequence (paired or unpaired) this nucleotide is a part of.

Methods:

• void pairWith(int newPartner): pairs this nucleotide to another nucleotide specified by

the index newPartner. Sets distance to partner to be Constants.HYDROGEN BOND LENGTH,

which is currently 1.0.

Runtime: O(1).
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• void breakBond(): breaks this nucleotide’s base pairing and updates its previous partner in-

formation, setting the distance to its previous partner to Constants.INITIAL BREAK DISTANCE,

which is currently 1.0.

Runtime: O(1).

• void incrementDistanceToPreviousPartner(): increments the distance to this nucleotide’s

previous partner by Params.BROKEN BASE PAIR DIFFUSION CONSTANT, or does noth-

ing if no previous partner exists.

Runtime: O(1).

• boolean canPairWith(Nucleotide other): returns true if this nucleotide can base pair

with the nucleotide other.

Runtime: O(1).

4.2 Subsequence

The subsequence class represents a range of consecutive nucleotides. The subsequence must either

be part of a stem or entirely unpaired. Unpaired subsequences must be bordered by stems or

the end of the RNA. The RNAMolecule object maintains a list of non-overlapping subsequences

covering the full transcribed range of the molecule. When the state of the RNA changes, due

to the transcription of another nucleotide, or a stem forming or breaking, the queue of unpaired

subsequences in the RNAMolecule object is updated to enforce this condition.

This class is a subclass of Range, which stores the low and high indexes of a chain of nucleotides.

The Range class provides several methods for accessing these fields and comparing different ranges.
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Range is often used as an argument to many of the methods described in this chapter

Fields:

• int lowIndex the beginning nucleotide.

• int highIndex the ending nucleotide.

• Subsequence otherHalf the subsequence it is base paired to (if any).

Methods:

• void bondWith(Subsequence restOfStem): bonds this subsequence to another subse-

quence.

Runtime: O(1).

4.3 RNAMolecule

The RNAMolecule class maintains the state of the RNA molecule. In includes data structures to

represent the sequence of nucleotides, the current secondary structure and the transcription point of

the molecule. The class includes a DistanceCalculator object to calculate spatial distances between

nucleotides. Additionally, it keeps track of the simulation’s “time.” One nucleotide is transcribed

per unit of time. Lastly, the class keeps track of the state of the molecule via two priority queues of

half stems and unpaired subsequences. These queues are sorted in descending order of subsequence

length.

The RNAMolecule class has several important methods that change the state of the molecule.

30



These include reset, breakStem, formStem, lengthenLastStem and transcribeNextNucleotide. Ad-

ditionally, it includes methods to generate new actions based on the molecule’s current state.

Fields:

• Nucleotide [ ] sequence - sequence of nucleotides in the RNA.

• int pointOfTranscription - the next nucleotide to be transcribed.

• int time - internal time for the molecule. One step corresponds to transcribing one nucleotide.

• DistanceCalculator distanceCalculator - calculates spatial distances between nucleotides.

• PriorityQueue unpairedSubsequenceQueue - stores all the unpaired subsequences.

• PriorityQueue halfStemQueue - stores all the half stems in the molecule.

Methods:

• void reset(): resets the RNA molecule to an unfolded state with no nucleotides transcribed.

Runtime: O(n), where n is the number of nucleotides in this RNA molecule.

• boolean canLengthenLastStem(): returns true if the last transcribed nucleotide is un-

paired, adjacent to a stem, and can form a base pair that lengthens the stem.

Runtime: O(1), since it is comprised of three constant-time comparisons.

• boolean canChemicallyBond(Range range1, Range range2): returns true if two

ranges of nucleotides are within the transcribed part of this RNA molecule, are separated

by least three nucleotides, are entirely unpaired, and can base pair with each other.

Runtime: O(l), where l is the length of the prospective stem.
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• boolean canChemicallyBondWithEnoughHBonds(Range range1, Range range2):

returns true if two ranges of nucleotides can chemically bond (as determined by canChemi-

callyBond) with at least six hydrogen bonds between them.

Runtime: O(l), where l is the length of the prospective stem.

• boolean canSpatiallyBond(Range range1, Range range2): returns true if two ranges

of transcribed nucleotides in this RNA molecule can physically reach each other.

The two ranges of nucleotides can physically reach each other if, for both pairs of nucleotides

at the ends of those ranges, there are no paths between the pair that contain half stems that

are more than half the length of the path. This is checked by looking at each of the half

stems in this RNA molecule and verifying that, for both pairs of nucleotides at the ends of

the ranges in question, the half stem in question is shorter than the sum of the shortest paths

from the ends of the half stem to the pair of end nucleotides. For each pair of end nucleotides,

we only check half stems that are more than half the length of the shortest path between the

pair of end nucleotides.

Runtime: O(mc), where m is the number of half stems in this RNA molecule and c is the cost

of a call to DistanceCalculator.getDistance(), which is either O(1) or O(v lg v), depending on

whether the relevant table entries are up-to-date.

• void incrementTime(): increments the internal “time” of this RNA molecule and updates

the distance to each transcribed nucleotide’s previous partner. These distances are updated

by the diffusion rate parameter. This captures the assumption that unpaired nucleotides

should spatially diffuse at a constant rate.

Runtime: O(nb), where n is the number of transcribed nucleotides and b is the number of

nucleotides that have a previous partner from a stem that broke.
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• void transcribeNextNucleotide(): transcribes the next nucleotide in this RNA molecule.

Runtime: O(m + n), where m is the number of nucleotides in the newly transcribed nu-

cleotide’s parent subsequnce and n is the number of transcribed nucleotides. The n factor is

caused by updating each nucleotide’s parent subsequence. The n factor is caused by calls to

DistanceCalculator.addVertex().

• FormStemAction lengthenLastStem(Vector outdatedActions, Vector newActions):

this method checks if the last stem in this RNA molecule can be lengthened with a call to can-

LengthenLastStem(). If yes, the stem is lengthened and the break stem action corresponding

to the previous stem is added to outdatedActions. The break stem action corresponding to

the lengthened stem is added to newActions along with any new form stem actions made

possible by the updated structure. These actions are assigned start times in the next clock

tick so that they will not be possible until the next nucleotide is transcribed. This method

returns a FormStemAction representing the lengthened stem, which is used by RNAFolder to

eliminate any conflicting form stem actions from the queue.

Runtime: O(n + p + m), where n is the number of transcribed nucleotides in this RNA

molecule. This n term results from a call to DistanceCalculator.addEdge(), while the (p+m)

term results from a call to getFormStemActionsForMinStemSizeRange().

• void formStem(Range range1, Range range2): makes a stem out of two ranges of tran-

scribed, unpaired nucleotides in this RNA molecule. Adds the two halves of the stem to the

halfStemQueue and removes the two halves of the stem from the unpairedSubsequenceQueue.

Runtime: O(mn(lg n)), where m is the length of the stem being formed and n is the num-

ber of transcribed nucleotides in this RNA molecule. This runtime results from m calls to

DistanceCalculator.addEdge() for each base pairing in the stem.
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• void breakStem(Range halfStemRange): breaks a stem corresponding to the range of

nucleotides in halfStemRange. Removes the corresponding entries from the halfStemQueue

and updates the unpairedSubsequenceQueue to include the broken stem.

Runtime: O(nl), where l length of the stem being broken and n is the number of tran-

scribed nucleotides in the RNAMolecule. The n factor results from a call to DistanceCalcu-

lator.removeEdge().

• Vector getNeighboringUnpairedRanges(Range range): returns a vector containing

ranges of transcribed, unpaired nucleotides that neighbor range.

Runtime: O(1).

• Vector getFormStemActionsForMinStemSizeRange(Range range): returns a vector

containing all valid form stem actions involving minimum-sized range, range. In order for

a form stem action to be considered valid, the two ranges of nucleotides involved must be

able to chemically bond as specified by canChemicallyBondWithEnoughHBonds(). Then, the

method extends each valid FormStemAction to its maximum possible length with the idea

that in real life stems tend to “zip up” as far as is chemically and spatially possible once they

have started to form.

Runtime: O(p + m), where p is the number of possible form stems involving the given range

and m is the sum of the numbers of nucleotides involved in each of the form stem actions in

the vector that is returned.

• Vector getFormStemActions(Range range): returns a vector containing all valid form

stem actions that can operate on this RNA molecule that involve the passed range of nu-

cleotides. This includes form stem actions that extend beyond the boundaries of the range

of nucleotides passed, but does not include form stem actions that extend fewer than three
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nucleotides into the range.

Runtime: O((s−2)(p+m)), where s is the size of the argument range, where p is the number of

possible form stems involving the given range and m is the sum of the numbers of nucleotides

involved in each of the form stem actions in the vector that is returned. This results from

(s − 2) calls to getFormStemActionsForMinStemSizeRange().

• Vector getAllFormStemActions(): returns a vector containing all valid form stem actions

that can operate on this RNA molecule.

Runtime: O(t((s− 2)(n + m))), where t is the number of unpaired subsequences in this RNA

molecule, n is the number of possible form stems involving the given range and m is the sum

of the numbers of nucleotides involved in each of the form stem actions in the vector that is

returned. The runtime results from t calls to getFormStemActions().

• Vector getFormStemActionsForEnd(): returns a vector containing all valid form stem

actions involving the final transcribed nucleotide of this RNA molecule. Sets the start time

of each of these actions to the current internal time of this RNA molecule so that they can

be tried before the next nucleotide is transcribed.

Runtime: O(n + m), where p is the number of possible form stems involving the given range

and m is the sum of the numbers of nucleotides involved in each of the form stem actions in

the vector that is returned.

• BreakStemAction getBreakStemAction(Range halfStemRange): creates a break

stem action corresponding to the stem specified by halfStemRange.

Runtime: O(1).
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4.3.1 RNACube

We created the RNACube class in order to optimize one of the most frequently used methods in

RNAMolecule, getFormStemActionsForMinStemSizedRange. Previously, given a minimum-sized

range, the method iterated through all unpaired, minimum-sized subsequences and attempted to

create a form stem action. Since the majority of these subsequences could not base pair with an

arbitrary minimum-sized range, this method was very inefficient.

The RNACube class is a lookup table that returns a list of all the possible places a minimum-sized

range could base pair with. The lookup table, locations, is a three-dimensional array of linked

lists. Each dimension has length four, to represent the four types of nucleotides. The sequence of a

three nucleotide range is used as a key into the three dimensional array so that each possible three

nucleotide sequence has its own ArrayList recording the indices of where it begins in the RNA.

The constructor, which takes the sequence of nucleotides as input, initializes the lookup tables and

three dimensional array. First, it iterates through the sequence, adding an entry to the ArrayList

in locations that corresponds the minimum-sized sequence beginning at the particular nucleotide.

Then it creates two arrays of vectors, normalMode and cleanupMode, which store the list of matches

for each nucleotide in the sequence, with and without G-U bonds. The runtime of the constructor

is O(n), where n is the length of the RNA’s sequence.

Fields:

• int moleculeLength - the length of the RNA.

• static int CUBE SIZE - 4, to represent the four possible base pairs.
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• Vector normalMode[ ] - an array containing a list of ranges that can base pair with the three

nucleotide ranges beginning with each nucleotide under Watson & Crick rules.

• Vector cleanupMode[ ] - an array containing a list of ranges that can base pair with the three

nucleotide ranges beginning with each nucleotide under canonical rules.

• ArrayList locations[ ][ ][ ] - a three-dimensional array representing all the possible sequences

for a three nucleotide range. Records the index of the beginning nucleotide in an ArrayList.

Methods:

• Vector getMatches(int index): returns the starting nucleotide of all the three nucleotide

subsequences that the subsequence beginning with index can base pair with under strict

Watson and Crick rules.

Runtime: O(1).

• Vector getCleanupModeMatches(int index): returns the starting nucleotide of all the

three nucleotide subsequences that the subsequence beginning with index can base pair with

allowing G-C, A-U and G-U bonds.

Runtime: O(1).

• Vector findMatches(String RNA, int index): returns the output of returnItems for the

reverse complement (Watson & Crick) of the string RNA beginning at index. If no matches

exist, return a null list.

Runtime: O(i), where i is the the number of items at locations[x][y][z]. This method deter-

mines the reverse-complement of the three-nucleotide sequence beginning at index and then

calls returnItems(), which creates the i term in the runtime.
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• Vector findCleanupModeMatches(String RNA, int index): this function concatenates

the results of several calls to findMatches in order to account for all the possible half stems

that can form a base pair with the half stem beginning at index with at least six hydrogen

bonds. This accounts for G-U bonds.

Runtime: O(i), where i is the the number of items at locations[x][y][z]. This method calls re-

turnItems for all the possible reverse-complements of the three-nucleotide sequence beginning

at index, which creates the i term in the runtime.

• Vector returnItems(int x, int y, int z): returns a list of indexes stored in locations[x][y][z].

Ensures that values that are returned are more than 5 nucleotides apart from index on the

backbone of the RNA molecule, since half stems must be separated by at least three nu-

cleotides.

Runtime: O(i), where i is the the number of items at locations[x][y][z].

4.4 Action

Action is an abstract class representing a change to the molecule’s current secondary structure. It

is subclassed by FormStemAction and BreakStemAction. Each action has an associated probability

and a start time. The start time is used to limit when actions can occur, so the break stem action

associated with a newly formed stem cannot occur until the next time tick. Actions with future

start times have a probability of zero.

There are three types of Actions: Form Stem Actions, Break Stem Actions and Lengthen Stem

actions. Lengthen stem actions occur when a newly-transcribed nucleotide extends a stem at the

end of the molecule and are represented as a form stem action with length 1.
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Fields:

• RNAMolecule molecule - reference to the parent RNAMolecule object.

• Range highRange - the higher range.

• Range lowRange - the lower range.

• double probability - the probability of the action.

• int startTime - the first time this action is allowed to take place.

4.4.1 FormStemAction

FormStemAction is a subclass of Action. Additionally, instances of FormStemAction are subject to

the following rules which are enforced by methods in RNAMolecule. The two ranges of nucleotides

must:

• be non-overlapping

• have a distance of at least three nucleotides between them

• be entirely unpaired

• able to base pair with each other

• form at least 6 hydrogen bonds.

Methods:
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• boolean conflictsWith(FormStemAction other): returns true if either of the ranges

involved in this form stem action overlap either of the ranges involved in other.

Runtime: O(1).

• boolean isContainedWithin(FormStemAction other): returns true if this FormStemAc-

tion is a subset of other.

Runtime: O(1).

• void calculateProbability(): calculates the action’s probability using the model described

in section 3.2.

Runtime: O(1), O(m), or O((m+(np)), where m is the cost of a call to RNAMolecule.canSpatiallyBond(),

n is the length of the stem, and p is the cost of a call to DistanceCalculator.getDistance().

O(1) if this form stem action is scheduled for a future time. O(m) if the start time is valid

but the stem can’t form due to spatial constraints. O((m + (np)) if the stem can form.

• double GetPolymerDistance(double length): to provide a rough consideration for the

three dimensional shape of the RNA, we calculate the polymer distance based on the length

of the backbone chain of nucleotides. Polymer chains are flexible and usually form irregular

shapes, so they are usually modeled polymers with a random walk method. The polymer

distance is calculated as follows: f(d, l) = l 1√
6

√
d, where d is the graph distance between the

nucleotides and l is the length of one nucleotide [3]. We assume that the length of a nucleotide

is equal to 1.0. This corresponds to
√

1
6 of the RMS end-to-end distance.

Runtime: O(1).

40



4.4.2 BreakStemAction

Break stem actions represent the possibility of a stem breaking. Whenever a stem is formed a

corresponding BreakStemAction is created.

Methods:

• void calculateProbability (): calculates the action’s probability using the model described

in section 3.2. Runtime: O(1).

4.4.3 ActionQueue

The Action Queue Object stores a list of FormStemActions and BreakStemActions, sorted in

decreasing order of probability. ActionQueue implements the java.util.Comparable interface, so it

sorts the queue in O(n lg n) time.

Fields:

• Vector list - the list of actions.

• boolean isSorted - a flag we set when the queue needs to be sorted.

Methods:

• void java.util.Collections.sort(Listlist): Sorts the action queue using the standard method

in the java class libraries. This method uses a modified mergesort that offers guaranteed

O(n lg n) performance. In order to sort the action queue in descending order of probability,
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we violate the contract of this interface in defining Action.compareTo(), which returns the

opposite of what normally would be expected.

Runtime: O(n lg n), where n is the number of elements in the queue.

4.5 DistanceCalculator

A DistanceCalculator object maintains a simple spatial model of the RNA’s secondary structure.

The structure is stored as undirected graph, with a vertex for each nucleotide. Edges represent

the distance between nucleotides that are base paired, recently base paired (to account for broken

stems), or adjacent along the backbone of the RNA. These considerations restrict the graph’s

structure, enforcing a maximum of four edges per vertex.

The graph is stored in an adjacency-list representation. We also maintain tables of shortest-path

distances and shortest-path predecessors, which are calculated with Dijkstra’s algorithm. Our

implementation of Dijkstra’s algorithm is based on [4]. We employ a min-priority queue, which is

implemented as an inner class and is based on [5].

Since the graph is updated frequently, calling Dijkstra’s algorithm is the major performance bot-

tleneck in our simulation. To alleviate this, we took advantage of the graph’s restricted structure

to avoid recalculating the tables whenever possible. We made the observation that operations to

remove an edge or set an edge length always increase the distance of an edge. When an edge is

removed, the distance between its vertices is increased by a constant factor that represents the nu-

cleotides diffusion through space. The method to set an edge length is only called for this purpose.

Given this information, we only have to recalculate the shortest paths involving that edge.
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We also noticed that we always add vertices to the graph at the same place: the 3′ end of the RNA.

This new vertice is only connected to its neighbor. Thus, we can calculate all the shortest paths to

the newly transcribed nucleotide by copying the shortest path entries for its neighbor and adding

1. Forming a stem adds an edge at an arbitrary location in the graph, which reduces the distance

between the surrounding nucleotides. Since the location of this edge is generated stochastically, we

have to regenerate the full tables.

Fields:

• Vector g - the adjacency-list representation of the graph.

• double[ ][ ] d - the table of shortest-path distances between vertices in the graph.

• int[ ][ ] pi - table of predecessors for the shortest paths.

• boolean validTableEntries[ ] - tracks whether a particular vertex’s table entries must be re-

calculated.

Methods:

• void reset(int n): resets this distance calculator, giving it a graph with n vertices and no

edges. Resets all values of validTableEntries to true.

Runtime: O(l), where l is the length of the RNA.

• int addVertex(): adds a vertex to the graph to represent the transcription of a new molecule.

Since the distance between backbone nucleotides is assumed to be constant, we initialize the

distances from the new vertex, v, to the existing vertices i = (1, . . . , v − 1) to d[v][i] =

d[v−1][i]+1 and d[i][v] = d[i][v−1]+1. The table of shortest path predecessors is initialized
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in a similar manner, since all paths to and from the new vertex must run through its neighbor.

Returns the new number of vertices in the graph.

Runtime: O(n), where n is the number of vertices in the graph.

• void addEdge(int u, int v, double l): adds edge between vertex u and vertex v with

length l to this distance calculator’s graph.

Runtime: O(n), where n is the number of vertices in the graph. Adding an edge could effect

any shortest path in the graph so we invalidate all the table entries for each vertex in the

graph.

• void setEdgeLength(int u, int v, double l): sets the length of edge (u, v) in this dis-

tance calculator’s graph to l. Calls invalidateTableEntries for u and v. This method always

lengthens the edge because it is only called by RNAMolecule.breakBond(), which breaks a

stem, and RNAMolecule.incrementTime(), which diffuses a recently broken stem.

Runtime: O(n), where n is the number of transcribed nucleotides in the RNA molecule. This

runtime results from a call to invalidateTableEntries.

• void removeEdge(int u, int v): removes edge (u, v) from this distance calculator’s graph.

Calls invalidateTableEntries for u and v.

Runtime: O(n), where n is the number of transcribed nucleotides in the RNA molecule. This

runtime results from a call to invalidateTableEntries.

• double getDistance(int u, int v): returns the length of the shortest path between two

vertices in this distance calculator’s graph.

Runtime: O(1) if the table entries for u are valid, otherwise O(v(lg v)), where v is the number

of vertices in the graph, since we use Dijkstra’s algorithm to recalculate all the single-source
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shortest paths from u to all the other vertices in the graph.

• void dijkstra(int s): uses Dijkstra’s algorithm to calculate single-source shortest paths from

s to all other vertices in this distance calculator’s graph. Fills in row s in the this.d and this.pi

tables. Based on [4].

Runtime: O(v(lg v)), where v is the number of vertices in the graph.

• void initializeSingleSource(int s): resets row s in this distance calculator’s d and pi

tables.

Runtime: O(v), where v is the number of vertices in the graph.

• void relax(int s, int u, int v, DistanceCalculator.MinPriorityQueue q): tests whether

the shortest path from vertex s to vertex v can be improved by going through an intermediate

vertex u. If so, updates d[s][v], pi[s][v], and q accordingly. Based on [4].

Runtime: O(lg v), where v is the number of vertices in q.

• double length(int u, int v): returns the length of edge (u, v) in this distance calculator’s

graph.

Runtime: O(1).

• void invalidateTableEntries(int u, int v): invalidates the table entries for any vertex

that is a predecessor to u or v. This method iterates through all the vertices in the graph

(1, . . . , i) and invalidates the table entries for vertex i if pi[i][u] = v or pi[i][v] = u.

Runtime: O(n), where n is the number of transcribed nucleotides in the molecule.
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4.5.1 DistanceCalculator.Edge

This inner class is used to represent an edge in the graph.

Fields:

• int v - the second vertex of the edge.

• double l - the length of the edge.

4.5.2 DistanceCalculator.MinPriorityQueue

This inner class is used by the implementation of Dijkstra’s algorithm to represent a min-priority

queue of vertices that is sorted by the values in d[s] for some int s. It doesn’t work quite like

a normal min-priority queue because it is only used in one place for a specific purpose. This

implementation is based on [5].

Fields:

• int[ ] heap - represents this min-priority queue.

• int heapSize - the number of vertices currently in this min-priority queue.

• int[ ] invertedHeap - stores the indices of the vertices in the heap so that these vertices can be

located in constant time. Provides a lookup table for the values in heap, which are rearranged

as the heap is sorted.

• int row - used to find the keys for the vertices in this min-priority queue: d[row][i] contains

the key for vertex i.
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Methods:

• int parent(int i): returns the index of the parent of the vertex in heap[i].

Runtime: O(1).

• int left(int i): returns the index of the left child of the vertex in heap[i].

Runtime: O(1).

• int right(int i): returns the index of the right child of the vertex in heap[i].

Runtime: O(1).

• double key(int v): returns the key of vertex v.

Runtime: O(1).

• void swap(int heapIndex1, int heapIndex2): swaps the positions of heapIndex1 and

heapIndex2 in heap[ ]. Updates invertedHeap to keep track of this change.

Runtime: O(1).

• void minHeapify(int i): lets the vertex at heap[i] “float down” in the heap so that the

subtree rooted at index i becomes a min-heap. Assumes that the trees rooted at left(i) and

right(i) are min-heaps already.

Runtime: O(h), where h is the height of the argument i in the tree.

• int extractMin(): returns the index of the vertex v with the lowest key, and removes v from

this min-priority queue.

Runtime: O(lg s), where s is the size of the heap. This method calls minHeapify, so lg s is

the maximum depth of the heap.
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• void decreaseKey(int v): decreases the key of vertex v to the current value in d[this.row][v].

This method doesn’t check to make sure that the new key is smaller than the old key, because

the old key is not stored anywhere.

Runtime: O(lg s), where s is the size of the heap.

4.6 RNAFolder

The RNAFolder class expresses our folding algorithm. It contains an RNAMolecule object and an

ActionQueue object to maintain the state of the molecule and keep track of possible actions.

Fields:

• RNAMolecule molecule - the molecule currently being folded.

• ActionQueue queue - the list of actions that can happen to the molecule.

Methods:

• void tryAllActionsInQueue(): tries every action in this RNA folder’s action queue in

decreasing order of probability. An action is performed if a generated random number is less

than or equal to the action’s probability. Whenever an action is performed, any actions that

are no longer chemically possible are removed from the action queue, and any new actions

that have become possible are added to the action queue.

Runtime: O(nc), where n is the number of actions in the queue and c is the cost of performing

an action.
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• String fold(): transcribes this RNA folder’s RNA molecule and folds it according to the

results of actions generated by our probability model. Implements the folding algorithm

described in section 3.1. Returns a string representing the final secondary structure in connect

format.
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Chapter 5

Visualization Tools

This chapter presents two visualization tools and a graphical user interface for the simulation.

5.1 Circles

Circles plots are a standard way to view RNA secondary structures. In a circles plot, the outside

circle represents the backbone of the RNA and inscribed arcs show the base pairs in the structure.

A tool for drawing circles plots is included in the popular GCG Wisconsin package. Figure 5.1

shows an example circles plot for a S.cerevisiae 5S RNA.

To help understand our simulation, we needed a means to overlay circles plots to compare two

possible folds of an RNA. Since this feature was not included in the GCG Circles tool, we developed

our own tool for circles plotting. It is capable of drawing circles plots for single molecules, as shown

in figure 5.1 as well as for comparing two folds, as shown in figure 5.2. In 5.2, green arcs represent
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Figure 5.1: Circles plot
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correctly predicted base pairs, red arcs represent incorrectly predicted base pairs, and blue arcs

represent base pairs that are part of the correct structure but are missing in the predicted structure.

Circles reads the standard “connect” (.ct2) format and can save images as jpegs.

Figure 5.2: Comparison plot using Circles

5.2 Trace

To fully understand the working of our simulation we developed an animated visualization tool,

Trace, that tracks the progress of an RNA as it is folded. The trace tool draws an animated circles
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plot of that represents a molecule’s secondary structure as it is folded.

Figure 5.3 shows a screenshot of the trace tool in action. At the bottom of the window is a status

bar displaying information about the most recent action. The current transcription point is tracked

by a red circle on the outside of the circles plot. The user can change the speed of the animation, as

well as toggle back and forth through the actions one by one. The stop button halts the animation

and resets the molecule, while the “End” button draws the final structure. The user is able to

overlay the correct structure, which is drawn using the same color scheme as described in the

Circles code.

Additionally, Trace provides the ability to view the probability distribution of actions that were

performed during the fold. This helped us refine our probability models by understanding the

distributions they generated when run on real molecules. Figure 5.4 shows a histogram including

a breakdown of form stem (in blue) and break stem (in red) actions.

5.3 ProFold

The ProFold tool presents an an intuitive graphical user interface developed using the Swing toolkit.

The interface is shown in figure 5.5.

The ProFold tool allows the end user to fold the molecule. Since the simulation is stochastic,

multiple folds are recommended. ProFold has an option to choose the number of folds to perform,

which are stored in the format OutputFile.FoldNumber.extension. Additionally, ProFold can output

the standard “connect” file format (.ct2) or create .trace files for use with our Trace tool.
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Figure 5.3: Trace
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Figure 5.4: Histogram view
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Figure 5.5: ProFold graphical user Interface
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Chapter 6

Results

This chapter presents the findings of our research. We begin with a review of our algorithmic

improvements and scoring system, and then compare the accuracy of MFOLD and ProFold on

a range of RNAs. We also present the results of several experiments to investigate the effect of

our algorithm as a form of simulated annealing. Lastly, we show the speedups gained from our

optimization efforts.

6.1 Preliminaries

6.1.1 Algorithmic Improvements

In order to assess the performance of ProFold, we initially spent a lot of time trying to determine the

best parameters for the simulation. To accomplish this we used a parameter evaluation program

[7] that repeatedly folded a molecule with various combinations of parameters and output the
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combinations that produced the most accurate folds. These results showed us that the break stem

and form stem parameters were the most important variables.

This process lead to several improvements to the algorithm as well as the optimizations described

in section 6.7. First, we decided to simplify the folding algorithm. Originally, the algorithm had

three stages: transcription, pre-cleanup mode and cleanup mode. Both transcription and pre-

cleanup mode disallowed stems containing G-U base pairs. After the molecule was transcribed,

it entered pre-cleanup mode, where it iterated until the queue did not contain any actions with

probability greater than a parameter called the cutoff probability. After leaving pre-cleanup mode,

the algorithm entered cleanup mode, where rules for forming stems were relaxed to allow G-U base

pairs. The algorithm iterated in cleanup mode until the queue didn’t contain any possible form

stem actions. Both pre-cleanup and cleanup mode shared a cap of 1000 as the maximum number

of iterations.

We simplified the folding algorithm by making three changes: eliminating pre-cleanup mode, al-

lowing G-U base pairs throughout the fold, and having cleanup mode iterate for a fixed number of

times. We the first two changes are more faithful to the underlying biology. The last change makes

understanding the effect of cleanup mode easier, since it removes its stochastic component.

Additionally, our parameter evaluation results led to changes to our probability models. We adopted

a new probability model for generating form stem actions, discussed in 3.2.

Previously, we assumed that the chance of two half stems bumping into another was inversely

proportional to the volume defined by their maximum distance. We thus assigned the probability

c
d3 to a minimum-sized form stem action, where c was the form stem probability parameter and d

was the distance between the two half stems. We decided to replace this with the current model
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after implementing the polymer distance calculation. After the polymer distance calculation was

added we had difficulty searching for a good range of values for c. This made it apparent that the

parameter c was a “magic number” that did not have any biological or probabilistic significance.

This was reinforced by the discovery that many values of c resulted in probabilities that exceeded

1.0.

Lastly, we were troubled with our probability model for breaking stems, since we got the best results

with high (close to 1.0) parameters that did not make biological sense - since a base pair should

not be ”breathing” regularly. We tested an alternative model, but it was much less accurate. This

result led us to focus on the simulated annealing hypothesis that we discuss later in this chapter.

6.1.2 Scoring System

The results presented in this chapter use a common scoring system. Each fold was scored on the

basis of correct base pairings out of total base pairings. Since both our algorithm and MFOLD

generate multiple structures, we calculate the average score for all folds for each molecule.

We had several discussions over which scoring system was most appropriate. Previously, we included

a penalty for incorrect predictions into our scoring system, c−i
t , were c was the number of correctly

predicted base pairs, i was the number of incorrectly predicted base pairs and t was the number

of base pairs in the actual structure. Under this scoring system, perfect folds would have a score

of 1.0 and inaccurate folds could have a negative score. We also considered scoring systems that

would give partial credit to stems that were displaced by a nucleotide or two, since these stems

would be an approximation of the overall secondary structure.

Eventually, we decided to adopt the simpler scoring system that does not penalize incorrect stems.
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This method allowed us to easily understand how accurate our folds were. This decision was also

based on the assumption that increasing the percentage of correct stems would prevent incorrect

stems from forming. Down the road, if we achieved a high accuracy rate for the simulation using

this scoring system, it would make sense to adopt the scoring system with penalties to further fine

tune the simulation.

6.2 MFOLD Performance

To assess the current state of the art in RNA secondary structure prediction, we first present the

results of folding several types of RNAs from a variety of organisms. We folded each molecule with

version 3.1 of MFOLD, using the default parameters. The results are summarized in table 6.1.

RNA Length Number of Structures Mean Score
S.cerevisiae Ala tRNA 76 1 .95
S.cerevisiae Phe tRNA 76 2 .595
S.cerevisiae 5S 118 2 .803
E.coli 5S 120 20 .27
B.subtilis 5S 118 4 .421
S.cerevisiae RNAse P 369 17 .442
R.prowazekii RNAse P 385 16 .482
B.subtilis RNAse P 401 18 .501
B.subtilis 16S 1552 16 .505
C.pneumoniae 16S 1554 21 .441
E.coli 16S 1542 27 .479
R.prowazekii 16S 1502 24 .505
B.subtilis 23S 2927 37 .481
E.coli 23S 2904 43 .492

Table 6.1: MFOLD benchmarks

As expected, MFOLD offers good performance on smaller RNAs, such as tRNA and 5S RNAs. On

both tRNAs that we tested, MFOLD generated folds that had at least 95% of the base pairings
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correct. Of the 5S molecules, there is a noticeable performance gap between S.cerevisiae and

B.subtilis and E.coli. Upon inspecting the correct secondary structures and sequences of these

molecules, we determined that this is due to non-canonical base pairings in several stems, which

MFOLD does not handle. Since 5S RNA molecules typically have five stems, disallowing any one

of them due to base pairing considerations has a significant performance impact.

Aside from the smaller molecules, we were surprised by MFOLD’s consistent performance on the

larger RNAs. While 23S RNAs have approximately nine times as many nucleotides as RNAse P

molecules, there was no significant degradation in performance across the 16S, 23S and RNAse

P molecules. Lastly, the folds took a reasonable amount of time, with the longest 23S molecules

lasting about an hour or two to compute forty folds.

6.3 ProFold Performance

The following presents the best scores for our simulation on a variety of RNAs. These scores

represent the average score for a number of folds given a set of parameters: the form stem probability

(FSP), the break stem probability (BSP) and the number of iterations in cleanup mode. These

results represent the set of parameters with the best average score.

While our initial results with smaller molecules looked promising, our accuracy on 16S RNAs

dropped off dramatically, and are approximately one-fifth as accurate as MFOLD on the same

molecules. We hypothesize that this is due to the combinatorial explosion in the number of pos-

sible form stems. Since our algorithm forms stems stochastically, it would be more susceptible to

this problem than MFOLD, which minimizes a known energy function. Due to the disappoint-

ing performance on 16S molecules, we did not perform extensive tests on 23S rRNAs, which have
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RNA Length Mean Score # of Folds FSP BSP Cleanup Iterations
S.cerevisiae 5S 118 .78 20 .35 .8 2000
E.coli 5S 120 .316 20 .55 .9 2000
B.subtilis 5S 118 .347 20 .55 .8 2000
S.cerevisiae RNAse P 369 .388 10 .580 .85 2000
R.prowazekii RNAse P 385 .236 10 .75 .4 2000
B.subtilis RNAse P 401 .181 10 .55 .4 2000
B.subtilis 16S 1552 .124 10 .950 .2 1000
E.coli 16S 1542 .089 10 .950 .3 1000

Table 6.2: Best ProFold scores

approximately twice as many nucleotides as the 16S RNAs.

The results in 6.3 show a range of parameters. To conduct a fairer test, we chose a set of “good”

parameters and folded several molecules with them. This is more of a real-world test, since trying

a wide range of parameters would not be useful on an unknown RNA. Based on the results of the

previous test, we set the form stem probability to .55, the break stem probability to .8 and the

number of iterations in cleanup mode to 2000. Each molecule was folded ten times, and the average

was calculated.

RNA Length Mean Score MFOLD Score
S.cerevisiae 5S 118 .686 .803
E.coli 5S 120 .245 .27
B.subtilis 5S 118 .347 .421
S.cerevisiae RNAse P 369 .240 .442
R.prowazekii RNAse P 385 .133 .482
B.subtilis RNAse P 401 .127 .501
B.subtilis 16S 1552 .124 .505
E.coli 16S 1542 .059 .479

Table 6.3: Mean ProFold scores with FSP = .55, BSP = .8, Cleanup = 2000
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6.4 Effect of Cleanup Mode Length

While transcription mode is determined by the length of our model, the length of cleanup mode

is set by an arbitrary parameter to our model. To understand how the length of cleanup mode

effects the accuracy of the fold, we we ran our parameter evaluation program with varying lengths

of cleanup mode. Each combination of parameters and cleanup mode length was folded twenty

times and the average score was computed. The results of this experiment are summarized in table

6.4.

RNA 0 100 250 500 1000 2000
S.cerevisiae 5S .404 .546 .657 .710 .716 .783
E.coli 5S .180 .268 .293 .308 .300 .316
B.subtilis 5S .180 .283 .256 .306 .321 .347
S.cerevisiae RNAse P .151 .212 .242 .271 .316 .311

Table 6.4: Effect of cleanup mode length

In all these cases, the length of cleanup mode has a positive correlation with the score of the

foldings. A cleanup mode with 2000 repetitions is close to twice as accurate as folding the molecule

without cleanup mode. Interestingly, the effect seems to level off, with most of the gains occurring

between 500 and 1000 repetitions.

6.5 Effect of Non-Progressive Algorithm

To conclusively determine whether transcription mode had a positive effect on folding accuracy,

we ran our parameter evaluation program with two folding algorithms, transcriptional and non-

transcriptional. The transcriptional algorithm was the standard ProFold procedure with a cleanup
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mode lasting 1000 iterations. The non-transcriptional algorithm folded the whole RNA for 1000

iterations of cleanup mode. Since RNAse P molecules have approximately 400 nucleotides, tran-

scription mode would have a much larger effect. For these tests, we compared transcription mode

and 1000 iterations of cleanup mode against 1000 + L runs of cleanup mode, where L was the

length of the RNA. We folded each combination of parameters twenty times to increase statistical

precision and computed the average score, based on percentage of base pairings correctly predicted.

The results for both the transcriptional and non-transcriptional algorithms are summarized in table

6.5.

Algorithm RNA Best Mean Score FSP BSP
Progressive E.coli 5S .3 .25 .9
Progressive B.subtilis 5S .321 .85 .9
Progressive S.cerevisiae 5S .716 .45 .8
Progressive S.cerevisiae RNAse P .315 .35 .8
Progressive B.subtilis RNAse P .154 .15 .7
Progressive R.prowazekii RNAse P .226 .55 .4

Non-progressive E.coli 5S .384 .75 .7
Non-progressive B.subtilis 5S .363 .25 .8
Non-progressive S.cerevisiae 5S .77 .75 .8
Non-progressive S.cerevisiae RNAse P .308 .35 .9
Non-progressive B.subtilis RNAse P .181 .55 .4
Non-progressive R.prowazekii RNAse P .261 .95 .6

Table 6.5: Progressive vs. non-progressive folding algorithm results

Our results contradict our initial hypothesis. In each case, except for S.cerevisiae RNAse P, the

non-transcriptional algorithm had better results. In the case where the transcriptional algorithm

was better, it only outperformed the non-transcriptional algorithm by 2%. We think these results

are consistent with the idea that our algorithm is essentially a simulated annealing version of

Nussinov’s algorithm, in that it maximizes the number of long stems that are close together along

the backbone. We hypothesize that transcriptional mode hampers accuracy because it forms smaller
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stems early on which later must be broken to form larger stems.

6.6 Combining MFOLD and Annealing

To further evaluate our algorithm’s performance as a simulated annealing technique, we tried

feeding it folds generated by MFOLD. We wanted to see if annealing the secondary structure using

our probability models for breaking and forming stems could improve on the fold generated by

MFOLD.

Each structure was annealing five times with the form stem probability set at .5 for 1000 iterations.

We ran trials with three different values, .1, .5, and .9 to cover the full range of possible break stem

probabilities. The results are summarized in table 6.6.

RNA Size MFOLD Score BSP = .1 BSP = .5 BSP = .9
S.cerevisiae 5S 118 .892 .892 .811 .676
E.coli 5S 120 .250 .250 .250 .280
S.cerevisiae RNAse P 360 .526 .538 .503 .245
B.subtilis RNAse P 401 .535 .460 .103
B.subtilis 16S 1552 .5021 .505 .426 .026

Table 6.6: MFOLD output with 1000 iterations of annealing

When the break stem probability was set to .5 or .9, annealing produced a less accurate structure,

especially in the latter case. When the break stem probability was set to a very low value, .1

annealing was able to improve the score a bit. We think this is because the low break stem value

prevented almost all stems from breaking and then any other possible stems formed. However, these

annealed folds also contained a large number of incorrectly predicted stems, which our algorithm
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does not penalize. We think that the low signal to noise ratio prevents annealing from being a

useful technique for complementing MFOLD.

6.7 Optimization

When I began working on this research project, the major bottleneck was determining good pa-

rameters for the simulation. Performing ten folds for each combination of four parameters was

estimated to take two years for an RNAse P molecule [7]. To make the parameter evaluation pro-

cess more tractable, we invested a lot of time optimizing the code. These optimizations included

creating the RNACube data structure and our modifications to Dijkstra’s algorithm.

To test the speedup resulting from our optimization efforts, we folded a set of molecules ten times

with each version of the code and took the average time. Both trials had the break stem probability

set at .9 and the diffusion rate set at 4.0. The optimized version of the code had the form stem

probability set at .75 and cleanup mode set at 500 iterations. The original version of the code

had the form stem probability set at 80.00 and the cutoff probability set at .1. These differences

resulted from our changes to the form stem probability model and cleanup mode. All tests were

performed on an Intel XEON operating at 2.8 GHz. The results are summarized in table 6.7. Our

RNA Length Original Optimized Speedup
S.cerevisiae Ala tRNA 76 1.0 1.36 .74
E.coli 5S 120 11.87 6.71 1.77
S.cerevisiae 5S 118 6.52 5.87 1.11
S.cerevisiae RNAse P 360 823.32 129.21 6.37
B.subtilis RNAse P 401 1090.97 162.5 6.71
S.cerevisiae 16S 1800 14321.19 139582.37 9.74

Table 6.7: Optimization results
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optimizations provide significant speedup that increases as with the size of the molecule. These

effects were most pronounced on the larger RNAse P and 16S RNA molecules, where the speedup

was approximately 6 and 10 times, respectively. The original version of the code was faster on

the tRNA and was more competitive on the smaller 5S RNAs. We attribute this to overhead in

initializing the RNACube and the new version of cleanup mode. In the old algorithm cleanup mode

and pre-cleanup mode operated stochastically, with pre-cleanup mode terminating when the queue

did not contain any actions whose probability exceeded the cutoff probability and cleanup mode

terminating when there were no possible form stem actions left in the queue. These factors led to

a wide range of runtimes for the smaller molecule, with the times to fold the tRNA ranging from

(.081-3.218) and for the e.coli 5S from (2.666-21.372).
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis work we evaluated a new approach for RNA secondary structure prediction. We hoped

improve on current methods by developing an algorithm that simulated how the RNA might fold

as it is transcribed. Additionally, our heuristic approach allows us to predict a common secondary

structure feature, psuedoknots, that other algorithms ignore.

Our results do not support our initial hypothesis. While initially promising, our simulation suffered

a marked decrease in performance on larger molecules, such as 16S RNAs. Additionally, we were

not able to find a clear-cut set of parameters that worked the best. Further testing showed that our

algorithm got the most benefit out of “cleanup mode,” which simulated how the molecule might

fold once it has been fully transcribed. We think that this is similar to a simulated annealing

version of Nussinov’s algorithm, in that our form stem model gives higher probabilities to larger

stems. Repeatedly forming and breaking stems would cause the molecule to tend toward a state
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that approaches the maximum number of base pairs, since larger stems are less likely to break.

This conclusion is supported by the fact that the break stem probability tended to be extremely

high ≈ .8− .9. These values indicate that each hydrogen bond would be “breathing” far more often

than what makes sense biologically.

We think that considering more biophysical factors could help create a more accurate transcriptional

folding simulation. This could include more sophisticated models for breaking stems based on

torsional forces, incorporating more three-dimensional information, and considering the effect of

pausing due to transcription factors. Despite our disappointing results, we feel we have created a

good first step by creating a modular, object-oriented architecture and visualization tools that can

be used to evaluate new folding algorithms and probability models.

7.2 Future Work

The results of this thesis suggest several directions for future research. First, we could improve our

current method for generating FormStemActions by incorporating the different energy parameters

used in MFOLD. This could provide more accurate probabilities for forming different stems, since

the MFOLD parameters distinguish between different types of secondary structural features.

The simulation also needs a more meaningful model for breaking stems. The current model, based

on hydrogen bonds ”breathing” only works when the probability that a bond is breathing is much

higher than what makes sense biologically. A new model might incorporate torsional stresses caused

by the folding process to provide a more accurate representation of the underlying biophysics.

Our simulation can easily be extended to model protein interactions during folding. Protein inter-
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actions may play an important part in RNA folding by preventing stretches of the molecule from

forming base pairs, or bringing parts of the RNA together to catalyze base pairings. These inter-

actions could be modeled in our simulation by increasing or decreasing the probability of certain

stems forming. Developing the facility to model protein interactions and testing it on known sec-

ondary structures could suggest possible wet lab experiments to better understand the mechanics

of RNA folding.

Lastly, we think adapting our probability models into a greedy algorithm is an interesting research

question. The greedy algorithm would generate possible stems, and always form the stem with the

greatest number of H bonds. This method would be considerably faster than our current simulation.
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