
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Master’s Theses Theses and Dissertations

6-1-2017

Chinese Font Style Transfer with Neural Network Chinese Font Style Transfer with Neural Network

Xue Hanyu
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hanyu, Xue, "Chinese Font Style Transfer with Neural Network" (2017). Master’s Theses. 24.
https://digitalcommons.dartmouth.edu/masters_theses/24

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of
Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/24?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

CHINESE FONT STYLE TRANSFER WITH NEURAL NETWORK

DARTMOUTH COMPUTER SCIENCE TECHNICAL REPORT

TR2017-830

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science with a Concentration in Digital Arts

by

Hanyu Xue

DARTMOUTH COLLEGE

Hanover, New Hampshire

June 1, 2017

Examining Committee:

Qiang Liu, Chair

Lorie Loeb

Wen Xing

F. Jon Kull, Ph.D.
Dean of Graduate and Advanced
Studies

i

Abstract

Font design is an important area in digital art. However, designers have to design char-

acter one by one manually. At the same time, Chinese contains more than 20,000 char-

acters. Chinese offical dataset GB 18030-2000 has 27,533 characters. ZhongHuaZi-

Hai, an official Chinese dictionary, contains 85,568 characters. And JinXiWenZiJing,

an dataset published by AINet company, includes about 160,000 chinese characters.

Thus Chinese font design is a hard task. In the paper, we introduce a method to help

designers finish the process faster. With the method, designers only need to design

a small set of Chinese characters. Other characters will be generated automatically.

Deep neural network develops fast these years and is very powerful. We tried many

kinds of deep neural network with different structure and finally use the one we in-

troduce here. The generated characters have similar style as the ones designed by

designer as shown in experiment part.

iii

Acknowledgements

To the committee members who helped me make it work.

To my family who supported me during my master program.

To my friends who gave useful suggestions for the program.

And to those I have not acknowledged yet: if you are reading this at all, thank you!

iv

Contents

Abstract . iii

Acknowledgements . iv

Introdution . 1

Related Work . 3

Method . 5

Experiment and Analysis . 13

Conclusion and Future Work . 20

Appendix A: Experiment 1 . 21

Appendix B: Experiment 2 . 26

Appendix C: Experiment 3 . 32

Bibliography . 33

v

List of Figures

1 Method structure . 5

2 A one layer neural network . 6

3 VGG networks structure . 9

4 Fully Convolutional Network structure 10

5 Accuracy chart of different training set size 14

6 Accuracy chart of different fonts . 17

7 Original SongTi characters . 21

8 Ground truth characters of WeiYouYuan font 22

9 Generated WeiYouYuan characters with 3000 as trainging set size . . 22

10 Generated WeiYouYuan characters with 2000 as trainging set size . . 23

11 Generated WeiYouYuan characters with 1000 as trainging set size . . 23

12 Generated WeiYouYuan characters with 500 as trainging set size . . . 24

13 Generated WeiYouYuan characters with 100 as trainging set size . . . 24

14 Generated WeiYouYuan characters with 50 as trainging set size . . . 25

15 Generated WeiYouYuan characters with 10 as trainging set size . . . 25

16 Original SongTi characters . 26

17 Ground truth SongTeXi characters 27

18 Generated SongTeXi characters . 27

vi

19 Ground truth WeiYouYuan characters 28

20 Generated WeiYouYuan characters 28

21 Ground truth WeiHeiJian characters 29

22 Generated WeiHeiJian characters . 29

23 Ground truth XingKai characters . 30

24 Generated XingKai characters . 30

25 Ground truth TongTiJian characters 31

26 Generated TongTiJian characters . 31

27 Non-Chinese characters in SongTi . 32

28 Ground true non-Chinese characters 32

29 Generated non-Chinese characters . 32

vii

INTRODUCTION

Now computer fonts are used widely. Most people only read articles, papers, books

and write them on electronic device. People are interested with various fonts because

different fonts provide different feeling. Designers use font in their product to convey

various emotion. And ordinary people prefer to use special font for personal interest.

Thus a lot of companies focus on generating new font. Thousands of new fonts are

generated every year. However, although number of font products increased rapidly

in these decades, demand for more fonts is still increasing.

Currently, professional company rely on CAD software heavily, which need a lot

of manual operations and professional experience. The most popular softwares are

Fontlab, Fontographer and AsiaFont Studio. And because Chinese font designing is

too complex, many companies develop their own software for more efficient designing.

However, no matter how we re-design these software, the process is similar. Design-

ers have to design characters one by one, which is time-consuming. And for most

ordinary people, there is no way to design a personal font. China has the tradition

of calligraphy. Chinese people start to design beautiful font with writing brush thou-

sands of years ago. Even today, a lot of Chinese people still spend time to practice

hand-writing. And many children learn how to write beautiful characters with profes-

sional teachers for several years. Thus many Chinese people are good at hand-writing

1

Introdution

and are willing to digitize characters in their personal fonts.

Building a Chinese font library is not easy because of the large size of character

set. Unlike English, which includes less than one hundred alphabet, Chinese has more

than 20,000 characters. Modern simplified Chinese has 27,533 characters according

to Chinese official character set GB 18030-2000. ZhongHuaZiHai is an official dictio-

nary, which contains all Chinese characters used at that time, including the Chinese

characters used outside China and characters in dialect. There are 85,568 Chinese

characters in the dictionary. The largest Chinese font dataset is JinXiWenZiJing, a

dataset generated by AINet company. The set contains Chinese characters appearing

in different places and time, including those that Chinese people will not use any more

today. The dataset size is more than 160,000. All this big numbers indicates how

difficult to design a new Chinese font. A professional designer could design about 20

characters each day. So it will take one designer about 4 years to design GB 1830-2000

dataset and 32 years to design JinXiWenZiJing, which is unacceptable. Thus most

companies have a big designer group and take about 1 year to design a new font.

In this paper, we introduce a method to accelerate and simplify the process. With

the method, designers only need to design a small set of Chinese character and find

an existing font as reference. The method will use the provided character to train the

neural network. After training, the network could generate any character. With the

method, designers only need to design 1% - 10% characters of original GB 18030-2000

set. And with a scanner, the method makes it possible to digitize personal font.

2

RELATED WORK

Researchers and scientists have explored some methods to generate fonts automati-

cally. Some work focus on decomposing Chinese character into different components

to allow designer only design components. Then software assemble components to-

gether to get characters. [3] and [6] both belong to this kind. There are two dis-

advantages of these methods. The first one is that it is still a difficult mission to

design components because Chinese characters are too complex. The other one is

that result is not good enough because same component may different in different

Chinese characters.

Another kind of method is as [10], [4] and [8]. The methods are much more

efficient than last one and result is much better. Users are required to design models

for each characters in training set and provide a large set of characters in different

fonts. Then softwares generate all the rest characters automatically. The method is

close to practical use. However, because the provided models have to be accurate

and complex, it still need a lot of manual operation and professional training. [5]

provides an interesting method. The generated characters are similar with ground

true. However, users have to decompose training characters manually, which makes

the method less efficient.

[2] project provides a good direction for Chinese font transfer. The method uses

3

Related Work

neural network to generate characters. The method is easy to use because designers

just need to provide a small character image set. Then the network generates all

the rest characters. However, the training set contains 3,000 characters, which is

still too large. A professional designer will take about 5 months to design 3,000

characters. And according to the result provided, the generated characters are still

not good enough. [1] uses similar idea on English. The method works well because

there are only 62 different characters in English, while Chinese has tens of thousands

characters.

In this paper, we also use neural network to generate characters. The difference is

that [2] project uses fully connected network with 3 layers, while our method uses deep

fully convolutional network. There are two advantage of our method, the first one

is that convolutional network is more suited to image. Convolutional network uses

context information to predict result, which is important for image. And because

convolutional network always has less parameters than fully connected network, the

training process need less time. Another advantage is our network is deeper than the

network used by [2]. Deeper network always catch features of training data better

and thus has better result. However, deeper network has over-fitting problem. We

avoid this problem by adding l2 regularization part in loss function. And according

to the result, our method indeed generates better result. Deep learning develops fast

these years. There are many kinds of deep neural network. With some experiences,

we finally use FCN as our network structure.

4

Method

We use neural network as the method. The input of the network is a character image

in an existing font. And the output of the network is a character image in target

font. To use the network, designers are expected to provide a training data set and

an existing font as reference. Each data in the data set is a pair as [character image in

existing font, character image in target font]. The data will be used to train network.

After training, given a character image in existing font, the network will generate the

character image in target font.

Figure 1: Method structure

Neural Network

Neural network is a computational model used in machine learning. It is consist of

many layers. Each layer has one or multi neural. The first layer of neural network

5

Method

is input layer, last layer is output layer, and other layers are hidden layer. Neural in

input layer are special because they get information from input directly. All other

neural combine information form last year. When given a input to neural network,

the information is delivered start from input layer, across hidden layers and finilay

come to ouput layer. The information in output layer is the output of the neural

network.

Figure 2: A one layer neural network

There are many ways for a neural to combine information from last layer. The

general way is:

hij = f(w ∗ [hi−1
j0 , h

i−1
j1 , h

i−1
j2 , · · ·] + b) (1)

hij is the jth neural in i layer. hi−1
j∗ are neural that connected with hij. w is a matrix and

b is a number, parameters of this neural. f (commonly referred to as the activation

function) is a predefined function, such as hyperbolic tangent or sigmoid function.

Before using neural network to generate output, network should be trained with

training data. Training data set is a label data set, which means each data in the

set is a pair of [input, output]. The output in the pair is the ground truth, the

one we want network generate when given the input data. The training process is

6

Method

a process to optimize w and b of each neural to make the output of the network as

similar with ground truth as possible. To optimize w and b, a loss function is needed.

Loss function is a function of the distance between ground truth and the output of

the network, which we want to decrease. L is used to present loss function, θ for

all parameters, I for input and T for ground truth. And if we consider the whole

network as a function g, the output O of the network is:

O = g(θ, I) (2)

and the loss distance l between output and ground truth is:

l = L(O, T) (3)

l = L(g(θ, I), T) (4)

For a given data, I and T are fixed and only θ is parameter. So the problem become

how to update θ to decrease l.

arg min
θ
L(g(θ, I), T) (5)

Gradient descent is used to update θ. Gradient represents the slope of the tangent

of the graph of the function, which means if we change θ in the gradient direction, l

will decrease fastest.

θ ← α ∗ ∇θL(g(θ, I), T) + θ (6)

α is the step size, a very small constant number. Given one data, θ is updated

by a small step. Neural network may use training data many times to optimize

7

Method

parameters. However, computing gradient for all parameters is time-consuming. Thus

back propagation is used to compute gradients efficiently.

Network Structure

There are many kinds of deep neural network. With some experiments, we decide to

use Fully Convolutional Network based on VGG 16-layer network.

VGG 16-layer net: [9] introduces VGG network. The paper evaluates networks

of increasing depth using an architecture with very small (3*3) convolution filters. The

experiments show that the depth of 16-19 with the filter size generates good result.

One main contribution of the network is that 3*3 filter is better than 5*5 filter. The

reason is that two 3*3 filters have same receive field with one 5*5 filter, while two 3*3

filters have less parameters than one 5*5 filter. Less parameters results to less training

time. There are 13 convolutional layers in VGG-16. Convolutional layer is useful

in image problem. In image, one pixel always share information with other pixels

around it. Convolutional layer takes advantage of this property to make prediction.

And there are five max pooling layers. When depth of network increases, overfitting

become a nonnegligible problem. Max pooling layer decreases detail information

to avoid overfitting. Image 3 shows the structure of VGG network. There are six

different structures. According to the paper, VGG-16 has best result, as the one in

green rectangle in the image. The goal of VGG-16 is classification. Hence at the

end of network, there are three fully connection layers. The three layers combine all

information together to predict the class of the input image. And because there are

three fully connection layers, the dimension of input image is fixed.

Fully Convolutional Network: VGG-16 is a classification network. To generate

8

Method

Figure 3: VGG networks structure

image, [7] changes the structure of VGG-16. FCN replaces all fully connection layer

with convolutional layers. Then the output will be an image in stead of a class.

However, because VGG-16 uses max pooling, output image will be smaller than the

input image. FCN up-samples image at the last layer, then the dimension of output

image is same with the input one. Another important contribution of FCN is skip

layer. The authors believe output of different layers catch information of original

image at different level. Deeper layers contain more abstract information, while lower

layers have more detail. To combine all this information, the paper combines some

layers at different level before up-sampling. Thus, there are three different FCN,

FCN-32s, FCN-16s and FCN-8S. FCN-32s has no skip layer. FCN-16s combines two

layers, while FCN-8s combines three layers. The result of FCN-8s is better than the

other two, and it is slower than them. We use FCN-8s for better result. Original

FCN is designed for segmentation. But the idea of FCN-8s is also suitable to font

9

Method

transfer. According to experiment result, FCN-8s works well.

Figure 4: Fully Convolutional Network structure

More Detail

The output of FCN is not character image directly, but the probability of each pixel

to be part of character. Higher probability means the pixel is more likely to be part

of character, not background. When given a character image in original font, we use

the network to generate this probability matrix. If the probability is higher than 0.5,

we take the pixel as foreground, otherwise the pixel will be part of background.

As introduced above, loss function is important for neural network. The method

uses cross-entropy as loss function. T is the ground truth image. Tij is the class of

the pixel in image T at ith row and jth column. If the pixel is part of foreground, Tij

is 1, other wise it is 0. P is the generated probability matrix. Pij is the probability

of pixel in the matrix at ith row and jth column to be foreground. Given the ground

truth image with size of W ∗H and P matrix, the loss function is:

L(T, P) = − 1

W ∗H

H∑
i=0

W∑
j=0

[TijlogPij + (1− Tij)log(1− Pij)] +
1

2
λθ2 (7)

10

Method

1
2
λθ2 is the L2 regularization to avoid over-fitting.

Algorithm 1 Training Network

1: Initialize parameter θ randomly
2: for each iteration do
3: for each batch do
4: L(T, P) = − 1

W∗H
∑H

i=0

∑W
j=0[TijlogPij + (1− Tij)log(1− Pij)] + 1

2
λθ2

5: update θ with backpropagation as:
6: θ ← 1

batch size

∑batch size
i=0 (α ∗ ∇θL(Ti, Pi) + θ)

7: End For
8: End For

Algorithm 2 Generating Character

1: Load parameter θ from trained model
2: Feed character in original font I as input to network
3: Get ouput probability matrix P
4: Generate a blank image O with same size with image I
5: for each row i do
6: for each column j do
7: if Pij > 0.5 then
8: Pixel Oij is black
9: else
10: Pixel Oij is white

11: End If
12: End For
13: End For

Software Framework

The code is developed in python. Python has a lot of libraries to support development

of neural network.

Tensorflow: Tensorflow is a open-source library for machine intelligence. The

library is originally developed by researchers and engineers of Google Brain Team,

11

Method

and now is open to all developers. Tensorflow uses data flow graphs. Mathematic

operations are presented as node in the graph, while data arrays are edges (Tensor)

between the nodes. Tensorflow allows us to build neural network fast and easy to run

on CPU and GPU.

Numpy: NumPy is a fundamental package for scientific computing with Python.

The library allows us to represent image data in multi-dimension vector and compute

easily. We present all our data as Numpy multi-dimension vector. The output of the

network is also an vector. Python functions help us save them as images.

Pillow: Pillow is an open-source python imaging library developed by Alex Clark

and other contributors. The library allows us to present image in python code easily.

Currently most font libraries are saved as TTF file. Because the input of our network

is RGB image, we need to use Pillow library to save all training characters as PNG

file.

Other libraries we use are Commentjson, Scipy and Matplotlib. Commentjson

helps us to write JSON file. Scipy is a basic library for Numpy. And Matplotlib is

designed for generating plot.

12

EXPERIMENT AND ANALYSIS1

We design several experiments to explore the ability of our method. Accuracy and

training time are important for neural network. So we will present these two values

in most of our experiments. SongTi font is a classic Chinese font and is pre-installed

on most computers. So we use SongTi as our basic font. When training, the batch

size is 32 and max iteration is 12,000. All experiments are processed on single GPU

TITAN X with 12G memory

Experiment 1: Different Size of Training Set

Training set size is one important factor. The motivation of the project is to help

designers design fonts faster. The best situation is that designers only need to design

one character, then the network generates all characters in the same style. However,

this is impossible because one character is not enough to present a style. In another

word, designer could not present their idea in one character. So how many characters

are needed to train the network?

There are two factors affecting training set size. One is what characters we use for

training. Different characters contain different information of a style. If the characters

1All fonts mentioned are from [11]. We use same name as the font name on [11]

13

Experiment and Analysis

we use are too similar, they could not fully present a style. Thus it is unreasonable

to expect the network generates good characters. So we choose fonts randomly from

Chinese character set.

Another factor is target font. Some fonts are difficult for the network to predict,

while some are easier. The target font we use is WeiYouYuan. The font is selected

because it combines printing font and handwriting font and thus presents a medium

level. With the same font, we change the training data set size and test on same 100

characters. There are 7 different set size, 3000, 2000, 1000, 500, 100, 50 and 10. The

training characters and 100 validation characters are selected randomly from SongTi

font set. There is no overlap between training set and validation set.

Figure 5: Accuracy chart of different training set size

To evaluate the method, we define the accuracy as:

Accuracy =

∑H
i=0

∑W
j=0

 1 , if Oij = Tij

0 , if Oij 6= Tij

H ∗W
(8)

14

Experiment and Analysis

Oij is the pixel of output image on ith row and jth column. Tij is the pixel of ground

truth image on ith row and jth column. H and W are height and width of the image

respectively. The accuracy is a number between 0 and 1. 1 means the generated

image is totally same with ground truth, which is a good result. And zero means the

generated image is totally different with the ground truth. It is an unacceptable result.

As chart shows, accuracy starts from about 0.82 and ends at about 0.89 after 12,000

iterations. For all experiments, accuracy keep increasing. Thus there is no overfitting.

If we keep training the model, accuracy may keep increasing. But the result is good

enough after 12,000 iterations. The chart shows that the method will have better

performance if training set is bigger. However, experiments with 3000, 2000 and 1000

set size have similar accuracy result. And according to the output images, training

set with 1,000 characters indeed generates good result. Thus 1,000 is an ideal size of

training set. And because WeiYouYuan is pretty different with SongTi, while most

other fonts are much similar, other fonts will need smaller training set. There are big

accuracy gaps between 1000, 500, 100, 50 and 10. And according to output images,

quality of output images decreases obviously. The results of 500, 100, and 10 have

disconnections between strokes.

Training time is also very important. The training time for all these 7 experiments

is about 2.0 hours. The reason is that compared with training set size, iteration

number is much bigger. Thus to decrease training time, decreasing iteration is much

useful than decreasing training set size. If training set size is 1,000, after 6,000

iteration, results are much similar with final results. Thus deceasing iteration number

is a feasible solution.

15

Experiment and Analysis

Experiment 2: Different Fonts

Same Chinese character in different fonts could be totally different. Some of them look

similar with input font SongTi, while some look like a different character. Intuitively,

the fonts that are different with SongTi will be a more difficult task for our network.

Thus, the ability of the network to deal with different fonts is important.

To evaluate the ability of the network, we use five different fonts from [11]. We

carefully choose the fonts to test network on different levels. There are two printing

style fonts and three handwriting style fonts. Printing style fonts are similar with

SongTi and thus easier for network to predict. Handwriting fonts are much difficult,

because there are a lot of connections between adjacent strokes, change of stroke width

and tilt, while SongTi is clear and consistent-width. The five fonts are SongTeXi,

WeiHeiJian, WeiYouYuan, XingKai and TongTiJian. We use 1,000 as training set

size as last experiment shows. All experiments take about 2 hours to train and could

generate about 15 images each second when testing.

Same as experiment 1, we use accuracy defined as last part to evaluate the result.

According to the chart, some fonts start with high accuracy because they are similar

with SongTi, while others start with low accuracy value. SongTeXi, WeiHeiJian

and WeiYouYuan end with high accuracy, thus they are successful. XingKai and

TongTiJian start with low accuracy. The accuracy increases with iteration increasing.

But the final accuracy is still too low, which means the generated characters are very

different with ground truth. From the accuracy, we can predict that the first three

fonts will be more successful than the other two.

As images shown in appendix B, SongTeXi, WeiHeiJian and WeiYouYuan fonts

have good results. The predicted characters are similar with ground truth. Although

16

Experiment and Analysis

Figure 6: Accuracy chart of different fonts

they are not totally same, they have same style. Generated characters of SongTeXi

have thin lines, WeiHeiJian characters are bold and WeiYouYuan characters have

rounded edges. Thus the method works well on these three fonts. However, XingKai

and TongTiJian are not as successful as these three fonts. We even cannot tell out

what the characters are in generated images. Generated XingKai characters catch

some features of the style. They have similar outlines with ground truth. But the

generated TongTiJian characters almost have nothing in images.

The mainly reason of failure is that target fonts are too different with original font.

Ground truth characters of XingKai and TongTiJian are totally different with SongTi

fonts. Location and shape of each stroke are different. Compared with XingKai

and TongTiJian, SongTeXi, WeiHeiJian and WeiYouYuan are similar with SongTi.

Although stroke shape is different, location does not have significant change. This

experiment reveals one limitation of the method. The method is good at catch the

17

Experiment and Analysis

shape change and is weak at location change. Thus, to get good result, a good original

font is very important. An ideal original font is that it has similar stroke location

with target font, while shape of each stroke is different.

Experiment 3: Characters in Other Languages

Characters in all languages have similar components, horizonal stroke, vertical stroke,

dot, left-falling stroke and right-falling stroke. Chinese characters is one of the most

complex characters. It covers almost all components we need for any language. Is it

possible to predict characters in other languages? This is useful because it is amazing

if a font set contains characters in all language.

The last two experiments evaluate the ability of the method to generate Chinese

characters. This experiment presents the transferring ability of the method between

different languages. This experiment trains network on Chinese and try to predict

character in other languages. The original font is still SongTi and the target font is

WeiYouYuan. The training set size is 1,000 and iteration number is 12,000. As last

experiment shows the model works well on Chinese characters. The other languages

we use are English, Japanese and Roman numbers.

As results shown in Appendix C, the method works well on the three languages.

Generated images are very similar with the ground truth. They have same style.

Without ground truth, it is difficult to tell out they are generated by network. How-

ever, compare with the ground truth, there are some problems. Same with Chinese

characters, disconnection is still the main problem. For English characters, discon-

nection is not obvious. For Japanese characters, disconnection is obvious. But, the

disconnection makes the characters more beautiful. The generated Japanese charac-

18

Experiment and Analysis

ters look like made by writing brush. However, disconnection in numbers is a serious

problem. Because numbers are made of one stroke, disconnection makes them dif-

ferent with original numbers. For example, 8 and 6 have a lot of disconnections. It

is a little difficult to tell out they are 8 and 6. Disconnection is a limitation of the

method. We will discuss this in the future work part.

19

CONCLUSION AND FUTURE

WORK

The thesis presents a method to transfer Chinese font style. The method helps font

designers design a new font faster. Designers only need to design a small set of Chinese

characters manually, then other characters will be generated automatically.

However, there are some limitations of the method. The main problem is dis-

connection. As shown in experiment part, compared with ground truth characters,

generated characters have disconnection problem. Another problem is that if target

font and original font are very different, the method does not work. So a good original

font is necessary for the method. Our future work will focus on these two problems.

These years, generative adversarial network has a great development and solve many

problems in different areas. The network may be helpful to solve the problems. We

will try to use GAN to transfer Chinese font style in the future.

20

APPENDIX

Appendix A: Experiment 1

Figure 7: Original SongTi characters

21

Appendix A

Figure 8: Ground truth characters of WeiYouYuan font

Figure 9: Generated WeiYouYuan characters with 3000 as trainging set size

22

Appendix A

Figure 10: Generated WeiYouYuan characters with 2000 as trainging set size

Figure 11: Generated WeiYouYuan characters with 1000 as trainging set size

23

Appendix A

Figure 12: Generated WeiYouYuan characters with 500 as trainging set size

Figure 13: Generated WeiYouYuan characters with 100 as trainging set size

24

Appendix A

Figure 14: Generated WeiYouYuan characters with 50 as trainging set size

Figure 15: Generated WeiYouYuan characters with 10 as trainging set size

25

Appendix B

Appendix B: Experiment 2

Figure 16: Original SongTi characters

26

Appendix B

Figure 17: Ground truth SongTeXi characters

Figure 18: Generated SongTeXi characters

27

Appendix B

Figure 19: Ground truth WeiYouYuan characters

Figure 20: Generated WeiYouYuan characters

28

Appendix B

Figure 21: Ground truth WeiHeiJian characters

Figure 22: Generated WeiHeiJian characters

29

Appendix B

Figure 23: Ground truth XingKai characters

Figure 24: Generated XingKai characters

30

Appendix B

Figure 25: Ground truth TongTiJian characters

Figure 26: Generated TongTiJian characters

31

Appendix C

Appendix C: Experiment 3

Figure 27: Non-Chinese characters in SongTi

Figure 28: Ground true non-Chinese characters

Figure 29: Generated non-Chinese characters

32

Bibliography

[1] Shumeet Baluja, Learning typographic style, arXiv preprint arXiv:1603.04000

(2016).

[2] Kaonashi-tyc, Neural style transfer for chinese characters, 2016.

[3] Pak-Keung Lai, Dit-Yan Yeung, and Man-Chi Pong, A heuristic search approach

to chinese glyph generation using hierarchical character composition, Computer

Processing of Oriental Languages 10 (1996), no. 3, 307–323.

[4] Zhouhui Lian and Jianguo Xiao, Automatic shape morphing for chinese charac-

ters, SIGGRAPH Asia 2012 Technical Briefs, ACM, 2012, p. 2.

[5] Zhouhui Lian, Bo Zhao, and Jianguo Xiao, Automatic generation of large-scale

handwriting fonts via style learning, SIGGRAPH ASIA 2016 Technical Briefs,

ACM, 2016, p. 12.

[6] Jeng-Wei Lin, Chih-Yin Wang, Chao-Lung Ting, and Ray-I Chang, Font gener-

ation of personal handwritten chinese characters, Fifth International Conference

on Graphic and Image Processing, International Society for Optics and Photon-

ics, 2014, pp. 90691T–90691T.

33

Bibliography

[7] Jonathan Long, Evan Shelhamer, and Trevor Darrell, Fully convolutional net-

works for semantic segmentation, Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2015, pp. 3431–3440.

[8] Huy Quoc Phan, Hongbo Fu, and Antoni B Chan, Flexyfont: Learning trans-

ferring rules for flexible typeface synthesis, Computer Graphics Forum, vol. 34,

Wiley Online Library, 2015, pp. 245–256.

[9] Karen Simonyan and Andrew Zisserman, Very deep convolutional networks for

large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[10] Rapee Suveeranont and Takeo Igarashi, Example-based automatic font genera-

tion, International Symposium on Smart Graphics, Springer, 2010, pp. 127–138.

[11] YeGenYou, Yegenyou chinese fonts website, 2017.

34

	Chinese Font Style Transfer with Neural Network
	Recommended Citation

	tmp.1594843205.pdf.QK5RG

