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Abstract 

Physical activity helps reduce the risk of cardiovascular disease, hypertension and 

obesity. The ability to monitor a person’s daily activity level can inform self-

management of physical activity and related interventions. For older adults with 

obesity, the importance of regular, physical activity is critical to reduce the risk of 

long-term disability. In this work, we present ActivityAware, an application on 

the Amulet wrist-worn device that monitors the daily activity levels (low, 

moderate and vigorous) of older adults in real-time. The app continuously 

collects acceleration data on the Amulet, classifies the current activity level, 

updates the day’s accumulated time spent at that activity level, displays the 

results on the screen and logs summary data for later analysis. 

 
The app implements an activity-level detection model we developed using a 

Linear Support Vector Machine (SVM). We trained our model using data from a 

user study, where subjects performed common physical activities (sit, stand, lay 

down, walk and run). We obtained accuracies up to 99.2% and 98.5% with 10-

fold cross validation and leave-one-subject-out (LOSO) cross-validation 

respectively. We ran a week-long field study to evaluate the utility, usability and 

battery life of the ActivityAware system where 5 older adults wore the Amulet as 

it monitored their activity level. The utility evaluation showed that the app was 

somewhat useful in achieving the daily physical activity goal. The usability 

feedback showed that the ActivityAware system has the potential to be used by 

people for monitoring their activity levels. Our energy-efficiency evaluation 

revealed a battery life of at least 1 week before needing to recharge. The results 



 iii 

are promising, indicating that the app may be used for activity-level monitoring 

by individuals or researchers for epidemiological studies, and eventually for the 

development of interventions that could improve the health of older adults. 

 
are promising, indicating that the app may be used for activity-level monitoring 

by individuals or researchers for epidemiological studies, and eventually for the 

development of interventions that could improve the health of older adults. 
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1 Introduction 

Physical inactivity increases the risk for cardiovascular disease and chronic          

diseases such as diabetes, hypertension and obesity [1]. The prevalence of obesity            

continues to increase in Western societies, and with the aging of the population,             

an increasing number of older adults are classified as obese. Older adults with             

obesity who are sedentary are at higher risk of long-term disability, and physical             

activity in this population is critical to reducing their risk of functional            

impairment. The American College of Sports Medicine (ACSM) and the Centers           

for Disease Control (CDC) recommend 30 minutes of moderate intensity activity           

or 15 minutes of vigorous activity daily for adults, including older adults [2].             

Hence, there is a need for a system that tracks the amount of time spent doing                

moderate or vigorous activities to encourage positive changes in behavior, which           

we believe will enable this population to achieve this important health goal and             

ultimately allow them to remain living independently in the community.  

 

In this work, we developed ActivityAware, a wrist-worn, energy-efficient system          

that uses a lightweight machine-learning algorithm to monitor and encourage          

physical activity among older adults. Our ActivityAware app monitors the          

activity level of individuals in real time using acceleration data recorded from an             

Amulet, a low-power wrist-worn device [3]. The app continuously collects          

acceleration data, classifies the activity level of an individual, updates the day’s            
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accumulated time spent at that activity level, displays the results on the screen as              

feedback to the wearer, and logs the data for later analysis.  

 

The app uses an implementation of a Support Vector Machine (SVM)-based           

machine-learning model to detect the activity level of a person. We developed this             

activity-level detection model using data from a study approved by the           

Dartmouth College Institutional Review Board (CPHS#28905). We collected        

acceleration data from younger and older volunteers who wore the Amulet as            

they performed various activities. 

 

Our primary contribution is the development, implementation and evaluation of          

an open-source wearable system for real-time monitoring and encouragement of          

physical activity among older adults. Our secondary contribution is the          

development and implementation of an SVM-based activity-level model validated         

on older adults. Our tertiary contribution is a review of the current methods for              

physical activity monitoring using accelerometry and wearables.  

 

In the remainder of this thesis, we describe the Amulet platform on which             

ActivityAware runs, our approach to physical activity-level categorization, and         

an overview of accelerometry in Section 2. We describe the components of            

ActivityAware and how we characterized the system in Sections 3 and 4            

respectively. We describe our approach to developing the ActivityAware         
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machine-learning model and the evaluation of the system in Sections 5 and 6             

respectively. We describe limitations and future work in Section 7. We describe            

related work in Section 8 and conclude in Section 9. 
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2 Background 

In this section, we describe the Amulet platform on which the ActivityAware app             

runs and why it is suitable for running the app. Then, we describe the              

categorization of the physical activity levels we use in this work. We also give an               

overview of accelerometry and its relation to activity monitoring. 

 

2.1 Amulet Wearable Platform 

The Amulet is an open-source hardware and software platform for writing           

energy- and memory-efficient sensing applications, which achieve long battery         

life [3]. The Amulet is a wrist-worn device that has two microcontrollers: an             

MSP430 running applications, and an nRF51822 for communicating with         

peripheral Bluetooth Low Energy (BLE) devices such as a heart-rate monitor and            

a galvanic skin response sensor (Figure 1,2) 

 

Figure 1: Internal Amulet peripherals (left), custom Amulet circuit 

board (right) 
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Figure 2: Amulet prototypes running various apps: heart rate 

app(left), EMA app (middle) and clock app (right) 

 

It has built-in sensors to measure acceleration, rotation, ambient sound, ambient           

light, and ambient temperature. It has two buttons, a capacitive touch slider, a             

battery, a haptic buzzer, two LEDs, a micro-SD card reader, and a low-power             

display. The energy-efficient Amulet platform is useful for creating and running           

mHealth applications that monitor the physiological and behavioral health of its           

wearer, often lasting weeks before needing to recharge. 

 

2.2 Physical Activity Level Categorization 

Physical activity levels are defined using the Compendium of Physical Activities,           

which capture the intensity of activities expressed in metabolic equivalents          
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(METs): 1 MET corresponds the metabolic rate obtained during quiet sitting [4].            

According to the CDC guidelines, activities can be categorized into low, moderate            

and vigorous based on METs [5]. Low corresponds to activities with METs less             

than 3 (e.g., sit, stand, lay down), moderate corresponds to activities with METs             

between 3 and 6 (e.g., walking at a moderate pace, walking fast), and vigorous              

corresponds to activities with METs greater than 6 (e.g., running) [5]. In this             

work, we use these example activities to categorize our activity levels. 

 

2.3 Accelerometry for Physical Activity Monitoring 

Accelerometers have been used as an objective measure of physical activity           

because of their ability to capture the intensity, duration and frequency of human             

movement [6]. An accelerometer captures the acceleration of objects along each           

of its axes (Figure 3).  

 

Figure 3: An accelerometer shown along its axes. Source: 

http://www.analog.com/media/en/technical-documentation/data-she

ets/ADXL362.pdf 
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Acceleration values are measured in gs or milligs (mg), where 1 g corresponds to              

the acceleration due to gravity (9.8m/s2). Various features can be derived from            

the raw acceleration values to describe the physical activity of a person.            

Accelerometers are worn on various parts of the body such as the waist, wrist and               

ankle when used for physical-activity monitoring. 

 

3 Overview of System: ActivityAware 

ActivityAware is an Amulet application that measures the daily activity levels of            

individuals (low, moderate and vigorous). The app continuously collects         

acceleration data, classifies the activity level, updates the day’s accumulated time           

spent at that activity level, logs the data for later analysis, and displays the results               

on the screen as feedback to the wearer. The app consists of four components:              

data collector, activity-level detector, activity-level monitor, and activity-level        

display (Figure 4). 

 

Figure 4: Components of ActivityAware App 

 

3.1 Data Collector 

The data collector samples data from a 3-axis accelerometer (Analog Devices           

ADXL362, range: ±2g) at a frequency of 20Hz, and parses the data stream into              
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5-second windows. Previous studies have shown that a frequency of 20Hz is            

sufficient for capturing the frequency range of physical human activities for           

classifying activities [7]. 

 

3.2 Activity-Level Detector 

The activity-level detector determines the activity level of the user. It computes a             

vector of features from each 5-second window of accelerometer data. This feature            

vector is then fed to the activity-level classifier that determines the activity level             

as low, moderate or vigorous. We describe the selection and implementation of            

this classifier in a later section. Before performing a classification, the app checks             

whether the Amulet is being worn, in which case the app skips the classification              

operation to conserve energy. Also, this check ensures that the system does not             

accumulate minutes of low activity (which is the mostly likely level that will be              

classified) when the Amulet is instead not being worn. To infer whether the             

Amulet is being worn, we assume that the Amulet is unworn when it is still,               

which we infer when there is low variability in the acceleration data. This             

approach is an approximation to assess whether the Amulet is being worn, but             

was the best option since the Amulet does not have a dedicated sensor for              

detecting skin contact. We use a threshold of the variance of the magnitude of the               

acceleration values. If the variance for that 5-second time window is below the             

threshold, we set the non-wear state to be true and then skip the classification              

operation. To develop this threshold, we first recorded acceleration values with           
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the Amulet placed flat on a table (non-wear acceleration values). We then            

computed the variance of 5-sec time windows of the non-wear acceleration values            

and selected a threshold corresponding to the 75th percentile value. We picked            

this value rather than the maximum since there were some variance values of low              

activities between the 75th percentile and the maximum. Hence selecting the 75th            

percentile would reduce the likelihood of low activities being determined as           

non-wear states. 

 

3.3 Activity-Level Monitor 

The activity-level monitor is responsible for keeping track of the number of            

minutes spent per day, for each of the three activity-level categories. This            

component tracks two data points for each activity level and non-wear state: total             

minutes today and total minutes over all days (all days refers to the set of days                

since the app was started). The value for each of these data points is updated after                

each classification result, and the total minutes today is reset at midnight each             

day. 

 

This component logs summary information every hour to a microSD card           

inserted into the Amulet. Specifically, it logs date, time (hour, minute and            

second), battery level (ADC value and percentage), and total minutes spent at            

each of the activity levels and non-wear state. This logged data can be used to               

analyze the activity patterns of individuals during epidemiological studies. 
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This component also sets a daily activity goal and tracks progress towards this             

goal. The current implementation uses CDC’s recommendation of 30 minutes of           

moderate activity or 15 minutes of vigorous activity as the daily goal. We also              

implement an equation that counts 1 minute of vigorous activity as 2 minutes of              

moderate activity towards the goal based the CDC’s recommendation of the           

minutes for either moderate or vigorous activity: 

y = mod + 2*vig  

where y is the result that is compared against the 30 minutes, mod is the amount                

of moderate minutes today and vig is the amount of vigorous minutes today. 

 

The user receives three encouragement alerts daily at 12pm, 3pm and 6pm based             

on the progress made (Figure 5). The mode of this alert is via buzzing of the                

Amulet and displaying a red LED, which stays on for 5 seconds. When the user               

has achieved less than 33% of the goal, the alert message says “You can do it”.                

When the user has achieved between 33% and 66% of the goal, the             

encouragement alert says “Keep at it”. When the user has achieved between 66%             

and 99%, the encouragement alert says “Almost there.” Once the goal is achieved,             

the Amulet buzzes, turns on a green LED for a few seconds, and displays an alert                

message “Goal Achieved!”. No alert is given if the goal has already been             

surpassed.  
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Figure 5: Encouragement alerts of the ActivityAware app 

 

3.4 Activity-Level Display 

The activity-level display component displays information about the progress         

made towards the daily activity goal tracked by the activity-level monitor. The            

display presents the progress pictorially and numerically in 3 ways: percentage,           

progress bar and number of minutes left for either moderate or vigorous activity             

(Figure 6). 
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Figure 6: Modes of the ActivityAware app 

 

4 Characterization of System 

We performed various experiments to characterize the noise and power draw of            

the ActivityAware system. We describe our characterization in this section. 

 

4.1 Noise Characterization 

We sought to characterize the noise of the system, and estimate the            

signal-to-noise ratio (SNR). We recorded acceleration data while the Amulet lay           
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flat on a table. We then computed the variance of 5-second non-overlapping            

windows of the acceleration magnitude, which corresponds to the noise power of            

the signal. We repeated this process for the three activity levels of all the older               

adult dataset. We then created a boxplot to compare the power of the noise and               

the power of the activity levels signal (Figure 7). The box plot shows noticeable              

difference between the noise power and the moderate and vigorous activity           

power. There difference between the noise and low activity is not obvious from             

the scale of the boxplot. We assessed the difference quantitatively by estimating            

the SNR of each of the three activity levels. We did this by computing the ratio of                 

the average of the activity power values and the average of the noise power              

values. We got SNR values of 14 dB, 32dB and 40dB for low, moderate and               

vigorous activity respectively. Our minimum SNR of 14 dB is not high and hence              

low-level activities might be difficult to distinguish from noise. On the other            

hand, the moderate and vigorous activities have SNR values 32dB and 40dB, and             

hence those signals can be adequately distinguished from the noise of the system. 

13 



 

Figure 7: Boxplot of noise and activity power 

 

4.2 Power Characterization 

We estimated the power draw of various computational modes of the           

ActivityAware app. We stepped through the various modes of the app and used             

an oscilloscope to measure the voltage across a 50 ohm resistor connected in             

series with the Amulet’s circuitry (Figure 8).  
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Figure 8: Circuit for power draw measurement 

 

We summarize the power-draw measurements in Table 1. The table shows that            

the most power hungry operations were log and double buzz, which draw 22.5             

mA and 19.6 mA respectively. The least power hungry operations are the button             

tap and operating system, which draw 0.6 mA and 0.42 mA respectively. We             

calculated the average current in the system with the equation: 

 

where mAavg is the average current in mA, curr(i) is the current of each              

computational mode in mA, dur(i) is the duration of each computational mode            

per day in ms, and time is the number of milliseconds in a day. Our estimate                
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shows that the system draws an average of 0.67 mA. We then estimated the              

battery life for the 110mAh battery in the Amulet. We estimate that the system              

can run for 6.9 days (165.4 hours) before needing to be recharged. This estimate              

is based on the various components of the app being completely used and hence              

corresponds to a lower bound on the battery life. As a result, the battery life could                

be longer depending on how the app gets used. For example, the less the Amulet               

gets worn, the more the app skips the classification operation as mentioned in             

section 3.3, which results in a longer battery life. Also, if the user achieves the               

daily activity goal before 12pm, the user does not receive the three            

encouragement alerts consisting of double buzz, red LED and alert display, which            

will result in a longer battery life. 
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Table 1: Summary of power draw measurements 

Mode Current 

(mA) 

Duration 

(ms) 

No of times 

/ day 

Description 

Getting 

Acceleration 1.24 140 86400 

Every second in a 24 hour period 

Feature Extraction 1.33 310 17280 Every  5 sec in a 24 hour period 

Classification 1.20 16 17280 

Every  5 sec in a 24 hour period - 

duration of nonwear (8 hours) 

Display 1.53 170 32 

Maximum of 30 times for 30 minutes of 

moderate activity + start display + 

midnight update 

Log 22.49 47 24 Once per hour 

Button tap 0.60 225 1 Once when  the app is started 

Alert display 0.70 176 3 3 times a day 

Alert Double Buzz 19.58 500 4 4 times a day 

Alert Red LED 3.01 5,000 3 3 times a day 

Alert Green LED 3.01 5,000 1 Once when the goal is achieved 

Operating System 

Interrupts 0.76 200 86400 

Once every second 

Operating System  0.42   

Total time in day - sum of time in other 

modes 
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5 Activity Level Detection Model - Machine Learning  

We developed an activity-level detection model using a common machine          

learning algorithm, Support Vector Machine (SVM). SVM is a classifier that           

constructs a high-dimensional hyperplane and uses it to perform classification          

[8]. SVM chooses a hyperplane that maximizes distance to the nearest points on             

the either side of the plane for the binary classification case (Figure 9).  

 

Figure 9: Hyperplane separating two classes in SVM [9] 

 

We use SVM because it uses a subset of the training set – “the support vectors” –                 

for its prediction function. Models like k-nearest neighbor (kNN), on the other            

hand, need to store all the data points in memory for prediction. SVM is more               

memory efficient and thus well suited for low-memory platforms like the Amulet.            
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We trained a linear SVM model to distinguish low, moderate, and vigorous            

activity levels using the scikit-learn library [9]. We use scikit-learn’s default           

parameters for the linear SVM model. 

 

5.1 Data Collection 

We collected data from volunteer subjects under a study protocol approved by            

Dartmouth’s Institutional Review Board. All individuals completed a basic         

baseline demographic questionnaire that assessed age, gender, race, height,         

weight and handedness (left or right). All data was collected online via Research             

Electronic Data Capture software (REDCap) into a centralized, HIPAA compliant          

repository. REDCap is a secure, web-based application designed to support data           

capture for research studies, providing 1) an intuitive interface for validated data            

entry; 2) audit trails for tracking data manipulation and export procedures; 3)            

automated export procedures for seamless data downloads to common statistical          

packages; and 4) procedures for importing data from external sources. 

 

5.1.1 Activity Data Collection App 

We developed an app similar to ActivityAware for the purpose of collecting data             

from the study. The app has three states: Ecological Momentary Assessment           

(EMA), Data Collection, and Data Logging (Figure 10).  
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Figure 10: States of Activity Data Collection App 

 

The app begins in the EMA state. Within this state, the user selects which activity               

they are about to perform from a list of activities using the capacitive-touch slider              

on the Amulet (Figure 11). After the user selects the specific activity and presses              

the button on the Amulet, the app switches to the data collection state.  

 

 

Figure 11:  EMA state (left), Data collection state (middle), Logging 

state (right) 

 

In the data collection state, the app collects and stores acceleration data from a              

3-axis accelerometer with range ±2g at a frequency of 20 Hz. We discard the first               

5 seconds of data. After a specified time duration (either 1 or 2 minutes), the app                
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switches to the data-logging state in which it logs the collected acceleration data             

along with the activity level onto a micro-SD card on the Amulet. 

 

The app then switches back to the EMA mode to allow the user to select the next                 

activity to perform. We accompanied the subjects when they performed the           

activities so we could ensure they completed all activities correctly and the            

appropriate number of times. 

 

5.1.2 Study Protocol 

We collected acceleration data from 29 subjects (n=29) as they performed           

various physical activities. We had 2 cohorts: younger adults (n=14) and older            

adults (n=15). The younger adults were college students 18–23 years old and the             

older adults were all above 65 years old. For the younger adults, we collected data               

from them at Dartmouth College’s Alumni Gymnasium. For the older adults, we            

collected data from them at the Dartmouth-Hitchcock Aging Resource Center.          

Subjects wore the Amulet on their left wrist, irrespective of their hand            

dominance, and performed each of the following activities for a duration from the             

range 1 to 10 minutes as the Amulet ran the Activity Data Collection App: sit,               

stand, lay down, walk at a regular pace, walk fast and run (Figures 12, 13). The                

plots show that the run activity has the most variability, followed by walk fast and               

walk moderate, and sit, stand, and lay down. We collected data using the Amulet              

placed on the same wrist to ensure the data is is consistent since the orientation               
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of the accelerometer with reference to the wrist changes when switched between            

wrists. Four older adults were unable to perform the run activity and as a result               

we had no running data from them.  

 

 

Figure 12 : Plots of acceleration data from one younger subject for 

each of the 6 activities over a 1-minute period  
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Figure 13 : Plots of acceleration data from one older subject for each 

of the 6 activities over a 1-minute period  

 

We had 1282 minutes of data in total (younger - 447 minutes, older - 835               

minutes). We categorized the data from these 6 activities into the following            

classes: low (sit, stand and lay down); moderate (walk at a regular pace and walk               

fast); and vigorous (run). We then split the data into 5-second non-overlapping            

time windows that previous studies have shown to be suitable for activity            

classification [10]. 
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5.2 Feature Extraction 

From each 5-second window of each subject’s data, we extracted 6 temporal and             

6 spectral features from the (x, y, z axes) and magnitude of the acceleration              

vector that previous studies have shown to be relevant for activity detection            

[7][10][11][12]. We had a total of 2x6x4=48 different features (Table 2,3). To            

compute the frequency-based features, we first computed the discrete Fourier          

transform (DFT) of the signals using the Fast Fourier Transform (FFT)           

algorithm. The result of the feature extraction was a training dataset containing            

10,018 and 5,364 feature vectors for the younger and older-adult datasets           

respectively. 

 

Table 2: Description of temporal features  

Features Description 

Mean Sum of values divided by total number of values 

Median Middle value of sorted values 

Range Difference between maximum and minimum of values 

Interquartile range Difference between 75th and 25th percentiles of values 

Standard deviation Square root of average square difference of values from 

mean 

Root mean square Square root of sum of square of values 
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Table 3: Description of spectral features 

Features Description 

Energy Sum of the squared DFT component magnitudes of 

the signal normalized by window length  

Dominant frequency Frequency value corresponding to the maximal 

spectral coefficient between 0.6 and 2.5 Hz 

Dominant power Maximal spectral coefficient between 0.6 and 2.5 Hz 

Power ratio Dominant power divided by total energy 

Coefficients sum Sum of coefficients from 0.5 Hz to 3 Hz 

DC value First coefficient in DFT 

 

 

5.3 Training and Evaluation of Models 

We used all 48 features in our experiments. We trained different models and ran              

various experiments to evaluate the models. We used the following metrics:           

accuracy, confusion matrix, precision, recall and F1-score, which have been used           

in previous studies [7][10]. TP refers to true positives, TN refers to true             

negatives, FP refers to false positives, and FN refers to false negatives. Accuracy             
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is the percentage of correctly classified data, computed as follows: .          TP  + TN
TP+TN+FP+FN  

Precision tells what percentage of the positively predicted class was correctly           

classified, computed as follows: . Recall tells what percentage of the   TP
TP+FP        

positively labeled class is classified correctly, computed as follows: .         TP
TP+FN  

F1-score is the harmonic mean of the precision and recall, computed as follows: 2             

. We performed our evaluation using 10-fold cross-validationprecision  recall*
precision + recall         

(stratified), hold-out validation, and leave-one-subject-out (LOSO)      

cross-validation.  

 

With 10-fold cross-validation, the dataset is divided into 10 equal parts with 9             

parts used for training and the remaining 1 used for testing. This process is              

repeated 10 times with each part being used for testing once. The metrics             

described above are computed at each iteration and then averaged at the end. We              

say the process is stratified because each part contains the same ratio for all the               

classes as there are in the whole dataset.  

 

With hold-out cross validation, the dataset is divided into 2 parts: training and             

testing datasets. This division is based on a specified criteria and the parts do not               

have to have the same number of samples. 
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With LOSO, training is done on the dataset from all subjects but 1 whose dataset               

is used for testing. This processes is repeated as many times as there are subjects               

ensuring that each subject’s dataset is used as the test dataset once.  

 

5.3.1 Testing and Results I:  Various Datasets 

We trained and evaluated three models: one using the younger adult dataset only,             

another using the older adult dataset only, and one using both datasets. We             

evaluated each model using 10-fold and LOSO cross validation with the           

corresponding dataset from which the model was developed. The results for the            

10-fold cross validation are better than LOSO (Table 4). This result is expected             

since for 10-fold cross validation, a subject’s data might be in both the train and               

test dataset resulting in a better performance. Thus, we consider LOSO a more             

rigorous evaluation metric. The results show that the younger adult model           

performed better than the older adult model and both model (Table 4).  

 

Table 4: Classification results of various datasets 

Data Accuracy Precision Recall F1-score 

 LOSO 10-fold LOSO 10-fold LOSO 10-fold LOSO 10-fold 

Younger 98.5% 99.2% 98.6% 99.2% 98.5% 99.2% 98.4% 99.2% 

Older 94.1% 96.4% 94.4% 96.4% 94.2% 96.4% 93.4% 96.4% 

Both 94.3% 96.5% 95.6% 96.7% 94.3% 96.5% 93.3% 96.5% 
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A further analysis of the result using the confusion matrices in Table 5 and 6 (A                

corresponds to actual classes and P corresponds to predicted classes) show that            

the older adult model misclassified 25% of vigorous activities as moderate           

compared to the 5.4% misclassification of the corresponding case in the younger            

adult model. This result may be due to the fact that unlike the younger adults, the                

older adults did not perform the vigorous activity with intensities that were much             

different from the moderate activities. In fact, some older adults struggled to run             

and as result their running activity looked like walking fast. Also, as mentioned             

earlier, 4 older adults could not run, which is an example of older adults’ struggle               

running. Their running data was not collected and is thus not part of either the               

training or testing datasets. These points could explain the misclassification.  

 

Table 5: Confusion matrix of younger model using LOSO 

 Low (P) Mod (P) Vig (P) 

Low (A) 99.6% 0.4% 0.0% 

Mod (A) 1.1% 98.7% 0.2% 

Vig (A) 0.2% 5.4% 94.4% 
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Table 6: Confusion matrix of older model using LOSO 

 Low (P) Mod (P) Vig (P) 

Low (A) 98.6% 1.4% 0.0% 

Mod (A) 1.9% 95.8% 2.3% 

Vig (A) 2.0% 25.0% 73.0% 

 

 

The result using both datasets performed slightly better than the older adult            

model (Table 7). This result might suggest that we should use an activity-level             

detection model trained on data from both older and younger adults rather than             

on data from only older adults since it is easier to get data from younger adults.                

However, the results might be inflated due to the larger amount of data from              

younger adults (almost twice that from older adults).  

 

Table 7: Confusion matrix of both model using LOSO 

 Low (P) Mod (P) Vig (P) 

Low (A) 99.0% 0.9% 0.1% 

Mod (A) 2.8% 95.3% 1.9% 

Vig (A) 0.9% 18.5% 80.6% 
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5.3.2 Testing and Results II:  Train on One Dataset & Test on the Other 

We performed an experiment to find out how well a model trained on data from               

only younger adults would perform when tested on a dataset from older adults             

and vice versa. We used hold-out cross validation in which the younger adult             

dataset was used as the training dataset and the older adult dataset was used as               

the testing dataset, and vice versa. Our results (Table 8) show that the model              

trained on the older adult dataset and tested on the younger adult dataset             

performed better.  

 

Table 8: Classification results from training on one dataset and 

testing on the other 

Dataset Metrics 

Train Test Accuracy Precision Recall F1-score 

Younger Older 74.9% 77.3% 74.9% 69.7% 

Older Younger 88.0% 90.7% 88.0% 88.3% 

 

A further analysis using the confusion matrix shows that the younger adult model             

misclassified 95% of older adults’ vigorous activities as moderate and 35% of            

older adults’ moderate activities as low (Table 9). This result is expected since the              
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older adults performed vigorous and moderate activities with much less intensity           

than younger adults, explaining the poor results.  

 

Table 9: Confusion matrix of younger adult model tested on older adult 

dataset 

 Low (P) Mod (P) Vig (P) 

Low (A) 99.7% 0.3% 0.0% 

Mod (A) 35.1% 64.9% 0.0% 

Vig (A) 2.3% 94.9% 2.8% 

 

The older adult model misclassified 29% of younger adults’ moderate activities as            

vigorous (Table 10). Again, this result is not unexpected and corroborates the            

intuition that activities that are moderate intensity for younger adults might in            

fact be vigorous for older adults. 

 

Table 10: Confusion matrix of older adult model tested on younger adult 

dataset 

 Low (P) Mod (P) Vig (P) 

Low (A) 98.4% 1.1% 0.5% 

Mod (A) 1.0% 70.5% 28.5% 

Vig (A) 0.0% 7.9% 92.1% 
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5.3.3 Testing and Results III: Different Feature Sets (Older Adults)  

We performed an experiment to compare different feature subsets and evaluate           

their performance. We performed this evaluation using only the older adult           

datasets to aid in picking a small number of features that work best for older               

adults – who are, after all, the target population for the ActivityAware system.            

We used only LOSO cross validation for this evaluation since it is a better              

reflection of how well the model will perform on a new subject. The feature              

subsets along with the total number of features and results are shown in Table 11.  

 

Table 11: Classification results using various feature sets with LOSO 

Feature Sets No of 

Features 

Accuracy Precision Recall F1-score 

All  48 94.1% 94.4% 94.2% 93.4% 

Magnitude All 12 91.2% 91.4% 91.2% 90.5% 

Temporal 24 94.3% 94.7% 94.3% 93.6% 

Magnitude Temporal 6 93.9% 95.8% 93.9% 93.7% 

Spectral 24 92.1% 93.8% 92.0% 91.3% 

Magnitude Spectral 6 92.4% 93.2% 92.5% 91.5% 
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The first key observation is that all 48 features are not necessary to have good               

performance. In fact, the temporal features consisting of 24 features outperform           

the ‘All’ feature set in all the metrics and the ‘Magnitude Temporal’ feature set              

with only 6 features has comparable results. A surprising result is that the             

spectral features did not perform better than the temporal features, despite their            

computational complexity. This result suggests that it is not necessary to use            

spectral features, especially considering their complexity if implemented on a          

low-power device like the Amulet. Nevertheless, various subsets of spectral          

features – or others not included in this evaluation –might have better          

performance. 

 

We used the recursive feature elimination (RFE) algorithm to select features           

within each of the features subsets mentioned above. RFE is a feature selection             

algorithm that recursively eliminates features based on the coefficients of a linear            

model that is initially trained on all the features [9]. This elimination process             

continues until the desired number of features to be selected has been reached.             

Our implementation uses the coefficients of the linear SVM for eliminating           

features. We selected features ranging from 1 to the maximum number of            

features within the feature subset. We then evaluated the performance of the            

selected features using LOSO and accuracy as the metric and plotted the results             

separately in Figure 14 and then all together in Figure 15. Overall, as features are               

removed, the accuracy decreases with some fluctuations.  
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Figure 14: Accuracy of selected features in feature subsets (plotted 

separately) 
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Figure 15: Accuracy of selected features in feature subsets (plotted 

together) 

 

We then found the optimal number of features in each subset (features with             

maximum accuracy) and summarize the results in Table 12. The best performing            

feature set overall was the temporal feature subset having 15 features and            

accuracy of 95.8%. The features are as follows: standard deviation (x, y, z,             

magnitude), mean (x, y, z, magnitude), median (x, y, z, magnitude),           

interquartile range (x, magnitude), and root mean square (magnitude). We also           

found the smallest number of features that give an accuracy within 95th percentile             

of the maximum accuracy. There are 3 features within the temporal features            

subset that give an accuracy of 91.6%: root mean square (magnitude), mean            
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(magnitude) and standard deviation (magnitude). This result shows that a small           

percentage drop in accuracy (4.2%) can be traded for significant decrease in            

features used (80%). 

 

Table 12: Accuracy of optimal features selected using RFE 

Feature Sets Maximum 

Number 

Selected 

Number 

Accuracy 

All 48 46 95.3% 

Magnitude All 12 10 94.4% 

Temporal 24 15 95.8% 

Magnitude 

Temporal 

6 5 93.9% 

Spectral 24 9 94.0% 

Magnitude 

Spectral 

6 5 92.4% 

 

5.4 Selection and Implementation of Activity Level Detection Model 

We selected a model using only a subset of features and implemented the model              

on the Amulet. We chose a model that works best using the older adult dataset               
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before we performed feature selection with RFE. We describe the model selection            

and implementation in this section.  

 

5.4.1 Model Selection 

We sought to pick a model with low computational complexity and good            

performance. The first choice we made was to use temporal features since they             

performed best and are less computationally intensive than the spectral          

features – all of which run in O(NlogN) time for computing the DFT components             

with the FFT algorithm.  

 

The next choice was to eliminate temporal features that are computationally           

complex. Specifically, we eliminated features that run in time more complex than            

O(N). The two features that fit this criteria are median and interquartile range             

since they need the data to be first sorted before they are computed and sorting               

runs in O(NlogN) time. We then picked 2 of the remaining 4 temporal features              

(mean and standard deviation) and extracted the features from the x, y, z             

accelerations, and magnitude of the acceleration) resulting in an 8-feature vector.  

 

We trained our linear SVM model with the older adults dataset and tuned the              

hyperparameters to improve the performance. We did this by trying various           

combinations of scikit-learn’s linear SVM parameter options. Using LOSO, our          

best model had an accuracy of 91.7%, precision of 93.2%, recall of 91.6%, and F1               
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score of 91.5% with the following parameters: C=100, penalty = ‘l1’ and            

dual=false. An analysis of the confusion matrix (Table 12) shows that this model             

would misclassify about 10% of moderate activity as vigorous and 21% of vigorous             

activity as moderate.  

 

Table 13: Confusion matrix of chosen activity-detection model 

 Low (P) Mod (P) Vig (P) 

Low (A) 98.3% 1.7% 0.0% 

Mod (A) 3.6% 86.8% 9.6% 

Vig (A) 2.1% 21.3% 76.6% 

 

These are significant misclassification percentages, which could lead to an          

overestimation or underestimation of the activity minutes of older adults. Further           

work is needed to obtain a model with fewer misclassifications and yet has             

minimal computational complexity. 

 

5.4.2 Model Implementation 

We implemented the model in the activity-level detector component of the           

ActivityAware app. The component computes the 8 features that were selected           

using each 5-second window of accelerometer data. This 8-feature vector is fed to             
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the activity-level classifier, which is an implementation of the decision function of            

a Linear SVM:  

y = wx + b  

Here, y is the vector that holds the result of the evaluation for the three activity                

levels, x is the computed feature vector (number of features), w is the coefficient              

matrix (number of classes × number of features) and b is the intercept vector              

(number of classes). The values for w and b are obtained from the linear model               

that we train offline using the scikit-learn library. Because this is a multi-class             

classification, we implemented the “one-vs-the-rest” approach for multi-class        

classification since the scikit-learn Linear SVM function uses this method [9]. In            

this approach, one classifier is trained for each of the classes that correspond to              

each row in the matrix w. The result of solving the equation is a vector y that                 

contains a value for each of the three classes. The class with the maximum value               

is the predicted class. 

 

6 Evaluation of System  

We evaluated the ActivityAware system by running a week-long field study and            

analyzing whether the system was useful in achieving the CDC’s recommended           

daily activity goal (utility), whether the system was easy to use (usability), and             

how long the battery might last before needing to be recharged (energy            

efficiency). We describe our evaluation below. 
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6.1 Field Study 

We ran a five-day field study in which five older adults (ages: 73, 73, 83, 86 and                 

87 years) each wore an Amulet as it monitored their activity level. The app              

tracked how much time they spent doing low, moderate, or vigorous activity, and             

the duration the Amulet spent in a non-wear state. The app also tracked battery              

life and logged a summary of this information hourly for later analysis. The app              

displayed to subjects how close they were to achieving the daily activity goal and              

gave encouragement alerts 3 times a day as described earlier.  

 

6.2 Utility Evaluation 

We sought to determine whether the ActivityAware system was useful in helping            

older adults achieve the CDC’s recommended daily activity goal. Specifically, we           

were interested in knowing whether the three displays of progress (percentage,           

progress bar, and number of minutes left for either moderate or vigorous activity)             

as well as the encouragement alerts helped to achieve the activity goal. We             

summarize the number of minutes per activity level for all five subjects (S1, S2,              

S3, S4, & S5) and for all 5 days (Table 14). We also include the time each subject                  

achieved the activity goal for each day. An analysis of the activity data showed              

that all five subjects achieved the activity goal for all the five days (Table 14).  
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Table 14: Summary of activity log data 

 Activity Data S1 S2 S3 S4 S5 

Day 1 Low 443 mins 403 mins 32 mins 154 mins 412 mins 

Mod 41 63 mins 4 mins 108 mins 110 mins 

Vig 10 mins 9 mins 24 mins 17 mins 3 mins 

Goal Reach Time 2PM 1PM 3PM 3PM 2PM 

Day 2 Low 608 mins 497 mins 357 mins 618 mins 247 mins 

Mod 85 mins 95 mins 13 mins 68 mins 23 mins 

Vig 17 mins 10 mins 16 mins 7 mins 4 mins 

 Goal Reach Time 12PM 12PM 10AM 2PM 5PM 

Day 3 Low 650 mins 505 mins 118 mins 396 mins 327 mins 

Mod 94 mins 93 mins 4 mins 79 mins 38 mins 

Vig 25 mins 11 mins 13 mins 7 mins 6 mins 

 Goal Reach Time 10AM 12PM 11AM 11AM 8PM 

Day 4 Low 685 mins 470 mins 270 mins 340 mins 226 mins 

Mod 92 mins 62 mins 8 mins 125 mins 38 mins 

Vig 41 mins 8 mins 21 mins 7 mins 6 mins 

 Goal Reach Time 11AM 3PM 11AM 10AM 11AM 

Day 5 Low 465 mins 539 mins 505 mins 570 mins 340 mins 

Mod 59 mins 117 mins 39 mins 93 mins 55 mins 

Vig 36 mins 13 mins 31 mins 19 mins 5 mins 

 Goal Reach Time 11AM 1PM 9AM 10AM 4PM 
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To find out whether the display and alerts were helpful, we looked at the              

corresponding usability questionnaire questions (rated on ‘Strongly Disagree - 1’          

to ‘Strongly Agree - 5’ ). Three people selected “Agree” to the statement “The              

display of progress (progress bar, percentage and minutes left) was useful in            

achieving the activity goals” whereas the remaining two selected “Neutral”          

(Figure 16). The results provide preliminary evidence that suggests that the           

display about progress was somewhat helpful in achieving the daily goal.           

Additionally, the subjects in their written and verbal feedback mentioned that           

they liked seeing the values and progress bar change on the screen as they              

performed various activities. The current implementation of the app stopped          

updating the display of the progress once the goal was achieved, to conserve             

battery life. Subjects suggested that the display would have encouraged them to            

perform more activity if it kept updating even after the goal was achieved. 

 

 

Figure 16: Questionnaire response about usefulness of progress 

display 
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In response to the statement “The daily encouragement alerts were useful in            

achieving the activity goals”, only one person selected “Agree” with two being            

neutral, and the remaining two split between disagree and strongly disagree           

(Figure 17).  

 

 

 

Figure 17: Questionnaire response about usefulness of 

encouragement alerts 

 

This result seems to suggest that the encouragement alerts were not particularly            

useful. The subjects mentioned that the goal was very easy to achieve and hence              

not challenging. The data shows that most subjects achieved the goal by morning             

or early afternoon. As a result, they did not get the encouragement alerts, which              
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explains why they did not find them useful. There are three possible reasons for              

the easiness with achieving this goal.  

 

First, conversations with the five subjects revealed that they are generally active.            

In fact, two of the subjects were recruited from a bi-weekly exercise class. The              

activeness of this subject population could have contributed to the easiness in            

achieving this goal. 

 

Second, the app in tracking progress towards the daily activity goal does not take              

into consideration the CDC’s additional recommendation that activities should be          

done for at least 10 continuous minutes. The current implementation of the app             

just accumulates time intervals, which may just be sporadic activities, which           

could have contributed to the ease with which subjects achieved the daily activity             

goal. 

 

Lastly, misclassifications of activity levels could have contributed to the easiness           

of achieving this goal. As was noted in section 5.4.1, the activity-level detection             

model misclassifies about 10% of moderate activity as vigorous. Because the app            

counts 1 minute of vigorous activity as equivalent to 2 minutes of moderate, such              

misclassifications could have contributed to the easiness of achieving the goal.  
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Further experiments will need to be conducted using a more challenging goal or a              

less active subject population to adequately evaluate the usefulness of the           

encouragement alerts. Also, the feedback obtained suggests that subjects should          

be given the chance to adjust their activity goal to make it more challenging if               

needed. Additionally, the app could automatically adjust the goal based on the            

user’s activity pattern. 

 

Finally, we note that our field study involved only five subjects, from which we              

can only draw preliminary observations and no significant conclusions – further          

field studies are planned. 

 

6.3 Usability Evaluation 

We sought to determine whether the ActivityAware system is easy to use and             

whether older adults might be willing to use it for monitoring their activity or              

during epidemiological studies. We asked subjects to react to various statements           

pertaining to the usability of the system and summarize the mean responses in             

Table 15 and Table 16. 
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Table 15: Summary of Usability Questionnaire for Positive Statements 

 Survey Statements (Positive) Mean 

(1-5) 

SD 

1 My overall experience using Amulet was satisfactory 4.6  0.55 

2 Wearing Amulet was enjoyable and interesting 4.2 0.45 

3 The Amulet is comfortable to wear  3.2 0.45 

4 I could easily feel the buzzer when it buzzed me 3.4 1.3 

5 The display was easy to read, even in varying light          

conditions 

4 0 

6 The buttons were easy to use 3.6 0.55 

7 I would consider wearing Amulet for a longer period         

of time 

4.2 0.84 

8 I think that Amulet can be used to help with activity           

monitoring in older adults 

4.6 0.55 
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Table 16: Summary of Usability Questionnaire for Negative 

Statements 

 Survey Statements (Negative) Mean 

(1-5) 

SD 

1 Wearing Amulet interfered with my daily activities 1.4 0.55 

2 Wearing Amulet interfered with my social interactions 1.4 0.55 

3 Wearing Amulet made me feel self-conscious in public 1.4 0.55 

4 I felt that wearing Amulet was a nuisance 2.4 0.55 

 

Overall, there were high scores for the positive statements and low scores for the              

negative statements. These results suggest that the ActivityAware system has the           

potential to be used by older adults for activity monitoring. 

 

6.4 Energy Efficiency Evaluation 

We evaluated the battery life of the ActivityAware system by analyzing the hourly             

log over the 5-day period. All 5 Amulets were still running the ActivityAware app              

upon return of the devices and none of them had been charged. This suggests that               

the system has a battery life of at least 5 days. To predict exactly how long the                 

system would run before needing to be recharged, we plotted the battery life over              

the 5-day period for each device (Figure 18).  
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Figure 18: Plots of battery charge of 5 devices for 5 days 

 

We computed a linear extrapolation of the battery data from Figure 18 to             

estimate battery life. The results summarized in Table 17 show that the system             

could run for at least 7 days (178 hours) before needing to be recharged, and in                

the best case the system might last 14 days. This result matches the battery life               

prediction of at least 7 days from the power-draw measurements in Section 4.2.             

We observed there was a difference in battery life of all the 5 devices. A further                

investigation is necessary to pinpoint whether the difference in battery life is due             

to the specific batteries in the devices, the difference in how the system was used               

(there is a slight increase in battery life when the device is not worn for longer                
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periods), a combination of the two, or some other factors. This result            

demonstrates that the ActivityAware system is sufficiently energy efficient. 

 

Table 17: Projected Battery Life of 5 devices 

 

 D1 D2 D3 D4 D5 

Battery Life (Days) 7.4 13.9 13.5 14.2 7.2 

 

7 Related Work 

Several methods have employed accelerometers for monitoring physical activity.         

Some of these methods perform activity classification in real time whereas others            

do it offline. These works range from systems that have been developed by             

researchers for activity classification to commercial devices used for personal          

physical-activity monitoring. There are three main categories of approaches:         

systems that use linear regression, systems that use machine learning, and           

systems that use proprietary algorithms. This section describes these three          

approaches to physical activity monitoring. 

 

7.1 Linear-Regression Algorithm 

Several researchers have developed cut points of activity counts per minute for            

activity levels such as light, moderate and vigorous. These cut points are            
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estimated from a linear-regression equation fitted to data corresponding to          

acceleration and metabolic costs of subjects. These approaches use commercial          

accelerometers (such as the Actigraph) whose outputs are ‘activity counts’.          

Activity counts are derived using proprietary algorithms and computed over          

various epochs such as a minute. We describe two such approaches.  

 

Freedson et al. were one of the first to develop cut points of acceleration              

counts/minute for four physical activity levels, light, moderate, hard, and very           

hard [13]. They simultaneously collected accelerometry and oxygen consumption         

data from 50 adults (25 males, 25 females) as they walked and ran on a treadmill                

at various speeds. They collected the accelerometry data using the Computer           

Science and Applications, Inc. (CSA) activity monitor (currently called the          

Actigraph) placed at the subject’s hip. They collected the oxygen consumption           

data using an open-circuit spirometer. They used the oxygen-consumption data          

to estimate metabolic equivalents (METs), which are a standard metric to express            

the intensity of activities. They used linear regression to establish the relationship            

between METs and counts/min. They found a linear relationship (r = 0.88)            

between counts/min and METs. They used the regression equation for estimating           

METs from counts/min to find the count ranges for MET categories for the             

defined activity levels: light ( <= 2.99 METs), moderate (3.0 - 5.99 METs), hard              

(6.0 - 8.99 METs), and very hard activity ( >=9.0 METs). They then ran a field                

study where a subject wore a CSA device on the hip during non-sleep time over a                
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three-day period as it logged activity counts. The activity counts were used to             

estimate how much time the subject spent in each of the activity levels daily. The               

subject also used a diary to record an hourly summary of time spent in all of the                 

activity levels to the nearest 15 minutes, which was used for offline analysis. The              

authors calculated the amount of time that was spent in each of these three              

activity levels per day. Their estimate showed that 84-96% of each day was spent              

in light activity 4-16%: (45-135 min) moderate and above in comparison with the             

dairy recordings, which showed that 83-97% of each day spent in light activity             

and 9-17% (30-150 min) was spent in activity level moderate and above. They did              

not perform a correlation of the hourly estimate with the diary and also did not               

estimate the error rate or accuracy of their cut points in their analysis.  

 

Miller et al. primarily sought to examine the estimation of activity intensity            

across different age groups since most previous studies had focused on younger            

adults [14]. They developed cut points of activity counts/minute for three           

physical activity levels (light, moderate, and vigorous) for each of three age            

groups (20-29, 40-49, and 60-69 years). They used a study methodology similar            

to those by Freedson et al. [13]. They simultaneously collected accelerometry and            

oxygen-consumption data from 90 healthy adults (30 per age group) as they            

walked and ran on a treadmill at various speeds. They collected the accelerometry             

data using the Actigraph 7164 accelerometer placed at the hip (Figure 19)[15].            

They collected the oxygen-consumption data using open-circuit indirect        

51 



calorimetry techniques. They used the oxygen-consumption data to estimate         

METs. They developed linear regression equations for counts and oxygen          

consumption for each age group. They used the equations to find the count             

ranges for MET categories for the three defined activity levels (light, moderate            

and vigorous). They found a strong linear relationship for each of the age groups              

(r = 0.94 for the 20-29 age group, r = 0.89 for the 40-49 age group, and r = 0.79                    

for the 60-69 age group) and overall (r = 0.90). As in the previous study, the                

authors did not estimate the error of their regression equations. 

 

 

Figure 19: Actigraph GT9X (left) and Actigraph wGT3X-BT (right)[15] 

 

7.2 Machine-Learning Algorithms 

Several studies have used machine-learning algorithms to classify different         

activities and activity groups. These approaches use raw acceleration readings          

from accelerometers. Researchers collect acceleration data corresponding to        
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specific activities, extract features from the data, and then train a           

machine-learning algorithm on that data so that given a new piece of data, the              

algorithm would be able to correctly assign the activity category. We describe two             

such approaches.  

 

In their work, Maurer et al. developed a real-time activity recognition system            

using a custom built multisensor system called the eWatch, which they placed on             

various parts of the body including the wrist, belt and pocket [7]. The eWatch              

contains the following sensors: 2-axis accelerometer, temperature sensor, light         

sensor and microphone (Figure 20). Their system classified six activities: sitting,           

standing, walking, ascending stairs, descending stairs, and running. They         

collected acceleration and light data from six subjects as they performed these            

activities. They extracted various temporal features from the data such as mean,            

standard deviation, variance, root mean square, and zero crossing rate. They used            

a decision tree as their classifier and ran 5-fold cross validation to evaluate the              

performance of their model. They had a classification accuracy of up to 87% for              

both the wrist and the belt positions with the 20 Hz down-sampled data. They              

had a subject wear the eWatch on the wrist as the subject performed the              

following sequence of activities: walked to a restaurant, sat down, ate lunch,            

returned to office and sat down to continue working. Their plot of the classified              

activities against the actual activities showed that their predictions qualitatively          
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matched the actual activities except for eating lunch, which was partially           

interpreted as walking or running (possibly due to arm movements).  

 

 

Figure 20: The eWatch device [7] 

 

Manini et al. developed a computationally efficient algorithm to classify four           

activity categories: ambulation, cycling, sedentary, and other [10]. They used data           

from triaxial accelerometers (called Wockets) placed at the ankle and wrist of 33             

subjects. The subjects performed 26 activities, which were categorized as follows:           

ambulation (natural walking, treadmill walking, carrying a box, and stairs          

up/down), cycling (indoor and outdoor), sedentary (lying, sitting, Internet         

search, reading, typing, writing, sorting files on paperwork, and standing still)           

and other (sweeping with broom and painting with roller or brush). They            

computed the signal magnitude vector of the data from which they extracted            

temporal features (mean, standard deviation, minimum and maximum), Fourier         
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transform features and wavelet transform features. They trained a support vector           

machine (SVM) as their classifier. They had an accuracy of up to 84.7% for wrist               

and 95% for ankle data using leave-one-subject-out cross validation. 

 

7.3 Proprietary Algorithms  

There are several commercial devices that people use for physical-activity          

monitoring, such as Fitbit, Apple Watch, Jawbone and Garmin (Figure 21). We            

describe two such devices. 

 

Figure 21: Fitbit (left) and Apple Watch (right) 

 

Fitbit is a wrist-worn device that monitors several fitness parameters such as            

sleep, steps taken and activity level using data from an accelerometer, a            

gyroscope, and a heart-rate monitor (for some models). Fitbit calculates ‘active           

minutes’ when a person performs activities with METs above 3: moderate-to-           
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intense activities such as brisk walking, cardio workout, and running for 10            

continuous minutes [16]. Fitbit uses a proprietary algorithm for computing active           

minutes. As a result, there is no way for external researchers to validate the              

specific algorithms being used. It is likely the developers of Fitbit used a             

linear-regression based model to develop cut points for active minutes since           

Fitbit outputs activity counts and also estimates METs to calculate active           

minutes. It is also not clear what experimental conditions they used to develop             

and validate their algorithms.  

 

The Apple Watch is a smartwatch that tracks various fitness parameters of users             

[17]. The watch has accelerometer, gyroscope and heart-rate sensors. It runs an            

Activity app that tracks how much a user moves, exercises and stands daily. The              

app tracks how active a user is and displays the information to the user using               

three rings: Move, Exercise and Stand. The Move ring shows how many calories             

that a user burns daily. The Exercise ring shows the number of minutes of brisk               

activity (such as brisk walking) that a user does daily. The app sets a 30-minute               

daily exercise goal. The Stand ring shows how many hours a user has stood or               

moved for at least 1 minute. Like the Fitbit, Apple Watch uses proprietary             

algorithms to track these fitness parameters. The watch generally lasts a day on a              

single charge.  
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7.4 Strengths and Weaknesses of Related Work 

The linear-regression based systems have been widely used for physical-activity          

monitoring studies among the elderly. For example, Davis et al. ran a user study              

where they compared activity levels of younger and older adults over a 7-day             

period [18]. They used the Actigraph 7164 and the cut points developed by             

Freedson et al. for their analysis. These systems seem to be common in such              

studies because the cut points are easy to use to estimate how much time adults               

spend doing various activity levels. These systems, however, do not perform any            

real-time analysis, which is a crucial feature if some intelligence needs to be built              

into the system to encourage behaviors that will increase physical activity of older             

adults. Additionally, most of these cut points are derived using accelerometers           

placed at the hip. Placements such as the wrist, however, are more likely to              

improve wear-time compliance, which is crucial for a system that needs to            

encourage physical activity for the elderly [10]. These linear regression based           

studies do not give an estimate of the accuracy or error of their systems. The               

assumption is that because there is strong correlation, the linear regression           

model works well. Some research has shown that these cut points tend to have              

high classification error rates [19]. 

 

The machine-learning based systems can capture the intensity of activities, as in            

the linear-regression based systems, but could also be trained to identify specific            

activities performed. They can also be implemented on low-power devices and           
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run in real-time. Also, unlike the linear-regression studies, these         

machine-learning based studies explore various locations of the body such as the            

ankle or wrist, which might lead to better wear-time compliance. Additionally,           

these systems have well-defined validation metrics, which provide an assessment          

of their accuracy, unlike the linear-regression studies. Several of these studies,           

however, like the two studies described above, use data from younger adults for             

training their models. The systems developed in these studies have not yet been             

validated for activity classification of the elderly. Also, most of these           

machine-learning studies focus on offline analysis of physical activity just like           

linear-regression studies [10]. For those like the system developed by Maurer et            

al., they do not track how much time is spent in specific activity groups and also                

do not focus on providing feedback to users to improve their physical activity             

habits [11]. 

 

Some activity trackers like Fitbit and Apple Watch have the advantage that they             

track in real-time the activity levels of users, and can provide their wearer with              

immediate feedback. As a result, users can make changes to their physical activity             

patterns when necessary. The purpose-built trackers are able to last for days or             

weeks on a single charge whereas smartwatches like Apple Watch tend to last             

only a day on a single charge. All these systems, however, are closed systems that               

use proprietary algorithms. As a result, it is not clear how activity values such as               

active minutes or exercise minutes are calculated, and the accuracy of the            
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algorithms is unknown. Specifically, it is not clear whether the algorithms were            

validated on older adults. Also, these devices only track active or exercise            

minutes, which is a coarse assessment of activity levels as compared to the three              

levels (light, moderate and vigorous) used in many research studies. Additionally,           

their algorithms cannot be modified to track additional information such as the            

amount of sporadic activity versus longer bouts of activity, which might be            

needed to get a much better understanding of activity patterns of older adults in              

epidemiological studies [20].  

 

7.5  Comparison to ActivityAware system 

Our ActivityAware system addresses the weaknesses of these three main          

approaches to activity monitoring and combines the strengths into a          

comprehensive physical activity monitoring system to encourage physical activity         

among the elderly.  

 

First, our system tracks three activity levels (low, moderate and vigorous). Using            

three activity levels provides a more granular assessment of physical activity           

patterns. This tracking can be optimized for older adults, and this thesis presents             

a preliminary validation of this system’s algorithm on older adults. 

 

Second, our system performs analysis of the activity levels of older adults in             

real-time (unlike the ActiGraph). This real-time analysis makes it possible for our            

59 



system to provide feedback to the wearer concerning progress towards the CDC’s            

recommended daily goal. It also has a long battery life (like the Fitbit) that              

enables activity tracking without the interruptions associated with charging         

mobile systems. We achieve this goal by implementing a lightweight algorithm on            

a low-power device and duty cycling a lot of the computational components of the              

system.  

 

Third, our system is wrist-worn and hence is more likely to be worn than one               

placed on the hips. To this effect, our algorithm has been developed and works              

well using wrist data only. As a wrist-worn device, it has the potential for longer               

wear time. 

 

Fourth, our system uses an algorithm (machine learning) that could be extended            

to detect specific activities such as sitting, standing, laying down, walking and            

running (although the current implementation does not focus on monitoring          

specific activities). With an understanding of an individual’s specific activities,          

researchers and clinicians could devise better interventions.  

 

Finally, our system is open-source and could be modified to compute important            

statistics such as sporadic minutes versus longer bouts of minutes, unlike devices            

like Fitbit. Additional intelligence could be built into the system based on these             
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data to encourage users to improve physical activity when they are falling short of              

the recommended daily activity goal. 

 

8 Limitations and Future Work 

This work has several limitations, some of which suggest opportunities for future            

work. 

 

Our field study had only 5 subjects. As a result, the conclusions made from the               

study are preliminary. We have planned future studies that will use a larger             

number of subjects. 

 

We estimated the whether the Amulet was being worn by using a threshold of the               

variance of acceleration values in a time window. Our method assumes that if the              

Amulet is still, then it is not being worn, which is not necessarily true. Hence,               

better approaches need be explored such as adding a capacitive touch sensor onto             

the Amulet that will infer contact with the skin; motion and skin contact could be               

used to determine wear state. 

 

The AcivityAware app in tracking progress towards the daily activity goal does            

not take into consideration the CDC’s additional recommendation that activities          

should be done for at least 10 continuous minutes. The current implementation            

of the app just accumulates time intervals, which may just be sporadic activities,             
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which could have contributed to the ease with which subjects achieved the daily             

activity goal. In the future, we should only count minutes towards the goal if the               

activity has lasted for at least 10 continuous minutes. Also, the app should track              

the percentage of the total minutes corresponding to sporadic and long bouts of             

activity to help better understand the activity patterns of older adults. 

 

The activity-level display currently does not show trends over the current week or             

previous weeks. This information could be added onto the current display, which            

might be challenging because of the small size of the Amulet screen. The             

information could be made accessible via a button press or scrolling up or down              

on the capacitive touch sensor. This approach however, might add to the            

complexity of using the ActivityAware system. Currently, once the app is started,            

the subject does not need to interact with it, which simplifies its usage. Adding              

interactivity to the app might prove challenging for older adults. Further           

experiments are needed to find the right balance between interactivity and           

information to add. 

 

Our activity-level detection model had high misclassification results in certain          

circumstances, which could have contributed to the ease of reaching the daily            

activity goal. Further experiments need to be conducted to develop a model with             

better performance and low computational complexity. 
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We used a population of mostly healthy older adults for developing our            

activity-level detection model. This model might not generalize to older adults           

classified as having obesity or physical limitations. Further experiments need to           

be conducted to collect data from such older adult population groups to develop a              

model adapted to these populations. These experiments might entail the          

inclusion of subject-specific information such as weight or body mass index to            

make the algorithm more accurate. 

 

9 Conclusion 

In this thesis, we developed a wrist-worn, energy-efficient system that uses a            

lightweight machine-learning algorithm to monitor and encourage physical        

activity among older adults. Our ActivityAware app runs on the Amulet wearable            

platform and measures the activity levels of individuals continuously and in real            

time. The app continuously collects acceleration data on the Amulet, classifies the            

activity level of an individual, updates the day’s accumulated time spent at that             

activity level, displays the results on the screen as feedback to the wearer, and              

logs the data for later analysis.  

 

We developed an activity-level detection model using a Linear Support Vector           

Machine (SVM). We obtained classification accuracies of up to 99.2% and 98.5%            

with 10-fold cross validation and leave-one-subject-out (LOSO) cross validation         

respectively.  
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We ran a week-long field study to evaluate the utility, usability and battery life of               

the ActivityAware system where five older adults wore the Amulet as it            

monitored their activity level. The utility evaluation showed that the app was            

somewhat useful in achieving the daily physical activity goal. The usability           

feedback showed that the ActivityAware system has the potential to be used by             

people for monitoring their activity levels. Our energy-efficiency evaluation         

revealed a battery life of at least 1 week before needing to recharge.  

 

The results are promising, indicating that the system may be useful for            

activity-level monitoring by individuals or researchers for epidemiological        

studies, and eventually for the development of interventions that could improve           

the health of older adults. 
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