
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Master’s Theses Theses and Dissertations

6-3-2014

Cutting Wi-Fi Scan Tax for Smart Devices Cutting Wi-Fi Scan Tax for Smart Devices

Tianxing Li
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Tianxing, "Cutting Wi-Fi Scan Tax for Smart Devices" (2014). Master’s Theses. 21.
https://digitalcommons.dartmouth.edu/masters_theses/21

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of
Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/21?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Cutting Wi-Fi Scan Tax for Smart Devices

Tianxing

Computer Science Department
Dartmouth College

Hanover, NH

Advised by Xia Zhou and Andrew Campbell

Dartmouth Computer Science Technical Report TR2014-752

June 3, 2014

Abstract

Today most popular mobile apps and location-based services require near always-on Wi-

Fi connectivity (e.g., Skype, Viber, Wi-Fi Finder). The Wi-Fi power drain resulting from

frequent Wi-Fi active scans is undermining the battery performance of smart devices and

causing users to remove apps or disable important services. We collectively call this the

scan tax problem. The main reason for this problem is that the main processor has to be

active during Wi-Fi active scans and hence consumes a significant and disproportionate

amount of energy during scan periods. We propose a simple and effective architectural

change, where the main processor periodically computes an SSID list and scan parameters

(i.e. scan interval, timeout) taking into account user mobility and behavior (e.g. walking);

allowing scan to be offloaded to the Wi-Fi radio. We design WiScan, a complete system

to realize scan offloading, and implement our system on the Nexus 5. Both our prototype

experiments and trace-driven emulations demonstrate that WiScan achieves 90%+ of the

maximal connectivity (connectivity that the existing Wi-Fi scan mechanism could achieve

with 5 seconds scan interval), while saving 50-62% energy for seeking connectivity (the

ratio between the Wi-Fi connected duration and total time duration) compared to existing

active scan implementations. We argue that our proposed shift not only significantly re-

duces the scan tax paid by users, but also ultimately leads to ultra-low power, always-on

Wi-Fi connectivity enabling a new class of context-aware apps to emerge.

ii

Contents

Abstract . ii

Preface . iii

1 Introduction 1

2 Wi-Fi Scan Tax Problem 6

2.1 Energy Consumption of Wi-Fi Scan . 6

2.2 Impact on Wi-Fi Connectivity . 9

2.3 Wi-Fi Scan Tax . 11

3 WISCAN: Offloading Wi-Fi Scan 14

3.1 Concept and Design Challenges . 14

3.2 Computing the Offloading SSID List . 17

3.3 Configuring Scan Parameters . 21

4 WISCAN Prototype Evaluation 24

4.1 WiScan Implementation . 24

4.2 Energy Consumption of WiScan . 26

4.3 Field Experiments . 27

iii

5 Trace-Driven Emulations 30

5.1 Emulation Setup . 30

5.2 Overall Performance . 32

5.3 Efficacy of SSID Learning Schemes . 34

5.4 Sensing Overhead and Performance Gain 37

6 Related Work 39

7 Conclusion and Future Work 42

iv

List of Tables

2.1 Smart devices used in our measurements 7

2.2 Energy consumption and active duration of Wi-Fi radio and main processor 9

3.1 Speed range of different user motion . 21

5.1 Summary of four Wi-Fi scan traces . 31

v

List of Figures

2.1 Test bed for energy measurement . 7

2.2 The overall power consumption of the phone during a single Wi-Fi scan . . 8

2.3 Energy measurements of Nexus 5 during a Wi-Fi active scan 8

2.4 Impact of the Wi-Fi scan interval on resulting Wi-Fi connectivity 10

2.5 The Wi-Fi scan tax: main processor’s power draw in a Wi-Fi active scan . . 13

3.1 WiScan overview . 15

3.2 Nearest-SSIDs scheme . 18

3.3 Sector-based scheme . 18

3.4 Non-uniform scheme . 19

4.1 WiScan implementation on Nexus 5 . 25

4.2 Power measurement of an Nexus 5 phone during an offloaded scan in WiScan 26

4.3 Overall performance of WiScan . 28

4.4 WiScan field experiments at our local city 29

5.1 Overall performance of WiScan . 32

5.2 WiScan energy breakdown . 33

5.3 Impact of SSID learning schemes . 35

vi

5.4 Impact of SSID list size on achieved network connectivity and energy. . . . 36

5.5 Impact of sensing on connectivity and sensing overhead. 37

vii

Chapter 1

Introduction

Ubiquitous Wi-Fi connectivity is essential for many mobile applications running on smart

devices (e.g. smartphones, tablets, wearable devices). It has also become increasingly

important with the rise of carriers that aggressively rely on Wi-Fi to deliver cellular ser-

vices, such as Republic Wireless (1) and FreedomPop (2). A key challenge to delivering

ubiquitous Wi-Fi connectivity is the development of efficient Wi-Fi scanning, which al-

lows mobile devices to connect to access points. However, the design of today’s Wi-Fi

scan mechanisms on smart devices results in applications draining the device’s battery in

unseen ways and mostly unbeknownst to smart device users.

To illustrate the impact of existing Wi-Fi scans on battery drain, consider the following

simple experiments we conducted using the Nexus 4, where only Skype (Wi-Fi scans every

60s to stay connected for incoming calls), or Wi-Fi Finder app (Wi-Fi scans every 30s to

seek connectivity (the ratio between connected duration and total experiment duration)) is

continuously active. Running Skype or Wi-Fi Finder on the phone translates into a 43%

or 60% reduction in the phone’s battery life, respectively, due to the Wi-Fi scan overhead.

Even when the phone has no applications running, the overhead of supporting the default

1

Introduction

scan interval in Android framework (300s) on the phone is 19% of battery life. We also

measured iPhone 5, and we obsevered the similar thrend.

The main reason for this overhead is that the main processor has to be active during the

Wi-Fi scan operation and therefore consumes a significant and disproportionate amount of

energy. From our measurements on a diverse range of smart devices, the main processor

typically consumes 1-2 times more energy than the Wi-Fi radio during the scan operation.

We refer to this energy cost of main processor as the scan tax paid for each Wi-Fi scan

operation. There are a growing number of applications that rely on aggressive scanning

for better Wi-Fi connectivity to meet the application’s needs or enrich the user experience.

We see this trends continuing in the future and as a result there is a critical need to find

solutions that address the scan tax problem.

In this paper, we propose a simple architectural change that can significantly drive

down the scan tax by offloading the Wi-Fi scan to Wi-Fi radios on smart devices. The

key idea of offloading the Wi-Fi scan is as follows. First, the main processor computes

a list of SSIDs and scan related parameters (i.e. scan interval, timeout) by taking into

account Wi-Fi hotspot/AP locations and user mobility (e.g. walking speed) with the goal

of maximizing Wi-Fi connectivity. Based on our approach, the Wi-Fi radio performs active

scans independently, and only wakes up the main processor when it discovers any SSID

in the SSID list. This reduces the active duration of the main processor, and improves

the energy efficiency during the disconnected state. In essence, we enable low-power,

aggressive hunting for Wi-Fi connectivity without involving the main processor.

To realize Wi-Fi scan offloading, however, we face several key challenges. First, com-

puting the list of SSIDs to offload is tricky, because off-the-shelf Wi-Fi chipsets have very

limited memory and can store only up to 10-16 SSIDs (3, 4), while a user may encounter

2

Introduction

several orders of magnitude more SSIDs over a short period of time. Thus, we need intel-

ligent algorithms to predict the right set of SSIDs that the user is likely to encounter in the

near future and the device is able to connect to. The goal is that the Wi-Fi radio is able

to obtain maximal Wi-Fi connectivity without waking up the main processor when there

are no usable access points (i.e., closed access points). Second, user mobility complicates

the configuration of Wi-Fi scan parameters in the disconnected state, which depends on

the user’s current location, moving speed and direction, and the density of the surrounding

public access points. Third, smart devices have limited computational power and battery

lifetime. We need low-complexity algorithms to adapt the SSID list and scan parameters

online without introducing much additional sensing overhead. In the future, the adaptation

process may be fully offloaded to the Wi-Fi radio as the mobile architecture advances (28).

To address the above challenges, we design, implement, and evaluate WiScan, a com-

plete system design that enables Wi-Fi scan offloading, and fully exploits the gain of Wi-Fi

scan offloading by intelligently adapting the offloading SSID list and scan parameters based

on user’s mobility and behavioral patterns. To compute the offloading SSID list, WiScan

uses a light-weight SSID learning algorithm that integrates historical SSIDs and user mo-

bility prediction to estimate the SSIDs that the user will likely encounter in the near future.

The key feature of our SSID learning algorithm is that it infers user mobility online without

requiring continuous location sensing. WiScan represents a significant departure from the

prior work on mobility prediction that typically requires frequent location sensing (27,31).

To configure scan parameters, WiScan integrates the output of low-power activity sensors

found in smart devices to calibrate the user’s velocity estimation and adapts the scan fre-

quency and timeout based on the location of the next available hotspot.

We have built a WiScan prototype on the Nexus 5, and evaluated WiScan using both

3

Introduction

prototype experiments and large-scale emulations driven by Wi-Fi traces collected from

smartphones users across the world. Both our experiments and emulation results demon-

strate WiScan’s significant energy efficiency across diverse network deployment settings

and user mobility patterns. It achieves at least 90% of the maximal Wi-Fi connectivity

(connectivity that the existing Wi-Fi scan mechanism could achieve with 5 seconds scan

interval), yet reduces the energy cost by 50-62% spent on seeking Wi-Fi connectivity.

Our key contributions are as follows:

• We identify the problem of Wi-Fi scan tax, and perform extensive measurements on

popular smart devices to examine the root cause, and quantify its impact on smart

device’s battery life;

• We cut the Wi-Fi scan tax by offloading scans to Wi-Fi radios, and design intelligent

algorithms that compute the SSID list and scan-related parameters to fully exploit

the benefits of scan offloading;

• We build a WiScan prototype on the Nexus 5 smartphone by adding modules to

the Android device driver, framework, and application layer, and perform real-world

experiments to validate WiScan’s energy saving and near-optimal connectivity;

• We evaluate WiScan using large-scale emulations driven by real traces of smartphone

users in four cities across the world, and examine the impact of diverse network

setups and user mobility patterns on WiScan performance.

We believe that WiScan can ultimately enable “always-on” Wi-Fi connectivity nec-

essary for future context-aware applications, such as Glass-based augmented reality and

gesture-driven HCI. All these require always-on connectivity between smart devices and

the cloud. WiScan is similar in spirit to the industrial trend (e.g. Apple’s M7, Moto X) of

offloading sensing to low-power co-processors (5, 6), which enables always-on sensing in

4

Introduction

support of anytime context computing. Always-on sensing with always-on Wi-Fi connec-

tivity will allow smart devices to be more tightly connected to the cloud, resulting in new

applications not possible today because of the huge drain of battery life.

5

Chapter 2

Wi-Fi Scan Tax Problem

Wi-Fi scan is the basic functionality to seek maximal Wi-Fi connectivity. In this section,

we first examine the existing Wi-Fi scan implementation and identify the problem of Wi-Fi

scan tax by measuring popular smart devices. We then analyze the impact of scan energy

on maximal Wi-Fi connectivity using real-world traces from smartphone users.

2.1 Energy Consumption of Wi-Fi Scan

To examine the energy consumed by Wi-Fi scans, we test five models of Android smart-

phones and Google Glass (Table 2.1). We measure the device’s power draw using the

Monsoon power monitor (7), which reports instantaneous power averaged every 0.2ms1.

As shown in Figure 2.1, we remove the device battery, and connect battery pins to the

power monitor. By powering the device using the power monitor, we are able to collect

accurate power measurements. We modify the Android framework so that the radio per-

forms scans with a specified scan interval without associating with any AP. To obtain clean
1We were unable to use the power monitor to measure on Google Glass. We developed an application to

specify the scan interval and measured its resulting battery life.

6

Wi-Fi Scan Tax Problem

Table 2.1: Smart devices used in our measurements. We measure the baseline power when the
device is in disconnected idle state, where we turn off the phone screen, and disable all radios, apps
and services.

Metric
Smart Phone Smart Glass

Samsung Samsung LG LG Samsung Google
Galaxy S3 Galaxy Nexus Nexus 4 Nexus 5 Note 3 Glass

OS Android Android Android 4.4.2 Android Android
4.1.2 4.3 (developer image) 4.3 4.0.4

Wi-Fi Murata Broadcom Atheros Broadcom Broadcom Broadcom
M2322007 BCM4330 WCN3660 BCM4339 BCM4339 BCM4330

Main Exynos 4 TI OMAP 4460 Snapdragon S4
Pro

Snapdragon
800

Exynos 5 TI OMAP 4430

processor quad-core
1.4GHz

dual-core
1.2GHz

quad-core 1.5
GHz

quad-core
2.26GHz

quad-core
1.9GHz

dual-core
1.2GHz

Battery 2100mAh,
3.8V

1750mAh,
3.7V

2100mAh,
3.8V

2300mAh,
3.8V

3200mAh,
3.8V

570mAh, 3.7V

Baseline
power

8.87mW 18.31mW 14.04mW 12.24mW 12.70mW 23.87mW

Figure 2.1: Energy measurements of Nexus 5 during a Wi-Fi active scan. We connect a Monsoon
power meter to the battery pins of a smartphone. We keep only the Wi-Fi radio on, turn off the
phone screen, disable all other radios and background services.

measurements, we turn off the screen, and disable all other radios and apps/services. We

validate our setup by measuring each device’s baseline power, where we disable all radios,

apps/services with the screen off. Our baseline power measurements (Table 2.1) align with

prior results (8).

For all measured devices, we observe that their Wi-Fi radios perform active scans when

the screen is off2. Figure 2.2 plots the power draw of Nexus 5 during a Wi-Fi active scan.

2The radio conducts passive scans only when it has no SSID connection history and the screen is off. Pas-
sive scans entail long delay, where the radio stays on each channel for 400ms. Active scan is the dominating
scan type we observed in all our measurements.

7

Wi-Fi Scan Tax Problem

 0

 400

 800

 1200

 1600

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
o

w
e

r
(m

W
)

Time (s)

Scan initialization
Channel scan

Returning scan
results

Figure 2.2: The overall power consumption of the phone during a single Wi-Fi scan.

 0

 20

 40

 60

 80

 100

5 60 120 180 240 300

B
a

tt
e

ry
 l
if
e

 r
e

d
u

c
ti
o

n
 (

%
)

Scanning interval (s)

S3
Note 3

Nexus 5
Galaxy

Nexus 4
Glass

Figure 2.3: Energy measurements of Nexus 5 during a Wi-Fi active scan. It shows that frequent
Wi-Fi active scans lead to significant reduction in battery life.

The scan consists of three phases: scan initialization (0 - 0.3s), channel scan (0.3s - 1.4s),

and returning scan results to the application layer (1.4s - 3.6s). The radio first sends out a

channel probe to each Wi-Fi channel to solicit replies from APs on each channel. It stays

for 20ms on each channel, and sends the scan result to main processor. After receiving scan

results, the main processor sends them to the application layer. Overall the scan lasts 3.6s,

and consumes 0.74J energy. We observe similar patterns when measuring other devices

(Table 2.2 lists detailed measurement numbers).

The energy overhead of Wi-Fi scan significantly affects the device battery life. To

examine this impact, we vary Wi-Fi radio’s scan interval from 5 seconds3 to 300 seconds,

35s is the minimal scan interval supported by these devices because of the scan duration (3-4s) and channel
switch delay.

8

Wi-Fi Scan Tax Problem

Table 2.2: Energy consumption and active duration of Wi-Fi radio and main processor (MP) to
finish a single Wi-Fi scan. We have subtracted the baseline power from main processor’s power so
that it accurately reflects the power associated with the Wi-Fi scan. Across all types of smart devices,
MP consistently consumes nearly 60% of the total energy consumed by a Wi-Fi scan operation.

Samsung Galaxy Nexus 4 Nexus 5 Samsung Google
S3 Nexus Note 3 Glass

Wi-Fi 0.34J (34%) 0.34J (37%) 0.26J (42%) 0.32J (44%) 0.31J (37%) 0.34J (31%)
(+bus) 0.99s 1.11s 0.85s 1.08s 1.07s 1.05s

MP 0.67J (66%) 0.59J (63%) 0.37J (58%) 0.42J (56%) 0.53J (63%) 0.76J (69%)
2.85s 3.97s 2.16s 3.64s 3.83s N/A

and compare the resulting battery life BTs under scan interval Ts to baseline battery life B

when the device is in the disconnected idle state consuming baseline power. We derive BTs

and B as follows. Assume the device has a battery with V volts and A mAh, its measured

baseline power is Pb in mW, and the measured energy consumed by a Wi-Fi scan is Es in

mJ (Table 2.2, not including baseline power), then we have:

B =
A · V
Pb

, BTs =
A · V

Es/Ts + Pb

. (2.1)

Figure 2.3 shows the battery life reduction (1− B/BTs) of different smart devices un-

der each scan interval Ts. We see that across all devices, frequent Wi-Fi scans significantly

drain the batter life, causing up to 90%+ reduction in battery life. Because of the energy

overhead, existing smart devices either turn off Wi-Fi radio when the screen is off or use

large scan intervals (e.g. 300s for Android framework). Next, we will examine how differ-

ent configurations of the scan interval affect the resulting Wi-Fi connectivity.

2.2 Impact on Wi-Fi Connectivity

Wi-Fi Scan Traces. We built a system service to collect Wi-Fi scan traces and user

mobility. Unlike prior Wi-Fi traces (9) that are collected using default Wi-Fi scan intervals

9

Wi-Fi Scan Tax Problem

 0

 20

 40

 60

 80

 100

5 60 120 180 240 300
C

o
n

n
e

c
ti
v
it
y
 (

%
)

Scanning interval (s)

Download
Resident

Rural

Figure 2.4: Impact of the Wi-Fi scan interval on resulting Wi-Fi connectivity, using a dataset
collected in Keene, NH. Achieving maximal connectivity requires frequent scans (scan interval <
60s). Default scan intervals (300s or 240s) reduces Wi-Fi connectivity by nearly half.

(180s or 300s), or using laptops, our dataset contains much finer grained Wi-Fi scan results

using smartphones. This allows us to examine the impact of smaller scan interval on the

Wi-Fi connectivity perceived by smart device users. Specifically, our service forces the Wi-

Fi radio to scan every 5s without associating with any AP. The service collects scan results

(i.e. SSIDs, operating channels), timestamp, GPS coordinate, and user activity inferred

by Google service (10). We have collected Wi-Fi scan traces from four cities across the

world: West Lebanon, Keene in New Hampshire, Canberra in Australia, and Beijing in

China, with 4 users over 7 days. We also use the traces to drive the emulations discussed

in § 5.Table 5.1 summarizes the dataset statistics.

Connectivity Results. Using these Wi-Fi scan traces as ground truth, we now examine

the resulting Wi-Fi connectivity when the Wi-Fi radio scans at different frequencies. We

assume the device can only connect to public SSIDs, and it connects to the SSID with the

strongest received signal. The device keeps its connectivity to this SSID until it no longer

sees this SSID during the scan. Then for a given scan interval and scan traces, we calculate

the user’s connectivity as the percentage of time that the user connects to any available

public SSID.

10

Wi-Fi Scan Tax Problem

Take the dataset at Keene as an example, which is a 5hr walking trace, where the user

passes traffic lights, parking lots, buildings, and bridges. Figure 2.4 plots the connectivity

as the scan interval varies from 5s to 300s. We identify three types of areas: downtown

area with 120 APs per km2, residential area with 40 APs per km2, and rural area with

5 APs per km2. We make two key observations. First, across all different areas, scan

frequency has significant impact on the achieved Wi-Fi connectivity. A scan interval of

60s leads to a 20% reduction in Wi-Fi connectivity, and the default scan interval (300s)

in today’s Android framework reduces Wi-Fi connectivity by at least half. Second, in

areas with relatively lower AP density (i.e. residential and rural areas), frequent scan is

especially important for maximizing Wi-Fi connectivity, so that users do not miss the sparse

connectivity. Overall, maximizing Wi-Fi connectivity clearly needs frequent Wi-Fi scans,

which however translate into significant decrease in battery life (Figure 2.2(c)). Thus, the

energy consumption of Wi-Fi scan is a big hurdle for maximizing Wi-Fi connectivity.

2.3 Wi-Fi Scan Tax

The energy consumed by the Wi-Fi scan is clearly undesirable. This begs the question: Why

does the Wi-Fi scan, a simple operation, lead to such high energy overhead? To seek the

answer to this, we examine the energy consumed by each component during an active scan.

We observe that existing implementation of Wi-Fi active scan requires the main processor

to be involved actively through the scan procedure. Keeping the main processor active,

however, consumes considerable energy. As a result, a significant portion of scan energy is

consumed by the main processor. We term the overhead of involving main processor as the

Wi-Fi scan tax.

11

Wi-Fi Scan Tax Problem

Quantifying Wi-Fi Scan Tax. We quantify the scan tax by measuring the main pro-

cessor’s power during an active scan using different phones. This is challenging because

individual components (e.g. Wi-Fi radio, main processor) do not expose pins for us to mea-

sure their power draw. We can only measure the phone’s power, which sums up the power

of all components. While the Android framework provides estimated energy consumed by

each component (e.g. display, networking), it uses the built-in battery sensor with accuracy

incomparable to the power monitor.

To address this challenge, we design and implement a ghost service in the Android

kernel and framework to emulate the existence of Wi-Fi scan without actually turning on

Wi-Fi. The ghost service intercepts scan requests from the main processor, and sends

fake scan result of each channel to the scan event handler in the framework. The timing

of sending fake scan results is set based on our measurements. The main processor then

processes these fake results as if the Wi-Fi radio were actually scanning, and returns the

results to the application layer. We also did some energy measurement to verified that the

ghost service consumes negligible energy, so the power monitor readings accurately reflect

main processor’s power draw.

Table 2.2 shows the energy consumption and the active duration of the Wi-Fi radio (and

the bus) and main processor. We observe that across all devices, the Wi-Fi radio and the

bus consume only approximately 40% of the energy for performing the scan! The majority

of the energy is consumed by the main processor, which is active for 3s-4s, much longer

than the radio. Clearly, existing smart devices pay a very high tax for each scan operation,

and this fundamentally limits the potential of maximizing Wi-Fi connectivity (§ 2.2).

Where is the Wi-Fi Scan Tax Spent? The significant portion of Wi-Fi scan tax moti-

vates us to analyze main processor’s activities during a Wi-Fi scan. Figure 2.5 shows the

12

Wi-Fi Scan Tax Problem

 0

 400

 800

 1200

 1600

 0 0.5 1 1.5 2 2.5 3 3.5 4
P

o
w

e
r

(m
W

)

Time (s)

Initialize scan requests

Monitor

Wi-Fi scan
Broadcast scan

results

Figure 2.5: The Wi-Fi scan tax: main processor’s power draw in a Wi-Fi active scan, using the
Nexus 5. Similar pattern holds for other phones.

power draw of the main processor during an active scan. The main processor performs the

following operations:
• Initializing scan requests. The main processor checks Wi-Fi radio status. If it is valid,

the main processor initializes an I/O buffer space to store the package from Wi-Fi radio,

and invokes Wi-Fi driver code to prepare a scan request, which includes scan type, scan

interval, and scan timeout. The processor sends the scan request to Wi-Fi firmware. The

peak power of these operations goes up to 1300mW.

• Monitoring Wi-Fi scan. The main processor monitors the scan result as the radio sends

a scan probe to each channel sequentially. Whenever the radio finishes scanning a chan-

nel, the main processor collects the scan result and counts the number of APs on each

channel. In the end, the main processor receives a package of scan results of all channels

from the radio.

• Broadcasting scan results. The main processor unpacks the scan result package, which

contains SSID, received signal strength, channel number, and BSSID. It then broadcasts

this information to the application layer, updates UI, and waits 600+ms for an app re-

quests. If no request comes, the processor releases the I/O buffer and sets timer for the

next scan, leading to peak power up to 1000mW.

13

Chapter 3

WISCAN: Offloading Wi-Fi Scan

To remove the energy burden of involving main processor in the Wi-Fi scan, we propose

a simple architectural change that allows the Wi-Fi radio to scan independently without

requiring the main processor’s participation. To fully realize the efficacy of offloading Wi-

Fi scan, we design WiScan, a complete system that efficiently configures the SSID list and

scan parameters to maximize the gain of offloading scans.

3.1 Concept and Design Challenges

WiScan centers on the concept of offloading Wi-Fi scan operation to Wi-Fi radio. This cuts

the energy associated with main processor in the scan operation, and can potentially save

50-60% of scan energy, as shown in our previous measurements (Table 2.2). The device

starts to offload the scan when it determines it does not currently have any available Wi-Fi

connectivity and the device screen is switched off.

Figure 3.1(a) illustrates the basic concept. Before entering the sleep mode, the main

processor first computes a list of SSIDs and scan-related parameters (scan interval and

14

WISCAN: Offloading Wi-Fi Scan

WiFi Radio

3

1

O oad

SSID list L,

scan interval

Ts, timeout X

Wake up MP if any

match in the list

2

Scan

periodically

Memory slot

Main Processor (MP)

SSID list

(a) Offloading Wi-Fi scan

(b) Flowchart of Wi-Fi offloading

Figure 3.1: WiScan overview. (a) WiScan realizes the idea of offloading Wi-Fi scans: the main
processor offloads a list of SSIDs (L) and scan-related parameters (scan interval Ts, timeout X) to
the radio. The radio scans independently and wakes up main processor only when it discovers SSID
in the list. (b) The system enters the mode of Wi-Fi scan offloading in the disconnected state.

timeout), and writes the SSID list into the memory slot of the Wi-Fi radio. The SSID list

contains the SSIDs and their encryption information (e.g. encryption type, password). The

Wi-Fi radio then performs active scans with a fixed scan interval and timeout. At the end

of each scan operation, the radio compares its discovered SSIDs to the SSID list in its

memory. If any match is found, the radio wakes up the main processor to further associate

with the matched SSID. If there are multiple SSID matches, the SSID with the strongest

signal will be picked. Here the SSID list is meant to filter out private APs that the device

cannot connect to. This ensures that the radio wakes up the main processor only if Wi-

Fi connectivity is available. The radio also wakes up the processor if it cannot find any

matches after X independent scans. The timeout value allows the system to re-adjust its

15

WISCAN: Offloading Wi-Fi Scan

SSID list and scan parameters based on current situation (Figure 3.1(b)).

Design Challenges. When realizing the concept of offloading Wi-Fi scan, we face two

key design challenges: 1) determining the offloading SSID list so that the device does not

miss any available Wi-Fi connectivity; and 2) determining the scan frequency and timeout

to avoid unnecessary scan operations and thus save energy. Configuring these parameters

brings three additional challenges. First, off-the-shelf Wi-Fi chipsets have very limited

memory, and can only store up to 10-16 SSIDs (3, 4). Currently, the cost of increasing

the memory store in the chipset is very costly. Since the number of usable SSIDs that a

device encounters can be multiple orders of magnitude higher, it is tricky to decide the

list of SSIDs to write in the memory so that the device does not miss any available Wi-

Fi connectivity. Second, user mobility further complicates the configuration. We need

to predict user location in the near future and thus the SSIDs that this user is likely to

encounter. While there have been considerable amount of work on mobility prediction (27,

31), it typically requires training using long-term historical data, and assumes that users

have regular routine. These assumptions, however, do not always hold (e.g. users travel to

new places). We need to predict user mobility on the fly even without much historical data.

Third, smart devices have tight energy constraints and limited computation power. So for

any algorithms to be practical, they have to run in low complexity with low energy. This

implies that the algorithm should be selective on the required sensor input.

Next we describe our solutions to configuring SSID list and scan parameters to address

the above challenges.

16

WISCAN: Offloading Wi-Fi Scan

3.2 Computing the Offloading SSID List

Our first key design component is to determine the SSID list to offload to the Wi-Fi radio,

so that if any usable SSIDs are found, the radio will wake up main processor to further

connect to the SSID. Since public hotspot locations are available in public databases such

as JiWire (11), we assume they are known to the system as a priori. The key challenge

comes from the significant discrepancy between the limited number of SSIDs the radio can

store, and the large number of SSIDs the device can encounter. Let N be the maximal

number of SSIDs Wi-Fi memory can store. We aim to seek schemes that generate list L of

N SSIDs containing the next SSID that the device will encounter and can connect to.

Our search starts with a few straw-man solutions. The simplest approach is popular

SSIDs, where we offline configure L to be a set of the most popular SSIDs in the user’s

current location. To examine how well this approach works, we crawled large-scale hotspot

data1 from Jiwire for three cities: Seattle, Chicago, and San Francisco. Our analysis shows

that popular SSIDs (occurrence > 1%) occupy only 10+% of the SSIDs at each city (4.8%

for San Francisco). We also estimate the area covered by popular SSIDs, assuming each

hotspot covers a circle area.

We tried different coverage radius from 50m to 200m. We found that popular SSIDs

covers only 40%+ of all SSIDs’ coverage. Our tests further show that solely relying on a

few popular SSIDs leads to significant loss (>50%) of Wi-Fi connectivity.

The above observations turn our attentions to approaches of computing L online. An

intuitive approach is to select the nearest N SSIDs based on user’s current location, re-

ferred to as the nearest-SSIDs scheme. We assume that we in this project, we can get the

1Our dataset contains SSIDs and GPS coordinates for 1307, 1005, and 972 hotspots at city and suburban
areas of Seattle, Chicago, and San Francisco, respectively. We use Google Geocoding API (12) to obtain
hotspot GPS coordinates based on their addresses on Jiwire.

17

WISCAN: Offloading Wi-Fi Scan

Figure 3.2: Nearest-SSIDs scheme: Schemes of deciding SSID list assuming N = 8, with selected
SSIDs marked by red circles. Nearest-SSIDs scheme is highly affected by AP distribution. A user
can be stuck with SSIDs that he/she is moving away from and unable to connect to

AP w/ SSID i

AP w/ SSID j

Figure 3.3: Sector-based scheme: it selects SSID in all directions. But an SSID per sector still can
lead to missed connectivity. Here the user will encounter SSIDj , rather than the selected SSIDi.

location of all public SSID list from third-party sources like JiWire. The assumption is

that the distance to an SSID dictates when the next Wi-Fi connectivity will be available.

While simple, this approach ignores the user’s moving direction and can result in incorrect

prediction of the next available SSID. Figure 3.2 illustrates a simple example, where the

user’s nearest N SSIDs are clustered. The user is walking aways from the coverage and

can no longer connect to any of them of the SSIDs. In this case, the nearest SSIDs scheme

still predicts these SSIDs, which clearly are no longer relevant to the user.

Sector-based Scheme. To take into account user’s moving direction, a smarter alternative

is to divide all nearby SSIDs into N equal sectors and pick the nearest SSID in each sec-

tor, referred to as the sector-based scheme (Figure 3.3). The rationale is that since the N

selected SSIDs are spread in all directions, at least one of them will be encountered regard-

less of the user’s moving direction. This scheme is simple, and does not require mobility

18

WISCAN: Offloading Wi-Fi Scan

Figure 3.4: Non-uniform scheme picks more SSIDs in the estimated user’s moving direction, and
thus better predicts the SSID the user will encounter.

estimation. But it is limited by the small number of sectors (i.e. the number of SSIDs N),

each with a wide angular range. As a result, a single SSID cannot cover all possible traces

taken by the user in this sector, leading to connectivity losses (Figure 3.3).

Non-uniform Scheme. An optimized scheme is a variant of the sector-based scheme,

where we perform non-uniform partition of the sectors guided by the estimated user’s

moving direction, and select more SSIDs located in sectors aligning with user’s moving

direction (Figure 3.4). Furthermore, we also consider previously connected SSIDs, which

serve as a valuable indication of future possible Wi-Fi connectivity, especially for users

with regular mobility pattern. Our approach takes the following input: 1) the user’s current

location, and 2) map information (e.g. street). Obtaining 1) need online location sensing

using GPS, and we will examine the sensing overhead in § 4.3 and § 5.4. We will also

examine the contribution of including historical SSIDs and map information in Figure 5.3.

Specifically, our approach has the following three steps.

Step #1: Predicting Direction. We predict user’s moving direction if the activity infer-

ence is non-stationary. Assume pti is user’s current location at time ti, we estimate user’s

moving direction by the vector −−−−→pti−1
pti from the previous saved location point pti−1

to the

current location pti . Here pti−1
is the latest location point that is at least 10m away from pti

and ti − ti−1 > 60s. This is to reduce the impact of potential location sensing error (e.g.

19

WISCAN: Offloading Wi-Fi Scan

GPS or Wi-Fi localization error can go up to 10m+). We further refine the direction esti-

mation by using street/road information to eliminate directions where feasible paths do not

exist. A key benefit of our prediction method is that it does not require intensive location

sensing, and works upon sparse historical location data saved when the device has Wi-Fi

connectivity.

Step #2: Partitioning Sectors. Based on the estimated moving direction −−−−→pti−1
pti , we

first divide the space around the user into N uniform sectors, such that −−−−→pti−1
pti is the angu-

lar bisector of a sector. We classify the N sectors into two groups: forward sectors whose

angular bisectors have acute angles to −−−−→pti−1
pti , and backward sectors whose angular bisec-

tors have obtuse angels to −−−−→pti−1
pti . Then we adjust the sector partition by merging every

x adjacent backward sectors, resulting in bN/(2x)c backward sectors. We exhaustively

tested different x values offline, and x = 2 performs the best in all experiments. Since we

assign more sectors in forward direction, we enhance the likelihood of picking SSIDs the

user will encounter. We still consider backward sectors due to the observed non-uniformity

of Wi-Fi signal propagation: The device cannot connect to any AP in backward sectors

now, yet it can as it moves to a direction with better received signal. In the end, we have

M = dN/2e+ bN/4c sectors. In Figure 3.4, it shows a simple example, where 4 backward

sectors are merged into 2 sectors, resulting to 6 sectors in total.

Step #3: Selecting SSIDs. The last missing piece is to select N SSIDs from these M

sectors. A straightforward method is to use the distance as the only metric, which, how-

ever, can fail to provide accurate estimation because of the complex wireless propagation.

Instead, we integrate it with the information of previously connected SSIDs. Our selection

works as follows. We first pick 2N nearest SSIDs as the pool of candidate SSIDs. This

is similar in spirit to the ghost list design in adaptive caching algorithm (ARC) (25). Let

20

WISCAN: Offloading Wi-Fi Scan

Table 3.1: Speed range of different user motion
User Speed (m/s)

Still/Tilting Walking Biking Driving
vmin 0 0.5 2.8 5.6
vmax 0 1.5 13.9 36.1

Shistory denote the subset of SSIDs connected before, which are sorted by the number of

times they have been connected, and Snew denote the subset of new SSIDs, sorted by their

distances to pti . We then project the SSIDs in Shistory into the M sectors, and select the

top-ranked history SSID from each sector. For sectors without any history SSIDs, we pick

the nearest SSID in each of these sectors. Finally, we pick the remaining closest (N −M)

SSIDs from Snew located in forward sectors, and this completes the SSID selection.

3.3 Configuring Scan Parameters

The second key design component is to determine the frequency and timeout of offloaded

Wi-Fi scan. The challenge is to balance the tradeoff between Wi-Fi connectivity and energy

consumption. Maximizing Wi-Fi connectivity needs frequent scans (Figure 2.4), which

however can lead to energy waste when no usable SSIDs are discovered. We address this

challenge by adapting the scan interval and timeout based on nearby hotspot distribution

and user’s mobility pattern. The goal is to estimate when the next available Wi-Fi connec-

tivity will occur, and adjust the scan interval Ts and timeout X accordingly based on the

estimation of user’s mobility.

Adapting Scan Interval. Our method uses the following input: 1) user current location,

and 2) activity inference from Google Play Service using low-power sensors (e.g. gyro

sensor and accelerometer) (10). It works as follows. First, we obtain user’s current motion

status from activity inference, which classifies user’s activity into five types: still, tilting,

21

WISCAN: Offloading Wi-Fi Scan

walking, biking, and driving. If the user is static and cannot connect to any SSID, Wi-Fi

radio scans with the maximal scan interval 1000s that the hardware can support and we

continue to monitor the activity to detect user’s activity changes. If the user is in one of

the latter three non-stationary statuses, we estimate the moving velocity ~v using the current

location pti and the previous location record pti−1
, where ~v = |pti − pti−1

|/(ti − ti−1). To

reduce the sensitivity to location estimation errors and the sparsity of historical location

data, we calibrate ~v using the speed range inferred by the user’s current activity status, as

shown in Table 3.1 (14, 23). If ~v < vmin, or ~v > vmax, we calibrate ~v to vmin or vmax

respectively. Otherwise we do not adjust its value. Second, we use street information to

infer the feasible path from the current location to the nearest SSID in L, and estimate T̃s,

the time for the next scan, by dividing the inferred path length over the estimated velocity ~v.

Overestimating the scan interval will make the system miss potential connectivity until the

next scan. Thus, we configure scan interval Ts conservatively. We map T̃s into pre-defined

time windows: 0s − 10s, 10s − 40s, 40s − 70s. We set the final scan interval Ts as the

minimal value of the time window T̃s resides.

Configuring Timeout Value. The timeout value X is set to prevent the system from

sticking with an outdated SSID list and missing new connectivity. Thus, if Wi-Fi radio

fails to find any SSID in the list after X offloaded scans, the radio wakes up the main

processor to re-compute an SSID list. Because of the energy cost of computing an SSID

list, we need to reduce the number of SSID list updates while ensuring that the list is still

relevant to the current network environment. In WiScan, we calculate X by estimating the

duration for the user to step out of the coverage of all SSIDs in the list. Specifically, we

leverage the estimated moving direction in Non-uniform, and derive the probability pi of

the user moving towards sector i assuming pi follows a standard normal distribution, where

22

WISCAN: Offloading Wi-Fi Scan

the sector in the estimated direction has the highest probability. Then the expected distance

d to the furthest SSID is calculated as d =
∑
di ∗ pi, 1 ≤ i ≤ N , where di is the distance

to the furthest SSID in sector i. The timeout value X is then set as d/dmin, where dmin is

the distance to the nearest SSID in the list. This reflects the rough number of scans before

the user steps out of the coverage of the current SSID list.

23

Chapter 4

WISCAN Prototype Evaluation

We build a proof-of-concept prototype of WiScan and examine its performance using real-

world experiments. We describe the implementation details of WiScan, and summarize our

experiment findings on WiScan’s energy consumption and achieved Wi-Fi connectivity.

4.1 WiScan Implementation

We implement WiScan on the Nexus 5 Android phone (4.4.2 OS developer image) that

provides necessary hardware-level support for offloading Wi-Fi scan. The phone uses the

Broadcom BCM4339 Wi-Fi chipset, where the Wi-Fi scan operation is built in the chipset’s

firmware, and the chipset has a small memory slot that can store up to 16 SSIDs. This Wi-

Fi chipset supports a mode called “scheduled scan”. In this mode, when Wi-Fi radio is first

switched on, the framework reads an SSID list from the wpa supplicant.conf file

under /data/misc/wifi/, and loads these SSIDs to Wi-Fi radio’s memory. The radio

performs active scans with a fixed scan interval (15s)1 independently, and wakes up the
1In Android 4.4.2 factory image, the scan interval starts from 15s, and then gradually doubles after 4

failed tries for each interval capped by 240s.

24

WISCAN Prototype Evaluation

Application

Framework

Driver

Hardware

Determing SSID list

and scan parameters

Wi-Fi state machine

JAVA

C
WPA supplicant library

Update WPA

con!guration

Update

SSID list

Preferred network o"oad module

Update scan

interval and timeout

Update

scan request

Wi-Fi manager

Broadcast

wpa_supplicant.conf
Write

Read

Wi-Fi !rmware

JNI

Figure 4.1: WiScan implementation on Nexus 5 (Android 4.4.2 developer image). Shaded blocks
are modified/added modules. SSID list configuration is implemented above the driver level, and
scan parameters (scan interval, timeout) are adapted in the driver.

main processor only when it discovers any of these 16 SSIDs. The SSID list is configured

as the 16 most recently connected SSIDs. Both the SSID list and scan interval are static and

non-configurable. This scheduled scan mode, however, is disabled in the developer image.

To implement WiScan, we need to activate the scheduled scan under specified con-

ditions, and realize real-time configuration of the SSID list and scan parameters using

proposed algorithms (§ 3.2 and § 3.3). We accomplish these tasks by modifying and

adding related modules at the driver, framework, and application levels. Figure 4.1 shows

the overall system architecture of WiScan implementation. Specifically, we implemented

SSID list configuration using modules above the driver layer. Our algorithms are imple-

mented at the application layer as a background system service. It writes a new SSID list in

wpa supplicant.conf file, which will be read by our added module in the WPA sup-

plicant library at framework. Our module uses the new SSID list to replace the previous list

in WPA configuration data structure. The configuration of scan parameters is implemented

25

WISCAN Prototype Evaluation

 0

 200

 400

 600

 800

 0 0.2 0.4 0.6 0.8 1 1.2
P

o
w

e
r

(m
W

)

Time (s)

Figure 4.2: Power measurement of an Nexus 5 phone during an offloaded scan in WiScan. By
offloading the scan operation to the Wi-Fi radio, WiScan removes the scan tax. A single scan
consumes 0.33J energy in total (down from 0.74J of the existing scan in Table 2.2).

in the driver. We rewrote the Wi-Fi driver so that it can create a new scan request using

specified SSID list and scan parameters, and pass the request to Wi-Fi firmware. To avoid

the delay (≈1s) of cleaning cached scan requests, we set up a parallel thread to expedite

scan offloading, which cleans cached requests while generating a new request.

4.2 Energy Consumption of WiScan

We start with examining the energy consumption of an offloaded Wi-Fi scan in WiScan.

We follow the measurement set up in Figure 2.1, and plot in Figure 4.2 the instantaneous

power draw of the phone during an offloaded scan. Comparing it to the existing scan (Fig-

ure 2.2), we make the following observations. First, offloading scan significantly shortens

the scan duration by removing the main processor’s operations. An offloaded Wi-Fi scan

lasts 1.1s, down from 3.6s of existing Wi-Fi scans. Specifically, it has two phases: 1) the

radio performs active scan on 22 channels, generating 22 energy spikes up to 700mW+

each lasting 1.7-2ms (700mW+ stays for 1ms). The radio will compare the scan result of

each channel to the SSID list in the memory, and identify matched SSIDs; 2) the radio will

26

WISCAN Prototype Evaluation

release the chipset buffer storing scan results, and prepare for the next scan. This results

into 300mW+ power draw.

Second, the offloaded Wi-Fi scan consumes 56% less energy by removing the energy

portion consumed by the main processor. Now the total energy of a scan only comes from

the Wi-Fi radio (0.32J) plus the phone’s baseline energy (0.01J). This matches our previ-

ous energy measurements on Nexus 5 (Table 2.2), and we expect similar energy reduction

(60%+) for other platform like iOS and Windows Phone.

We note that WiScan does introduce energy overhead for calculating SSID list and scan

parameters. The overhead is from: 1) the main processor running configuration algorithms

(computing SSID list and scan parameters), 2) the GPS for the user’s current location,

and 3) the activity sensors for Google activity inference. To quantify the overhead, we

measure each component’s energy by instrumenting the phone to perform each operation.

Our measurements show that the main processor consumes 0.1J to run our algorithms,

GPS on Nexus 5 consumes 0.7J to return a location, and activity sensors cost 0.1J to infer

activity. Note that WiScan does not pay all the above overhead for each offloaded scan,

rather, the overhead occurs only when the system first enters the mode of scan offloading,

or when offloaded scans fail to find any SSID matches after hitting the timeout. Thus the

cost is shared by multiple offloaded scans. We will examine the energy consumed by the

system in § 4.3 and § 5.2.

4.3 Field Experiments

Next we test WiScan using real-world experiments in a shopping area at West Lebanon,

NH. The area is roughly 4km2, with 75 APs (44 SSIDs) set up by commercial stores, cafes,

and restaurants. 5 SSIDs are encrypted, and we requested passwords from their owners. All

27

WISCAN Prototype Evaluation

 0

 50

 100

 150

 200

 250

 20 30 40 50 60
E

n
e

rg
y
 (

J
)

Connectivity (%)

300s
60s

30s

10s

5s

(default)

Existing
WiScan (Nearest)

WiScan (Sector)
WiScan (Non-uniform)

Figure 4.3: Overall performance of WiScan

SSID information is saved on the phone. In the experiments, a user walked around with

occasional pauses while carrying three Nexus 5 phones. One of the phones is implemented

with WiScan, and the others use existing scan with different fixed scan interval. We logged

the activity and duration of GPS, activity sensors, main processor, and Wi-Fi radio. We

repeated the experiment in three rounds, and tested existing scan with fixed scan interval of

5s (the minimal), 10s, 30s, 60s, and 300s (the default). Each round lasts 2hr with the same

walking route.

We compare WiScan and the default existing scan for Wi-Fi connectivity (i.e. the per-

centage of connected time), and the energy consumed in the disconnected state for seeking

Wi-Fi connectivity. Figure 4.3 compares existing scans under different scan intervals, to

WiScan with three SSID algorithms. Our key observation is that WiScan significantly re-

duces the energy cost while achieving similar connectivity. Compared to existing scans

with the highest frequency (Ts = 5s), WiScan achieves 90% of its connectivity, using only

21% of its energy. WiScan achieves similar connectivity to existing scan with Ts = 10s,

yet reduces the energy by two thirds! To understand the source of the energy saving, we

further examine the energy consumed by each component, and compare WiScan to the ex-

isting scan with similar connectivity (Ts = 10s). As shown in Figure 4.4, cutting the scan

28

WISCAN Prototype Evaluation

 0

 40

 80

 120

 160

Existing
(Ts=10s)

WiScan
(Non-uniform)

WiScan
(Sector)

WiScan
(Nearest)

E
n
e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity sensors

Figure 4.4: WiScan field experiments at our local city. We held multiple Nexus 5 phones, where
one phone is implemented with WiScan, and the others use existing scans under different scan
intervals. We observe that WiScan reduces 67% energy compared to that consumed by existing
scan to achieve similar connectivity.

tax is the main source of the gain, which occupies 56% of the energy for existing scan,

yet only 3% in WiScan. Another source of gain is adapting the scan interval and timeout.

This avoids unnecessary scans when no hotspots are nearby, reducing the radio’s energy

consumption. We also notice that sensing (GPS and activity sensors) adds minor energy

overhead with GPS as the dominating factor (22% of overall energy). This, however, can be

driven down with recent low-power GPS design (21). In addition, Non-uniform moderately

outperforms other SSID schemes. By leveraging the estimated user’s moving direction, it

predicts future SSIDs more accurately, leading to 4-6% increase in connectivity compared

to other schemes. Overall, our results validate that WiScan effectively cuts scan tax with

efficient configurations of SSID list and scan parameters.

29

Chapter 5

Trace-Driven Emulations

After examining WiScan in prototype experiments, we use large-scale, trace-driven emula-

tions to perform more detailed evaluations on WiScan. Our emulations use mobility traces

of smartphone users with different mobility patterns in different cities. This allows us to

evaluate WiScan under diverse network deployments and user mobility patterns. Specifi-

cally, we seek to understand WiScan’s performance in different network setups, the perfor-

mance perceived by users with different mobility patterns, and the impact of design choice

for each component in WiScan.

5.1 Emulation Setup

We developed an emulator using Python to examine WiScan and existing scan implemen-

tation. The emulator takes Wi-Fi scan traces described in § 2.2 as the ground truth of

Wi-Fi connectivity at each location. We obtain hotspot locations using both public hotspot

database JiWire, and manual labeling. Table 5.1 summarizes dataset statistics for hotspots

with known locations. The datasets cover diverse hotspot density and are collected by users

30

Trace-Driven Emulations

Table 5.1: Summary of four Wi-Fi scan traces, collected from smartphone users at four cities across
the world.

Dataset # of public Area Duration % of mobility
(City) SSIDs duration

West Lebanon 44 (75 APs) 4km2 10.5hr 81%
Keene 148 (183 APs) 6km2 5hr 73%

Canberra 72 (241 APs) 9km2 21.8hr 12%
Beijing 41 (41 APs) 2km2 4hr 37%

with different mobility regularity. Users in the West Lebanon, NH and Canberra datasets

follow a regular mobility pattern: they mostly commute between home and work places

with repeated routes. The mobility traces of Keene and Beijing datasets do not contain

repeated routes, representing cases when users travel to new places.

Focusing on public hotspots, we assume that the device can connect to an SSID if the

device can discover this SSID during its scan and its received signal strength is above about

-90dBm. Based on our prototype experiments, we assume 4s delay for associating with an

AP, and 3s delay for obtaining location from GPS sensor. We follow the WiScan flowchart

(Figure 3.1(b)) to emulate how WiScan behaves using the Wi-Fi scan traces. We consider

existing scan implementation, which entails scan tax, as the baseline referred to as Existing.

Using Existing, Wi-Fi radio scans with a fixed scan interval in the disconnected state. We

examine Existing with fixed scan interval from the minimal (5s) to the default (300s).

We evaluate WiScan and Existing in both achieved connectivity and energy cost. Sim-

ilarly as § 4.3, we define connectivity as the percentage of connected time, which reflects

the actual performance perceived by end users given their mobility pattern. We define en-

ergy cost as the energy consumed in the disconnected state for seeking Wi-Fi connectivity.

We calculate the energy cost based on the measurement of WiScan (§ 4.2) and Existing on

Nexus 5 (Table 2.2).

31

Trace-Driven Emulations

 0

 300

 600

 900

 40 45 50 55 60 65 70 75 80

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s

50s

Existing
WiScan
Optimal

(a) West Lebanon

 0

 300

 600

 900

 1200

 20 30 40 50 60 70 80

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s
30s

Existing
WiScan
Optimal

(b) Keene

 0

 700

 1400

 2100

 2800

 3500

 45 48 51 54 57 60

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s
50s

Existing
WiScan
Optimal

(c) Canberra

 0

 75

 150

 225

 300

 0 5 10 15 20 25 30 35 40

E
n

e
rg

y
 (

J
)

Connectivity (%)

5s

10s

300s

20s

Existing
WiScan
Optimal

(d) Beijing

Figure 5.1: Overall performance of WiScan, compared to existing scan implementation with differ-
ent scan interval. WiScan achieves 90%+ of the optimal connectivity, while reducing 50%-62% of
the energy cost for seeking Wi-Fi connectivity compared to existing scan with similar connectivity.

5.2 Overall Performance

We start with evaluating WiScan’s overall performance compared to Existing using dif-

ferent dataset. We also calculate the optimal connectivity assuming perfect knowledge on

future Wi-Fi connectivity. The optimal connectivity is the percentage of connected dura-

tion when the device never misses any hotspot connectivity. Figure 5.1 compares WiScan

to Existing with different fixed scan rate and the optimal. Our key observations are as

follows.

Observation #1: WiScan achieves at least 90% optimal connectivity. Across all

four datasets, WiScan consistently achieves at least 90% of the optimal connectivity. This

demonstrates that the our SSID learning scheme accurately predicts future SSIDs, hence

the system does not miss available Wi-Fi connectivity while allowing the main processor to

32

Trace-Driven Emulations

 0

 40

 80

 120

 160

 200

Existing
(Ts=50s)

WiScan
(Fixed scan
parameters)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity sensors

(a) West Lebanon

 0

 60

 120

 180

 240

Existing
(Ts=30s)

WiScan
(Fixed scan
parameters)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity sensors

(b) Keene

 0

 100

 200

 300

 400

 500

Existing
(Ts=50s)

WiScan
(Fixed scan
parameters)

WiScan

E
n

e
rg

y
 (

J
)

MP
Wi-Fi
GPS

Activity sensors

(c) Canberra

 0

 30

 60

 90

 120

Existing
(Ts=20s)

WiScan
(Fixed scan
parameters)

WiScan
E

n
e

rg
y
 (

J
)

MP
Wi-Fi
GPS

Activity sensors

(d) Beijing

Figure 5.2: WiScan energy breakdown, compared to WiScan without adaptive scan parameters (i.e.
scan interval, timeout) and existing scan. We configure the scan intervals of the latter two so that
they achieve nearly the same connectivity as WiScan. WiScan’s significant energy saving is from
cutting the scan tax (energy consumed by main processor), and adapting scan parameters to reduce
the number of SSID list computations.

sleep when no public hotspot is nearby. In particular, WiScan achieves 97% of the optimal

connectivity for the Canberra dataset, because its trace has low mobility (Table 5.1) and

follows regular pattern (work and home). Non-uniform makes more accurate prediction in

this case. We notice that although the Beijing’s dataset has high hotspot/AP density (20 per

km2), its absolute connectivity percentage is lower than other datasets. This is because the

hotspots in this dataset are distributed unevenly, where the majority of SSIDs are clustered

in a small area and their coverage areas significantly overlap. Thus the overall high hotspot

density does not translate into high percentage of connected time.

33

Trace-Driven Emulations

Observation #2: WiScan reduces 50-62% energy cost of seeking Wi-Fi connectivity

compared to existing scans. While achieving connectivity close to the optimal, WiS-

can significantly reduces the energy cost for seeking Wi-Fi connectivity. As shown in

Figure 5.1, WiScan reduces 50%-62% of the energy spent on seeking Wi-Fi connectivity,

compared to Existing with the scan interval achieving similar connectivity. In Figure 5.2,

it further shows each component’s energy. We include WiScan with fixed scan interval and

default timeout value (4) to understand the gain of adapting scan parameters. Our observa-

tions are as follows. First, cutting the scan tax contributes a significant portion of energy

saving. While the main processor consumes more than half of the scan energy for Existing,

it consumes less than 1% of energy in WiScan. This indicates that computing SSID list

and scan parameters entails negligible energy cost on the main processor. Second, adapting

scan parameters contributes a moderate reduction (10-30%) in energy cost. The adaptation

achieves higher gain in the Canberra and Beijing dataset, where available connectivity is

lower than other datasets (Figure 5.1(c)(d)), and users are mostly stationary (88% and 63%

of the total duration respectively as shown in Table 5.1). In this case, fixing scan parame-

ters leads to a larger number of unnecessary scans, which can be avoided by adapting scan

parameters. Third, the sensing overhead of WiScan is negligible, with GPS sensor as the

dominating sensor occupying 87.5% of the overall sensing overhead. The energy saving

of cutting Wi-Fi scan tax greatly outweighs the sensing overhead of WiScan. Overall, our

results verify the efficacy of WiScan under diverse network environment and user mobility.

5.3 Efficacy of SSID Learning Schemes

After examining the overall performance and the contribution of adaptive scan parameters,

next we evaluate different SSID learning schemes, design choices within the Non-uniform

34

Trace-Driven Emulations

 0

 20

 40

 60

 80

West Lebanon Keene Canberra Beijing

C
o

n
n

e
c
ti
v
it
y
 (

%
)

Dataset

Ideal list
Nearest

Sector

Non-uniform
History-only

(a) SSID schemes

 0

 20

 40

 60

 80

West Lebanon Keene Canberra Beijing

C
o

n
n

e
c
ti
v
it
y
 (

%
)

Dataset

Non-uniform
Non-uniform w/o historical SSIDs

Non-uniform w/o map info

(b) Non-uniform

Figure 5.3: Impact of SSID learning schemes, decision choices within Non-uniform. Non-uniform
consistently achieves 96%+ of the connectivity of an ideal SSID list, and outperforms other solutions
under all datasets.

scheme, and the impact of SSID list size. We consider the case with ideal SSID list as

the reference, representing the case when we can perfectly predict future SSIDs, or when

the Wi-Fi radio’s memory can store all public SSIDs. This is the best that SSID learning

schemes can achieve.

Figure 5.3(a) compares the connectivity achieved by different SSID schemes to that of

the ideal SSID list. We also include the algorithm in Android 4.4.2 factory image, which

uses the most recently connected SSIDs and adaptive scan interval, referred to as History-

only. We make three key observations. First, Non-uniform consistently reaches 96%+ of

the connectivity achieved by the ideal SSID list across all datasets. This verifies the ef-

fectiveness of Non-uniform, which incorporates user directionality to better predict future

SSIDs. Second, compared to the straw-man solutions, Non-uniform achieves larger gain

in Keene and Beijing datasets, where hotspots are denser and unevenly distributed. This

makes user directionality a critical factor to consider for SSID selection, and enlarges the

performance gap between Non-uniform and solutions that do not consider user direction-

ality. Third, using purely historical SSIDs leads to poor degradation of Wi-Fi connectivity,

especially for Keene and Beijing datasets where users do not have repeated routes and his-

35

Trace-Driven Emulations

 20

 40

 60

 80

 4 10 20 30 40 50 60

C
o

n
n

e
c
ti
v
it
y
 (

%
)

SSID list size

Keene
Canberra

West Lebanon
Beijing

(a) Connectivity

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 4 10 20 30 40 50 60

E
n

e
rg

y
 (

J
)

SSID list size

Keene
Canberra

West Lebanon
Beijing

(b) Energy

Figure 5.4: Impact of SSID list size on achieved network connectivity and energy. It works under
the memory constraint of existing Wi-Fi radio.

torical SSIDs are not relevant. This emphasizes the need of picking SSIDs online based on

current location.

Map Information and Historical SSIDs. We further dive into specific design decisions

made for Non-uniform, and evaluate their impact on final performance. Specifically, we

focus on two design decisions: 1) incorporating map/road information to calibrate the es-

timation of moving direction, and 2) including historical SSIDs to construct the SSID list.

We examine their impact by examining Non-uniform without map information, and Non-

uniform without historical SSIDs. Figure 5.3(b) compares their achieved connectivity to

that of the original Non-uniform. In comparison, including map information leads to larger

gain (10%+) in connectivity than historical SSIDs. This is because street information al-

ways helps eliminates directions where feasible paths do not exist if user walk on roads

and streets, while historical SSIDs are only helpful for users with regular mobility patterns

(e.g. the West Lebanon and Canberra datasets). Overall, our results confirm that map infor-

mation and historical SSIDs are both valuable for Non-uniform to adapt to diverse network

setups and user mobility patterns.

SSID List Size. We also examine the impact of SSID list size. In Figure 5.4, we vary

36

Trace-Driven Emulations

 0

 20

 40

 60

 80

 100

Local Keene Canberra Beijing
 0

 10

 20

 30

 40

 50

 60

C
o

n
n

e
c
ti
v
it
y
 (

%
)

S
e

n
s
in

g
 e

n
e

rg
y
 (

J
)

Dataset

GPS(Connectivity)
GPS+Activity(Connectivity)

GPS(Energy)
GPS+Activity(Energy)

Figure 5.5: Impact of sensing on connectivity and sensing overhead. While adding sensors in-
creases the energy cost for computing SSID list and scan parameters each time, it reduces overall
sensing energy by cutting the number of updates on SSID list and scan parameters.

the SSID list size from 4 to 60, and calculate the achieved connectivity using Non-uniform.

As our key observation, for all datasets in 5.4(a), the connectivity quickly converges to

that of the ideal list once we can offload 16 SSIDs, which is also the maximal number

of SSIDs that existing Wi-Fi radio can store. This indicates the efficacy of Non-uniform

for predicting the next SSID that the user will encounter. It works under the memory slot

constraint of existing Wi-Fi radio. Similarly, for energy curves in 5.4(b), even with 16

SSIDs limitation, Non-uniform method could minimize energy cost in most of cases.

5.4 Sensing Overhead and Performance Gain

Finally, we examine the gain of adding GPS and activity sensors in WiScan, aiming to

understand whether the performance gain justifies the sensing overhead. Figure 5.5 shows

the achieved network connectivity and total sensing energy cost when WiScan uses only

GPS sensor, and when WiScan uses both GPS and activity sensors. The output of activity

sensors is used to calibrate the velocity estimation when calculating scan interval. We

see that adding activity sensors leads to marginal improvement in achieved connectivity.

Surprisingly, the total energy cost on sensing is lower across all datasets. This is because

37

Trace-Driven Emulations

adding activity sensors fine tunes the calibration of scan interval and thus the timeout value.

This reduces the times when offloaded scans hit the timeout value. As a result, adding

activity sensors lead to fewer updates of SSID list and scan parameters, and thus lower

energy on sensing. For West Lebanon and Keene datasets, adding activity sensors achieves

much higher energy saving: it reduces the sensing energy by 70%+ and 50%, respectively.

This is because users in these two datasets are non-stationary for a much higher percentage

of time (Table 5.1). Hence the use of activity sensors kicks in, and the calibrating of speed

estimation leads to higher gain in energy saving for these two datasets. In summary, across

all different hotspot distribution and user mobility patterns, adding sensors is beneficial,

leading to higher connectivity while reducing the sensing energy for WiScan.

38

Chapter 6

Related Work

Protocol Offloading. Prior work has offloaded partial upper-layer network protocol to

hardware for either performance boost (13,16) or energy saving (15). The offloaded proto-

cols range from TCP/IP stack (13,16), to ARP and ICMP (15) protocols. Somniloquy (13)

introduces an always-on, low power embedded secondary processor to augment the PC

network interface, and the processor runs an embedded OS networking stack, network port

filters and lightweight versions of certain applications (stubs) to continually fetch network

request so that it could keep host processor into sleep mode in the meantime to decreases

overall energy consumption of PC. Since they need a secondary processor to do these of-

floading tasks, the system modification would not be neglected. Our work is inspired by

these studies, but differs in that we leverage the existing microprocessor on the Wi-Fi radio,

and do not introduce a secondary processor. We explore offloading a Wi-Fi protocol task

(scan) to radio microprocessor to seek maximal Wi-Fi connectivity with low power.

Low-Power Wi-Fi. There have been active efforts (18, 19, 22, 24, 29, 30, 32) on Wi-

Fi energy efficiency in the connected state. Catnap (18) saves energy by combining tiny

39

Related Work

gaps between packets into meaningful sleep interval so that it would allow mobile clients

to sleep during data transfers. They introduce a proxy between client and server to anal-

ysis and manage the traffic between them so that the multiple transfers would be batch

together and mobile device will have more time to sleep. Garcia, et al. conducted a thor-

ough measurement analysis of the power consumption of 802.11 devices that provides a

detailed anatomy of the per-packet consumption and characterizes the total consumption

of the device (19). µPM (22) creates sub-states for the Idle state within the 802.11 so that

it could determine which sub-state to put the interface into and for how long so that the

overall energy consumption is minimized. Sleepwell (24) APs adjust client activity cycles

to minimally overlap others so that resulting in energy gains with negligible latency on In-

ternet traffic. Rahmati et al. claims a context aware wireless interfaces selection algorithm

to leverage the complementary strength of Wi-Fi and cellular networks in order in decrease

energy cost (29). The most recent design E-MiLi (32) reduces the power consumption of

Wi-Fi idle-listening by adjusting the radio clock rate.

Our work complements them by focusing on the disconnected state where considerable

energy saving are possible. The most related work (20) has a mobility-aware system to

predict and analysis user mobility pattern and use this pattern to further select best network

interface to minimize energy consumption. They use Markov model for Wi-Fi availability

prediction, and this will require tons of historical data to obtain a reasonable prediction

performance; however, these historical data is not essential for our system. Furthermore,

they overlook the energy associated with the main processor during scans. We consider

offloading Wi-Fi scans to address this fundamental architectural cause of scan energy inef-

ficiency.

Wi-Fi Connectivity Prediction. Existing work (17, 26, 27) on predicting Wi-Fi con-

40

Related Work

nectivity provides valuable insights for our algorithmic designs. Deshpande et al. predict

Wi-Fi connectivity by using historical driving data and Wi-Fi data along user’s driving

routes (17). BreadCrumbs (27) uses Markov Chain to predict Wi-Fi availability and user

mobility. Yet they overlook the energy associated with the main processor, work for users

with regular mobility pattern, and require periodical/frequent location sensing to achieve

accurate prediction. In particular, all of them assume user follows similar route routine.

They predict either the AP with the best quality (26), or the AP to be encountered in the fu-

ture (17,27). Furthermore, running as applications, prior works require the main processor

to be always active. In contrast, our goal is to achieve energy efficiency while maximiz-

ing Wi-Fi connectivity. Our design executes prediction algorithms only when the main

processor is active. It computes the SSID list and scan-related parameters online while

minimizing the sensing overhead.

41

Chapter 7

Conclusion and Future Work

The ability of seeking maximal network connectivity is critical to enable future applications

that requires tight integration between smart devices and the cloud. Our work aims to push

the state-of-the-art further towards low-power ubiquitous network connectivity. We iden-

tified and systematically measured the Wi-Fi scan tax problem, the energy inefficiency of

existing Wi-Fi scan implementation. Our experiments show that the existing scan method

could not find a good balance between saving energy and hunting connectivity because

main processor continually consumes energy during the whole Wi-Fi scan period and scan

interval could not be automatically adjusted by users’ content. In terms of our measure-

ments, by using default scan interval settings within Android framework, the connectivity

of users will drop about 80%.

We presented WiScan, a complete system that cuts the scan tax by offloading scan op-

erations to Wi-Fi radio and keep main processor of smartphone sleep during the whole scan

tasks. WiScan tackles the challenges in two key design components (computing SSID list,

and scan-related parameters) to fully exploit the gain of Wi-Fi scan offloading. SSID list is

used to filter unavailable APs out from scan results, and scan-related parameters, namely

42

Conclusion and Future Work

scan interval and scan timeout, are used to tell main processor when to update a new list to

the radio. We built a WiScan prototype on Google Nexus 5 Android framework and kernel

layer. And we evaluated WiScan using both prototype experiments and large-scale emula-

tions driven by real traces with diverse network settings and user mobility patterns from 4

different place around the world. Our results demonstrated WiScan’s ability to enable ultra-

low power hunting for high Wi-Fi connectivity, which is critical for future context-aware

apps that require tight integration between smart devices and the cloud. Both our prototype

experiments and trace-driven emulations demonstrate that WiScan achieves at least 90% of

the maximal connectivity, while saving 50-62% energy for seeking connectivity compared

to existing active scan implementations.

In this study, we have assumed perfect knowledge of AP locations and we assume

that open APs are automatically accessible. We plan to study the impact of inaccurate or

incomplete hotspot database on WiScan performance and possible design enhancement to

make the system more robust. Another design we are investigating is an increase in the Wi-

Fi chipset’s memory. Although a 10KB increase in Flash RAM significantly increases the

bill of materials cost, our scanning algorithms can ensure more pervasive connectivity, and

further reduce the Wi-Fi scan tax. WiScan echoes the industrial trend of offloading sensing

to low-power co-processors. M7 in Apple iPhone 5s and two co-processors in Moto X has

shown the effort of industry to give low-power sensing methods. This trend will give us

more freedom to offload and control Wi-Fi tasks based on user context. Finally, while our

study has been focusing on Android platform because of the availability of source code

of Android framework and open kernel, we plan to examine WiScan on diverse mobile

platforms like iOS and Windows Phone and smart devices, especially wearable devices

with tight energy budget.

43

Bibliography

1. https://republicwireless.com/.

2. http://www.freedompop.com/.

3. http://www.qca.qualcomm.com/technology/technology.php?nav1=

47&product=67.

4. http://www.marvell.com/wireless/avastar/88W8787/.

5. http://www.technologyreview.com/news/517801/

the-era-of-ubiquitous-listening-dawns/.

6. http://www.technologyreview.com/news/519531/

what-apples-m7-motion-sensing-chip-could-do/.

7. http://www.msoon.com/.

8. http://www.ifixit.com/Teardown/.

9. http://crawdad.cs.dartmouth.edu/.

10. http://developer.android.com/reference/com/google/android/gms/

location/ActivityRecognitionClient.html.

11. http://www.jiwire.com/.

44

BIBLIOGRAPHY

12. https://developers.google.com/maps/documentation/geocoding/.

13. AGARWAL, Y., ET AL. Somniloquy: augmenting network interfaces to reduce PC energy

usage. In Proc. of NSDI (2009).

14. BERTRAM, J. E. A., ET AL. Multiple walking speedfrequency relations are predicted by

constrained optimization. Journal of Theoretical Biology (2001), 445–453.

15. CHRISTENSEN, K. J., ET AL. The next frontier for communications networks: power manage-

ment. Computer Communications 27, 18 (2004), 1758–1770.

16. CURRID, A. TCP offload to the rescue. Queue 2 (May 2004), 58–65.

17. DESHPANDE, P., ET AL. Predictive methods for improved vehicular WiFi access. In Proc. of

MobiSys (2009).

18. DOGAR, F. R., STEENKISTE, P., AND PAPAGIANNAKI, K. Catnap: exploiting high bandwidth

wireless interfaces to save energy for mobile devices. In Proc. of MobiSys (2010).

19. GARCIA-SAAVEDRA, A., ET AL. Energy consumption anatomy of 802.11 devices and its

implication on modeling and design. In Proc. of CoNEXT (2012).

20. KIM, K.-H., ET AL. Improving energy efficiency of Wi-Fi sensing on smartphones. In Proc.

of INFOCOM (2011).

21. LIU, J., ET AL. Energy efficient GPS sensing with cloud offloading. In Proc. of SenSys (2012).

22. LIU, J., AND ZHONG, L. Micro power management of active 802.11 interfaces. In Proc. of

MobiSys (2008).

23. LONG, L. L., AND SRINIVASAN, M. Walking, running, and resting under time, distance, and

average speed constraints: optimality of walkrunrest mixtures. Journal of The Royal Society

Interface 10, 81 (2013).

45

BIBLIOGRAPHY

24. MANWEILER, J., AND ROY CHOUDHURY, R. Avoiding the rush hours: WiFi energy manage-

ment via traffic isolation. In Proc. of MobiSys (2011).

25. MEGIDDO, N., AND MODHA, D. ARC: A self-tuning, low overhead replacement cache. In

Proc. of FAST (2003).

26. NICHOLSON, A. J., CHAWATHE, Y., CHEN, M. Y., NOBLE, B. D., AND WETHERALL, D.

Improved access point selection. In Proc. of MobiSys (2006).

27. NICHOLSON, A. J., AND NOBLE, B. D. BreadCrumbs: forecasting mobile connectivity. In

Proc. of MobiCom (2008).

28. RA, M.-R., ET AL. Improving energy efficiency of personal sensing applications with hetero-

geneous multi-processors. In Proc. of UbiComp (2012).

29. RAHMATI, A., AND ZHONG, L. Context-for-wireless: context-sensitive energy-efficient wire-

less data transfer. In Proc. of MobiSys (2007).

30. ROZNER, E., ET AL. NAPman: network-assisted power management for WiFi devices. In

Proc. of MobiSys (2010).

31. SCELLATO, S., ET AL. NextPlace: A spatio-temporal prediction framework for pervasive

systems. In In Proc. of Pervasive (2011).

32. ZHANG, X., AND SHIN, K. G. E-MiLi: energy-minimizing idle listening in wireless networks.

In Proc. of MobiCom (2011).

46

	Cutting Wi-Fi Scan Tax for Smart Devices
	Recommended Citation

	tmp.1594843205.pdf.l9UVl

