
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Master’s Theses Theses and Dissertations 

6-1-2012 

Constructing Simplicial Complexes over Topological Spaces Constructing Simplicial Complexes over Topological Spaces 

Milka N. Doktorova 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Doktorova, Milka N., "Constructing Simplicial Complexes over Topological Spaces" (2012). Master’s 
Theses. 20. 
https://digitalcommons.dartmouth.edu/masters_theses/20 

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth 
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of 
Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/20?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


CONSTRUCTING SIMPLICIAL COMPLEXES OVER

TOPOLOGICAL SPACES

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

by

Milka Doktorova

DARTMOUTH COLLEGE

Hanover, New Hampshire

June 2012

Examining Committee:

Afra Zomorodian, Ph.D. (advisor)

Gevorg Grigoryan, Ph.D.

Devin Balkcom, Ph.D.

Dartmouth Computer Science Technical Report TR2012-721



Abstract

The first step in topological data analysis is often the construction of a simpli-

cial complex. This complex approximates the lost topology of a sampled point set.

Current techniques often assume that the input is embedded in a metric – often

Euclidean – space, and make significant use of the underlying geometry for efficient

computation. Consequently, these techniques do not extend to non-Euclidean or non-

metric spaces. In this thesis, we present an oracle-based framework for constructing

simplicial complexes over arbitrary topological spaces. The framework consists of an

oracle and an algorithm that builds the simplicial complex by making calls to the

oracle. We compare different algorithmic approaches for the construction, as well as

alternate ways of representing the simplicial complex in the computation. Finally,

we demonstrate the utility of our framework as a tool for approaching problems of

diverse nature by presenting three applications: to multiword search in Google, to

the computational analysis of a language and to the study of protein structure.
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Chapter 1

Introduction

Graphs are a combinatorial model for capturing pairwise relationships between ob-

jects. In a graph, the nodes represent the objects, and an edge between two nodes

indicates that the corresponding pair of objects has this relationship. Similarly, hy-

pergraphs can capture multi-way relationships as their edges can connect any number

of nodes. Here we are interested in combinatorial structures that capture multi-way

relationships between objects, and come out of algebra. These structures, called

simplicial complexes, have been popular in a number of disciplines, such as computa-

tional geometry, computer graphics, and lately, topological data analysis. Generally,

the complexes are built over metric, often Euclidean, spaces using algorithms that

make fundamental use of the geometry of the space. However, we are often faced

with the task of analyzing point sets that come from non-metric spaces, where none

of the current techniques may be used. The focus of this thesis then, is constructing

simplicial complexes over arbitrary topological spaces.

1.1 Motivation

This work is motivated naturally by two classes of problems. First, we use simplicial

complexes as combinatorial models that represent the lost topology of a point set.
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As such, construction of appropriate complexes is the first step in topological data

analysis : the process of obtaining the global connectivity of a space from local infor-

mation [5, 26]. Suppose, for instance, that S is a finite set of points in Rn, n ! 2,

drawn from the surface of a 2-dimensional sphere. Given S in this high n-dimensional

space, we use topological analysis to try and recover the underlying space from which

S was sampled, namely the 2-dimensional sphere. The process involves building a

simplicial complex that approximates the structure of the underlying space, then

studying its topology. The applicability and efficiency of the construction depend on

the embedding space A, i.e. the space where the points reside, which in our example

is Rn. Existing algorithms assume that A is a metric space and take advantage of

its structure. However, due to this assumption the algorithms cannot be extended

to the analysis of point sets in spaces whose structure may be unknown. We address

this problem by presenting a unified framework for constructing simplicial complexes

without making any assumptions about the embedding space. As a result, we have

a tool for analyzing datasets that may be heterogeneous, high-dimensional, and non-

metric.

In addition, as discussed earlier we may utilize a simplicial complex to model

relationships between entities. We illustrate this concept here with a concrete ap-

plication to which we return at the end of the thesis. Suppose we have a list of

ingredients L = {cheese, carrots, milk, eggs, butter, red pepper} and want to find

a recipe online that includes some or all of them. Searching for all ingredients in a

single query in Google, gives 14.5 million hits, while restricting the search to only

a particular cuisine such as Indian, gives 0 hits. Our goal is to find the combina-

tions of the query terms that give a small, but non-zero number of results. Since

the number of possible combinations grows exponentially with the size of the list,

we also want to do this efficiently. We address this multiword search problem by

2



Figure 1.1: Log graph of the possible (2l)
number of queries and the actual number
of queries made to find all combinations of
the items in a list of size l that result in
nonzero hits.

constructing a simplicial complex on the

elements in L as outlined in Section 3.1.

As a result, we get 6 maximal combina-

tions of the ingredients after a total of

26 queries, with each combination con-

taining between 1 and 3 hits. Further-

more, the number of queries made by

our algorithm in general is significantly

lower than the total possible number of

queries, as illustrated in Figure 1.1. A

more rigorous related analysis is pre-

sented in Section 5.1.

1.2 Prior Work

We divide prior techniques for the construction of simplicial complexes roughly into

two groups: constructing nerves of covers and building clique complexes.

Nerves are simplicial complexes built on a given cover of the input data points.

Intuitively, a cover is a collection of cover sets, or different, possibly overlapping

subsets of the points. The algorithms for nerve construction differ in the way in

which they build the cover; the nerve of the cover then is just a simplicial complex

on the cover sets. A classic algebraic construction is the Čech complex [14] in which

the cover is the union of ε-balls centered at the input data points. Building the

Čech complex however, is infeasible in practice due to the involved computational

complexity. The Delaunay [7] and Alpha [9, 10] complexes, on the other hand, are

instances of structures that take advantage of the geometry of the embedding space.

They are based on the Voronoi diagram and a set of restricted Voronoi regions,

respectively. One major limitation of all these methods in the context of our work,
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however, is that they are defined only for metric spaces.

An alternate approach for the construction is building the clique complex of a

graph. This approach first captures the geometry of the space in a graph, then adds

higher-dimensional simplices using an algebraic procedure. In a graph, a clique is

a set of nodes that are pairwise connected, and a maximal clique is a clique that

cannot be made any larger. The clique or flag complex [18] has maximal cliques as its

maximal simplices. There are currently two popular instances of this approach. The

Vietoris-Rips (VR) complex builds a neighborhood graph on the input point set that

has edges with length less than some parameter ε [23]. In contrast, the weak witness

complex builds a graph on a subset of the input based on a relaxation of the Delauany

triangulation [8]. Note that if we have a graph encoding the pairwise relationships

between data, the construction of the clique complex of this graph assumes that if

n data points are all pairwise related, then all n points are related. However, this

assumption is too restrictive and may not always hold, as in the problem of multiword

search.

Examples of other models that approximate the structure of the underlying space

in the first stage of topological data analysis include the flow complex [12] and the

cubical complex [15] but they are again, defined only for metric spaces.

In addition to constructing simplicial complexes, we are also interested in the effi-

cient computational representation of the structures. The problem of simplifying the

complexes while retaining their key properties has been approached in different ways.

Basic simplification operations include vertex removal [22], vertex clustering [21], and

edge contraction. The latter has been used by both Zomorodian [25] and Attali et

al. [2] in recent studies. While in [25] a clique complex is represented with a tidy set

that captures the topology of the complex, Attali et al. present a new data structure

for the efficient representation of complexes that are “close” to flag complexes. The

data structure encodes a simplicial complex K by its underlying graph G together
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with a set of blockers: the inclusion-minimal simplices in the set difference Flag(G)\K

where Flag(G) is the full flag complex on G. In comparison, two of our algorithms

construct and store the complex by keeping only its inclusion-maximal, or just maxi-

mal, simplices. Note that the problem of enumerating all maximal simplices in clique

complexes in particular, is closely related to the problem of enumerating all maximal

cliques in a graph which is a combinatorics problem [6]. For an overview of different

variants of combinatorial algorithms, see [17].

1.3 Contributions

In this thesis, we provide algorithms for constructing a simplicial complex over an

arbitrary topological space, the most general form of a space that still retains a notion

of connectivity. The particular contributions of our work appear as follows:

• We introduce a general oracle-based framework for describing the space in Sec-

tion 3.1.

• We present four algorithms that build a simplicial complex in two different

representations in Section 3.2.

• We implement all algorithms and analyze their performance through a number

of experiments in Section 4.

• We give three applications of our work in Section 5, returning to our motivating

search problem.
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Chapter 2

Background

In this chapter we review the properties of simplicial complexes and define some

terminology used throughout the thesis. In addition, we discuss two different repre-

sentations of the combinatorial structures, as they play a role in the efficiency of the

algorithms described later. We conclude by defining cover and nerve.

2.1 Simplicial Complex

2.1.1 Definition

A simplicial complex K is a set of finite sets with the property that if σ ∈ K, any

subset τ ⊆ σ is also in K. Each element σ in K with cardinality |σ| = k + 1 is called

a simplex of dimension k, or a k-simplex. All simplices of dimension k ≤ d form

the d-skeleton of the complex. Simplicial complexes may be realized geometrically:

for instance, a k-simplex is a vertex, an edge, a triangle or a tetrahedron for 0 ≤

k ≤ 3, respectively [7]. The 1-skeleton of the complex therefore, may be viewed

as a graph formed by its 0- and 1-dimensional simplices. The dimension of the

complex is the dimension of the highest-dimensional simplex in the complex, i.e.

dim(K) = maxσ∈K dim(σ). The simplicial complex K ′ in Figure 2.1(b) consists of six
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(a) 33 points and a cover of 6
sets with labels for each cover
set

(b) a simplicial complex K ′:
the nerve of the cover in (a)

(c) 17 points and a cover of 3
sets

Figure 2.1: Examples of covers and nerve.

0-simplices, seven 1-simplices, and one 2-simplex, and has dimension 2. For ease of

notation we denote simplices {u, v} and {u, v ,w} with {uv} and {uvw} respectively:

K ′ = { ∅,
{a}, {b}, {c}, {d}, {e}, {f},
{ab}, {bc}, {ac}, {cd}, {de}, {ef }, {df },
{def } }.

For every subset τ of a simplex σ, we say that τ is a face of σ, its coface. For

example, the vertex {d} and the edge {ef } are two faces of the triangle {def }, and

the edge {ac} is a coface of the vertices {a} and {c}. The (n− 1)-dimensional faces

of an n-dimensional simplex are also called facets of the simplex.

A poset, or a partially ordered set, is a set equipped with a partial order, i.e. a

relation that is reflexive, antisymmetric and transitive [11]. A simplicial complex may

be viewed as a poset in which the simplices are the elements of the set, and the face

relation between them is the partial order. A simplex is maximal if it has no proper

coface in K. In Figure 2.1(b) the maximal simplices are {ab}, {bc}, {ac},{cd} and

{def }. The maximal simplices of the complex are thus the maximal elements of the

poset. As such, they form an antichain A in the poset, that is, a set of pairwise

incompatible elements: if u, w ∈ A, then u '⊆ w and w '⊆ u.

7



2.1.2 Representation

We can represent a simplicial complex by all of its simplices, in its full representation,

or only by its maximal simplices, in its maximal representation. Each representation

offers certain advantages and disadvantages. If we store all simplices of the complex,

checking for the existence of a particular simplex takes O(1) time but the complex

can be very large in size in which case storage may become infeasible. Keeping only

the maximal simplices on the other hand, significantly reduces the size of the complex

as discussed later, but simplex lookups become more expensive. Moreover, if we want

to store some additional information, i.e. a weight, for each simplex, we can do this

directly if all simplices are present in the complex, while with maximal representation

we can store weights only for the maximal simplices.

Note that since simplicial complexes are closed under inclusion, we can switch

between maximal and full representation in time linear in the size of the complex: if

we have only the maximal simplices, we can enumerate and find all simplices, and if

we have all simplices, we can mark and keep only the maximal ones.

2.2 Covers and Nerve

Let S be a set of points in some topological space A. A cover U of S is:

U = {Ui}i∈I , Ui ⊆ A,

where I is an indexing set and S ⊆ ∪iUi. The nerve N of the cover is a simplicial

complex on the sets in the cover, where set intersection is the predicate. Formally,

given a cover U , N is defined as:

(1) ∅ ∈ N , and

(2) If ∩j∈JUj '= ∅ for J ⊆ I, then J ∈ N .

8



Figure 2.1(a) is an example of a point set and one possible cover on the points,

and Figure 2.1(b) illustrates the nerve of the cover.

Not every cover yields a nerve that correctly captures the topology of a space.

According to Leray’s classical Nerve Lemma [4], U is a good cover if all Ui are con-

tractible and so are all of their nonempty intersections. A topological space X is

contractible if it has trivial reduced homology groups, but a full exposition of ho-

mology is outside the scope of this thesis [14]. Intuitively, X is contractible if it has

no interesting topology like, for example, a disk or Rd, d ∈ Z+. The cover on Fig-

ure 2.1(a) is a good cover while that on Figure 2.1(c) is not because the leftmost set

is an annulus, and its intersection with the middle set has two pieces.

9



Chapter 3

Framework

In this chapter, we present the details of our oracle-based framework. We first intro-

duce our modeling approach, then discuss four different algorithms that perform the

construction.

3.1 Approach

A predicate f : A → {T, F} is monotonic if f(A) = T implies f(C) = T for all

C ⊆ A. Suppose B = {bi}1≤i≤n is a set of n objects, and V = {vi}1≤i≤n is a set of

n vertices. Let g : B → V be a bijective function that maps each object bi ∈ B to a

vertex vj ∈ V for i, j ∈ [1, n]. We define our problem as follows:

Definition 1. (Multiword Search Problem) Given a set of n vertices V and a mono-

tonic oracle O : 2V → {T,F}, find a subset W ⊆ V such that W is valid, i.e.

O(W ) = T, and W has maximal size, i.e. |W | ≥ |W ′| for all valid subsets W ′ ⊆ V.

The oracle in the definition is a predicate that maps subsets of V to true (T ) or false

(F ). We use it to build a simplicial complex K on the vertices in V. In this context,

O can intuitively be thought of as a black box that determines whether simplices

exist or not. A vertex vi ∈ V, for example, is a 0-simplex in K if O({vi}) = T ;
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two vertices, vi and vj form a 1-simplex if O({vi, vj}) = T ; three vertices, vi, vj, vl

form a 2-simplex if O({vi, vj, vl}) = T , and so on. The monotonicity requirement

for the oracle ensures that we have a simplicial complex. Note however that, as a

consequence of our problem formulation, there is no order on the vertices that the

oracle takes as input: if w is an ordered k-tuple of vertices, w = (vi)i∈I with k = |I|,

then O(w) = O(π(w)) where π(w) is any permutation on w.

Let Vi be a cover set corresponding to vertex vi ∈ V. If J ⊆ {1, 2, ..., n}, then

for any subset VJ = {vj | j ∈ J}, the oracle returns T if the intersection of the

corresponding cover sets is nonempty:

O(VJ) = T ⇔ ∩
j∈J

Vj '= ∅.

Hence, the simplicial complex K that we build is the nerve of the cover C defined by

the sets Vi, i.e. C = {Vi}1≤i≤n.

Each simplex in K corresponds to a valid subset of the vertices. Thus, the subset

W ⊆ V that we want to find should appear as a maximal simplex in the complex.

Since the oracle may be very slow, our goal is to construct the simplicial complex by

making as few calls to the oracle as possible.

3.2 Algorithms

We now present four algorithms that use the oracle to build a simplicial complex on

the set of vertices V.

3.2.1 Tools

First, we introduce three subroutines to which we refer throughout the section. Let

G = (V, E) be a graph with a total ordering < on V (an arbitrary ordering would

suffice). The following Add-Node(G, v, O) subroutine uses the oracle O to add the

11



vertex v and its neighborhood to G. Throughout, dot notation denotes access to the

elements of G.

Add-Node(G, v, O)

1 G.V ← G.V ∪ {v}

2 foreach u ∈ G.V , u '= v

3 do if O({u, v})

4 then G.E ← G.E ∪ (u, v)

We define the lower neighbors of a vertex u ∈ V to be all vertices v ∈ V such that

v < u and (v, u) ∈ E. We find them by calling Lower-Nbrs(G, u):

Lower-Nbrs(G, u)

return {v ∈ G.V | v < u, (v, u) ∈ G.E}.

Now, suppose σ is a simplex in a simplicial complex K constructed on the vertices

V . The lower neighbors of σ are the shared lower neighbors among all of σ’s 0-

dimensional faces. The corresponding set is retrieved by the Simplex-Lower-Nbrs

function:

Simplex-Lower-Nbrs(G, σ)

return {v ∈ G.V | v ∈ ∩
u∈σ

Lower-Nbrs(G, u)}.

Using these subroutines, we present four algorithms: Incremental, Inductive,

Maximal-BU (Bottom-Up) and Maximal-TD (Top-Down). All algorithms, except

for Inductive, are incremental in nature as they build the complex gradually by tak-

ing vertices one by one. Note that Inductive and Incremental are similar to the

VR algorithms in [24] and keep the complex in its full representation. Maximal-BU

is algorithmically equivalent to Incremental but stores only the maximal simplices

in the complex. Maximal-TD also keeps the complex in its maximal representation

but performs the construction in a top-down manner.

12



3.2.2 Incremental

We begin with Incremental which is an algorithm based on Incremental-VR.

The procedure constructs a simplicial complex by considering vertices one by one and

building a graph G. For each vertex v ∈ V, we add v to V , find all of v’s neighbors

and use them to try and form new simplices of the complex K. The construction is

thus performed in an incremental manner as follows:

Incremental(V, O)

1 V = E = ∅

2 G = (V, E)

3 foreach vertex v ∈ V

4 do if O({v})

5 then Add-Node(G, v, O)

6 N ← Lower-Nbrs(G, v)

7 Build-Incremental({v}, O, G,N, K)

8 return K

Build-Incremental(τ, O, G,N, K)

1 K ← K ∪ τ

2 foreach vn ∈ N :

3 do σ ← τ ∪ {vn}

4 foreach facet f of σ

5 do if f '∈ K

6 then if O(f)

7 then K ← K ∪ f

8 if all facets of σ exist

9 then if O(σ)

10 then N ← N ∩ Lower-Nbrs(G, vn)

11 Build-Incremental(σ,O, G,N, K)

13



Note that in order to check if σ exists, we first check all of its facets in the for loop

on Line 4 in Build-Incremental.

3.2.3 Inductive

Our second algorithm, Inductive, constructs the simplicial complex by inducting

on the dimension of the simplicial complex. It starts by building the 1-skeleton of the

complex. Following that, it loops through all simplices of dimension d (for d ≥ 1) and

for every simplex tries to form (d+1)-dimensional simplices with each of the simplex

lower neighbors.

Inductive(V, O)

1 V = E = ∅

2 G = (V, E)

3 foreach vertex v ∈ V

4 do if O({v})

5 Add-Node(G, v, O)

6 add G as 1-skeleton to K

7 d ← 1

8 while d ≤ dim(K)

9 do foreach d-simplex τ

10 do N ← Simplex-Lower-Nbrs(G, τ)

11 foreach vn ∈ N

12 do σ ← τ ∪ {vn}

13 if O(σ)

14 then K ← K ∪ σ

15 d ← d + 1

16 return K

14



3.2.4 Maximal Bottom-Up

Maximal-BU follows the design of Incremental but is optimized to store only the

maximal simplices of the complex. As a result we do not need to check and insert all

facets of σ before checking σ itself. The following Build-MaxBU function replaces

Build-Incremental above.

Build-MaxBU(τ, O, G,N, K)

1 remove any facets of τ from K

2 if N = ∅

3 then K ← K ∪ τ

4 return

5 Nτ ← N

6 foreach vn ∈ N :

7 do σ ← τ ∪ {vn}

8 if O(σ)

9 then N ′ ← Nτ ∩ Lower-Nbrs(G, vn)

10 Build-MaxBU(σ,O, G,N ′, K)

11 else remove vn from Nτ

On line 11 we remove vn from the list of τ ’s neighbors because if σ does not exist

then any coface of σ cannot exist due to the structural properties of the simplicial

complex.

3.2.5 Maximal Top-Down

As opposed to the previous three algorithms, Maximal-TD builds the complex by

following a top-down approach. We again consider vertices one by one. However,

for each vertex v, instead of trying to form new simplices with neighbors of v, we

loop through the already existing simplices in K and try to “attach” v to each of

15



them. In order to do this procedure efficiently, we keep the complex in its maximal

representation and go through the simplices in a decreasing order of their dimension.

Maximal-TD(V, O)

1 K ← (K0, K1, ..., Kn−1) where each Ki = ∅

2 D ← 0

3 foreach vertex v ∈ V

4 do for d ← D down to 0

5 do foreach τ ∈ Kd

6 do σ ← τ ∪ {v}

7 if τ marked and σ ∈ K

8 then Kd ← Kd − τ

9 continue

10 if O(σ)

11 then Kd ← Kd − τ

12 Kd+1 ← Kd+1 ∪ σ

13 D ← max(D, d + 1)

14 else

15 if d ≥ 1

16 then mark and insert faces* f of τ in K|f |−1

17 if τ marked

18 then Kd ← Kd − τ

19 d ← d− 1

20 if no new simplices inserted and O({v})

21 then K0 ← K0 ∪ {v}

22 return K

Throughout, we maintain a collection of complexes Ki, each of which stores only

the i-dimensional maximal simplices of K. This is particularly useful for the traver-
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sal of the simplices and for maintaining the maximal representation of the complex

by simplex insertion and removal. An example of the latter are the operations on

Lines 11-12 in Maximal-TD(V, O), which get executed if O(σ) = T . Similarly, if

σ does not exist, we add faces of τ to lower-dimensional complexes so that in the

following iterations of the while loop we can try to attach v to each of them. We

have implemented two different protocols for choosing which faces of τ to leave for

further consideration on Line 16. We refer to the two protocols as standard and

edge-dependent :

• standard – add all facets of τ to the 1-dimension-lower complex

• edge-dependent – find the set f of vertices in τ with which v forms an edge and

let d′ = |f |− 1. If d′ < d, insert the simplex f in Kd′ ; else, follow the standard

protocol.

The choice of a protocol depends on the sparsity of the 1-skeleton of the complex

and is further discussed in Section 3.3.3. Note that before inserting faces of τ in

lower-dimensional complexes on Line 16, we mark them to denote that they have

come from a higher dimensional simplex and are not maximal simplices. This allows

us to remove them quickly in a subsequent iteration on Line 18 if they do not form a

new simplex with v, thus preserving the maximal representation of the complex.

The marking of the simplices also helps in avoiding unnecessary calls to the oracle

(Lines 7-9). To illustrate this, consider the following example. Let K be a complex

with three maximal simplices abc, acv and abv (for ease of notation we denote a sim-

plex {abc} by abc). We perform the construction with the Maximal-TD algorithm

using the standard protocol by considering the vertices in the following order: a, b, c, v.

Table 3.1 shows K0, K1 and K2 after each oracle call O(σ). Note that when we try

to add v, the complex has only one maximal simplex abc, and since O(abcv) = F ,

we add the 3 facets of abc to K1. Similarly, since O(bcv) = F , b and c get inserted
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# σ O(σ) K0 K1 K2

1 a T a
2 ab T ab
3 abc T abc
4 abcv F bc abc

ac
ab

5 bcv F b ac abc
c ab

6 acv T b ab abc
c acv

7 abv T b abc
c acv

abv

Table 3.1: Constructing a complex K with three maximal simplices {abc}, {acv} and
{abv} with Maximal-TD using the standard protocol. Each row shows the simplices
in K0, K1 and K2 after calling the oracle with σ.

into K0. However, by the time we try to attach v to any of the simplices in K0,

acv and abv have been inserted in K2, and calling the oracle with bv or cv becomes

unnecessary. Since b and c are marked, we first check if bv or cv are contained in a

higher-dimensional maximal simplex and since they are, we do not make any extra

calls to the oracle.

3.3 Complexity

Simplicial complexes are exponentially-sized objects and therefore, we can analyze the

efficiency of algorithmic approaches for their construction only in terms of output-

sensitive complexity. A thorough theoretical analysis on this matter is outside the

scope of this thesis but to facilitate a discussion in this direction, we present the

following results: The first one is on the performance of Maximal-TD in the case

when the complex achieves its maximum size, and the second one illustrates how

the order in which we consider vertices in the construction affects the algorithm’s
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complexity. Throughout, we use the standard protocol and analyze the complexity is

terms of total number of calls made to the oracle since they are considered to be the

bottleneck of the computation. We then end the section by discussing the differences

in the performance of Maximal-TD when using each of its two protocols.

3.3.1 Complex Size

A maximal algorithm computes the maximal simplices of the complex. Since a sim-

plicial complex can also be viewed as a poset as defined in Section 2.1.1, the algorithm

enumerates all maximal elements of the poset. Recall that maximal elements form

an antichain and therefore, the maximum size of the constructed complex is the same

as the size of the longest antichain in the poset. By Sperner’s Theorem [11] the

maximum size, or cardinality, of an antichain A on n elements is:

|A| ≤
(

n

.n/2/

)
≈ 2n

√
πn/2

. (3.1)

Consequently, a simplicial complex built on |V| = n vertices has Θ(2nn−1/2) maximal

simplices. Since each simplex has n/2 vertices, the size necessary to store a complex

in its maximal representation becomes Θ((2nn−1/2)n/2) = Θ(2n
√

n).

From Equation 3.1 we see that a complex constructed with a maximal algorithm

achieves its maximum size when it has all possible simplices of dimension .n/2/ − 1.

Consider the number of calls made to the oracle by Maximal-TD with the standard

protocol in this worst output-size case. Without loss of generality, assume that n is

even. In order to build the first (n/2−1)-dimensional simplex, the algorithm does n/2

calls to the oracle: one for the first vertex, and one for each subsequent vertex getting

attached to the growing simplex. Once the simplex is built, for each of the remaining

n/2 vertices we first try to attach the vertex to all present (n/2 − 1)-dimensional

simplices; then, upon failure, we form new simplices with all (n/2 − 2)-dimensional

facets. Since upon arrival of the (n/2 + i)-th vertex, i ∈ [1, n/2], there are
(

n/2+i−1
n/2

)
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maximal simplices in the complex, using [13] we get that the total number of bad

oracle calls, i.e. calls to the oracle that return F , is:

n−1∑

j=n/2

(
j

n/2

)
=

(
n

n/2 + 1

)
.

The total number of good oracle calls, i.e. calls to the oracle that return T , is

equal to the number of maximal simplices in the constructed complex, plus the n/2−1

calls made before building the first maximal simplex. Therefore, in constructing the

complex, Maximal-TD makes a total of Θ(
(

n
n/2+1

)
+

(
n

n/2

)
+ n

2 − 1) = Θ(
(

n
n/2

)
) calls

to the oracle.

3.3.2 Vertex Order

Maximal-TD is an incremental algorithm and builds the complex by considering

vertices one by one. We now show that its complexity may change significantly based

on which vertices are considered first. Experimental evidence for this observation is

further presented in Section 4.2, and its implications are demonstrated in two of the

applications of our framework described in Sections 5.1 and 5.3.

Let K be a complex on n vertices V = {vi}1≤i≤n. Suppose that K has one d-

dimensional maximal simplex σ formed on vertices v1 through vd+1, and n− (d + 1)

0-simplices formed by each of the remaining vertices vd+2 through vn. Let (·) denote

an ordered tuple and consider the following two cases:

1. Vertices arrive in the order (vi) where i varies from 1 to n.

2. Vertices arrive in the order (vπ(i)) where i varies from 1 to n, and π(i) is a

permutation defined as:

π(i) =






d + 1 + i, if i ∈ [1, n− d− 1]

n− i + 1, if i ∈ [n− d, n].
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We construct K with Maximal-TD using the standard protocol as follows:

Case 1 Since the first d + 1 vertices form σ, for each of them we do a single

call to the oracle as we attach it to the growing simplex. Then, when vertex vd+2

arrives, since it does not form a simplex with any of the faces of σ, we do 2d+1 − 1

unsuccessful calls to the oracle, i.e. calls that return F , then one more with just vd+2

that returns T , as the vertex forms a 0-simplex. Similarly, for each of the following

vertices we do 2d+1 − 1 + c unsuccessful calls, trying to attach the vertex to σ and to

each of the c present 0-dimensional maximal simplices, before successfully inserting

it in K0. Since c ≤ n, we can write the total number of calls made to the oracle as

O((d + 1) + (n− d− 1)2d+1 + (n− d− 1)c) = O(n2 + (n− d)2d).

Case 2 Now, the first n−d−1 vertices form only 0-dimensional maximal simplices.

As each of these vertices arrives, we try to attach it to the simplices already in K0

before testing and inserting the 0-simplex itself, which results in a total of
∑n−d−1

i=1 i

calls to the oracle. For each of the remaining d + 1 vertices, we try to form simplices

with the present 0-dimensional simplices, then make one additional call to the oracle

as we attach the vertex to the growing σ. Hence, the construction of the complex

takes a total of O(n2 + (n− d− 1)(d + 1) + (d + 1)) = O(n2) calls to the oracle.

The example above illustrates that the complexity of the algorithm may be O(n2)

or O(n2 + (n− d)2d) depending on the order in which vertices forming higher dimen-

sional simplices are considered in the construction. The difference in performance

may be negligible or huge based on the value of d relative to n as shown in the

following table:

21



d Case 1 Case 2

O(1) O(n2) O(n2)

O(n) O(2n) O(n)

O(
√

n) O(n2
√

n) O(n2)

Note that when d = n the complex consists of a single maximal simplex and the

algorithm performs the construction with only n calls to the oracle.

3.3.3 Protocol Choice

The efficiency of the two protocols for the Maximal-TD algorithm depends on the

sparsity of the 1-skeleton of the complex: If most of the edges are present in the full

complex, then the standard protocol would be more efficient than the edge-dependent

one. If however, the 1-skeleton is sparse, i.e. a small fraction of all possible edges are

present, then the edge-dependent protocol would be more efficient. To illustrate the

difference in the performance of Maximal-TD when using one of the protocols as

opposed to the other, we present the following example.

Suppose we want to test if a vertex v forms a new simplex with a d-dimensional

simplex σ ∈ K, v '∈ σ, and consider the following two scenarios:

1. v forms an edge with each vertex in σ;

2. v does not form an edge with any of the vertices in σ.

If we use the edge-dependent protocol in the fist case, we will make at most d + 1

more calls to the oracle than if we use the standard protocol. This difference results

from the additional tests of whether v forms an edge with each of the d + 1 vertices

of σ.

However, if we use the standard protocol in the second case, we will make O(2d)

more calls to the oracle than if we use the edge-dependent protocol. The reason for
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this is that since v does not form any edges with the vertices in σ, with the standard

protocol we will essentially try to attach v to each of the 2d+1 − 1 faces of σ. At

the same time, with the edge-dependent protocol we will make only d + 1 oracle calls

before concluding that v does not form any new simplices with σ and its faces.

These differences indicate that if no prior knowledge about the sparsity of the

1-skeleton exists, using the edge-dependent protocol would be a better choice when

constructing the complex. Alternatively, we can sample the graph at the beginning

to estimate the sparsity. Note that while the efficiency of the edge-dependent pro-

tocol depends on the density of the 1-skeleton, we can design other protocols in a

similar manner in order to incorporate prior information about the sparsity of higher-

dimensional skeletons of the complex as well.
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Chapter 4

Experiments

In this chapter, we analyze the performance of the four algorithms described in Sec-

tion 3.2. The design of the experiments follows the approach outlined in Section 3.1.

Recall that B = {bi}1≤i≤n is a set of objects and g : B → V is a bijective function that

maps each object to a vertex in V. Vertices in the construction are always considered

in the order v1 to vn. Each experiment then is described in terms of:

• object type: type of the objects in the set B

• n: total number of objects

• bi: the i-th object

• g(bi): mapping of the objects to vertices

• O(σ): condition upon which the oracle returns T

• total order: relation on the set V defined on the indices of the elements vi ∈ V

• params: parameters varied in the experiment

• algs: applied algorithms

• runs/pt: number of runs of an algorithm averaged per point
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All experiments are run on a 64-bit Linux machine with 32GB of RAM and two

dual-core 3GHz Xeon processors, although our software uses only one core.

4.1 Comparison

We first compare the performance of our four algorithms with each other and with

the construction of the VR-complex. The input data consists of 20 vertices on which

we construct complexes of different dimension. Each d-dimensional complex has all

simplices of dimension up to d. Thus for a particular value of d our oracle returns T

if the corresponding set of vertices has cardinality at most d + 1, and F otherwise.

For the VR-construction we use the Incremental algorithm presented in [24]. The

algorithm takes as input a neighborhood graph G (in our case, with all edges

object type number

n 20

bi i− 1

g(bi) vi

O(σ) |σ| ≤ d + 1

total order <

params d ∈ [0, 19], d ∈ Z

algs Incremental-VR from [24]

Incremental

Inductive

Maximal-BU

Maximal-TD with edge-dependent protocol

runs/pt 10

Table 4.1: Setup for Experiment 1
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(a) runtime in seconds (b) number of queries as percent of 220

Figure 4.1: [20 vertices] Building complexes that contain all simplices of dimension
up to d.

present) and builds the clique complex on G up to dimension d. Table 4.1 summarizes

the setup for the experiment.

We run the five algorithms for d varying from 0 to 19 and Figure 4.1(a) shows

the resulting runtime of the algorithms. As we see, their behavior changes as the

dimension of the complex increases. The runtime of Maximal-TD is directly re-

lated to the number of maximal simplices in the complex illustrated in Figure 4.2(a).

The runtime of the other algorithms is proportional to the size, or total number of

simplices, of the complex. The particular differences in the relative performance of

the algorithms is a natural consequence of their design.

Note that our algorithms outperform VR for all d > 9. This result is a consequence

of the simplicity of our oracle: while VR checks for the existence of all pairwise

edges in a given simplex, our oracle simply compares the cardinality of the set with

d + 1. Therefore, the behavior observed in Figure 4.1(a) cannot be used to make any

assumptions on the general relative performance of the algorithms. It does, however,

indicate that the efficiency of the oracle is directly related to the efficiency of our

algorithms, as discussed in the next section.

Figure 4.1(b) shows the number of queries performed by our four algorithms.
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(a) size of complex as a function of d (b) runtime as a function of the total number of
simplices in complex

Figure 4.2: [20 vertices] Size of each complex from Figure 4.1 and its relation to the
algorithms’ runtime.

While the behavior of Maximal-TD in this case is similar to the algorithm’s run-

time, the other three algorithms make the same number of calls to the oracle in

contrast to their differing runtimes. Moreover this number corresponds to the total

number of simplices in the complex. The reason for this is the fact that each k-

dimensional cell is the clique on k +1 vertices and thus, every vertex has k neighbors.

Since the three algorithms use the neighbors of the vertices to try and form higher

dimensional simplices, the number of queries that they make to the oracle is the same.

Furthermore, since they are all bottom-up approaches, this number is equal to the

number of simplices in the complex. Note that by the time when Incremental

checks for the existence of the facets of σ on Line 4 in Build-Incremental, all

of the facets are already in the complex and therefore, no extra calls to the oracle

are made. However, the algorithm still needs to make sure that the facets are in

the complex and therefore, even though Incremental and Maximal-BU have the

same number of queries, Maximal-BU is much faster than Incremental.

Note that Maximal-TD makes no more than 33.7% of the total possible number

of queries. The worst case occurs when d = 9 and the complex has all of its
(

n
n/2

)

maximal simplices. From Figure 4.2(b) we see also that as the size of the complex
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increases the runtime of both maximal algorithms decreases, Maximal-TD more

obviously so than Maximal-BU, as opposed to Incremental and Inductive.

4.2 Arbitrary Complexes

The complexes that we build in Section 4.1 are non-geometric complexes but they

contain all maximal cliques up to a certain dimension and we can construct them with

other algorithms such as VR. However, our framework can be used also to construct

arbitrary complexes that may not be clique complexes of their 1-skeleton. In other

words, we can build complexes that may have all faces of a simplex σ without having

σ itself, even if the dimension of the complex is greater than dim(σ). The simplicial

complex in Figure 2.1(b) is an example of one such complex: even though all faces of

{abc} exist and dim(K ′) = 2, the triangle is not present in the complex.

object type number

n 34

bi i− 1

g(bi) vi

O(σ) |σ| ≤ 2, or |σ| ≤ d + 1 and g−1(vi) ≡ 1 (mod 2) for all vi ∈ σ

total order <

params d ∈ [2, 17], d ∈ Z

algs Incremental

Inductive

Maximal-BU

Maximal-TD with edge-dependent protocol

runs/pt 10

Table 4.2: Setup for Experiment 2
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(a) runtime in seconds (b) number of queries as percent of 234

Figure 4.3: [34 vertices] Building complexes that contain all possible 1-dimensional
simplices and all simplices of dimension up to d formed on the odd-numbered vertices.

To compare the performance of our algorithms when building such arbitrary com-

plexes we conduct the experiment summarized in Table 4.2. The input data consists

of 34 vertices corresponding to the numbers 0 to 33. Each d-dimensional complex has

all
(
34
2

)
1-dimensional simplices and all simplices of dimension up to d formed only

on the odd-numbered vertices. Thus, for a given d, our oracle returns T if for each

vertex v in the corresponding set g−1(v) is an odd number, and the cardinality of the

set is at most d + 1.

We run the four algorithms for d varying from 2 to 17 and Figure 4.3 shows the

resulting graphs. Note that the total number of calls to the oracle for all algorithms

is less than 0.02% of 234. Furthermore, Maximal-BU performs at most 6.1% of the

queries that Incremental invokes. This behavior is due to the fact that not all

facets of every σ exist in the complex any more so Incremental ends up making

extra calls to the oracle, calls that Maximal-BU does not make since it stores only

the maximal simplices.

The runtime of the four algorithms exhibits a similar relationship to the size of

the simplicial complex, as in Section 4.1. However, now Maximal-TD seems to have

a much poorer performance in comparison to the other three algorithms, in contrast
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to previous observations. At the same time, Incremental which does up to 93.8%

more calls to the oracle, runs 92.3% faster when d = 8. The reasons for these big

differences are inherent to the design of Maximal-TD and the speed of the oracle.

Since all 1-dimensional simplices are present in the complex but only a subset of

them form higher dimensional cliques, with Maximal-TD we end up checking most

of the faces of each simplex for which the oracle returns F . However, many of them

already exist in the complex and these extra checks do not result in additional calls

to the oracle but affect the runtime of the algorithm. (Note that the behavior of

the algorithm changes when vertices arrive in a different order, as demonstrated in

Section 4.3.) At the same time, Incremental checks and queries each simplex in

the complex and given the simplicity of the oracle, this results in a relatively small

Figure 4.4: [34 points] Same experiment as
in Figure 4.3 with oracle delay of 10−3s.

runtime and large number of queries.

However, in practice calls to the oracle

are often more expensive. For example,

in the application in Section 5.1 each

oracle call is a query to Google search

that may take up to 1 second. Conse-

quently, the relative performance of the

algorithms changes significantly. To il-

lustrate this experimentally, we assume

that the oracle is slow and model our as-

sumption by introducing a delay of 1 mil-

lisecond to each oracle call. Figure 4.4

shows the respective runtimes.

Note that we run Maximal-TD with the edge-dependent protocol even though

all edges are present in the 1-skeleton of the complex. We do this in order to keep

our analysis general and avoid bias in the results. However, we should point out that
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in this particular experiment the difference in performance between the two protocols

is negligible: the runtime of the algorithm with the standard protocol differs with

no more than 1.07 seconds from the presented runtime (with the largest difference

occurring when the complex achieves its maximum size at d = 8).

4.3 Vertex Order

The performance of Maximal-TD is affected by the order in which vertices forming

higher-dimensional simplices are considered in the construction, as observed in Sec-

tion 3.3.2. To experimentally demonstrate this dependence we use the setup created

in Section 4.2 but with two additional oracles. Recall that in the original experiment

object type number

n 34

bi i− 1

g(bi) vi

O(σ) beg: |σ| ≤ 2, or |σ| ≤ d + 1 and g−1(vi) ≤ 16 for all vi ∈ σ

mix: |σ| ≤ 2, or |σ| ≤ d + 1 and g−1(vi) ≡ 1 (mod 2) for all vi ∈ σ

end: |σ| ≤ 2, or |σ| ≤ d + 1 and g−1(vi) > 16 for all vi ∈ σ

total order <

params d ∈ [2, 17], d ∈ Z

algs Incremental

Inductive

Maximal-BU

Maximal-TD with edge-dependent protocol

runs/pt 10

Table 4.3: Setup for Experiment 3
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we build higher dimensional simplices only on vertices corresponding to odd numbers.

There are exactly 17 such vertices and since g(bi) = vi, they are “mixed” with the

vertices corresponding to even numbers and do not arrive, i.e. are considered in the

construction, in a consecutive order. We refer to this original oracle as Omix. In

addition, we introduce two other oracles, Obeg and Oend, that allow us to instead

build higher-dimensional simplices on the first and last 17 vertices respectively, as

shown in Table 4.3. Note that the complexes constructed with the three oracles are

identical. The only difference is in the order in which we consider vertices forming

higher-dimensional simplices.

Figure 4.5 shows the performance of the algorithms with each of the three ora-

cles, in terms of both runtime and number of queries. First, consider the behavior

of Maximal-TD. The algorithm is slowest when the vertices forming higher di-

mensional simplices arrive at the beginning, and fastest when they come at the end,

which confirms our theoretical observations from Section 3.3.2. Consequently, with

Obeg Maximal-TD is up to 4 orders of magnitude slower than the other three algo-

rithms while with Oend it is up to 3 orders of magnitude faster than Incremental,

for instance. Maximal-BU, on the other hand, is insensitive to the order of the

vertices and always outperforms the full representation algorithms. It is faster than

Maximal-TD as well, in all cases except when d > 7 with Oend. This behavior

indicates that the most efficient way to construct such arbitrary complexes is by us-

ing Maximal-BU for lower dimensional complexes and Maximal-TD for higher

dimensional ones, provided we have an optimal ordering of the vertices. If no such

ordering is available, then Maximal-BU seems to be the best choice.

Another interesting observation from the graphs is that the performance of

Incremental also seems to depend on the order of the vertices. However, as op-

posed to Maximal-TD, the algorithm performs best when vertices forming higher

dimensional simplices arrive at the beginning, and worst when they arrive at the end.
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(a) runtime, Obeg (b) queries as percent of 234, Obeg

(c) runtime, Omix (d) queries as percent of 234, Omix

(e) runtime, Oend (f) queries as percent of 234, Oend

Figure 4.5: [34 vertices] Building complexes with three different oracles: Obeg, Omix
and Oend as defined in Table 4.3: log graphs of runtime and actual number of queries
as percent of possible number of queries, when vertices forming higher-dimensional
simplices are considered at the beginning ((a) and (b)), in a mixed order all through-
out ((c) and (d)), or at the end of the construction ((e) and (f)) respectively.
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(a) difference with Obeg (b) difference with Omix

(c) difference with Oend

Figure 4.6: [34 vertices] Building complexes with three different oracles: Obeg, Omix
and Oend as defined in Table 4.3: displaying the difference between the number of
oracle calls and the size of the full complex when vertices forming higher-dimensional
simplices are considered at the beginning, in a mixed order all throughout, or at the
end of the construction respectively.

To gain an intuition for the reason for this behavior, consider a d-dimensional sim-

plex σ. While building σ, for each of its faces τ ⊆ σ, the algorithm first tests if τ

exists, then tries to form new simplices with τ and each of its lower neighbors. If σ

is formed towards the beginning of the construction when it has fewer lower neigh-

bors, the algorithm thus makes fewer calls to the oracle than if σ is formed towards

the end of the construction when it has more lower neighbors. Therefore, the run-

time of Incremental increases as vertices forming higher dimensional simplices are
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considered later in the construction.

Throughout, the number of queries stays very low and seems to correlate with the

runtime of the algorithms. The only exception is with Incremental and

Maximal-TD when using Omix as discussed in Section 4.2. Since the algorithms are

output sensitive, the number of simplices in the constructed complex gives a lower

bound on the number of calls made to the oracle. An algorithm then, is faster or

slower depending on how many extra calls to the oracle it makes. Note that after a

simplex is formed and added to the complex, we never again ask the oracle if that

simplex exists. However, since we do not keep track of the simplices that do not exist

in the complex, we may ask the oracle multiple times for each of them. Therefore,

the relative performance of the algorithms is determined by these extra number of

calls made to the oracle. Figure 4.6 shows this number as a function of the dimension

of the complex. Note that even though the two maximal algorithms store only the

maximal simplices of the complex, with Obeg and Omix they still end up querying

most of the simplices in the full complex. Only with Oend we see a significantly

improved lower number of queries. Note also that in its worst case in Figure 4.6(a),

Maximal-TD does an order of magnitude better than Incremental does in its

worst case in Figures 4.6(c).

4.4 Maximal Representation

In all our experiments Maximal-BU consistently outperforms Incremental. Re-

call that the two algorithms follow the same design but Maximal-BU stores only

the maximal simplices in the complex, while Incremental keeps the complex in its

full representation. To further investigate the effect of the different representations

on the performance of the algorithms, we generate large sparse graphs, and construct

clique complexes on them. The input data consists of neighborhood graphs generated

on 10,000 vertices using the G(n, p) Erdős-Rényi random graph model [16]. In this
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object type number

n 10,000

bi i− 1

g(bi) vi

O(σ) (vi, vj) ∈ G.E for all vi, vj ∈ σ, i '= j

total order <

params G = G(n, p): Erdős-Rényi random graph model [16]

p ∈ [0.01, 0.1], ∆p = 0.01

algs Incremental

Maximal-BU

runs/pt 2

Table 4.4: Setup for Experiment 4

model G is built on n vertices and an edge between any pair of vertices exists with

probability p independently of the other edges. The Erdős-Rényi random graphs

represent arbitrary connectivity and provide an excellent model of graphs without

any geometry. Given one such neighborhood graph, our oracle returns T for any

subset of the vertices that form a clique in the graph. Table 4.4 summarizes the setup

for the experiment.

We run Incremental and Maximal-BU for p varying from 0 to 0.1. Figure 4.7

shows the corresponding graphs. The runtime of the two algorithms depicted on

Figure 4.7(a) grows exponentially, with Maximal-BU growing with a slower rate

than Incremental. For p = 0.08 the neighborhood graph has 4,001,664 edges and in

building the complex, Incremental takes about 32GB of memory, thus computation

for larger p values becomes infeasible. However, with Maximal-BU we are able to

construct complexes with p up to 0.1 when the neighborhood graph has close to 5

million edges.
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(a) runtime as a function of p (b) runtime as a function of complex size

Figure 4.7: [10000 vertices] Full versus maximal representation. Building clique com-
plexes on neighborhood graphs generated by the G(n, p) Erdős-Rényi random graph
model.

p: 0 0.1 0.02 0.03 0.04 0.05 0.06 0.07
I 104 6.8× 105 2.4× 106 6.3× 106 1.4× 107 3× 107 5.9× 107 1.1× 108

M 104 3.5× 105 1.2× 106 3.7× 106 7.3× 106 1.2× 107 2.1× 107 4.3× 107

% 100 51.61 53.80 59.21 50.66 40.67 36.8 38.14

Table 4.5: Size of complex computed by each of two algorithms, Incremental (I)
and Maximal-BU (M), and percent of maximal simplices in full representation.

Figure 4.7(b) shows the runtime of the algorithms as a function of the size of the

constructed complex (in its full representation). The fact that both dependencies

are linear and Maximal-BU has a smaller slope than Incremental indicates that

building the complex in its maximal form is more efficient than building it in its full

form. We see this also from Table 4.5 which lists the number of simplices, or cells, in

the complexes computed by the two algorithms and the percentage of the maximal

simplices from the total number of simplices. By storing only the maximal simplices

of the complex we reduce the space required for the computation by up to 61.86%.
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Chapter 5

Applications

In this chapter, we present three different applications of our oracle-based framework:

The first one goes back to our motivating problem of querying the web; the second

utilizes the framework to create a computational model of a language, and in the third

we build simplicial complexes to examine structural similarities between proteins.

5.1 Google Search

We begin with our motivating problem: finding a subset of query terms that results

in a small but nonzero set of hits in Google search. To demonstrate the application

of our framework we create a list of 20 grocery items and restrict our searches to

the http://recipesindian.com domain. The table on the left in Figure 5.2 shows

the items and their corresponding number of hits. We then run tests on subsets

of the items with cardinality ranging from 1 to 20. Each subset of n elements is

deterministically defined by the first n items from the list. Table 1 in the Appendix

summarizes the setup for the application.

Our Google oracle takes a number of items, queries Google with all of them

and returns T or F depending on whether the query results in any hits. Since a

webpage containing k of the query terms also contains any subset of them, the oracle
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(a) number of queries (b) runtime

Figure 5.1: Log graphs, comparing Maximal-BU and Maximal-TD with standard
protocol when considering items in an increasing (less) and decreasing (more) order
of their number of hits when queried on Google search.

is guaranteed to be monotonic.

Due to the high computational cost of the queries, we want to select an algorithm

that performs a minimum number of calls to the oracle. Since Maximal-TD and

Maximal-BU have consistently outperformed Incremental and Inductive in

that respect, we run our tests with the first two and compare their performance.

Taking into account the design of the algorithms and the nature of the data, at the

beginning of each algorithm we sort the query terms by their number of hits in order

to achieve better performance. Throughout this section less and more refer to the

increasing and decreasing sorting respectively. Maximal-TD is implemented with

the standard protocol in order to account for the high probability that a query with

any two items results in a nonzero number of hits.

Figure 5.1 shows the runtime and number of queries for the two algorithms. Each

data point represents the average of 3 to 5 runs of the algorithms. The unequal number

of runs averaged per point results from the presence of outliers as discussed below,

and the existence of a time gap between the collection of the data and its analysis.

Across all of the tests the largest total runtime is in the order of hundreds of seconds
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while the actual processor time is less than a second. This fact demonstrates the high

dependability of the algorithms’ performance on the speed of the oracle and thus, the

number of queries made. Since Maximal-TD with increasing initial sorting of the

items achieves best runtime statistics, we use it to further analyze our data.

The table on the right in Figure 5.2 shows a summary of the results. If l is the

list size, the number of suggestions in the 2nd column is the number of maximal

simplices in the complex corresponding to all maximal combinations of the l items.

In other words, these are all of the computed combinations of the items that result

in a small but nonzero number of hits. The largest one from these combinations

contains q size* grocery items and the maximum number of hits achieved across all

computed combinations is displayed in the 4th column as q hits*. As we see, except

for the trivial case when l = 1, each computed combination results in no more than 12

hits. The corresponding computation time is given in the last column. Note that the

actual number of queries made is significantly lower than 2l as shown in Figure 1.1.

These results show the applicability and efficiency of our framework. All computed

combinations result in a small nonzero number of hits. The analysis of tests pertaining

to web search queries however, should take into account several factors. First, data

often contains large variability. Since Google is both updating its web index as well

as changing its search algorithm, the same query may result in a different number of

hits at different times. Most of the data presented in this thesis, for example, was

collected in January 2012 and the query “site:recipesindian.com cauliflower beans

chicken cheese tomato milk” which resulted in 1 hit then, returns 0 hits as of April

2012. Note that the number of hits in the two tables in Figure 5.2 were also collected

in April 2012 and may be slightly different than the number of hits associated with

the data obtained in January.

Furthermore, even though we use a license from University Research Program for

Google Search to do automated queries to the search engine, the time for a single
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query term # hits
green pepper 24

cheese 174
milk 352

beans 85
tomato 245
carrot 88

cauliflower 78
chicken 178

egg 171
onion 414

potato 177
broccoli 14

garlic 389
pasta 39

zucchini 20
mushroom 34

rice 271
red pepper 23

chillies 428
pork 27

list size # suggestions q size* q hits* time
1 1 1 24 0.2
2 1 2 4 1
3 1 3 3 1
4 3 3 11 1.8
5 3 4 9 2.6
6 4 5 12 4.2
7 5 6 12 4.6
8 10 6 7 8.6
9 19 6 7 15.8
10 19 7 6 18.2
11 19 9 4 24.8
12 30 9 4 43.2
13 37 9 4 72
14 45 10 6 100.8
15 56 10 6 147.6
16 65 11 6 247.4
17 84 11 7 500.2
18 97 12 7 745.2
19 136 12 7 2523.4
20 142 12 7 3804.2

Figure 5.2: Left: list of grocery items and their corresponding number of hits; Right:
results from running Maximal-TD with standard protocol on subsets of the list:
number of computed combinations (2nd column), size of the largest combination (3rd
column), max number of hits across all computed combinations (4th column) and
average time in seconds for each test case (5th column).

query varies a lot due to different factors. In one of our earlier tests, for instance, the

total time spent in queries over three different runs with the same input parameters

and the same number of queries made was 151s, 624s and 1215s. This fact necessitates

the performance of a larger number of runs and removal of outliers in order to obtain

a more accurate average of a given statistic with such high variability.

Aside from data variability, we need to also be aware of the quality of the results

returned by Google. One of the main reasons that we restrict our search to a particular

domain is because in a general Google search even a query with all 20 items from our

list results in almost a million hits. Furthermore, the approximate number of results

computed by Google is in most cases overly estimated and inaccurate. Since in our
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current implementation of the Google oracle we check only whether the number of hits

is different than 0, this issue does not have a significant effect on our computation.

However, if we want to store the actual number of hits for each query and use it as a

stopping criteria for building the simplicial complex, we need to take the accuracy of

the Google results into account.

5.2 Languages

As a second application we apply our oracle-based framework to the construction of

computational models of languages. Let S be the set of all words in a given language.

Each letter from the language alphabet forms a cover set on S defined by all words

which contain that letter. The nerve of this cover then captures the interaction of

the letters in the space of the language dictionary.

In this experiment we use our framework to construct the nerves for English,

French and Bulgarian. Our dictionary in each case is the Linux word list for the

corresponding language. Following is a summary of the data. Note that the alphabets

of English and French are composed of the same set of letters.

language alphabet size Linux word list
English 26 479,829
French 26 139,719

Bulgarian 30 823,209

Our Language oracle takes a set of letters and returns T if there exists at least

one word in the language dictionary that has all of these letters. Since a word that

contains a set of letters also contains any subset of the letters, the oracle is guaranteed

to be monotonic. Table 2 in the Appendix summarizes the setup for the application.

We construct the corresponding nerves with the Maximal-BU algorithm. Ta-

ble 5.1 shows a summary of the computed statistics for the three complexes. Even

though the nerves for English and French are of the same dimension, the former is

much larger in size than the latter. English, for instance has 6 cells of dimension 15
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Table 5.1: Statistics for the complexes built on English, French and Bulgarian.

dimension #maximal cells total # cells time(sec)
English: 15 6,641 2,088,610 14,844
French: 15 1,845 523,975 2,231

Bulgarian: 16 11,587 4,776,802 198,585

while French has only 1. This difference in the two models may be caused by the in-

completeness of the French dictionary, as hinted by the smaller size of its Linux word

list, or it may be inherent to the structure of the languages. An interesting observa-

tion is that English has two 4-dimensional maximal simplices formed by {b,e,q,t,w}

and {f,u,w,y,z}. This implies that if we add any other letter to either of these two

subsets we cannot form a valid word from the dictionary. At the same time French

has a single 3-dimensional maximal simplex while Bulgarian, like English, has two

4-dimensional ones. Note also that the complex for Bulgarian is the largest of the

three but the Bulgarian Linux word list has size almost twice that of the English

dictionary and its alphabet consists of 30 characters.

The results show that we can indeed apply our framework to build computational

models of languages. The information encoded in the constructed nerves reveals

structural dependencies among the words from the corresponding dictionaries. In

addition, the topology of the models can further be analyzed to study other language

characteristics or relationships. After building the two complexes in our experiment,

for instance, we discovered that they both share a common subcomplex of dimension

12 which may present an interesting avenue for future topological analysis. Note

however, that English and French have the same alphabet and the comparison between

their models is straight-forward. Bulgarian on the other hand, has a Cyrillic alphabet

of different size and we cannot compare its simplicial complex directly to the models

of English and French. Such analysis would require a map from one alphabet to the

other.

Since the alphabet of a language determines the cover on the words in the dic-
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tionary, thus the structure of the constructed nerve, we can build different models of

the same language if the set of alphabetic characters changes. This may be possible

in languages such as French that contain accents or other diacritics. The precise

construction then depends on whether these diacritic letters are considered separate

characters or not. The French word “ab̂ımés” which means “damaged”, for example,

may contain i and e according to one model and not, according to another. In our

experiment we do not distinguish between accented and not accented letters.

5.3 Protein Structure

We now apply our framework to examine the structural space of proteins. Proteins

are macromolecules that perform a variety of important biological functions. They

are composed of chains of amino acids that fold into compact 3-dimensional shapes.

Since protein structure determines protein function, the ability to find structural

similarities between proteins is important for understanding their structure/function

relationship. However, while there are only twenty amino acids commonly occurring

in nature, the space of all possible 3-dimensional protein structures is rather complex

Figure 5.3: Protein fragments

and studying it extensively presents a

challenge. Recent work at the Grigo-

ryan lab addresses this problem by iden-

tifying a set of local structural mo-

tifs, or fragments, highly recurrent in

proteins drawn from the Protein Data

Bank (PDB) [1]. Containing over

70,000 entries, the PDB is the main

repository of experimental protein struc-

tures [3]. Each identified fragment is a

3-dimensional piece of protein structure
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that covers a number of tertiary contacts between amino acids in the protein (Fig-

ure 5.3). These fragments can thus be seen as building blocks of the molecule, or

letters of its structural alphabet.

Let S be a set of proteins. Each motif forms a cover set on S defined by the pro-

teins that contain it. The nerve of this cover then captures the relationship between

the fragments in the protein structure space. Consequently, the combinatorial mod-

els encode all possible combinations of the fragments occurring together in protein

structures, and can be used to extract different types of information as demonstrated

below.

Our input data consists of 60 motifs M = {mi}1≤i≤60 covering 20% of the structure

space of 100 proteins from the PDB. Each motif mi ∈ M has a corresponding list of

proteins Pi that contain mi. For a given subset of the motifs MJ = {mj | j ∈ J}

where J ⊆ {i}1≤i≤60, our oracle, ON , returns T if the intersection of the corresponding

motifs’ protein lists is of size at least N , i.e. | ∩
j∈J

Pj| ≥ N . A complex KM
N then, is

constructed on the set M of structural motifs with the oracle ON . Since if at least

N proteins share a set of motifs, all of them also share any smaller combination of

the motifs, the monotonicity of the oracle is guaranteed. Note however, that the

oracle does not capture multiple motif occurrences within a structure. Table 3 in the

Appendix summarizes the setup for the application.

Let ci be the number of tertiary contacts covered by mi across all considered

proteins. In order to choose the most efficient algorithm, we build complexes on

sets of fragments with N = 1 and cardinality varying from 1 to 41, by considering

fragments in the construction in an increasing (less) or decreasing (more) order of

their corresponding c values. We build the complexes with both, Maximal-BU and

Maximal-TD. The latter is used with the edge dependent protocol since we do not

have prior knowledge about the probability that any two fragments occur together in

any given protein structure. Figure 5.4 shows the performance of the two algorithms
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(a) runtime (b) number of queries

Figure 5.4: Log graphs, comparing Maximal-BU and Maximal-TD with edge-
dependent protocol when fragments are considered in an increasing (less) and de-
creasing (more) order of number of covered tertiary contacts.

with each of the two orderings. The differences in the behavior of Maximal-TD

indicate that the number of contacts covered by the fragments is related to the ten-

dency of the fragments to form higher dimensional simplices. In particular, it shows

that motifs covering a larger number of tertiary contacts are more likely to appear

together with other motifs in a given protein structure. Since Maximal-TD more

has the best runtime, we construct all complexes in our subsequent analysis with it

by considering the fragments in a decreasing order of their c values.

We first construct KM
1 . Recall that M is the set of all 60 motifs. The construction

takes 47 minutes and the complex has 67 maximal simplices, the largest one of which is

of dimension 27. Note that even though there are more than 228 simplices, we are able

to build the complex by storing only the maximal ones. Table 5.2 shows the number

of cells, or simplices, in each dimension. Each maximal simplex represents a “unique”

combination of the motifs that occurs in a single protein and is not shared with any

other protein. The fact that there is one maximal simplex of dimension 27 but none

of dimension 25 and 26, for instance, indicates that all combinations of 25 and 26

fragments that can be found together in protein structures, are subsets of the 28
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dim 0 1 2 3 4 5 6 7 8 9 10 11 12 13
cells 1 1 2 0 0 1 1 2 10 6 5 1 5 4
dim 14 15 16 17 18 19 20 21 22 23 24 25 26 27
cells 7 5 2 3 4 1 1 1 0 2 1 0 0 1

Table 5.2: Complex KM
1

dim 0 1 2 3 4 5 6 7 8 9
cells 1 1 0 4 5 27 44 38 36 30
dim 10 11 12 13 14 15 16 17 18 19
cells 26 26 22 14 8 3 2 1 2 1

Table 5.3: Complex KM
2

fragments from the 27-dimensional simplex. Furthermore, the proteins corresponding

to the maximal simplices are all different from each other, which shows that 67 out

of the 100 proteins considered in the study contain a unique maximal subset of the

motifs.

We now construct KM
2 . The complex has 280 maximal cells, each of which corre-

sponds to a set of motifs shared by at least two proteins. Table 5.3 shows the number

of cells in each dimension. The complex has dimension 19 and its construction takes

less than 17 seconds. All maximal simplices except one of the 7-dimensional ones,

correspond to combinations of motifs shared by exactly 2 proteins. To visualize these

relationships, we build a graph G in which each node is a protein and two nodes are

connected with an edge if the two proteins share at least one fragment. The thickness

of the edges indicates the number of the shared fragments. Figure 5.5 shows a graph

of all proteins sharing 15 or more fragments. As we see some proteins like 1GSOA

and 1EKQA share fragments with many other proteins, while others like 1BYIA and

1CXQA share fragments only with 1GSOA. Not surprisingly, 1GSOA and 1EKQA are

the two proteins sharing the largest combination of motifs in KM
2 (the 19-dimensional

simplex), and 1GSOA itself is the protein that contains the largest unique combina-

tion of motifs (the 27-dimensional simplex in KM
1 ).
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Figure 5.5: Graph of pairwise protein relationships built from KM
2 . Thickness of the

edges indicates number of shared fragments. Displayed are only proteins sharing 15
or more fragments.

Building complexes on all 60 motifs gives us a larger picture of how the 100 pro-

teins are related. However, we often want to find structural neighbors of a particular

protein, that is, proteins that exhibit structural similarity to a given query protein.

Different criteria can be used to define the degree of similarity between protein struc-

tures. In the context of our work this criteria is the number of shared motifs between

the proteins. In order to find and rank the structural neighbors of a query protein

then, we do the following: Let P be the query protein. We first find the set MP of

all motifs that occur in P , then build the complex KMP

2 on them. Note that KMP

1

always consists of a single simplex – the one corresponding to MP – and does not

contain any interesting information. KMP

2 however, has as its maximal simplices the

largest combinations of fragments shared between P and at least one other protein.

Thus, having built the complex, we can rank the proteins by the number of fragments

they share with P , as indicated by the dimension of the corresponding maximal cells

in the complex.

Following this procedure, we use 1D5TA as our query protein and compute a
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rank # shared fragments proteins sharing fragments with 1D5TA
1 19 1GSOA
2 17 1EKQA
3 15 1G8AA
4 13 1CXQA
5 12 1F9VA, 1DJ0A, 1GS5A
6 11 1GK9B
7 10 1FX2A, 1GPQA
8 9 1D4OA, 1CC8A
9 8 1F8EA, 1F86A
10 7 1A62A
11 6 1GKMA, 1GP0A, 1AH7A, 1EB6A
12 5 1G3PA
13 2 1FD3A

Table 5.4: Ranking proteins according to their structural similarity to 1D5TA. Num-
ber of shared fragments corresponds to the dimension of the maximal simplices in
KMP

2 where MP is the set of fragments contained in 1D5TA.

ranking for the proteins based on how many fragments they share with it. The

complex has 20 maximal simplices and Table 5.4 shows the resulting ranking. First,

note that 1D5TA contains a total of 24 fragments from M but the largest combination

of fragments that it shares with another protein (1GSOA) is 19. Since different

proteins may share the same number of fragments with the query protein, multiple

structures may be given the same rank, as in the case with 1F8EA and 1F86A, for

instance. In general, we expect that a protein sharing a larger number of motifs with

the query protein would be more similar to it than a protein sharing a smaller number

of motifs. As a way of testing this hypothesis, on Figure 5.6 we display the structures

of 1EKQA and 1FD3A with which 1D5TA shares 17 and 2 fragments respectively.

We see that 1EKQA does indeed look more similar to 1D5TA than 1FD3A. To further

investigate the structural similarities between them, we compare the proteins with

two state-of-the-art systems for structural classification of proteins: SCOP [19] and

CATH [20]. Each system groups proteins into classes, or levels, based on shared

structural characteristics. According to SCOP, 1D5TA and 1EKQA belong to the
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Figure 5.6: Comparing 1D5TA with two other proteins: 1EKQA (with which it shares
17 fragments), and 1FD3A (with which it shares 2 fragments). Protein structures are
taken from the PDB [1].

same Alpha and Beta (a/b) class while 1FD3A is in a different Small Proteins class.

CATH, on the other hand, classifies all three proteins as Alpha Beta proteins but

while 1D5TA and 1EKQA have 3- and 2-Layer Sandwich folds respectively, 1FD3A

has a different Roll fold.

Our results demonstrate that we can apply our framework to the analysis of the

structure space of proteins. Given an alphabet of structural motifs, we can find

all combinations of them that occur in a predefined number of protein structures.

This information can further be used to generate graphs of the pairwise relationships

between the proteins. In addition, for a given query protein, we can find all other

proteins that share motifs with it and rank them according to how structurally similar
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they are to the query protein based on the number of shared motifs. Note however,

that if proteins A and B are structurally very similar but B is much smaller in size

than A, then it is possible that a larger protein C that is less similar to A gets

ranked higher than B in our ranking only because it shares more fragments with A.

This problem arises from our definition of structural similarity and can be addressed

by considering a different criteria for the oracle. As mentioned earlier, our current

implementation does not take into account the relative location of the fragments in

the proteins, and cannot capture multiple occurrences of the same fragment.

Note that storing only the maximal simplices allows us to build complexes of very

large dimensions but prevents the direct access to non-maximal simplices. However,

building more maximal complexes with varying N gives us an opportunity to extract

all relevant information. Note that even though it took about 47 minutes to construct

KM
1 , we built KM

2 for less than 17 seconds and the runtime is expected to get even

smaller as N increases.
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Chapter 6

Conclusion

In this thesis, we present a novel computational approach for the construction of sim-

plicial complexes over arbitrary topological spaces. The construction does not require

a metric embedding space and allows us to build arbitrary simplicial complexes on

various types of data. We present four algorithms for our oracle-based framework and

compare two different but equivalent ways of representing the combinatorial struc-

ture in the computation. Our experiments indicate that the maximal representation

of the simplicial complex is more efficient than its full representation and allows us to

construct structures that we would otherwise not be able to construct due to limited

computational resources.

In addition, we demonstrate the generality and utility of our framework by apply-

ing it to three different problems. In our Google application we construct simplicial

complexes in order to find combinations of grocery items that result in a small number

of recipes. The computational representations of the English, French and Bulgarian

languages that we build, provide another example of the ability of our framework

to construct models that capture certain structural properties among objects while

creating opportunities for further topological analysis. Finally, by constructing sim-

plicial complexes on different sets of structural motifs we can explore the similarity

between protein structures as defined by the collection of their unique building blocks.
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Note that some of the complexes that we build are very high dimensional, but we can

construct them successfully with our maximal algorithms.

This project provides different directions for future work. One of them is to design

a methodology for choosing an algorithm for the construction, which would involve

approximating the sparsity and dimension of the complex. Another one would be per-

forming a thorough theoretical analysis on the complexity of the four algorithms and

further exploring the benefits and limitations of maximal versus full representation of

the complexes. An immediate application of the latter analysis for instance, would be

constructing simplicial complexes in parallel since the maximal simplices in a complex

are not subsets of each other and can thus be built simultaneously. Furthermore, de-

signing techniques for computing the homology of such maximal complexes without

having to first enumerate all simplices, would allow for the topological analysis of

very high dimensional complexes.

At the same time, the general definition of the oracle in our framework makes

it possible to apply the presented modeling approach to different domains. Two

examples include online shopping and library catalogue searches. Note that if the

data is locally available, queries to the oracle will be much faster. Depending on

the particular application we may not need to build the whole complex in order to

obtain the desired information and in these cases our framework allows us to specify

a stopping criteria for the construction. The existence of an optimal ordering of the

vertices for Maximal-TD may also have interesting implications. Having found one

such ordering by examining the behavior of the algorithm, we can retrieve it and

further analyze its significance in the particular application.
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von zusammenhangstreuen Abbildungen. Mathematische Annalen, 97(1):454–

472, 1927.

[24] A. Zomorodian. Fast construction of the Vietoris-Rips complex. Computers &

Graphics, 34(3):263–271, 2010.

[25] A. Zomorodian. The tidy set: A minimal simplicial set for computing homology

of clique complexes. In Proc. ACM Symposium on Computational Geometry,

2010.

[26] A. Zomorodian. Advances in Applied and Computational Topology, volume 70

of Proceedings of Symposia in Applied Mathematics, chapter Topological Data

Analysis, pages 1–40. AMS, Providence, RI, 2012.

56



Appendix

object type query term (grocery item)

L list of grocery items from left table in Figure 5.2

bi i-th item from L

g(bi) less: vj where bi is the j-th item in L sorted in incr. order of # hits

more: vj where bi is the j-th item in L sorted in decr. order of # hits

O(σ) query formed by “site:recipesindian.com” and g−1(vi) for all vi ∈ σ

returns nonzero number of results on Google search

total order <

params n ∈ [1, 20]

algs Maximal-BU

Maximal-TD with standard protocol

runs/pt 3 to 5

Table 1: Setup for Google Application

57



languages English, French, Bulgarian

object type letter from alphabet

n English: 26

French: 26

Bulgarian: 30

bi i-th letter from alphabet

g(bi) vi

D Linux word list for the language

English: 479,829 words

French: 139,719 words

Bulgarian: 823,209 words

O(σ) ∃ a word w ∈ D such that vi ∈ σ ⇒ g−1(vi) ∈ w for all vi ∈ σ

total order <

algs Maximal-BU

runs/pt 2

Table 2: Setup for Languages Application
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object type structural motif

n 60

bi i-th motif

ci number of tertiary contacts covered by bi

g(bi) less: vj where bi is the j-th motif in M sorted in incr. order of c

more: vj where bi is the j-th motif in M sorted in decr. order of c

O(σ) ∃ at least N proteins, each of which contains g−1(vi) for all vi ∈ σ

total order <

params M – set of motifs on which complex is built

N – lower bound on the number of proteins sharing

a combination of the motifs

algs Maximal-BU

Maximal-TD with edge-dependent protocol

runs/pt 1

Table 3: Setup for Proteins Application
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