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Abstract

When a process attempts to acquire a mutex lock, it may be forced to wait if another process

currently holds the lock. In certain applications, such as real-time operating systems and

databases, indefinite waiting can cause a process to miss an important deadline [20]. Hence,

there has been research on designing abortable mutual exclusion locks, and fairly efficient

algorithms of O(log n) RMR complexity have been discovered [11, 14] (n denotes the number

of processes for which the algorithm is designed).

The abort feature is just as important for a reader-writer lock as it is for a mutual

exclusion lock, but to the best of our knowledge there are currently no abortable reader-

writer locks that are starvation-free. We show the surprising result that any abortable,

starvation-free mutual exclusion algorithm of RMR complexity t(n) can be transformed

into an abortable, starvation-free reader-writer exclusion algorithm of RMR complexity

O(t(n)). Thus, we obtain the first abortable, starvation-free reader-writer exclusion algo-

rithm of O(log n) RMR complexity. Our results apply to the Cache-Coherent (CC) model

of multiprocessors.
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1 Introduction

1.1 Reader-Writer Exclusion

Mutual Exclusion, where n asynchronous processes share a resource that can be accessed

by only one process at a time, is a fundamental problem in distributed computing [7].

In the standard formulation of this problem, each process repeatedly cycles through four

sections of code—the Remainder, Try, Critical, and Exit Sections. The process stays in

the Remainder Section as long as it is not interested in the resource. When it becomes

interested, it executes the Try Section to compete with other process for the access to the

resource. The process then enters the Critical Section (CS), where it accesses the resource.

Finally, to relinquish its right over the resource, the process executes the Exit Section and

moves back to the Remainder Section. The mutual exclusion problem is to design the Try

and Exit Sections so that at most one process is in the CS at any time. The Try and Exit

Sections are normally thought of as the acquisition and the release of an exclusive lock to

the resource.

Reader-Writer Exclusion is an important and natural generalization of mutual exclusion.

This problem was first formulated and solved over forty years ago by Courtois, Heymans,

and Parnas [6] and continues to receive much research attention [18, 10, 3, 15, 5, 4]. Here

the shared resource is a buffer and processes are divided into readers and writers. If a writer

is in the CS, no other process may be in the CS at that time. However, since readers do not

modify the buffer, the exclusion requirement is relaxed for readers: any number of readers

are allowed to be in the CS simultaneously. A reader-writer exclusion algorithm takes

advantage of this relaxation in the exclusion requirement, besides satisfying several other

desirable properties, such as concurrent entering, first-in-first-enabled among the readers,
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first-come-first-served among the writers, and bounded-exit. These properties are defined

later in Section 2.

When readers and writers compete for the CS, the algorithm has three natural choices:

(i) give higher priority to readers, (ii) give higher priority to writers, or (iii) neither class

has a higher priority and no reader or writer starves. In this paper we consider only the

last (starvation-free) case.

1.2 Remote Memory Reference (RMR) Complexity

In an algorithm that runs on a multiprocessor, if a process p accesses a shared variable that

resides at p’s local memory module, the access will be fast, but if p accesses a remote shared

variable, the access can be extremely slow (because of the delay in gaining exclusive access

to the interconnection bus and the high latency of the bus). Research in the last two decades

has therefore been driven by the goal to minimize the number of remote memory references

(RMRs) (see the survey [1]). Most mutual exclusion algorithms are designed for two shared

memory models [1]: Distributed Shared Memory (DSM) model [16] and Cache-Coherent

(CC) model [21]. In DSM model, each process has its local shared memory module which

can be accessed by all processes. A reference to a shared variable X is considered remote if

X is at a memory module of a different process. In CC model, the shared memory modules

are remote from all processes. However, each process has its own cache which can only be

accessed by the process itself. When a process p reads a shared variable X in the shared

memory, p will store X in its cache. If p wants to read X again, it can read the copy of

X in its cache instead of accessing the remote shared memory as long as X has not been

updated by other processes since p’s previous read of X. If X has not been updated, the

copy of X in p’s cache will indicate itself as invalid. Thus, when p’s wants to read X, it
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has to access the shared memory. Hence, a reference to X by p is considered remote in CC

model if X is not in p’s cache.

The goal of minimizing the number of RMRs implies that algorithms should be designed

to achieve local spinning, i.e., processes do not make any remote references in busywait

loops. The ideal goal is to design locking algorithms whose RMR complexity–the worst case

number of remote memory references made by a process to enter and exit the CS once–is

a constant, independent of the number of processes executing the algorithm. This goal

was achieved for mutual exclusion over twenty years ago—Anderson’s algorithm achieves

constant RMR complexity for CC machines [2], and Mellor-Crummey and Scott’s algorithm

achieves constant RMR complexity for both CC and DSM machines [17].

In contrast, for the reader-writer problem, constant RMR complexity is achievable for

CC machines [3, 4], but is provably impossible for DSM machines: Danek and Hadzilacos’

lower bound proof for 2-Session Group Mutual Exclusion implies that a sublinear RMR

complexity algorithm satisfying concurrent entering is impossible for the reader-writer ex-

clusion problem [10].

1.3 Abortability

In certain applications, such as real-time operating systems and databases, indefinite waiting

can cause a process to miss an important deadline [20]. Therefore, there has been a lot of

research on the design of exclusion algorithms that provide an extra feature—the Abort

Section—that a busywaiting process in the Try Section can execute if it wishes to quit the

protocol [20, 19, 11, 14]. Since a process executes the Abort Section only when it cannot

afford to wait any further, it is imperative that this section of code be wait-free, i.e., a

process completes the Abort Section in a bounded number of its own steps, regardless of
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how its steps interleave with the steps of other processes.

For the mutual exclusion problem, efficient abortable algorithms are known: Jayanti’s

algorithm has O(log n) RMR complexity, where n is the number of processes [11]. Lee’s

algorithm has the same worst-case complexity, but achieves O(1) complexity for the case

where no process aborts [14]. For the reader-writer exclusion problem, Zheng designed

an abortable algorithm of O(n) RMR complexity, but this algorithm applies only for the

reader-priority case [22]. To the best of our knowledge, there is no abortable algorithm for

the starvation-free case, which is the focus of this paper.

1.4 The Main Result

We investigate the hardness of the abortable reader-writer exclusion problem relative to

the abortable mutual exclusion problem. Let me(n) and rw(n) denote the worst case RMR

complexities of the abortable, starvation-free, mutual exclusion problem and the abortable,

starvation-free reader-writer exclusion problem, respectively. Since mutual exclusion is a

special case of reader-writer exclusion where all processes act as writers, it follows that

me(n) ≤ rw(n), i.e., me(n) = O(rw(n)). Is the converse true? To our surprise, we found

the answer is yes. Specifically, we present a constant RMR complexity transformation

that converts any abortable, starvation-free mutual exclusion algorithm into an abortable,

starvation-free reader-writer exclusion algorithm. This establishes that rw(n) ≤ me(n) +

O(1), and thus rw(n) = O(me(n)).

Our result has two significant implications:

• It establishes that rw(n) = Θ(me(n)), i.e., abortable, starvation-free, reader-writer

exclusion is exactly as hard as abortable, starvation-free, mutual exclusion.
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• Our transformation, when applied to the O(log n) abortable mutual exclusion algo-

rithm, gives rise to an abortable, starvation-free reader-writer exclusion algorithm of

O(log n) RMR complexity. To the best of our knowledge, this is the first abortable,

starvation-free reader-writer exclusion algorithm.

1.5 How the Transformation is Structured

Our transformation is presented in two steps. First, in Section 3, we design an abortable

reader-writer algorithm A that supports only a single writer. Then, in Section 4, we show

how to combine A with an abortable mutual exclusion lock M to obtain an abortable

reader-writer algorithm that supports an arbitrary number of writers (and readers). The

design of A in the first step constitutes the intellectual contribution of this paper. (The

second step uses the simple idea that multiple writers compete for the lock M and the

successful one proceeds to execute the single-writer algorithm A.)

2 The Abortable Reader-Writer Exclusion Problem

In this section we provide a clear statement of the abortable reader-writer exclusion problem.

Each process has five sections of code—Remainder, Try, Critical, Exit, and Abort Sec-

tions. A process executes its code in phases. In each phase, the process does one of two

things: (1) starts in the Remainder Section; then executes the Try Section, the Critical

Section (CS), and the Exit Section (in that order); and then goes back to the Remainder

Section, or (2) starts in the Remainder Section; then executes the Try Section, possibly

partially; then executes the Abort Section; and then goes back to the Remainder Section.

The Try Section is divided into a doorway, followed by a waiting room [13]. It is required
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that the doorway be wait-free, i.e., each process completes the doorway in a bounded number

of its steps, regardless of how its steps interleave with the steps of other processes.

We say a reader r in the Try Section is enabled if r will enter the CS in a bounded number

of its own steps, regardless of how its steps interleave with the steps of other processes.

The reader-writer exclusion problem is to design the Try, Exit, and Abort Sections of

code for each process so that the following properties hold in all runs:

• (P1) Reader-Writer Exclusion: If a writer is in the CS, then no other process is in the

CS at that time.

• (P2) Bounded Abort: Each process completes the Abort Section in a bounded number

of its steps, regardless of how its steps interleave with the steps of other processes.

• (P3) Concurrent Entering: Since readers don’t conflict with each other, it is desired

that they do not obstruct each other from entering the CS. More specifically, if all

writers are in the Remainder Section and will remain there, then every reader in the

Try Section enters the CS in a bounded number of its own steps [9, 12].

• (P4) FIFE among readers: Unlike writers that may only access the CS one at a time,

any number of readers can cohabit the CS. Consequently, if a reader r completes the

doorway before another reader r′ enters the doorway, there is no reason to delay the

entry of r′ into the CS for the sake of r. We use the First-In-First-Enabled (FIFE)

property, first defined by Fischer et al. for the k-exclusion problem [8], to define

fairness among readers, as follows: If a reader r in the Try Section completes the

doorway before another reader r′ enters the doorway, and r′ subsequently enters the

CS, then one of the following three conditions holds: (i) r enters the CS before r′
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enters the CS, or (ii) r begins executing the Abort Section before r′ enters the CS, or

(iii) r is enabled to enter the CS when r′ enters the CS.

• (P5) Starvation-Freedom: When readers and writers compete for the CS, the algo-

rithm has three natural choices: (i) give higher priority to readers, (ii) give higher

priority to writers, or (iii) treat both classes of processes fairly. In this paper we con-

sider only the third case and require the starvation-freedom property: if a process in

the Try Section does not abort, it will eventually enter the CS, under the assumption

that no process stops taking steps in the Try, Exit, or Abort Sections and no process

stays in the CS forever.

• (P6) Bounded Exit: Every process completes the Exit Section in a bounded number

of its own steps.

• (P7) FCFS among writers: We use the First-Come-First-Served (FCFS) property,

first defined by Lamport for the mutual exclusion problem [13], to define fairness

among writers, as follows: If a writer w completes the doorway before a writer w′

enters the doorway and w does not abort, then w′ does not enter the CS before w.

3 Single-Writer Multi-Reader Algorithm

3.1 The Algorithm

Now we present our abortable starvation-free algorithm that works for single writer and

multiple readers. The algorithm employs shared variables that support read/write and

fetch&add (F&A) operations, where fetch&add operation is defined as follows:

• F&A(X, a) is a fetch&add operation on variable X and it makes X = x + a and
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returns (x+ a), where x is the previous value of X.1

Figure 1 shows our abortable single-writer multi-reader algorithm. The subroutine R-

Abort is what readers execute when they abort from Line 2, while W-Abort-L7 and W-

Abort-L11 are what the writer executes when it aborts from Line 7 and Line 11 respectively.

W-Abort-L7 is empty, meaning the writer can quit immediately if it aborts from Line 7. It

is worth noting that this algorithm works for any number of readers

G: integer
Flag: single bit
X: pair of integers, where the first component only consists of one bit
Y : integer
Initially, X = [0, 0], Y = 0, Flag = 0, G = 2

Reader Writer
1. [g,−]← F&A(X, [0, 1]) 7. wait till Flag = 0
2. wait till G ≥ 2 ∨G = g 8. F&A(G,−2)
3. CS 9. [s, r]← F&A(X, [1, 0])

do R-Exit 10. c← F&A(Y,−r)
if c ̸= 0

11. wait till Flag = 1
12. CS

do R-Exit

R-Exit W-Exit
4. [g′,−]← F&A(X, [0,−1]) 13. G← s+ 2

if g′ ̸= g if (c ̸= 0)
5. a← F&A(Y, 1) 14. F&A(Flag, 1)

if (a = 0)
6. F&A(Flag, 1)

W-Abort-L7
do nothing

R-Abort W-Abort-L11
do R-Exit do W-Exit

Figure 1: Abortable Single-Writer Multi-Reader Algorithm

To fully understand the algorithm, we first need to know the purposes of the shared

variables the algorithm uses.

1People usually assume that fetch&add returns the previous value of the variable. But for convenience,
we assume in this paper that it returns the new value: we assume the operation returns (x+ a), not x.
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• G: Intuitively, G is an entrance that has two gates, Gate 0 and Gate 1, through which

readers enter the CS. When the writer is requesting to enter the CS or occupying

the CS, either G = 0 or G = 1, indicating either only Gate 0 or only Gate 1 is

open. This “gates” idea was proposed by Bhatt and Jayanti [3]. Here, in order to

support aborting, we do the following modification: if the writer is not requesting to

or occupying the CS, we let G ≥ 2, indicating both gates are open.

• X: X has two components. Let us call them X.1 and X.2 from left to right. X.1

is a single bit read by readers to figure out which gate they should pass. X.2 is a

counter for the number of readers that are requesting to enter or currently in the CS.

When the writer wants to access the CS, it reads X.2 at Line 9 to know the number

of readers that are in the CS or about to enter the CS. The writer then waits until all

such readers have exited the CS.

• Y : Y is what the writer uses to communicate with readers about how many readers

it needs to wait for. As we mentioned above, the writer gets from X.2 the number

of readers that are in the CS or about to enter the CS. Then the writer writes this

information into Y by subtracting Y by that number at Line 10. We will explain later

that only the readers that the writer needs to wait for will find g′ ̸= g at Line 4 and

therefore go to Line 5 to increment Y . Thus, when the last of these readers executes

Line 5, it will find a = 0, i.e., Y = 0, and then try to wake up the writer by executing

Line 6.

• Flag: Flag is a single bit indicating what the writer should do. As we mentioned

before, when the writer is waiting for some readers to leave the CS at Line 11, the

last of such readers will go to Line 6 to increment Flag. Thus, when the writer finds
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Flag = 1, it knows that it can now enter the CS. When the writer exits, it flips Flag

back to 0 by executing Line 14. On the other hand, If the writer does not want to

wait any longer at Line 11, it can abort and then execute Line 14 to increment Flag.

When the writer enters the Try Section again, some slow readers may not have exited

yet. In this case, the writer will find Flag = 1 at Line 7 because of the previous

increment at Line 14. When the last of such readers finally leaves, it increments Flag

at Line 6 so as to set Flag = 0. Now the writer will find Flag = 0 and hence can

move on to request its access to the CS.

With the above description of the shared variables, we can now explain the details of the

algorithm. We begin by describing how readers get the permission to enter the CS. When a

reader enters the Try Section, it reads the first component of X, X.1, that indicates which

gate the reader will pass through. If the writer is now in the Remainder Section, we have

G = X.1+ 2 and hence G ≥ 2. Therefore, the reader knows it is allowed to enter the CS. If

the writer has entered the Try Section and just executed Line 8, we have G = X.1. Since

X.1 is unchanged, the reader has g = X.1 = G and can therefore enter the CS. After the

writer executed Line 9 to flip X.1 by incrementing it by 1, we have X.1 ̸= G. If a reader now

comes in the Try Section and executes Line 1, it will find G < 2 and G ̸= g and hence need

to wait at Line 2. However, any reader that executed Line 1 before the writer executed Line

9 still has G = g, since g = X.1 = G held at the time it executed Line 1 and G is now still

having the same value. Therefore, Line 9 becomes the critical point for synchronization: if

a reader comes in the Try Section before the writer executes Line 10, it is enabled to enter

the CS; otherwise, it has to let the writer enter the CS first. When the writer exits either

after it left the CS or after it decided to abort, it will execute Line 13. After that moment,
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G = X.1 + 2 (since the writer stored X.1’s value in s), and hence all the waiting readers

are now enabled because G ≥ 2. There is only one risk for readers: when the writer is in

the Remainder, a reader R executes Line 1 and then falls asleep before executing Line 2.

The writer now enters the Try Section and aborts, making G ≥ 2 but G ̸= R.g + 2. Then

the writer enters the Try Section again, executing Line 8 to make G < 2 and G ̸= R.g. If R

now wakes up, it will be blocked from entering the CS, which we do not expect to happen.

However, this situation will not happen: the second time the writer enters the Try Section,

it will find Flag = 1 at Line 7 and hence it cannot execute Line 8 to cause that risk. We

will explain the reason later.

Let us now explain how the writer gets access to the CS. Initially, Flag = 0. Therefore,

the writer finds Flag = 0 the first time it enters the Try section. Then, it executes Line

8 and Line 9, claiming its request to access the CS. As we mentioned earlier, any readers

that enter the Try Section after the writer’s request will be blocked from getting into the

CS. At the same time, the writer gets from X.2 the number of enabled readers that have

not exited yet. Then, at Line 10, the writer subtracts Y by the number of such readers,

r. Note that all the readers that entered the Try Section before the writer requested the

CS have g ̸= X.1 now because of the change on X.1 at Line 9. Therefore, if these readers

exit or abort (these two subroutines are actually the same), they will find g′ = X.1 ̸= g at

Line 4 and hence execute Line 5 to increment Y . On the other hand, if any blocked reader

waiting at Line 2 aborts (or finally enters and then leaves the CS after the writer has left),

it will find g′ = g because it executed Line 1 after the writer made the change on Y at

Line 9. Therefore, it will leave without touching Y . Hence, when the writer gets the value

c at Line 10 after subtracting Y by r, it knows that there are exactly −c enabled readers
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it has to wait for. If c ̸= 0, the writer will wait until the last such reader increments Y

to 0 and sets Flag to 1. When the writer exits, it sets Flag back to 0 so that it will find

Flag = 0 next time it enters the Try Section. If the writer decides to abort from Line 11,

it also increments Flag by 1. Thus, if the last of those enabled readers has not exited or

aborted yet, Flag = 1. Therefore, when the writer enters the Try Section again, it has to

wait at Line 7 until Flag = 0, meaning the last reader has gone. On the other hand, if the

writer finds c = 0 after executing Line 10, it knows that all enabled readers have executed

Line 5 before it executes Line 10. Hence, the writer can enter the CS immediately. An

important observation is that, if a reader executed Line 5 before the writer executes Line

10, it incremented Y to a positive value and hence found a > 0. Therefore, in the case

where writer has c = 0, no reader can go to Line 6 to change Flag. Hence, the writer can

just leave Flag unchanged by not executing Line 14 and it will find Flag = 0 next time

it enters the Try Section. Now consider that the writer comes into the Try Section again.

If it finds Flag = 1 at Line 7, it knows that some enabled readers with g′ ̸= g (or with

g ̸= X.1 at Line 2–4) have not left. Hence, the writer waits until they all leave and Flag is

therefore set back to 0. If it aborts from Line 7, it does nothing. But next time it enters

the Try Section, it still needs to wait there until Flag = 0. It is easy to figure out that, if

any reader enters and leaves during the period when the writer is in the Remainder Section

and at Line 7, it will find g = g′ at Line 4. Hence, such readers cannot change Y or Flag.

Therefore, the writer does not need to worry about the risk that some reader updates Y or

Flag improperly. After the writer passes Line 7, it can then request the CS by executing

the Try Section, the same as what it did for the first time.
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3.2 Correctness of the Algorithm

3.2.1 Invariants of the Algorithm

Our proof is invariant-based. In Figure 2, we present the invariant I that our single-writer

multi-reader algorithm satisfies.

In the following, we prove I always holds by showing that I holds in the initial config-

uration, and that, if I holds in any reachable configuration C, it still hold after any process

takes a step.

• Lemma 3.1 I holds in the initial configuration.

Proof of Lemma 3.1: In the initial configuration, the writer W is at Line 7 and all

readers are at Line 1. Hence, we need to prove that IG and I7 hold. By simply

checking the initially values of the shared variables, we can prove all items of IG and

I7 hold in the initial configuration. ⊓⊔

• Lemma 3.2 If I holds in configuration C, then it also holds in C.s where s is an

arbitrary step taken by an arbitrary process.

Proof of Lemma 3.2: First, we prove IG holds in any reachable configuration. Item 1

of IG is true, since, for any reader R, R.g’s value is from X.1 at Line 1 which consists

of one bit. Since any read attempt increments X.2 by 1 once at Line 1 and then

decrements it by 1 once at Line 4, X.2 must be equal to the number of read attempts

that have executed Line 1 and have not done Line 4 yet. Hence, Item 2 of IG is true

in any reachable configuration. Therefore IG always holds.

In the following, we prove in Claim 3.3–Claim 3.10 that if W is at Line i in con-

figuration C then I holds in C.s, for any i ∈ {7, 8, 9, 10, 11, 12, 13, 14}. Hence, we
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• Definitions:

1. R and W denote a reader and the writer, respectively.

2. Ii is a collection of predicates that are true when the writer’s program counter is at Line i.

3. PCR = i states that reader R’s program counter is at Line i.

4. X.1 denotes the second field of X. Similar definitions for X.2, Y.1, etc.

• IG (global invariant):

1. ∀R,PCR ∈ {2, 3, 4, 5, 6} =⇒ R.g = 1 ∨R.g = 0

2. X.2 = |{R|PCR ∈ {2, 3, 4}}|

• I7 :

1. G = X.1 + 2

2. Y = −|{R|PCR ∈ {2, 3, 4, 5} ∧R.g ̸= X.1}|
3. ∀R,PCR = 5 =⇒ R.g ̸= X.1

4. Y ̸= 0 =⇒ (Flag = 1 ∧ |{R|PCR = 6}| = 0)

5. (Flag = 1 ∧ Y = 0) =⇒ |{R|PCR = 6}| = 1

6. Flag = 0 =⇒ Y = 0 ∧ |{R|PCR = 6}| = 0

• I8 :

1. G = X.1 + 2

2. Y = 0

3. |{R|PCR ∈ {2, 3, 4} ∧R.g ̸= X.1}| = 0

4. |{R|PCR ∈ {5, 6}}| = 0

5. Flag = 0

• I9 :

1. G = X.1

2. Y = 0

3. |{R|PCR ∈ {2, 3, 4} ∧R.g ̸= X.1}| = 0

4. |{R|PCR ∈ {5, 6}}| = 0

5. Flag = 0

• I10 :

1. G = 1−X.1

2. Y = W.r − |{R|PCR ∈ {2, 3, 4, 5} ∧ R.g ̸=
X.1}| ≥ 0

3. ∀R,PCR = 3 =⇒ R.g ̸= X.1

4. ∀R,PCR = 5 =⇒ R.g ̸= X.1

5. |{R|PCR ∈ 6}| = 0

6. Flag = 0

7. W.s = X.1

• I11 :

1. G = 1−X.1

2. Y = −|{R|PCR ∈ {2, 3, 4, 5}∧R.g ̸= X.1}| ≤ 0

3. ∀R,PCR = 3 =⇒ R.g ̸= X.1

4. ∀R,PCR = 5 =⇒ R.g ̸= X.1

5. Y ̸= 0 =⇒ Flag = 0 ∧ |{R|PCR = 6}| = 0

6. Flag = 0 ∧ Y = 0 =⇒ |{R|PCR = 6}| = 1

7. Flag = 1 =⇒ Y = 0 ∧ |{R|PCR = 6}| = 0

8. W.s = X.1

9. W.c ̸= 0

• I12 :

1. G = 1−X.1

2. Y = |{R|PCR ∈ {2, 3, 4, 5} ∧R.g ̸= X.1}| = 0

3. |{R|PCR ∈ {3, 5, 6}}| = 0

4. Flag = 0⇐⇒W.c = 0

5. W.s = X.1

• I13 :

1. G = 1−X.1

2. Y = −|{R|PCR ∈ {2, 3, 4, 5}∧R.g ̸= X.1}| ≤ 0

3. ∀R,PCR = 3 =⇒ R.g ̸= X.1

4. ∀R,PCR = 5 =⇒ R.g ̸= X.1

5. W.c = 0 =⇒ Y = 0

6. W.c = 0 =⇒ |{R|PCR = 6}| = 0

7. W.c = 0 =⇒ Flag = 0

8. Y ̸= 0 =⇒ (Flag = 0 ∧ |{R|PCR = 6}| = 0)

9. (W.c ̸= 0 ∧ Flag = 0 ∧ Y = 0) =⇒ |{R|PCR =
6}| = 1

10. (W.c ̸= 0∧Flag = 1) =⇒ (Y = 0∧ |{R|PCR =
6}| = 0)

11. W.s = X.1

• I14 :

1. G = X.1 + 2

2. Y = −|{R|PCR ∈ {2, 3, 4, 5}∧R.g ̸= X.1}| ≤ 0

3. ∀R,PCR = 5 =⇒ R.g ̸= X.1

4. Y ̸= 0 =⇒ (Flag = 0 ∧ |{R|PCR = 6}| = 0)

5. (Flag = 0 ∧ Y = 0) =⇒ |{R|PCR = 6}| = 1

6. Flag = 1 =⇒ (Y = 0 ∧ |{R|PCR = 6}| = 0)

Figure 2: Invariant I of the Abortable Single-Writer Multi-Reader Algorithm

14



can conclude that I holds in C.s, where s is an arbitrary step taken by an arbitrary

process. ⊓⊔

Claim 3.3 If PCW = 7 in configuration C, then I holds in C.s.

Proof of Claim 3.3:

– If s is a step taken by a reader R, then PCW = 7 in C.s. Therefore, we need to

prove I7 holds in C.s.

Since R cannot change G, Item 1 of I7 holds in C.s.

Since Item 3 of I7 holds in C, it still holds if s does not make any effect on it.

Item 3 of I7 can only be affected if R executes Line 4 and goes to Line 5. To do

so, however, R has to find R.g′ ̸= R.g at Line 4, where R.g′ = X.1. This implies

that R.g ̸= X.1 and therefore Item 3 of I7 still holds in C.s.

Since Item 2 of I7 holds, it still holds if s does not make any effect on it. Item

2 of I7 can only be affected when (a) R is at Line 1 in C, or (b) R is at Line 5

with R.g ̸= X.1 (since Item 3 of I7 holds in C, the possibility of PCR = 5 with

R.g = X.1 in C has been ruled out). In case (a), R will have PCR = 2 and

R.g = X.1 after R takes a step. Hence, Item 2 I7 holds in this case. In case

(b), R increments Y by 1 and will go to Line 6 or Line 1 after taking a step.

Thus, both sides of the equation in Item 2 increase by 1 and hence remain equal.

Hence, Item 2 I7 holds in this case. Therefore Item 2 of I7 holds in C.s.

Item 4 of I7 can only be affected when Y ̸= 0 and PCR = 5 in C (all other

possibilities are ruled out, since I7 holds in C). To affect Item 4 in this case, R

has to go to Line 6 after taking a step. To achieve this, R has to find R.a = 0,
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which requires Y = 0 after s is taken. Thus, Item 4 holds unconditionally.

Therefore Item 4 of I7 holds in C.s.

Item 5 of I7 can only be affected when (a) PCR = 5 I7 in C, or (b) PCR = 6

in C. In case (a), R has to get into Line 6 in C.s, which requires Y = −1 ̸= 0

before R takes a step. Thus, Item 4 of I7 implies that |{R|PCR = 6}| = 0 holds

in C. Therefore, we have |{R|PCR = 6}| = 1 after one step and hence Item 5

holds. In case (b), we can conclude that R is the only reader at Line 6 since

Items 4–6 of I7 imply |{R|PCR = 6}| ≤ 1 in C. Moreover, we can figure out that

the only possibility is that Flag = 1 and Y = 0 in C. Thus, after R takes a step,

Flag = 0 and Item 5 is true unconditionally. Therefore Item 5 of I7 holds in C.s.

Since I7 holds in C, to affect Item 6 in C.s, we need to have (a) Flag = 0 and

PCR = 5, or (b) Flag = 1, Y ̸= 0 and PCR = 6 in C. However, Items 2,3, and

6 of I7 in C rule out the possibility of (a) while Item 4 rules out the possibility

of (b). Therefore Item 6 of I7 holds in C.s.

Hence, if s is a step taken by a reader R, I holds in C.s.

– If s is a step taken by the Writer W and Flag = 1 in C, or if W aborts in C,

then PCW = 7 in C.s. Since s does not make any change, I still holds in C.s.

– If s is a step taken by the Writer W and Flag = 0 in C, then PCW = 8 in C.s.

Therefore, we need to prove I8 holds in C.s.

Note that executing Line 7 does not change any shared variables. Since Flag = 0

and I7 holds in C, we know Y = 0 and |{R|PCR = 6}|. Combining these facts

and Items 1–3 of I7, we can figure out that all Items 1–5 of I8 hold in C.s.

Hence the proof. ⊓⊔
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Claim 3.4 If PCW = 8 in configuration C, then I holds in C.s.

Proof of Claim 3.4:

– If s is a step taken by a reader R, then PCW = 8 in C.s. Therefore, we need to

prove I8 holds in C.s.

By the same argument in the proof of Claim 3.3, we can prove Item 1 of I8 holds

in C.s.

Since I8 holds in C, we know R can be at Line 5 or Line 6. Thus, R cannot

change Y or Flag. Hence, Items 2 and 5 of I8 still hold in C.s.

If PCR = 1 in C, then R.g = X.1. Combining this and the fact that Item 3 of I8

holds in C, we can conclude that Item 3 still I8 holds in C.s. If s is a step taken

by a reader R, then PCW = 8 in C.s. Therefore, we need to prove I8 holds in

C.s. According to Item 3 of I8, if PCR = 4, then R.g = X.1. Thus, R cannot be

at Line 5 in C.s. This and the fact that Item 4 of I8 holds in C together indicate

that Item 4 holds in C.s.

Therefore, If s is a step taken by a reader, I holds in C.s.

– If s is a step taken by the Writer W , then PCW = 9 in C.s. Therefore, we need to

prove I9 holds in C.s. Since I8 holds in C and executing Line 8 only decrements

G by 2, we can figure out that I9 holds in C.s.

Hence the proof. ⊓⊔

Claim 3.5 If PCW = 9 in configuration C, then I holds in C.s.

Proof of Claim 3.5:
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– If s is a step taken by a reader R, then PCW = 9 in C.s. Therefore, we need to

prove I9 holds in C.s.

By the same argument in the proof of Claim 3.4, we can prove that I9 holds in

C.s.

– If s is a step taken by the Writer W , then PCW = 10 in C.s. Therefore, we need

to prove I10 holds in C.s.

Since G = X.1 in C, we have G = 1 −X.1 after W executes Line 9, i.e., Item 1

of I10 holds in C.s.

Since Item 3 of I9 holds in C and executing Line 9 flips X.1, we have |{R|PCR ∈

{2, 3, 4} ∧R.g = X.1}| = 0 in C.s. Thus, Item 3 of I10 holds in C.s.

Since W stores the value of X in W.s and W.r, Item 7 of I10 holds in C.s. What’s

more, since |{R|PCR ∈ {2, 3, 4} ∧ R.g ̸= X.1}| = |{R|PCR ∈ {2, 3, 4}}| = X.1

and Y = 0 in C, we have Y = W.r− |{R|PCR ∈ {2, 3, 4} ∧R.g ̸= X.1}| = 0, i.e.,

Item 2 of I10 in C.s.

Since Items 4 and 5 of I9 hold in C, we know Items 4–6 of I10 hold in C.s.

Therefore, if s is a step taken by the Writer W , I10 holds in C.s.

Hence the proof. ⊓⊔

Claim 3.6 If PCW = 10 in configuration C, then I holds in C.s.

Proof of Claim 3.6:

– If s is a step taken by a reader R, then PCW = 10 in C.s. Therefore, we need to

prove I10 holds in C.s.
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Since Items 1 and 7 of I10 hold in C and they cannot be affected by a step taken

by a reader, they still hold in C.s.

Since Item 3 I10 holds in C, to violate Item 3 in C.s, R has to execute line 2

with R.g ̸= X.1 and R.g = G so that R can go to line 3 with R.g ̸= X.1.

However, Item 1 of I10 rules out this possibility. Hence, Item 3 of I10 holds in

C.s. Likewise, we can prove Item 4 of I10 holds in C.s.

If R is at Line 2, Line 3, or Line 6 and it takes a step, Item 2 of I10 won’t be

affected and will still hold. If R executes Line 1, it will have R.g = X.1 and

hence will not affect Item 2. If R with R.g ̸= X.1 executes Line 4, it will find

R.g ̸= R.g′ and then go to Line 5, which will not violate Item 5. If R.g = X.1,

it will not affect Item 5. If R executes Line 5, both sides of the equation in Item

5 will increase by 1, and hence Item still holds. Therefore, Item 5 must hold in

C.s.

According to Item 2 and Item 5 of I10, Y ≥ 0 holds in C and no reader is at Line

5. Thus, To violate Item 5 of I10 in C.s, R has to execute Line 6 with Y = −1 in

C, so that R can make Y = R.a = 0 to go to Line 6. However, we know Y ≥ 0

in C and hence this is impossible. Hence, Item 5 of I10 holds in C.s.

Since Item 5 of I10 holds in C, R cannot change Flag. Hence, Item 6 I10 holds

in C.s. Therefore, I10 holds in C.s

– If s is a step taken by the Writer W and Y −W.r = 0 in C, then W.c = 0 and

hence PCW = 12 in C.s. Therefore, we need to prove I12 holds in C.s.

Since , by I10, Items 1 and 5 of I12 hold in C and they remain unchanged after s

is taken, they still hold in C.s. Since Flag = 0 holds in C and we have W.c, Item
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4 of I12 also holds in C.s.

Since we have Y −W.r = 0 and Item 2 of I10 in C, we know Item 2 of I12 holds

in C.s. In addition, Items 3–5 of I10 hold in C. Hence, we can conclude Item 3

of I12 holds in C.s.

Therefore, I12 holds in C.s.

– If s is a step taken by the Writer W and Y −W.r ̸= 0 in C, then W.c ̸= 0 and

hence PCW = 11 in C.s. Therefore, we need to prove I11 holds in C.s.

Like the proof above, we can prove that Items 1 and 8 of I11 hold in C.s. Since

we assume W.c ̸= 0 in this case, Item 9 of I11 also holds.

Since Item 2 of I10 holds in C, and the execution of Line 10 subtracts Y by W.r,

we know Item 2 of I11 holds in C.s.

Since Items 3 and 4 I11 cannot be affected by the execution of Line 10 and they

hold in C, they still hold in C.s.

Since Flag = 0 in C, Flag = 0 still holds in C.s. We also assume in this case

that W.c = Y ̸= 0. Hence, Items 6 and 7 of I11 hold unconditionally in C.s.

Moreover, since Item 5 of I10 holds in C, Item 5 of I11 will hold in C.s.

Therefore, I11 holds in C.s.

Hence the proof. ⊓⊔

Claim 3.7 If PCW = 11 in configuration C, then I holds in C.s.

Proof of Claim 3.7:

– If s is a step taken by a reader R, then PCW = 11 in C.s. Therefore, we need to

prove I11 holds in C.s.
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Similar to the proof of Claim 3.6, we can prove Items 1–4 and 8 of I11 hold in

C.s. Since W.c is W ’s local variable, Item 9 of I11 also holds in C.s.

To violate Items 5 of I11, R has two ways: (a) R executes Line 5 when Y ̸= −1

and then go to Line 6, or (b) R executes Line 5 when Y = 0 and another reader

is already at Line 6. Case (a) cannot happen, since R will find R.a = 0 and then

cannot go to Line 6. Case (b) cannot happen either, since, by Items 2 and 4 of

I11, R cannot be at Line 5 in C. Hence, Item 5 of I11 holds in C.s.

To violate Item 6 of I11, R has two ways: (a) R executes Line 6 when Flag = 1

and Y = 0, or (b) R executes Line 5 when Y = −1 and another reader is already

at Line 6. However, case (a) cannot happen, since, by Item 7 of I11, R cannot

be at Line 6 in C. Case (b) cannot happen either, since, by Items 5 of I11, R

cannot be at Line 5 in C. Hence, Item 5 of I11 holds in C.s.

To violate Item 7 of I11, R has two ways: (a) R executes Line 5 when Flag = 1

and Y = −1, or (b) R executes Line 6 when Flag = 0 and another reader is

already at Line 6. However, case (a) cannot happen, since, by Item 5 of I11, we

know Flag = 0 in C. Case (b) cannot happen either, since, by Items 5–7 of I11,

we know there is at most one reader in C. Hence, Item 5 of I11 holds in C.s.

Therefore, I11 holds in C.s.

– If s is a step taken by the Writer W and Flag = 0 in C, then PCW = 11 in C.s.

Since the execution of Line 11 doesn’t change anything, I11 still holds in C.s.

– If s is a step taken by the Writer W and Flag = 1 in C, then PCW = 12 in C.s.

Therefore, we need to prove I12 holds in C.s.

Since Flag = 1 in this case and Items 1, 2, 3, 4, 7, 8, and 9 I11 hold in C, we can
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conclude that all the Items 1-5 of I12 hold in C.s.

– If W aborts in C, then PCW = 13 in C.s. Therefore, we need to prove I13 holds

in C.s.

Since Items 1, 2, 3, 4, 5, 6, 8, and 9 of I11 hold in C, we can figure out that Items

1, 2, 3, 4, 8, 9, 10, and 11 of I13 hold in C.s. Moreover, Items 5–7 of I13 hold

unconditionally in C.s. Therefore, I13 holds in C.s.

Hence the proof. ⊓⊔

Claim 3.8 If PCW = 12 in configuration C, then I holds in C.s.

Proof of Claim 3.8:

– If s is a step taken by a reader R, then PCW = 12 in C.s. Therefore, we need to

prove I12 holds in C.s.

Similar to the proof of Claim 3.6, we can prove that Items 1, 2, and 5 of I12 hold

in C.s.

Since Item 3 of I12 holds in C, to violate Item 3 of I12 in C.s, R has to execute

Line 2 with R.g = G or execute Line 4 with R.g ̸= X.1. However, since Items

1–2 of I12 hold in C, these two cases are impossible. Therefore, Item 3 of I12

holds in C.s.

To violate Item 4 of I12 in C.s, R needs to execute Line 6 to Flip Flag. However,

Item 3 implies that is impossible.

Therefore, I12 holds in C.s.

– If s is a step taken by the Writer W , then PCW = 13 in C.s. Therefore, we need

to prove I13 holds in C.s.
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If Flag = 1, it is easy to notice that this case is the same as the case when W

executes Line 11 with Flag = 1 and then goes to Line 13. Since we already

proved I13 holds in that case, we can conclude that I13 holds in this case.

If Flag = 0, then Items 9–10 of I13 hold unconditionally. Since I12 holds in C,

we can easily figure out the rest of items of I13 hold in C.s.

Hence the proof. ⊓⊔

Claim 3.9 If PCW = 13 in configuration C, then I holds in C.s.

Proof of Claim 3.9:

– If s is a step taken by a reader R, then PCW = 13 in C.s. Therefore, we need to

prove I13 holds in C.s.

Similar to the proof of Claim 3.6, we can prove Items 1–4, 6, 7, and 11 of I13

hold in C.s. Similar to the proof of Claim 3.7, we can prove Items 8–10 of I13

hold in C.s.

The only item left is Item 5. To violate it, R has to execute Line 5 when W.c = 0

and Y = 0, so that Y ̸= 0 after this execution. However, since Item 5 holds in

C, we cannot have W.c = 0 and Y = 0 at the same time. Therefore, Item 5 and

hence the whole I13 holds in C.s.

– If s is a step taken by the Writer W with W.c = 0 in C, then PCW = 7 in C.s.

Therefore, we need to prove I7 holds in C.s.

The only change that the execution of Line 13 causes is to make G = W.s + 2.

Since we have W.s = X.1 in C, G = X.1+2, i.e., Item 1 of I7 holds in C.s. Since
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Items 2, 4, 5, 6, and 7 of I13 hold in C.s, we can figure out that Items 2-6 of I7

hold in C.s. Therefore, I7 holds in C.s.

– If s is a step taken by the Writer W with W.c ̸= 0 in C, then PCW = 14 in C.s.

Therefore, we need to prove I14 holds in C.s.

Like what we argued above, we can figure out Item 1 of I14 will hold in C.s.

Since Items 2, 4, 8, 9, and 11 of I1 and W.c ̸= 0 hold in C, it is obvious that

Items 2–6 of I14 hold in C.s. Therefore, I14 holds in C.s.

Hence the proof. ⊓⊔

Claim 3.10 If PCW = 14 in configuration C, then I holds in C.s.

Proof of Claim 3.10:

– If s is a step taken by a reader R, then PCW = 14 in C.s. Therefore, we need to

prove I14 holds in C.s.

Similar to the proof of Claim 3.6, we can prove Items 1-3 of I14 hold in C.s.

Similar to the proof of Claim 3.7, we can prove Items 4-6 of I14 hold in C.s.

Therefore, I14 holds in C.s.

– If s is a step taken by the Writer W , then PCW = 7 in C.s. Therefore, we need

to prove I7 holds in C.s.

Since the execution of Line 14 only flips Flag and I14 holds in C, it is obvious

that I7 holds in C.s.

Hence the proof. ⊓⊔
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3.2.2 Proof of the Properties

Based on the invariants above, we prove in this section that our single-writer multi-reader

algorithms satisfies properties P1–P6 and achieves constant RMR complexity and constant

shared space complexity.

It is obvious that this single-writer multi-reader algorithm only employs O(1) shared

space and satisfies Bounded Abort and Bounded Exit properties. In the following, we prove

that this algorithm satisfies properties P1 and P3–P5, and that it achieves O(1) RMR

complexity in CC models.

Lemma 3.11 This algorithm satisfies reader-writer exclusion.

Proof of Lemma 3.11: I12 states that when the writer is in the CS (i.e., at Line 12),

no reader is in the CS (i.e., at Line 3). Hence the proof. ⊓⊔

Lemma 3.12 This algorithm satisfies starvation freedom.

The proof of this lemma is based on the following claim.

Claim 3.13 If a reader R is in the Try Section and has G ≥ 2 ∨G = R.g at some time t,

then R is enabled after t, and G ≥ 2 ∨G = R.g holds until R has exited.

Proof of Claim 3.13: Suppose we have G ≥ 2∨G = R.g at time t, for a reader R with

PCR = 2. If G remains unchanged, R will be able to get into the CS after executing Line

2. Note that G’s value can only be changed at Line 8 and Line 13. According to I13, when

W is about to execute Line 13, W.s = X.1 ∈ {0, 1}. Hence, G ≥ 2 after Line 13 is executed.

Thus, R can still get into the CS. According to I9, we have |{R| PCR = 2∧R.g ̸= X.1}| = 0

and G = X.1 after W executes Line 8. Therefore, we know the reader R must have R.g =
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X.1 = G. Thus, R still satisfies G = R.g and hence can still get into the CS. Therefore,

R is enabled after t. Moreover, I9 also states that |{R| PCR ∈ {3, 4} ∧ R.g ̸= X.1}| = 0

and |{R| PCR ∈ {5, 6}}| = 0. The former predicate implies that, if R is at Lines 3–4,

R.g = X.1 = G after W executes Line 8. The latter one implies that W cannot execute

Line 8 when R is at Lines 5–6. Therefore, G ≥ 2∨G = R.g always holds until R has exited.

Hence the claim. ⊓⊔

Proof of Lemma 3.12: First we prove the writer W will not starve. Since W can wait

at Line 7 and Line 11, we need to prove W will not wait forever at either of these two lines.

We will analyze all possibilities below.

1.1) Suppose W waits at Line 7 and Flag = 0. Then according to I7, |{R| PCR =

6}| = 0 as long as W is at Line 7. Since the only way for readers to change Flag is to

execute Line 6, we know Flag will remain 0. Hence, W can pass Line 7 after W takes a

step at any time. 1.2) Suppose W waits at Line 7 and Flag = 1. 1.2.a) If Y = 0, then, by

I7, we have |{R| PCR = 6}| = 1. Therefore, after the only reader at Line 6 takes a step,

we have Flag = 0 and hence W can pass Line 7 by taking a step. 1.2.b) If Y ̸= 0, then,

by I7, we have Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g ̸= X.1}|, |{R| PCR = 6}| = 0, and

G = X.1 + 2 ≥ 2. Since X.1 remains unchanged as long as W waits at Line 7, any reader

R ∈ {R| PCR ∈ {2, 3, 4, 5} ∧R.g ̸= X.1} will finally go to Line 5 and increment Y . I7 also

states ∀R,PCR = 5 =⇒ R.g ̸= X.1. This implies that all readers R′ with R′.g = X.1 must

be at Line 2–4. Hence, these readers will find R′.g = R′.g′ after executing Line 4 and cannot

get into Line 5 to change Y . On the other hand, any new reader R′ will get R′g = X.1

after executing Line 1. Therefore, we can conclude that all the readers that can affect Y

must be those that are already at Line 2–5 with R.g ̸= X.1 before W waits at Line 7. Since
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Y = −|{R| PCR ∈ {2, 3, 4, 5}∧R.g ̸= X.1}|, Y will become 0 after all these readers execute

Line 5. Now, we get back to case 1.2.a) and know that W can pass Line 7.

2) Suppose W waits at Line 11. By similar arguments, we can prove the following facts

based on the invariant I.

• 2.1) Once Flag becomes 1, it will remain 1 before W goes through Line 11. Thus,

W will not wait at Line 11 forever.

• 2.1.a) If Flag = 0 and Y = 0, then there is only one reader at Line 6 and Flag will

become 1 after that reader takes a step.

• 2.1.b) If Flag = 0 and Y ̸= 0, then after all the current readers R’s with R.g ̸= X.1

finally execute Line 5, we have Y = 0 and know that Flag will become 1.

According to these facts, we can conclude that W will not wait at Line 11 forever. Hence,

W won’t starve.

Since W won’t starve, W can finally execute Line 13 and make G ≥ 2. Thus, any reader

R waiting at Line 2 will then find G ≥ 2 ∨G = R.g. By Claim 3.13, R is now enabled and

hence won’t starve.

Lemma 3.14 This algorithm satisfies FIFE among readers.

Proof of Lemma 3.14: The doorway for the readers is line 1. Assume this algorithm

does not satisfy FIFE. That is, there exists a scenario where a reader R executes Line 1

before another reader R′ does, while R′ is enabled earlier than R. Since R comes in the Try

Section before R′, at the moment R′ becomes enabled, R and R′ must be both in the Try

Section, i.e., PCR = PC ′R = 2.
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If R.g = R′.g, then at the moment R′ is enabled, we know R′.g = R.g = G. By

Claim 3.13, this implies that R is also enabled at the same time, contradicting the assump-

tion that R′ is enabled earlier than R.

Suppose R.g ̸= R′.g. Since R and R′ get the values of R.g and R′g respectively from

X.1 at Line 1, and X.1 can only be changed at Line 9, we can conclude that the writer W

executes line 9 to flip X.1 at a time t between the time R executes line 1 and the time R′

executes line 1. Since X.1 is a two-valued variable and G = X.1 holds when W is about to

execute Line 9, this implies that G = R.g holds either before t or after t. By Claim 3.13,

R is enabled once G ≥ 2 ∨G = R.g. Therefore, R is already enabled even before R′ enters

the Try Section, a contradiction.

Hence, this algorithm satisfies FIFE. ⊓⊔

Lemma 3.15 This algorithm satisfies concurrent entering.

Proof of Lemma 3.15: If the writer W is in the Remainder Section, i.e., PCW = 7,

then, by I7, G = X.1 + 2 ≥ 2. Therefore, for all readers R at line 2, G ≥ 2 ∨G = R.g. By

Claim 3.13, This implies that all readers in the Try Section are enabled. Therefore, if W

stays in the Remainder Section, every reader can enter the CS in a bounded number of its

own steps. Hence, this algorithm satisfies concurrent entering. ⊓⊔

Lemma 3.16 This algorithm has O(1) RMR complexity in the CC model.

Proof of Lemma 3.16: As we argued in the proof of Lemma 3.12, if W spins at Line

7 or Line 11, then Flag can be changed at most once by readers, and after that change

Flag will remain a value such that W can pass Line 7 or Line 11. Combining this and the

fact that all other lines for the writer are executed only once in a write attempt, we can

conclude that the writer has O(1) RMR complexity in the CC model.
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Suppose a reader R spins at line 2. Since the writer cannot starve, it will execute Line

13 to make G ≥ 2. As Claim 3.13 showed, R is now enabled and can get into the CS by

taking one step. Moreover, G can only be undated by the writer. Therefore, it only takes

O(1) RMRs for R to spin at Line 2. Combining this and the fact that all other lines for

readers are executed only once in a read attempt, we can conclude that the readers have

O(1) RMR complexity.

Hence, this algorithm has O(1) RMR complexity in the CC model. ⊓⊔

Theorem 3.17 (Abortable Single-Writer Multi-Reader Starvation-Free Algorithm) The

algorithm in Figure 1 satisfies properties P1–P6. The RMR complexity of this algorithm in

CC model is O(1). This algorithm employs O(1) number of shared variables that support

read, write, and fetch&add operations.

4 Transformation from Single-Writer Algorithm to Multi-

Writer Algorithm

We convert our single-writer algorithm into a multi-writer algorithm using a simple trans-

formation similar to the one suggested by Bhatt and Jayanti [3](see Figure 3). Here readers

simply execute the Reader procedure of the underlying abortable single-writer algorithm.

Writers, on the other hand, first obtain an abortable mutex lock M and only then execute

the Writer procedure of the underlying abortable single-writer algorithm. When a writer

exits or aborts from the underlying Writer procedure, it releases the lock immediately after

the last step of the Exit Section or Abort Section, respectively.

If M is an abortable mutex lock satisfying starvation-freedom, like the one in [11],
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M : abortable Mutex Lock

Reader Writer
SW -Reader() acquire(M)

SW -Writer()
release(M)

Figure 3: Transforming a single-writer multi-reader algorithm SW to a multi-writer multi-
reader algorithm.

we claim that the transformation in Figure 3 gives an abortable multi-writer multi-reader

algorithm that satisfies P1–P6. More generally, given any abortable single-writer multi-

writer algorithm, we can use this transformation to construct an abortable multi-writer

multi-reader algorithm. This is trivially true because of two facts: (1) since the lock M

ensures that only one writer accesses the underlying writer procedure at any time, the

underlying single-writer multi-reader algorithm works as if it is in a single-writer multi-

reader system; and (2) when a writer leaves the underlying writer procedure, it always

releases the lock M so that the next writer can acquire M and then enter the underlying

writer procedure, and hence no writer can starve if it doesn’t abort. A formal proof can be

found in [3].

What’s more, if the lock M satisfies FCFS property, then it is obvious that the abortable

multi-writer multi-reader algorithm satisfies FCFS among writers. Since our single-writer

multi-reader algorithm only has O(1) RMR complexity and employs O(1) shared space, the

RMR and shared space complexities of the multi-writer multi-reader algorithm depend on

those of the abortable mutex lock M .

Theorem 4.1 (Abortable Multi-Writer Multi-Reader Starvation-Free Algorithm) The al-

gorithm in Figure 3 satisfies properties P1–P6. The RMR and shared space complexities of
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this algorithm are O(r(M)) and O(s(M)), where r(M) and s(M) are the RMR and shared

space complexities of the abortable starvation-free mutex lock M used in this algorithm, re-

spectively. If the M lock satisfies FCFS, then this algorithm satisfies FCFS among writers

(property P7).

Therefore, if the lock M used in Figure 3 is one of the O(log n)-RMR locks in [11]

and [14], we construct an abortable, starvation-free reader-writer lock of O(log n) RMR

complexity. To our knowledge, this is the first abortable, starvation-free reader-writer lock.
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