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Abstract

Message authentication with low latency is necessary to ensure secure operations in

legacy industrial control networks, such as power grid networks. Previous authen-

tication solutions by our lab and others looked at single messages and incurred no-

ticeable latency. To reduce this latency, we develop Predictive YASIR, a bump-in-

the-wire device that looks at broader patterns of messages. The device (1) predicts

the incoming plaintext based on previous observations; (2) compresses, encrypts, and

authenticates data online; and (3) pre-sends a part of ciphertext before receiving the

whole plaintext. I demonstrate the performance properties of this approach by im-

plementing it in the Scalable Simulation Framework and testing it on Modbus/ASCII

protocol, which is widely used in the power grid, oil and gas, manufacturing, and

water treatment control networks. By looking at broader message patterns and us-

ing predictive analysis, my results demonstrate a 15.48±0.35% improvement in la-

tency over the previous most efficient solution. The simulation code is available from

http://www.cs.dartmouth.edu/˜pyasir/.
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Chapter 1

Introduction

Electric utilities use networking to control power generation and distribution. Because

electricity cannot be stored efficiently and must be directed to recipients immediately,

the power grid is in a delicate, near real time balance. A minor disturbance could

cause severe repercussions. The United States built the power grid half a century ago,

when network-based attacks were rare. New threats warrant retrofitting security into the

legacy network of the power grid. Protecting a legacy network is difficult, however, be-

cause the critical infrastructure components must communicate fast, but security slows

them down. In this work, I develop an approach to improve the performance of the

previous fastest security solution.

Power utilities monitor and control the power grid through a partially unsecured

slow legacy network. This network connects substations and control centers. In a

control center, human operators ensure safe and continuous operation of the grid by

monitoring data terminals. A terminal provides a visual representation of the data that

it receives from a Front End Processor (FEP), which exchanges messages with Data

Aggregators (DA) in substations. A FEP and a DA connect via a slow legacy point-to-

point network, which is often unsecured [6].

For example, a nearby hydro-electric power station consists of a control center
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on the bank and a substation on the dam. The substation communicates with other

substations on the river via microwave radio in unsecured Distributed Network Proto-

col v3 (DNP3) [4].

Because of the unsecured communication, an adversary can insert messages into

the traffic to impersonate any device on the network. For example, an adversary can

impersonate a FEP and command a DA to perform tasks that it should not do in nor-

mal operation. The adversary can either replay an “increase power output” message

from the FEP multiple times or increase the value in the message “set power output

to 10 MW,” which would overload the substation, possibly causing a rolling blackout

in the power grid. If the adversary impersonates a DA, then the adversary can replay

old DA status messages to the FEP, which would forward these messages to operator’s

terminal. Since the terminal would be receiving old status messages, it would not reflect

the abnormalities in the power grid, and the operator would have a hard time detecting

the attack. Even if the operator discovers abnormalities through an alternative channel,

understanding the scope of the problem would be difficult in absence of correct data on

the terminal, which would slow down the operator’s reaction to the attack. This reac-

tion delay would buy time for the adversary to subvert more substations. Because the

substations can be manipulated remotely, authorities would struggle to find the attacker,

and the security cameras would not record a trespasser.

FEPs and DAs send queries and replies to each other and act upon received mes-

sages with an assumption that everything they receive is authentic. If an attacker mod-

ifies a message in transition or sends an extra message to an end-point device, then this

message is not authentic, but the legacy devices have no way of distinguishing bogus

and authentic data. To prevent malicious attacks, FEPs and DAs must be able to make

a distinction between bogus and authentic data and act only upon authentic messages,

or authenticate their communications. Message authentication involves a modification

of the message format, which typically makes the messages longer. The devices in

2



(a)

Control Center

FEP
plaintext

BitW
ciphertext

Substation

BitW
plaintext

DA

Attacker

(b) S plaintext A ciphertext
V

plaintext R

Figure 1.1: Bump-in-the-wire devices protect the end-point devices from a malicious
attacker by converting plaintext into ciphertext. (a) A typical setup with a Front End
Processor, a Data Aggregator and two bump-in-the-wire devices. (b) A useful abstrac-
tion with a Sender, an Authenticator, a Verifier, and a Receiver.

the control center and the substation must have some logic to authenticate messages.

Although a utility company can upgrade its FEPs and DAs to more secure versions

with built-in message authentication, representatives of the power industry tell our lab

that these devices are prohibitively expensive and sometimes even custom-made. More

importantly, the upgraded devices would have to communicate over the slow legacy net-

work, because a network upgrade is often expensive and sometimes infeasible. With-

out thoughtful consideration of the constraints of a slow legacy network, new logic for

handling messages and extended message formats can lead to longer delays in control-

ling critical infrastructure components, which is unacceptable for managing the power

grid. The cheaper and more efficient option is an external bump-in-the-wire device

(BitW) [23, 28, 31, 33] that authenticates all messages that it intercepts on the network,

without the need to upgrade either the end-point devices or the slow legacy network.

Two BitWs work in concert to authenticate a message (Figure 1.1a). Before a mes-

sage from the FEP leaves the control center, the authenticator BitW reformats the orig-

inal plaintext message into a ciphertext message with added counter and a redundancy,

or a digest of the message. The counter stops an attacker that attempts to replay an old

message. The digest depends on the message, the counter, and a key shared by the pair

of BitWs, a digest key. Due to the cryptographic properties of the mechanism to gen-

erate the digest, it is intractable for an adversary without the digest key to construct the

correct digest for an altered ciphertext. When the ciphertext arrives in the substation,
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(b) C M1 M2 M3 D

(c) ‘:’ M ‘\r’‘\n’ D C ‘\r’‘\n’
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Figure 1.2: Message formats for Modbus/ASCII. (a) Plaintext. (b) PE ciphertext in
blocks. (c) YASIR ciphertext. (d) Predictive YASIR ciphertext. The shaded areas are
modified or generated by a BitW. The symbols C and D denote the counter and digest.

Time

Link

S

R

‘:’ M ‘\r’‘\n’

‘:’ M ‘\r’‘\n’

Figure 1.3: Transmission latency without authentication. Sender S sends a message to
the receiver R over a slow, legacy, point-to-point link.

the verifier BitW compares its own calculation of the ciphertext digest with what it has

received. If the two digests match, the verifier reformats the ciphertext into a plaintext

message and forwards it to the DA.

Note that a BitW is still susceptible to attacks if the adversary gains access to a FEP

or a DA prior to the BitW.

When a DA sends a message to a FEP, the authenticator and the verifier switch roles.

Due to this symmetry, I prefer to use the words “sender” and “receiver” instead (Fig-

ure 1.1b). I may use the word “device” to refer to any sender, authenticator, verifier, or

receiver. In the figures, I denote the devices with letters S, A, V, and R.

In the slow legacy power grid network, the end-to-end latency of a message typi-

cally should not exceed a certain bound to ensure the correct operation of the controlled

devices. These devices are in a delicate balance, and introducing a significant delay into

the network is not acceptable. Figure 1.3 shows the end-to-end latency of a message

without security features. I use the diagram style from the YASIR paper [28]. Because

of the low bandwidth, a BitW should not wait to receive the whole message before
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S

A

V

R

M

M,D,C

M,D,C

M

good

(a) (b) (c)
(d) (e)

Figure 1.4: Latency with hold-back. Both BitWs hold-back the whole message before
forwarding it. The shaded areas are modified or generated by a BitW. Hold-back delays
a message by (a) and (c). The transmission delay is (b). The verifier starts receiving
the message at time (d), but starts to forward it to the receiver only at time (e), when it
has checked that the digest is correct. If an attacker modifies the message, the verifier
drops it.

processing it, a practice known as hold-back (Figure 1.4). For example, suppose the

latency bound is 300 ms. A millisecond equals the time in which a device transmits 0.9

bytes, or 0.9 byte-times, on a network with a bandwidth of 9600 baud with 10-bit bytes.

If both BitWs in a pair hold-back a message that is longer than 144 bytes, the delay

would exceed the 300 ms bound. In contrast, a BitW should forward each byte quickly,

or process the message online. The online processing must thwart an attacker that at-

tempts to either replay or modify ciphertext.

I consider how online processing handles each type of attack in turn.

Tsang and Smith [28] demonstrated that an online BitW can stop an attacker that

attempts to replay an old message, a replay-attack, without message delay. The delay

is absent because, although the authenticator transmits the counter at the end of the

ciphertext, the verifier forwards the whole message to the receiver before checking the

counter. Since the counter affects the digest, the verifier increments the counter from

the previous message to calculate the new value. If the calculated value is larger than

what the verifier receives, it ignores the received counter. If the calculated value is

smaller than what the verifier receives, it sets its own counter to the received value to

5



synchronize with the authenticator. Before the counter overflows, the BitW pair resets

its value to zero and changes the digest key.

To stop an attacker that attempts to modify a message, a BitW pair appends a di-

gest after the message, but before the counter. This digest depends on the message,

the counter, and the digest key. The verifier compares the received digest to what it

calculates itself. If the two digests match, then the verifier forwards the message to

the receiver. Intuitively, one might think that the verifier cannot process the ciphertext

online, that it must wait until it receives the whole digest before it can forward the mes-

sage to the receiver, thus incurring a byte-time of latency for each byte in the message.

Although some prior approaches do this, Wright et al. [33] suggested to forward the

message as soon as the verifier receives it, but to introduce a Cyclic Redundancy Check

(CRC) error if an attacker modifies the message, thus exploiting the receiver’s ability

to detect random errors (Figure 2.1). I use a similar technique to let the verifier process

the message online (Figure 3.2).

When an authenticator appends the digest to the message, it must ensure that the

verifier can distinguish between them. It has two options. The first option is to prepend

the message length to the ciphertext, but a common protocol like Modbus/ASCII (Fig-

ure 1.2a) has variable length messages and does not specify length in the message. To

find the length of a message in this protocol, an authenticator must hold-back the full

message. The second option is online: delimit the ciphertext parts with a message-

digest separator. If the separator appears in the message data, then the authenticator

marks it with a special symbol to avoid confusing the verifier, i.e., the authenticator

escapes the separator within the message. Modbus/ASCII has a message-end indicator

that can be used as the message-digest separator. In general, new separators and es-

capes delay a message, but do not improve its authenticity. At first glance, they are an

encoding inefficiency that an online authenticator must include. As part of my work, I

aim to eliminate these inefficiencies in online processing.

6



Organization. The rest of the paper comprises six chapters. In Chapter 2, I review

related work. Then my approach is briefly explained in Chapter 3. In Chapter 4, I

describe my approach in detail and outline the test methodology. I show the evaluation

results in Chapter 5. In Chapter 6, I list future research directions. Finally, I draw

conclusions in Chapter 7.
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Chapter 2

Related Work

2.1 Legacy Network

Recall that power grid network upgrade is expensive and sometimes infeasible. If a

utility does not upgrade the network, then the end-point devices cannot increase the

network bandwidth due to the fundamental limits on the amount of information that a

device can transmit on a communication line [18, 19, 24].

End-point devices send information by changing the power, frequency, or phase

of the electric signal on a communication line with time. Assume, for the sake of

discussion, that a SCADA device transmits information by varying levels of power and

keeps the frequency and phase constant. For example, let 1 watt indicate bit 0 and 2

watts indicate bit 1. The receiver must distinguish the two different levels of power to

decode either binary digit.

A communication line has maximum levels of power and frequency that it can han-

dle. If a transmitter increases the power or frequency above the maximums, then the

line may melt or exhibit corona discharge and arcing. Also, the receiver must be able

to distinguish the different levels of power and frequency, and so the transmitter can-

not subdivide the signal into infinitely many levels. Given these physical properties,
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we can calculate the maximum amount of information that we can send over a com-

munication line. Nyquist showed that the maximum bit rate achievable on a noiseless

communication line is:

noiseless maximum bit rate = 2H log V bits/second ,

where H is the frequency of the signal and V is the number of power levels of the

signal [18, 19, 27]. Unfortunately, it is difficult to approach the maximum bit rate due

to noise. Shannon showed that the maximum bit rate achievable on a noisy communi-

cation line is:

noisy maximum bit rate = H log
(
1 +

S

N

)
bits/second ,

where H is the frequency of the signal, S is the power of the signal, and N is the

power of the noise [24, 27]. As the transmitter increases the bit rate, each bit becomes

a less unique signal and indistinguishable under noise. This causes the receiver to

make many mistakes when decoding bits, or have a high bit error rate. To reduce the

bit error rate, the transmitter can use M-ary transmission to approach the maximum

bit rate [21]. This method buffers multiple bits together and sends them out as one

signal. In particular, suppose the transmitter buffers 8 bits, which can take any of 28 =

256 possible values. Then the transmitter sends a signal at one of 256 possible levels

of power. With constant frequency, such 256-ary transmission increases the distance

between the signals 8 times, reducing the possibility of noise corrupting the signal on

the line.

Thus it is important to conserve bandwidth on legacy power grid networks that have

a built-in maximum bit rate and cannot be upgraded.

9



2.2 Compression

Performance is important on legacy, low-bandwidth communication lines. To avoid

performance degradation due to new features, computer scientists have considered

compression. For example, Jacobson describes how to compress TCP/IP headers to

improve interactive responsiveness of slow point-to-point links [11]. A single charac-

ter sent over a TCP/IP link results in a 41 byte packet, which is acknowledged by the

receiver with another 41 byte packet. An 82 byte overhead can be prohibitive on a

slow link, because an interactive system should have 0.1 to 0.2 response delay [15]. To

reduce the TCP/IP header overhead, Jacobson devises a heuristic to compress TCP/IP

headers into as few as 3 bytes. The heuristic relies on statefullness of TCP/IP connec-

tions and the slow rate of change of header information within a connection. These

properties let Jacobson compress a TCP/IP header into a connection identifier, a bit-

mask of changed fields, and the delta of changed fields. The compressor is a driver in

the networking stack, which is an embedded solution, not a bump-in-the-wire device.

Jacobson’s scheme is programmed compression. It provides the best compression

ratio at the cost of development time and inapplicability to other types of data. A more

universal technique is described by Welch, Ziv, and Lempel [30, 34]. They rely on

repeated patterns in data to build a mapping from data subsequences to the compression

alphabet. The result is this mapping, or table, and the data expressed in compression

alphabet. A useful property of the algorithm is that the table contains a prefix for each

subsequence within the table. Whereas a naive decompressor would need the table to

reverse look up data based on the compression alphabet, a more efficient approach is to

build the reverse-look-up table on the fly. Both compression and decompression in this

scheme are stream-wise operations, which is important for keeping the overhead low.

Colleagues in the power grid industry report that even two second delay is too long

for a physical process to respond to an operator’s command. To reduce the overhead of

security in legacy power grid networks, we can use bump-in-the-wire devices.

10



2.3 Bump-in-the-Wire Devices

Colleagues in the power sector inform our lab that message integrity is more impor-

tant than confidentiality, because an attacker may learn the state of the system from

the physical world. For example, an adversary may see the open flood gates of a dam

and deduce that the control station is sending an “open flood gates” message, and the

substation is sending a “flood gates open” message. In contrast, without measures to

ensure message integrity, an adversary may cause actions—such as opening the flood

gates or shutting down a generator—with significant negative repercussions. If a utility

needs to also hide the content of its messages, a BitW can provide zero-latency con-

fidentiality through a stream cipher, such as AES in counter mode, which encrypts a

plaintext stream by exclusive-or with a pseudo-random stream. Therefore, I consider

related BitW solutions only if they authenticate messages: SEL-3021-2, AGA SCM,

and YASIR. (I ignore such solutions as SEL-3021-1 from Schweitzer Engineering Lab-

oratories [9] and SCADAsafe from RealTime Interactive Systems Corporation [3], be-

cause they do not protect message integrity. I also do not consider SSCP embedded

device from Pacific Northwest National Laboratory [13], because it is not a bump-in-

the-wire device.)

SEL-3021-2

SEL-3021-2 [23] is a commercial off-the-shelf BitW from Schweitzer Engineering

Laboratories. The device uses the Message Authentication Protocol (MAP) [22] to

provide integrity with HMAC-SHA-1 or HMAC-SHA-256 digest. The specifications

omit the numbers on how much this device delays a message, instead recommending

to not use SEL-3021-2 if low latency is desired.

11
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Figure 2.1: Latency in PE mode. The parts M1 and M2 are blocks of message M . Both
BitWs buffer a 16-byte block of a message before forwarding it, delaying the message
by 32 byte-times, denoted (a) and (c). The verifier starts receiving the message at time
(d) and starts forwarding it to the receiver at time (e). If an attacker attempts to modify
a block in the message, the verifier unconsciously scrambles the block (crossed out),
which the receiver detects by checking the CRC at the end of the message.

AGA SCM

AGA SCM (American Gas Association SCADA Cryptographic Module) [31] is a BitW

proposed by AGA 12 Task Group. The group members have developed a reference im-

plementation [32], which can use several modes with hold-back and one online mode.

The hold-back modes buffer the whole message before checking the digest and sending

the message on, slowing down the message by the time that is linear in its size (Fig-

ure 1.4). The online mode is Position Embedding (PE) [33], which is a modified

version of AES in counter mode (AES-CTR) followed by a standard version of AES

in electronic code book mode (AES-ECB) (Figure 2.2). PE mode delays a message

by 32 byte-times, because both BitWs in a pair buffer 16-byte blocks of data to apply

AES-ECB (Figure 2.1).

AGA 12 modifies the way AES-CTR generates counters. First, the authenticator

increments a 14-byte session clock by one every r microseconds, where r is termed

counter resolution. Second, the authenticator concatenates the session clock with a 2-

byte block counter. The authenticator sets the block counter to zero at the beginning

12



of each message and increments it by one for each block in the message. Finally,

the authenticator encrypts the resulting 16-byte counter value and applies exclusive-or

operation to the encrypted counter and a plain text block, as the standard AES-CTR

does. To avoid using the same counter for two messages, AGA 12 requires to set

counter resolution such that an authenticator can send at most one message in a single

session clock tick.

For message integrity, PE mode relies on CRC. Note that a CRC in plaintext protects

from random errors, but not from malicious attacks on message integrity. A BitW can-

not protect message integrity with AES-CTR or AES-ECB alone, either. The counter

mode is malleable [5, 14], i.e., an adversary can modify the ciphertext and keep the

CRC valid, even without learning the encryption key [2].

The electronic code book mode is vulnerable to a known-plaintext attack, where

an adversary that knows the plaintext of two messages can splice their parts into a

third message, if the CRC of the new message equals the CRC of one of the original

messages.

PE mode prevents splicing and predictable changes to ciphertext by combining the

counter and electronic code book modes of encryption. The cryptographic commu-

nity is wary of using such combinations with CRC for message integrity, however,

because similar modes have been shown to be insecure before. One example is cipher

block chaining mode (CBC), which was shown to not provide message integrity pro-

tection with a CRC. This result was demonstrated by Stubblebine and Gligor [26], who

exploited predictability of CRC to create undetectable bogus messages for Kerberos

V5 [12] and DCE RPC [20].

Thus, PE mode depends on the nonmalleability of its ciphertext: if an adversary

changes the ciphertext, it should be impossible to predict what happens to the CRC. If

an adversary inserts, removes, or reorders blocks, then the verifier BitW should scram-

ble the plaintext in the CTR step. If an adversary flips a bit, then the verifier BitW
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ctr c1 c2 c3 c4

E E E E

E ⊕ E ⊕ E ⊕ E ⊕

◦

◦

◦

◦

1 p1 2 p2 3 p3 4 p4

CRC

Figure 2.2: PE mode is AES-CTR, followed by AES-ECB with the same key. This
mode relies on CRC to authenticate messages. The symbols ◦ and ⊕ denote concate-
nation and exclusive-or. The symbol E is the encryption function. The plaintext is
p1 ◦p2 ◦p3 ◦p4, and the ciphertext is ctr◦c1 ◦c2 ◦c3 ◦c4. Each block pi and ci is 16 bytes
long. The message counter ctr is 14 bytes long, and the block counters (here 1–4) are
2 bytes long. Depending on the protocol, the CRC is from 2 to 4 bytes long.

should scramble the plaintext in the ECB step. Because of such scrambling, the re-

ceiver detects a CRC error. The probability of this error is 2−h, where h is the length

of the CRC. Different variants of CRC vary in length between 8 and 32 bits, but AGA

specifies to use this mode when the CRC is at least 16 bits.

I developed a weak attack on integrity of messages in PE mode. (A history of attacks

on encrypted CRCs suggests that a stronger attack may be possible.) Given PE mode

ciphertext, an adversary can truncate the end of the ciphertext by an arbitrary number of

blocks, and the verifier BitW would not scramble the message. Such truncation results

in a valid plaintext for a protocol that does not specify message length and uses silence

on the wire to delimit messages. One such protocol is Modbus/RTU. The receiving

SCADA device accepts the plaintext message if it contains a valid CRC at the end of the

remaining part, and so the adversary must know the plaintext contents of the message

to make this attack work. Suppose an adversary truncates the ciphertext c1 ◦ c2 ◦ c3 ◦ c4

14



into c1 ◦ c2 ◦ c3. The receiving SCADA device would accept the plaintext message if

the last bytes of the plaintext block p3 contain a valid CRC for the plaintext p1 ◦ p2 ◦ p3.

The simple way to prevent this attack is to use a cryptographic digest to verify

message integrity. PE mode already uses a digest to detect an incorrect counter, but

does not directly prevent the receiving SCADA device from acting upon a fabricated

message. Instead of this behavior, PE mode could directly insert an incorrect CRC into

the message when it detects an incorrect digest.

YASIR

Our lab’s YASIR [28] is a BitW that authenticates messages with ≤18 bytes-times of

overhead (Figure 1.2c). The actual overhead depends on the underlying protocol. With

Modbus/ASCII, YASIR delays a message by ∼16 byte-times (Figure 2.3). The delay

comprises the 12 bytes of HMAC-SHA-1-96 digest for data integrity, 2 bytes for the

authenticator to detect the end of the message, and 2 bytes for the verifier to have an

opportunity to control the message CRC. Building on the ideas from PE mode [31],

YASIR turns malicious errors into random ones by sending an incorrect CRC to the

receiver if the digest is invalid. In contrast to PE mode, YASIR delays a message

by fewer byte-times and authenticates a message with a fully standard and accepted

cryptographic technique [29].
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Figure 2.3: Latency with YASIR. The authenticator buffers 2 bytes of the message to
detect its end. The verifier buffers 14 bytes of the message to verify its digest. Total
latency is 16 bytes-times, denoted (a) and (c). The verifier starts receiving the message
at time (d) and starts forwarding the message to the receiver at time (e). At time (f),
the verifier knows whether the digest is correct. If an attacker attempts to modify a
message, the verifier sends the wrong CRC (crossed out) to the receiver.
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Chapter 3

Approach

Previous work [23,28,31,33] looked at authenticating individual messages with a digest

and delayed messages because of encoding inefficiencies, namely searching for special

symbols in the plaintext and escaping special symbols in the ciphertext. To eliminate

these inefficiencies, I look at broader message patterns.

My solution is to use a Bayesian network to predict the incoming plaintext and

pre-send the prediction. As each byte enters the authenticator, the device predicts the

rest of the message based on its previous observations. It compresses and encrypts its

hypothesis and pre-sends as much ciphertext as possible (Figure 3.3b). In effect, the

authenticator uses prediction to take advantage of the higher bandwidth for ciphertext

that is provided by this optimistic, a priori compression of the plaintext. If the authen-

ticator compresses the plaintext without predicting it, then the BitW would not be able

to pre-send the ciphertext. Thus, the authenticator would not be utilizing the higher

bandwidth due to compression, and the latency would not improve. Intuitively, my so-

lution is YASIR that predicts and compresses plaintext messages to eliminate encoding

inefficiencies (Figure 3.2).

Note that a BitW can also use compression to avoid overloading a channel that is

close to its capacity (Figure 3.1).
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Flow

M5 M4

C2 D2

M3

C1 D1

M2

BitW

Figure 3.1: A BitW can overlap compressed messages with digests and counters to
avoid overloading a channel that is close to its capacity. Messages M2 and M3 are
compressed to be overlapped with digests and counters for messages M1 and M2.

Similar to YASIR, Predictive YASIR causes the receiver to drop the message if

an adversary modifies the ciphertext. To prevent an attack on message integrity, the

verifier forwards the message without the last byte to the receiver, which must have the

last byte to act on the message. When the verifier receives the digest, it calculates its

own to compare with what it has received. If the two digests match, then the verifier

forwards the last byte of the message to the receiver (Figure 3.3e). The receiver now

has the complete valid message. On the other hand, if the two digests differ, the verifier

forwards the reset symbol to the receiver. Upon the reset symbol, the receiver must drop

the incomplete message to adhere to the specifications in Modbus/ASCII protocol.

If the authenticator changes its hypothesis, the device sends a back-away signal to

the verifier to indicate how much of the prediction is incorrect plus the delta for the

correct ciphertext (Figure 3.3c). An authenticator may make and incorrect prediction

for a rare message. Thus, rare messages are longer due to the back-away and the delta.

This property resembles Huffman coding, which uses longer codes to represent rare

characters [8].

When the authenticator receives the whole message, it sends the digest and the

counter for this message (Figure 3.3d–e). The authenticator then updates the weights

in its Bayesian network. I elaborate on the Bayesian network in Section 4.

Note that Predictive YASIR does not eliminate the overhead due to the digest. Al-

though an authenticator can calculate the digest of the predicted message, the device

cannot compress and pre-send this digest. Compressing the digest does not work be-

cause a strong digest does not have a pattern. Pre-sending the digest does not work
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Figure 3.2: Latency with Predictive YASIR. The authenticator does not buffer the mes-
sage, but must delay it by 1 byte-time, denoted (a). The verifier also does not buffer the
message and also must delay it by 1 byte-time, denoted (c). In addition, the verifier de-
lays the message by |D| − 1 byte-times, denoted (d). When prediction works well, the
overall delay is |D| + 1, which is 13 byte-times. The verifier starts to receive the mes-
sage at time (e) and starts forwarding it to the receiver almost immediately at time (f).
At time (g), the verifier knows whether the digest is correct. If an attacker attempts to
modify a message, the verifier resets the receiver with ‘:’ instead of forwarding the
whole message.

because that would weaken the digest strength, effectively truncating the digest by the

number of bytes that are pre-sent. For example, if the authenticator pre-sends 11 bytes

of a 12 byte digest, then the digest is truncated down to 1 byte. An adversary would

have to guess 1 byte of the digest to convince the verifier that the originally predicted

message is correct. The adversary has an at most 1 in 8 chance of correctly guessing

a single byte. If the authenticator makes a mistake in prediction and later corrects the

message, the adversary can drop the correction to prevent the verifier from receiving

the correct message. Such attack is dangerous when the originally predicted message is

“everything is turned on,” but the actual message is “everything is turned off.” Whereas

the first status message is more common, an operator would highly value receiving the

second status message, which indicates an outage.

Contribution. The solution I provide is a non-intrusive way to “steal” bandwidth for

security needs via data coding techniques and utilize this bandwidth with help from
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(a) S bel a A V R

(b) S el b a A τυ xy V R

(c) S l abe A τυ ‘\b’1z Vxy cd b a R

(d) S abel A υ τ Vxz l e ab R

(e) S abel A υ Vxzτ l abe R

Figure 3.3: Example of Predictive YASIR operation. (a) The sender begins message
transmission. (b) The authenticator receives prefix a, predicts that the message is abcd,
compresses and encrypts the prediction into ciphertext xy, and sends out xy. (c) The
authenticator receives prefix abe, changes its prediction to abel, compresses and en-
crypts the prediction into xz, and sends the back-away to replace y with z. (d) The
authenticator receives the full message from the sender and transmits the digest τ to the
verifier. (e) The authenticator transmits the counter υ to the verifier. The verifier com-
pares the received digest τ to its own calculation. If the two digests match, the verifier
forwards the last byte of the message to the receiver. Otherwise, the verifier resets the
receiver.

message prediction. The coding is effective because data being sent is sufficiently low

entropy and can thus be compressed and predicted to some extent.
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Chapter 4

Methods

4.1 Modbus

Control centers often communicate with substations in Modbus/ASCII [16] protocol.

This protocol is also widely used in oil and gas, manufacturing, and water treatment

control networks. Modbus/ASCII dictates the sender to begin a message with the reset

symbol ‘:’ (colon). If a device receives this symbol, it must drop any incompletely

received message, i.e., reset itself. The sender encodes every message byte in ASCII,

where this variation of the protocol takes its name. At the end of the message, the

sender appends a CRC and the terminating symbols ‘\r\n’ (a carriage return plus a

newline).

For example, if the CRC of 0xABCD is 0xEF, then the sender encodes the

hex message 0xABCD into a Modbus/ASCII message ‘:ABCDEF\r\n’, which is

0x3A4142434445460D0A in hex (Figure 4.1).

Note that ASCII encoding is inefficient, because every byte of the message is two

bytes in Modbus/ASCII. This inherent inefficiency allows for greater debugging capa-

bilities in the field, but I use it to compress messages. I conjecture that a BitW can

compress a SCADA message in any format, however, because SCADA communica-
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tions are repetitive. SCADA messages also have a built-in redundancy that prevents

random errors. A BitW can compress this redundancy, because Predictive YASIR pro-

vides integrity protection via the digest.

4.2 Scalable Simulation Framework

I use the Scalable Simulation Framework (SSF) to construct the experiment and mea-

sure the overhead of my approach [1, 17]. SSF simulates networked entities that ex-

change events. The framework automates collection of various statistics about the sim-

ulation. If the simulation is large and runs slowly on a single computer, then I can

scale it up with minimal effort by distributing the workload over a set of machines. The

device entities exchange single byte events to ensure they can process one byte at a

time.

To synchronize the timing, a BitW outputs at most one byte for each byte that it

receives, except after it has received the whole message. After a BitW receives the

whole message, the device can output the rest of plaintext or ciphertext. Such behavior

simulates enough silence on the wire to allow for any message expansion. Legacy slow

networks may be saturated, however, leaving no space for message expansion. An

interesting direction of further research is whether message authentication is possible

with zero-byte message expansion. Note that Predictive YASIR does not achieve this

goal, regardless of message compression ratio, because the authenticator must send the

digest only after it receives the whole plaintext message from the sender.

4.3 Device

My design for a BitW entity has two ports: one for plaintext and one for ciphertext.

The device continuously listens for input on both ports. The machinery for processing

data on these ports is independent. If a device receives data on the ciphertext port
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Figure 4.1: Encoding of an example message into Mod-
bus/ASCII.

H(ab)

abc, 10

H(a)

acd, 3

H(ac)

Figure 4.2: Bayesian net-
work as a bipartite graph.

while processing plaintext input, or vice-versa, the device deals with the two inputs

independently and asynchronously. Thus, I treat a physical link as two independent

simplex links, one in each direction, similar to Jacobson [11].

When a BitW receives data on the plaintext port, it increments the message counter,

generates a hypothesis about the rest of the plaintext message, then compresses, en-

crypts, authenticates this hypothesis, and finally sends the ciphertext on the ciphertext

port or stays silent, depending on how much ciphertext it has sent. Once the device re-

ceives the whole plaintext, it generates the digest and sends the digest with the counter

on the ciphertext port.

When a BitW receives data on the ciphertext port, it increments the message counter,

decrypts and decompresses the data and starts to send out the result on the plaintext port

or buffers the digest, depending on which part of the ciphertext it is receiving. Once

the device has received the whole digest, it verifies it. If the digest is valid for this mes-

sage, the device sends the final part of the plaintext message on the plaintext port; if

the digest is not valid, then the device resets the receiver to drop the maliciously altered

message. Identical to YASIR [28], the receiving device uses the actual counter value to

synchronize its own counter with the sending device.

4.4 Bayesian Network

To predict the incoming plaintext, the authenticator models the network traffic with

a Bayesian network (Figure 4.2). The model is a labeled directed acyclic graph. A
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vertex label is either a message prefix or a full message and its frequency. All edges

are directed from the prefixes to the full-length messages. A prefix vertex may have

multiple out-edges. For instance, the prefix ‘:’ has an edge to all observed messages,

because all Modbus/ASCII messages begin with this symbol. Note that a message

vertex has in-edges from all of its prefixes.

I implement the Bayesian network with a hash-table of prefixes and a table of tu-

ples (m, f)—messages and their frequencies. Figure 4.2 uses H to denote hashing.

Each prefix object has a list of the message-frequency tuples. When a plaintext mes-

sage passes through an authenticator, the frequency of this message increases by one.

To predict the rest of the message from its prefix, the authenticator looks up the prefix

hash in the Bayesian network. This prefix may have edges to multiple messages, out of

which the authenticator predicts the most frequent one.

4.5 Bayes’ Theorem

To prevent incorrect predictions, the authenticator calculates the probability of a hy-

pothesis correctness under current data observation using Bayes’ theorem. A hypoth-

esis is the message prediction. A data observation is the prefix. If a hypothesis is less

than 50% likely, then the device falls back to its non-predictive mode, which is similar

to YASIR. Bayes’ theorem states

Pr(H|D) =
Pr(D|H) · Pr(H)

Pr(D)
.

1. Pr(D|H) is the conditional probability of the current data observation given a

hypothesis. If the predicted message is correct, then the prefix must occur. There-

fore, we have

Pr(D|H) = 1 .
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2. Pr(H) is the prior probability of a hypothesis. This is a ratio of the number h of

occurrences of the predicted message to the total number t of messages that are

at least as long as the prefix. Therefore, we have

Pr(H) =
h

t
.

3. Pr(D) is the prior probability of data occurrence. This is a ratio of the number d

of occurrences of this prefix over the total number o of all previously observed

prefixes of the same length. Therefore, we have

Pr(D) =
d

o
.

Substituting these terms into the equation yields

Pr(H|D) =
h · o
t · d

.

For example, when the authenticator receives the reset character ‘:’, which begins

every message, the probability of this data occurrence equals one, because the number

of occurrences of this prefix equals the total number of all previously observed prefixes

of the same length. More formally, we would have

D = ‘:’ ⇒ d = o ⇒ Pr(D) =
d

o
= 1 .

The device predicts the most frequent message overall. The device is likely to be correct

only if this message constitutes at least 50% of all observed messages.

On the other hand, a longer prefix improves prediction accuracy. As the prefix

length approaches the message length, a device predicts the message with probability

close to one, because the probability Pr(D) of the prefix approaches the probability
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Pr(H) of the message.

4.6 Back-away

As an authenticator pre-sends a predicted message, it monitors the incoming plaintext

to verify that the prediction is correct. If the authenticator discovers an error in its

prediction, it sends the back-away signal ‘\b’ (backspace) to the verifier, followed by

the number of bytes to discard from the predicted message, and transmits the corrected

part of the message (Figure 3.3c). The discarded bytes are always the last bytes that the

device sends out, because Predictive YASIR uses stream compression and encryption

algorithms. For example, if the authenticator needs to discard the last byte and replace it

with 0xFF, then it sends ‘\b’ followed by 0x01FF, which is 0x0801FF all together

in hex. The verifier computes the digest on the final version of the message, after it

discards all incorrect predictions.

The verifier must receive the back-away symbol before it forwards the wrong part

of plaintext to the receiver. That is, the verifier should send plaintext byte i only after

the authenticator receives the actual byte i. The verifier maintains this property by

outputting at most one byte of plaintext for every byte of ciphertext and by being silent

when it receives data that increases the length of the ciphertext: the escapes and the

back-aways.

4.7 Cipher Format

Because Modbus/ASCII uses only half of the available bandwidth, my compression

reclaims this space. The authenticator converts each ASCII character (‘0’ to ‘9’

and ‘A’ to ‘F’) into its equivalent 4-bit representation: 0x0 to 0xF. The authentica-

tor appends the digest and the counter after the terminating symbol ‘\r\n’. Thus the
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whole encrypted and authenticated message comprises ‘:’ symbol, followed by mes-

sage data, followed by ‘\r\n’, followed by the digest and the counter (Figure 1.2d).

Because the ciphertext may contain the special symbols ‘\r\n’ (carriage return

plus newline) and ‘\b’ (backspace), the authenticator replaces the special symbols

in the ciphertext with ‘\r\r\n’ and ‘\b\b’. This makes the message longer, but

Predictive YASIR compensates for this inefficiency with compression.

4.8 Experiment

The simulation contains four components: one FEP, two BitWs, and one DA (Fig-

ure 1.1a). The FEP connects to the plaintext port of the first BitW. The two BitWs

connect via their ciphertext ports. The plaintext port on the second BitW connects to

the DA.

The FEP has a set of messages that it sends to the DA in random order. It sends

each byte of a message individually, but without delays. Therefore, the authenticator

can only act on information from a single byte, which simulates a slow legacy network.

The authenticator sends at most one byte of ciphertext for every byte of plaintext it

receives, except after it has received the whole message, when it sends the rest of the

ciphertext to the verifier. This simulates enough computational power to query the

Bayesian network on every byte of plaintext and enough silence on the wire to avoid

congestion due to ciphertext being longer than plaintext. Because real world networks

may be saturated, it would be interesting to look for ways to avoid message expansion.

One possibility is to overlap the digest and counter for one message with the ciphertext

for the next message (Figure 3.1).

The data for the experiment is a trace collected from GE XA/21TM SCADA / Energy

Management System talking to a GE D400 Substation Data Manager in a lab setting.

These devices use DNP3 protocol to communicate and record the trace. Before the
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simulation, I convert the trace into Modbus/ASCII format suitable for input into SSF. I

do not have Modbus/ASCII traces because obtaining traces from real-world settings is

difficult.

Both YASIR and Predictive YASIR run 30 times. In the ith run of the simulation,

the FEP has 10i unique messages to send to the DA. I vary the number of unique

messages because prediction ability may deteriorate with many unique messages. Each

run lasts for 200,000 SSF ticks, enough to send each message more than once. I reset

the Bayesian network after each run.

The simulation assumes that the BitWs have enough computational power so that

prediction, compression, encryption, and authentication operations do not affect la-

tency. I measure the average byte-time latency in each test and calculate the improve-

ment percentage from YASIR to Predictive YASIR. I do not compare performance of

my solution to the approaches prior to YASIR, because YASIR has the lowest latency.
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Chapter 5

Results

I present the results of the simulation in Figure 5.1. These results demonstrate that Pre-

dictive YASIR has 15.48% less average latency than the original YASIR with a 95%

confidence interval of 0.35 percentage points. Recall that I do not compare Predictive

YASIR to other bump-in-the-wire devices that provide message authenticity, because

they have higher latency than the original YASIR. I find that prediction performance

does not degrade when the number of unique messages increases. Predictive YASIR

latency is 13.52 byte-times with a 95% confidence interval of 0.06. In contrast, original

YASIR latency is always 16 byte-times. When the authenticator makes a prediction

mistake in the experiment, it successfully recovers with a back-away. The verifier de-

termines all messages to be valid, because I do not introduce errors into the ciphertext

stream.
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Figure 5.1: Average end-to-end latency of YASIR and Predictive YASIR simulation. I
include for reference the byte-time latency for perfect prediction with a 12-byte HMAC
digest.
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Chapter 6

Future Work

6.1 Semi-embedded Device

A security device may gain a performance improvement if it plugs directly into the

sending device. Because a PCI or ISA port has much higher bandwidth than a serial

cable, the security device should receive a message virtually in an instant. If the secu-

rity device compresses the message, than it should incur near-zero latency due to the

appended digest and counter. Such semi-embedded device would not need prediction.

Measuring performance of such a device may require building it on a PCI or ISA board,

however, which requires hardware expertise and resources. One complication is that a

utility would have to reconfigure or patch its software to send the message through a

PCI port, instead of the serial port. Such modifications may be as expensive as patching

the software to use cryptography. The advantage of a semi-embedded solution is a clear

separation from the sending device, which is good engineering practice.

6.2 Historical Data

An BitW authenticator may be able to use historical data to predict plaintext, similar to

a branch predictor in an instruction pipeline. Historical data can be useful in predicting
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natural phenomena, such as temperature. Imagine a sensor to measure the tempera-

ture of water in a river. This temperature is 10◦C in the majority of cases, but recently

has increased to 11◦C and remains at that level. An authenticator that uses only statis-

tics would continue to mistakenly predict messages with 10◦C temperature reports. In

contrast, an historical predictor would adjust its predictions even though the long-term

majority of the temperature reports is still at 10◦C.

6.3 Protocols

I use Modbus/ASCII protocol, but I conjecture that the technique scales well to other

industrial control network protocols, e.g., DNP3 [4]. Although one can easily com-

press a Modbus/ASCII message, all sensors should have a finite and small number

of states. For instance, outdoor water temperature has only 100 integer states in Cel-

sius and varies little. The compression scheme must be stream-wise to avoid incurring

latency. The scheme by Welch, Ziv, and Lempel should work well [30, 34]. Their

algorithm is stream-wise and efficient. The source code is publicly available.

6.4 Space

From a theoretical perspective, Predictive YASIR computes statistics about the data

stream to predict the next message. My implementation uses space that is linear in

the number of unique messages in the stream, because the authenticator stores each

unique message in its Bayesian network for further predictions. Many computer scien-

tists prefer to use more efficient stream statistics algorithms, such as that of Indyk and

Woodruff [10] or Ganguly et al. [7]. Replacing the Bayesian network would require a

new prediction algorithm, however, which may not be trivial.
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6.5 Key Management

I do not address key distribution, but concentrate on the BitW algorithm. Other works

in this area have addressed the key distribution issue. For example, the AGA SCM

design [31] specifies how devices negotiate the keys and ScadaSafe [32] implements

these specifications. Key management is easy to misconfigure or ignore when the cryp-

tographic device resides in a locked up substation, creating a false sense of safety.

Therefore, easily and correctly configurable security policies deserve our attention.

6.6 Validation

Collecting real network data traces from substations and control centers is an impor-

tant task to verify correctness of this simulation and test future hypotheses. Because

vendors and utilities hesitate to share data that may reveal proprietary information, it is

important to build trust relationships with the industry.
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Chapter 7

Conclusions

I demonstrate how message prediction and coding techniques can be used to decrease

latency due to encoding inefficiencies. I apply this idea to message authentication

in slow legacy power grid networks. I hypothesize that this method is effective be-

cause the data is sufficiently low entropy and thus a BitW can predict and compress

it. My evaluation demonstrates a 15.48±0.35% improvement in byte-time latency

without compromising on security. Such savings can be significant on congested net-

works that require a fast response and in other applications with encoding inefficien-

cies. Finally, I propose a range of research directions to further our understanding

of these issues and improve the state of art. The simulation code is available from

http://www.cs.dartmouth.edu/˜pyasir/.
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