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Abstract

Surface reconstruction is an area of computational geometry that has been pro-

gressing rapidly over the last decade. Current algorithms and their implementations

can reconstruct surfaces from a variety of input and the accuracy and precision im-

prove with each new development. These all make use of various heuristics to achieve

a reconstruction. Much of this work consists of reconstructing a still object from

point samples taken from the object’s surface.

We examine reconstructing an n-dimensional object and its motion by treating

time as an n + 1st axis. Our input consists of n − 1-dimensional scans taken over

time and at different positions on the original object. This input is mapped into

n+ 1 dimensions where the n+ 1st dimension is a scaled time axis and then fed into

an existing surface reconstruction algorithm. A cross section of the reconstructed

surface perpendicular to the time axis yields an approximation to the shape of the

n-dimensional surface at the corresponding point in time.

The intended application for this work is the reconstruction of medical images from

scanning technology such as MRI or CT into moving 3d surfaces. We investigate

reconstructing 2d moving surfaces through time as a preliminary step towards the

moving 3d problem.
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We spend most of our efforts in this thesis on the problem of computing a scaling

factor for mapping time into the n+ 1st axis to minimize the number of scans needed

to meet the sampling requirements for an existing surface reconstruction algorithm.

We give three bounds, based on features of the 2d moving object, that are necessary

to accomplish this.
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Chapter 1

Introduction

Surface reconstruction from a cloud of points is a well-known area of compu-

tational geometry. A good deal of recent and current work focuses on extending

two-dimensional methods to three dimensions, with varying degrees of success using

various techniques [4, 5, 12]. As with many geometric problems, the two-dimensional

case is far more straightforward than the three-dimensional case and the variety of

heuristic approaches to the three-dimensional case reflects this. These results are

useful in cases of reconstructing a static object.

Many applications of surface reconstruction require highly accurate reconstruc-

tions. For instance, a number of projects use surface reconstruction techniques and

technology to record items of cultural importance both to preserve the items in digital

form and also to further analyze them. [8, 18, 20]

A key area of current interest is reconstruction of medical images, primarily in

three dimensions. [15, 21, 32, 36] Two dimensional images are already available to a

medical specialist. The scans produced by MRI, CT or PET technology yield two-
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dimensional slices of the object (usually an organ or region of a patient’s body), and

the specialist can simply look at the series of two-dimensional images without need

of any reconstruction.

When wanting to view something in three dimensions, however, the scans are still

two-dimensional images and collecting a series of them to capture a three-dimensional

picture takes time to produce. Further, when scanning a human body, there is move-

ment between each consecutive scan. Many current three-dimensional reconstruction

techniques stack a set of scan slices together to reconstruct the object but do not

take into account the movement between scans. A lot of other research focuses on

aligning (or registering) different slices to get closer to an accurate reconstruction.

The result is a rough approximation of the object’s true shape. For some purposes,

this is sufficient. For some other needs, though, the accuracy and precision of the re-

construction can be critical. For example, building a model of a generic human body

does not require a particular kind of accuracy because the model does not represent

an actual person. If the model needs to represent an actual patient, however, perhaps

for diagnostic or surgical purposes, then it is easy to see why greater accuracy and

precision in the reconstruction become very important.

1.1 Existing medical engineering approaches

Much of the work in medical engineering focuses on modeling and simulation using

discrete meshes. Meshing is itself an area of extensive research. The goal of this work

is primarily to better understand the biomechanical and biophysical behavior of the

organs being modeled or to try to predict longer-term consequences such as tumor
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growth. [30, 31, 32, 36]

Work has also been done on creating digital human models, both in the form of

a generic “ideal” human model and in the form of creating smaller, localized digital

models from real patient data. This includes work on generating the discrete meshes

to represent parts of the human body. These models are either static or do not need to

account for real-time motion because their goal is to see how things move in relation

to each other.

These all approach the problem of modeling a human body and its organs from

a perspective that assumes knowledge of the shapes in advance. However, none of

this work addresses the question of whether it is even geometrically possible to build

an accurate (moving) model that incorporates motion over time using only still scan

data.

1.2 Background / Surface reconstruction

In computational geometry, PowerCrust, Cocone, and Eigencrust are just a few

examples of the well-known implemented algorithms for surface reconstruction from

point clouds. For our investigations, we use PowerCrust because it is simple and has

a clear set of conditions under which it is guaranteed to return a geometrically and

topologically correct approximation to the original surface 1. In particular, Power-

Crust simply requires a sufficiently dense sampling of the surface.

To specify “sufficiently dense,” we first need to define the medial axis. The medial

1PowerCrust’s theoretical arguments use a closed, bounded, smooth 2d surface, but the authors
report “good empirical results on inputs including models with sharp corners, sparse and unevenly
distributed point samples, holes, and noise, both natural and synthetic.” [4, 5]
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axis is the closure of the set of points that have two or more closest points on the

original closed surface. The medial axis can contain points both inside and outside

the closed surface, depending on the shape of the surface.

2 Related work

The idea of using Voronoi diagrams and Delaunay triangulations
in surface reconstruction is not new. The well–known -shape of
Edelsbrunner et al. [9, 10] is a parameterized construction that as-
sociates a polyhedral shape with an unorganized set of points. A
simplex (edge, triangle, or tetrahedron) is included in the -shape
if it has some circumsphere with interior empty of sample points,
of radius at most (a circumsphere of a simplex has the vertices
of the simplex on its boundary). The spectrum of -shapes, that is,
the -shapes for all possible values of , gives an idea of the over-
all shape and natural dimensionality of the point set. Edelsbrunner
and Mücke experimented with using -shapes for surface recon-
struction [10], and Bajaj, Bernardini, and Xu [4] have recently used

-shapes as a first step in the entire reconstruction pipeline.
An early Delaunay-based algorithm, similar in spirit to our own,

is the “Delaunay sculpting” heuristic of Boissonnat [6], which
progressively eliminates tetrahedra from the Delaunay triangula-
tion based on their circumspheres. In two dimensions, there are
a number of recent theoretical results on various Delaunay-based
approaches to reconstructing smooth curves. Attali [3], Bernar-
dini and Bajaj [5], Figueiredo and Miranda Gomes [11] and our-
selves [1] have all given guarantees for different algorithms.

A fundamentally different approach to reconstruction is to use
the input points to define a signed distance function on , and
then polygonalize its zero-set to create the output mesh. Such zero-
set algorithms produce approximating, rather than interpolating,
meshes. This approach was taken by Hoppe et al. [14, 13] and more
recently by Curless and Levoy [8]. Hoppe et al. determine an ap-
proximate tangent plane at each sample point using least squares on

nearest neighbors, and then take the signed distance to the nearest
point’s tangent plane as the distance function on . The distance
function is then interpolated and polygonalized by the marching
cubes algorithm. The algorithm of Curless and Levoy is tuned for
laser range data, from which they derive error and tangent plane
information. They combine the samples into a continuous volumet-
ric function, computed and stored on a voxel grid. A subsequent
hole-filling step also uses problem-specific information. Their im-
plementation is especially fast and robust, capable of handling very
large data sets.

Functionally our crust algorithm differs from both the -shape
and the zero-set algorithms. It overcomes the main drawback of

-shapes as applied to surface reconstruction, which is that the pa-
rameter must be chosen experimentally, and in many cases there
is no ideal value of due to variations in the sampling density.
The crust algorithm requires no such parameter; it in effect auto-
matically computes the parameter locally. Allowing the sampling
density to vary locally enables detailed reconstructions from much
smaller input sets.

Like the -shape, the crust can be considered an intrinsic con-
struction on the point set. But unlike the -shape, the crust is natu-
rally two-dimensional. This property makes the crust more suitable
for surface reconstruction, although less suitable for determining
the natural dimensionality of a point set.

The crust algorithm is simpler and more direct than the zero-
set approach. Zero-set algorithms, which produce approximating
rather than interpolating surfaces, inherently do some low-pass fil-
tering of the data. This is desirable in the presence of noise, but
causes some loss of information. We believe that some of our
ideas, particularly the sampling criterion and the normal estimation
method, can be applied to zero-set algorithms as well, and might be
useful in proving some zero-set algorithm correct.

With its explicit sampling criterion, our algorithm should be
most useful in applications in which the sampling density is easy
to control. Two examples are digitizing an object with a hand-
held contact probe, where the operator can “eyeball” the re-

quired density, and polygonalizing an implicit surface using sample
points [12], where the distribution can be controlled analytically.

3 Sampling Criterion
Our theoretical results assume a smooth surface, by which we mean
a twice-differentiable manifold embedded in . Notice that this
allows all orientable manifolds, including those with multiple con-
nected components.

3.1 Geometry
We start by reviewing some standard geometric constructions.
Given a discrete set of sample points in , the Voronoi cell
of a sample point is that part of closer to it than to any other
sample. The Voronoi diagram is the decomposition of induced
by the Voronoi cells. Each Voronoi cell is a convex polytope, and
its vertices are the Voronoi vertices; when is nondegenerate, each
Voronoi vertex is equidistant from exactly points of . These

points are the vertices of the Delaunay simplex, dual to the
Voronoi vertex. A Delaunay simplex, and hence each of its faces,
has a circumsphere empty of other points of . The set of Delau-
nay simplices form the Delaunay triangulation of . Computing
the Delaunay triangulation essentially computes the Voronoi dia-
gram as well. See Figure 5 for two-dimensional examples.

Figure 2. The red curves are the medial axis of the black curves. Notice that compo-
nents of the medial axis lie on either side of the black curves.

Figure 3. In three dimensions, the medial axis of a surface is generally a two-
dimensional surface. Here, the square is the medial axis of the rounded transparent
surface. A nonconvex surface would have components of the medial axis on the out-
side as well, as in the 2D example of Figure 2.

The medial axis of a -dimensional surface in is (the
closure of) the set of points with more than one closest point on
the surface. An example in is shown in Figure 2, and in in
Figure 3. This definition of the medial axis includes components
on the exterior of a closed surface. The medial axis is the extension
to continuous surfaces of the Voronoi diagram, in the sense that the

Figure 1.1: Two closed curves and their combined medial axis. Image from Amenta,
Bern and Kamvysselis [3].

The distance from a point on the surface to the medial axis is known as the local

feature size, or LFS. Intuitively, the LFS is a measure of the size of a detail, or feature,

on the surface. A part of the surface that has smaller features needs more sample

points to capture the details, whereas a part of the surface that has only a large

feature (i.e., no small features and is thus relatively smooth) requires fewer sample

points to capture its contours.

A sample of points is called an r-sample when any given point of the surface has

a sample point no farther away in distance than r times its local feature size. For

small enough r, the sample is then considered to be sufficiently dense.

Given a sample of points that meets this condition, PowerCrust is guaranteed to

return a good reconstruction of the original surface.
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1.3 Need and motivation

With the application area we have in mind, namely medical image reconstruction,

we are no longer dealing with still shapes and we are definitely dealing with three

dimensional objects. Let’s look at scanning a heart as an example.

A heart beats at least once a second, and is generally in constant periodic motion.

With current and foreseeable technology, we cannot scan the whole heart at once. We

can only take a picture of one 2d slice at a time and by the time we take the second

slice, even if it is very close physically, the heart has moved.

Charting this over time, we have a series of slices from different points in the

heart’s motion.

What we know is that the heart’s motion is periodic. What we also know is that

between scan slices, the motion is continuous in the analytical sense (more or less).

Ideally, the distance between the slices is both small in time and small in space. In

other words, we would like to have enough scan pictures to cover as many slices of the

heart as possible, and we would like to have these pictures taken frequently enough

to capture the motion of the heart.

Even when scanning something that isn’t as active as the heart, it is practically

impossible to align two consecutive scan slices simply because the body is always

moving. As an example, when scanning the lungs, one frequently-used technique is

to ask the patient to hold in a deep breath. When it is time to take another scan,

the patient is asked to hold in a deep breath again. While this gets the two lung

positions very, very close, it is still not exact, and at the resolution of the scanning

technology, these differences can be significant.
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It is therefore important from a surface reconstruction perspective not only to

capture the shape of the surface in three-dimensional space but also to capture the

shape of the three-dimensional object as it changes over time.

Clearly, there is a need for accurate surface reconstruction in 3d plus its motion

in time, t. We call this 3d+ t. At present, we know that it is possible to take still 2d

slices and reconstruct them into a still 3d object. What we don’t yet know is whether

we can take a series of still 2d slices and accurately reconstruct the 3d object and its

motion through time.

Is it possible to reconstruct the shape of a surface over the course of some motion

by filling in missing data by looking at where the nearby/neighboring points go at

the next step in time? Further, is it possible to consider this problem as a four-

dimensional surface reconstruction, where time acts as the fourth dimension?

To test these ideas, we need a four-dimensional surface reconstruction algorithm.

While this is known to be theoretically possible [13], there has been limited moti-

vation to implement such an algorithm in dimensions higher than three. For our

investigations, we first need to know if treating time as an additional dimension is

even possible. In this thesis, we will explore the 2d+t problem so that we can evaluate

whether the 3d+ t problem even makes sense to pursue.
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Chapter 2

Our goals

The primary problem at hand is how to reconstruct the motion of a 2d object

through time, given data from scans taken as the object moves.

Because the scans in three dimensions are planar slices, the analogous scans in

two dimensions must be linear slices. Scans are taken using a sweepline technique.

In the case of a 2d object, this means a line moving across a plane. Where the line

intersects the boundary of the object is recorded as a data point and the time of the

scan is also recorded. The resulting collection of data points is a series of intersections

on the plane stacked in order of the time taken.

We want to see if 2d+ t can also be viewed as a three-dimensional reconstruction

by mapping t into the z-axis. In particular, we want to cast the 2d+ t problem into

a 3d problem and then use the existing 3d reconstruction techniques to achieve our

desired results. The obvious first question is how to map t into the z-axis.

As long as the t-axis is handled in such a way that the conditions for the existing

3d surface reconstruction methods are satisfied, this ought to be possible. Further,
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taking cross-sections along the t-axis of the resulting reconstruction ought to yield

the shape of the object at the corresponding point in time.

More precisely, we want to somehow map the time-axis into the z-axis and feed

the resulting set of points into PowerCrust. The collected points take the form f(t) =

(x(t), y(t), t), where t is time and (x(t), y(t)) is the location of a point from the object

in its native plane at time t. In other words, f(t) is a subset of the locus of the object

as it changes over t.

As mentioned before, the obvious first hurdle is to determine how to map t into

the z-axis. Specifically, we need a scale by which to map t into the z-axis. We need

to find a constant c such that we can plot g(t) = (x(t), y(t), ct) = (fx, fy, cfz).

For the purposes of our work, we have only the detected points of intersection

between the object and the scanline. We want to find c such that PowerCrust returns

a recognizable reconstruction from the scaled collection of points.

It is important to note that once a c has been determined, the scanning scheme

must also be determined to achieve the required r-sample for PowerCrust or whichever

reconstruction algorithm one wishes to use. While we could theoretically increase

the sampling density to an extreme for a very small r, in reality this is both time-

consuming and less practical.

Toward these ends, we look to PowerCrust’s sampling requirement, which is based

on local feature size. The 2d object already has a sampling density requirement based

on local feature size. If the scaling factor for our time axis creates a smaller local

feature size in 3d than the smallest local feature size in 2d, then we need a denser

sample than in 2d. In the scaling of our time axis, we want to avoid requiring a

8



greater sampling density for our 2d+ t (i.e. 3d) reconstruction.

Thus, we seek a scaling factor, c, for the time axis such that the reconstructed 3d

minimum local feature size preserves the 2d minimum local feature size as closely as

possible.
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Chapter 3

Experiments

3.1 Setup

The purpose of our experiments was to see how the scaling factor affected the final

reconstruction in 2d + t. To this end, we ran seven sets of experiments, each with a

different shape or a different type of motion. We placed all of the experiments within

a bounding box and ran a sweepline-type scan, which we will call the scanline.

The scanline moved back and forth across the bounding box starting at time t0.

For each ti, we recorded the points of intersection (x, y) between the scanline and the

surface in the form (x, y, scaled-ti). For each set of experiments, we had three main

parameters: duration of the period of the scanline, number of scans per period of

the scanline, and t-scale, or c. We call the period of the scanline the scanperiod. For

each pairing of scanperiod and scans per scanperiod, we ran a wide range of t-scales

since that was our first point of interest. The scanperiod was first defined in terms of

periodic motion; specifically, we used a parameter called scanratio that was the ratio
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between the duration of the object’s period of motion and the scanperiod.

To get preliminary numbers, we used a scanratio of 0.05 and a scanrate of 100.

One full period of motion, where periodic motion was used, took place in 2000 scans.

We treated each scan as taking one time unit.

For each experiment, except where noted, we collected 6000 scans, i.e., up to t6000

or three periods of motion. The point cloud formed by these points was then fed

into PowerCrust ([4]). We visually inspected the resulting reconstructions and also

checked the cross-sections parallel to the xy-plane.

We begin by explaining each experiment. The results and analysis follow.

3.1.1 Basic ellipse

To get an idea of how this worked in practice, we started with a basic smooth

shape and a simple periodic motion. We used an ellipse so that the shape had some

identifiable feature and rotation as the motion. For this experiment, the ellipse had a

major axis of 6 and a minor axis of 4. The ellipse and its rotation were both centered

at the origin. To make sure that the scanline covered the whole shape, no matter

its current rotation, we used a bounding box of 6.4, also centered at the origin. In

this case, each scan took place at some time ti and produced at most two points of

intersection on the xy-plane.

3.1.2 Bean in rotation

Because an ellipse is a very simple shape with only very basic features, we next

tried the classic bean (Figure 3.1) from the original Crust paper [2]. It is nearly as
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simple as the ellipse but it has one interesting feature, namely the concave divot.

This feature has both a smaller minimum local feature size and a concave curvature,

both of which can be missed in a poor reconstruction.

Figure 3.1: The classic “bean” shape.

For our purposes, we modeled the bean as a union of a two half-circles and two

half-ellipses. We centered the rotation at the center of the two concentric half-circles.

The larger circle had a radius of 3, the smaller circle had a radius of 0.5, and the two

ellipses had major axes of 2.5 and minor axes of 1. Again, we used a bounding box

of 6.4 to be certain of scanning the whole shape in any position of rotation.

Figure 3.2: The bean modeled as two concentric half-circles and two half-ellipses.
The center of the two circles is the origin.
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3.1.3 Shrinking and expanding ellipse

Both of the previous two experiments used a still shape in motion. To see what

happened in a changing shape, we started again with an ellipse and this time made

it shrink and expand. We used a sine function to control the growth of the motion.

The center of scaling was kept at the origin. The largest ellipse had a major axis of

3 and a minor axis of 2. The smallest ellipse had a major axis of 3
4

and a minor axis

of 1
2
. The bounding box was again 6.4.

3.1.4 Shrinking and expanding bean

Again, we wanted to see if this would still work with a slightly more complicated

shape. In this case, we used the classic bean and kept the union of the four pieces

we used before to represent the bean. As with the ellipse, we used the origin as the

center of scaling.

3.1.5 Bean with sliding divot feature

To look at what happened with a more interesting type of motion, we took the

classic bean and moved the feature back and forth. This made the shape itself change

features and feature locations, and it allowed us to look at a change in surface normals

to see how that might affect the reconstruction efforts.

We used the same model of the bean as in our previous experiments but slid the

inner half-circle back and forth, again using a sine function to control the motion

of the divot. The extent of the motion was bounded by keeping the minimum local

feature size no smaller than that of the divot itself.
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3.1.6 Translating circle

To look at a much simpler example, we translated a circle along the y-axis. For

this experiment, we used a scanrate of 200. The circle moved 20 units along the y-axis

in 12000 scans (i.e. 12000 time units).

3.1.7 Circle rotating about a tangent point

For this experiment, we placed a circle of radius 1 tangent to the origin and

revolved it around the origin.

3.2 Experimental Results

In each set of experiments, PowerCrust produced both the correct shape and the

correct motion for a range of scaling factors for the t-axis. The cross-sections showed

that the 2d shapes at each ti were also correct. As expected, given a scanning scheme,

the range of scaling factors that yielded good reconstructions varied depending on

both the shape and the motion. Table 3.1 lists the results.

Table 3.1: Experimental Data

Shape Motion min 2d LFS c range
Ellipse Rotation 4

3
0.002 - 0.09

Bean Rotation 0.5 0.004 - 0.01
Ellipse Shrinking/Expanding 1

3
0.002 - 0.02

Bean Shrinking/Expanding 0.5 0.002 - 0.01
Bean Sliding divot 0.5 0.002 - 0.008
Circle Sliding 1.0 less than 0.0001 - 0.04
Circle Revolving 1.0 0.002 - 0.03
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What we observe is that the minimum local feature size seems to figure into the

scaling factor. Between the rotating ellipse and the rotating bean, the only real

difference is the minimum local feature size. We see a difference in the range of good

scaling factors, which indicates that something other than the motion contributes to

calculating a good scaling factor.

Also, looking at the ellipse in two different kinds of motion, we see that the

good scaling range is different. The ranges overlap, though for the shrinking and

expanding motion, the range spans a smaller interval. We see a similar situation for

the rotating bean and the shrinking and expanding bean. This warrants looking at

more experiments, as we have done.

The translating circle is discussed more thoroughly in the analysis below.

In varying the scanperiod and the scanrate, we also see that some reconstructions

are better and some are worse. This leads to some intuition about how we might

optimize scanning. Once we have a good scaling factor, we can potentially calculate

a good scanperiod and scanrate to meet PowerCrust’s sampling requirements. We

discuss this further in section 3.3.

From the experiments, we see that, given a scanning scheme, the factor by which

the time axis is scaled is strongly tied to the recognizability of the overall reconstruc-

tion. If the time axis is too wide, then we do not have sufficient sampling to identify

the shape vertically to show the whole 2d object (Figure 3.8). If the time axis is too

tight, then we do not have enough sample points to distinguish between the correct

surfaces and subsequent phases of motion, e.g., during successive rotations. This

creates “false” surfaces between farther points in time (Figure 3.9).

15



Figure 3.3: Rotating bean.

Figure 3.4: Shrinking and expanding ellipse.
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Figure 3.5: Shrinking and expanding bean.

Figure 3.6: Sliding divot on the bean.

We have seen that, given a particular scanning scheme, we can find a range of

scaling factors that yields a recognizable reconstruction for each experiment (Figures
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Figure 3.7: Circle rotating about a tangent point.

Figure 3.8: Rotating ellipse: When the scaling factor is too large, we lose surfaces in
the reconstruction.
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Figure 3.9: Rotating ellipse: False surfaces appear when the time axis is scaled too
tightly.

Figure 3.10: Rotating ellipse: The reconstruction works when the scaling factor is
within the “just right” range. This is a smaller scaling factor that works for the
rotating ellipse.
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Figure 3.11: Rotating ellipse: The reconstruction also works when the scaling factor
is on the larger end of the “just right” range.

3.10, 3.11). This range varies by shape and by motion. As suspected, the size of local

features of the 2d object seems to affect the range of usable scaling factors. Also as

suspected, the motion of the object affects the range of scaling factors. Similar to

the size of features of the object, the size of the “features” of the motion appears to

constrain the scaling factors.

While feature size of a surface has been well-defined for these purposes by Amenta,

Bern and Eppstein [2], feature size of motion is a new notion in surface reconstruc-

tion. So far, it appears that acceleration and velocity are two primary elements in

determining a useful scaling factor.

We thus explore the relationship between a good scaling factor, the minimum 2d

local feature size and the motion. We can break down the motion of the object into its

velocities and accelerations. This is explained further as we discuss how to calculate
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a good scaling factor in chapter 4.

3.3 Sampling rate

Before we discuss the scaling factor in more detail, it is important to note that both

the scanperiod and the scanrate affect how well our moving shapes are reconstructed.

We know that PowerCrust has a minimum sampling requirement, but because our 3d

surface is not known in advance and thus we do not have the 3d local feature sizes,

we have to determine our sampling using a good guess about the local feature sizes.

This is where the t-axis scaling factor can help us.

From the experimental results, we know that a very large scaling factor requires

more scanperiods to yield a smooth reconstruction. A very small scaling factor re-

quires more scans per scanperiod, or a higher scanrate. Finding a scaling factor that

balances the required scanning densities of both the scanperiods and the scanrates

allows us to maximize the efficiency of the scanning.

It is worth noting that our experiments consist of relatively “round” shapes within

a bounding boxes that are relatively “square.” None of the shapes are extremely long

and skinny, and we do not have any part of a shape’s boundary that approximates a

primary axis. This has allowed us to avoid a particular sampling difficulty that arises

when a long, skinny shape (or a significant part of a shape’s boundary) lies parallel

to the scanline (Figure 3.12). Fortunately, an easy solution to these situations is to

rotate the primary axes a little bit (e.g., using perturbation, Figure 3.13). This moves

the boundaries away from being parallel to the scanline and reduces the opportunities

for missing the boundaries during scanning.
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Figure 3.12: The scanline can easily miss the parts of the boundaries that are parallel
to it, both for a long, skinny shape and for boundaries of non-skinny shapes that run
parallel to the scanline.

Figure 3.13: We can perturb the scanning area relative to the scanline to minimize
problems from boundaries being parallel to the scanline.
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We already have a sampling density requirement based on the original 2d shape.

Without knowing the local feature size at specific points on the shape, we can still

use the minimum local feature size to choose the r for guaranteeing an r-sample

for PowerCrust. Ideally, our scanning scheme will not require a significantly denser

sample to reconstruct the shape and its motion. Thus, we use the 2d minimum local

feature size as a starting point for a proposed lower bound on the 3d minimum local

feature size and thus also on the scaling factor.
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Chapter 4

Analysis

We need to choose a scaling factor for the time axis before we can input our exper-

imental data into PowerCrust. We already know that the PowerCrust-like algorithms

require a minimum sampling density based on the local feature size of the area being

sampled, or in other words that every point on the surface of the object must be

“close enough” to a sample point [5].

An immediate observation is that the minimum local feature size of the 3d re-

construction can be smaller than the local feature size of the original 2d object but

cannot really be bigger. If the minimum local feature size of the 3d reconstruction is

bigger than the 2d minimum local feature size, then the overall minimum local feature

size is defined by the minimum local feature size of the original 2d object. Only if

the 3d minimum local feature size is smaller than the 2d minimum local feature size

does the 3d minimum local feature size overtake the 2d minimum local feature size

as a component in determining the scaling factor.

Our original idea had been to limit the 3d minimum local feature size to be at least
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as big as the 2d minimum local feature size. This is actually impossible in the case of

non-accelerating motion with simple velocity, as in the case of our translating circle

experiment. Consider a circle that is moving (in translation) at constant velocity.

(Figure 4.1) The space defined by the circle as it moves is an elliptical tube. (Figure

4.2) The only way to get the tube to preserve the minimum local feature size of the

circle is to map t to z using a scale of c = ∞, which would give us a circular tube.

Otherwise, the tube narrows if we use any 0 < c <∞ to map t to z.

Figure 4.1: A translating circle viewed from the bottom of the xy-plane.

This means that we cannot preserve the 2d minimum local feature size in the

3d reconstruction. Instead, we try to keep the 3d local feature size no smaller than

a constant fraction of the 2d local feature size. By selecting a factor, κ such that

0 < κ < 1, we can continue calculating c based on κ times the 2d minimum local

feature size. We can easily see that the higher the velocity the more eccentric the
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Figure 4.2: The same translating circle viewed from the side (yz-plane).

elliptical cross-section of the tube and therefore the smaller the 3d minimum local

feature size.

Thus we see that the maximum velocity of any part of the surface is a necessary

component in calculating a bound on our scaling factor c.

4.1 Velocity

We now look at the circle example more closely. The translating circle forms an

elliptical tube when mapped through time into the z-axis. Note that, given a semi-

major axis of a and a semi-minor axis of b, the minimum local feature size in an ellipse

(assuming a ≥ b) is b2

a
. In this situation, a is the radius of the original circle and b is

half the width of the elliptical tube. Thus, our 3d minimum local feature size is b2

a
. If
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we want the 3d minimum local feature size to be at least a factor κ (0 < κ < 1) of the

2d minimum local feature size, which we will now call L, then we have the following:

κL =
b2

a
,

κLa = b2,

and

√
κLa = b.

Further, we know that a = L by definition, so that

√
κLL = b,

√
κL2 = b,

and

L
√
κ = b.

Now, let the velocity vector serve as our distance axis, which will be in the xy-

plane. Then t will be mapped into the z-axis, with a scale c to be determined. The

ratio between a and b can be placed into a trigonometric relationship as a sine. (Figure

4.3)

sinα =
b

a
,

sinα =
L
√
κ

L
,

sinα =
√
κ,
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or

α = arcsin
√
κ.

Figure 4.3: The relationship between the semi-major axis a and the semi-minor axis
b of the elliptical tube is sinα = b

a
. Distance, d, traveled in the y-direction takes time

in the t-axis. To get the α we need as defined by the κ we choose, we scale t by some
c. tan(α) = ct/d = c/v.

We already know that velocity v = d/t. So, to obtain the κ (and therefore α)

that we want, we must scale t by some constant c. Taking another trigonometric

relationship, we have that cot(α) = d/ct. Alternatively, we can take tan(α) = ct/d =

c/v. So from κ, we get α, which gives us c and satisfies the following inequality.

c ≥ v tanα

≥ v tan arcsin
√
κ

≥ v

√
κ√

1−
√
κ

2

≥ v

√
κ

1− κ
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4.2 Acceleration

Similarly, when some part of the surface changes direction or speed, then the

motion maps out as a curve in three dimensions. If the curve is tighter, then its

local feature size is smaller. The relationship between the acceleration and the three-

dimensional curvature indicates that we might be able to calculate a scaling factor

such that the curvature does not give rise to a local feature size that is too small in

three dimensions.

Our intuition is that acceleration does not face the same problem as the velocity

tunnel. Specifically, while the velocity tunnel makes it impossible to preserve the

2d minimum local feature size as the overall 3d minimum local feature size, we have

found no such direct counterexample for acceleration. Because acceleration always

maps into a curve, we believe that this will very likely allow us to preserve the 2d

minimum local feature size when acceleration is the constraining motion.

To consider this more thoroughly, we analyze the curvature of our mappings.

In differential geometry, the radius of curvature at a point is the radius of the

osculating circle at that point. In computational geometry, this is equivalent to a

maximal ball centered at an endpoint of the medial axis. Instead of the maximal ball

that touches the shape at opposing boundaries, it is the maximal ball that sits tightly

inside a curve in the boundary of the shape and defines the LFS of a point in that

tight curve. (Figure 4.4)

To try to find a bound for our scaling factor using acceleration , we look at the

relationship between the radius of curvature and acceleration. Greater acceleration

means a faster change in velocity which in turn means a tighter curve. A tighter curve
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Figure 4.4: Two types of maximal balls. One is centered at an endpoint of the
medial axis and nests into a tight curve of the surface. The other is centered at a
non-endpoint of the medial axis and is tangent to (at least) two points on the surface.

has a smaller radius of curvature and thus a smaller LFS, so we focus on maximum

acceleration.

In our experiments, we know the maximum acceleration of a point in our shapes

because we selected the motions. By definition, the vector acceleration of a curve

is the sum of the tangential acceleration and the normal acceleration. Tangential

acceleration is the same as scalar acceleration, and normal acceleration is equivalent

to centripetal acceleration. We can compute these components for our experimental

shapes and motions.

~a = ascalar~T + anormal ~N

We can rewrite this in terms of a function f(t) as follows.

~a = f ′′(t)~T +
f ′2(t)

R
~N

For our experiments, we have the maximum accelerations shown in Table 4.1.

If we look locally at the point of maximum acceleration, we can rotate the coor-

dinates to make that point a local minimum for a 1d function (Figure 4.5). This is

because curvature is invariant under a change of orthogonal axes, such as rotation or

translation or both. We then have a curve that we can frame in terms of d = f(t).
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Table 4.1: Maximum accelerations for each experiment

Shape and motion Scalar acceleration Normal acceleration

Rotating ellipse 0 3π2

10002

Rotating bean 0 3π2

10002

Shrinking ellipse 1.125
20002 0

Shrinking bean 1.5
20002 0

Sliding divot bean 1
20002 0

Revolving circle 0 2π2

10002

Sliding circle 0 0

Figure 4.5: We can look at a point of maximum acceleration as a local minimum in
local coordinates.

We can use the equation for the curvature of such a function to compute a scale for

our t-axis. The radius of curvature for this function is defined as

R =
(1 + f ′2(t))

3
2

f ′′(t)
.

We can control the tightness of this curve by scaling t. Each point is (t, f(t)), and

scaling t by constant c, each point becomes (ct, f(t)). The new speed is thus

f(t)

ct
=

original speed

c

and acceleration is

31



new speed

ct
=

original acceleration

c2
.

Putting this into the equation for radius of curvature, we have

R =
(1 + (f

′(t)
c

)2)
3
2

f ′′(t)
c2

.

We want R ≥ κL, where L is the minimum 2d local feature size.

R =
(1 + (f

′(t)
c

)2)
3
2

f ′′(t)
c2

≥ κL

(1 + (f
′(t)
c

)2)
3
2

f ′′(t)
c2

≥ 1
3
2

f ′′(t)
c2

≥ κL

1
f ′′(t)
c2

≥ κL

c2

f ′′(t)
≥ κL

c2 ≥ κLf ′′(t)

c ≥
√
κLf ′′(t)

Let us use the maximum value of f ′′(t). We now have a way to find a c given κ,

L and maximum acceleration.

4.3 Change in surface normal

Velocity and acceleration clearly govern the motion of the surface, especially when

the size of the motion is larger. When looking closely at the surface, however, these

32



maxima may not be reached due to the small, local distances involved. To consider

this type of situation, we examine local motion.

We take a point p that lies on the 2d surface. p has a maximal ball tangent to

it. p also has a κL-ball tangent to it and contained in its maximal ball. This κL-ball

can only touch the surface at p because it is smaller than the smallest maximal ball

of any point on the surface, by definition. We look only at the points on the surface

that are a distance of 2κL or less from p, and we consider all motion relative to p. In

other words, we fix p as our point of reference and we can then treat all of the local

motion as rotations about p. We want to see what happens as the surface rotates

about p.

The rate of rotation, or angular velocity ω, is the rate of change in the direction

of the unit normal vector at p. The fastest rotation correlates to the fastest change in

the direction of the normal vector at p. We will use this to find a bound for c. To do

this, we look at how close points can be around p and therefore how small an angle

of rotation can bring these points close to each other as mapped into time.

Let us look at a point p whose closest point on the 2d medial axis is an endpoint

of the medial axis. The tightest positioning of the points adjacent to p is wrapping

around the L-ball tangent to p and on the same half-circle as p. The points cannot

wrap onto the other half-circle because they would have to come closer than the 2d

local feature size allows. Let the surface then follow the tangent of its contact with the

L-ball. This is the tightest arrangement of points possible in 2d due to the definition

of local feature size.

Let us also bring the 2κL-ball of p into the picture. The surface, as it extends
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Figure 4.6: Close “wrapping” of points along an L-ball.

away from p, intersects the 2κL-ball at two points, x and y, that are a minimum

distance of 2L from each other. If this part of the surface is rotating around p at an

angular velocity of ω, then x might move into the κL-ball of y (or without loss of

generality, vice versa) if ω is sufficiently large. Fortunately, this type of situation is

part of the analysis for velocity, above.

Figure 4.7: Distal points of local motion fall under velocity-based constraints.

What remains is to examine what happens at the center of rotation where the

surface twists the most. For this, we look to the helicoid to model such behavior. A

helicoid can be parametrized as follows. x = u cos θ, y = u sin θ, z = γθ. This works

well to model a rotating section of the surface as it moves through time, as mapped
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into the z-axis. γ already scales the z-axis of the helicoid, much as we map motions

into the t-axis with scaling factor c. This is very useful right away.

Figure 4.8: A helicoid. [35]

The angular velocity of the helicoid is ω =
θ

γθ
=

1

γ
. This is also the rate of

change of the unit normal vector. By definition, the smallest local feature size on a

helicoid is at the center of rotation, and it is defined as γ. Thus, if we want to keep

the local feature size in 3d at least as large as κL, we choose a scaling factor c such

that cγ ≥ κL, that is c ≥ κL

γ
. In the case of the maximum rate of change in unit

normal vector, that is the maximum angular velocity, we have c ≥ κLmaxω.
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Chapter 5

Proofs

We now show that our proposed bounds on c lead to feasible bounds on the 3d

local feature size of the reconstructed surface through time. We are given L = 2d

minimum local feature size, maximum velocity, maximum acceleration and maximum

rate of change in surface normal. We also choose κ such that 0 < κ < 1. From this,

we determine the constraints for c.

To show the validity of our proposed bounds on c, we observe that the local feature

size of the surface in 2d and its motion are limited both by points that are nearby

and by points that are farther away on the original 2d surface. We call these adjacent

and non-adjacent points with respect to a point p on the surface. Adjacent points

are within 2κL of p. Non-adjacent points are all the points on the surface that are

farther than 2κL from p.

36



Figure 5.1: Adjacent vs. non-adjacent points on a surface.

5.1 Velocity

We first consider the motion of two non-adjacent points on the surface and the

smallest possible distance between them. We will show that if a non-adjacent point

enters the κL-ball of a point pj, then its velocity must be greater than the maximum

velocity. Thus the non-adjacent point can not enter the said κL-ball if we have

selected a qualifying scaling factor c.

Suppose we have a point pi at time ti within a κL-ball that is tangent to the 3d

surface at some point. pi has a motion pi(t) that brings it to its location at time ti.

Without loss of generality, let us say that the κL-ball is tangent to the surface at a

point pj and that pj is in the plane corresponding to time tj.
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Figure 5.2: Points moving near a κL-ball.

d(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 < 2κL

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 < 22κ2L2

(zi − zj)2 > 0 because otherwise, we would break L in the 2d plane at time ti = tj.

(xi − xj)2 + (yi − yj)2 < 22κ2L2 − (zi − zj)2

|zi − zj| is the scaled difference in time. So |zi − zj| = c∆t. c ≥ v

√
κ

1− κ
and

c ≥
√
κLa, where a is the maximum acceleration and v is the maximum velocity.

Thus c ≥ v

√
κ

1− κ
, and so |zi − zj| ≥ v

√
κ

1− κ
∆(t), or ∆(t) ≤ |zi − zj|

v
√

κ
1−κ

.

The distance traveled by pi(t) in time ∆(t) is at least 2L−
√

(xi − xj)2 + (yi − yj)2.

This is because at time tj, pi(t) can be no closer than 2L to pj. At time ti, pi(t) has

traveled to the position of pi. So we have a minimum speed of

2L−
√

(xi − xj)2 + (yi − yj)2

∆(t)
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.

2L−
√

(xi − xj)2 + (yi − yj)2

∆(t)
≥

2L−
√

(xi − xj)2 + (yi − yj)2

|zi−zj |
v
√

κ
1−κ

and we already have that (xi − xj)2 + (yi − yj)2 < 22κ2L2 − (zi − zj)2, so

2L−
√

(xi − xj)2 + (yi − yj)2

∆(t)
>

2L−
√

22κ2L2 − (zi − zj)2

|zi−zj |
v
√

κ
1−κ

>
(2L−

√
22κ2L2 − (zi − zj)2)v

√
κ

1−κ

|zi − zj|

> v
(2L−

√
22κ2L2 − (zi − zj)2)

√
κ

1−κ

|zi − zj|

For sake of visual clarity, we replace |zi − zj| with simply |z|.

> v
(2L−

√
22κ2L2 − z2)

√
κ

1−κ

|z|

Now, we look at
(2L−

√
22κ2L2 − z2)

√
κ

1−κ

|z|
in more detail.

(
2L−

√
22κ2L2 − z2

)√
κ

1−κ

|z|
?
> 1(

2L−
√

22κ2L2 − z2
)√ κ

1− κ
?
> |z|(

2L−
√

22κ2L2 − z2
)2 κ

1− κ
?
> z2

4L2 − 4L
√

4κ2L2 − z2 + 4κ2L2 −
(

1 +
1− κ
κ

)
z2 ?
> 0

4L2 + 4κ2L2 −
(

1 +
1− κ
κ

)
z2 ?
> 4L

√
4κ2L2 − z2(

4L2 + 4κ2L2 −
(

1 +
1− κ
κ

)
z2

)2
?
> 16L2

(
4κ2L2 − z2

)
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Rearranging terms, we then have

16L4
(
1 + κ2

)2 − 64κ2L4 + 16L2z2 − 8L2
(
1 + κ2

)(
1 +

1− κ
κ

)
z2

+

(
1 +

1− κ
κ

)2

z4 ?
> 0

16L4
(
1− 2κ2 + κ4

)
− 8L2

(
−1 +

1− κ
κ

+ κ

)
z2 +

(
1 +

1− κ
κ

)2

z4 ?
> 0

16L4
(
1− κ2

)2 − 8L2

(
(1− κ)2

κ

)
z2 +

(
1

κ

)2

z4 ?
> 0

We solve for z2 in terms of L2 and find that the roots are

z2 = 4L2κ (1− κ)2 ± 8L2κ (1− κ)
√
−κ.

The two roots are complex. In other words, the inequality is either always true or

never true. We substitute the real component of the roots into the inequality.

16L4
(
1− κ2

)2 − 8L2

(
(1− κ)2

κ

)(
4L2κ (1− κ)2)+

(
1

κ

)2 (
4L2κ (1− κ)2)2 ?

> 0

16L4
(
1− κ2

)2 − 16L4 (1− κ)4 ?
> 0

16L4
((

1− κ2
)2 − (1− κ)4

)
?
> 0

16L4
(
4κ− 8κ2 + 4κ3

) ?
> 0

64L4 (κ) (1− κ)2 ?
> 0

Recall that 0 < κ < 1. Thus 0 < (κ) (1− κ)2 ≤ 4

27
, and 64L4 (κ) (1− κ)2 > 0.

The real component of the solution for z2 is the extremum of the parabola as a
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function of z2, and the non-zero complex component means that the inequality must

be always true or never true. Now we see that the inequality turns out to be true.

This shows that

(
2L−

√
22κ2L2 − z2

)√
κ

1−κ

|z|
> 1. In particular,

2L−
√

(xi − xj)2 + (yi − yj)2

∆(t)
> v

(
2L−

√
22κ2L2 − z2

)√
κ

1−κ

|z|
> v

but v is the maximum speed of any point, so pi can not be within the κL-ball of pj.

5.2 Surface normals

In the case of the motion of adjacent points of the surface, we are looking only

at local motion. We consider a point p on the surface and the motion of the local

points of the surface relative to p. Because we are viewing all of the local motion

relative to p, all of the motion resembles rotation about p. At its root, this behavior

mimics that of a helicoid. We can thus use a helicoid centered at p to model local

motion. Specifically, the surface rotates about a point along a third axis (z or t, e.g.)

like a helicoid. We conjecture that a bound based on the maximum rate of change in

surface normal can bound the 3d curvature due to local rotational motion.

5.3 Acceleration

We now show that the 3d local feature size due to acceleration is no worse than

the 2d local feature size. To do this, we examine the curvature of accelerating motion

and show that the radius of curvature in 3d due to acceleration is at least as large as

the minimum local feature size in 2d. We begin by defining the relationship between
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curvature and motion.

We are given a position function r(t) = (x(t), y(t), z(t)), with arclength

s =

∫ √
x′2(t) + y′2(t) + x′2(t)dt.

By definition, acceleration is ~a =
d2s

dt2
T̂ + K

(
ds

dt

)2

N̂ , where K is the curvature.

Another way to define acceleration is ~a =
d2s

dt2
T̂ +

1

R

(
ds

dt

)2

N̂ , because K =
1

R
,

where R is the radius of curvature. T̂ is the unit tangent vector, defined as
dr

ds
. N̂

is the unit normal vector, defined as
1

K

dT̂

ds
. In all of these, s is the arclength of the

curve, a measure that is commonly used when describing curves and their properties.

In many cases, s is not practical in actual computations. A standard practice uses

the chain rule to work with t instead of s. The definitions of the two unit vectors

then become T̂ =
dr
dt
ds
dt

and N̂ =
1

K

dT̂
dt
ds
dt

.

The magnitude of acceleration is defined as |~a| =
√
a2
T + a2

N where aT =
d2s

dt2
, the

magnitude of tangent acceleration, and aN = K

(
ds

dt

)2

, the magnitude of normal

acceleration. Because T̂ and N̂ are orthogonal, they relate to |~a| not only as the

legs of a right triangle in the Pythagorean Theorem, as in the definition of |~a|, but

also as sine and cosine with a radius of |~a|. Thus, given a particular magnitude of

acceleration, we know the range of possible values for each of aT and aN .

First, let us look more closely at |~a| in both 2d and 3d. A more general definition
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of |~a| is |r′′|. In 2d, we have

r(t) = (x(t), y(t))

r′(t) = (x′(t), y′(t))

r′′(t) = (x′′(t), y′′(t))

and so

|r′′| =
√
x′′2 + y′′2,

and in 3d, we have

r(t) = (x(t), y(t), z(t))

r′(t) = (x′(t), y′(t), z′(t))

r′′(t) = (x′′(t), y′′(t), z′′(t))

|r′′| =
√
x′′2 + y′′2 + z′′2

but z(t) = ct, where c is our scaling constant, so

|r′′| =
√
x′2 + y′′2 + 0

=
√
x′′2 + y′′2

Thus we see that |~a| is the same in 2d and 3d.

This tells us also that max2d |~a| = max3d |~a|. Thus, for both 2d and 3d, our range

of possible values for aT and aN is

aT = |~a|sinθ

aN = |~a|cosθ
for 0 ≤ θ ≤ π

2
.
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Then, if we go back and review that aN = K

(
ds

dt

)2

, and we also see that

(
ds

dt

)
is√

x′2 + y′2 in 2d and
√
x′2 + y′2 + c2 in 3d, we have the following.

K2 =
aN(
ds
dt

)2 K3 =
aN(
ds
dt

)2
=

aN(√
x′2 + y′2

)2 =
aN(√

x′2 + y′2 + c2
)2

Thus the maximum curvatures are

maxK2 =
max aN
x′2 + y′2

maxK3 =
max aN

x′2 + y′2 + c2

=
max |~a|
x′2 + y′2

=
max |~a|

x′2 + y′2 + c2

And because the denominator values are always nonnegative, we can see that maxK2 >

maxK3 for all c > 0.

At this point, we just need to make sure that we do not break our local feature size.

Going back to our analysis, we used κL as the minimum R ≥ κL. Now, though, we

know that the maximum 3d curvature can’t be less than the maximum 2d curvature,

or in other words, the minimum 2d radius of curvature can’t be greater than the

minimum 3d radius of curvature. Therefore, we no longer need κL. Instead, we can

simply use L. Rewriting this, we have that

c ≥
√
κLf ′′(t)

becomes

c ≥
√
Lmax |~a|
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If we then substitute this into our curvature equation, we have

maxK3 =
max |~a|

x′2 + y′2 + c2

min R3 =
1

maxK3

=
x′2 + y′2 + c2

max |~a|

=
x′2 + y′2 + c2

max |~a|

≥ x′2 + y′2 + Lmax |~a|
max |~a|

=
x′2 + y′2

max |~a|
+ L ≥ L

min R3 ≥ L

In the case that we did want to keep κL as our minimum radius, it is easy to see that

that would work, too. However, what we do see is that our original suspicion that

acceleration would not pose the same restrictions as velocity was indeed correct.

We must note the special case when max aN = 0 in 2d. This means that maxK2 =

0, so long as ds
dt
6= 0, even though max2d |~a| > 0 may still be true. We see that

maxK3 =
max aN(

ds
dt

)2 =
max |~a|(

ds
dt

)2 > 0, which means that maxK2 < maxK3. However, c

is still calculated from max |~a|, so the bound on maxK3 relative to κL still holds.
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Chapter 6

Conclusions

We have shown that given certain starting information (minimum 2d local feature

size, maximum velocity, maximum acceleration and maximum change in surface nor-

mal), we can compute bounds on a scaling factor c for mapping t into the z-axis that

are necessary for a good reconstruction using PowerCrust. We select κ, a constant

factor to apply to L, the minimum 2d local feature size, and compute three bounds

on the value of c using the maximum velocity, the maximum acceleration and the

maximum change in surface normal, respectively. We choose c to satisfy all of these

bounds. We do not at this point have a proof to show that these bounds are sufficient.

Because we used κL to determine c, we can then compute a sampling density to

satisfy PowerCrust’s requirement. Since r <
1

3
, we can sample for a density of

κL

3
.

In the case of real-application scanning limitations, such as MRI or CT scans, the

object might be moving too quickly to satisfy the scanning requirements as determined

by the scaling factor. In some situations, we can make use of periodic motion to collect

more scans without requiring a sudden technological leap.
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While sufficient scanning may not be possible in absolute time, we can instead

take scans in time modulo p, the period of the object’s motion, and insert these scans

into the timeframe of one period of motion. With this idea, we can take additional

scans at a specific time within the period of motion but at different physical locations

and also take more scans at a particular physical location over more points in the

period of motion.
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Chapter 7

Future Work

We have shown that the 2d + t problem appears to be feasible. This opens the

doors to investigating the 3d+ t problem. We can use similar mathematical analysis

to consider scaling factors for t and again look at possible scanning schemes for

minimizing the number of scans needed to guarantee a good 3d+ t reconstruction. It

would also be useful to implement at 4d surface reconstruction algorithm and analyze

its accuracy and requirements. Further, we would like to find tighter bounds on c

and to prove that our bounds are indeed sufficient for reconstructing a 2d object and

its motion.

48



Bibliography

[1] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for homeo-
morphic surface reconstruction. In SCG ’00: Proceedings of the sixteenth annual
symposium on Computational geometry, pages 213–222, New York, NY, USA,
2000. ACM.

[2] Nina Amenta, Marshall Bern, and David Eppstein. The crust and the β-skeleton:
Combinatorial curve reconstruction. Graphical Models and Image Processing,
60(2):125–135, 1998.

[3] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new Voronoi-based
surface reconstruction algorithm. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pages 415–
421, New York, NY, USA, 1998. ACM.

[4] Nina Amenta, Sunghee Choi, and Ravi Kolluri. The power crust. In 6th ACM
Symposium on Solid Modeling, pages 249–260, 2001.

[5] Nina Amenta, Sunghee Choi, and Ravi Kolluri. The power crust, union of balls,
and the medial axis transform. Computational Geometry: Theory and Applica-
tions, 19(2-3):127–153, 2001.

[6] F Bernardini, I M Martin, and H Rushmeier. Highquality texture reconstruc-
tion from multiple scans. IEEE Transactions on Visualization and Computer
Graphics, 7(4), 2001.

[7] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Claudio Silva, Gabriel
Taubin, and Senior Member. The ball-pivoting algorithm for surface reconstruc-
tion. IEEE Transactions on Visualization and Computer Graphics, 5:349–359,
1999.

[8] Fausto Bernardini, Holly Rushmeier, Ioana M Martin, Joshua Mittleman, and
Gabriel Taubin. Building a digital model of Michelangelo’s Florentine Pieta.
IEEE Computer Graphics and Applications, 22(1):59–67, 2002.

[9] H. S. M. Coxeter. Introduction to Geometry. John Wiley and Sons, Inc., second
edition, 1989. Wiley Classics Library.

49



[10] H. S. M. Coxeter and S. L. Greitzer. Geometry Revisited. New Mathematical
Library 19. Random House, 1967.

[11] Tamal K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical
Analysis. The Cambridge monographs on applied and computational mathemat-
ics, 23. Cambridge University Press, 2007.

[12] Tamal K. Dey and Joachim Giesen. Detecting undersampling in surface recon-
struction. In 17th ACM Symposium on Computational Geometry, pages 257–263,
2001.

[13] Tamal K. Dey and Piyush Kumar. A simple provable algorithm for curve recon-
struction. In SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, pages 893–894, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics.

[14] Ludwig Eckhart. Four-Dimensional Space. Indiana University Press, 1968.

[15] Andriy Fedorov, Nikos Chrisochoides, Ron Kikinis, and Simon K. Warfield.
Tetrahedral mesh generation for medical imaging. In 8th International Confer-
ence on Medical Image Computing and Computer Assisted Intervention (MIC-
CAI 2005), 2005.

[16] Karl Friedrich Gauss. General Investigations of Curved Surfaces of 1827 and
1825. The Princeton University Library, 1902.

[17] Keith Kendig. Conics. The Mathematical Association of America, 2005.

[18] David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, and Marc
Levoy. Fragments of the city: Stanford’s digital forma urbis romae project. In
Proceedings of the Third Williams Symposium on Classical Architecture, pages
237–252, 2006.

[19] Ravikrishna Kolluri, Jonathan R. Shewchuk, and James F. O’Brien. Spectral
surface reconstruction from noisy point clouds. In Symposium on Geometry
Processing, pages 11–21. ACM Press, July 2004.

[20] M Levoy, K Pulli, B Curless, S Rusinkiewicz, D Koller, L Pereira, M Ginzton,
S Anderson, J Davis, J Ginsberg, J Shade, and D Fulk. The digital Michelangelo
project: 3d scanning of large statues. In Computer Graphics, SIGGRAPH 2000
Proceedings, pages 131–144, 2000.

[21] A. Mohamed and C. Davatzikos. Finite element mesh generation and remeshing
from segmented medical images. IEEE International Symposium on Biomedical
Imaging: Nano to Macro, 1:420–423, April 2004.

50



[22] Barrett O’Neill. Elementary Differential Geometry. Academic Press, 1966.

[23] Vladimir Rovenski. Geometry of Curves and Surfaces with MAPLE. Birkhäuser,
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