
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Master’s Theses Theses and Dissertations 

6-3-2004 

Greenpass RADIUS Tools for Delegated Authorization in Wireless Greenpass RADIUS Tools for Delegated Authorization in Wireless 

Networks Networks 

Sung Hoon Kim 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Kim, Sung Hoon, "Greenpass RADIUS Tools for Delegated Authorization in Wireless Networks" (2004). 
Master’s Theses. 5. 
https://digitalcommons.dartmouth.edu/masters_theses/5 

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth 
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of 
Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/5?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


 

 
 

 

Greenpass RADIUS Tools for Delegated 
Authorization in Wireless Networks 

 
Dartmouth College Computer Science Technical Report TR2004-510 

 
 

A Thesis 
 

Submitted to the Faculty 
 

in partial fulfillment of the requirements for the 
 

degree of 
 

Master of Science 
  

in 
 

Computer Science 
 

by 
 

Sung Hoon Kim 
 

DARTMOUTH COLLEGE 
 
 

Hanover, New Hampshire 
 

June 3, 2004 
 

 

Examining Committee: 

____________________________ 
Sean Smith (chair) 

____________________________ 
Edward Feustel 

____________________________ 
Christopher Hawblitzel 

 
 
____________________________ 
Carol L. Folt 
Dean of Graduate Studies 



 

 
 
 



ii 

Abstract* 

 

 

Dartmouth’s Greenpass project extends how public key cryptography can be used to 

secure the wireless LAN with a RADIUS (Remote Authentication Dial In User Service) 

server that is responsible for handling authentication requests from clients (called 

supplicants in the 802.1x authentication model).  This thesis describes the design and 

implementation of the authentication process of Greenpass, specifically what decisions 

are made in determining who is granted access and how a small modification of already 

existing protocols can be used to provide guest access in a way that better reflects how 

delegation of authority works in the real world.   

 

Greenpass takes advantage of the existing PKI to authenticate local Dartmouth users via 

X.509 identity certificates using EAP-TLS.  We use the flexibility of SPKI/SDSI (Simple 

Public Key Infrastructure/Simple Distributed Security Infrastructure) authorization 

certificates to distribute the responsibility of delegating access to guests to certain 

authorized delegators, avoiding some of the necessary steps and paperwork associated 

with having a large centralized entity responsible for the entire institution.  This thesis 

also discusses how our solution can be adapted to support different methods of guest 

delegation and investigates the possibility of eliminating the cumbersome central entity 

and administrative overhead traditionally associated with public key cryptography.   

                                                   
* This thesis is based in part on our preliminary reports on the Greenpass project [SGK+04, GKS+04].  
Concurrent theses [Gof04, Pow04] explore other aspects of the project.   



iii 

Acknowledgments 

 

 

There are a lot of people I would like to thank for aiding me in this endeavor.  I would 

like to start by thanking the other members of the Greenpass team, starting with my 

advisor, Professor Sean Smith, for spearheading this project and providing valuable 

advice and guidance that was indispensable to my efforts.  I also would like to thank 

Nicholas Goffee for his outstanding work on the client-side tools and in developing the 

other half of the Greenpass system, Punch Taylor for his help and guidance in setting up 

our network components, Meiyuan Zhao for her work with the SDSI library, Kimberly 

Powell for her organization of a pilot program to test our solution, and Kwang-Hyun 

Baek for his research in the recent trends in wireless network authentication.  Many 

thanks also go out to Eileen Ye for her initial investigation of SPKI/SDSI and to Stephen 

Campbell for setting up our Cisco equipment for the revised model.   

 

I also would like to thank the other members of my thesis committee, Professor Edward 

Feustel and Professor Chris Hawblitzel, for providing valuable input to my thesis and 

bring to my attention important issues that needed to be addressed.   

 

I would like to especially thank the Cisco Corporation for providing funding and 

networking equipment used in our project, and in particular Graham Holmes and Krishna 

Sankar for coordinating our efforts with Cisco.     

 

This research has been supported in part by Cisco Corporation, the Mellon Foundation, 

NSF (CCR-0209144), AT&T/Internet2 and the Office for Domestic Preparedness, 

Department of Homeland Security (2000-DT-CX-K001). This paper does not necessarily 

reflect the views of the sponsors. 

 

 

 



iv 

Contents 

 
 
1.  Introduction 

 

1
 
     1.1  The Problem ............................................1
 
     1.2  Motivation  .............................................2
 
     1.3  My Contribution ..........................................3
 
     1.4  Roadmap ...............................................5
 
 
2.  Background 

  

6
 
     2.1  Wired vs. Wireless 

 
........................................

 
6

 
     2.2  EAP and EAP-TLS ........................................7
 
     2.3  The RADIUS Protocol ......................................8
 
          2.3.1  The RADIUS Packet ....................................9
 
          2.3.2  The Authenticator Field .................................10
 
          2.3.3  RADIUS Attributes ...................................11
 
     2.4  Virtual LANs ...........................................11
 
          2.4.1  VLANs in Greenpass ..................................12
 
 
3.  The Physical Components 13
 
     3.1  The Prototype ...........................................13
 
          3.1.1  Limitations of the Prototype ..............................15
 
     3.2  The Revised Setup .......................................16
 
          3.2.1  Capturing and Redirecting Web Traffic 
 

.......................18



v 

 
4.  Making the Decision (The Server Side) 21
 
     4.1  Design Considerations .....................................21
 
     4.2  Using X.509 Certificates for Local Users .........................23
 
          4.2.1  The EAP-TLS Handshake ................................25
 
     4.3  Modifying EAP-TLS for Guest Access ..........................27
 
          4.3.1  SPKI/SDSI .........................................28
 
          4.3.2  Using SPKI/SDSI to Authenticate Guests .....................30
 
          4.3.3  Alternate Approaches to Guest Authorization ...................33
 
     4.4  A Brief Discussion of the Guest Delegation Process ..................35
 
          4.4.1  Presenting a Guest Certificate for Delegation ...................36
 
          4.4.2  Delegating Access to a Guest .............................37
 
     4.5  Supporting VPNs ........................................40
 
 
5.  Authenticating to Greenpass (The Client Side) 42
 
     5.1  Local Users ............................................42
 
          5.1.1  EAP-TLS Authentication for Windows .......................43
 
          5.1.2  EAP-TLS for Mac Users .................................48
 
     5.2  Guest Users ............................................51
 
     5.3  The Greenpass Pilot .......................................55
 
 
6.  Future Work 57
 
     6.1  Integrating the Cisco ACS ..................................57
 
     6.2  Support for Alternate Authentication Methods
 

......................
 
60



vi 

 
     6.3  Alternative Methods of Guest Delegation ........................62
 
          6.3.1  PERMIS and X.509 Attribute Certificates .....................62
 
          6.3.2  KeyNote and PolicyMaker ...............................65
 
     6.4  Accounting and Revocation ..................................67
 
     6.5  Support for other Devices ...................................72
 
     6.6  Finely Grained Definition of Authorization ........................73
 
     6.7  Push Authorization .......................................74
 
     6.8  No PKI ................................................76
 
 
7.  Conclusion 80
 
 
8.  Glossary of Terms 82
 
 
9.  References 84
 



vii 

List of Figures 

 

2-1   The RADIUS packet .......................................10

3-1 The prototype of the Greenpass project ...........................14

3-2 The revised setup of the Greenpass project ........................17

4-1 A successful EAP-TLS handshake working within the RADIUS protocol ....26

4-2 Decision flowchart used by the RADIUS server .....................32

5-1 Internet options window for Microsoft IE with TLS 1.0 enabled ...........44

5-2 Wireless network properties window for the Dartmouth User SSID .........44

5-3 Confirmation window asking whether to trust the RADIUS server’s certificate .45

5-4 The RADIUS server’s certificate, signed by the Greenpass CA ...........46

5-5 Wireless network connection status of an authenticated local user .........47

5-6 Status of an authenticated local user from the access point’s association table ..48

5-7 The Keychain Access window for the login keychain ..................49

5-8 The 802.1x connection configuration screen ........................50

5-9 Network connection status and wireless network properties for a guest  

 associated onto the guest VLAN SSID ............................52

5-10 The delegation front page ....................................53

5-11 The visual hash of a guest’s public key ...........................54

5-12 The delegation front page where the guest’s status is now  

 “Authorized User” ........................................54

6-1 Accounting entries provided for a successfully authenticated local user ......68



1 

1.  Introduction 

 

1.1  The Problem 

 

Wireless networking is the newest hot topic in networking.  As the use of wireless 

networks becomes more ubiquitous, it is increasingly important to ensure that the 

wireless network is kept secure.  At Dartmouth College, where wireless network access is 

available across the entire campus, we are developing Greenpass, a software-based 

solution to secure wireless networks that also allows delegation of access to guest users.   

 

Greenpass is designed to enforce an unobtrusive authentication process for registered 

users (i.e., Dartmouth faculty, students, and staff) and to provide a seamless and 

decentralized mechanism for non-registered users (guests) to gain access.  Once 

authorized, guests are allowed access to the same access points and resources that local 

users are given.  For example, guest access is not necessarily restricted to localized 

physical areas (such as a conference room) like in some commercial solutions that are 

available.  Furthermore, the process is decentralized in that pre-selected individuals can 

delegate temporary access to guests without referring to a central authority.  Once the 

delegator creates the guest’s credentials, the guest can immediately get access to the 

network.   
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1.2   Motivation 

 

Wireless network access is already prevalent at Dartmouth and is becoming more 

available on college campuses.  With the increased availability of wireless networks, 

there are several issues that need to be addressed in ensuring that access to the wireless 

network is at least as secure as access to the wired network.  Authorized users must be 

granted access to the network with little or no additional effort required by the 

authentication process.  Guests must be granted access to the network and the delegation 

process must be hassle-free and decentralized.  The solution must be adaptable: it must 

scale to large environments, accept a wide variety of access policies, multiple client 

platforms must be supported, and it must extend to all authorization.  Furthermore, the 

solution needs to be robust enough to defend against a wide range of failures and attacks.   

 

Greenpass adheres to a different definition of guest access than other wireless security 

solutions do.  Guests must be approved by a delegator to qualify for guest access; we are 

not letting just anyone gain access to the network.  We do not want to impose physical 

restrictions on where guests can get access to the network; guests are not confined to 

special access points that connect to outside a firewall.  Guests are not shuttled outside 

the firewall, thus preventing access to the interior network.  Guests should get access to 

the inside, as long as they are authorized to do so.  With these factors in mind, we sought 

to create a decentralized solution in which guests can gain meaningful guest access 

through a user-friendly delegation process. 
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1.3   My Contribution   

 

The Greenpass project is divided into two key components: (1) the decision process used 

by an authentication server* in granting or rejecting access and (2) client tools that 

implement delegation of guest access.  My work on the project was focused on the first 

component, specifically configuring and modifying the RADIUS server that is used to 

make authentication decisions.  My task was to deal with maintaining the server-side 

components of the system.   

 

Over the past year I familiarized myself with the current wireless and wired network 

security standards that were used in our solution.  I made the decision to use the 

FreeRADIUS server, an open-source and relatively well-document implementation of a 

RADIUS server.  After learning how the different components of the FreeRADIUS 

server worked, I configured it to use EAP-TLS authentication for local users and inserted 

the modified code to check for guest credentials in the authentication process.   

 

In addition to managing the RADIUS server software, I helped in designing the physical 

setup of our solution and pieced the components together.  I was responsible for keeping 

the components working together and implementing any changes to our setup design.  I 

set up and administered the CA that acted as the trusted root for the RADIUS server and 

local users, generating key pairs for testing and for participants of our pilot.  I set up a 

                                                   
* Actually, the authentication server also acts as an authorization server as authentication grants local users 
access to the network.  This is especially true for guest access where the server checks the guest’s 
authorization certificate to decide whether or not to grant access. 
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DHCP server that assigns an IP address to unauthorized guests that associate to the guest 

VLAN and a DNS server that restricts traffic originating from unauthorized guests and 

redirects them to our delegation main page.   

 

After the initial prototype was completed, my work involved cleaning up the prototype 

and incorporating new components provided by Cisco into our solution.  To this effect I 

set up the Cisco Secure Access Control Server (ACS) on a machine running Windows 

2000 Server and attempted to incorporate the ACS as our authentication server.  The 

design process and authentication procedure described in chapters 3, 4, and 5 refer to our 

original prototype and the revised model running FreeRADIUS.  The work on the Cisco 

ACS was performed later and is discussed in Section 6.1. 

 

Finally, I played an administrative role in carrying out our pilot [Pow04].  The 

participants were issued the necessary X.509 certificates used in authenticating as local 

users.  I also provided instructions on how to set up the client’s machine to enable EAP-

TLS authentication.   

 

A more general discussion of the Greenpass project can be found in [SGK+04] and 

[GKS+04].  A discussion focusing on the delegation of guest access [Gof04] will be 

forthcoming.  The results and discussion of the pilot [Pow04] will be available as well. 
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1.4   Roadmap 

 

This thesis discusses the authentication process of Greenpass.   

• Chapter 2 examines the wireless security technology we make use of in our 

solution.  This includes discussion of EAP and EAP-TLS, the RADIUS protocol, 

and an overview of Virtual LANs. 

• Chapter 3 describes the physical components of Greenpass, starting with our 

initial prototype and evaluating the revisions that were made. 

• Chapter 4 presents the authentication and authorization from the RADIUS 

server’s perspective, outlining the decision process it undertakes in deciding 

whether to accept or reject a supplicant.  A brief discussion of the guest 

delegation process is also included. 

• Chapter 5 discusses Greenpass from the client’s perspective, describing the 

necessary steps needed to set up the client’s machine to support our authentication 

scheme and evaluating the process the client sees. 

• Chapter 6 introduces some prospects for future work and investigates some of 

the possible extensions of Greenpass. 

• Chapter 7 summarizes my work on the project and offers some concluding 

remarks. 

• Chapter 8 provides a glossary of the terms used in this thesis, including the 

numerous acronyms that are part of the vocabulary of network security. 
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2.  Background 

 

Before discussing the details of the Greenpass project, it is necessary to discuss some of 

the standards and protocols defined in the field of wireless (and wired) network security.  

In this chapter, I will introduce the various acronyms that appear in dealing with this field 

and explain how these standards are incorporated into our solution.   

 

2.1 Wired vs. Wireless 

 
 
Wireless network security poses additional problems that those involved in keeping a 

wired network secure.  In a wired network, the computer is physically connected to the 

institution’s network.  If a machine is connected to a subnet identified with a certain 

physical location, it is known that the machine must be physically connected to that 

location.  With wireless networking, however, the transmission of the signal via radio 

waves removes this physical requirement.  A machine no longer needs to be inside a 

certain building to connect to its wireless network; it just needs to be within radio range.  

This clearly opens the wireless network to a greater range of potential abuses.   

 

In addition to determining whether the supplicant should be granted access, the use of 

radio transmission also necessitates the need to protect the communication between the 

client and the access point.  Until recently, wired equivalent privacy (WEP) was available 

to protect the session between the supplicant and the access point.  Due to major flaws in 
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the scheme, however, the WiFi Alliance, a vendor consortium formed to certify 

interoperability of wireless LAN products, changed its certification rules to now require 

WiFi protected access (WPA).  WPA is a subset of 802.11i, the IEEE draft that defines 

the standard for future 802.11 security.  WPA offers a stronger encryption scheme and 

provides support for a wider variety of authentication techniques, marking a vast 

improvement over WEP [EA03].   

  

2.2   EAP and EAP-TLS 

 

Both WPA and 802.11i use 802.1x [IEEE01], a general control mechanism for any 

Ethernet-based network.  802.1x generalizes the Extensible Authentication Protocol 

(EAP), originally designed as an extension of the Point-to-Point Protocol (PPP) used in 

dialup sessions.  While EAP was originally used to authenticate dialup subscribers, it has 

since been adopted for use in authentication in various settings, including the wireless 

network.  One of the public-key authentication schemes supported by EAP is EAP-TLS 

[AS99, BV98], which uses TLS (transport layer security) as its authentication scheme.   

 

TLS is the standardized version of SSL (secure sockets layer), the mechanism that secures 

connections on the Web.  SSL/TLS typically allows a Web server to present an X.509 

public key certificate to the client and prove knowledge of the corresponding private key, 

thus proving to the client that she is communicating with the Web server she thinks she is 

connected to.  Furthermore, SSL/TLS allows the server to request an X.509 certificate 

from the client as well, using the certificate to decide whether to grant the client access.  
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SSL/TLS, therefore, provides for mutual authentication of both the client and server and 

also permits the parties to negotiate a cryptographic suite and establish shared secrets to 

secure the session. 

 

While SSL/TLS is mostly used in a Web setting, the EAP-TLS variant within 802.1x is 

used to authenticate users over the wireless network.  The wireless supplicant plays the 

role of the Web client and the authentication server, working with the access point, fills 

the role previously held by the Web server. 

 
 
2.3   The RADIUS Protocol 
 
 

The authentication server, in our case a RADIUS (Remote Authentication Dial In User 

Service) server [Rig00, RWC00, RWRS00], is responsible for making the decision to 

accept or reject a supplicant.  RADIUS is a protocol that was originally used to 

authenticate users over dialup connections, but is increasingly used for other 

authentication scenarios, including the wireless network.  The access point, acting as the 

network access server (NAS) in the RADIUS protocol, acts as a middleman in the 

handshake between the supplicant and the RADIUS server.  If the supplicant is granted 

access, the RADIUS server passes all the necessary configuration information to the NAS 

so it can provide access to the supplicant.  The RADIUS protocol provides the 

communication between the NAS and the RADIUS server. 
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2.3.1   The RADIUS Packet 

 

Communication between the RADIUS server and the NAS requires a specified RADIUS 

packet format.  The variable-length packet contains 5 different fields: the code specifies 

what type of packet is being sent; the identifier is a serial number to ensure packets are 

not skipped; the length field announces the length of the packet; the authenticator field 

ensures the packet originated from the expected source and has not been corrupted; and 

the attribute field lists the various configuration settings that dictate to the NAS what 

services should be provided to the supplicant.   

 

Figure 2-1 presents the various fields of the RADIUS packet with their respective sizes.  

There are a handful of different RADIUS codes defined, but we are only concerned with 

six of them for our purposes.  The Access-Request packet (code #1) is sent from the NAS 

to the RADIUS server requesting access on behalf of the supplicant.  Access-Accept 

(code #2) and Access-Reject (code #3) packets are sent from the RADIUS server to the 

NAS once the decision to accept or reject the supplicant is made.  Until the decision is 

made, the RADIUS server will send Access-Challenge (code #11) packets to the NAS to 

request the appropriate credentials from the supplicant.  The RADIUS protocol also 

provides for accounting and this functionality requires the use of Accounting-Request 

(code #4) and Accounting-Response (code #5) packets.   
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Figure 2-1: The RADIUS packet and a listing of the lengths of each field.  The attribute field is of 
variable length, which causes the length of the RADIUS packet to be variable as well. 

 

 

2.3.2   The Authenticator Field 

 

The authenticator field confirms to the NAS that it is communicating with the valid 

RADIUS server.  The NAS creates a unique and unpredictable 16-octet random number, 

known as the request authenticator, and inserts it in the authenticator field of each 

Access-Request packet.  Whenever the RADIUS server responds to an Access-Request 

packet (with an Access-Challenge, -Accept, or –Reject packet), it must include the 

corresponding response authenticator in the appropriate field of the response.  The 

response authenticator is computed by taking the hash of the catenation of the RADIUS 

packet header, request authenticator, response packet attributes, and the shared secret.  

Packets with invalid authenticators are silently discarded.  If an adversary sniffs network 

traffic between the NAS and the RADIUS server, it could be possible to collect enough 

packets to potentially crack the shared secret.   

 

 

 

Code (1 octet) Identifier (1 octet) Length (2 octets) 

Authenticator (16 octets) 

Attributes (Variable length) … 
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2.3.3   RADIUS Attributes 

 

The attribute field comprises a list of the RADIUS attributes that correspond to the 

supplicant being authenticated.  As a whole, the RADIUS attributes define the specific 

authentication, authorization, information, and configuration details for the request and 

response.  Each attribute is headed by a 1-octet type field and a 1-octet length field.  The 

value of each attribute depends on the attribute in question as is of variable length.  A 

complete list of standard attribute numbers and appropriate values can be found in the 

appropriate Internet Request for Comments (RFCs) [RWRS00 and ZLR+00].   

 

Of particular relevance are the tunneling attributes that allow the RADIUS server to 

dictate which Virtual LANs (VLANs) [Cis98, Cis99] a supplicant should be placed on.   

 

2.4   Virtual LANs 

 

Virtual LANs are used to partition network resources onto localized networks using 

software.  Resources on a VLAN behave as if they are physically connected on the same 

LAN even if they are not.  VLANs can be used to control what resources users have 

access to since users placed on a certain VLAN can only access network resources that 

reside on that same VLAN.  Since VLANs are a software solution, they provide much 

greater flexibility than hardware solutions.  A user is assigned to a certain VLAN, so 

regardless of where on the network she connects from, she can access the same resources.  
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VLANs, therefore, remove the physical restrictions originally associated with partitioned 

network resources. 

 

A vital component of VLANs is the IEEE 802.1Q standard [IEEE98] that addresses the 

problem of limiting broadcast and multicast traffic within the desired VLAN.  Under 

802.1Q, a standard method for inserting VLAN membership information into Ethernet 

frames is provided.  Thus packets can be marked with VLAN information.  This allows 

traffic to be limited among the resources on a single VLAN.  Furthermore, with 802.1Q 

trunking, a single access point can distribute traffic using the VLAN tag and thus provide 

service to multiple VLANs. 

  

2.4.1 VLANs in Greenpass 

 

Our current setup of Greenpass partitions the network into two different VLANs.  The 

Native VLAN is accessed by local users and authorized guests and requires 

authentication to the RADIUS server.  The Guest VLAN can be accessed by anyone, but 

users placed on this VLAN can only access a dedicated Web server housing the guest 

delegation tool and instructions on obtaining guest access.  Once the network is organized 

into different VLANs, the RADIUS server can easily enforce a policy for each supplicant 

or group of supplicants and place users on the appropriate VLANs.   
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3.  The Physical Components 

 

This chapter describes the physical components of the Greenpass project and how they 

are set up.  Our original prototype completed in December 2003 was limited by the 

available hardware resources we had available to us.  Using the new resources provided 

by Cisco allowed us greater functionality and flexibility in our revised model.  Section 

3.1 describes the original prototype and its limitations and Section 3.2 presents the 

revised model of the project and discusses the changes in the new model. 

 

3.1 The Prototype 

 

Among the freely available RADIUS servers, I decided to use FreeRADIUS version 0.9.2 

[Free] due to its detailed documentation and its ability to handle several different 

authentication protocols.  The RADIUS server, running on a Dell P4 workstation with 

Red Hat Linux version 9, handles all authentication requests sent by a Cisco 350 access 

point.  Another Dell P4 workstation houses an Apache Web server to handle the guest 

delegation and to provide instructions for guests to obtain guest access.  All of these 

components are connected via a Cisco Catalyst 2900 series switch, configured with two 

different VLANs, which are assigned to physical ports on the switch.  Figure 3-1 

illustrates how these components are set up.   
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Figure 3-1:  The prototype of the Greenpass project.  The physical ports on the switch are configured 
to different VLANs.  In the prototype the port connecting the Web server is assigned to VLAN 2, and 
the port connecting the access point is assigned to a trunking port. 

 

VLAN 1, or the native VLAN, is granted full access to the network and the Internet; 

authorized users will be given access to VLAN 1.  VLAN 2, or the (unauthorized) guest 

VLAN, allows access only to the Web server for guest delegation; unauthorized guests 

are placed on VLAN 2, and thus given access only to the guest delegation page.  I will 

refer to the two VLANs as V1 and V2 in the following discussion.  On the switch, the 

RADIUS server and a wire to the external campus network are both connected to V1 

VLAN 

Port # 1 2 3 4 5 24

1 2 T 1 1 1 … 

… 

Switch 

Access Point 

Campus 
Network 

RADIUS 
server 

Delegation tool 
WWW server 

Wireless Supplicants 

Hub 



15 

ports.  The machine running the Web server is connected to a V2 port on the switch.  The 

access point is connected to a designated trunking port on the switch, meaning it can send 

packets to resources on either VLAN.   

 

The access point is configured with two different Service Set IDs (SSIDs).  The SSID 

named “Greenpass Test” is broadcast and is given access to V2.  Any user searching for 

an available wireless network can find this service set and can connect to it, although they 

will be placed on a VLAN that allows access only to the guest delegation page.  The 

second SSID, called “Dartmouth user,” is not broadcast and is linked to V1.  In order to 

associate to this service set, the supplicant must enter the name of the SSID and then 

authenticate to the RADIUS server. 

 

3.1.1  Limitations of the Prototype 

 

The major problem with the prototype was the absence of a router capable of trunking 

traffic across the VLANs.  At some point in the delegation process, the Web server and 

the RADIUS server need to communicate with one another.  The workaround we used 

was to connect the two machines on a private connection via a network hub.  This 

solution, however, requires physical proximity of the two machines, which decreases the 

flexibility of the solution.  The problem is compounded if there are multiple RADIUS 

servers utilized to handle authentication in a larger institution.   
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Furthermore, the delegator would need to access the Web server as part of the delegation 

process.  Placing the Web server only on V2 would prevent access by authorized users 

(i.e., non-guests), unless they associated to the guest SSID.  This is an odd restriction to 

enforce.  It is possible to grant the delegator access to resources on both V1 and V2, but 

this unnecessarily creates a new class of access policy to enforce.  Thus having the Web 

server reside on both VLANs would be a more flexible solution.  The revised model 

adheres to this solution. 

 

3.2   The Revised Setup 

 

The major change made in the revised model is the addition of new components.  The 

Cisco 2600 series router is capable of routing traffic across different VLANs, providing 

communication between the RADIUS server and the Web server.  The router is 

configured to separate our setup from the campus network.  A subnet on the Dartmouth 

network was assigned to the components of the Greenpass project and routing entries 

were added to allow our router to send traffic between the external campus network and 

our subnet.  The access point and switch were replaced by newer models (3550 series 

switch and 1100 series access point) and configured in the same manner.  Figure 3-2 

shows the layout of the revised version of Greenpass.   

 

There are a couple of changes to note regarding the WWW server.  First, as discussed in 

the previous section, the Web server uses two network interfaces, one connected to each 

VLAN.  The interface on V1 is configured with a routable IP address and can be accessed 



17 

normally from anywhere on the Web.  The interface on V2 is configured to a private 

10.0.0.* network that is used in the guest delegation process.  It is through this network 

interface that unauthorized guests will be able to access the delegation tools that reside on 

the Web server and complete the guest delegation process.   

 

 
Figure 3-2:  The revised setup of the Greenpass project.  The router separates the main campus 
network from the subnet our components reside on.  The WWW server has two network interfaces, 
one connected to each VLAN.  The DHCP server assigns a temporary IP address on our private 
network for use during the delegation process.  The DNS server helps redirect all traffic from 
unauthorized guests to the guest delegation Web page. 
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Second, the machine housing the Web server now also hosts a DHCP server and a DNS 

server.  When an unauthorized guest arrives and is placed on V2, the DHCP server will 

issue the guest a short-lived 10.0.0.* IP address.  Since users on V2 do not have a 

connection to the external network, they have no way of obtaining an IP address through 

DHCP unless we provide an IP address on our private subnet.  With the IP address on our 

private network, the guest can talk to the Web server and traffic can be routed to the guest 

as well. 

 

3.2.1 Capturing and Redirecting Web Traffic 

 

The unauthorized guest also does not have access to the standard DNS servers available 

on the external network.  Thus a DNS server is also necessary on V2 to provide domain 

name resolution.  To an unauthorized guest residing on V2, however, domain name 

resolution in itself is not useful because she does not have access to the external network.  

Thus even if a standard DNS server were available, it would serve no useful purpose.  It 

is not elegant, however, to have the guest see a “page not found” error for every external 

website she tried to access.  It would be better to redirect all external Web traffic 

originating from an unauthorized guest to our dedicated Web server.   

 

We can easily modify our DNS server to implement this redirecting of Web traffic.  

Creating a wildcard entry that resolves all domain names to the private network IP 

address of our Web server will substitute our Web server domain for whatever domain 

the guest enters into her browser.  Our Apache server is configured to redirect access to 
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the Web server’s root public directory to the location of the delegation tool.  Thus when 

the guest enters the URL “www.google.com,” the domain name is resolved to 

“dupin.dartmouth.edu” (the hostname of the Web server), and Apache redirects the 

browser to “dupin.dartmouth.edu/Greenpass/cgi-bin/grandcentral.py” (the URL of the 

delegation tool on the Web server).   

 

There are two details that need to be addressed in this solution.  First, the DNS server 

simply takes the domain name of the URL and replaces it with the IP address of our Web 

server.  Thus any path specified on the desired host would simply be appended to the 

hostname of our Web server.  For example, requesting an article on CNN’s website with 

the URL “http://www.cnn.com/2004/WORLD/meast/05/09/hersh.iraq.abuse/index.html” 

would result in the DNS parsing out the host name and Web browser returning the page 

“dupin.dartmouth.edu/2004/WORLD/meast/05/09/hersh.iraq.abuse/index.html,” a page 

that obviously does not exist on our Web server.  Thus it is necessary to filter out the 

requested URL and leave just the hostname of the requested page. 

 

The RedirectMatch command in the alias module provided by the Apache Web server 

can address this problem.  This command takes a regular expression and redirects any 

requests to the path or filename that match the regular expression to the specified 

destination.  All of the delegation pages can be found in a folder called “Greenpass,” so 

any requests to the server outside of the path “dupin.dartmouth.edu/Greenpass/” is 

assumed to be the result of an external request.  Thus all such requests are redirected to 
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the delegation front page while allowing traffic to the delegation pages to pass through 

unhindered.   

 

The second issue that needed to be addressed was that the delegation front page was 

cached under the domain name of the original request.  Referring to the earlier example 

of a request to “www.google.com” while the guest’s browser would get our delegation 

front page, it would also cache our page as “www.google.com.”  Thus after the guest is 

delegated access to the network, a query to “www.google.com” would result in the 

cached copy of the delegation front page being fetched until the browser’s cache was 

cleared.  The expires and headers modules in Apache provide a method of inserting a 

Cache-Control command in the header of each HTTP request made to the Web server 

that directs the requesting Web browser to not store the pages into its cache.   
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4.  Making the Decision (The Server Side) 

 

While the physical components are the tools of the Greenpass project, it is necessary to 

discuss how these tools are used in making the decision to authenticate or reject a 

supplicant.  This chapter describes the decision process the RADIUS server makes and 

explains the process through which a guest is delegated access.  Section 4.1 introduces 

some of the design decisions that went into formulating our solution.  Section 4.2 

discusses in detail the EAP-TLS handshake that local users use to authenticate.  Section 

4.3 explains how EAP-TLS is modified to handle guest credentials and Section 4.4 

provides a brief description of the delegation process.  Finally, Section 4.5 briefly 

explains how Greenpass supports authentication using VPNs.   

 

4.1 Design Considerations 

 

Recall from the earlier discussion that there were several requirements that we wanted to 

fulfill with the Greenpass solution.  In designing our solution, these factors were 

considered: 

• Local users must be granted access to the network with little or no additional 

effort required by the authentication process. 

• Desired guests must be granted access to the network through a decentralized 

and hassle-free delegation process. 
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• The solution must be flexible: it must scale to large institutions, support 

multiple client platforms, and extend to satisfy various access policies. 

• The solution must be secure and robust enough to defend against various 

attacks. 

 

Using a RADIUS server to handle authentication was a logical choice due to the 

adaptability of the RADIUS protocol and the availability of open-source 

implementations.  Taking advantage of the pre-existing PKI, having Dartmouth users 

authenticate through EAP-TLS was the best solution as it did not require passwords and 

provided mutual authentication.   Once local users performed the initial configuration 

required for EAP-TLS authentication (obtaining a X.509 identity certificate issued by the 

trusted CA, setting the preferences for the local user SSID, and enabling 802.1x 

authentication), the authentication process requires no additional effort from the 

supplicant. 

 

For the sake of simplicity, the RADIUS server must handle the authentication of both 

guests and local users.  The ideal solution would then have the RADIUS server determine 

whether the supplicant is a local user or a guest.  If she is a local user, then the standard 

EAP-TLS protocol would be used to authenticate her; if she is a guest, then the RADIUS 

server would automatically make its decision taking that fact into account rather than 

rejecting the guest for not being a local user.  Pursuing the most straightforward 

approach, I worked on modifying the RADIUS server’s decision algorithm to check for 

guest credentials.  If the guest is authorized for access, then the RADIUS server will 
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grant access automatically; no additional work is required for authorized guests compared 

to local users.  If the guest is not authorized for access, then she will be given instructions 

on how to obtain guest access.  The specific guest credentials and the full authentication 

decision process are described in detail later in this chapter. 

 

By modifying EAP-TLS to implement guest authentication we take advantage of the 

inherent benefits of EAP-TLS.  EAP-TLS provides the basic communication channel 

used in the authentication process between the guest and the RADIUS server.  In addition 

to making it easier to implement, the EAP-TLS framework also provides the basic 

security necessary to prevent attacks.   

 

4.2 Using X.509 Certificates for Local Users 

 

Standards and protocols that use certificates and PKI, including SSL/TLS, usually 

employ X.509 identity certificates to authenticate servers and clients.  Typical 

implementations of a PKI entail a central Certification Authority (CA) issuing and signing 

identity certificates for users.  The identity certificate is associated with a generated key 

pair for the user.  The certificate states the user’s identity, and certifies that the user owns 

the public key that is included in the certificate.  The user proves her identity by 

demonstrating ownership of the private key that belongs to the public key in the identity 

certificate.   
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Dartmouth has a full PKI in place with its own CA to issue user X.509 certificates for 

Dartmouth students, faculty, and staff.  The use of certificates for authentication purposes 

is becoming more prominent and new incoming students are issued a certificate by the 

Dartmouth CA.  Students can authenticate themselves using their own X.509 certificate 

to a Web server in order to register for the term, add and drop courses, and check their 

grades online.   

 

Taking advantage of available resources, it makes sense to use EAP-TLS to authenticate 

local users to the RADIUS server.  As discussed earlier, EAP-TLS is a public key based 

authentication scheme that provides mutual authentication of the client and server, 

making it an ideal solution to use with our preexisting PKI.  The EAP-TLS module of 

FreeRADIUS uses OpenSSL to execute the SSL/TLS handshake between the supplicant 

and the RADIUS server.  After changing the appropriate RADIUS configuration files to 

enable EAP-TLS authentication and linking the OpenSSL libraries [Sul02], the RADIUS 

server was ready to accept EAP-TLS authentication attempts.  The client file was 

configured to only accept requests sent from an access point with a Dartmouth IP address 

and the user file was set to only allow EAP (in our case EAP-TLS) authentication.   

 

In order to use EAP-TLS authentication, the RADIUS server needs a trusted root CA so 

that it knows which certificates to accept.  The RADIUS server also needs its own server 

certificate and key pair issued by the trusted root CA for authenticating itself to the 

supplicant in the handshake process.  All local users are given a key pair and issued client 

certificates signed by the trusted root CA.  OpenSSL can be used to generate key pairs, 
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create a root certificate, and issue server and client certificates [Ros03].  Although we 

eventually plan on using the Dartmouth CA as our trusted root, for the purposes of 

experimentation I created a separate CA to issue certificates for test clients and the 

RADIUS server.  Once the RADIUS server has a trusted root CA to refer to, it can handle 

authentication requests from the access point. 

 

4.2.1  The EAP-TLS Handshake 

 

When a supplicant associates with the Dartmouth user SSID, EAP-TLS authentication is 

required for the supplicant to be granted access.  An EAP-TLS handshake ensues 

between the supplicant and the RADIUS server, with the NAS acting as a middleman and 

forwarding messages between the two.  During the handshake, the supplicant provides an 

X.509 identity certificate and demonstrates knowledge of the private key that goes with 

the certificate.   

 

Figure 4-1 depicts the EAP and RADIUS packets sent among the three parties during the 

EAP-TLS handshake.  A detailed discussion on the EAP and EAP-TLS handshake 

process can be found in [AS99, BV98].  The major detail to note in this handshake 

process is how EAP-TLS works within the RADIUS framework.  The NAS uses EAP to 

communicate with the supplicant, but uses the RADIUS protocol to talk to the RADIUS 

server.  The NAS initiates the handshake with an EAP-Request packet when a wireless 

supplicant associates to the access point.  The EAP-Response packet from the supplicant 

is encapsulated in a RADIUS Access-Request packet and forwarded to the RADIUS 
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server.  The RADIUS server sends a RADIUS Access-Challenge packet back containing 

an EAP-Request packet that states it requires EAP-TLS authentication and the necessary 

server side information for the TLS handshake.  The supplicant fulfills its part in the TLS  

 

 
Figure 4-1:  A successful EAP-TLS handshake working within the RADIUS protocol.  The NAS acts 
as a middleman between the supplicant and the RADIUS server, using the EAP protocol to 
communicate with the supplicant and the RADIUS protocol to talk to the RADIUS server. 
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handshake procedure with an EAP-Response packet (containing the clients X.509 

certificate).  The process continues until the TLS handshake either succeeds or fails, with 

the NAS packing and unpacking the necessary EAP packets into the appropriate 

RADIUS packet formats. 

 

Once the TLS handshake is complete, the RADIUS server has made its decision on 

whether to accept or reject the supplicant.  If the supplicant is accepted, the RADIUS 

server sends back a RADIUS Access-Accept packet back to the NAS with the necessary 

configuration options for the supplicant contained in the attribute field of the packet.  The 

NAS will use those RADIUS attributes to provide the level of service to the supplicant as 

dictated by the user settings for the supplicant.  Typical configuration information 

includes the VLAN to place the supplicant on or a shared secret to encrypt packets.  

Inside the RADIUS packet is an EAP-Success packet the NAS sends to the supplicant to 

inform that the authentication process has succeeded.  If the supplicant fails 

authentication, the RADIUS server sends an Access-Reject packet encapsulating an EAP-

Failure packet and the supplicant is denied access to the network.   

 

4.3 Modifying EAP-TLS for Guest Access 

 

The problem becomes slightly more complicated for guest users.  Ideally, the CA of one 

institution should be able to easily verify the credentials supplied by a supplicant from a 

different institution.  In actuality, however, this interoperability between arbitrary PKIs 

has not yet been implemented.  (There are current projects, such as the higher-ed bridge 
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CA, that aim to address this issue of incompatibility and attempt to facilitate the cross-

authentication of certificates from different institutions.)   

 

It should be noted, however, that the RADIUS server can perform a number of different 

authorization checks during the EAP-TLS handshake until the RADIUS server makes its 

decision and hands down an accept or reject packet.  Thus we can handle guest access by 

modifying the RADIUS server to base its decision on some other authorization scheme.  

Policy languages such as XACML, Keynote [BFIK99] and PolicyMaker [BFL96] 

authorization certificates, X.509 standard attribute certificates (AC) [FH02], and 

SPKI/SDSI authorization certificates [EFL+98, EFL+99a, EFL+99b] are some of the 

options we considered. 

 

4.3.1 SPKI/SDSI 

  

For Greenpass, we settled on SPKI/SDSI (Simple Public Key Infrastructure/Simple 

Distributed Security Infrastructure) to provide the flexibility and operability we require 

to implement the level of guest access we want.  We chose SPKI/SDSI for three main 

reasons: (1) it focuses specifically on the problem of authorization that we are trying to 

solve, (2) its emphasis on delegation of authority easily gives rise to the decentralized 

model of guest access we envisioned, and (3) it is lightweight and easy to process.   

 

A SPKI/SDSI certificate is represented simply as an s-expression consisting of five 

fields: issuer, subject, delegation, validity dates, and authorization (optional).  The issuer, 
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subject, and validity date fields are self-explanatory.  The delegation field is a Boolean 

value stating whether or not the subject is allowed to propagate authority.  The 

authorization field contains an s-expression that describes more detailed authorization 

properties.   

 

SPKI/SDSI also provides a few major differences from traditional X.509-based PKI, a 

fact that we take advantage of in our guest delegation scheme.  First, SPKI/SDSI uses 

public keys as unique identifiers as the principals involved are associated with their 

public key rather than a name.  With guests arriving from many different institutions, it is 

possible that two people with the same name have X.509 identity certificates issued by 

different institutions.  By referring to guests by their public keys, we avoid a potential 

naming conflict.   

 

Second, a SPKI/SDSI certificate binds authority directly to the public key rather than to a 

name.  In traditional PKI, authority is bound to a name and the public key is also bound 

to the name.  Hence the authentication process requires both bindings to be confirmed 

before access is granted.  A simple example using fingerprints as identifying factors can 

demonstrate this difference.  In the traditional PKI example, Alice is said to have access 

to the building.  When Alice wishes to enter the building, her fingerprints identify her as 

being Alice (public key bound to the name) and someone checks to see if Alice is 

allowed access to the building (authority bound to the name).  In the SPKI/SDSI case, 

however, the person with Alice’s fingerprints has access to the building.  When Alice 

tries to enter the building, her fingerprints are taken and checked for access (authority 
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bound to public key) and she is granted access.  The fact that fingerprints are a unique 

identifier (as are public keys) allows authority to be verified without checking for Alice’s 

name.   

 

Finally, any person or entity can potentially issue a SPKI/SDSI certificate.  If the user is 

authorized to do so, she can delegate access to another user by issuing a SPKI/SDSI 

certificate and signing it.  Hence we have a clear mechanism for implementing our 

decentralized guest access.  For example, Dartmouth issues Alice, a professor, a 

SPKI/SDSI certificate authorizing her to grant access to guests (specifically, the 

delegation field is set to true).  When Gary, a guest, arrives at Dartmouth, he will request 

access to the network and contact Alice to get guest access.  If Alice determines that Gary 

should be given guest access, she issues and signs a short-lived SPKI/SDSI certificate 

that grants him access for the duration of the certificate.  This guest delegation is done 

without a Dartmouth central administrator getting involved.   

 

4.3.2 Using SPKI/SDSI to Authenticate Guests 

 

We can use the expressive power of SPKI/SDSI certificates to make an assertion that an 

authorized delegator granted temporary access to a guest.  When a guest wants to get 

access to the network, she must find a delegator to grant her that access.  The guest must 

prove her identity to the delegator with an X.509 certificate and somehow prove that she 

is the person who the certificate was issued to.  If the guest does not have a X.509 

certificate, a temporary one will be issued for the sake of the authentication process.  
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Once the delegator is satisfied, a SPKI/SDSI certificate is created where the issuer field is 

the delegator’s public key and the subject field is the guest’s public key.  Since we are 

granting guest access, the delegation field is set to false as to prevent the guest from 

further delegating network access to others.  The certificate is then signed with the 

delegator’s private key. 

 

Similar to X.509 certificates, we need a chain of SPKI/SDSI certificates that lead up to 

some recognized trusted root.  In order for the SPKI/SDSI certificate issued by the 

delegator to be sufficient to grant the guest access, there must be a chain from the 

delegator leading up to some trusted root.  For each non-root certificate in the chain, the 

issuer of the certificate must be validated by a similar certificate in which her public key 

is the subject.  Each certificate in the chain must have the delegation set to be true in 

order for this chain to be valid.  Once such a chain is found, the guest can be granted 

access. 

 

With SPKI/SDSI certificates, the authentication process needs to be only modified 

slightly to accommodate guest access.  Figure 4-2 shows the decision process the 

RADIUS server goes through in this endeavor.  As in the case of Dartmouth users, a 

guest associates to an access point and is asked to present credentials to the RADIUS 

server.  The guest submits an X.509 identity certificate issued by some non-Dartmouth 

CA (or a dummy certificate issued by the delegation tool should the guest not possess a 

X.509 certificate) that vouches for the guest’s identity.  The RADIUS server accepts the 

certificate and notices that the CA that issued the certificate is different from the trusted 
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root CA that it bases its decisions on.  Rather than rejecting the authentication request, 

however, the RADIUS server attempts to find a SPKI/SDSI certificate chain in the cache 

that vouches for the public key belonging to the presented X.509 certificate.  If such a 

chain can be found, the guest is granted access.  Otherwise, the guest will associate onto 

V2 where the Web server will provide directions for obtaining guest access.   

Figure 4-2: Decision flowchart used by the RADIUS server.  If the supplicant is a local Dartmouth 
user (i.e., presents an X.509 certificate issued by the Dartmouth CA), then the supplicant only needs 
to prove knowledge of the private key associated with the certificate.  Otherwise, if the supplicant is a 
guest, then the RADIUS server checks for a SPKI/SDSI certificate chain vouching for the public key. 

Supplicant presents 
X.509 certificate for 

authentication. 

Is the 
supplicant a 
local user? 

Does the supplicant 
have knowledge of 

the private key? 

Supplicant is 
granted access. 

Supplicant is 
denied access. 

Is there a SPKI 
certificate chain for 

the public key? 

RADIUS server checks 
certificate cache for 

supplicant’s public key. 

Supplicant is 
denied access. 

Yes 

Yes 

Yes 

No 

No 

No 



33 

Once the guest receives her SPKI/SDSI certificate chain (through the procedure outlined 

in Section 4.4), she can attempt to authenticate to the RADIUS server.  This time, the 

RADIUS server will find her SPKI/SDSI certificate chain, verify that the public key on 

the X.509 certificate is the subject of the SPKI/SDSI certificate, check that the guest has 

knowledge of the private key that corresponds to the said public key, and grant access to 

the guest.   

 

The SDSI project at MIT [SDS] provides implementations of SDSI code in Java and C.  

We make use of a modified version of the Java library code to certify SPKI/SDSI 

certificate chains for our authentication process.  The library uses the SPKI/SDSI 

certificate chain discovery algorithm proposed by Clark et al [CEE+01].  At the moment, 

an XML-RPC server executes this Java code and I modified the RADIUS server to use 

XML-RPC to query the server about the public key of the X.509 certificate it received.  If 

the Java library can find an appropriate chain of SPKI/SDSI certificates that vouch for the 

guest, the RADIUS server accepts the guest’s request for network access and sends the 

necessary configuration information to the NAS to provide service.  Guest access is 

temporary, so the validity date on the SPKI/SDSI certificate delegating access to the 

guest will enforce the lifespan of the temporary access.   

 

4.3.3 Alternative Approaches to Guest Authorization 

 

In addition to SPKI/SDSI, we considered other approaches to delegated guest access.  

Each alternative had its advantages and disadvantages, but we felt that SPKI/SDSI was 
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the best option.  I will discuss the possibility of using a couple of these alternative 

approaches in Chapter 6. 

 

X.509 attribute certificates work similarly to SPKI/SDSI by binding a short-lived 

authorization to the holder of a particular X.509 identity certificate.  Attribute certificates 

directly address the issue of authorization, but has some major drawbacks.  ACs are 

meant to be issued by a small number of attribute authorities (AAs), which restricts some 

of the flexibility in creating a distributed model of delegation.   Chains of ACs are 

difficult to process and administer, and for that reason the attribute certificate profile 

[FH02] advises against using them for delegation.  Furthermore, X.509 ACs are not part 

of the standard implementations of protocols and cannot be transmitted easily in EAP-

TLS and other public key certificate protocols.  If standard 802.11 clients could transmit 

ACs along with X.509 identity certificates as part of the EAP-TLS handshake process, 

this built-in means to transmit guest credentials would offer a great advantage.   

 

The PERMIS system [COB03, Per] also allows users to issue authorization certificates.  

This feature, however, was originally designed to be used by a fixed set of authorization 

certificate issuers and hence is not catered to support a distributed system of delegation.  

Section 6.3 examines the PERMIS system in more detail.     

 

One of the most basic implementations of guest access could be achieved through an 

access control list (ACL).  Temporary ACL entries in a centralized database would grant 

a guest short-lived access to the network.  Authorized “delegators” could modify parts of 
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the ACL database to add an ACL entry that grants network access to a guest.  This 

solution requires a closely-guarded centralized database, which is not optimal since we 

would like to move towards a more decentralized approach to guest access.  Maintaining 

a large database of ACL entries can quickly become a complex task and would cut down 

on the scalability of the solution. 

 

In the end we chose SPKI/SDSI because it seems to best represent the real-world model 

of guest delegation.  In the real world, authorization tends to be granted by a local 

authority or policy that governs the desired resource rather than by a central authority that 

governs all resources.  When Alice grants Gary access to Dartmouth’s network, it is 

inefficient to require a central administrator to approve of this access.  The characteristics 

of SPKI/SDSI naturally provide this mechanism for distributing delegation among local 

authorities.   

 

4.4 A Brief Discussion of the Guest Delegation Process 

 

The following section gives an overview of the process the guest and delegator go 

through in creating and signing a guest SPKI/SDSI certificate.  A more detailed 

description of the process and the tools used in this process can be found in [Gof04]. 

 

Once the guest user is placed on V2, she is assigned an IP address on the private 10.0.0.* 

subnet by our DHCP server.  The DHCP server is necessary because once the guest is 

placed on V2 she cannot communicate with the external network.  Without a DHCP 
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server, the guest will not be able to obtain an IP address and cannot continue the 

delegation process.  Furthermore, the DHCP server informs the guest to use our DNS 

server for queries.  This is necessary because (1) once again the guest cannot access the 

“real” DNS server on the external network and (2) our DNS server is used to implement 

our captive portal to redirect all traffic to our Web server.  Similar solutions are used for 

wireless hotspots in cafes and network access in hotel rooms.  

 

Instead of using firewalls to capture packets, however, the guest VLAN allows us to 

simply use our DNS server to create the same effect.  This is implemented by creating a 

wildcard entry in the default “.” zone that resolves all hostnames to the 10.0.0.* IP 

address of our Web server.   Recall that the guest is still isolated from the external 

network, thus services like e-mail will not function.  Attempting to access hosts by their 

IP address will fail as well since there is no way to route packets to those IP addresses on 

V2.  Once the guest fires up a Web browser window, she will be greeted by our guest 

delegation page.   

 

4.4.1 Presenting a Guest Certificate for Delegation 

 

As stated earlier, the guest needs an X.509 identity certificate and a SPKI/SDSI 

authorization certificate issued and signed by an authorized delegator that vouches for the 

public key found in the X.509 certificate.  So naturally the guest must submit her X.509 

certificate in order for a delegator to create an appropriate SPKI/SDSI certificate.  This 

can be achieved easily via an SSL/TLS handshake between the guest and the Web server.  
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During a SSL handshake, the client presents her X.509 certificate, and a successful 

handshake proves that the client knows the private key associated with the public key 

found in that certificate.   

 

The Web server provides for three different scenarios for arriving guests.  If the guest has 

an X.509 certificate issued by some party and her browser supports SSL, then the guest 

can present her certificate for a SSL handshake (and later to be used for the creation of 

her SPKI/SDSI certificate).  If the guest does not support SSL authentication, then she 

can upload her certificate from a PEM-formatted file (the file format commonly used 

when exporting an X.509 certificate from the certificate store) on her local disk.  Finally, 

if the guest does not have an X.509 certificate, she can generate a key pair and obtain a 

temporary X.509 certificate issued by our “dummy” CA.   

 

Once the guest presents her certificate, it is placed in a temporary repository where it 

waits for a delegator to retrieve it and create an appropriate SPKI/SDSI certificate.  The 

guest will be assigned an ID number the delegator can refer to.  The guest must contact 

an authorized delegator at this point to obtain access. 

 

4.4.2 Delegating Access to a Guest 

 

Now that the guest has introduced her certificate, a delegator must evaluate the guest’s 

request and create a guest certificate.  In order for someone to be an authorized delegator, 

he must possess (1) a (usually local user) certificate that allows him access to the 
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network, and (2) a SPKI/SDSI certificate that has the delegate tag set to true and can be 

traced back to a trusted root of authority.  The delegator connects to our Web server and 

will be recognized as a authorized delegator, thus giving him the added option of 

delegating access.   

 

The delegator uses the ID number of the guest’s request to find the guest’s X.509 

certificate.  Once the delegator selects a guest request, a trusted Java applet that is used to 

create and sign the SPKI/SDSI certificate will load.  The Java applet is signed by a signer 

vouched for by our CA, thus the delegator knows that the applet can be trusted.  This 

extra level of security is desirable because the delegator’s private key is needed to sign 

the SPKI/SDSI certificate.  Thus it is mandatory to ensure that the private key is not 

being abused by an unknown applet.   

 

Another security issue that arises at this point is that the delegator must ensure that he is 

delegating access to the correct public key.  It is conceivable that guest’s delegation 

request can be intercepted by an adversary.  The adversary then can, through a man-in-

the-middle attack, substitute his own public key for delegation.  Dohrmann and Ellison 

address a similar problem of safely introducing collaborating parties through the use of a 

visual hash [DE02].  By using the hash of the guest’s public key to create a visual 

representation, the delegator can easily verify that the public key that he received from 

the guest actually belongs to the guest by checking if the visual hashes match.  It is 

clearly easier to verify that two pictures are the same than it is to do the same for two 

large hash values in hexadecimal form. 
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When the guest supplies her X.509 certificate to the Web server, she will see a visual 

hash of her public key along with the ID number for her request.  Before the delegator 

can create a SPKI/SDSI certificate for the guest, the delegation applet loads a window 

with 16 different visual hashes, one of which belongs to the guest.  If the delegator selects 

the correct visual hash, then a SPKI/SDSI certificate is created and signed.  The 

certificate chain is then loaded into a HTTP cookie onto the guest’s Web browser as well 

as inserted into a repository where it can be accessed by the RADIUS server. 

 

The visual hash introduction requires the delegator and guest to meet in person so the 

delegator can check the visual hash on his screen and on the guest’s screen.  The guest 

and the delegator typically will not know each other, thus they must meet in person for 

the introduction.  The physical meeting will enable the delegator to check the guest’s 

identification to make sure the name on the supplied X.509 matches the name on her 

identifying documents. 

 

Once a guest is delegated access, the SPKI/SDSI certificate chain resides on her Web 

browser as a HTTP cookie.  If for some reason the server side repository of SPKI/SDSI 

certificates is lost, the guest can revisit the delegation front page to reload her certificate 

chain to the server.  The delegation page will grab the cookie from the guest’s browser, 

verify that the certificate chain is valid, and store the chain in the server’s repository.  On 

the other hand, if the guest clears cookies from her browser, she can visit the delegation 

page and submit the same X.509 certificate.  As long as the SPKI/SDSI certificate chain 

corresponding to that certificate is still present in the repository, another copy of the 
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certificate chain is inserted into a new cookie and the guest does not need to be delegated 

to again.   

 

4.5 Supporting VPNs 

 

Another popular method of protecting network resources is through the use of Virtual 

Private Networks (VPNs).  A VPN restricts access to resources on the network only to 

users who can authenticate themselves onto the VPN.  Its versatility lies in the fact that 

users can authenticate to the VPN concentrator from anywhere, and a secure channel is 

established between the VPN and the user’s current location.  The user can, therefore, 

access restricted resources on the VPN from a remote location in a secure manner.  A 

VPN concentrator can be configured to refer to an authentication server (such as a 

RADIUS server) to determine whether a user is authorized to access the VPN.  In this 

model, the VPN concentrator will play the role of the NAS instead of the access point.  

Thus, the mechanism in which the VPN concentrator works with a RADIUS server is 

already in place. 

 

We obtained a Cisco 3000 series VPN Concentrator to experiment in our Greenpass 

project.  The details of setting up the VPN concentrator can be found in [Gof04].  The 

VPN concentrator provides a network interface for the public and the private networks.  

In the VPN model, the public network represents the network resources that all users 

have access to, while the private network is the portion that is protected and restricted to 

authorized users.  For our setup, we want the public interface to reside on V2 and the 
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private interface to be connected to V1.  The VPN concentrator can act as an EAP proxy 

and pass along the entire X.509 identity certificate to the RADIUS server for EAP 

authentication.   

 

Once in place, the VPN concentrator simply acts as a NAS: the supplicant uses a VPN 

client to connect to the concentrator, the concentrator passes the client’s certificate to the 

RADIUS server, and the RADIUS server sends its decision back to the concentrator.  

Authorized guests can be authenticated in the same manner as well since the RADIUS 

server can look at the public key in the guest’s X.509 certificate and verify a SPKI/SDSI 

certificate chain.  The VPN concentrator either accepts or rejects the supplicant based on 

the decision made by the RADIUS server.   
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5.  Authenticating to Greenpass (The Client Side) 

  

In order to evaluate the usability of our solution, it is necessary to examine the entire 

process from the client’s perspective.  This chapter will describe the necessary steps a 

local user and a guest running either Windows or Mac OS must complete in order to use 

Greenpass.  I will argue for the usability of Greenpass at the end of the chapter and 

support my claims with results of the pilot [Pow04].   

 

5.1 Local Users 

 

As discussed earlier, local users authenticate to Greenpass through an EAP-TLS 

handshake.  To this end, local users need a X.509 identity certificate issued by the root 

CA and a machine that supports 802.1x authentication.  The first requirement is easy to 

fulfill as institutional CAs tend to have an enrollment page that generates a key pair and 

creates a certificate for authorized users.  The enrollment process typically stores the 

generated certificate in the user’s keystore, so installation of the certificate is usually 

unnecessary.   For our experiments, however, we use a created CA to act as the root 

authority, hence the user needs to manually install the X.509 certificate, as well as install 

the CA’s certificate into the browser’s store of trusted root certificates.  This additional 

step is straightforward and does not add to the complexity of the scheme.   

 

Configuring 802.1x authentication, on the other hand, is a more involved process.  The 

latest versions of operating systems have implemented support for 802.1x.  Specifically, 
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Windows XP (from service pack 1), Windows 2000 (from service pack 4), and Mac OS 

X Panther (version 10.3) all support 802.1x and represent a large majority of our user 

base.  Users running older versions of these operating systems must use a third-party 

802.1x client in order to authenticate using Greenpass.  Linux users can download the 

open-source XSupplicant 802.1x client.    

 

5.1.1  EAP-TLS Authentication for Windows  

 

Once the user has the necessary X.509 certificate for authentication, the Internet and 

network settings must be configured to allow EAP-TLS authentication.  Windows users 

must use the Internet Options of Internet Explorer to select the option to allow the use of 

TLS 1.0.  This option is located under the Advanced tab of the Internet Options screen 

(see Figure 5-1).  Even if Internet Explorer is not the Web browser of choice, client 

authentication is controlled by the Windows operating system, and changing the settings 

on IE appears to carry over to the “overall” Windows settings.  The default setting has 

TLS not enabled, so this option must be selected to initiate a TLS handshake. 

 

Since we are dealing with the case of a local user, we need to direct our wireless card to 

associate to the non-broadcast SSID “Dartmouth User.”  In order to use 802.1x 

authentication for a network, the network must use WEP encryption.  Under the 

properties (see Figure 5-2) for the Dartmouth User SSID, the Network Authentication 

field should be set to Open and Data Encryption should be set to WEP.  The WEP key 

for the connection is provided by the access point, so the box corresponding to this option  
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Figure 5-1:  Internet Options window for Microsoft IE with TLS 1.0 enabled. 

 
 

 
Figure 5-2:  Wireless network properties window for the Dartmouth User SSID. 
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should be checked.  Under the Authentication tab, the box that reads, “Enable IEEE 

802.1x authentication for this network” should be checked and the EAP type should be 

set to Smart Card or other Certificate. 

 

The wireless card should attempt to authenticate to the RADIUS server and associate to 

our network.  If more than one possible authentication certificate is found, a window will 

prompt the user to select which certificate to submit for authentication.  A message 

should appear about processing server information for the network, which will pop up a 

window asking if the server certificate issued by the CA should be trusted (Figure 5-3).  

Viewing the certificate verifies that the certificate belongs to the Greenpass RADIUS 

server and was issued by the Greenpass CA (Figure 5-4).  Once the user is satisfied with 

the server’s certificate, the authentication process will continue now that the server has 

verified itself to the client.   

 

 
Figure 5-3:  Confirmation window asking whether to trust the RADIUS server's certificate. 
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Once our client certificate is verified and we pass authentication, we are now connected 

to the Greenpass network.  Our subnet on the Dartmouth network is assigned the IP 

address range 129.170.253.64/27, so the associated local client should be assigned an IP 

address in that range (see Figure 5-5).  This will verify that the client did indeed pass 

authentication and has been placed on V1.  Checking the association table on the access 

point (Figure 5-6) will also confirm that the client has been associated onto V1.   

 
 
 

 
Figure 5-4:  The RADIUS server's certificate, signed by the Greenpass CA. 
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Figure 5-5:  Wireless network connection status of an authenticated local user.  Note that the 
supplicant has been assigned an IP address in the subnet of the Greenpass network. 

 

It should be noted that configuring the client to use EAP-TLS authentication for 

Greenpass is a one-time setup.  Once the wireless network (i.e., Dartmouth User SSID) is 

set up and the X.509 certificate used to authenticate to the network is selected, the 

authentication process is automatically performed on subsequent associations.  Windows 

remembers which certificate to submit to the RADIUS server.  Depending on the security 

settings, the server certificate needs to be verified only on the first attempt.  Thus from 

the client’s perspective, authentication is automatic after the initial attempt, with a short 

pause (during which the EAP-TLS authentication is taking place) being the only 

noticeable difference.  For local users, authentication to Greenpass is seamless once the 

initial configurations are complete.   
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Figure 5-6:  Status of an authenticated local user from the access point’s association table.  Note the 
values for IP address, SSID, and VLAN. 

 
 

5.1.2 EAP-TLS for Mac Users 

 

Authentication via EAP-TLS is somewhat different under the Mac platform due to 

implementation differences in the operating system.  We tested 802.1x authentication 

under Mac OS X Panther (version 10.3) using Airport Software (version 3.3 or later).  

Panther is the first version of the Mac OS that has built-in support for 802.1x.   
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Figure 5-7:  The Keychain Access window for the login keychain.  The certificate we are interested in 
is the one issued to Nicholas C. Goffee.  The other certificates must be moved to a temporary 
keychain for 802.1x authentication to use the appropriate certificate. 

 

Mac users must manage their user certificates through the Keychain Access application 

that is included with Mac OS.  With Keychain Access, users can add certificates and 

store passwords for a variety of applications.  In particular, all users on a Mac have their 

own user keychain called login that is the default keychain used in authentication.  To use 

a X.509 identity certificate for authentication, the certificate must be installed into the 

login keychain, and it must be the only certificate installed in that keychain (see Figure 5-

7).  Apple’s 802.1x support is still in its early stages and hence not very elegant.   
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Once the X.509 certificate is installed in the keychain, Airport must create an 802.1x 

connection.  Under the configuration settings, select Airport  as the Network Port, 

“Dartmouth User” as the name of the Wireless Network, and uncheck all authentication 

types except for TLS.  Figure 5-8 shows the configuration window for the 802.1x 

connection. Another implementation quirk in Airport is that users must supply a 

username and password even when using a certificate-based authentication method such 

as EAP-TLS.  The username and password have no bearing on the authentication process 

since the X.509 certificate is used to verify the supplicant.  Thus, supplying any values 

for the username and password will allow the EAP-TLS process to take place.   

 

 
Figure 5-8:  The 802.1x connection configuration screen.  The wireless network is set to our 
Dartmouth User SSID and TLS is selected as the authentication method.  Note that a dummy 
username and password must be included as well. 
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The supplicant should now be connected to Dartmouth User, signifying that they have 

passed authentication to the RADIUS server.  This can be verified by checking that the 

assigned IP address is in the 129.170.253.64/27 range that is assigned to the Greenpass 

components.     

 

5.2   Guest Users 

 

As stated earlier, guest users must be delegated access to the network by an authorized 

delegator before connecting to the network.  The delegation tools are available on the 

Web server residing on V2 of our network.  In order to access the delegation front page, 

the supplicant must associate to the V2 SSID of our wireless network.  Unlike the local 

user SSID, the guest SSID name is broadcast as “Greenpass Test.”  When in range of our 

access point(s), the supplicant will see Greenpass Test as an available network.  No 

authentication is required for this SSID, and the supplicant needs only to select this 

network to connect.  If the supplicant is already on a wireless connection, it may be 

necessary to disable or remove the current connection in order to associate to the 

Greenpass Test SSID.   

 

Once the connection to Greenpass Test is made, the supplicant should be assigned an IP 

address on our 10.0.0.* private network by our DHCP server.  It can be verified that 

along with the IP address, the DHCP server and the DNS server provided for the 

connection reside on 10.0.0.1, which is the private network IP address of our machine 
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running these services.  Figure 5-9 shows the connection status and wireless network 

details for a Windows user associated onto V2.   

 

 
Figure 5-9:  Network connection status and wireless network properties for a guest associated onto 
the guest VLAN SSID. 

 

 

With the guest now associated onto V2 and assigned an IP address on our private 

network, the guest can be delegated access to the network.  Due to our modified DNS 

server, any hostname will be redirected to our Web server.  When the guest opens up a 

Web browser page, she will automatically be sent to the delegation front page.  Figure 5-

10 shows a screenshot of the delegation front page.  As explained in the previous chapter, 

the guest supplies her public key certificate as part of an SSL handshake, or a temporary 

certificate issued by our dummy CA is issued and used if she does not have a certificate. 
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Figure 5-10:  The delegation front page.  When the guest first arrives at the site, her status will be 
"Unauthorized." 

 

The guest uploads her public key certificate and receives an ID number for her request 

and sees a visual hash of her certificate’s public key (Figure 5-11).  The guest then must 

find a delegator who will check the guest’s credentials, compare the visual hashes, and 

create and sign a SPKI/SDSI certificate for the guest.  The entire SPKI/SDSI certificate 

chain is recorded as a HTTP cookie and placed in the guest’s Web browser.  Figure 5-12 

displays the delegation page once the guest has been delegated access. 
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Figure 5-11:  The visual hash of the guest's public key.  The guest must now contact a delegator to 
create a SPKI/SDSI certificate for network access. 

 
 

 
Figure 5-12:  The delegation front page where the guest's status is now "Authorized User." 
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5.3 The Greenpass Pilot 

 

In order to test the usability of Greenpass, we ran a small pilot where users unfamiliar 

with the system worked with the various parts of the project.  In the first part of the pilot, 

participants were provided with X.509 identity certificates and authenticated to the 

system as local users.  For the next phase, participants were directed to remove the local 

user certificates and authenticated to the RADIUS certificate after being delegated guest 

access.  The final portion had some of the participants acting as delegators and granting 

temporary access to the other participants.  A more detailed description of the procedure 

and results of the pilot can be found in [Pow04].   

 

The majority of the problems occurring during the pilot occurred while setting up 802.1x 

authentication on the user machines.  We did not have any external 802.1x client software 

available, thus users running older operating systems needed to use different machines.  

While most Windows users will have Windows 2000 or later, Mac OS X Panther 

(version 10.3) is still relatively new and not as widely used.  This problem will diminish 

with time as new users will have updated operating systems and old users will eventually 

upgrade to a new operating system.  Mac users had problems managing the Keychain 

application to install and move around their local user certificates.  Users with multiple 

certificates had to remove all other certificates to a temporary keychain, which proved to 

be a task the participants were unfamiliar with.  The Windows users in our pilot did not 

have as much trouble setting up 802.1x authentication, although some found the process 

confusing.  Once 802.1x authentication was set up, the participants did not have any 

further problems authenticating to the RADIUS server. 
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The second potion of the pilot yielded few problems.  The participants had already set up 

802.1x authentication and succeeded in authenticating as local users.  Some participants 

were unclear on how to connect to the guest SSID, but understood when the step was 

explained to them.  Delegating access was a straightforward procedure as well, and the 

visual hash aided in verifying the guest certificates.  In general, the participants seemed to 

understand the overall delegation process.   

 

The pilot itself was not as comprehensive a test as we would have liked.  We did not have 

enough participants to test the full range of operating systems and hardware.  However, 

the results were promising in that the participants were able to authenticate to the 

RADIUS server as both a local user and an authorized guest.  The majority of the 

problems that occurred could be attributed more to the client operating system and how 

they handle 802.1x authentication.  Once the initial configurations were completed, the 

authentication and delegation processes were fairly straightforward.  The pilot 

demonstrated that the system itself was fairly easy to comprehend, and the usability of 

the system was affirmed to us.   



57 

6.   Future Work 

 

Up to this point, our focus on the creation of Greenpass has been on getting a working 

model to experiment with.  In the course of our discussion, several interesting ideas and 

prospects came to light, but unfortunately were placed on the back burner due to time 

restrictions.  This chapter describes some of the modifications and applications for 

Greenpass that have been discussed and, for some applications, suggests how these ideas 

can be incorporated into Greenpass. 

 

6.1 Integrating the Cisco ACS 

 

In addition to the FreeRADIUS version of Greenpass, I spent time working with the 

Cisco Secure Access Control Server (version 3.2) running on a Windows Server 2000 

machine.  The Cisco ACS is a closed-source, proprietary version of a RADIUS server 

developed by Cisco.  Under the Cisco ACS paradigm, the ACS provides authentication, 

authorization, and accounting, hence making it an AAA server.  In this model, the NAS is 

considered to be an AAA client.  Working with closed-source software was more difficult 

since the changes that could be made were severely limited.  This section will explain 

how I set up the Cisco ACS to authenticate local users and discuss the alterations that 

need to be made to support our delegated guest access.   
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Authenticating local users using the Cisco ACS is not much different than using 

FreeRADIUS.  The ACS is configured to accept EAP-TLS authentication, and the access 

point is told to consult the ACS for EAP authentication.  The only additional requirement 

that the ACS enforces is that each local user must have a user account set up, and the 

name of the account must match the common name field of the X.509 identity certificate 

issued to the user.  There is a protocol for handling unknown users, but this must be done 

through an external database, such as the Windows User Database.  In order to maintain 

the local users internally (which seems to be the more desirable choice), a user account 

must be added to the internal Cisco database.  This adds an extra administrative step 

when providing credentials to a new local user.   

 

Authenticating guests will require changing our original model, however.  In our 

FreeRADIUS version, I simply intercepted the EAP-TLS authentication process to run an 

extra check for a SPKI/SDSI certificate chain if the supplicant had a non-local X.509 

identity certificate.  With a closed-source piece of software, such a direct solution was not 

possible.  I could not come up with an implementation of authenticating delegated guests 

analogous to what occurs in the FreeRADIUS model in the time I had left.  Instead, I will 

present a blueprint for a possible solution to authenticate delegated guests. 

 

The Cisco ACS provides a mechanism where an external database can be consulted in 

determining whether a supplicant should be granted access.  If we could utilize one of the 

external databases to complete our external check for a SPKI/SDSI certificate chain, we 

can simulate the same procedure we use with FreeRADIUS.  Among the external 
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databases supported by the Cisco ACS, the most promising possibility appears to be 

Generic LDAP (Lightweight Directory Access Protocol).  According to the Cisco ACS 

User’s Guide [Cis03], the Cisco ACS forwards the username and password to the LDAP 

database, which then either passes or fails the authentication request.  The ACS then 

takes the decision made by the LDAP database and instructs the AAA client to grant or 

deny access to the supplicant.   

 

One advantage is that the hierarchical nature of LDAP can be used to retain the hierarchy 

between delegators and the guests they delegated to.  Thus, any guest delegated to by a 

certain delegator would appear as a child node of that delegator in the LDAP directory.  

As the user base grows and the system is scaled to organize a larger number of delegators 

into separate departments, this solution is very appealing.  It would be easy to keep track 

of which delegator granted access to which guest, a fact that will be very useful in 

accounting and revocation of permissions (see Section 6.4).  We can have the LDAP 

directory maintain the public keys of the guests and delegators, and have a method of 

verifying ownership of the private key that is associated with the public key stored in the 

database.  We can use SPKI/SDSI certificates or one of the alternate means of 

representing delegation discussed in Section 6.3 to implement the LDAP hierarchy of 

users.   

 

Using a different external database to authenticate and authorize guests adds to the 

system that we have designed.  It would be nice to maintain a single mechanism for 

authenticating both local and guest users.  At the very least, the guest does not realize 
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there are two different authentication mechanisms at work. The guest presents credentials 

to the AAA client (NAS) and is either granted or denied access; the guest does not really 

care who made the decision, as long as the correct decision is made.  And while 

maintaining two separate databases could be extra work, it could be advantageous to 

maintain local users and guests in separate databases.     

 

6.2 Support for Alternate Authentication Methods 

 

Our current version of Greenpass requires the supplicant to authenticate to the RADIUS 

server using EAP-TLS.  This decision was made because EAP-TLS seemed to be the 

logical choice for the environment at Dartmouth, where a full-fledged PKI is already in 

place and X.509 identity certificates are already fairly prevalent among members of the 

Dartmouth community.  At other institutions, however, lack of the necessary resources 

may make EAP-TLS an infeasible method of authentication.   

 

Password-based authentication schemes are simpler to implement, but tend to be less 

secure due to the vulnerabilities inherent in the username-password model and have the 

added requirement of keeping shared secrets between the user and the server.  

Nevertheless, password-based authentication is still commonly used and support should 

be provided.  Supporting password-based authentication schemes such as EAP-MD5 

([BSK04] provides a more detailed description of the various authentication protocols) is 

a simple matter of configuring the RADIUS server to accept such authentication 

methods.  In FreeRADIUS and other available RADIUS servers, databases of usernames 
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and passwords are maintained.  When a supplicant arrives and enters a username, the 

RADIUS server checks against its list of users and verifies that the password (or in the 

case of MD5, the MD5 hash of the password) matches the one listed for the username.  

While having the RADIUS server check a username-password is not difficult, this 

method requires a greater administrative role by some central authority because the 

database of users must be created and maintained.  Furthermore, delegation using 

username-passwords is not as natural as in the certificate-model.  In order to avoid 

placing all the work of granting guest access to a central administrator, some clever 

method of deriving guest passwords must be developed.  It would be easy to simply add 

and delete accounts as guests arrive, but since this method requires direct access to some 

centralized database, distributing this privilege to too many delegators would create 

security holes. 

 

A more recent trend in authentication protocols is the use of tunneling (creating a secure 

channel between the client and server) to protect the traffic created during the 

authentication process.  To this effect, EAP-TTLS (Tunneled TLS) and Cisco’s PEAP 

(Protected EAP) have gained popularity.  Tunneled protocols use a two-step approach in 

which the client and server create a secure channel for communication in the first stage, 

and then use one of the standard authentication protocols in the second stage.   Support 

for tunneled protocols is also implemented by most RADIUS servers by allowing the 

secure channel to be established between the supplicant and the server.  The RADIUS 

server must then be configured to handle the authentication method used within the 

tunnel in the same manner as it is without the tunnel.  Tunneled protocols are still a recent 
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development and there are only a few actual implementations of PEAP and EAP-TTLS.  

Most of the existing implementations use a password-based authentication method within 

the tunnel rather than a certificate-based one. 

 

6.3 Alternative Methods of Guest Delegation  

 

As mentioned earlier, SPKI/SDSI is by no means the only method of implementing 

delegated access.  Certain characteristics of SPKI/SDSI made it an optimal choice for our 

initial implementation, but there are other methods for delegated authorization that merits 

closer investigation.  I will discuss two of these alternative approaches in more detail and 

provide an outline for using these models to implement an authentication system with 

delegated guest access. 

 

6.3.1 PERMIS and X.509 Attribute Certificates 

 

PERMIS [COB03, Per, Cha02] is an example of a Privilege Management Infrastructure 

(PMI) that uses X.509 attribute certificates to bestow authorization onto the holder of the 

certificate.  In this model, each user is assigned a role and the privileges that are 

associated with that role.  Users are assigned to roles through role-assignment ACs while 

privileges are tied to roles through role-specification ACs.  The PERMIS implementation 

consists of three main components: the authorization policy, the privilege allocator (PA), 

and the PMI application programming interface (API).   
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The authorization policy specifies the resources that each user has access to under what 

conditions.  In other words, this is the overall blueprint that reflects the access control to 

resources and the assignment of roles to users.  Policies are expressed through XML, and 

the authorization policy is implemented through a document type definition (DTD) that 

specifies the details, such as what roles are available, how roles are allocated to users, and 

the source of authority (SOA) that oversees this procedure.   

 

The PA is used by the SOA to allocate privileges to users through the use of role-

assignment ACs.  Role-assignment ACs are stored and maintained in a LDAP directory, 

relying on the fact that ACs are signed by the issuing AA to provide tamper resistance.   

 

The API provides the interface between the access control enforcement function (AEF) 

and access control decision function (ADF).  The AEF authenticates the user and queries 

the ADF if the user has the privileges to perform the requested actions on the requested 

target.  If the user has the appropriate role ACs defined in the authorization policy, the 

ADF grants the request.   

 

Implementing a PERMIS-based model of authentication and guest delegation would 

require a completely different setup.  Instead using a RADIUS server and 802.1x 

authentication for local users, each local user would be defined a role that grants them 

access to the network.  Since PERMIS uses hierarchical role-based access control, the 

roles are structured in such a way that a parent role has all the privileges granted to the 

child role.  Following this model, we could define a delegator role and a subordinate user 
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role.  Users are given the privilege to access the network and delegators are given the 

additional privilege of delegating user roles.  Due to the hierarchy, delegators also have 

access to the network.  The AEF and ADF defined by the API will carry out the role of 

the RADIUS server in authenticating users and authorizing requests (in this case, 

accessing the network).  In the simplest model, a local user will have a role-assignment 

AC that states she is a “user” and a role-defining AC will state the users can access the 

network.   

 

When a guest wants to gain access to the network, she will contact a delegator and use 

some method of supplying credentials.  The delegator would then need to delegate a role-

assignment AC to the guest, and have the AC signed by some AA.  In order to make this 

model decentralized, each delegator would have to be delegated the same authority as an 

AA.  Otherwise, the created AC must be sent off to a central AA who would sign it and 

send it back to the delegator.   

 

There are foreseeable problems with this model of delegation.  First, PERMIS is designed 

to adhere to a more centralized model, which conflicts with our goal of a decentralized 

solution.  It may be possible to decentralize the mechanism by expanding the powers 

afforded to the delegators, but this could open up security holes.  Second, there is no clear 

distinction between local users (non-delegators) and authorized guests.  Even if we have 

distinct roles for local users and authorized guests, there is no practical difference 

between the two roles.  We would need to somehow enforce a limited lifespan on the role 

that is assigned to authorized guests or implement some manner of revocation.  Finally, 
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storing all the ACs for the entire user base into a database can lead to performance issues.  

As the size of the user base increases, a larger database must be searched whenever a user 

tries to authenticate to the network.  While it is uncertain the extent of the performance 

hit that would occur, there seems to be a concern about scalability under this model. 

 

6.3.2 KeyNote and PolicyMaker 

 

KeyNote [BFIK99, Key] (and its predecessor PolicyMaker [BFL96]) is a trust-

management system that utilizes signed assertions rather than public-key certificates to 

grant access to certain resources.  A trust-management system contains five basic 

components: a language for describing actions, which are operations that are controlled 

by the system; a mechanism for identifying principals, the entities that can be authorized 

to perform actions; a language for specifying policies, which state what actions which 

principals are allowed to perform; a language for specifying credentials, which provide a 

mechanism for delegation of authorization; and a compliance checker, which makes the 

decision on the result of a request considering a policy and a set of credentials.   

 

Actions are represented by name-value pairs organized into action attribute sets.  The 

specifics of the name-value pairs or not set and can vary from application to application.  

Principals are identified by any string value, including public keys; thus we have a 

system in which a supplicant’s public key can be the principal rather than a name.  An 

assertion can be thought of as a statement of the conditions under which the asserting 

principal authorizes actions requested by others.  A principal identified by its public key 



66 

can sign an assertion and the resulting credential performs a role analogous to public key 

certificates in the traditional PKI model.   

 

 In this model, the compliance checker acts as our decision-making entity.  Applications 

consult the compliance checker by issuing it a query that contains a proposed action 

attribute set and the requesting principal.  The compliance checker consults an ordered set 

of possible responses to select the appropriate response (called the “policy compliance 

value”).  This value can either be a Boolean value that simply accepts or rejects the 

request or a range of pre-determined values (such as “delegator,” “local user,” 

“authorized guest,” and “unauthorized guest”). 

 

It seems possible to leave the RADIUS server to authenticate local users via EAP-TLS, 

while deferring decisions on guests to the compliance checker.  In order to implement 

this model, we would have the public keys of delegators and unauthorized guests to be 

the principals involved.  We would need to establish a policy where delegators (or 

actually, their public key) can sign assertions that grant guests (via the holder of the 

public key in question) access to the network.  The action involved here would be access 

to the network.  Once the guest authenticates to the delegator, the delegator would sign an 

assertion that authorizes the guest’s public key to access the network.  Meanwhile, we 

would require the pre-defined “POLICY” principal that acts as the root of trust to issue 

assertions that allow delegators to grant access to guests.  When the RADIUS server is 

contacted by a guest user, the RADIUS server would send a query to the compliance 

checker containing the appropriate access attribute set (that establishes the chain of 
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assertions from the root of trust to the supplicant), along with the guest’s public key (as 

the requesting principal).  The compliance checker can respond with a simple Boolean 

accept/reject response or with a more sophisticated set of answers (such as which VLAN 

to place users on).   

 

Clearly the KeyNote model ties in better to our original Greenpass model since local 

users are unaffected.  There are, however, a few potential problems with this 

implementation.  A lot of work needs to be done to implement the model explained 

above: the initial policy and access attribute set must be created, the semantics of the 

access attribute name-value pairs must be defined, and the class of compliance value 

must be decided upon.  While the assertion/action model provides greater flexibility than 

SPKI/SDSI certificates, the assertions can grow to be quite complex and difficult to 

manage.  Furthermore, revoking assertions in KeyNote can become a major hassle. 

 

6.4 Accounting and Revocation 

 

An important aspect of maintaining a secure authentication system is keeping track of 

who does what and allowing for the revocation of privileges.  As stated earlier, the 

RADIUS protocol includes accounting packets that allow the NAS to request the 

RADIUS server to log client activity.  Each client is assigned a session ID number and 

the traffic concerning a certain session is tagged by that ID number.  The accounting 

functionality records useful information about the client such as the username, SSID and 
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VLAN, and the IP address of the NAS that initiated the request.  Figure 6-1 shows an 

example of the accounting entries created for an authenticated local user.   

 
Tue May 11 16:09:42 2004 
        Acct-Session-Id = "00000D83" 
        Called-Station-Id = "0040.96a1.328e" 
        Calling-Station-Id = "0002.2d52.c53d" 
        Cisco-AVPair = "ssid=Dartmouth User" 
        Cisco-AVPair = "nas-location=unspecified" 
        Cisco-AVPair = "connect-progress=Call Up" 
        Acct-Authentic = RADIUS 
        User-Name = "Sung Hoon Kim" 
        Acct-Status-Type = Start 
        NAS-Port-Type = Wireless-802.11 
        Cisco-NAS-Port = "373" 
        NAS-Port = 373 
        Service-Type = Framed-User 
        NAS-IP-Address = 129.170.253.67 
        Acct-Delay-Time = 0 
        Client-IP-Address = 129.170.253.67 
        Acct-Unique-Session-Id = "9388ceebcc31d7f4" 
        Timestamp = 1084306182 
 
Tue May 11 16:14:05 2004 
        Acct-Session-Id = "00000D83" 
        Called-Station-Id = "0040.96a1.328e" 
        Calling-Station-Id = "0002.2d52.c53d" 
        Cisco-AVPair = "ssid=Dartmouth User" 
        Cisco-AVPair = "nas-location=unspecified" 
        Cisco-AVPair = "vlan-id=1" 
        Cisco-AVPair = "auth-algo-type=eap-tls" 
        Acct-Authentic = RADIUS 
        Cisco-AVPair = "connect-progress=Call Up" 
        Acct-Session-Time = 263 
        Acct-Input-Octets = 111899 
        Acct-Output-Octets = 415652 
        Acct-Input-Packets = 828 
        Acct-Output-Packets = 1052 
        Acct-Terminate-Cause = Lost-Carrier 
        Cisco-AVPair = "disc-cause-ext=No Reason" 
        User-Name = "Sung Hoon Kim" 
        Acct-Status-Type = Stop 
        NAS-Port-Type = Wireless-802.11 
        Cisco-NAS-Port = "373" 
        NAS-Port = 373 
        Service-Type = Framed-User 
        NAS-IP-Address = 129.170.253.67 
        Acct-Delay-Time = 0 
        Client-IP-Address = 129.170.253.67 
             Acct-Unique-Session-Id = "9388ceebcc31d7f4" 
        Timestamp = 1084306445 

Figure 6-1:  Accounting entries provided for a successfully authenticated local user.  Note that the 
client is placed on the "Dartmouth User" SSID and is placed on VLAN 1. 
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Although the functionality of accounting is already implemented in the RADIUS 

protocol, there are some adjustments that need to be made to work effectively with our 

Greenpass modifications.  First, the source of the username field provided in the 

accounting logs differs depending on which operating system the client is running.  

Under Windows, the username is supplied by the X.509 identity certificate provided for 

EAP-TLS authentication to the RADIUS server.  Mac users, however, need to input any 

username and password in order to initiate 802.1x authentication, even when using a 

public-key certificate scheme such as EAP-TLS.  I observed that for Mac users, the 

username recorded in the accounting logs is the username the client enters to initiate the 

authentication process.  Since this username-password has no meaning whatsoever, Mac 

users can supply any username to be recorded in the logs.  We want Mac users to have 

the username in their X.509 certificate recorded in the accounting files as well.   

 

In the case of authorized guests, there is also a problem with logging the username.  Even 

if the username taken from the guest’s X.509 identity certificate is logged, this 

information is not necessarily important.  The guest’s certificate was issued by another 

institution, so the guest’s common name entered in the certificate does not necessarily 

have much meaning at our institution.  Furthermore, the guest’s authority comes from 

possessing knowledge of the private key that corresponds with the public key provided in 

the certificate, not from the name contained in the certificate.  For guests, it is more 

meaningful to keep track of the public key of the guest’s certificate and the identity of the 

delegator that granted the guest access.  The delegator has met the guest in question in 

order to complete the delegation process, and presumably verified the guest’s identity and 
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credentials in some manner.  Thus having this information recorded would be more 

useful in tracking down an authorized guest than simply having the entry listed in the 

common name field of the guest’s identity certificate.   

 

Revocation is another interesting problem that needs to be addressed.  Local users are 

taken care of through standard Certificate Revocation Lists (CRL) that provides a list of 

certificates that have been revoked.  The authentication server is provided with an 

updated CRL and checks against it to make sure the supplicant’s certificate has not been 

revoked.  On the guest side, certificates have short expiration periods since guest access 

is short-lived.  If a guest’s network access needs to be revoked, the SPKI/SDSI certificate 

vouching for the guest’s public key can simply be removed from the repository.  Again, 

there needs to be some record maintained of the map between a guest’s identity and her 

public key.  We can look up the guest’s public key and search for the SPKI/SDSI 

certificate speaking for that key.  This step needs to be performed manually, but 

revocation should be entrusted to some sort of administrative figure and hence this is an 

acceptable solution.   There must also be some sort of revocation list that prevents the 

guest from being delegated to again after her first credentials are revoked.   

 

Revoking the credentials of a delegator is a more complex problem.  If a delegator leaves 

the institution, it is important to revoke the delegating authority that was entrusted to him 

(revoking network access can be handled by a CRL since the delegator is a local user).  

Removing the SPKI/SDSI certificate vouching for the delegator’s public key would 

prevent further delegation of network access from that public key.  Once that certificate is 



71 

removed, however, all the guests who he delegated to will also have their access revoked 

since there is no longer a chain of valid certificates leading up to a trusted root.  Since the 

delegator’s SPKI/SDSI certificate is not a leaf on the chain, removing the certificate will 

have an effect on all the guests that he delegated to.   

 

The obvious solution is to have all the guests delegated to by the revoked delegator 

resubmit their request for network access to be handled by another delegator.  This is not 

the most desirable option, but it is the simplest and not too difficult to manage.  

Revocation of a delegator’s credentials should be a very rare occurrence, so the 

inconvenience caused to the guests will occur infrequently enough to be excusable.  It is 

important to balance the delegation load placed on each of the delegators.  Thus if a 

delegator’s guests must be reauthorized, only a proportional number of the guests will be 

affected.  Again, guest access is short-lived, thus at any time there should not be too 

many guests affected by this procedure.  In order to keep the system scalable, the number 

of delegators should increase with the number of authorized guests at any given point.  

Keeping a proportional number of delegators and balancing out the load evenly across the 

delegators will make this scenario less cumbersome.  Also, it is again vital to keep track 

of which delegator granted network access to each guest.   

 

Note that a problem arises only if the delegator is stripped of the authority to delegate.  A 

temporary restriction on network access due to the delegator’s machine being 

compromised does not pose any additional problems in terms of revocation.  We can 

temporarily place the delegator’s local certificate on the CRL to prevent access to the 
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network.  If the security breach did not affect our guest delegation process, the 

delegator’s SPKI/SDSI credentials can remain in the system so that his guests still have 

access.  Since the delegator is denied access to the network, he will not be able to 

delegate to new guests.  Guests previously delegated to should not have been affected, 

and thus their credentials are untouched.  If the nature of the security breach 

compromised the guest delegation process, we can remove the delegation credentials as 

well to invalidate the appropriate guest credentials.   

 

6.5 Supporting Other Devices 

 

Currently, laptop computers constitute the majority of access to wireless networks.  This 

fact is rapidly changing as new technology offers a variety of devices that utilize the 

wireless network.  PDAs with wireless network access are the most common example of 

alternative devices.  More cutting edge products such as Cisco’s new Voice over IP 

(VoIP) handset device and Vocera’s device for WiFi voice communication are being 

tested at Dartmouth.   

 

Naturally we want to be able to support authentication for these devices as well.  In the 

case of PDAs, simpler methods of authentication are already supported.  Thus in theory 

authenticating PDAs via Greenpass to authenticate to the wireless network is a simple 

process.  There is a concern caused by the fact that PDAs possess less processing power 

and are subject to power consumption restrictions due to battery life.  To deal with these 

limitations, decreasing the processing load required to authenticate to the network would 
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be a worthwhile cause.  Furthermore, PDAs tend to be more mobile, and thus a supplicant 

using a PDA is more likely to associate to several different access points within a single 

session.  It would be necessary to devise an elegant way of handing off an authenticated 

client among access points so that the supplicant does not need to authenticate to each 

new access point she associates to.   

 

There are some interesting ways to use these other devices for delegation of authority as 

well.  One of the applications discussed involved a “delegation stick” (RFID tag reader) 

that can read the identity off a student’s ID card (with embedded RFID tag).  A delegator 

then can create a SPKI/SDSI certificate granting a student access to a certain resource 

(such as entry into a building).   

 

6.6 Finely Grained Definition of Authority 

 

Our current version of Greenpass takes an all-or-nothing approach in granting or rejecting 

access to supplicants; the supplicant is either allowed or not allowed to connect to the 

network.  There are a few ways in which we can define a more finely grained definition 

of network access.   

 

Recall how the current setup involves two VLANs, one for authorized users and one for 

unauthorized guests.  It is a simple matter of configuring the user profiles to associate a 

supplicant onto different VLANs.  If the campus network is organized in a manner where 

different classes of resources are placed on different VLANs, we can simply assign users 
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to the appropriate VLAN to grant them the desired level of access.  The different 

resources can be organized in a hierarchical structure (such as administrators and 

students) or partitioned into non-intersecting groups (as in different departments).  In 

terms of the RADIUS server, these modifications are trivial.   The real work lies in 

setting up the physical network to place the appropriate resources onto the desired 

VLANs. 

 

Another method of finer-grained access control is the use of a policy-based scheme.  For 

example, KeyNote can be used to have different applications (such as e-mail clients, Web 

browsers, and FTP clients) each containing different access restrictions.  If we want 

guests to access only e-mail, we can establish a credential that allows principals who are 

guests to check e-mail.  We prevent access to the Internet by not defining a similar 

credential to Web traffic.  Policy-based authentication requires no hardware 

modifications to be made, but requires a lot of effort on the software side.  The desired 

policies must be defined through numerous assertions and credentials.  Furthermore, 

more finely-grained access control in this model requires the policy to be checked every 

time the user requests access to a different type of resource.   

 

6.7 Push Authorization 

 

In the push model of authorization, the supplicant pushes the necessary credentials to the 

authentication server for evaluation.  Storing the guest’s certificate chain into a HTTP 

cookie and uploading it into the Web browser is a good step towards supporting the push 
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model.  Whenever the guest visits the delegation main page after being delegated access, 

the Web browser pushes the cookie with the certificate chain.  The Web server then 

evaluates the contents of the cookie and determines the status of the guest. 

 

Continuing this approach, we would like to make the process adhere completely to the 

push model.  Instead of the RADIUS server pulling up the SPKI/SDSI certificate that 

corresponds to the guest’s public key, it would be more elegant if the guest could submit 

both the X.509 identity certificate and the SPKI/SDSI chain.  An alternative method 

could be inducing the guest’s Web browser to automatically authenticate to the local user 

SSID once the delegation front page reads the cookie and determines that the guest is 

authorized.  In this scenario, the guest pushed her credentials to the Web server via the 

HTTP cookie, and the request is initiated with the RADIUS server without any action on 

the part of the guest (the RADIUS server would still need to refer to its repository of 

SPKI/SDSI certificates to verify the chain).   

 

Alternatively, having authorized guests skip authentication to the RADIUS server 

altogether gets us closer to a push model of authorization.  Local users can still use EAP-

TLS with their X.509 certificate to authenticate to the RADIUS server.  Authorized 

guests can submit their SPKI/SDSI chain through a HTTP cookie to the Web server.  If 

the RADIUS server could contact an outside authority to verify the guest, then we could 

have the external authority grab the SPKI/SDSI chain and make the decision.  The Cisco 

ACS provides for this mechanism where the RADIUS server defers to an external 

database to check for the supplicant’s credentials.  The drawback here is that local users 
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are authenticated through one method, while authorized guests are judged through a 

different process. 

 

6.8 No PKI 

 

One of the obstacles to public-key based authentication schemes is the fact that such 

schemes require the institution to have a PKI in place.  For most institutions with small 

user populations, this is not a feasible solution; establishing a PKI is expensive and 

inefficient for small user bases.  Removing the requisite centralized component could 

redefine the concept of public-key authentication and allow such methods to be a more 

attainable solution. 

 

In our Greenpass model, the division between the local users possessing X.509 identity 

certificates and the authorized guests having SPKI/SDSI authority certificate chains is 

fairly arbitrary.  Both classes of users are granted the same access to the same network, 

are granted the authority to do so from some “higher” authority, and are not allowed to 

propagate this authority.  We can abstract this model to the scenario where there is only 

one local user (and delegator) and everyone else is an authorized guest.  Theoretically, 

PKI-based certificates follow this model: the CA is the local user whose authorization 

does not expire (or at least for a very long time) and can grant authority to others, while 

the users are granted the authority to resources for as long as they are part of the 

institution.   
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We can distribute the load of delegation by granting the authority to delegate access to 

certain individuals.  So now we still have the one local user (who acts as the CA), a few 

authorized guests whose SPKI/SDSI certificates allow them to propagate authority (the 

delegators), and the rest of the authorized guests who cannot propagate authority (the 

normal local users).  We do not need a centralized component to vouch for the identity of 

a supplicant if there is already an alternate method of authentication.  For example, all 

new students at Dartmouth could be issued a key pair and signed SPKI/SDSI certificate 

by one of the delegators.  The student’s presence and participation during orientation 

provides authentication that the student is part of the Dartmouth population.  From this 

point, the decision to grant a student access to the network is determined by the fact that 

she is a student and not by the student’s name.  The fact that there is a SPKI/SDSI chain 

that leads to the student’s public key and that the student has the private key that 

corresponds to that public key is enough to grant the student access.  A situation similar 

to this scenario already occurs at Dartmouth when incoming freshmen register for 

classes.  Each student is assigned to an advisor who possesses a PIN number for the 

student.  The advisor meets with the student, discusses course options, and gives the PIN 

number to the student, which enables the student to sign up for courses.  

 

In this scenario, we do not need a highly centralized PKI to be in place.  A stripped-down 

dummy CA like the one that is currently used to generate a key pair for guests without a 

X.509 certificate can be used to create key pairs for all the local users.  Delegators can be 

organized into more complex hierarchical structures to further distribute the role of 

delegation in a manner that is more representative of the institution in question.  All this 
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is achieved through the use of SPKI/SDSI authorization certificates, which are simpler 

and easier to process than traditional PKI certificates. 

 

There are a few flaws in this scenario, however.  There is no concept of delegation depth 

inherent in the SPKI/SDSI model.  The propagation of authority is an all-or-nothing 

choice and the depth of this propagation cannot be specified.  For example, you cannot 

create a SPKI/SDSI certificate that states that the subject may propagate authority, but the 

subject of that delegated authority may not propagate authority.  In order to create a 

structured hierarchy of delegation, it is important to closely guard how delegation of 

authority can be carried out.   

 

Revocation of authority can be a hassle as well.  Some sort of revocation list must be 

maintained for end users.  When a student is expelled, her SPKI/SDSI certificate chain 

should no longer grant her access to the network.  If the certificates are maintained in a 

repository, this simply involves the removal of the appropriate certificate.  Using a push 

model involving HTTP cookies, however, the student has control over the credentials, so 

there must be some way of invalidating her certificate chain before the expiration 

specified in the certificate.  Furthermore, if a delegator leaves the college, then the 

delegator’s certificate should no longer be valid.  If we remove the delegator’s certificate, 

however, all users that he delegated to will have their authority revoked as well.  Without 

the delegator’s SPKI/SDSI certificate, there is no longer a chain of certificates that lead 

to the trusted root.  Hence there needs to be some method of reauthorizing the affected 

users in this case.   
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Despite the flaws in this scenario, the concept of removing the PKI is an interesting one 

that merits further exploration.  This could provide an alternative for institutions that do 

not have the resources to set up and maintain a full-fledged PKI and thus could make 

public-key based authentication a more feasible option.   
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7. Conclusion 

 

In this thesis I presented the Greenpass project, focusing on the process of authenticating 

users to the network.  We added a step to the EAP-TLS authentication process to perform 

an external authorization check based on SPKI/SDSI certificates for authorized guests.  

Local users can be authenticated and authorized via traditional EAP-TLS.  SPKI/SDSI is 

a lightweight solution that removed the need for a cumbersome central authority.  Adding 

to the existing X.509-based PKI made the solution more flexible and prevented the need 

for users to install additional client software than what is provided by updated versions of 

the common operating systems. 

 

The primary goal of the Greenpass project was to implement a method of delegated guest 

access that naturally and accurately depicts how the propagation of authority flows in the 

real world.  SPKI/SDSI is the best option in this endeavor and had the added benefit of 

resulting in a more decentralized model of delegation.  Local users are unaffected by the 

guest delegation aspect of the project, and authentication to the system is mostly 

automatic after the initial configuration is complete.  Guests are afforded a similarly 

unobtrusive authentication process once a simple delegation process is complete.  In this 

manner I feel that our goal was accomplished. 

 

My work on the Greenpass project involved working with the server-side components of 

the system, focusing on modifying the RADIUS server to handle our check for authorized 

guests.  Maintaining the various components of the project entailed setting up network 
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equipment, configuring various network services, and familiarizing myself with the 

current wireless and wired network security technology.   

 

There are many directions this work can take in the future.  As technology evolves and 

newer devices and authentication standards are introduced, we want our solution to 

evolve along with the technology.  We can use software to enforce more finely-grained 

authorization policies.  By experimenting with different definitions of the delegator and 

guest roles and redefining the responsibilities of the trusted root, it is possible to break 

away from the monolithic PKI and to create a more dynamic and decentralized 

alternative that can adapt to the requirements of the current environment.  Greenpass 

introduces a method of using lightweight public-key schemes along with traditional PKI 

and investigates the possibility of redefining PKI into something that is decentralized, 

flexible, and feasible to implement.   
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8. Glossary of Terms 
 
 
802.11 – family of IEEE specifications developed for wireless LAN technology. 
 
802.11i – IEEE draft that defines the standard for future 802.11 security. 
 
802.1Q – IEEE standard that addresses limiting multicast and broadcast traffic within a 
desired VLAN.  This standard introduces inserting VLAN membership information into 
Ethernet frames. 
 
802.1x – standard designed to secure wireless LANs that follow the IEEE 802.11 
standard.  802.1x generalizes EAP and provides an authentication framework or wireless 
LANs. 
 
Authentication Server – server responsible for authenticating (determining the identity 
of) supplicants.  Some common examples of authentication servers are RADIUS and 
Kerberos.   
 
CA (Certification Authorities) – root of authority responsible for issuing certificates that 
vouch for the identity of local users.    
 
Delegator – special class of user that is authorized to grant temporary access to guests in 
our Greenpass model.  Delegators possess a SPKI/SDSI authorization certificate that has 
the delegation field set to true that allows propagation of that authority.   
 
EAP (Extensible Authentication Protocol) – an extension of the Point-to-Point Protocol 
that acts as a general protocol for authentication.  EAP supports multiple authentication 
methods and provides the framework within which a supplicant and an authentication 
server communicate.   
 
EAP-TLS – variation of the EAP protocol that uses TLS as the authentication method.  
Local users in Greenpass authenticate via EAP-TLS, and guests will use a modified 
version of this protocol.   
 
KeyNote – a trust-management system that uses signed assertions to grant access to 
desired resources. 

NAS (Network Access Server) – component in 802.1x authentication that is responsible 
for initiating the authentication request to the authentication server and provides service 
to the supplicant upon approval.  Most commonly, the access point will act as the NAS. 
 
Permis – a privilege management infrastructure that uses X.509 attribute certificates to 
assign roles to users.  Privileges are assigned to roles, thus a user assigned to a certain 
role will gain the privileges specified to that role.   
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RADIUS (Remote Authentication Dial In User Service) server – the authentication 
server used in the Greenpass system.  As the name suggests, the RADIUS protocol was 
originally intended for authenticating dialup users, but more recently used in other 
settings (including the wireless LAN).   
 
SPKI/SDSI (Simple PKI/Simple Distributed Security Infrastructure) authorization 
certificate – Lightweight certificate format used to authorize the subject to access 
resources.  SPKI/SDSI certificates are expressed as s-expressions of five fields (subject, 
issuer, delegation, validity dates, and authorization).  SPKI/SDSI certificates can 
propagate the ability contained in them to the subject of the certificate.   
 
SSID (Service Set ID) – the identifying name of the wireless network.  A wireless 
network can broadcast its SSID so that users can see its existence or not broadcast the 
SSID and require only those who know the name to connect to the network.   
 
Supplicant – the client in the 802.1x authentication model.  The supplicant must be 
authenticated by the authentication server in order to gain access to desired resources. 
 
TLS (Transport Layer Security) – a public-key authentication scheme that provides for 
mutual authentication of the client and server.  TLS can be embedded within the EAP 
protocol and is analogous to SSL. 
 
VLAN (Virtual LAN) – a software solution to protecting resources on a network.  
Resources residing on a VLAN behave as if they were located on the same physical 
network even if they are not.  VLANs provide great flexibility as users assigned to a 
particular VLAN can gain access to resources on the VLAN regardless of where the 
connection is made.   
 
WEP (Wired Equivalent Privacy) – a basic scheme designed to encrypt the session 
between the access point and the wireless supplicant.  Several design flaws make WEP an 
incomplete solution to secure wireless traffic. 
 
WPA (WiFi Protected Access) – a standard designed by the WiFi Alliance to address the 
weaknesses of WEP.  WPA offers stronger data encryption and also provides for client 
authentication through the use of EAP. 
 
X.509 attribute certificate – a standard certificate format that grants authorization to the 
holder of the appropriate X.509 identity certificate.   
 
X.509 identity certificate – a standard certificate that vouches for the identity of the 
holder of the certificate.  X.509 certificates are issued by a CA that certifies that the 
holder of the certificate belongs to a certain institution.  The holder of the certificate 
proves ownership of the certificate by displaying knowledge of the private key associated 
with the public key contained in the certificate.   
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