
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Master’s Theses Theses and Dissertations

6-3-2004

Greenpass RADIUS Tools for Delegated Authorization in Wireless Greenpass RADIUS Tools for Delegated Authorization in Wireless

Networks Networks

Sung Hoon Kim
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kim, Sung Hoon, "Greenpass RADIUS Tools for Delegated Authorization in Wireless Networks" (2004).
Master’s Theses. 5.
https://digitalcommons.dartmouth.edu/masters_theses/5

This Thesis (Master's) is brought to you for free and open access by the Theses and Dissertations at Dartmouth
Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of
Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/masters_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/masters_theses?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/masters_theses/5?utm_source=digitalcommons.dartmouth.edu%2Fmasters_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Greenpass RADIUS Tools for Delegated
Authorization in Wireless Networks

Dartmouth College Computer Science Technical Report TR2004-510

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Master of Science

in

Computer Science

by

Sung Hoon Kim

DARTMOUTH COLLEGE

Hanover, New Hampshire

June 3, 2004

Examining Committee:

Sean Smith (chair)

Edward Feustel

Christopher Hawblitzel

Carol L. Folt
Dean of Graduate Studies

ii

Abstract*

Dartmouth’s Greenpass project extends how public key cryptography can be used to

secure the wireless LAN with a RADIUS (Remote Authentication Dial In User Service)

server that is responsible for handling authentication requests from clients (called

supplicants in the 802.1x authentication model). This thesis describes the design and

implementation of the authentication process of Greenpass, specifically what decisions

are made in determining who is granted access and how a small modification of already

existing protocols can be used to provide guest access in a way that better reflects how

delegation of authority works in the real world.

Greenpass takes advantage of the existing PKI to authenticate local Dartmouth users via

X.509 identity certificates using EAP-TLS. We use the flexibility of SPKI/SDSI (Simple

Public Key Infrastructure/Simple Distributed Security Infrastructure) authorization

certificates to distribute the responsibility of delegating access to guests to certain

authorized delegators, avoiding some of the necessary steps and paperwork associated

with having a large centralized entity responsible for the entire institution. This thesis

also discusses how our solution can be adapted to support different methods of guest

delegation and investigates the possibility of eliminating the cumbersome central entity

and administrative overhead traditionally associated with public key cryptography.

* This thesis is based in part on our preliminary reports on the Greenpass project [SGK+04, GKS+04].
Concurrent theses [Gof04, Pow04] explore other aspects of the project.

iii

Acknowledgments

There are a lot of people I would like to thank for aiding me in this endeavor. I would

like to start by thanking the other members of the Greenpass team, starting with my

advisor, Professor Sean Smith, for spearheading this project and providing valuable

advice and guidance that was indispensable to my efforts. I also would like to thank

Nicholas Goffee for his outstanding work on the client-side tools and in developing the

other half of the Greenpass system, Punch Taylor for his help and guidance in setting up

our network components, Meiyuan Zhao for her work with the SDSI library, Kimberly

Powell for her organization of a pilot program to test our solution, and Kwang-Hyun

Baek for his research in the recent trends in wireless network authentication. Many

thanks also go out to Eileen Ye for her initial investigation of SPKI/SDSI and to Stephen

Campbell for setting up our Cisco equipment for the revised model.

I also would like to thank the other members of my thesis committee, Professor Edward

Feustel and Professor Chris Hawblitzel, for providing valuable input to my thesis and

bring to my attention important issues that needed to be addressed.

I would like to especially thank the Cisco Corporation for providing funding and

networking equipment used in our project, and in particular Graham Holmes and Krishna

Sankar for coordinating our efforts with Cisco.

This research has been supported in part by Cisco Corporation, the Mellon Foundation,

NSF (CCR-0209144), AT&T/Internet2 and the Office for Domestic Preparedness,

Department of Homeland Security (2000-DT-CX-K001). This paper does not necessarily

reflect the views of the sponsors.

iv

Contents

1. Introduction

1

 1.1 The Problem ..1

 1.2 Motivation ...2

 1.3 My Contribution ..3

 1.4 Roadmap ...5

2. Background

6

 2.1 Wired vs. Wireless

..

6

 2.2 EAP and EAP-TLS ..7

 2.3 The RADIUS Protocol8

 2.3.1 The RADIUS Packet9

 2.3.2 The Authenticator Field10

 2.3.3 RADIUS Attributes11

 2.4 Virtual LANs ...11

 2.4.1 VLANs in Greenpass12

3. The Physical Components 13

 3.1 The Prototype ...13

 3.1.1 Limitations of the Prototype15

 3.2 The Revised Setup16

 3.2.1 Capturing and Redirecting Web Traffic

.......................18

v

4. Making the Decision (The Server Side) 21

 4.1 Design Considerations21

 4.2 Using X.509 Certificates for Local Users23

 4.2.1 The EAP-TLS Handshake25

 4.3 Modifying EAP-TLS for Guest Access27

 4.3.1 SPKI/SDSI ...28

 4.3.2 Using SPKI/SDSI to Authenticate Guests30

 4.3.3 Alternate Approaches to Guest Authorization33

 4.4 A Brief Discussion of the Guest Delegation Process35

 4.4.1 Presenting a Guest Certificate for Delegation36

 4.4.2 Delegating Access to a Guest37

 4.5 Supporting VPNs ..40

5. Authenticating to Greenpass (The Client Side) 42

 5.1 Local Users ..42

 5.1.1 EAP-TLS Authentication for Windows43

 5.1.2 EAP-TLS for Mac Users48

 5.2 Guest Users ..51

 5.3 The Greenpass Pilot55

6. Future Work 57

 6.1 Integrating the Cisco ACS57

 6.2 Support for Alternate Authentication Methods

......................

60

vi

 6.3 Alternative Methods of Guest Delegation62

 6.3.1 PERMIS and X.509 Attribute Certificates62

 6.3.2 KeyNote and PolicyMaker65

 6.4 Accounting and Revocation67

 6.5 Support for other Devices72

 6.6 Finely Grained Definition of Authorization73

 6.7 Push Authorization74

 6.8 No PKI ..76

7. Conclusion 80

8. Glossary of Terms 82

9. References 84

vii

List of Figures

2-1 The RADIUS packet10

3-1 The prototype of the Greenpass project14

3-2 The revised setup of the Greenpass project17

4-1 A successful EAP-TLS handshake working within the RADIUS protocol26

4-2 Decision flowchart used by the RADIUS server32

5-1 Internet options window for Microsoft IE with TLS 1.0 enabled44

5-2 Wireless network properties window for the Dartmouth User SSID44

5-3 Confirmation window asking whether to trust the RADIUS server’s certificate .45

5-4 The RADIUS server’s certificate, signed by the Greenpass CA46

5-5 Wireless network connection status of an authenticated local user47

5-6 Status of an authenticated local user from the access point’s association table ..48

5-7 The Keychain Access window for the login keychain49

5-8 The 802.1x connection configuration screen50

5-9 Network connection status and wireless network properties for a guest

 associated onto the guest VLAN SSID52

5-10 The delegation front page53

5-11 The visual hash of a guest’s public key54

5-12 The delegation front page where the guest’s status is now

 “Authorized User” ..54

6-1 Accounting entries provided for a successfully authenticated local user68

1

1. Introduction

1.1 The Problem

Wireless networking is the newest hot topic in networking. As the use of wireless

networks becomes more ubiquitous, it is increasingly important to ensure that the

wireless network is kept secure. At Dartmouth College, where wireless network access is

available across the entire campus, we are developing Greenpass, a software-based

solution to secure wireless networks that also allows delegation of access to guest users.

Greenpass is designed to enforce an unobtrusive authentication process for registered

users (i.e., Dartmouth faculty, students, and staff) and to provide a seamless and

decentralized mechanism for non-registered users (guests) to gain access. Once

authorized, guests are allowed access to the same access points and resources that local

users are given. For example, guest access is not necessarily restricted to localized

physical areas (such as a conference room) like in some commercial solutions that are

available. Furthermore, the process is decentralized in that pre-selected individuals can

delegate temporary access to guests without referring to a central authority. Once the

delegator creates the guest’s credentials, the guest can immediately get access to the

network.

2

1.2 Motivation

Wireless network access is already prevalent at Dartmouth and is becoming more

available on college campuses. With the increased availability of wireless networks,

there are several issues that need to be addressed in ensuring that access to the wireless

network is at least as secure as access to the wired network. Authorized users must be

granted access to the network with little or no additional effort required by the

authentication process. Guests must be granted access to the network and the delegation

process must be hassle-free and decentralized. The solution must be adaptable: it must

scale to large environments, accept a wide variety of access policies, multiple client

platforms must be supported, and it must extend to all authorization. Furthermore, the

solution needs to be robust enough to defend against a wide range of failures and attacks.

Greenpass adheres to a different definition of guest access than other wireless security

solutions do. Guests must be approved by a delegator to qualify for guest access; we are

not letting just anyone gain access to the network. We do not want to impose physical

restrictions on where guests can get access to the network; guests are not confined to

special access points that connect to outside a firewall. Guests are not shuttled outside

the firewall, thus preventing access to the interior network. Guests should get access to

the inside, as long as they are authorized to do so. With these factors in mind, we sought

to create a decentralized solution in which guests can gain meaningful guest access

through a user-friendly delegation process.

3

1.3 My Contribution

The Greenpass project is divided into two key components: (1) the decision process used

by an authentication server* in granting or rejecting access and (2) client tools that

implement delegation of guest access. My work on the project was focused on the first

component, specifically configuring and modifying the RADIUS server that is used to

make authentication decisions. My task was to deal with maintaining the server-side

components of the system.

Over the past year I familiarized myself with the current wireless and wired network

security standards that were used in our solution. I made the decision to use the

FreeRADIUS server, an open-source and relatively well-document implementation of a

RADIUS server. After learning how the different components of the FreeRADIUS

server worked, I configured it to use EAP-TLS authentication for local users and inserted

the modified code to check for guest credentials in the authentication process.

In addition to managing the RADIUS server software, I helped in designing the physical

setup of our solution and pieced the components together. I was responsible for keeping

the components working together and implementing any changes to our setup design. I

set up and administered the CA that acted as the trusted root for the RADIUS server and

local users, generating key pairs for testing and for participants of our pilot. I set up a

* Actually, the authentication server also acts as an authorization server as authentication grants local users
access to the network. This is especially true for guest access where the server checks the guest’s
authorization certificate to decide whether or not to grant access.

4

DHCP server that assigns an IP address to unauthorized guests that associate to the guest

VLAN and a DNS server that restricts traffic originating from unauthorized guests and

redirects them to our delegation main page.

After the initial prototype was completed, my work involved cleaning up the prototype

and incorporating new components provided by Cisco into our solution. To this effect I

set up the Cisco Secure Access Control Server (ACS) on a machine running Windows

2000 Server and attempted to incorporate the ACS as our authentication server. The

design process and authentication procedure described in chapters 3, 4, and 5 refer to our

original prototype and the revised model running FreeRADIUS. The work on the Cisco

ACS was performed later and is discussed in Section 6.1.

Finally, I played an administrative role in carrying out our pilot [Pow04]. The

participants were issued the necessary X.509 certificates used in authenticating as local

users. I also provided instructions on how to set up the client’s machine to enable EAP-

TLS authentication.

A more general discussion of the Greenpass project can be found in [SGK+04] and

[GKS+04]. A discussion focusing on the delegation of guest access [Gof04] will be

forthcoming. The results and discussion of the pilot [Pow04] will be available as well.

5

1.4 Roadmap

This thesis discusses the authentication process of Greenpass.

• Chapter 2 examines the wireless security technology we make use of in our

solution. This includes discussion of EAP and EAP-TLS, the RADIUS protocol,

and an overview of Virtual LANs.

• Chapter 3 describes the physical components of Greenpass, starting with our

initial prototype and evaluating the revisions that were made.

• Chapter 4 presents the authentication and authorization from the RADIUS

server’s perspective, outlining the decision process it undertakes in deciding

whether to accept or reject a supplicant. A brief discussion of the guest

delegation process is also included.

• Chapter 5 discusses Greenpass from the client’s perspective, describing the

necessary steps needed to set up the client’s machine to support our authentication

scheme and evaluating the process the client sees.

• Chapter 6 introduces some prospects for future work and investigates some of

the possible extensions of Greenpass.

• Chapter 7 summarizes my work on the project and offers some concluding

remarks.

• Chapter 8 provides a glossary of the terms used in this thesis, including the

numerous acronyms that are part of the vocabulary of network security.

6

2. Background

Before discussing the details of the Greenpass project, it is necessary to discuss some of

the standards and protocols defined in the field of wireless (and wired) network security.

In this chapter, I will introduce the various acronyms that appear in dealing with this field

and explain how these standards are incorporated into our solution.

2.1 Wired vs. Wireless

Wireless network security poses additional problems that those involved in keeping a

wired network secure. In a wired network, the computer is physically connected to the

institution’s network. If a machine is connected to a subnet identified with a certain

physical location, it is known that the machine must be physically connected to that

location. With wireless networking, however, the transmission of the signal via radio

waves removes this physical requirement. A machine no longer needs to be inside a

certain building to connect to its wireless network; it just needs to be within radio range.

This clearly opens the wireless network to a greater range of potential abuses.

In addition to determining whether the supplicant should be granted access, the use of

radio transmission also necessitates the need to protect the communication between the

client and the access point. Until recently, wired equivalent privacy (WEP) was available

to protect the session between the supplicant and the access point. Due to major flaws in

7

the scheme, however, the WiFi Alliance, a vendor consortium formed to certify

interoperability of wireless LAN products, changed its certification rules to now require

WiFi protected access (WPA). WPA is a subset of 802.11i, the IEEE draft that defines

the standard for future 802.11 security. WPA offers a stronger encryption scheme and

provides support for a wider variety of authentication techniques, marking a vast

improvement over WEP [EA03].

2.2 EAP and EAP-TLS

Both WPA and 802.11i use 802.1x [IEEE01], a general control mechanism for any

Ethernet-based network. 802.1x generalizes the Extensible Authentication Protocol

(EAP), originally designed as an extension of the Point-to-Point Protocol (PPP) used in

dialup sessions. While EAP was originally used to authenticate dialup subscribers, it has

since been adopted for use in authentication in various settings, including the wireless

network. One of the public-key authentication schemes supported by EAP is EAP-TLS

[AS99, BV98], which uses TLS (transport layer security) as its authentication scheme.

TLS is the standardized version of SSL (secure sockets layer), the mechanism that secures

connections on the Web. SSL/TLS typically allows a Web server to present an X.509

public key certificate to the client and prove knowledge of the corresponding private key,

thus proving to the client that she is communicating with the Web server she thinks she is

connected to. Furthermore, SSL/TLS allows the server to request an X.509 certificate

from the client as well, using the certificate to decide whether to grant the client access.

8

SSL/TLS, therefore, provides for mutual authentication of both the client and server and

also permits the parties to negotiate a cryptographic suite and establish shared secrets to

secure the session.

While SSL/TLS is mostly used in a Web setting, the EAP-TLS variant within 802.1x is

used to authenticate users over the wireless network. The wireless supplicant plays the

role of the Web client and the authentication server, working with the access point, fills

the role previously held by the Web server.

2.3 The RADIUS Protocol

The authentication server, in our case a RADIUS (Remote Authentication Dial In User

Service) server [Rig00, RWC00, RWRS00], is responsible for making the decision to

accept or reject a supplicant. RADIUS is a protocol that was originally used to

authenticate users over dialup connections, but is increasingly used for other

authentication scenarios, including the wireless network. The access point, acting as the

network access server (NAS) in the RADIUS protocol, acts as a middleman in the

handshake between the supplicant and the RADIUS server. If the supplicant is granted

access, the RADIUS server passes all the necessary configuration information to the NAS

so it can provide access to the supplicant. The RADIUS protocol provides the

communication between the NAS and the RADIUS server.

9

2.3.1 The RADIUS Packet

Communication between the RADIUS server and the NAS requires a specified RADIUS

packet format. The variable-length packet contains 5 different fields: the code specifies

what type of packet is being sent; the identifier is a serial number to ensure packets are

not skipped; the length field announces the length of the packet; the authenticator field

ensures the packet originated from the expected source and has not been corrupted; and

the attribute field lists the various configuration settings that dictate to the NAS what

services should be provided to the supplicant.

Figure 2-1 presents the various fields of the RADIUS packet with their respective sizes.

There are a handful of different RADIUS codes defined, but we are only concerned with

six of them for our purposes. The Access-Request packet (code #1) is sent from the NAS

to the RADIUS server requesting access on behalf of the supplicant. Access-Accept

(code #2) and Access-Reject (code #3) packets are sent from the RADIUS server to the

NAS once the decision to accept or reject the supplicant is made. Until the decision is

made, the RADIUS server will send Access-Challenge (code #11) packets to the NAS to

request the appropriate credentials from the supplicant. The RADIUS protocol also

provides for accounting and this functionality requires the use of Accounting-Request

(code #4) and Accounting-Response (code #5) packets.

10

Figure 2-1: The RADIUS packet and a listing of the lengths of each field. The attribute field is of
variable length, which causes the length of the RADIUS packet to be variable as well.

2.3.2 The Authenticator Field

The authenticator field confirms to the NAS that it is communicating with the valid

RADIUS server. The NAS creates a unique and unpredictable 16-octet random number,

known as the request authenticator, and inserts it in the authenticator field of each

Access-Request packet. Whenever the RADIUS server responds to an Access-Request

packet (with an Access-Challenge, -Accept, or –Reject packet), it must include the

corresponding response authenticator in the appropriate field of the response. The

response authenticator is computed by taking the hash of the catenation of the RADIUS

packet header, request authenticator, response packet attributes, and the shared secret.

Packets with invalid authenticators are silently discarded. If an adversary sniffs network

traffic between the NAS and the RADIUS server, it could be possible to collect enough

packets to potentially crack the shared secret.

Code (1 octet) Identifier (1 octet) Length (2 octets)

Authenticator (16 octets)

Attributes (Variable length) …

11

2.3.3 RADIUS Attributes

The attribute field comprises a list of the RADIUS attributes that correspond to the

supplicant being authenticated. As a whole, the RADIUS attributes define the specific

authentication, authorization, information, and configuration details for the request and

response. Each attribute is headed by a 1-octet type field and a 1-octet length field. The

value of each attribute depends on the attribute in question as is of variable length. A

complete list of standard attribute numbers and appropriate values can be found in the

appropriate Internet Request for Comments (RFCs) [RWRS00 and ZLR+00].

Of particular relevance are the tunneling attributes that allow the RADIUS server to

dictate which Virtual LANs (VLANs) [Cis98, Cis99] a supplicant should be placed on.

2.4 Virtual LANs

Virtual LANs are used to partition network resources onto localized networks using

software. Resources on a VLAN behave as if they are physically connected on the same

LAN even if they are not. VLANs can be used to control what resources users have

access to since users placed on a certain VLAN can only access network resources that

reside on that same VLAN. Since VLANs are a software solution, they provide much

greater flexibility than hardware solutions. A user is assigned to a certain VLAN, so

regardless of where on the network she connects from, she can access the same resources.

12

VLANs, therefore, remove the physical restrictions originally associated with partitioned

network resources.

A vital component of VLANs is the IEEE 802.1Q standard [IEEE98] that addresses the

problem of limiting broadcast and multicast traffic within the desired VLAN. Under

802.1Q, a standard method for inserting VLAN membership information into Ethernet

frames is provided. Thus packets can be marked with VLAN information. This allows

traffic to be limited among the resources on a single VLAN. Furthermore, with 802.1Q

trunking, a single access point can distribute traffic using the VLAN tag and thus provide

service to multiple VLANs.

2.4.1 VLANs in Greenpass

Our current setup of Greenpass partitions the network into two different VLANs. The

Native VLAN is accessed by local users and authorized guests and requires

authentication to the RADIUS server. The Guest VLAN can be accessed by anyone, but

users placed on this VLAN can only access a dedicated Web server housing the guest

delegation tool and instructions on obtaining guest access. Once the network is organized

into different VLANs, the RADIUS server can easily enforce a policy for each supplicant

or group of supplicants and place users on the appropriate VLANs.

13

3. The Physical Components

This chapter describes the physical components of the Greenpass project and how they

are set up. Our original prototype completed in December 2003 was limited by the

available hardware resources we had available to us. Using the new resources provided

by Cisco allowed us greater functionality and flexibility in our revised model. Section

3.1 describes the original prototype and its limitations and Section 3.2 presents the

revised model of the project and discusses the changes in the new model.

3.1 The Prototype

Among the freely available RADIUS servers, I decided to use FreeRADIUS version 0.9.2

[Free] due to its detailed documentation and its ability to handle several different

authentication protocols. The RADIUS server, running on a Dell P4 workstation with

Red Hat Linux version 9, handles all authentication requests sent by a Cisco 350 access

point. Another Dell P4 workstation houses an Apache Web server to handle the guest

delegation and to provide instructions for guests to obtain guest access. All of these

components are connected via a Cisco Catalyst 2900 series switch, configured with two

different VLANs, which are assigned to physical ports on the switch. Figure 3-1

illustrates how these components are set up.

14

Figure 3-1: The prototype of the Greenpass project. The physical ports on the switch are configured
to different VLANs. In the prototype the port connecting the Web server is assigned to VLAN 2, and
the port connecting the access point is assigned to a trunking port.

VLAN 1, or the native VLAN, is granted full access to the network and the Internet;

authorized users will be given access to VLAN 1. VLAN 2, or the (unauthorized) guest

VLAN, allows access only to the Web server for guest delegation; unauthorized guests

are placed on VLAN 2, and thus given access only to the guest delegation page. I will

refer to the two VLANs as V1 and V2 in the following discussion. On the switch, the

RADIUS server and a wire to the external campus network are both connected to V1

VLAN

Port # 1 2 3 4 5 24

1 2 T 1 1 1 …

…

Switch

Access Point

Campus
Network

RADIUS
server

Delegation tool
WWW server

Wireless Supplicants

Hub

15

ports. The machine running the Web server is connected to a V2 port on the switch. The

access point is connected to a designated trunking port on the switch, meaning it can send

packets to resources on either VLAN.

The access point is configured with two different Service Set IDs (SSIDs). The SSID

named “Greenpass Test” is broadcast and is given access to V2. Any user searching for

an available wireless network can find this service set and can connect to it, although they

will be placed on a VLAN that allows access only to the guest delegation page. The

second SSID, called “Dartmouth user,” is not broadcast and is linked to V1. In order to

associate to this service set, the supplicant must enter the name of the SSID and then

authenticate to the RADIUS server.

3.1.1 Limitations of the Prototype

The major problem with the prototype was the absence of a router capable of trunking

traffic across the VLANs. At some point in the delegation process, the Web server and

the RADIUS server need to communicate with one another. The workaround we used

was to connect the two machines on a private connection via a network hub. This

solution, however, requires physical proximity of the two machines, which decreases the

flexibility of the solution. The problem is compounded if there are multiple RADIUS

servers utilized to handle authentication in a larger institution.

16

Furthermore, the delegator would need to access the Web server as part of the delegation

process. Placing the Web server only on V2 would prevent access by authorized users

(i.e., non-guests), unless they associated to the guest SSID. This is an odd restriction to

enforce. It is possible to grant the delegator access to resources on both V1 and V2, but

this unnecessarily creates a new class of access policy to enforce. Thus having the Web

server reside on both VLANs would be a more flexible solution. The revised model

adheres to this solution.

3.2 The Revised Setup

The major change made in the revised model is the addition of new components. The

Cisco 2600 series router is capable of routing traffic across different VLANs, providing

communication between the RADIUS server and the Web server. The router is

configured to separate our setup from the campus network. A subnet on the Dartmouth

network was assigned to the components of the Greenpass project and routing entries

were added to allow our router to send traffic between the external campus network and

our subnet. The access point and switch were replaced by newer models (3550 series

switch and 1100 series access point) and configured in the same manner. Figure 3-2

shows the layout of the revised version of Greenpass.

There are a couple of changes to note regarding the WWW server. First, as discussed in

the previous section, the Web server uses two network interfaces, one connected to each

VLAN. The interface on V1 is configured with a routable IP address and can be accessed

17

normally from anywhere on the Web. The interface on V2 is configured to a private

10.0.0.* network that is used in the guest delegation process. It is through this network

interface that unauthorized guests will be able to access the delegation tools that reside on

the Web server and complete the guest delegation process.

Figure 3-2: The revised setup of the Greenpass project. The router separates the main campus
network from the subnet our components reside on. The WWW server has two network interfaces,
one connected to each VLAN. The DHCP server assigns a temporary IP address on our private
network for use during the delegation process. The DNS server helps redirect all traffic from
unauthorized guests to the guest delegation Web page.

VLAN

Port # 1 2 3 4 5 24

1 2 1 T 1 1 …
…

Switch

Access Point

Campus
Network

RADIUS
server

Delegation tool
WWW server
DHCP server
DNS server

Wireless Supplicants

Router

18

Second, the machine housing the Web server now also hosts a DHCP server and a DNS

server. When an unauthorized guest arrives and is placed on V2, the DHCP server will

issue the guest a short-lived 10.0.0.* IP address. Since users on V2 do not have a

connection to the external network, they have no way of obtaining an IP address through

DHCP unless we provide an IP address on our private subnet. With the IP address on our

private network, the guest can talk to the Web server and traffic can be routed to the guest

as well.

3.2.1 Capturing and Redirecting Web Traffic

The unauthorized guest also does not have access to the standard DNS servers available

on the external network. Thus a DNS server is also necessary on V2 to provide domain

name resolution. To an unauthorized guest residing on V2, however, domain name

resolution in itself is not useful because she does not have access to the external network.

Thus even if a standard DNS server were available, it would serve no useful purpose. It

is not elegant, however, to have the guest see a “page not found” error for every external

website she tried to access. It would be better to redirect all external Web traffic

originating from an unauthorized guest to our dedicated Web server.

We can easily modify our DNS server to implement this redirecting of Web traffic.

Creating a wildcard entry that resolves all domain names to the private network IP

address of our Web server will substitute our Web server domain for whatever domain

the guest enters into her browser. Our Apache server is configured to redirect access to

19

the Web server’s root public directory to the location of the delegation tool. Thus when

the guest enters the URL “www.google.com,” the domain name is resolved to

“dupin.dartmouth.edu” (the hostname of the Web server), and Apache redirects the

browser to “dupin.dartmouth.edu/Greenpass/cgi-bin/grandcentral.py” (the URL of the

delegation tool on the Web server).

There are two details that need to be addressed in this solution. First, the DNS server

simply takes the domain name of the URL and replaces it with the IP address of our Web

server. Thus any path specified on the desired host would simply be appended to the

hostname of our Web server. For example, requesting an article on CNN’s website with

the URL “http://www.cnn.com/2004/WORLD/meast/05/09/hersh.iraq.abuse/index.html”

would result in the DNS parsing out the host name and Web browser returning the page

“dupin.dartmouth.edu/2004/WORLD/meast/05/09/hersh.iraq.abuse/index.html,” a page

that obviously does not exist on our Web server. Thus it is necessary to filter out the

requested URL and leave just the hostname of the requested page.

The RedirectMatch command in the alias module provided by the Apache Web server

can address this problem. This command takes a regular expression and redirects any

requests to the path or filename that match the regular expression to the specified

destination. All of the delegation pages can be found in a folder called “Greenpass,” so

any requests to the server outside of the path “dupin.dartmouth.edu/Greenpass/” is

assumed to be the result of an external request. Thus all such requests are redirected to

20

the delegation front page while allowing traffic to the delegation pages to pass through

unhindered.

The second issue that needed to be addressed was that the delegation front page was

cached under the domain name of the original request. Referring to the earlier example

of a request to “www.google.com” while the guest’s browser would get our delegation

front page, it would also cache our page as “www.google.com.” Thus after the guest is

delegated access to the network, a query to “www.google.com” would result in the

cached copy of the delegation front page being fetched until the browser’s cache was

cleared. The expires and headers modules in Apache provide a method of inserting a

Cache-Control command in the header of each HTTP request made to the Web server

that directs the requesting Web browser to not store the pages into its cache.

21

4. Making the Decision (The Server Side)

While the physical components are the tools of the Greenpass project, it is necessary to

discuss how these tools are used in making the decision to authenticate or reject a

supplicant. This chapter describes the decision process the RADIUS server makes and

explains the process through which a guest is delegated access. Section 4.1 introduces

some of the design decisions that went into formulating our solution. Section 4.2

discusses in detail the EAP-TLS handshake that local users use to authenticate. Section

4.3 explains how EAP-TLS is modified to handle guest credentials and Section 4.4

provides a brief description of the delegation process. Finally, Section 4.5 briefly

explains how Greenpass supports authentication using VPNs.

4.1 Design Considerations

Recall from the earlier discussion that there were several requirements that we wanted to

fulfill with the Greenpass solution. In designing our solution, these factors were

considered:

• Local users must be granted access to the network with little or no additional

effort required by the authentication process.

• Desired guests must be granted access to the network through a decentralized

and hassle-free delegation process.

22

• The solution must be flexible: it must scale to large institutions, support

multiple client platforms, and extend to satisfy various access policies.

• The solution must be secure and robust enough to defend against various

attacks.

Using a RADIUS server to handle authentication was a logical choice due to the

adaptability of the RADIUS protocol and the availability of open-source

implementations. Taking advantage of the pre-existing PKI, having Dartmouth users

authenticate through EAP-TLS was the best solution as it did not require passwords and

provided mutual authentication. Once local users performed the initial configuration

required for EAP-TLS authentication (obtaining a X.509 identity certificate issued by the

trusted CA, setting the preferences for the local user SSID, and enabling 802.1x

authentication), the authentication process requires no additional effort from the

supplicant.

For the sake of simplicity, the RADIUS server must handle the authentication of both

guests and local users. The ideal solution would then have the RADIUS server determine

whether the supplicant is a local user or a guest. If she is a local user, then the standard

EAP-TLS protocol would be used to authenticate her; if she is a guest, then the RADIUS

server would automatically make its decision taking that fact into account rather than

rejecting the guest for not being a local user. Pursuing the most straightforward

approach, I worked on modifying the RADIUS server’s decision algorithm to check for

guest credentials. If the guest is authorized for access, then the RADIUS server will

23

grant access automatically; no additional work is required for authorized guests compared

to local users. If the guest is not authorized for access, then she will be given instructions

on how to obtain guest access. The specific guest credentials and the full authentication

decision process are described in detail later in this chapter.

By modifying EAP-TLS to implement guest authentication we take advantage of the

inherent benefits of EAP-TLS. EAP-TLS provides the basic communication channel

used in the authentication process between the guest and the RADIUS server. In addition

to making it easier to implement, the EAP-TLS framework also provides the basic

security necessary to prevent attacks.

4.2 Using X.509 Certificates for Local Users

Standards and protocols that use certificates and PKI, including SSL/TLS, usually

employ X.509 identity certificates to authenticate servers and clients. Typical

implementations of a PKI entail a central Certification Authority (CA) issuing and signing

identity certificates for users. The identity certificate is associated with a generated key

pair for the user. The certificate states the user’s identity, and certifies that the user owns

the public key that is included in the certificate. The user proves her identity by

demonstrating ownership of the private key that belongs to the public key in the identity

certificate.

24

Dartmouth has a full PKI in place with its own CA to issue user X.509 certificates for

Dartmouth students, faculty, and staff. The use of certificates for authentication purposes

is becoming more prominent and new incoming students are issued a certificate by the

Dartmouth CA. Students can authenticate themselves using their own X.509 certificate

to a Web server in order to register for the term, add and drop courses, and check their

grades online.

Taking advantage of available resources, it makes sense to use EAP-TLS to authenticate

local users to the RADIUS server. As discussed earlier, EAP-TLS is a public key based

authentication scheme that provides mutual authentication of the client and server,

making it an ideal solution to use with our preexisting PKI. The EAP-TLS module of

FreeRADIUS uses OpenSSL to execute the SSL/TLS handshake between the supplicant

and the RADIUS server. After changing the appropriate RADIUS configuration files to

enable EAP-TLS authentication and linking the OpenSSL libraries [Sul02], the RADIUS

server was ready to accept EAP-TLS authentication attempts. The client file was

configured to only accept requests sent from an access point with a Dartmouth IP address

and the user file was set to only allow EAP (in our case EAP-TLS) authentication.

In order to use EAP-TLS authentication, the RADIUS server needs a trusted root CA so

that it knows which certificates to accept. The RADIUS server also needs its own server

certificate and key pair issued by the trusted root CA for authenticating itself to the

supplicant in the handshake process. All local users are given a key pair and issued client

certificates signed by the trusted root CA. OpenSSL can be used to generate key pairs,

25

create a root certificate, and issue server and client certificates [Ros03]. Although we

eventually plan on using the Dartmouth CA as our trusted root, for the purposes of

experimentation I created a separate CA to issue certificates for test clients and the

RADIUS server. Once the RADIUS server has a trusted root CA to refer to, it can handle

authentication requests from the access point.

4.2.1 The EAP-TLS Handshake

When a supplicant associates with the Dartmouth user SSID, EAP-TLS authentication is

required for the supplicant to be granted access. An EAP-TLS handshake ensues

between the supplicant and the RADIUS server, with the NAS acting as a middleman and

forwarding messages between the two. During the handshake, the supplicant provides an

X.509 identity certificate and demonstrates knowledge of the private key that goes with

the certificate.

Figure 4-1 depicts the EAP and RADIUS packets sent among the three parties during the

EAP-TLS handshake. A detailed discussion on the EAP and EAP-TLS handshake

process can be found in [AS99, BV98]. The major detail to note in this handshake

process is how EAP-TLS works within the RADIUS framework. The NAS uses EAP to

communicate with the supplicant, but uses the RADIUS protocol to talk to the RADIUS

server. The NAS initiates the handshake with an EAP-Request packet when a wireless

supplicant associates to the access point. The EAP-Response packet from the supplicant

is encapsulated in a RADIUS Access-Request packet and forwarded to the RADIUS

26

server. The RADIUS server sends a RADIUS Access-Challenge packet back containing

an EAP-Request packet that states it requires EAP-TLS authentication and the necessary

server side information for the TLS handshake. The supplicant fulfills its part in the TLS

Figure 4-1: A successful EAP-TLS handshake working within the RADIUS protocol. The NAS acts
as a middleman between the supplicant and the RADIUS server, using the EAP protocol to
communicate with the supplicant and the RADIUS protocol to talk to the RADIUS server.

EAP-Request/ EAP-Type =
EAP-TLS (TLS Start, S bit set)

EAP-Response/ EAP-Type =
EAP-TLS (TLS client_hello) RADIUS Access-Request/

EAP-Message/ EAP-Response/
EAP-Type = EAP-TLS

RADIUS Access-Challenge/
EAP-Message/EAP-Request/

EAP-Type=EAP-TLS
EAP-Request/ EAP-Type=EAP-

TLS
(TLS server_hello, TLS certificate,

[TLS server_key_exchange,]
[TLS certificate_request,]
TLS server_hello_done)

EAP-Response/ EAP-Type=EAP-
TLS
(TLS certificate,
TLS client_key_exchange,
[TLS certificate_verify,]
TLS change_cipher_spec,
TLS finished)

Supplicant NAS RADIUS
server

RADIUS Access-Request/
EAP-Message/ EAP-Response/
EAP-Type=EAP-TLS

RADIUS Access-Challenge/
EAP-Message/ EAP-Request/

EAP-Type=EAP-TLS EAP-Request/
EAP-Type = EAP-TLS

(TLS change_cipher_spec,
TLS finished)

EAP-Response/
EAP-Type=EAP-TLS

RADIUS Access-Accept /
EAP-Message/ EAP-Success /

(configuration attributes)

 EAP-Success

RADIUS Access-Request/
EAP-Message/ EAP-Response/
EAP-Type=EAP-TLS

27

handshake procedure with an EAP-Response packet (containing the clients X.509

certificate). The process continues until the TLS handshake either succeeds or fails, with

the NAS packing and unpacking the necessary EAP packets into the appropriate

RADIUS packet formats.

Once the TLS handshake is complete, the RADIUS server has made its decision on

whether to accept or reject the supplicant. If the supplicant is accepted, the RADIUS

server sends back a RADIUS Access-Accept packet back to the NAS with the necessary

configuration options for the supplicant contained in the attribute field of the packet. The

NAS will use those RADIUS attributes to provide the level of service to the supplicant as

dictated by the user settings for the supplicant. Typical configuration information

includes the VLAN to place the supplicant on or a shared secret to encrypt packets.

Inside the RADIUS packet is an EAP-Success packet the NAS sends to the supplicant to

inform that the authentication process has succeeded. If the supplicant fails

authentication, the RADIUS server sends an Access-Reject packet encapsulating an EAP-

Failure packet and the supplicant is denied access to the network.

4.3 Modifying EAP-TLS for Guest Access

The problem becomes slightly more complicated for guest users. Ideally, the CA of one

institution should be able to easily verify the credentials supplied by a supplicant from a

different institution. In actuality, however, this interoperability between arbitrary PKIs

has not yet been implemented. (There are current projects, such as the higher-ed bridge

28

CA, that aim to address this issue of incompatibility and attempt to facilitate the cross-

authentication of certificates from different institutions.)

It should be noted, however, that the RADIUS server can perform a number of different

authorization checks during the EAP-TLS handshake until the RADIUS server makes its

decision and hands down an accept or reject packet. Thus we can handle guest access by

modifying the RADIUS server to base its decision on some other authorization scheme.

Policy languages such as XACML, Keynote [BFIK99] and PolicyMaker [BFL96]

authorization certificates, X.509 standard attribute certificates (AC) [FH02], and

SPKI/SDSI authorization certificates [EFL+98, EFL+99a, EFL+99b] are some of the

options we considered.

4.3.1 SPKI/SDSI

For Greenpass, we settled on SPKI/SDSI (Simple Public Key Infrastructure/Simple

Distributed Security Infrastructure) to provide the flexibility and operability we require

to implement the level of guest access we want. We chose SPKI/SDSI for three main

reasons: (1) it focuses specifically on the problem of authorization that we are trying to

solve, (2) its emphasis on delegation of authority easily gives rise to the decentralized

model of guest access we envisioned, and (3) it is lightweight and easy to process.

A SPKI/SDSI certificate is represented simply as an s-expression consisting of five

fields: issuer, subject, delegation, validity dates, and authorization (optional). The issuer,

29

subject, and validity date fields are self-explanatory. The delegation field is a Boolean

value stating whether or not the subject is allowed to propagate authority. The

authorization field contains an s-expression that describes more detailed authorization

properties.

SPKI/SDSI also provides a few major differences from traditional X.509-based PKI, a

fact that we take advantage of in our guest delegation scheme. First, SPKI/SDSI uses

public keys as unique identifiers as the principals involved are associated with their

public key rather than a name. With guests arriving from many different institutions, it is

possible that two people with the same name have X.509 identity certificates issued by

different institutions. By referring to guests by their public keys, we avoid a potential

naming conflict.

Second, a SPKI/SDSI certificate binds authority directly to the public key rather than to a

name. In traditional PKI, authority is bound to a name and the public key is also bound

to the name. Hence the authentication process requires both bindings to be confirmed

before access is granted. A simple example using fingerprints as identifying factors can

demonstrate this difference. In the traditional PKI example, Alice is said to have access

to the building. When Alice wishes to enter the building, her fingerprints identify her as

being Alice (public key bound to the name) and someone checks to see if Alice is

allowed access to the building (authority bound to the name). In the SPKI/SDSI case,

however, the person with Alice’s fingerprints has access to the building. When Alice

tries to enter the building, her fingerprints are taken and checked for access (authority

30

bound to public key) and she is granted access. The fact that fingerprints are a unique

identifier (as are public keys) allows authority to be verified without checking for Alice’s

name.

Finally, any person or entity can potentially issue a SPKI/SDSI certificate. If the user is

authorized to do so, she can delegate access to another user by issuing a SPKI/SDSI

certificate and signing it. Hence we have a clear mechanism for implementing our

decentralized guest access. For example, Dartmouth issues Alice, a professor, a

SPKI/SDSI certificate authorizing her to grant access to guests (specifically, the

delegation field is set to true). When Gary, a guest, arrives at Dartmouth, he will request

access to the network and contact Alice to get guest access. If Alice determines that Gary

should be given guest access, she issues and signs a short-lived SPKI/SDSI certificate

that grants him access for the duration of the certificate. This guest delegation is done

without a Dartmouth central administrator getting involved.

4.3.2 Using SPKI/SDSI to Authenticate Guests

We can use the expressive power of SPKI/SDSI certificates to make an assertion that an

authorized delegator granted temporary access to a guest. When a guest wants to get

access to the network, she must find a delegator to grant her that access. The guest must

prove her identity to the delegator with an X.509 certificate and somehow prove that she

is the person who the certificate was issued to. If the guest does not have a X.509

certificate, a temporary one will be issued for the sake of the authentication process.

31

Once the delegator is satisfied, a SPKI/SDSI certificate is created where the issuer field is

the delegator’s public key and the subject field is the guest’s public key. Since we are

granting guest access, the delegation field is set to false as to prevent the guest from

further delegating network access to others. The certificate is then signed with the

delegator’s private key.

Similar to X.509 certificates, we need a chain of SPKI/SDSI certificates that lead up to

some recognized trusted root. In order for the SPKI/SDSI certificate issued by the

delegator to be sufficient to grant the guest access, there must be a chain from the

delegator leading up to some trusted root. For each non-root certificate in the chain, the

issuer of the certificate must be validated by a similar certificate in which her public key

is the subject. Each certificate in the chain must have the delegation set to be true in

order for this chain to be valid. Once such a chain is found, the guest can be granted

access.

With SPKI/SDSI certificates, the authentication process needs to be only modified

slightly to accommodate guest access. Figure 4-2 shows the decision process the

RADIUS server goes through in this endeavor. As in the case of Dartmouth users, a

guest associates to an access point and is asked to present credentials to the RADIUS

server. The guest submits an X.509 identity certificate issued by some non-Dartmouth

CA (or a dummy certificate issued by the delegation tool should the guest not possess a

X.509 certificate) that vouches for the guest’s identity. The RADIUS server accepts the

certificate and notices that the CA that issued the certificate is different from the trusted

32

root CA that it bases its decisions on. Rather than rejecting the authentication request,

however, the RADIUS server attempts to find a SPKI/SDSI certificate chain in the cache

that vouches for the public key belonging to the presented X.509 certificate. If such a

chain can be found, the guest is granted access. Otherwise, the guest will associate onto

V2 where the Web server will provide directions for obtaining guest access.

Figure 4-2: Decision flowchart used by the RADIUS server. If the supplicant is a local Dartmouth
user (i.e., presents an X.509 certificate issued by the Dartmouth CA), then the supplicant only needs
to prove knowledge of the private key associated with the certificate. Otherwise, if the supplicant is a
guest, then the RADIUS server checks for a SPKI/SDSI certificate chain vouching for the public key.

Supplicant presents
X.509 certificate for

authentication.

Is the
supplicant a
local user?

Does the supplicant
have knowledge of

the private key?

Supplicant is
granted access.

Supplicant is
denied access.

Is there a SPKI
certificate chain for

the public key?

RADIUS server checks
certificate cache for

supplicant’s public key.

Supplicant is
denied access.

Yes

Yes

Yes

No

No

No

33

Once the guest receives her SPKI/SDSI certificate chain (through the procedure outlined

in Section 4.4), she can attempt to authenticate to the RADIUS server. This time, the

RADIUS server will find her SPKI/SDSI certificate chain, verify that the public key on

the X.509 certificate is the subject of the SPKI/SDSI certificate, check that the guest has

knowledge of the private key that corresponds to the said public key, and grant access to

the guest.

The SDSI project at MIT [SDS] provides implementations of SDSI code in Java and C.

We make use of a modified version of the Java library code to certify SPKI/SDSI

certificate chains for our authentication process. The library uses the SPKI/SDSI

certificate chain discovery algorithm proposed by Clark et al [CEE+01]. At the moment,

an XML-RPC server executes this Java code and I modified the RADIUS server to use

XML-RPC to query the server about the public key of the X.509 certificate it received. If

the Java library can find an appropriate chain of SPKI/SDSI certificates that vouch for the

guest, the RADIUS server accepts the guest’s request for network access and sends the

necessary configuration information to the NAS to provide service. Guest access is

temporary, so the validity date on the SPKI/SDSI certificate delegating access to the

guest will enforce the lifespan of the temporary access.

4.3.3 Alternative Approaches to Guest Authorization

In addition to SPKI/SDSI, we considered other approaches to delegated guest access.

Each alternative had its advantages and disadvantages, but we felt that SPKI/SDSI was

34

the best option. I will discuss the possibility of using a couple of these alternative

approaches in Chapter 6.

X.509 attribute certificates work similarly to SPKI/SDSI by binding a short-lived

authorization to the holder of a particular X.509 identity certificate. Attribute certificates

directly address the issue of authorization, but has some major drawbacks. ACs are

meant to be issued by a small number of attribute authorities (AAs), which restricts some

of the flexibility in creating a distributed model of delegation. Chains of ACs are

difficult to process and administer, and for that reason the attribute certificate profile

[FH02] advises against using them for delegation. Furthermore, X.509 ACs are not part

of the standard implementations of protocols and cannot be transmitted easily in EAP-

TLS and other public key certificate protocols. If standard 802.11 clients could transmit

ACs along with X.509 identity certificates as part of the EAP-TLS handshake process,

this built-in means to transmit guest credentials would offer a great advantage.

The PERMIS system [COB03, Per] also allows users to issue authorization certificates.

This feature, however, was originally designed to be used by a fixed set of authorization

certificate issuers and hence is not catered to support a distributed system of delegation.

Section 6.3 examines the PERMIS system in more detail.

One of the most basic implementations of guest access could be achieved through an

access control list (ACL). Temporary ACL entries in a centralized database would grant

a guest short-lived access to the network. Authorized “delegators” could modify parts of

35

the ACL database to add an ACL entry that grants network access to a guest. This

solution requires a closely-guarded centralized database, which is not optimal since we

would like to move towards a more decentralized approach to guest access. Maintaining

a large database of ACL entries can quickly become a complex task and would cut down

on the scalability of the solution.

In the end we chose SPKI/SDSI because it seems to best represent the real-world model

of guest delegation. In the real world, authorization tends to be granted by a local

authority or policy that governs the desired resource rather than by a central authority that

governs all resources. When Alice grants Gary access to Dartmouth’s network, it is

inefficient to require a central administrator to approve of this access. The characteristics

of SPKI/SDSI naturally provide this mechanism for distributing delegation among local

authorities.

4.4 A Brief Discussion of the Guest Delegation Process

The following section gives an overview of the process the guest and delegator go

through in creating and signing a guest SPKI/SDSI certificate. A more detailed

description of the process and the tools used in this process can be found in [Gof04].

Once the guest user is placed on V2, she is assigned an IP address on the private 10.0.0.*

subnet by our DHCP server. The DHCP server is necessary because once the guest is

placed on V2 she cannot communicate with the external network. Without a DHCP

36

server, the guest will not be able to obtain an IP address and cannot continue the

delegation process. Furthermore, the DHCP server informs the guest to use our DNS

server for queries. This is necessary because (1) once again the guest cannot access the

“real” DNS server on the external network and (2) our DNS server is used to implement

our captive portal to redirect all traffic to our Web server. Similar solutions are used for

wireless hotspots in cafes and network access in hotel rooms.

Instead of using firewalls to capture packets, however, the guest VLAN allows us to

simply use our DNS server to create the same effect. This is implemented by creating a

wildcard entry in the default “.” zone that resolves all hostnames to the 10.0.0.* IP

address of our Web server. Recall that the guest is still isolated from the external

network, thus services like e-mail will not function. Attempting to access hosts by their

IP address will fail as well since there is no way to route packets to those IP addresses on

V2. Once the guest fires up a Web browser window, she will be greeted by our guest

delegation page.

4.4.1 Presenting a Guest Certificate for Delegation

As stated earlier, the guest needs an X.509 identity certificate and a SPKI/SDSI

authorization certificate issued and signed by an authorized delegator that vouches for the

public key found in the X.509 certificate. So naturally the guest must submit her X.509

certificate in order for a delegator to create an appropriate SPKI/SDSI certificate. This

can be achieved easily via an SSL/TLS handshake between the guest and the Web server.

37

During a SSL handshake, the client presents her X.509 certificate, and a successful

handshake proves that the client knows the private key associated with the public key

found in that certificate.

The Web server provides for three different scenarios for arriving guests. If the guest has

an X.509 certificate issued by some party and her browser supports SSL, then the guest

can present her certificate for a SSL handshake (and later to be used for the creation of

her SPKI/SDSI certificate). If the guest does not support SSL authentication, then she

can upload her certificate from a PEM-formatted file (the file format commonly used

when exporting an X.509 certificate from the certificate store) on her local disk. Finally,

if the guest does not have an X.509 certificate, she can generate a key pair and obtain a

temporary X.509 certificate issued by our “dummy” CA.

Once the guest presents her certificate, it is placed in a temporary repository where it

waits for a delegator to retrieve it and create an appropriate SPKI/SDSI certificate. The

guest will be assigned an ID number the delegator can refer to. The guest must contact

an authorized delegator at this point to obtain access.

4.4.2 Delegating Access to a Guest

Now that the guest has introduced her certificate, a delegator must evaluate the guest’s

request and create a guest certificate. In order for someone to be an authorized delegator,

he must possess (1) a (usually local user) certificate that allows him access to the

38

network, and (2) a SPKI/SDSI certificate that has the delegate tag set to true and can be

traced back to a trusted root of authority. The delegator connects to our Web server and

will be recognized as a authorized delegator, thus giving him the added option of

delegating access.

The delegator uses the ID number of the guest’s request to find the guest’s X.509

certificate. Once the delegator selects a guest request, a trusted Java applet that is used to

create and sign the SPKI/SDSI certificate will load. The Java applet is signed by a signer

vouched for by our CA, thus the delegator knows that the applet can be trusted. This

extra level of security is desirable because the delegator’s private key is needed to sign

the SPKI/SDSI certificate. Thus it is mandatory to ensure that the private key is not

being abused by an unknown applet.

Another security issue that arises at this point is that the delegator must ensure that he is

delegating access to the correct public key. It is conceivable that guest’s delegation

request can be intercepted by an adversary. The adversary then can, through a man-in-

the-middle attack, substitute his own public key for delegation. Dohrmann and Ellison

address a similar problem of safely introducing collaborating parties through the use of a

visual hash [DE02]. By using the hash of the guest’s public key to create a visual

representation, the delegator can easily verify that the public key that he received from

the guest actually belongs to the guest by checking if the visual hashes match. It is

clearly easier to verify that two pictures are the same than it is to do the same for two

large hash values in hexadecimal form.

39

When the guest supplies her X.509 certificate to the Web server, she will see a visual

hash of her public key along with the ID number for her request. Before the delegator

can create a SPKI/SDSI certificate for the guest, the delegation applet loads a window

with 16 different visual hashes, one of which belongs to the guest. If the delegator selects

the correct visual hash, then a SPKI/SDSI certificate is created and signed. The

certificate chain is then loaded into a HTTP cookie onto the guest’s Web browser as well

as inserted into a repository where it can be accessed by the RADIUS server.

The visual hash introduction requires the delegator and guest to meet in person so the

delegator can check the visual hash on his screen and on the guest’s screen. The guest

and the delegator typically will not know each other, thus they must meet in person for

the introduction. The physical meeting will enable the delegator to check the guest’s

identification to make sure the name on the supplied X.509 matches the name on her

identifying documents.

Once a guest is delegated access, the SPKI/SDSI certificate chain resides on her Web

browser as a HTTP cookie. If for some reason the server side repository of SPKI/SDSI

certificates is lost, the guest can revisit the delegation front page to reload her certificate

chain to the server. The delegation page will grab the cookie from the guest’s browser,

verify that the certificate chain is valid, and store the chain in the server’s repository. On

the other hand, if the guest clears cookies from her browser, she can visit the delegation

page and submit the same X.509 certificate. As long as the SPKI/SDSI certificate chain

corresponding to that certificate is still present in the repository, another copy of the

40

certificate chain is inserted into a new cookie and the guest does not need to be delegated

to again.

4.5 Supporting VPNs

Another popular method of protecting network resources is through the use of Virtual

Private Networks (VPNs). A VPN restricts access to resources on the network only to

users who can authenticate themselves onto the VPN. Its versatility lies in the fact that

users can authenticate to the VPN concentrator from anywhere, and a secure channel is

established between the VPN and the user’s current location. The user can, therefore,

access restricted resources on the VPN from a remote location in a secure manner. A

VPN concentrator can be configured to refer to an authentication server (such as a

RADIUS server) to determine whether a user is authorized to access the VPN. In this

model, the VPN concentrator will play the role of the NAS instead of the access point.

Thus, the mechanism in which the VPN concentrator works with a RADIUS server is

already in place.

We obtained a Cisco 3000 series VPN Concentrator to experiment in our Greenpass

project. The details of setting up the VPN concentrator can be found in [Gof04]. The

VPN concentrator provides a network interface for the public and the private networks.

In the VPN model, the public network represents the network resources that all users

have access to, while the private network is the portion that is protected and restricted to

authorized users. For our setup, we want the public interface to reside on V2 and the

41

private interface to be connected to V1. The VPN concentrator can act as an EAP proxy

and pass along the entire X.509 identity certificate to the RADIUS server for EAP

authentication.

Once in place, the VPN concentrator simply acts as a NAS: the supplicant uses a VPN

client to connect to the concentrator, the concentrator passes the client’s certificate to the

RADIUS server, and the RADIUS server sends its decision back to the concentrator.

Authorized guests can be authenticated in the same manner as well since the RADIUS

server can look at the public key in the guest’s X.509 certificate and verify a SPKI/SDSI

certificate chain. The VPN concentrator either accepts or rejects the supplicant based on

the decision made by the RADIUS server.

42

5. Authenticating to Greenpass (The Client Side)

In order to evaluate the usability of our solution, it is necessary to examine the entire

process from the client’s perspective. This chapter will describe the necessary steps a

local user and a guest running either Windows or Mac OS must complete in order to use

Greenpass. I will argue for the usability of Greenpass at the end of the chapter and

support my claims with results of the pilot [Pow04].

5.1 Local Users

As discussed earlier, local users authenticate to Greenpass through an EAP-TLS

handshake. To this end, local users need a X.509 identity certificate issued by the root

CA and a machine that supports 802.1x authentication. The first requirement is easy to

fulfill as institutional CAs tend to have an enrollment page that generates a key pair and

creates a certificate for authorized users. The enrollment process typically stores the

generated certificate in the user’s keystore, so installation of the certificate is usually

unnecessary. For our experiments, however, we use a created CA to act as the root

authority, hence the user needs to manually install the X.509 certificate, as well as install

the CA’s certificate into the browser’s store of trusted root certificates. This additional

step is straightforward and does not add to the complexity of the scheme.

Configuring 802.1x authentication, on the other hand, is a more involved process. The

latest versions of operating systems have implemented support for 802.1x. Specifically,

43

Windows XP (from service pack 1), Windows 2000 (from service pack 4), and Mac OS

X Panther (version 10.3) all support 802.1x and represent a large majority of our user

base. Users running older versions of these operating systems must use a third-party

802.1x client in order to authenticate using Greenpass. Linux users can download the

open-source XSupplicant 802.1x client.

5.1.1 EAP-TLS Authentication for Windows

Once the user has the necessary X.509 certificate for authentication, the Internet and

network settings must be configured to allow EAP-TLS authentication. Windows users

must use the Internet Options of Internet Explorer to select the option to allow the use of

TLS 1.0. This option is located under the Advanced tab of the Internet Options screen

(see Figure 5-1). Even if Internet Explorer is not the Web browser of choice, client

authentication is controlled by the Windows operating system, and changing the settings

on IE appears to carry over to the “overall” Windows settings. The default setting has

TLS not enabled, so this option must be selected to initiate a TLS handshake.

Since we are dealing with the case of a local user, we need to direct our wireless card to

associate to the non-broadcast SSID “Dartmouth User.” In order to use 802.1x

authentication for a network, the network must use WEP encryption. Under the

properties (see Figure 5-2) for the Dartmouth User SSID, the Network Authentication

field should be set to Open and Data Encryption should be set to WEP. The WEP key

for the connection is provided by the access point, so the box corresponding to this option

44

Figure 5-1: Internet Options window for Microsoft IE with TLS 1.0 enabled.

Figure 5-2: Wireless network properties window for the Dartmouth User SSID.

45

should be checked. Under the Authentication tab, the box that reads, “Enable IEEE

802.1x authentication for this network” should be checked and the EAP type should be

set to Smart Card or other Certificate.

The wireless card should attempt to authenticate to the RADIUS server and associate to

our network. If more than one possible authentication certificate is found, a window will

prompt the user to select which certificate to submit for authentication. A message

should appear about processing server information for the network, which will pop up a

window asking if the server certificate issued by the CA should be trusted (Figure 5-3).

Viewing the certificate verifies that the certificate belongs to the Greenpass RADIUS

server and was issued by the Greenpass CA (Figure 5-4). Once the user is satisfied with

the server’s certificate, the authentication process will continue now that the server has

verified itself to the client.

Figure 5-3: Confirmation window asking whether to trust the RADIUS server's certificate.

46

Once our client certificate is verified and we pass authentication, we are now connected

to the Greenpass network. Our subnet on the Dartmouth network is assigned the IP

address range 129.170.253.64/27, so the associated local client should be assigned an IP

address in that range (see Figure 5-5). This will verify that the client did indeed pass

authentication and has been placed on V1. Checking the association table on the access

point (Figure 5-6) will also confirm that the client has been associated onto V1.

Figure 5-4: The RADIUS server's certificate, signed by the Greenpass CA.

47

Figure 5-5: Wireless network connection status of an authenticated local user. Note that the
supplicant has been assigned an IP address in the subnet of the Greenpass network.

It should be noted that configuring the client to use EAP-TLS authentication for

Greenpass is a one-time setup. Once the wireless network (i.e., Dartmouth User SSID) is

set up and the X.509 certificate used to authenticate to the network is selected, the

authentication process is automatically performed on subsequent associations. Windows

remembers which certificate to submit to the RADIUS server. Depending on the security

settings, the server certificate needs to be verified only on the first attempt. Thus from

the client’s perspective, authentication is automatic after the initial attempt, with a short

pause (during which the EAP-TLS authentication is taking place) being the only

noticeable difference. For local users, authentication to Greenpass is seamless once the

initial configurations are complete.

48

Figure 5-6: Status of an authenticated local user from the access point’s association table. Note the
values for IP address, SSID, and VLAN.

5.1.2 EAP-TLS for Mac Users

Authentication via EAP-TLS is somewhat different under the Mac platform due to

implementation differences in the operating system. We tested 802.1x authentication

under Mac OS X Panther (version 10.3) using Airport Software (version 3.3 or later).

Panther is the first version of the Mac OS that has built-in support for 802.1x.

49

Figure 5-7: The Keychain Access window for the login keychain. The certificate we are interested in
is the one issued to Nicholas C. Goffee. The other certificates must be moved to a temporary
keychain for 802.1x authentication to use the appropriate certificate.

Mac users must manage their user certificates through the Keychain Access application

that is included with Mac OS. With Keychain Access, users can add certificates and

store passwords for a variety of applications. In particular, all users on a Mac have their

own user keychain called login that is the default keychain used in authentication. To use

a X.509 identity certificate for authentication, the certificate must be installed into the

login keychain, and it must be the only certificate installed in that keychain (see Figure 5-

7). Apple’s 802.1x support is still in its early stages and hence not very elegant.

50

Once the X.509 certificate is installed in the keychain, Airport must create an 802.1x

connection. Under the configuration settings, select Airport as the Network Port,

“Dartmouth User” as the name of the Wireless Network, and uncheck all authentication

types except for TLS. Figure 5-8 shows the configuration window for the 802.1x

connection. Another implementation quirk in Airport is that users must supply a

username and password even when using a certificate-based authentication method such

as EAP-TLS. The username and password have no bearing on the authentication process

since the X.509 certificate is used to verify the supplicant. Thus, supplying any values

for the username and password will allow the EAP-TLS process to take place.

Figure 5-8: The 802.1x connection configuration screen. The wireless network is set to our
Dartmouth User SSID and TLS is selected as the authentication method. Note that a dummy
username and password must be included as well.

51

The supplicant should now be connected to Dartmouth User, signifying that they have

passed authentication to the RADIUS server. This can be verified by checking that the

assigned IP address is in the 129.170.253.64/27 range that is assigned to the Greenpass

components.

5.2 Guest Users

As stated earlier, guest users must be delegated access to the network by an authorized

delegator before connecting to the network. The delegation tools are available on the

Web server residing on V2 of our network. In order to access the delegation front page,

the supplicant must associate to the V2 SSID of our wireless network. Unlike the local

user SSID, the guest SSID name is broadcast as “Greenpass Test.” When in range of our

access point(s), the supplicant will see Greenpass Test as an available network. No

authentication is required for this SSID, and the supplicant needs only to select this

network to connect. If the supplicant is already on a wireless connection, it may be

necessary to disable or remove the current connection in order to associate to the

Greenpass Test SSID.

Once the connection to Greenpass Test is made, the supplicant should be assigned an IP

address on our 10.0.0.* private network by our DHCP server. It can be verified that

along with the IP address, the DHCP server and the DNS server provided for the

connection reside on 10.0.0.1, which is the private network IP address of our machine

52

running these services. Figure 5-9 shows the connection status and wireless network

details for a Windows user associated onto V2.

Figure 5-9: Network connection status and wireless network properties for a guest associated onto
the guest VLAN SSID.

With the guest now associated onto V2 and assigned an IP address on our private

network, the guest can be delegated access to the network. Due to our modified DNS

server, any hostname will be redirected to our Web server. When the guest opens up a

Web browser page, she will automatically be sent to the delegation front page. Figure 5-

10 shows a screenshot of the delegation front page. As explained in the previous chapter,

the guest supplies her public key certificate as part of an SSL handshake, or a temporary

certificate issued by our dummy CA is issued and used if she does not have a certificate.

53

Figure 5-10: The delegation front page. When the guest first arrives at the site, her status will be
"Unauthorized."

The guest uploads her public key certificate and receives an ID number for her request

and sees a visual hash of her certificate’s public key (Figure 5-11). The guest then must

find a delegator who will check the guest’s credentials, compare the visual hashes, and

create and sign a SPKI/SDSI certificate for the guest. The entire SPKI/SDSI certificate

chain is recorded as a HTTP cookie and placed in the guest’s Web browser. Figure 5-12

displays the delegation page once the guest has been delegated access.

54

Figure 5-11: The visual hash of the guest's public key. The guest must now contact a delegator to
create a SPKI/SDSI certificate for network access.

Figure 5-12: The delegation front page where the guest's status is now "Authorized User."

55

5.3 The Greenpass Pilot

In order to test the usability of Greenpass, we ran a small pilot where users unfamiliar

with the system worked with the various parts of the project. In the first part of the pilot,

participants were provided with X.509 identity certificates and authenticated to the

system as local users. For the next phase, participants were directed to remove the local

user certificates and authenticated to the RADIUS certificate after being delegated guest

access. The final portion had some of the participants acting as delegators and granting

temporary access to the other participants. A more detailed description of the procedure

and results of the pilot can be found in [Pow04].

The majority of the problems occurring during the pilot occurred while setting up 802.1x

authentication on the user machines. We did not have any external 802.1x client software

available, thus users running older operating systems needed to use different machines.

While most Windows users will have Windows 2000 or later, Mac OS X Panther

(version 10.3) is still relatively new and not as widely used. This problem will diminish

with time as new users will have updated operating systems and old users will eventually

upgrade to a new operating system. Mac users had problems managing the Keychain

application to install and move around their local user certificates. Users with multiple

certificates had to remove all other certificates to a temporary keychain, which proved to

be a task the participants were unfamiliar with. The Windows users in our pilot did not

have as much trouble setting up 802.1x authentication, although some found the process

confusing. Once 802.1x authentication was set up, the participants did not have any

further problems authenticating to the RADIUS server.

56

The second potion of the pilot yielded few problems. The participants had already set up

802.1x authentication and succeeded in authenticating as local users. Some participants

were unclear on how to connect to the guest SSID, but understood when the step was

explained to them. Delegating access was a straightforward procedure as well, and the

visual hash aided in verifying the guest certificates. In general, the participants seemed to

understand the overall delegation process.

The pilot itself was not as comprehensive a test as we would have liked. We did not have

enough participants to test the full range of operating systems and hardware. However,

the results were promising in that the participants were able to authenticate to the

RADIUS server as both a local user and an authorized guest. The majority of the

problems that occurred could be attributed more to the client operating system and how

they handle 802.1x authentication. Once the initial configurations were completed, the

authentication and delegation processes were fairly straightforward. The pilot

demonstrated that the system itself was fairly easy to comprehend, and the usability of

the system was affirmed to us.

57

6. Future Work

Up to this point, our focus on the creation of Greenpass has been on getting a working

model to experiment with. In the course of our discussion, several interesting ideas and

prospects came to light, but unfortunately were placed on the back burner due to time

restrictions. This chapter describes some of the modifications and applications for

Greenpass that have been discussed and, for some applications, suggests how these ideas

can be incorporated into Greenpass.

6.1 Integrating the Cisco ACS

In addition to the FreeRADIUS version of Greenpass, I spent time working with the

Cisco Secure Access Control Server (version 3.2) running on a Windows Server 2000

machine. The Cisco ACS is a closed-source, proprietary version of a RADIUS server

developed by Cisco. Under the Cisco ACS paradigm, the ACS provides authentication,

authorization, and accounting, hence making it an AAA server. In this model, the NAS is

considered to be an AAA client. Working with closed-source software was more difficult

since the changes that could be made were severely limited. This section will explain

how I set up the Cisco ACS to authenticate local users and discuss the alterations that

need to be made to support our delegated guest access.

58

Authenticating local users using the Cisco ACS is not much different than using

FreeRADIUS. The ACS is configured to accept EAP-TLS authentication, and the access

point is told to consult the ACS for EAP authentication. The only additional requirement

that the ACS enforces is that each local user must have a user account set up, and the

name of the account must match the common name field of the X.509 identity certificate

issued to the user. There is a protocol for handling unknown users, but this must be done

through an external database, such as the Windows User Database. In order to maintain

the local users internally (which seems to be the more desirable choice), a user account

must be added to the internal Cisco database. This adds an extra administrative step

when providing credentials to a new local user.

Authenticating guests will require changing our original model, however. In our

FreeRADIUS version, I simply intercepted the EAP-TLS authentication process to run an

extra check for a SPKI/SDSI certificate chain if the supplicant had a non-local X.509

identity certificate. With a closed-source piece of software, such a direct solution was not

possible. I could not come up with an implementation of authenticating delegated guests

analogous to what occurs in the FreeRADIUS model in the time I had left. Instead, I will

present a blueprint for a possible solution to authenticate delegated guests.

The Cisco ACS provides a mechanism where an external database can be consulted in

determining whether a supplicant should be granted access. If we could utilize one of the

external databases to complete our external check for a SPKI/SDSI certificate chain, we

can simulate the same procedure we use with FreeRADIUS. Among the external

59

databases supported by the Cisco ACS, the most promising possibility appears to be

Generic LDAP (Lightweight Directory Access Protocol). According to the Cisco ACS

User’s Guide [Cis03], the Cisco ACS forwards the username and password to the LDAP

database, which then either passes or fails the authentication request. The ACS then

takes the decision made by the LDAP database and instructs the AAA client to grant or

deny access to the supplicant.

One advantage is that the hierarchical nature of LDAP can be used to retain the hierarchy

between delegators and the guests they delegated to. Thus, any guest delegated to by a

certain delegator would appear as a child node of that delegator in the LDAP directory.

As the user base grows and the system is scaled to organize a larger number of delegators

into separate departments, this solution is very appealing. It would be easy to keep track

of which delegator granted access to which guest, a fact that will be very useful in

accounting and revocation of permissions (see Section 6.4). We can have the LDAP

directory maintain the public keys of the guests and delegators, and have a method of

verifying ownership of the private key that is associated with the public key stored in the

database. We can use SPKI/SDSI certificates or one of the alternate means of

representing delegation discussed in Section 6.3 to implement the LDAP hierarchy of

users.

Using a different external database to authenticate and authorize guests adds to the

system that we have designed. It would be nice to maintain a single mechanism for

authenticating both local and guest users. At the very least, the guest does not realize

60

there are two different authentication mechanisms at work. The guest presents credentials

to the AAA client (NAS) and is either granted or denied access; the guest does not really

care who made the decision, as long as the correct decision is made. And while

maintaining two separate databases could be extra work, it could be advantageous to

maintain local users and guests in separate databases.

6.2 Support for Alternate Authentication Methods

Our current version of Greenpass requires the supplicant to authenticate to the RADIUS

server using EAP-TLS. This decision was made because EAP-TLS seemed to be the

logical choice for the environment at Dartmouth, where a full-fledged PKI is already in

place and X.509 identity certificates are already fairly prevalent among members of the

Dartmouth community. At other institutions, however, lack of the necessary resources

may make EAP-TLS an infeasible method of authentication.

Password-based authentication schemes are simpler to implement, but tend to be less

secure due to the vulnerabilities inherent in the username-password model and have the

added requirement of keeping shared secrets between the user and the server.

Nevertheless, password-based authentication is still commonly used and support should

be provided. Supporting password-based authentication schemes such as EAP-MD5

([BSK04] provides a more detailed description of the various authentication protocols) is

a simple matter of configuring the RADIUS server to accept such authentication

methods. In FreeRADIUS and other available RADIUS servers, databases of usernames

61

and passwords are maintained. When a supplicant arrives and enters a username, the

RADIUS server checks against its list of users and verifies that the password (or in the

case of MD5, the MD5 hash of the password) matches the one listed for the username.

While having the RADIUS server check a username-password is not difficult, this

method requires a greater administrative role by some central authority because the

database of users must be created and maintained. Furthermore, delegation using

username-passwords is not as natural as in the certificate-model. In order to avoid

placing all the work of granting guest access to a central administrator, some clever

method of deriving guest passwords must be developed. It would be easy to simply add

and delete accounts as guests arrive, but since this method requires direct access to some

centralized database, distributing this privilege to too many delegators would create

security holes.

A more recent trend in authentication protocols is the use of tunneling (creating a secure

channel between the client and server) to protect the traffic created during the

authentication process. To this effect, EAP-TTLS (Tunneled TLS) and Cisco’s PEAP

(Protected EAP) have gained popularity. Tunneled protocols use a two-step approach in

which the client and server create a secure channel for communication in the first stage,

and then use one of the standard authentication protocols in the second stage. Support

for tunneled protocols is also implemented by most RADIUS servers by allowing the

secure channel to be established between the supplicant and the server. The RADIUS

server must then be configured to handle the authentication method used within the

tunnel in the same manner as it is without the tunnel. Tunneled protocols are still a recent

62

development and there are only a few actual implementations of PEAP and EAP-TTLS.

Most of the existing implementations use a password-based authentication method within

the tunnel rather than a certificate-based one.

6.3 Alternative Methods of Guest Delegation

As mentioned earlier, SPKI/SDSI is by no means the only method of implementing

delegated access. Certain characteristics of SPKI/SDSI made it an optimal choice for our

initial implementation, but there are other methods for delegated authorization that merits

closer investigation. I will discuss two of these alternative approaches in more detail and

provide an outline for using these models to implement an authentication system with

delegated guest access.

6.3.1 PERMIS and X.509 Attribute Certificates

PERMIS [COB03, Per, Cha02] is an example of a Privilege Management Infrastructure

(PMI) that uses X.509 attribute certificates to bestow authorization onto the holder of the

certificate. In this model, each user is assigned a role and the privileges that are

associated with that role. Users are assigned to roles through role-assignment ACs while

privileges are tied to roles through role-specification ACs. The PERMIS implementation

consists of three main components: the authorization policy, the privilege allocator (PA),

and the PMI application programming interface (API).

63

The authorization policy specifies the resources that each user has access to under what

conditions. In other words, this is the overall blueprint that reflects the access control to

resources and the assignment of roles to users. Policies are expressed through XML, and

the authorization policy is implemented through a document type definition (DTD) that

specifies the details, such as what roles are available, how roles are allocated to users, and

the source of authority (SOA) that oversees this procedure.

The PA is used by the SOA to allocate privileges to users through the use of role-

assignment ACs. Role-assignment ACs are stored and maintained in a LDAP directory,

relying on the fact that ACs are signed by the issuing AA to provide tamper resistance.

The API provides the interface between the access control enforcement function (AEF)

and access control decision function (ADF). The AEF authenticates the user and queries

the ADF if the user has the privileges to perform the requested actions on the requested

target. If the user has the appropriate role ACs defined in the authorization policy, the

ADF grants the request.

Implementing a PERMIS-based model of authentication and guest delegation would

require a completely different setup. Instead using a RADIUS server and 802.1x

authentication for local users, each local user would be defined a role that grants them

access to the network. Since PERMIS uses hierarchical role-based access control, the

roles are structured in such a way that a parent role has all the privileges granted to the

child role. Following this model, we could define a delegator role and a subordinate user

64

role. Users are given the privilege to access the network and delegators are given the

additional privilege of delegating user roles. Due to the hierarchy, delegators also have

access to the network. The AEF and ADF defined by the API will carry out the role of

the RADIUS server in authenticating users and authorizing requests (in this case,

accessing the network). In the simplest model, a local user will have a role-assignment

AC that states she is a “user” and a role-defining AC will state the users can access the

network.

When a guest wants to gain access to the network, she will contact a delegator and use

some method of supplying credentials. The delegator would then need to delegate a role-

assignment AC to the guest, and have the AC signed by some AA. In order to make this

model decentralized, each delegator would have to be delegated the same authority as an

AA. Otherwise, the created AC must be sent off to a central AA who would sign it and

send it back to the delegator.

There are foreseeable problems with this model of delegation. First, PERMIS is designed

to adhere to a more centralized model, which conflicts with our goal of a decentralized

solution. It may be possible to decentralize the mechanism by expanding the powers

afforded to the delegators, but this could open up security holes. Second, there is no clear

distinction between local users (non-delegators) and authorized guests. Even if we have

distinct roles for local users and authorized guests, there is no practical difference

between the two roles. We would need to somehow enforce a limited lifespan on the role

that is assigned to authorized guests or implement some manner of revocation. Finally,

65

storing all the ACs for the entire user base into a database can lead to performance issues.

As the size of the user base increases, a larger database must be searched whenever a user

tries to authenticate to the network. While it is uncertain the extent of the performance

hit that would occur, there seems to be a concern about scalability under this model.

6.3.2 KeyNote and PolicyMaker

KeyNote [BFIK99, Key] (and its predecessor PolicyMaker [BFL96]) is a trust-

management system that utilizes signed assertions rather than public-key certificates to

grant access to certain resources. A trust-management system contains five basic

components: a language for describing actions, which are operations that are controlled

by the system; a mechanism for identifying principals, the entities that can be authorized

to perform actions; a language for specifying policies, which state what actions which

principals are allowed to perform; a language for specifying credentials, which provide a

mechanism for delegation of authorization; and a compliance checker, which makes the

decision on the result of a request considering a policy and a set of credentials.

Actions are represented by name-value pairs organized into action attribute sets. The

specifics of the name-value pairs or not set and can vary from application to application.

Principals are identified by any string value, including public keys; thus we have a

system in which a supplicant’s public key can be the principal rather than a name. An

assertion can be thought of as a statement of the conditions under which the asserting

principal authorizes actions requested by others. A principal identified by its public key

66

can sign an assertion and the resulting credential performs a role analogous to public key

certificates in the traditional PKI model.

 In this model, the compliance checker acts as our decision-making entity. Applications

consult the compliance checker by issuing it a query that contains a proposed action

attribute set and the requesting principal. The compliance checker consults an ordered set

of possible responses to select the appropriate response (called the “policy compliance

value”). This value can either be a Boolean value that simply accepts or rejects the

request or a range of pre-determined values (such as “delegator,” “local user,”

“authorized guest,” and “unauthorized guest”).

It seems possible to leave the RADIUS server to authenticate local users via EAP-TLS,

while deferring decisions on guests to the compliance checker. In order to implement

this model, we would have the public keys of delegators and unauthorized guests to be

the principals involved. We would need to establish a policy where delegators (or

actually, their public key) can sign assertions that grant guests (via the holder of the

public key in question) access to the network. The action involved here would be access

to the network. Once the guest authenticates to the delegator, the delegator would sign an

assertion that authorizes the guest’s public key to access the network. Meanwhile, we

would require the pre-defined “POLICY” principal that acts as the root of trust to issue

assertions that allow delegators to grant access to guests. When the RADIUS server is

contacted by a guest user, the RADIUS server would send a query to the compliance

checker containing the appropriate access attribute set (that establishes the chain of

67

assertions from the root of trust to the supplicant), along with the guest’s public key (as

the requesting principal). The compliance checker can respond with a simple Boolean

accept/reject response or with a more sophisticated set of answers (such as which VLAN

to place users on).

Clearly the KeyNote model ties in better to our original Greenpass model since local

users are unaffected. There are, however, a few potential problems with this

implementation. A lot of work needs to be done to implement the model explained

above: the initial policy and access attribute set must be created, the semantics of the

access attribute name-value pairs must be defined, and the class of compliance value

must be decided upon. While the assertion/action model provides greater flexibility than

SPKI/SDSI certificates, the assertions can grow to be quite complex and difficult to

manage. Furthermore, revoking assertions in KeyNote can become a major hassle.

6.4 Accounting and Revocation

An important aspect of maintaining a secure authentication system is keeping track of

who does what and allowing for the revocation of privileges. As stated earlier, the

RADIUS protocol includes accounting packets that allow the NAS to request the

RADIUS server to log client activity. Each client is assigned a session ID number and

the traffic concerning a certain session is tagged by that ID number. The accounting

functionality records useful information about the client such as the username, SSID and

68

VLAN, and the IP address of the NAS that initiated the request. Figure 6-1 shows an

example of the accounting entries created for an authenticated local user.

Tue May 11 16:09:42 2004
 Acct-Session-Id = "00000D83"
 Called-Station-Id = "0040.96a1.328e"
 Calling-Station-Id = "0002.2d52.c53d"
 Cisco-AVPair = "ssid=Dartmouth User"
 Cisco-AVPair = "nas-location=unspecified"
 Cisco-AVPair = "connect-progress=Call Up"
 Acct-Authentic = RADIUS
 User-Name = "Sung Hoon Kim"
 Acct-Status-Type = Start
 NAS-Port-Type = Wireless-802.11
 Cisco-NAS-Port = "373"
 NAS-Port = 373
 Service-Type = Framed-User
 NAS-IP-Address = 129.170.253.67
 Acct-Delay-Time = 0
 Client-IP-Address = 129.170.253.67
 Acct-Unique-Session-Id = "9388ceebcc31d7f4"
 Timestamp = 1084306182

Tue May 11 16:14:05 2004
 Acct-Session-Id = "00000D83"
 Called-Station-Id = "0040.96a1.328e"
 Calling-Station-Id = "0002.2d52.c53d"
 Cisco-AVPair = "ssid=Dartmouth User"
 Cisco-AVPair = "nas-location=unspecified"
 Cisco-AVPair = "vlan-id=1"
 Cisco-AVPair = "auth-algo-type=eap-tls"
 Acct-Authentic = RADIUS
 Cisco-AVPair = "connect-progress=Call Up"
 Acct-Session-Time = 263
 Acct-Input-Octets = 111899
 Acct-Output-Octets = 415652
 Acct-Input-Packets = 828
 Acct-Output-Packets = 1052
 Acct-Terminate-Cause = Lost-Carrier
 Cisco-AVPair = "disc-cause-ext=No Reason"
 User-Name = "Sung Hoon Kim"
 Acct-Status-Type = Stop
 NAS-Port-Type = Wireless-802.11
 Cisco-NAS-Port = "373"
 NAS-Port = 373
 Service-Type = Framed-User
 NAS-IP-Address = 129.170.253.67
 Acct-Delay-Time = 0
 Client-IP-Address = 129.170.253.67
 Acct-Unique-Session-Id = "9388ceebcc31d7f4"
 Timestamp = 1084306445

Figure 6-1: Accounting entries provided for a successfully authenticated local user. Note that the
client is placed on the "Dartmouth User" SSID and is placed on VLAN 1.

69

Although the functionality of accounting is already implemented in the RADIUS

protocol, there are some adjustments that need to be made to work effectively with our

Greenpass modifications. First, the source of the username field provided in the

accounting logs differs depending on which operating system the client is running.

Under Windows, the username is supplied by the X.509 identity certificate provided for

EAP-TLS authentication to the RADIUS server. Mac users, however, need to input any

username and password in order to initiate 802.1x authentication, even when using a

public-key certificate scheme such as EAP-TLS. I observed that for Mac users, the

username recorded in the accounting logs is the username the client enters to initiate the

authentication process. Since this username-password has no meaning whatsoever, Mac

users can supply any username to be recorded in the logs. We want Mac users to have

the username in their X.509 certificate recorded in the accounting files as well.

In the case of authorized guests, there is also a problem with logging the username. Even

if the username taken from the guest’s X.509 identity certificate is logged, this

information is not necessarily important. The guest’s certificate was issued by another

institution, so the guest’s common name entered in the certificate does not necessarily

have much meaning at our institution. Furthermore, the guest’s authority comes from

possessing knowledge of the private key that corresponds with the public key provided in

the certificate, not from the name contained in the certificate. For guests, it is more

meaningful to keep track of the public key of the guest’s certificate and the identity of the

delegator that granted the guest access. The delegator has met the guest in question in

order to complete the delegation process, and presumably verified the guest’s identity and

70

credentials in some manner. Thus having this information recorded would be more

useful in tracking down an authorized guest than simply having the entry listed in the

common name field of the guest’s identity certificate.

Revocation is another interesting problem that needs to be addressed. Local users are

taken care of through standard Certificate Revocation Lists (CRL) that provides a list of

certificates that have been revoked. The authentication server is provided with an

updated CRL and checks against it to make sure the supplicant’s certificate has not been

revoked. On the guest side, certificates have short expiration periods since guest access

is short-lived. If a guest’s network access needs to be revoked, the SPKI/SDSI certificate

vouching for the guest’s public key can simply be removed from the repository. Again,

there needs to be some record maintained of the map between a guest’s identity and her

public key. We can look up the guest’s public key and search for the SPKI/SDSI

certificate speaking for that key. This step needs to be performed manually, but

revocation should be entrusted to some sort of administrative figure and hence this is an

acceptable solution. There must also be some sort of revocation list that prevents the

guest from being delegated to again after her first credentials are revoked.

Revoking the credentials of a delegator is a more complex problem. If a delegator leaves

the institution, it is important to revoke the delegating authority that was entrusted to him

(revoking network access can be handled by a CRL since the delegator is a local user).

Removing the SPKI/SDSI certificate vouching for the delegator’s public key would

prevent further delegation of network access from that public key. Once that certificate is

71

removed, however, all the guests who he delegated to will also have their access revoked

since there is no longer a chain of valid certificates leading up to a trusted root. Since the

delegator’s SPKI/SDSI certificate is not a leaf on the chain, removing the certificate will

have an effect on all the guests that he delegated to.

The obvious solution is to have all the guests delegated to by the revoked delegator

resubmit their request for network access to be handled by another delegator. This is not

the most desirable option, but it is the simplest and not too difficult to manage.

Revocation of a delegator’s credentials should be a very rare occurrence, so the

inconvenience caused to the guests will occur infrequently enough to be excusable. It is

important to balance the delegation load placed on each of the delegators. Thus if a

delegator’s guests must be reauthorized, only a proportional number of the guests will be

affected. Again, guest access is short-lived, thus at any time there should not be too

many guests affected by this procedure. In order to keep the system scalable, the number

of delegators should increase with the number of authorized guests at any given point.

Keeping a proportional number of delegators and balancing out the load evenly across the

delegators will make this scenario less cumbersome. Also, it is again vital to keep track

of which delegator granted network access to each guest.

Note that a problem arises only if the delegator is stripped of the authority to delegate. A

temporary restriction on network access due to the delegator’s machine being

compromised does not pose any additional problems in terms of revocation. We can

temporarily place the delegator’s local certificate on the CRL to prevent access to the

72

network. If the security breach did not affect our guest delegation process, the

delegator’s SPKI/SDSI credentials can remain in the system so that his guests still have

access. Since the delegator is denied access to the network, he will not be able to

delegate to new guests. Guests previously delegated to should not have been affected,

and thus their credentials are untouched. If the nature of the security breach

compromised the guest delegation process, we can remove the delegation credentials as

well to invalidate the appropriate guest credentials.

6.5 Supporting Other Devices

Currently, laptop computers constitute the majority of access to wireless networks. This

fact is rapidly changing as new technology offers a variety of devices that utilize the

wireless network. PDAs with wireless network access are the most common example of

alternative devices. More cutting edge products such as Cisco’s new Voice over IP

(VoIP) handset device and Vocera’s device for WiFi voice communication are being

tested at Dartmouth.

Naturally we want to be able to support authentication for these devices as well. In the

case of PDAs, simpler methods of authentication are already supported. Thus in theory

authenticating PDAs via Greenpass to authenticate to the wireless network is a simple

process. There is a concern caused by the fact that PDAs possess less processing power

and are subject to power consumption restrictions due to battery life. To deal with these

limitations, decreasing the processing load required to authenticate to the network would

73

be a worthwhile cause. Furthermore, PDAs tend to be more mobile, and thus a supplicant

using a PDA is more likely to associate to several different access points within a single

session. It would be necessary to devise an elegant way of handing off an authenticated

client among access points so that the supplicant does not need to authenticate to each

new access point she associates to.

There are some interesting ways to use these other devices for delegation of authority as

well. One of the applications discussed involved a “delegation stick” (RFID tag reader)

that can read the identity off a student’s ID card (with embedded RFID tag). A delegator

then can create a SPKI/SDSI certificate granting a student access to a certain resource

(such as entry into a building).

6.6 Finely Grained Definition of Authority

Our current version of Greenpass takes an all-or-nothing approach in granting or rejecting

access to supplicants; the supplicant is either allowed or not allowed to connect to the

network. There are a few ways in which we can define a more finely grained definition

of network access.

Recall how the current setup involves two VLANs, one for authorized users and one for

unauthorized guests. It is a simple matter of configuring the user profiles to associate a

supplicant onto different VLANs. If the campus network is organized in a manner where

different classes of resources are placed on different VLANs, we can simply assign users

74

to the appropriate VLAN to grant them the desired level of access. The different

resources can be organized in a hierarchical structure (such as administrators and

students) or partitioned into non-intersecting groups (as in different departments). In

terms of the RADIUS server, these modifications are trivial. The real work lies in

setting up the physical network to place the appropriate resources onto the desired

VLANs.

Another method of finer-grained access control is the use of a policy-based scheme. For

example, KeyNote can be used to have different applications (such as e-mail clients, Web

browsers, and FTP clients) each containing different access restrictions. If we want

guests to access only e-mail, we can establish a credential that allows principals who are

guests to check e-mail. We prevent access to the Internet by not defining a similar

credential to Web traffic. Policy-based authentication requires no hardware

modifications to be made, but requires a lot of effort on the software side. The desired

policies must be defined through numerous assertions and credentials. Furthermore,

more finely-grained access control in this model requires the policy to be checked every

time the user requests access to a different type of resource.

6.7 Push Authorization

In the push model of authorization, the supplicant pushes the necessary credentials to the

authentication server for evaluation. Storing the guest’s certificate chain into a HTTP

cookie and uploading it into the Web browser is a good step towards supporting the push

75

model. Whenever the guest visits the delegation main page after being delegated access,

the Web browser pushes the cookie with the certificate chain. The Web server then

evaluates the contents of the cookie and determines the status of the guest.

Continuing this approach, we would like to make the process adhere completely to the

push model. Instead of the RADIUS server pulling up the SPKI/SDSI certificate that

corresponds to the guest’s public key, it would be more elegant if the guest could submit

both the X.509 identity certificate and the SPKI/SDSI chain. An alternative method

could be inducing the guest’s Web browser to automatically authenticate to the local user

SSID once the delegation front page reads the cookie and determines that the guest is

authorized. In this scenario, the guest pushed her credentials to the Web server via the

HTTP cookie, and the request is initiated with the RADIUS server without any action on

the part of the guest (the RADIUS server would still need to refer to its repository of

SPKI/SDSI certificates to verify the chain).

Alternatively, having authorized guests skip authentication to the RADIUS server

altogether gets us closer to a push model of authorization. Local users can still use EAP-

TLS with their X.509 certificate to authenticate to the RADIUS server. Authorized

guests can submit their SPKI/SDSI chain through a HTTP cookie to the Web server. If

the RADIUS server could contact an outside authority to verify the guest, then we could

have the external authority grab the SPKI/SDSI chain and make the decision. The Cisco

ACS provides for this mechanism where the RADIUS server defers to an external

database to check for the supplicant’s credentials. The drawback here is that local users

76

are authenticated through one method, while authorized guests are judged through a

different process.

6.8 No PKI

One of the obstacles to public-key based authentication schemes is the fact that such

schemes require the institution to have a PKI in place. For most institutions with small

user populations, this is not a feasible solution; establishing a PKI is expensive and

inefficient for small user bases. Removing the requisite centralized component could

redefine the concept of public-key authentication and allow such methods to be a more

attainable solution.

In our Greenpass model, the division between the local users possessing X.509 identity

certificates and the authorized guests having SPKI/SDSI authority certificate chains is

fairly arbitrary. Both classes of users are granted the same access to the same network,

are granted the authority to do so from some “higher” authority, and are not allowed to

propagate this authority. We can abstract this model to the scenario where there is only

one local user (and delegator) and everyone else is an authorized guest. Theoretically,

PKI-based certificates follow this model: the CA is the local user whose authorization

does not expire (or at least for a very long time) and can grant authority to others, while

the users are granted the authority to resources for as long as they are part of the

institution.

77

We can distribute the load of delegation by granting the authority to delegate access to

certain individuals. So now we still have the one local user (who acts as the CA), a few

authorized guests whose SPKI/SDSI certificates allow them to propagate authority (the

delegators), and the rest of the authorized guests who cannot propagate authority (the

normal local users). We do not need a centralized component to vouch for the identity of

a supplicant if there is already an alternate method of authentication. For example, all

new students at Dartmouth could be issued a key pair and signed SPKI/SDSI certificate

by one of the delegators. The student’s presence and participation during orientation

provides authentication that the student is part of the Dartmouth population. From this

point, the decision to grant a student access to the network is determined by the fact that

she is a student and not by the student’s name. The fact that there is a SPKI/SDSI chain

that leads to the student’s public key and that the student has the private key that

corresponds to that public key is enough to grant the student access. A situation similar

to this scenario already occurs at Dartmouth when incoming freshmen register for

classes. Each student is assigned to an advisor who possesses a PIN number for the

student. The advisor meets with the student, discusses course options, and gives the PIN

number to the student, which enables the student to sign up for courses.

In this scenario, we do not need a highly centralized PKI to be in place. A stripped-down

dummy CA like the one that is currently used to generate a key pair for guests without a

X.509 certificate can be used to create key pairs for all the local users. Delegators can be

organized into more complex hierarchical structures to further distribute the role of

delegation in a manner that is more representative of the institution in question. All this

78

is achieved through the use of SPKI/SDSI authorization certificates, which are simpler

and easier to process than traditional PKI certificates.

There are a few flaws in this scenario, however. There is no concept of delegation depth

inherent in the SPKI/SDSI model. The propagation of authority is an all-or-nothing

choice and the depth of this propagation cannot be specified. For example, you cannot

create a SPKI/SDSI certificate that states that the subject may propagate authority, but the

subject of that delegated authority may not propagate authority. In order to create a

structured hierarchy of delegation, it is important to closely guard how delegation of

authority can be carried out.

Revocation of authority can be a hassle as well. Some sort of revocation list must be

maintained for end users. When a student is expelled, her SPKI/SDSI certificate chain

should no longer grant her access to the network. If the certificates are maintained in a

repository, this simply involves the removal of the appropriate certificate. Using a push

model involving HTTP cookies, however, the student has control over the credentials, so

there must be some way of invalidating her certificate chain before the expiration

specified in the certificate. Furthermore, if a delegator leaves the college, then the

delegator’s certificate should no longer be valid. If we remove the delegator’s certificate,

however, all users that he delegated to will have their authority revoked as well. Without

the delegator’s SPKI/SDSI certificate, there is no longer a chain of certificates that lead

to the trusted root. Hence there needs to be some method of reauthorizing the affected

users in this case.

79

Despite the flaws in this scenario, the concept of removing the PKI is an interesting one

that merits further exploration. This could provide an alternative for institutions that do

not have the resources to set up and maintain a full-fledged PKI and thus could make

public-key based authentication a more feasible option.

80

7. Conclusion

In this thesis I presented the Greenpass project, focusing on the process of authenticating

users to the network. We added a step to the EAP-TLS authentication process to perform

an external authorization check based on SPKI/SDSI certificates for authorized guests.

Local users can be authenticated and authorized via traditional EAP-TLS. SPKI/SDSI is

a lightweight solution that removed the need for a cumbersome central authority. Adding

to the existing X.509-based PKI made the solution more flexible and prevented the need

for users to install additional client software than what is provided by updated versions of

the common operating systems.

The primary goal of the Greenpass project was to implement a method of delegated guest

access that naturally and accurately depicts how the propagation of authority flows in the

real world. SPKI/SDSI is the best option in this endeavor and had the added benefit of

resulting in a more decentralized model of delegation. Local users are unaffected by the

guest delegation aspect of the project, and authentication to the system is mostly

automatic after the initial configuration is complete. Guests are afforded a similarly

unobtrusive authentication process once a simple delegation process is complete. In this

manner I feel that our goal was accomplished.

My work on the Greenpass project involved working with the server-side components of

the system, focusing on modifying the RADIUS server to handle our check for authorized

guests. Maintaining the various components of the project entailed setting up network

81

equipment, configuring various network services, and familiarizing myself with the

current wireless and wired network security technology.

There are many directions this work can take in the future. As technology evolves and

newer devices and authentication standards are introduced, we want our solution to

evolve along with the technology. We can use software to enforce more finely-grained

authorization policies. By experimenting with different definitions of the delegator and

guest roles and redefining the responsibilities of the trusted root, it is possible to break

away from the monolithic PKI and to create a more dynamic and decentralized

alternative that can adapt to the requirements of the current environment. Greenpass

introduces a method of using lightweight public-key schemes along with traditional PKI

and investigates the possibility of redefining PKI into something that is decentralized,

flexible, and feasible to implement.

82

8. Glossary of Terms

802.11 – family of IEEE specifications developed for wireless LAN technology.

802.11i – IEEE draft that defines the standard for future 802.11 security.

802.1Q – IEEE standard that addresses limiting multicast and broadcast traffic within a
desired VLAN. This standard introduces inserting VLAN membership information into
Ethernet frames.

802.1x – standard designed to secure wireless LANs that follow the IEEE 802.11
standard. 802.1x generalizes EAP and provides an authentication framework or wireless
LANs.

Authentication Server – server responsible for authenticating (determining the identity
of) supplicants. Some common examples of authentication servers are RADIUS and
Kerberos.

CA (Certification Authorities) – root of authority responsible for issuing certificates that
vouch for the identity of local users.

Delegator – special class of user that is authorized to grant temporary access to guests in
our Greenpass model. Delegators possess a SPKI/SDSI authorization certificate that has
the delegation field set to true that allows propagation of that authority.

EAP (Extensible Authentication Protocol) – an extension of the Point-to-Point Protocol
that acts as a general protocol for authentication. EAP supports multiple authentication
methods and provides the framework within which a supplicant and an authentication
server communicate.

EAP-TLS – variation of the EAP protocol that uses TLS as the authentication method.
Local users in Greenpass authenticate via EAP-TLS, and guests will use a modified
version of this protocol.

KeyNote – a trust-management system that uses signed assertions to grant access to
desired resources.

NAS (Network Access Server) – component in 802.1x authentication that is responsible
for initiating the authentication request to the authentication server and provides service
to the supplicant upon approval. Most commonly, the access point will act as the NAS.

Permis – a privilege management infrastructure that uses X.509 attribute certificates to
assign roles to users. Privileges are assigned to roles, thus a user assigned to a certain
role will gain the privileges specified to that role.

83

RADIUS (Remote Authentication Dial In User Service) server – the authentication
server used in the Greenpass system. As the name suggests, the RADIUS protocol was
originally intended for authenticating dialup users, but more recently used in other
settings (including the wireless LAN).

SPKI/SDSI (Simple PKI/Simple Distributed Security Infrastructure) authorization
certificate – Lightweight certificate format used to authorize the subject to access
resources. SPKI/SDSI certificates are expressed as s-expressions of five fields (subject,
issuer, delegation, validity dates, and authorization). SPKI/SDSI certificates can
propagate the ability contained in them to the subject of the certificate.

SSID (Service Set ID) – the identifying name of the wireless network. A wireless
network can broadcast its SSID so that users can see its existence or not broadcast the
SSID and require only those who know the name to connect to the network.

Supplicant – the client in the 802.1x authentication model. The supplicant must be
authenticated by the authentication server in order to gain access to desired resources.

TLS (Transport Layer Security) – a public-key authentication scheme that provides for
mutual authentication of the client and server. TLS can be embedded within the EAP
protocol and is analogous to SSL.

VLAN (Virtual LAN) – a software solution to protecting resources on a network.
Resources residing on a VLAN behave as if they were located on the same physical
network even if they are not. VLANs provide great flexibility as users assigned to a
particular VLAN can gain access to resources on the VLAN regardless of where the
connection is made.

WEP (Wired Equivalent Privacy) – a basic scheme designed to encrypt the session
between the access point and the wireless supplicant. Several design flaws make WEP an
incomplete solution to secure wireless traffic.

WPA (WiFi Protected Access) – a standard designed by the WiFi Alliance to address the
weaknesses of WEP. WPA offers stronger data encryption and also provides for client
authentication through the use of EAP.

X.509 attribute certificate – a standard certificate format that grants authorization to the
holder of the appropriate X.509 identity certificate.

X.509 identity certificate – a standard certificate that vouches for the identity of the
holder of the certificate. X.509 certificates are issued by a CA that certifies that the
holder of the certificate belongs to a certain institution. The holder of the certificate
proves ownership of the certificate by displaying knowledge of the private key associated
with the public key contained in the certificate.

84

9. References

[AS99] Bernard Aboba and Dan Simon. PPP EAP TLS Authentication Protocol.
IETF RFC 2716, October 1999.

[BFIK99] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis.
 The Keynote Trust-Management System Version 2. IETF RFC 2704,
 September 1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust
 Management. In Proceedings of the IEEE Symposium on Security and
 Privacy, May 1996.

[BSK04] Kwang-Hyun Baek, Sean Smith, and David Kotz. A Survey of WPA and
 802.11i RSN Authentication Protocols. Computer Science Technical
 Report (to appear), Dartmouth College.

[BV98] Larry J. Blunk and John R. Vollbrecht. PPP Extensible Authentication

Protocol (EAP). IETF RFC 2284, March 1998.

[CEE+01] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander
 Morcos and Ronald L. Rivest. Certificate Chain Discovery in SPKI/SDSI.
 Journal of Computer Security, 9(4): 285-322, 2001.

[CG02] Oscar Canovas and Antonio F. Gomez. A Distributed Credential

Management System for SPKI-Based Delegation Scenarios. In
Proceedings of the 1st Annual PKI Research Workshop, April 2002.

[Cha02] David W. Chadwick. An X.509 Role-based Privilege Management
 Infrastructure. In Business Briefing: Global InfoSecurity 2002,
 World Markets Research Centre, Ltd.

[Cis98] Cisco IOS VLAN Services, January 1998.
 http://www.cisco.com/warp/public/614/11.html.

[Cis99] Cisco VLAN Roadmap, April 1999.

http://www.cisco.com/warp/public/538/7.html.

[Cis03] User Guide for Cisco Secure ACS for Windows Server Version 3.2.
 http://www.cisco.com/univercd/cc/td/doc/product/access

/acs_soft/csacs4nt/acs32/user/32winug.pdf.

[Cla01] Dwaine E. Clarke. SPKI/SDSI HTTP Server / Certificate Chain Discovery

in SPKI/SDSI. Master’s thesis, Massachusetts Institute of Technology,
September 2001.

85

[COB03] David W. Chadwick, Alexander Otenko, and Edward Ball. Role-Based
 Access Control with X.509 Attribute Certificates. In IEEE Internet
 Computing, March-April 2003.

[DE02] Steve Dohrmann and Carl M. Ellison. Public-Key Support for

Collaborative Groups. In Proceedings of the 1st Annual PKI Research
Workshop, April 2002.

[EA03] Jon Edney and William A. Arbaugh. Real 802.11 Security.

Addison-Wesley, 2003.

[EFL+98] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.

Thomas, and Tatu Ylonen. SPKI Examples. IETF Internet Draft, draft-
ietf-spki-cert-examples-01.txt, March 1998.

[EFL+99a] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.

Thomas, and Tatu Ylonen. Simple Public Key Certificate. IETF Internet
Draft, July 1999.

[EFL+99b] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.

Thomas, and Tatu Ylonen. SPKI Certificate Theory. IETF RFC 2693,
September 1999.

[FH02] Stephen Farrell and Russell Housley. An Internet Attribute Certificate
 Profile for Authorization. IETF RFC 3281, April 2002.

[Free] The FreeRADIUS Server Project. http://www.freeradius.org.

[GKS+04] Nicholas C. Goffee, Sung Hoon Kim, Sean Smith, Punch Taylor, Meiyuan
 Zhao, and John Marchesini. Greenpass: Decentralized, PKI-based
 Authorization for Wireless LANs. In Proceedings of the 3rd Annual PKI

Workshop, May 2004.

[Gof04] Nicholas C. Goffee. Greenpass Client Tools for Delegated Authorization

in Wireless Networks. Master’s thesis, Dartmouth College, June 2004
(expected).

[IEEE98] IEEE Standards for Local and Metropolitan Area Networks: Virtual
 Bridged Local Area Networks. IEEE Std 802.1Q-1998, December 1998.
 http://standards.ieee.org/getieee802/download/

802.1Q-1998.pdf.

[IEEE01] IEEE Standard for Local and Metropolitan Area Networks: Port-based

Network Access Control. IEEE Std 802.1X-2001, October 2001.
 http://standards.ieee.org/getieee802/download/802.1X-

2001.pdf.

86

[Key] Keynote home page. http://www.cis.upenn.edu/~keynote/.

[Mor98] Alexander Morcos. A Java Implementation of Simple Distributed

Security Architecture. Master’s thesis. Massachusetts Institute of
 Technology, May 1998.

[Naz03] Sidharth Nazareth. SPADE: SPKI/SDSI for Attribute Release Policies in

a Distributed Environment. Master’s thesis. Dartmouth College, May
2003.

[Per] Permis home page. http://www.permis.org/.

[Pow04] Kimberly Powell. Testing the Greenpass Wireless Security System.
 Undergraduate senior thesis. Dartmouth College, June 2004 (expected).

[Rig00] Carl Rigney. RADIUS Accounting. IETF RFC 2866, June 2000.

[Ros03] Ken Roser. HOWTO: EAP-TLS Setup for FreeRADIUS and Windows XP

Supplicant, February 2003.
http://3w.denobula.com:50000/EAPTLS.pdf.

[RWC00] Carl Rigney, Ward Willats, and Pat R. Calhoun. RADIUS Extensions.

IETF RFC 2869, June 2000.

[RWRS00] Carl Rigney, Steve Willens, Allan C. Rubens, and William Allen

Simpson. Remote Authentication Dial In User Service (RADIUS). IETF
RFC 2865, June 2000.

[SDS] Java Implementation of SPKI/SDSI 2.0.

http://theory.lcs.mit.edu/˜cis/sdsi/sdsi2/java/
SDSI_Java_Intro.html.

[SGK+04a] Sean Smith, Nicholas C. Goffee, Sung Hoon Kim, Punch Taylor,

Meiyuan Zhao, and John Marchesini. Greenpass: Flexible and Scalable
Authorization for Wireless Networks. Computer Science
Technical Report TR2004-484, Dartmouth College, January 2004.

[Sul02] Adam Sulmicki. HOWTO on EAP/TLS authentication between

FreeRADIUS and XSupplicant, April 2002.
http://www.missl.cs.umd.edu/wireless/eaptls/.

[ZLR+00] Glen Zorn, Dory Leifer, Allan Rubens, John Shriver, Matt Holdrege, and
 Ignacio Goyret. RADIUS Attributes for Tunnel Protocol Support.
 IETF RFC 2868, June 2000.

	Greenpass RADIUS Tools for Delegated Authorization in Wireless Networks
	Recommended Citation

	Thesis-TR.doc

