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Abstract. We propose the usage of two power indices from cooperative
game theory and public choice theory for ranking attributes of closed sets,
namely intents of formal concepts (or closed itemsets). The introduced
indices are related to extensional concept stability and based on count-
ing generators, especially those that contain a selected attribute. The
introduction of such indices is motivated by the so-called interpretable
machine learning, which supposes that we do not only have the class
membership decision of a trained model for a particular object, but also
a set of attributes (in the form of JSM-hypotheses or other patterns)
along with individual importance of their single attributes (or more com-
plex constituent elements). We characterise computation of Shapley and
Banzhaf values of a formal concept in terms of minimal generators and
their order filters, provide the reader with their properties important for
computation purposes, and show experimental results.

Keywords: Shapley value, Banzhaf value, Interpretable Machine Learn-
ing, formal concepts, closed itemsets

1 Introduction

Concept stability indices were introduced to assess robustness of JSM-hypotheses
in [13] under deletion of subsets of objects. JSM-method is known as a logical
rule-based classification method named after John Stuart Mill [5], which had
was later formulated in terms of Formal Concept Analysis (FCA) [14]. In FCA
terms, each JSM-rule is an implication of the form “concept intent”→ “target
attribute”, where the target attribute corresponds to a predicted class4.

Concept stability indices allow to rank those intents (or hypotheses) by their
robustness under objects deletion and provide the evidence of their non-random
nature similarly to bootstrap estimation [15] and swap-permutations [7]. Later
on, the notion of stability was rediscovered under the name of robustness of

4 Usually, each left-hand side includes only a minimal intent with minsup = 2 that is
not included in the intents of examples of other classes.
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closed itemsets [23]. On the one hand the authors of the robustness of itemsets
considered a more general case, namely, they covered itemsets, closed itemsets
(concept intents), and free itemsets (intent generators), but on the other hand
they even assumed Bernoullian character of object deletion with a fixed proba-
bility α. In [11], by means of Möbius function, it is shown that robustness and
stability are analytically equivalent for α = 0.5.

However, JSM-hypotheses are not atomic patterns, and even if we know that
a certain hypothesis is stable, we cannot judge the importance of each attribute
for making the hypothesis stable. To fill the gap, we addressed the Shapley value
importance of attributes from Interpretable Machine Learning (IML) [19]. The
Shapley value, a notion from Collaborative Game Theory [21], is used to provide
a fair payoff to players, which are actually the attributes of an object under clas-
sification in our case. By means of the payoff value we can rank the attributes
and judge what the contribution or importance of each attribute is for the clas-
sification of this object to the predicted class. Being model-agnostic, however
this technique assumes a probabilistic output p(class|object) of a classifier and
each attribute’s payoff is computed as conditional expectation of a related value
function over all the subsets of attributes with and without a selected attribute.

Here, we assume that attributes are players of the game where the (extent)
stability of a concept is shared between them using the classic Shapley value
formula. It has several important properties: efficiency, symmetry, linearity, null
or dummy player. For example, efficiency means the sum of the Shapley values of
all players equals the value of their coalition, so that the total payoff is distributed
among the agents. Another variants of power (importance) indices from Coalition
Game Theory are possible, for example, the Banzhaf index [2], though without
fulfilling all the mentioned properties.

In this paper, we would like to explain how the Shapley values of individual
attributes in a formal concept intent can be computed by means of a Boolean
valuation function related to extent stability of the considered formal concept.
Moreover, we would like to characterise the Shapley vector of a formal concept
in order-theoretic terms and find its relationship with stability indices.

The paper is organised as follows. In Section 2, related work on interpretable
machine learning and Shapley values from Game Theory is summarised. Sec-
tion 3 recalls basics of FCA and concept stability indices. Section 4 illustrates
how to use Shapley values to estimate the importance of separate attributes re-
lated to stability indices, and introduces the weak Banzhaf index. Section 5 is
devoted to machine experiments with model and real machine learning data.

2 Shapley value in IML and FCA communities

2.1 Interpretable Machine Learning

In early 90’s, the discipline of Data Mining emerged as a step of Knowledge Dis-
covery in Databases (KDD) process, which was defined as follows: “KDD is the
nontrivial process of identifying valid, novel, potentially useful, and ultimately
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understandable patterns in data” [4]. Recently, machine learning researchers re-
alised the necessity of interpretation for a wide variety of black-box models and
even for ensemble rule-based methods when many attributes are involved [16]5.

The author of a book [19] on interpretable machine learning notes that there
is no mathematical definition of interpretability. In [8] interpretability is under-
stood as “the degree to which a human can consistently predict the model’s
results”. Thus, machine learning models can be ranked according to their inter-
pretability: “A model is better interpretable than another model if its decisions
are easier for a human to comprehend than decisions from the other model” [19].

Among the family of approaches, [19] poses global vs. local interpretations.
Thus, the global interpretability “is about understanding how the model makes
decisions, based on a holistic view of its features and each of the learned compo-
nents such as weights, other parameters, and structures”, while the local inter-
pretability is focused on “a single instance and examine what the model predicts
for this input, and explain why” [19]. From this point of view, JSM-rules provides
local interpretations when we deal with a particular classification example.

The Shapley value attribution is a model-agnostic method and produces rank-
ing of individual attributes by their importance for classification of a particular
example, i.e. it provides a decision maker with local interpretations. Indeed, this
attribution methodology is equivalent to the Shapely value solution to value
distribution in Cooperative Game Theory [21]. Strumbelj and Kononenko [22]
consistently show that the Shapley value is the only solution for the problem of
single attribute importance (or attribution problem) measured via the difference
between model’s prediction with and without this particular attribute across all
possible subsets of attributes.

Lundberg and Lee [17] extend this approach further under the name SHAP
(Shapley Additive explanation) values [17]. To compute SHAP value for an ex-
ample x and an attribute m the authors define fx(S), the expected value of the
model prediction conditioned on a subset S of the input attributes, which can
be approximated by integrating over samples from the training dataset.

SHAP values combine these conditional expectations with the classic Shapley
values from game theory to assign φm value to each attribute:

φm =
∑

S⊆M\{m}

|S|!(|M | − |S| − 1)!

|M |! (fx(S ∪ {m})− fx(S)) , (1)

where M is the set of all input attributes, S is a certain coalition of players, i.e.
subset of attributes S ⊆M .

In our study, we will follow classical definition of the Shapley value [21], where
a monotone Boolean function is used instead of expected value fx(S). Thus, we
evaluate the contribution of each attribute with respect to extent stability rather
than find its importance for a certain example classified by JSM-hypotheses.

5 The workshops on Interpretable Machine Learning: https://sites.google.com/

view/whi2018 and https://sites.google.com/view/hill2019
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2.2 Shapley value in FCA community

In [3], the authors introduced cooperative games on concept lattices. Any game
of this type induces a game on the set of objects, and a game on the set of
attributes. In these games the notion of Shapley value naturally arises as a
rational solution for distributing the total worth of the cooperation among the
players. The authors of [18] studied algorithms to compute the Shapley value
for a cooperative game on a lattice of closed sets given by an implicational
system; the main computational advantage of the proposed algorithms is based
on maximal chains and product of chains of fixed length.

3 FCA basics and concept stability indices

Let K := (G,M, I) be a formal context; that is a triple of sets such that I ⊆
G×M . We call G the set of objects and M the set of attributes. For A ⊆ G and
B ⊆M , we define the derivation operation by:

A′ := {m ∈M | ∀a ∈ A : (a,m) ∈ I} and B′ := {g ∈ G | ∀b ∈ B : (g, b) ∈ I}.

A pair (A,B) is called a formal concept of K if A′ = B and B′ = A. In that case,
A is called the extent and B the intent of the concept (A,B). Let (A,B) be a
formal concept of K with |A| = l, and |B| = n. To define the stability indices as
in [13,10,20,12], we first recall the notion of generator.

Definition 1. A generator of the concept intent B is any Y ⊆ B such that
Y ′′ = B. A set X ⊆ B is a minimal generator of B iff X ′′ = B and no proper
subset of X is a generator of B. The sets of all generators (resp. all minimal
generators) of B will be denoted by gen(B) (resp. mingen(B)).

Definition 2. In [10], the stability index Jk(A,B) (or simply Jk(B)) of the k-th
level is defined as follows:

Jk(A,B) :=
|{Z ⊆ A, |Z| = k and Z ′ = B}|(

l
k

) =
|{Z ⊆ A, |Z| = k and Z ′′ = A}|(

l
k

) .

Extensional and intensional stability indices σi(A,B) and σe(A,B) were in-
troduced in [20,12], as variations of integral stability from [10]. Here the propor-
tions are taken over all subsets, instead of subsets of size k.

Definition 3. The intensional stability index of a concept (A,B) is defined by:

σi(A,B) :=
|{Z ⊆ A such that Z ′ = B}|

2l
=
|{Z ⊆ A | Z ′′ = A}|

2l
=
|gen(A)|

2l
.

Similarly the extensional stability index of a concept (A,B) is defined by:

σe(A,B) :=
|{Y ⊆ B such that Y ′ = A}|

2n
=
|{Y ⊆ B | Y ′′ = B}|

2n
=
|gen(B)|

2n
.
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We call Jk(C) the intensional stability index of the k-th level, while the
extensional stability index of the k-th level is defined similarly.

Definition 4. The extensional stability index of the k-th level:

Jk(A) = |{Y ⊆ B | |Y | = k, Y ′ = A}|/
(
n

k

)
.

4 Shapley values for attribute importance in terms of
concept stability indices

Let us consider the extent stability index σe(A,B) as in Definition 3. Its numer-
ator induces a monotone Boolean function vB : 2B → {0, 1}, which may play a
role of the value function of any Y ⊆ B considered as a coalition of players, i.e.
attributes in our case:

v(Y ) =

{
1, if Y ′ = A and Y 6= ∅
0, otherwise

.

We will omit B as a lower index of v if it does not result in notation collisions.
Note that σe(A,B) =

( ∑
Y⊆B

v(Y ) + [∅′ = B]
)
/2|B|, where [P ] is the Iverson

notation for the value of a predicate P 6.

Definition 5. The Shapley value of m ∈ B for a concept (A,B) is defined by:

ϕm(A,B) =
1

|B|
∑

Y⊆B\{m}

1(|B|−1
|Y |

)
(
v(Y ∪ {m})− v(Y )

)
.

The vector of Shapley values for all the attributes from B is called the (reduced)
Shapley vector of (A,B), and its extension to all attributes (ϕm(A,B) = 0 for
m /∈ B) is called the extended Shapley vector of (A,B).

Since minimal generators are important coalitions and the function v(·) is
inspired by the stability indices, we would like to study their interconnection.
The Shapley values of attributes in case of extent stability can be expressed with
the help of only minimal generators.

Theorem 1. Let m ∈ Xm ∈ mingen(B) and m /∈ Xm ∈ mingen(B).7 Then

ϕm(A,B) =
1

|B|
∑

Dt{m}∈⋃Xm↑\
⋃

Xm↑

1(|B|−1
|D|

) .

Proof. Let us consider the three possible cases of the expression under summa-
tion.
6 [P ] = 1 if P is true and [P ] = 0 otherwise
7 t is disjoint union, Xm and Xm are minimal generators of B with and without m,

respectively.
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v(D ∪ {m}) v(D) v(D ∪ {m})− v(D)
0 0 0
1 0 1
1 1 0

1. When D and D ∪ {m} are not generators of B, we have the first case (first
row of the table); they do not contribute to ϕm(A,B). In this case those sets
are generators of less general concepts with intents included in B.
2. When D /∈ gen(B) and D∪{m} ∈ gen(B) hold, then we have second case. By
definition each generator of B is in an interval formed by a minimal generator and
B, i.e. X↑ = [X,B], where X ∈ mingen(B). We are interested in all S t {m} ∈
gen(B) such that S /∈ gen(B). If S /∈ gen(B), then (S′, S′′) > (A,B). Since
all D ∈ [S, S′′] are not generators of B, then v(D) = 0. On the other hand,
S t {m} ⊆ D t {m}, then D t {m} ∈ gen(B) and v(D t {m}) = 1.

If St{m} ∈ Xm↑, then Xm ⊆ S and v(S) = 1. Thus we need not to consider
all S t {m} from

⋃
Xm ↑, the set of order ideals of minimal generators not

containing m.

(a) (b)

Fig. 1: Schematic line diagrams of (2B ,⊆). (a) X,Y ∈ mingen(B), v(X ∪{m})−
v(X) = v(Y ∪ {m}) − v(Y ) = 1, and v(D ∪ X) − v(D) = 1. (b) Xm, Ym, Wm

and Zm are in mingen(B) with m ∈ Xm, Ym and m /∈ Wm, Zm. For Z ∈ Ym ↑
∩(Zm ↑ ∪Wm ↑) we have v(Z) = 1 and v(Z \ {m}) = 1 as well.

3. In the last case D and D ∪ {m} are both generators of B and thus do not
contribute to ϕm(A,B).

Summing it up, the only contributors are generators of B in the form D∪{m}
with v(D ∪ {m}) = 1 and v(D) = 0, which finishes the proof.
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Corollary 1. For m ∈ Xm ∈ mingen(B), Y ⊆ B \ {m} with (Y ′, Y ) ≥ (A,B)
and there is no Z ⊆ B \ {m} such that (Y ′, Y ) > (Z ′, Z) > (A,B) we have

ϕm(A,B) =
1

|B|
∑

D∈⋃[Xm\{m},Y ]

1(|B|−1
|D|

) .

Proof. By Theorem 1, since each minimal satisfying set (in terms of set inclusion)
is S t {m} = Xm ∈ mingen(B), then all candidates D ⊇ S for the summation
over them lie in the intervals [Xm \ {m}, B \ {m}]. However, Theorem 1 implies
that we also need to eliminate each D in the upper set of a minimal generator
without m, D ∈ Xm ↑, since v(D) = 1. Thus, we need to consider all maximal
sets Y ⊆ B \{m} that are not minimal generators of B, i.e. each largest intent of
more general concepts for (A,B) that do not contain m fulfils the requirement.

Theorem 2. Let (A,B) be a concept and m ∈M , then

ϕm(A,B) =

|B|∑

k=1

Jk(A)

k
−

∑

D⊆B\{m}

1

|D|
(|B|−1
|D|

)v(D) . (2)

Proof. Let us consider an alternative representation of Shapley value formula as
in the original paper [21]. We set s = |S| and get

ϕm(A,B) =
∑

S⊆B

1

|S|
(|B|
|S|
) (v(S)− v(S \m))

=

|B|∑

k=1

1

k
(|B|

k

)
∑

S⊆B:
|S|=k

v(S)−
∑

S⊆B

(s− 1)!(n− s)!
n!

v(S \ {m})

=

|B|∑

k=1

Jk(A)

k
−

∑

S⊆B\{m}

(
(s− 1)!(n− s)!

n!
+
s!(n− s− 1)!

n!

)
v(S).

The identity (s−1)!(n−s)!
n! + s!(n−s−1)!

n! = (s−1)!(n−s−1)!
(n−1)! finishes the proof.

Corollary 2. If {m} ⊆ X ∈ mingen(B) and |mingen(B)| = 1, then

ϕm(A,B) =

|B|∑

k=1

Jk(A)

k
=

1

|X| . (3)

Another important power index from Choice Theory and Cooperative Game
Theory is the so-called Banzhaf power index, which shows how many coalitions
that contain a given player are winning, while the same coalitions without that
player are not [2]. It is also known that the Banzhaf index is well-correlated
with Shapley vector [1]. So, for comparison purposes, let us introduce the weak
Banzhaf index of a formal concept where we count all the winning coalitions
with the considered player.
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Definition 6. The weak Banzhaf index of an attribute m ∈ B for the concept
(A,B) is defined as follows:

βm(A,B) =

∑
D⊆B\{m}

vB(D ∪ {m})

2|B\{m}|
=
|{D ⊆ B \ {m}|(D ∪m)′ = A}|

2|B\{m}|
.

One may note that the weak Banzhaf index of a formal concept is very
similar to the extent stability index of a formal concept. In fact, we eliminate
contributions of subsets not containing the attribute m from both the numerator
and the denominator of the extent stability index and use its computational
advantage in our experiments.

5 Machine Experiments

All the experiments in this section have been performed in the interactive envi-
ronment by means of iPython notebook8. To illustrate the differences between
the Shapley index and the weak Banzhaf index, we use three contexts of size
3× 3 for known elementary scales [6] (Fig. 2) and a positive context describing
fruits with binary or scaled attributes from [9] (Fig. 3).

a b c

1 × × ×
2 × ×
3 ×

a b c

1 ×
2 ×
3 ×

a b c

1 × ×
2 × ×
3 × ×

Fig. 2: Example contexts for order, nominal, and contranominal scales.

In what follows, we use reduced representations of Shapley vectors, i.e. we
hide all the components for attributes outside of a considered concept intent.
For 3× 3 order scale we get the table below:

Concept Stability Shapley value Banzhaf index
({1}, {a, b, c}) 0.5 (0.0, 0.0, 1.0) (0.5, 0.5, 1.0)
({1, 2}, {a, b}) 0.5 (0.0, 1.0) (0.5, 1.0, 0.0)
({1, 2, 3}, {a}) 1.0 (0.0) (1.0, 0.0, 0.0)

Here, the only non-zero components of the Shapley vectors are given to the
attributes that are not contained in the intents of less general concepts, while
in the weak Banzhaf indices they have the largest values among other non-zero
components.

8 The iPython script with a related demo can found at https://github.com/

dimachine/ShapStab/
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Table 1: Comparison of Shapley and weak Banzhaf indices for 3 × 3 nominal
scale

Concept Stability Shapley value Banzhaf index

(∅, {a, b, c}) 0.5 (1/3, 1/3, 1/3) (0.75, 0.75, 0.75)
({3}, {c}) 0.5 (1.0) (0.0, 0.0, 1.0)
({2}, {b}) 0.5 (1.0) (0.0, 1.0, 0.0)
({1}, {a}) 0.5 (1.0) (1.0, 0.0, 0.0)

({1, 2, 3}, ∅) 1.0 (0.0, 0.0, 0.0)

For the context of nominal scale, the Shapley and weak Banzhaf vectors are
equal for all concepts except the top one. As expected, if the intent of a concept
of nominal scale consists only of a single attribute, it takes 1 as its importance
value. For the top concept, all the values are equally distributed among the
attributes, but differ from the values of their counterpart of another index.

Table 2: Comparison of Shapley and weak Banzhaf indices for 3×3 contranominal
scale

Concept Stability Shapley value Banzhaf index

(∅, {a, b, c}) 0.125 (1/3, 1/3, 1/3) (0.25, 0.25, 0.25)
({3}, {a, b}) 0.25 (0.5, 0.5) (0.5, 0.5, 0.0)
({2}, {a, c}) 0.25 (0.5, 0.5) (0.5, 0.0, 0.5)
({2, 3}, {a}) 0.5 (1.0) (1.0, 0.0, 0.0)
({1}, {b, c}) 0.25 (0.5, 0.5) (0.0, 0.5, 0.5)
({1, 3}, {b}) 0.5 (1.0) (0.0, 1.0, 0.0)
({1, 2}, {c}) 0.5 (1.0) (0.0, 0.0, 1.0)
({1, 2, 3}, ∅) 1.0 (0.0, 0.0, 0.0)

For the context of the contranominal scale, the Shapley and weak Banzhaf vec-
tors are equal except ones for the top concept. If an intent has only one attribute,
it takes 1 as its importance value, while it has 0.5 if the intent has exactly two
attributes. The values of attributes for the top concept are equally distributed,
but the weak Banzhaf index has lower values than those for the top concept of
the considered nominal scale since it has only one generator, which coincides
with the intent.

As we can see from examples of concepts with fruits like ({1, 4}, {f̄ , s}) or
({2, 3}, {f̄ , s̄}), attributes that are not contained in minimal generators do not
contribute to the Shapley vectors, while their counterparts for weak Banzhaf
values do (cf. the importance values of f̄).

To experiment with real data, we selected the Zoo dataset (101 examples
(animals) and 17 attributes excluding its target attribute) from UCI Machine
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Fruits w y g b f f̄ s s̄ r r̄

1 apple × × × ×
2 grapefruit × × × ×
3 kiwi × × × ×
4 plum × × × ×

g3 g4 g2 g1

f̄

f,w

r̄

g b

r,ys̄ s

Fig. 3: The context of fruits and the line diagram of its concept lattice.

Table 3: Comparison of Shapley and weak Banzhaf indices for the fruits context

concepts σe Φ B

({4}, {b, f̄ , s, r̄}) 0.625 (2/3, 0.0, 1/6, 1/6) (1.0, 0.625, 0.75, 0.75)

({3}, {g, f̄ , s̄, r̄}) 0.625 (2/3, 0.0, 1/6, 1/6) (1.0, 0.625, 0.75, 0.750)

({3, 4}, {f̄ , r̄}) 0.5 (0.0, 1.0) (0.5, 1.0)

({2}, {y, f̄ , s̄, r}) 0.375 (1/6, 0.0, 2/3, 1/6) (0.5, 0.375, 0.75, 0.5)

({2, 3}, {f̄ , s̄}) 0.5 (0.0, 1.0) (0.5, 1.0)

({1}, {y, f̄ , s, r}) 0.375 (1/6, 0.0, 2/3, 1/6) (0.5, 0.375, 0.75, 0.5)

({1, 4}, {f̄ , s}) 0.5 (0.0, 1.0) (0.5, 1.0)

({1, 2}, {y, f̄ , r}) 0.75 (0.5, 0.0, 0.5) (1.0, 0.75, 1.0)

({1, 2, 3, 4}, {f̄}) 1 (0.0) (1.0)

σe(∅, {w, y, g, b, f, f̄ , s, s̄, r, r̄}) = 0.955

Φ = (0.256, 0.069, 0.093, 0.093, 0.260, 0.0, 0.052, 0.052, 0.069, 0.052)

B = (1.0, 0.977, 0.984, 0.984, 1.0, 0.955, 0.972, 0.972, 0.976, 0.972)

Learning Repository9. All the attributes are binary except of a single numerical
one, the number of legs, which can be treated as categorical and scaled nominally.

This context has 357 concepts in total. We consider the top-3 most sta-
ble concepts: c1, c2, c3 along with their extent Stability indices: σe(G, ∅) = 1,
σe(∅,M) = 0.997, σe(A, {1, 2, 8, 9, 14, 18}) = 0.625 respectively, where

A = {11, 16, 20, 21, 23, 33, 37, 41, 43, 56, 57, 58, 59, 71, 78, 79, 83, 87, 95, 100} .

For the top concept, c1, with empty intent we have zero importance vectors.
The attribute names are hair, feathers, eggs, milk, airborne, aquatic, predator,
toothed, backbone, breathes, venomous, fins, legs (4), legs (0), legs (2), legs (6),
legs (8), legs (5), tail, domestic, and catsize. So, for concept c2 we can note that

9 https://archive.ics.uci.edu/ml/datasets/zoo
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a) b)

c) d)

Fig. 4: The Shapley vectors vs. the weak Banzhaf vectors for concepts c2 (sub-
figures a) and b)) and c3 (subfigures c) and d)).

components of the weak Banzhaf vector are nearly ones, while the five largest
components of Shapley vector are legs (6), legs (8), legs (5), feathers, and legs
(4) (see, Fig. 4). This is the bottom concept with empty extent.

The concepts with empty intent or extent are not very interesting in terms of
food for interpretation since they do not describe a discernible class of objects,
while concept c3 looks more attractive with that respect. Even though we have
ignored the target attribute with seven classes in the input context, the intent
of c3 describes the class of birds since it consists of the following attributes:
feathers, eggs, backbone, breathes, eggs, legs(2) and tail. Among the objects
in its intent are chicken, crow, dove, etc. The most important attributes are
feathers, eggs and two legs, according to the Shapley vector. They are also the
most important ones according to the weak Banzhaf index though it has three
remaining attributes with rather high importance values contrary to the Shapley
vector.
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6 Conclusion

We have introduced the Shapley value and the weak Banzhaf index of a formal
concept (or concept intent, more precisely) to rank the attributes of formal con-
cepts based on the associated monotonic Boolean function showing whether a
particular set of attributes is a generator of a given concept intent. A similar func-
tion is used for the stability indices of formal concepts or JSM-hypotheses [10].

This ranking allows us to order attributes by their importance; in case of the
Shapley value, the induced ranking reflects (up to the scaling binomial coeffi-
cient) how many times a particular attribute was in a generator of a given con-
cept, while this generator minus the attribute is not a generator of the concept.
As we can see from the examples with both toy and real data, these importance
values are different from their counterparts in the weak Banzhaf vectors. Thus,
they are zeros for all attributes that are not among the attributes of minimal
generators.

As we could see from the concept or hypothesis for the bird class in the Zoo
dataset, the Shapley value can be used for interpretation purposes selecting the
most important attributes of a given hypothesis.

In our further studies we would like to pay special attention to scalability
algorithmic issues of this approach (related to reduced contexts) as well as to its
comparison with other importance indices [1] from Cooperative Game Theory
and Collective Choice with a focus on their interpretability properties for real
applications. The detailed discussion on the algorithmic complexity of the related
problems will appear in an extended paper version.
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