
Athens Journal of Technology and Engineering - Volume 7, Issue 3, September 2020 –  

Pages 157-184 
 

https://doi.org/10.30958/ajte.7-3-1                                doi=10.30958/ajte.7-3-1 

Using Model Predictive Control to Modulate the 

Humidity in a Broiler House and Effect on Energy 

Consumption 
 

By Norman Urs Baier

 & Thomas Meier

± 

 
In moderate climate, broiler chicken houses are important heating energy 

consumers and hence heating fuel consumption accounts for a large part in 

operating costs. They can be reduced by constructional measures, which in turn 

lead to important costs as well. On the other hand, a software solution to reduce 

energy would lead to considerably less follow-up costs. The main objective of 

our work was to assess if it is possible to save energy with a software solution 

and eventually quantify the savings for a given broiler house in the Swiss 

Plateau. The investigation was carried out in simulation: the particular broiler 

house was measured, and a dynamical model for it was derived and validated. 

To actually search for a particular behaviour of the software that would lead to 

energy savings, model predictive control was used. The idea was not to specify a 

particular behaviour of the software but rather to let the software itself find the 

best behaviour in an exhaustive search. The simulations showed that energy 

savings can be realised mainly by letting the indoor humidity deviate from what 

usually is used as setpoint and hence take profit of the outdoor climate, which 

changes naturally during a 24-hour course. We used expert opinions to 

determine how long and large these setpoint deviations may be without harming 

the broilers. The simulations showed also that the light control and the 

biological activity of the animals reduced the potential savings. 

 
Keywords: Energy conservation, heating, ventilation, and air conditioning 

(HVAC), implicit model predictive control (MPC), poultry house model, 

temperature control 

 

 

Introduction 

 

In Europe’s temperate zone breeding of broilers is usually done in closed 

poultry houses. Equipped with climate control such houses make it possible to 

provide for optimal conditions for meat production. Indications on how to regulate 

the climate within the poultry house are usually given by the supplier of the chicks. 

In our case we considered ROSS 308 broilers and the corresponding handbook 

(Aviagen Technical Team 2014). Generally, the required temperature and the 

recommended humidity vary with the age of the birds. From an economic point of 

view, it is very important to keep the indoor temperature for the birds within the 

"thermoneutral zone", a temperature drop below the thermoneutral zone increases 

the food consumption of the birds without an increase in meat production. On the 
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other hand, an excess over the thermoneutral zone will provoke fuel wastage and 

increased indoor humidity (Donkoh 1989). An excess of indoor humidity can lead 

to infections and should also be avoided. 

The most widespread used control strategy we encountered currently in use 

was single loop PID- and hysteresis controllers for temperature and humidity 

control. Usually, the recommended values of the supplier are chosen as setpoints 

for both control loops, in which the setpoint would be only slowly varying 

according to the recommendations of the supplier. 

In contrast, another control algorithm could be considered, which allows for 

deviations of the measured temperature and humidity from the recommendations 

of the chick supplier. We started from the persuasion that the birds will not suffer 

from stress, when they experience a cold blast, if only it is short enough and as 

long as the mean temperature lies within the thermoneutral zone. Correspondingly 

we started from the persuasion that a short raise in humidity will not provoke 

infections or excessive production of ammonia, if only it is short enough and as 

long as the mean humidity is unchanged. 

Additionally, we started from the hypothesis that during the course of the day, 

there are times when it is cheaper to ventilate and times where it is more 

expensive. This hypothesis is supported by the observation that during night times 

temperatures are often lower than during day times and the cost for heating up a 

previously completely ventilated room is consequently higher. 

With our research we wanted to answer the following questions: 

 

- How can short term deviations from the set-point be implemented in a 

control algorithm? 

- How much energy can be economised using such a control algorithm? 

 

In quest of an answer to the first question, our choice fell on implicit model 

predictive control (MPC). It naturally allows to formulate a cost function, 

specifying how expensive fuel is compared to stress or illness.  

This article is structured as follows. In the next section "Literature Review" 

we describe how this work relates to other research works already published. In 

the section "Methodology" we first describe course of action to answer the 

research questions raised above. In its subsections we state the physical conditions 

we considered for our work, furthermore we describe the dynamical model, the 

cost function and the optimisation algorithm, which altogether form the MPC 

algorithm. In the section "Results" we show the birds’ emission estimated with the 

dynamical model and used in our simulations. But mainly we use this section to 

analyse the performance of the MPC. In the section "Discussion" we analyse the 

plausibility of our results and give a theoretical limit for how large the energy 

savings due to MPC can be. We finish with "Conclusions". 
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Literature Review 

 

Daskalov et al. (2006) proposed an adaptive non-linear proportional integral 

control law for broiler houses to reduce coupling and consequently improve 

disturbance rejection. Lahlouh et al. (2020), on the other hand, analysed the 

performance of state-PID feedback controllers in presence of disturbances and 

Mirzaee-Ghaleh et al. (2015) investigated the performance of a fuzzy control 

algorithm, which also constitutes a MIMO approach to climate regulation. They 

compared the fuzzy controller to the widespread installed on/off controllers. In 

their work outside temperature and humidity were both low compared to the 

requirements of the birds, due to the fact that the broiler house, they modelled, was 

located in Iran and winter season conditions were considered. Ridolfi de Carvalho 

Curi et al. (2017) were concerned by the positioning of the sensors to achieve a 

good performance of the ventilation system.    

A distinctively comprehensive approach to modelling and control was taken 

by Lorencana et al. (2019), who modelled the broiler house as a discrete event 

system and used finite state machines to model the components of the discrete 

event system. The work of Stables and Taylor (2006) does not consider the whole 

building but concentrates on the control of the ventilation rate. The aim is in line 

with the other cited articles here, namely, to improve set-point tracking and 

disturbance rejection of the control system. Youssef et al. (2015) propose an 

alternative controlled variable: Instead of measuring and controlling the indoor 

temperature, they track the bird’s activity as an indication whether or not the birds 

are in the thermoneutral zone. 

Research concentrating on the modelling part has been done by Wicaksono et 

al. (2017). They introduced an artificial neural network to calculate an "effective 

temperature", which takes into consideration the humidity and the air flow, thereby 

allowing the temperature measured near the ground to deviate from the value 

recommended by the chick supplier. Artificial neural networks have also been 

used by Abreu et al. (2020) to predict the cloacal temperature of broilers. A model 

based on the hourly model of ISO 13790 has been presented by Costantino et al. 

(2018), it is used to estimate the energy consumption for climate control in broiler 

houses. Due to its coarse time resolution it cannot be used for control, however. 

The use of MPC algorithms for doing control of heating, ventilation and air 

conditioning (HVAC) systems in buildings for human beings has been 

successfully studied by Zhang et al. (2013). They show graphs with for different 

control strategies relating "HVAC input cost" to "room temperature violation". 

Nagpal et al. (2019) relax the necessity for precise weather forecasts by only 

considering bounds for them. 

 

 

Methodology 

 

To give an answer to the question, how varying setpoints can be implemented 

in a broiler house climate regulation, we implemented an MPC-algorithm. To be 

able to give a number on how well it performs, we implemented it for a particular 
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broiler house currently in use. Sensors were added in such a way that a dynamical 

model of the broiler house could be developed and validated. Parallel to the 

modelling, an implicit model predictive control algorithm was developed and the 

behaviour of the already installed commercial controller was implemented in a 

simulation model as well. Finally, the measurements of a particular day of one 

fattening period was used to run the model predictive control on and was 

compared to the simulation results of the replicated commercial control algorithm. 

By using the simulation results of the commercial control algorithm and not the 

true measurement values any effect of disturbances on the result could be 

eliminated. 

In summary, the steps towards the energy comparison between MPC and 

commercial controller were: 

 

1. Equip a physical broiler house with sensor to be able to calculate the 

precise heat and humidity balance. 

2. Set up a dynamical model describing heat and humidity evolution in the 

broiler house. 

3. With the measured heat and humidity balances and the dynamical model, 

estimate the animal emissions. 

4. Parameterize an MPC algorithm, such that energy can be economised 

without endangering animal health.  

 

These steps are detailed in this order in the following subsections, except for 

the estimation of the animal emissions which is given in the next section "Results" 

only. 

 

Physical Broiler House and Measurement Equipment 

 

The broiler house used for measurement was located in the Swiss Plateau at 

an altitude of 450m. It was equipped with one gas-heating. The heating was 

particular in the sense that it did heat the room by blowing the exhaust of the 

burned gas into the broiler house. During normal operation the heating would 

switch on and off according to a pulse width modulation scheme with a duty cycle 

provided by the commercial controller (the controller installed by the supplier of 

the climate control system). The cycle period was approximately 3min, the red line 

in the uppermost plot of Figure 1 shows the on-off way of the heating gas supply 

during normal operation. 

To evacuate the waste air, the broiler house had waste air pipes on the top of 

the roof with an interior vent installed. During winter season, when ventilation is 

used to reduce the humidity, the ventilation was also controlled in an on-off way, 

but with a cycle period of approximately 5min. In summer season when 

temperature is controlled through the ventilation the behaviour is different. The 

blue line in the uppermost plot of  shows the piloting on-off signal of the original 

controller.  
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Figure 1. Simulated Temperature and Humidity compared to their Measured 

Counterparts 

The uppermost plot displays when ventilation (blue) and heating (red) are on. The middle plot 

shows the measured temperature as black lines (gable, middle, floor) and the amber line shows the 

simulated temperature for the same hour. The lowermost plot shows the measured humidity in black 

and the simulated humidity in turquoise.  

 

To be able to measure the heat and humidity balance of the broiler house, an 

extensive set of sensors was installed in the broiler house next to the sensors 

already available because of the commercial control system. The sensors installed 

were one sensor for inside temperature, one for outside temperature, and one each 

for inside and outside humidity. All original sensors measured one sample every 2 

minutes (         Hz). The original control system recorded signals of water 

consumption, food consumption, flow rate of the waste air, heating power, setpoint 

temperature and setpoint humidity (         Hz). 

To be able to better validate the model additional sensors were installed. With 

the help of two "NI-cRIO"s several other signals were recorded. Inside the broiler 

house air temperatures at 12 different locations were recorded through 

thermocouples of type K. The temperature of the floor was measured at two 
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different locations with the help of PT100 sensors. Outside air temperature was 

measured at two different locations. The flow rate of the waste air was also 

measured through the cRIOs. The cRIOs were set to sample at 1Hz. 

Additionally, a Campbell Scientific data logger was installed to record the 

following signals: Flow rate in the waste air pipe was measured through a 

measuring fan (      Hz), temperature of soil outside the broiler house (   
      Hz), and incident solar radiation was measured with a pyranometer 

(         Hz). Finally, a weather station was installed recording wind speed, 

wind direction, (outside) air pressure and humidity with sample intervals of six 

minutes (         Hz).   

 

Dynamical Model 

 

During one step of the MPC-algorithm, the dynamical model is simulated 

several times. Therefore, for a successful execution of the algorithm a lightweight 

simulation model is needed. If the model is inaccurate, energy consumption may 

be estimated inaccurately and may deteriorate the performance of the control 

algorithm. In this work we compare the behaviour of the installed control 

algorithm to the MPC when controlling the simulation model presented in this 

section. Therefore, modelling errors will not lead to a false outperformance of the 

MPC algorithm but may be an issue when actually using the MPC algorithm in a 

broiler house. 

We start by defining input and output signals of the broiler house from the 

perspective of the controller. Then we give the equations for the four state 

variables obtained through heat and humidity balances. 

 

Input and Output Signals of the Broiler House 

The operation mode of the broiler house has been described in the subsection 

"physical broiler house" already. The broiler house takes the role of the plant 

within the control system. The controlled variables are the outputs of the plant and 

correspond to the indoor humidity and the indoor temperature.  

The inputs to the system are on one hand: the manipulable inputs ventilation 

rate  ̇      and heating gas supply/consumption  ̇     , on the other hand they are 

the disturbance inputs: outdoor temperature     , outdoor humidity     , the heat 

flows due to the animals  ̇  
  and  ̇    

  and the moisture emission of the animals 

 ̇    . The subscript "  " designates animal emissions. In the model to be 

established, the moisture emission is calculated as total water mass given off to the 

air in the broiler house Figure 2. 
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Figure 2. Inputs and Outputs of the "Broiler House"-System: Manipulated Values 

Left, Disturbance Inputs Top, Outputs Right, State Variables in the Box 

 

The outdoor temperature and humidity are measured, and forecasts are 

considered available from weather forecasts. As we worked with simulations, we 

did use measurements for the forecasts. So, for the scope of this work, we disposed 

of absolutely reliable forecasts.  

The animal emissions are not directly measurable. They are introduced into 

the broiler house through the food supply. In fact, it is exactly the aim of the 

climate control to ensure that most of the food supply is assimilated in the birds’ 

bodies by keeping the temperature in the thermoneutral zone. Hence, only a part of 

the food supply will heat up the broiler house. Extensive work has been done to 

estimate the efficiency of the breeding and as a side effect, estimates on animal 

emissions are available (Nukreaw and Bunchasak 2015). However, these estimates 

are only mean values, whereas it is to expect that the animal emissions vary with 

time (Pedersen and Sällvik 2002).   

The animal emissions leave the broiler house through the ventilation and the 

walls. Given temperatures and ventilation rates, they could be estimated, but this 

necessitates a validated model. This appears to be a circular dependency. To 

escape from it we first built a model from first principles with which we estimated 

the animal emissions. Then we used the mean values of the emissions known in 

literature to validate the estimated emissions.  

No other disturbances than these measured or modelled disturbances given in 

this section have been considered. In an actual implementation of the algorithm in 

a broiler house, disturbances may have an impact on setpoint tracking and 

performance. How this impact can be minimised and addressed would be part of 

future research or industrialisation work.  
 

Model from First Principles 

The purpose of the model is to describe the dynamic relation between the 

above-mentioned input and output signals. The internal temperature can be 

calculated with the help of thermodynamics and the humidity with the help of the 

conservation of masses. To apply the corresponding laws, we consider the broiler 

house as a single mixing volume: When new air is taken into the broiler house, it 

is immediately mixed with the prevailing air leading to a single temperature and a 

single humidity in the whole broiler house. The air blown out through the waste air 

pipes has the temperature and the humidity of the mentioned single mixing 

indoor air temperature 𝑇𝑖𝑛𝑡 𝑡  

absolute indoor humidity 𝑎𝑖𝑛𝑡 𝑡  
𝑇𝑖𝑛𝑡, 𝑚𝑤 , 

𝑇𝑟𝑜𝑜𝑓, 𝑇𝑓𝑙𝑜𝑜𝑟  heating gas supply 𝑉̇ 𝑔 𝑡  

ventilation flow rate 𝑉̇𝑣𝑒 𝑡  

𝑇𝑒𝑥𝑡 𝑎𝑒𝑥𝑡 
𝑚̇𝑤 𝑒𝑚
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volume. Measurements of the temperature at different heights in the broiler house 

are shown in the central plot of Figure 1. They show a slight layering of the air, 

nevertheless the synchronous variation of the temperature at the different heights 

indicates an acceptable mixing of the air. Expectedly, some adaptions in the model 

will have to be done to reflect the layering.  

To establish the dynamical model, energy and mass balance equations are 

used. The approach followed here is similar to the one given by Daskalov et al. 

(2006), there, with the help of energy and mass balances, the derivatives of 

temperature and humidity of the single mixing volume were calculated, whereas 

the model proposed here has two additional states. Without the roof and floor 

temperature the dynamics of the interior temperature could not be reproduced 

sufficiently precise to use them for the MPC controller. The sketch in Figure 3 

shows all considered energy and mass flows and indicates the state variables. 

These are in our modelling approach: the temperature of the single mixing volume 

(    ), the total mass of the water contained in the single mixing volume (  ) as a 

measure for the absolute humidity. To take the mass of water contained in the 

volume instead of any other humidity leads to more clearly arranged equations, as 

the division by the volume is done in the output equation and not in the state 

equation. The two other state variables are the temperature of the floor plate 

(      ) and the temperature of the roof (     ). 

 

Figure 3. Energy and Mass Flows in the Broiler House: Inflows with a Positive 

Superscript, Outflows with a Negative; the State Variables are Represented with 

Bold Symbols 
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State Variable: Mass of Water in the Broiler House 

 

To get an expression for the derivative or the mass of the water (  ) it 

suffices to calculate the balance of all in- and outflows. 

 

  

  
    ̇     

   ̇     
− +  ̇    

 +  ̇    
  (1) 

 

All mass flows are indicated in Figure 3:  ̇     
  and  ̇     

  are masses of the 

water exchanged with the outside through ventilation,  ̇    
  is the mass of water 

introduced to the volume through the combustion of the heating gas and  ̇    
  is 

the mass of water emitted by the animals.  

 ̇     
  and  ̇     

  can generally be calculated with the available measurements 

and state variables. First, the mass of the water in the air drawn in by the 

ventilation is given by the outside humidity. 

 

  ̇     
       ̇     

  (2) 

 

where      is the external humidity mixing ratio. Then an approximate expression 

for  ̇     
  is  

 

 
 ̇     

   ̇     
−  (

 

      
 

    

        
)  ̇   (3) 

 

and hence 

 

 
 ̇     

      (
 

      
 

    

        
)  ̇   (4) 

 

where   is the air pressure (assumed constant),    (  ) is the specific gas constant 

of air (water),      the measured single temperature of the volume,        is the 

capacity of the mixing volume and  ̇   is the ventilation rate, which is a 

manipulable input and hence is known. For approximation (3) the fact was used 

that during the combustion of natural gas the carbon part bound to oxygen does 

not significantly increase the air mass in the building. 

The calculation of the mass flow ejected is straightforward 

 

  ̇     
  

  

      
 ̇   (5) 

 

The mass flow from the heating is the rather simple expression 

 

  ̇    
             ̇   (6) 
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where        is the density of vaporous water,    is the stoichiometric yield of 

water at the heating gas combustion and   is a proportionality factor taking into 

account that the heating gas is usually at a higher pressure in the gas pipe.  ̇   is 

the second manipulable input. 

The moisture emitted by the birds  ̇    
  will be determined in the section 

"Animal Emissions". There, tabled values giving an estimate of the temporal 

emissions will be calculated using the model developed in this section. 

 

State Variables: Temperature of Roof and Floor 

 

For the calculation of the temperatures in the roof and the floor, energy 

balances are formed. 

 

               

 

  
        ̇       ̇     (7) 

             

 

  
       ̇      ̇    (8) 

 

where          and         are the corresponding specific heat capacities at 

constant pressure,        and       are state variables.  ̇      is the heat flow from 

the volume into the floor plate and  ̇     the heat flow from the floor plate into the 

soil. Similarly,  ̇     and  ̇    are the heat transfers from the volume into the roof 

and from the roof to the outside air. They are all calculated with the help of 

thermal transmittance values which are estimated with standard tools from 

building physics. Transmission values for the particular insulation material
1
 are 

available from the supplier. The values finally obtained for the geometry of the 

considered broiler house, according to the standards SIA 380 and EN ISO 13370 

(Marti 2001), are gathered in Table 1. The radiance is not considered explicitly, 

when in clear calm nights the roof temperature falls considerably under the 

ambient temperature, the heat flow might be underestimated, under average 

conditions the calculated value should match quite well.  

 

  ̇                  (           ) (9) 

  ̇                (           ) (10) 

  ̇                  (          ) (11) 

  ̇                (          ) (12) 

 

  

                                                                 

1
Kingspan Selthaan "BriteBoard" and "Mehrlagen" 
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Table 1. Thermal Transmittances of the Building Elements 

Building Element Thermal Transmittance  [
 

   
] 

Floor (      ) 40 

Soil (     )  1.237 

Ceiling (        ) 0.952 

Roof (     ) 0.231 

Wall (     ) 0.331 

 

State Variable: Temperature of the Air in the Broiler House 

 

The derivation of the equation for the last state variable is more elaborate 

because some of the heat flows involve mass transport, therefore the product rule 

has to be observed to calculate the derivative of the inner energy. Apart from this 

extra step, the procedure is the same: The derivative of the inner energy of the 

fluid is equal to the sum of the heat flows. In thermodynamics the symbol for the 

total internal energy is the uppercase  , which is in this article already used for the 

thermal admittance, the symbol for the specific internal energy is the lowercase     
 

   

  
 

 

  
      

 

  
     +       ∑  

 

+ ∑  

 

 (13) 

 

where exceptionally   is the total internal energy of the fluid within the broiler 

house volume (and not  a thermal admittance).   is the total mass and   is the 

total specific internal energy of the fluid within the volume, whereas   ,   ,    

and    are the masses and specific energies of the water and air parts only within 

the volume. Because of the ventilation, the masses    and    are not constant 

and hence the product rule has to be applied, when 
  

  
 is to be isolated from 

  

  
. 

 

For the temperature and pressure ranges that occur in a broiler house the 

specific internal energy can be expressed in linear form  

 

     (      ) +      (14) 

   

     is the total internal energy at the temperature     , numerical values can be 

found in any collection of tables for chemistry (Rumble 2018). With this formula 

an expression for 
     

  
 can be developed. Furthermore, assuming semi-perfect 

gases for dry air and moisture 

 

         

    
     +      (15) 

   

   can be eliminated in (13), such that only the state variable    remains and 

with the help of the well-known relation 
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      +   (16) 

   

   can be eliminated. The insertion and transformation of the equations is mere 

algebra and does not give extensive scientific insight. Therefore, the individual 

steps are omitted here, and the result is given just below in subsection "Writing the 

State Space Model".  

On the right hand side of (13) is the sum of all heat flows (∑ + ∑ ). The 

heat flows through roof and floor have already been specified in (9) to (12). The 

heat flow through the walls is calculated the same way. The corresponding thermal 

admittance for the broiler house in consideration is given along with the others in 

Table 1. 

 

  ̇    
−                        (17) 

   

Remaining heat flows shown in Figure 3 but not yet defined are:  ̇  
  and 

 ̇    
 , the sensible and latent heat from the heating,  ̇     

  and  ̇     
 , latent heat 

from the fresh air drawn in by the ventilation, and   ̇     
−  and  ̇     

− , the latent 

heat blown out by the ventilation. Finally, there are the heat emissions of the birds: 

 ̇  
  is the sensible heat and  ̇    

  is the latent heat contained in the breathing air. 

In fact, they are both unknown and will be estimated in the next section as a joint 

quantity. 

The sensible heat from the heating is given directly by  ̇  , the heating gas 

supply, which is a manipulable input. 

 

  ̇  
        ̇   (18) 

   

where    is the lower heating value of the heating gas, giving the energy set free 

by the combustion of a given volume of the heating gas at standard conditions.   

is the same factor as in (6) taking into account that the gas is not at standard 

conditions in the gas tube. 

Additionally, there is the latent heat, which is introduced to the volume by the 

exhaust of the heating, or more precisely by the vapour contained in the exhausts. 

 

  ̇    
  [      (        ) +         ] ̇     (19) 

 

Where the enthalpy at standard conditions          can be found in any collection 

of tables for chemistry (Rumble 2018). It is important to include this term here, as 

it is measured and taken into account when it is blown out by the ventilation on the 

other side of the balance, namely by   ̇     
− . This latter and the other three latent 

heat flows due to the ventilation are 

 

  ̇     
  (    (         ) +      ) ̇      (20) 

  ̇     
  (      (         ) +          ) ̇      (21) 

  ̇     
−  (    (         ) +      ) ̇      (22) 
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  ̇     
−  (      (         ) +          ) ̇      (23) 

 

Writing the State Space Model 

 

Combining the equations from the previous section, after a considerable 

amount of paperwork the following state space model can be written. 

 
     

  
 [        + (

       

      

    

    

 
  
  

  )      ]                                                

      ( ̇    
 +           ̇  ) [        +       (         )    

  
  

               ] 

     +      ̇  + [      (        ) +         ]           ̇   

                  (           )            (          ) 

                            

      ((     (
 

      

 
    

        

) (
      

    

 
  
  

) +
 

      

)  ̇  )                 

     + ̇  
 +      

  

(24) 

 

 

   

  
 +     

 +            ̇  + (
     

      

 
       +      

        

)  ̇              (25) 

      
       

  
              

             (           )             (           ) 
(26) 

      
      

  
            

              (          )                          
(27) 

 

With the above state equation (24) to (27), the output equation becomes 

 

 [
    

    
]  [

    
         

−   
]  [                 ]  (28) 

 

This is a nonlinear state space model with the state variables     ,   ,        

and      . The manipulable inputs are  ̇   and  ̇  . Measured disturbance inputs 

are      and     . All other symbols are parameters, except  ̇  
  and      

 , 

which are to be determined in the next section.  

It has been stated above that the layering of the air will probably have an 

impact on the ventilation. Daskalov et al. (2006) used the concept of the "active 

mixing volume" to reflect such effects. Here it is proposed to simply consider 

shortcuts in the ventilation streams and to scale the ventilation rate accordingly. 

So, in the equation above,  ̇   is not the measured ventilation rate, but a scaled 

variant of it.  

 

  ̇            ̇        (29) 

   

Using plumes such an effect is made visible, or for other types of buildings 

CFD simulations have been used (Awwad et al. 2017). The numerical value was 

determined when the animal emissions –described below– were calculated. 
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Model Predictive Control  

 

The basic idea behind model predictive control is to use a mathematical 

model of the plant (i.e. the broiler house) to predict its behaviour. An objective 

function is used to assess, how well the current setting performs. The current 

setting includes all measurable disturbances, all manipulable input signals, and the 

constant parameters to the model. Finally, the objective function is minimised by 

an optimisation. As a result of the optimisation, the optimal input signals up to the 

horizon (a design parameter of the algorithm) are known. The first sample or 

period of the input signals is used as input to the plant, the rest of the signal is 

rejected, because after the calculation new measurement signals are known and 

taken into account during optimisation for the next sample. 

Model predictive control is well established in process control. A considerable 

number of commercial packages is available for standard applications (Camacho 

and Bordons 2007). Most of the commercial packages use a black box model to 

describe the plant. The model is identified with measurement data. The use of a 

linear (black box) model generally allows to write an explicit control law. The 

disadvantage is of course the lack of transparency and in case of an underlying 

non-linear system performance and stability problems may occur. 

The equations obtained above show clearly a non-linear system. Furthermore, 

the time constants of the building are rather slow in comparison to mechatronic or 

electronic systems, which are also often addressed by the commercial MPC 

packages. Because of the high level of transparency, we decided to implement a 

model predictive control with the above first-principles model, a gradient descent 

algorithm for the optimisation and a cost function allowing for short term setpoint 

deviations. 

 

Gradient Descent Algorithm 

It is not to expect that the cost function shows pronounced local minima. 

Indeed, the dependence on the heating gas supply is strictly monotonically 

increasing, the terms with the mean squared error (weights    and   ) are not 

expected to show any more than one minimum, increasing the temperature 

deviation always leads to an increase of the cost function. The average terms of the 

cost function may have more than one solution for the minimum, heating more at 

one time may be compensated by heating less at another time. Nevertheless, the 

solutions are not expected to be disjoint, so no local minima should occur. This is a 

working assumption and not a proof, in case the MPC should be industrialised in 

this application, the working assumption should be rechecked. The gradient 

descent was implemented upon this working assumption. 

The input functions were parameterised with 4 parameters each. To that end 

they were split in four intervals: [          , [           , 
[              and [          ]. The parameters are the duty cycles for 

ventilation and heating for each interval. The parameter vector becomes then 

  [                                                                    ]. 

To evaluate the gradient, the cost function was evaluated at positions   away 

from the current parameter vector  . This evaluation step had different sizes 
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depending on the parameter varied: 

  [                                ], the units being “parts 

of duty cycle”. The step size for descent   finally used, was  
  [               ]    − . 

The gradient descent was run once a minute, giving new duty cycles for the 

next minute. In the current implementation it did run somewhat faster than real 

time on a current desktop computer. 
 

Cost Function 

The cost function had to be implemented carefully for our purposes, as it 

should not penalise short term deviation from the setpoints, however it has to 

assure that the average values of humidity and temperature converge to the 

setpoints and that humidity and temperature stay within the comfort region. 

Furthermore, solutions with high energy consumptions should be penalised. We 

made simulations with a cost function comprising five terms. 

The penalising of the energy consumption was implemented in a 

straightforward manner. The cost function includes a weighted term with the 

accumulated heating gas supply. This is the last term with weight    in (30). 

Solutions with comparable deviation from the setpoints but with higher energy 

consumption will henceforth be avoided by the optimisation algorithm. 

To avoid that the temperature shows swings harmful to the comfort of the 

birds, a term was added to the cost function, which gets high whenever the 

temperature deviates too far away from the setpoint, even when it is only for an 

instant. The implementation of that term went out at scaling the difference 

between the measurement and the setpoint with a tolerance        before 

calculating its square value. From that intermediate result, the mean value was 

calculated and weighted with a weight   . The term looks only into the future, as 

changing the future temperature cannot compensate for harm made in the past, or 

in other words, the error can only increase if a larger observation period is chosen. 

Furthermore, the term takes into account the complete prediction horizon     , 

there is no sense to consider possible solutions, where the temperature is set 

inadmissibly high even in the far future.  

A similar term was instantiated for the humidity. This is the term with the 

weight    and the tolerance          in (30).        and          are chosen 

such that rather large temperature and humidity swings are possible. 

To ensure that the mean value is close to the setpoints, two further terms – 

one for temperature one for humidity – are added to the cost function where the 

squaring takes place after the averaging. These are the terms with weights    and 

  . They have tolerances         and           and the averaging takes place 

over the intervals [      ] for the temperature and [      ] for the humidity. 

  

 

  
  

    
∫ (

         

      
)

 

  

    

 

+
  

    
∫ (

         

        
)

 

  

    

 

 (30) 
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   +
  

   
[ ∫

         

       
  

  

−  
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+
  

   
[ ∫

         

         
  

  

−  

]

 

 

   +
  

    
∫

     

   
  

    

 

 

 

Apparently there has not been a large scientific interest in how resistant 

broilers are against temperature and humidity deviations, therefore it was difficult 

to find appropriate values for   ,     ,         and          . After discussions 

with farmers and scientists in the field of poultry production, we opted for the 

values in Table 2. The weights    to    finally found through trial and error are 

also gathered in Table 2.  

 

Table 2. Parameters of the Cost Function 

 Name Value 

T
im

es
      (12h) 43,200 s 

   (15min) 900 s 

     (12h) 43,200 s 

T
o
le

ra
n

ce
s 

       6 K 

         0.53 kg m
-3
 

        0.5 K 

          0.036 kg m
-3

 

    10
-3 

m
3
 

W
ei

g
h

ts
 

   30    

   30       

   144    

   1125       

   10    

 

 

Results 

 

Animal Emissions 

 

Intentionally, the model in (24) to (27) should calculate and predict its state 

variables. This will only work, though, when the exact time dependent animal 

emissions are known. Pedersen and Sällvik (2002) show courses of those emissions 

for different animals and also for broilers at age three to five weeks, but not for 

younger or older broilers. On the other hand, from the food supply and the 

knowledge on the metabolism, the released energy can be calculated. However, in 

such a way only an average value is obtained, as the energy is not freed 

immediately after food intake but can be stored in the birds’ bodies over a few 

hours or even days.  
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The solution to this dilemma is to take the model just derived and run it with 

measurements from measured fattening periods, an approach also used by Cordeau 

and Barrington (2010). With      measured and known, (24) can be transformed to 

give the unknown sum  ̇  
 +      

 . The moving average value of the emissions 

should then correspond to the value that can be calculated with the help of the food 

supply. The procedure is illustrated with Figures 4 and 5. In Figure 4 all measured 

or known heat flows are shown as a thin line and for orientation the light is shown 

as a dotted line. When the line is high, the light is on, when the line is low, the 

light is off. The sum of all solid and thin lines is shown as a thick green line. In 

case of a correct model and low measurement errors, the thick green line gives the 

heat emissions of the animals ( ̇  
 +      

 ).  

 

Figure 4. Balance of the Heat Flows and Rest Term 

The dotted line shows when the light is switched on and off. The upper blue line shows the energy 

carried into the broiler house with the fresh air taken in. The cyan line (lowermost) shows the 

energy lost to the outside through the air blown out by the ventilation. The red line shows the energy 

supplied by the heating, the brown line the energy lost by transmission through the walls. Finally, 

the green line is the rest, i.e. the heat emission of the birds. 

 

The rest term can now be compared to the heat emissions that can be obtained 

from food supply. As has been stated, the values obtained through food supply do 

not have a good temporal resolution. For their calculation values from Nukreaw 

and Bunchasak (2015) have been used. With the help of this graph, the value for 

        in (29) could be chosen to 0.8 for the broiler house in consideration, this 

value gave the best match between the average emissions measured through the 

ventilation and those calculated through food supply. Figure 5 shows the good 

match between the balance of the heat equation and the emissions estimated from 

food supply. 

 



Vol. 7, No. 3                  Baier & Meier: Using Model Predictive Control to Modulate… 

 

174 

Figure 5. Comparison of the Calculated Heat Emissions from Food Supply and 

of the rest of the Balance of the Ventilation 

Green: Rest of the balance (from Figure 3), red: Values calculated from birds’ weight and food 

supply. 

 

Data from two fattening periods where used to abstract average courses of the 

emissions for the emitted heat and moisture. Both were normalized with respect to 

the weight of the birds. The results are shown in Figures 6 and 7. These data were 

used for the simulation of the model with state space description in (24)–(27). The 

data have been made publicly available
2
.  

 

Figure 6. Energy Emissions 

The black line represents the abstracted average courses of the energy emissions, the green 

lines are measurement data from two fattening periods. 

                                                                 

2
doi:10.17632/dmfbv3wff4.1. 
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Figure 7. Moisture Emissions 

The black line represents the abstracted average courses of the moisture emissions, the blue 

lines are measurement data from two fattening periods. 

 

Model Validation 

 

To validate the model, it was hooked up to the recorded control signals of the 

installed controller and the simulated signals were compared to the measured 

signals. The result is shown with the coloured lines in the central and lower plot of 

; it shows the simulation of a random hour of a fattening period compared to the 

measurements of this particular hour. The simulation was made with the estimated 

and abstracted animal emissions, which may differ from the momentary emissions 

in the broiler house. For this particular hour apparently the heat emissions were 

lower than estimated, hence the simulated temperature was a few degrees lower. 

For better comparison it has been shifted upwards. Generally, the simulation 

reproduces the dynamical behaviour of the broiler house very well; the size of the 

temperature and humidity swings is comparable to the measurements.     
 

Performance of the MPC 

 

Both, a replication of the installed control algorithm and the model predictive 

control were used to control the simulation model. So even if there are 

imperfections in the model, the result will we be due to the difference in the 

control algorithms, as animal emissions and weather conditions are perfectly equal 

in both simulations. Weather conditions were taken from measurements and 

animal emissions were taken from our calculations. The data reproduce the 16
th
 

day of a fattening period we measured in January 2015. Heating requirements are 

most important around that day in the fattening period because humidity is still 

required to be rather low and temperature rather high (Aviagen Technical Team, 

2014). The red line in Figure 4 indicates this circumstance. 

Typical time courses of the internal temperature    and absolute humidity 

     are shown in Figures 8 and 9. In both figures, the awakening of the birds is 
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very apparent: At 6 o’clock, when the light is switched on, the birds produce 

considerably more emissions than before, which leads to a temperature and 

humidity increase. Both controllers react very differently to this perturbation. The 

replicated controller seeks to immediately correct the humidity difference and 

hence increases immediately the ventilation duty cycle, which in turn has a major 

impact on the temperature, which first increases but then sinks below the setpoint 

due to the accrued ventilation. 

 

Figure 8. Comparison of Temperature Courses with MPC and Original Control 

 
The dotted line shows the setpoint of the temperature, the grey line shows the simulated temperature 

with the replicated controller and the orange line shows the simulated temperature in case of MPC 

control. The lower plot shows the controller output of both controllers with the same colours. 

 

Figure 9. Comparison of Humidity Courses with MPC and Original Control 

 
The dotted line shows the setpoint of the humidity (mean humidity in case of MPC), the grey line 

shows the simulated temperature with the replicated controller and the cyan line shows the 

simulated temperature in case of MPC control. The lower plot shows the controller output of both 

controllers with the same colours. 
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The time courses of the MPC show a different behaviour. Because of the 

averaging in the cost function, the duty cycles vary only slowly. As a consequence, 

the humidity depends strongly on the emissions of the birds. Looking more closely 

at the duty cycle of the MPC algorithm, it can be seen that in the late afternoon, 

when outside temperature is high and humidity is low, MPC increases the 

ventilation duty cycle. This suggests that the general idea behind the MPC works: 

Ventilation is used more when it is cheap. For the day shown in the above figures, 

the energy saving was at 2%. Figure 10 shows the cumulative heating gas 

consumption. As MPC varies the duty cycles only smoothly, it first consumes 

much more energy than the replicated controller. Later, though, when the 

replicated controller invests a lot to keep the broiler house dry, the MPC has an 

advantage.  

 

Figure 10. Cumulative Heating Gas Consumption for MPC and the Replicated 

Controller 

 
The grey line shows the replicated controller consumption, the black line the consumption with 

MPC. 

 

Nevertheless, it is difficult to interpret the time courses of the MPC; is this, 

the best result that can be achieved or is the MPC just stolid or are maybe its 

parameters unfavourable? To narrow down the possibilities, the model was used in 

a less intended use.  

 

Effect of Varying Humidity on Energy Consumption 

 

To quantify the effect of varying the humidity on energy consumption some 

additional simulations were made. For the particular day already investigated 

above, the relative humidity was held constant (unlike in the MPC strategy but like 

in the original control strategy) and once increased by a determined amount and 

another time decreased by the same amount. The idea behind was, that if the 

humidity was lowered during a certain time interval and raised by the same 
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amount in the next equally long interval, the mean humidity would be equal to the 

case of unmodified constant humidity. If the energy consumption would differ in 

both cases, then this would be ground to spare or waste energy. 

Figures 11 and 12 show the energy consumptions for the different cases. 

Figure 11 shows the case where humidity was increased and decreased by 20% 

starting from 50% relative humidity. In the figure the absolute humidity is given to 

be consistent. It can be seen in the figure that quite an amount of heating gas has to 

be supplied additionally if the broiler house has to be maintained at a very dry 

level: The red line is almost an order of magnitude higher than the black line. The 

green line, which corresponds to a more humid broiler house, is on its turn far 

below the black line, but at no instant the energy spared (when occasionally not 

drying the broiler house as much as on average) is larger than the energy 

additionally expended when drying the broiler house more to correct the average 

humidity. This is illustrated in the lower half of the figure, it shows the difference 

between the red and the black line as a red line and the difference of the green and 

the black line as a green line: There is no time instant at which the energy spared 

(green) is above the energy expended (red). Hence, in varying the humidity in such 

a way does not allow for savings but leads to additional costs.  

 

Figure 11. Heating Gas Consumption during One Day of Fattening Period for a 

20% Increased and Reduced Humidity 

 
The black line shows the consumption for 50% relative humidity, the red line shows the 

consumption for 30% relative humidity and the green line shows 70% relative humidity. The lower 

plot shows the differences of the red and the black line above as a red line and the black and the 

green line above as a green line. 
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Figure 12. Heating Gas Consumption during One Day of Fattening Period for a 

3% Increased and Reduced Humidity 

 
The black line shows the consumption for 50% relative humidity, the red line shows the 

consumption for 47% relative humidity and the green line shows 53% relative humidity. The lower 

plot shows the differences of red and the black line above in red and the black and the green line 

above in green. 

 

Increasing and decreasing the humidity by 50% is of course large-scale. 

Figure 12, on the other hand, shows the same calculations for a less heavily 

modified humidity. From the lower part of the plot it can be seen that increasing 

the humidity between 11 and 12 o’clock would lead to heating gas savings and if 

the humidity would be decreased between 5 and 6 o’clock, then the average 

humidity would still be the same and the additional gas supply between 5 and 6 

o’clock would be less than the savings: Between 5 and 6 o’clock the red line is 

below the green line between 11 and 12 o’clock. 

Repeating this scenario for several humidity levels and taking the extreme 

points in the graph, an upper bound for the possible heating gas savings can be 

given. Figure 13 shows the result of such an analysis. With an increase and 

decrease of 5% of the humidity the theoretical savings are maximised. They are 

around 5.9%. It is stressed here that this is a theoretical value, which does not exist 

in practice, because it reduces the day to a best and a worst point. 
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Discussion 

 

Figure 1 shows that the accuracy of the model is enough to display the 

dynamics of the broiler house. Heating and ventilation have a first order 

dependence on the temperature    and the humidity represented as    in the 

model. Furthermore, the model knows only one temperature and one humidity for 

the entire Volume, whereas the physical broiler house shows a layering and a more 

complex dependence on the heating and the ventilation. However, the amplitudes 

of the heating and ventilating pulses are similar in both cases and even in the 

measured signals, the slope changes rather fast, when the heating or the ventilation 

is turned on or off. 

The MPC had then the task to find these particular heating and ventilation 

input functions which minimise the cost function. The MPC had at its disposition 

the model as well as the measured and forecasted disturbance inputs, but no 

specific lead to where it had to search to minimise the energy consumption was 

given. One property of the found input function would be the offset between 

ventilation and heating: Is it more economic to ventilate before heating or 

contrariwise? However, for such a minimisation to work, the accuracy of the 

model would need to be in the range of a few seconds, which does not appear to be 

the case in Figure 1. Therefore, this parameter was not part of the minimisation. 

Another property is the humidity modulation: Make it more humid during some 

occasions and dryer during others. But beside these two properties we thought of, 

the MPC could have found any other property, leading to energy savings.  

The interpretation of the minimisation result is hard to do. Because of the 

averaging in the cost function the control signals (ventilation flow rate and heating 

gas supply) change only slowly over time (Figures 8 and 9). It is noticeable that 

both signals have a rather high value early in the morning compared to their mean 

value and their counterparts of the replicated control at the same time. This is 

surprising because outdoor temperature is low at that time and one would suspect 

the heating to be expensive. The behaviour is consistent, though, with Figure 12. It 

does cost only little additional heating gas to keep the air at a dryer level before the 

birds are awake, then when the birds are awake and produce emissions, but the 

outside temperature is still low, it is most expensive to ventilate. Around noon 

when outside temperature is finally high, it is again cheaper to ventilate (still 

maintaining temperature at comfort level). This is the main reason why the energy 

savings are limited with such a control strategy: The birds themselves do it already 

right, they produce the moisture emissions for the most part when it is warm 

outside.   

The MPC appears to better track the setpoint temperature in front of the 

perturbation because of the birds’ emissions around 6 o’clock. Close inspection of 

the control signals reveals however, that this is not so much because of 

anticipatory setting of the control signals but rather the result of the averaging in 

the cost function. The replicated control reacts to the birds’ emissions and changes 

both the heating gas supply and the ventilation rate, because the ventilation rate 

has a coupling effect on temperature, the temperature control is exposed to a major 

disturbance and needs to significantly increase the heating gas supply. Because the 
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MPC does not immediately change the ventilation rate, there is no such effect on 

the temperature, and it tracks the setpoint better. 

Finally, the energy savings of the MPC of around 2% appear reasonable in 

front of the investigation disclosed in Figure 13. It cannot be excluded that a 

different parameterization of the optimisation algorithm would lead to another 

percent gain in energy savings, but the order of magnitude is right. 

 

Figure 13. Maximal Possible Heating Gas Savings from Humidity Modulation, if 

the Exterior Conditions would be in Best Case during Half of the Time and in 

Worst Case during the Other Half 

 
 

 

Conclusions 

 

It was shown that MPC can be used to allow for short term deviations from 

the setpoints for humidity and temperature. A cost function specifically designed 

for this purpose was proposed and the result of 2% energy reduction for a 24h 

period at a particular day in winter was obtained. If this perspective is enough for 

operators of broiler houses to modify their control algorithms is a decision of 

business strategy. From a scientific viewpoint, the result was checked for 

reasonability and bounded. An aspect that still needs to be taken into account, 

however, is that our calculations were built on a numerically exact model. Effects 

of robustness have not been investigated. 

One of the factors why the result is less than could have been expected, when 

considering similar techniques for human buildings, is the fact that broiler houses 

accommodate considerably more occupants. The emissions are consequently 

important and the strategy that the MPC mainly uses (to ventilate predominantly 

when costs are low), can only limitedly be used, because of excessive humidity 

build up. Furthermore, it has shown that increasing or decreasing the humidity 

temporarily yields to important additional costs compared to a constantly regulated 

humidity. Apparently, apart from modulating the humidity –and in a much more 
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restricted way also the temperature– there is no easy way to save heating energy in 

the broiler house. 

The achievable energy reduction will depend strongly on climatic conditions. 

The investigations carried out were focused on climatic conditions found at Swiss 

Plateau. When the outside temperature swings are more important and outside 

humidity is generally low, the result may be more favourable. Additionally, when 

the lighting does not follow a 24h rhythm or the rhythm is not set such that birds 

are awake during warm outside temperatures, the result will be considerably 

better. 

Finally, there are more and more devices available for waste heat recovery 

and dehumidifying. Model predictive control could have more potential in 

conjunction with a dehumidifier, in that case ventilation would need to be done 

only when CO2-level would get high. How both of those devices perform with 

respect to energy consumption is subject of further research. 
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