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The transhumance system, which consists in moving animals
to high mountain pastures during summer, plays a
considerable role in preserving both local biodiversity and
traditions, as well as protecting against natural hazard.
In cows, particularly, milk production is observed to decline
as a response to food shortage and climatic stress, leading to
atypical lactation curves that are barely described by current
lactation models. Here, we relied on 5 million monthly milk
records from over 200 000 Braunvieh and Original Braunvieh
cows to devise a new model accounting for transhumance,
and test the influence of environmental, physiological and
morphological factors on cattle productivity. Counter to
expectations, environmental conditions in the mountain
showed a globally limited impact on milk production during
transhumance, with cows in favourable conditions producing
only 10% more compared with cows living in detrimental
conditions, and with precipitation in spring and altitude
revealing to be the most production-affecting variables.
Conversely, physiological factors such as lactation number
and pregnancy stage presented an important impact over the
whole lactation cycle with 20% difference in milk production,
and alter the way animals respond to transhumance. Finally,
the considered morphological factors (cow height and foot
angle) presented a smaller impact during the whole lactation
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cycle (10% difference in milk production). The present findings help to anticipate the effect of climate

change and to identify problematic environmental conditions by comparing their impact with the
effect of factors that are known to influence lactation.
typublishing.org/journal/rsos
R.Soc.Open

Sci.7:200638
1. Introduction
Transhumance, which consists of moving livestock to high mountain pastures in the summer months,
provides both ecological and socio-cultural services to the human populations living in the
mountainous regions of many European countries [1–3]. Indeed, transhumance-annexed grazing
sustains and preserves endemic plant communities [4], feeds local cattle to produce traditional alpine
cheese and attracts many tourism-related activities [5]. Further, it counteracts land abandonment in
mountain areas and, therefore, contributes towards preserving landscape against scrub growth and
vegetation encroachment [6], as well as natural hazards such as avalanches [7] and wild fires [5]. The
term ‘alping’ (a translation of the German word ‘Alpung’ or its French equivalent ‘montée à alpage’)
will be used here to describe the approximately 100 days that dairy cattle spend on alpine pastures
during the summer months. Similarly, animals brought to mountain pastures will be referred to as
‘alped’ cows, and the alpine summer pastures will be called ‘alps’.

Despite such ecological and social benefits, the surface dedicated to alping decreases each year
(approx. 2400 ha yr−1 [8]), and a questionnaire-based study revealed in 2010 that one-third of the
participating breeders intend to probably abandon the transhumance practice in the following
decades. In summer 2018, 107 000 dairy cows were alped in Switzerland for approximately 100 days
[9]. A steep drop in milk production is observed during this period, which hampered the evaluation
of lactation curves through standard models that assume a linear decrease in production [10] after the
maximum milk yield is reached (i.e. approx. 100 days after calving) [11]. Among the explanations
proposed to interpret such a detrimental effect on productivity are the feed deficit intake due to the
meagre grassland as found in high alpine pastures, as well as the need to tackle environmental stress
due to new and sometimes harsh habitat conditions [12]. On the other hand, milk composition is
known to change during alping [13,14] and results in the production of highly valuable milk products
such as butter and alp cheese.

Milk production and quality is notoriously affected by a wide variety of environmental factors,
including calving season and vegetation types composing animals’ diet [15–18]. Environmental
temperature is also known to directly affect cattle productivity because of heat [17] or cold [19] stress.
Furthermore, milk quality and production of alped cows are expected to be indirectly affected by
global warming, as forage quality and biomass productivity of alpine sites are likely to decrease with
increasing temperature and decreasing precipitation [20,21].

Despite the existence of huge databases storing monthly milk records for several European cattle
breeds, no effort has been produced so far (at least to our knowledge) to exploit such information and
understand the ways alping affects milk productivity [22]. Indeed, most of the existing literature
focuses on small experiments (with sample size less than 100) mainly restricted to comparing two
groups of animals in different environmental conditions, so as to investigate the potential effects of
altitude [23], vegetation type [23,24], supplemental feeding [25,26], calving season [27] or breed
[12,27,28]. Furthermore, no adaptation of general models of lactation curves [11] have been proposed
to account for alping, which hinders a straightforward comparison of lactation curves for alped cows.
Last but not least, the overall impact of environmental factors and global warming on milk
production during alping is also still unknown.

For these reasons, a better understanding and characterization of the impacts of transhumance on
milk production and the way production is influenced by environmental factors is needed. To fill this
gap, we relied on over 5 million monthly test-day milk records collected between 2000 and 2015 from
more than 200 000 Braunvieh cows, a local Swiss cattle breed well adapted to the alpine pastures.
Then, we used this information to: (i) devise a new mathematical model to fit lactation during alping,
and (ii) investigate the influence of the environment on milk production during alping, and compare
it with the effect of physiological and morphological factors. This can be achieved thanks to
biogeoinformatics which takes advantage of georeferenced animal data in order to link biological and
environmental information with the help of advanced informatics tools [29].
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Figure 1. Geographical location of the alps hosting Braunvieh cows (white circles), with averagemonthly precipitation in millimetre between
April and July 2015 in the background (chosen as example year). Frontiers of biogeographic regions are also reported. The size of the circles is
proportional to the number of milk records taken at a given alp, the biggest and smallest circles encompassing 28 923 and 1 records,
respectively. The majority of the alps hosting Braunvieh cows are located in Northern and in the Eastern Alps biogeographic regions.
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2. Data
2.1. Milk records and animal information
Milk records from all alped Braunvieh cows were provided for the period 2000–2015 by the Braunvieh
Schweiz AG breeding association. Importantly, a direct comparison with non-alped cows was not
possible because we did not have access to these data. However, as milk measurements of alped cows
entail records from both the lowland farm and the alp, the estimation of milk production in both
situations was feasible. The full dataset is composed of 5 681 498 test-day records (methods A4 and AT4
according to ICAR guidelines [30]), including 616 081 lactations derived from a total of 245 313 cows. In
line with national and international rules, milk records are taken approximately on a monthly basis, with
the first record taken between the 5th and 42nd day after calving. Each test-day record includes
information on the following traits: milk (kg), fat (kg and %), protein (kg and %), somatic cell count (1000
cells ml−1). To keep the reader focused on the main thread of the article, our study specifically analyses
milk production in terms of quantity (milk yield); however, results from computations with protein and
fat content and yield are also available in electronic supplementary material, S2–S5. Out of the total
number of records, 1 481 387 were taken in the alps, whose altitudes were systematically stored in the
database, while their precise locations were documented in 95% of the cases (figure 1). The first record in
the alp is usually taken within the first 4 days after arrival, and is followed by three more records in the
alp to encompass the entire alping period (typically 100 days). Moreover, to morphologically describe
animals, linear type description and classification of cows are scored during the first lactation of all cows
of the database. In our study, we considered the body height at withers and the scores (1–9) for foot
angle. In addition, insemination data for each lactation (date, sire’s name) are also available.

A stringent data quality control procedure was applied prior to analysis to remove: (i) incomplete
years (which resulted in removing beginning of 2000 as well as end of 2015 due to missing lactation
records); (ii) cows with average interval between first and last insemination longer than 100 days (as
computed over the first three lactations); (iii) cows that had their first calf while being younger than
2 years, or older than 4 years; (iv) cows belonging to breeds different from the Braunvieh or Original
Braunvieh; (v) cows with parents other than Braunvieh or Original Braunvieh; (vi) lactations shorter
than 270 days; (vii) lactations with calving interval shorter than 290 days; (viii) lactations with alps
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below 1100 m.a.s.l. or above 2600 m.a.s.l.; (ix) lactations with calving happening between March and

August; (x) lactations from cows that had already calved more than nine times; (xi) lactations with the
first record taken after the 42nd day after calving; (xii) lactations with records taken before calving; (xiii)
records taken before the 5th day and after the 500th day after calving; and (xiv) the second alping season
(i.e. final part of lactation curves) from animals that are alped twice in the same lactation. After filtering,
we obtained a final dataset composed of 3 527 138 records over 371 696 lactations from 175 474 cows.

2.2. Factors influencing milk characteristics
Milk characteristics are known to be influenced by different factors. Meaningful predictor variables were
then selected according to literature review, by assuming the same factors to be relevant in both lowland
and mountain conditions. As a result, climatic and environmental indices [19,31] were taken into account
together with physiological (lactation number, pregnancy stage [32,33]) andmorphological factors (table 1).

2.3. Climatic data
Climate has been observed to influence milk production [34]. Consequently, maximum and mean
temperature [23] as well as daily rainfall [24] were extracted from the meteoswiss Grid-Data products
database. This dataset is derived by interpolation of records from several weather stations across
Switzerland, and consists of 2 km resolution raster files (1 km resolution from the year 2014 and on).
Further, daily average wind speed and relative humidity were obtained from, respectively, 440 and
495 meteoswiss weather stations. We then interpolated these values between stations to obtain a
continuous representation of the variables, with a squared inverse-distance weighting (IDW) [35]
within a maximum distance of 50 km.

On the basis of such environmental data, the temperature–humidity index (THI) and cold stress index
(CSI) were computed following Bryant et al. [19]. These indices assess all relevant climatic conditions for
the evaluation of ‘hot’/’cold’ sensation instead of focusing on temperature only:

THI ¼ 0:8T þ RH
100

� (T � 14:4)
� �

þ 46:4, ð2:1Þ

with T being the maximum daily temperature (°C) and RH the relative humidity (%), and

CSI ¼ (11:7þ (3:1 �WS0:5)) � (40� T)þ 481þ 418 � (1� e�0:04 � rain), ð2:2Þ
with WS being the daily mean wind speed (m s−1), T the mean daily temperature (°C) and rain the daily
precipitation (mm). These indices were computed over a 3- and 30-day period to account for short/long
heat waves/cold spells, respectively.

2.4. Digital elevation model
Due to the coarse spatial resolution of temperature data (2 km), a correction of −0.45°C/100 m (i.e. the
observed temperature gradient in the dataset) was applied to account for local variation in
temperature due to topography. This correction was achieved using both the digital elevation model
(DEM) DHM25 dataset produced by swisstopo [36] and the recorded altitude of the alp available in
the dataset. The digital model DHM25 is a three-dimensional representation of the earth’s surface in
Switzerland, as based on the elevation data from the Swiss National Map 1:25 000 (NM25). A
symmetric 25 m grid matrix model is then interpolated starting from the digitized contour lines and
spot heights from NM25. Comparisons among control points show an average accuracy of the
produced model of 2–3 m for the pre-Alps and Alps, respectively.

2.5. Biogeographic region
The Federal Office for Environment (FOEN) divided Switzerland into six biogeographic regions [37],
obtained using fauna and flora data and aggregating areas with common species. Species distributions
being strongly related to the relief, these regions reflect in fact the topography of the country. Most of
the alps hosting Braunvieh cows appear to be located in the Northern and Eastern Alps biogeographic
regions. More rainfall occurs in the Northern Alps when compared with the eastern side (figure 1),
because the mountain chain acts as a barrier to precipitation coming from the west and north [38].
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3. Methods

3.1. Lactation curve modelling
A lactation curve is usually estimated from one single cow with repeated observations along a lactation
cycle and with records taken on a daily/weekly basis [11]. Here, test-day milk records were collected
monthly, making the individual-based estimates of lactation impossible because of the over-
parametrization issue faced when the number of observations is small (typically 10 monthly
measurements during a whole cycle) with regard to the number of parameters to estimate,
particularly when describing a complex curve like the one of alped cows (six parameters, see below).
Moreover, a measurement is highly influenced by local temporal variations linked to some
momentary discomfort of the animal, so that the curve resulting from monthly records is exceedingly
noisy. Therefore, we analysed averaged values by computing, for each test-day, the mean of all
available records of that particular day in milk (DIM, or number of days after calving). Given that
records from the same animal are one month apart but that they are not taken on the same DIM for
all animals, the average of milk records for each test-day will constitute a smooth curve with daily
values (as displayed in point observations of figure 2). As dates at which cows are alped or brought
back to the lowland farm slightly differ among animals, records from cows remaining at the lowland
farm during the alping season (between 15 May and 31 August) were excluded from this average
computation, while only cows at the lowland farm were considered in the average outside this time
frame. Moreover, cows were grouped according to their calving month. Finally, when fitting the curve,
each averaged milk yield was weighted according to the number of observations on that day.

Several models have been proposed to describe lactation curves [39], with the Wood, Wilmink, Ali-
Schaeffer (AS) and Legendre polynomial formulations being the most popular [40]. Among these
mathematical formulations, Wilmink proposes a linear equation that is retained in the present work,
given its inherent simplicity and good performance [40]. This model is written as

Yt ¼ aþ b � e�k�t þ c � t, ð3:1Þ

where Yt is the observed variable (milk yield), t is the DIM and a, b, c and k are the parameters to estimate.
However, k is usually set to 0.1 to make this equation linear [40]. To validate this value with our data,
nonlinear regressions were also run with six test curves (one for each calving month) and the
obtained values for k were between 0.05 and 0.37.

Here, we introduce additional terms to equation (3.1) in order to explicitly account for the
transhumance effect. Particularly, alping has been observed to severely affect milk production, with
alped animals showing a steeper linear decrease than before alping (figure 2). Further, alped cows
usually experience a small yet rapid boost shortly after their return to the lowland farm, followed by
a softer decline in milk production. Taking these observations into account, we then propose to adapt
equation (3.1) as follows:

Yt ¼ aþ b � e�k�t þ c � tþ d �max(0,t� t1)þ f �max(0,ceiling(t� t2)=305)þ g �max(0,t� t2): ð3:2Þ

Where t1 is the DIM at which the cow is alped, and t2 is the DIM at which the cow is brought back to the
lowland farm. Importantly, the expression d · max(0,t− t1) is the expected linear decrease during alping,
so that the d-parameter reflects the effect of alping. The f · max(0,ceiling(t− t2)/305 captures the expected
boost in production after alping and g · max(0,t− t2) represents the linear decrease in milk yield after
alping; in the latter arguments, the max() term ensures the model to be only affected during and after
alping, respectively, while the ceiling expression (i.e. round to the upper integer) constructs a binary
operator (0/1) to recreate the instantaneous boost after the return to the lowland farm. In our case, t1
and t2 were determined independently for each calving month. The proposed equation only works for
a standard lactation period of 305 days.

The d-parameter enables the estimation of the loss inmilk yield associatedwith alping over a given period
of time. Indeed, the amount of milk lost during alping for a period of x days can be approximated with

Yloss ¼ d � x2
2

: ð3:3Þ

However, it is essential that themodel fits well the beginning of the curve for this equation towork, which can
be achieved by artificially increasing the weight of point measurements before the transhumance. Thus,
weights before alping were multiplied by 100 when investigating the d-parameter depending on the
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calvingmonth (figures 2 and 3). Furthermore, as older cows tend to calve later in the season, thereby creating a

correlation between lactation number and calvingmonth, the impact of alping according to the calvingmonth
is entangled with lactation number. Therefore, when examining milk production and the impact of alping for
each calving month, only cows in their first lactation were considered (figure 3).

Ordinary linear regression models were then computed in R using the lm() function of the stats
package [41] to estimate parameters in equation (3.2).

3.2. Measuring the effect of influencing factors
For the sake of interpretation, all influencing factors (i.e. explanatory variables) were grouped into
environmental, physiological and morphological categories (table 1). The effect of influencing factors
was tested by comparing milk records produced in conditions as dissimilar as possible. Importantly,
since the low number of measurements per animal imposed the use of averages, effect determination
was not possible through classical regression models. Consequently, groups were created according to
the first and third tertile of the distributions, in order to include animals from the most contrasted
situations (environmental, physiological and morphological) while retaining enough observations to
guarantee a sufficient statistical power. Since productivity is known to be optimized with mild
weather conditions [34], exceptions were made for THI and CSI where the second and the third
tertiles were used as the two contrast groups instead of the first and third tertile.

Group membership was assessed through the creation of a dummy variable assuming the value of 1
if belonging to the group considered, 0 otherwise. Then, the impact of influencing factors was computed
by adding an interaction term to equation (3.2) that allows chosen parameters to vary as a function of the
group. The here-defined environmental variables affect milk production during the alping stay only.
Accordingly, lactation curves were modelled only until the end of the alping season (meaning the f
and g parameters not to be estimated), with the sole d-parameter varying as a function of the group.
By contrast, physiological and morphological factors influence the whole lactation cycle, so that all
terms of equation (3.2) (coefficients a, b, c, d, f and g) are allowed to vary as a function of the group.

Within-group production was estimated both at the lowland farm and in the alps for physiological
and morphological factors or during alping season only for environmental factors, by integrating the
area under the lactation curve. The between-group difference was then assessed by computing the
percentage of the difference in milk production with respect to the reference group, this group being
arbitrarily chosen as the one with the highest milk production during alping. The difference in the
d-parameter (Δd ) between the two groups is then also displayed to show how differently the
concerned groups were impacted by alping. As the response differs according to the calving months,
results were computed for each calving month separately and the months of September and February
were chosen as representative of autumn and winter calving, respectively.

3.3. Significance testing
Log-likelihood ratio tests were performed to investigate both the impact of adding the parameters d, f and
g to the Wilmink model, and of the considered influencing factors. When testing the addition of
parameters d, f and g to the Wilmink equation, equations (3.1) and (3.2) were considered as null and
alternative models, respectively; when testing the influencing factors, the null model was constructed
by removing the interaction between the dummy variable group and the parameters of equation (3.2).

The resulting G-score test-statistics were then converted into p-values, which were further corrected
for multiple testing by means of Bonferroni’s approach [42]. G-scores are efficient ways of testing the
performance of a nested model, and are slightly less conservative than Wald scores [43]. This seemed
appropriate here since the applied correction for multiple testing is already sufficiently conservative.
G-scores were evaluated using the lrtest() function from the lmtest R-package [44].
4. Results
4.1. Lactation curve modelling
Overall, the proposed equation fits both the drop in milk production due to alping and the tail of the
lactation curve, as illustrated here for the calving months of September and February (figure 2). In
particular, the terms added to the Wilmink equation (equation (3.2)) significantly increase the full
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model performance ( p-value < 10−16). In the case of autumn calving (figure 2a), the proposed equation
fits the entire lactation cycle. For winter calving (figure 2b), the beginning and the end of the
transhumance season appear to be the most challenging periods to be fitted because of a nonlinear
slope. The use of equation (3.3) can be illustrated with the autumn calving, with a d-parameter of
−0.08, which is translated by a loss of 144 kg over 60 days. The modelling of protein and fat content
curves are also available (electronic supplementary material, S2 and S3).

Total milk production and milk production during alping are reported for the calving months of
September and February (figure 3). For the sake of comparison among months, only cows in their
first lactation are considered in this graph, as lactation number and calving month are correlated.
Cows calving in autumn produce on average 6033 kg during their first lactation, among which
1320 kg are produced in the alp. By contrast, total milk production turns out to be lower for cows
calving in winter (5155 kg during their first lactation), while milk production during alping is
increased (1755 kg). The d-parameters for the two calving seasons being markedly different (−0.08
and −0.02 for autumn and winter calving, respectively) indicate that productivity is more impacted by
alping when calving occurs in autumn than when occurring in winter.

4.2. Effect of influencing factors
The significance of the interaction between the group variable and the d-parameter is reported (electronic
supplementary material, S1). Hereunder, only factors with at least one calving month having a significant Δd
(i.e. a significantly different impact of alping between the two contrast groups) are presented. The influence
of these factors on protein and fat yield is also computed (electronic supplementary material, S4 and S5).
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Among environmental conditions, THI, spring precipitation, biogeography and altitude turned out to
show a significant effect on milk production during alping (figure 4a–l). Particularly, precipitation in
spring and the biogeographic region showed the most important difference on milk production
during alping, followed by altitude and altitude difference. Further, calving period appears to interact
with environmental conditions, with bigger differences between groups being present in autumn.

The effect of environmental factors is small compared with those of physiological factors, where the
biggest effect is found for pregnancy stage for winter calving with a difference in milk production during
alping of 20%. Although third and higher lactation cows produce more milk during the whole lactation
cycle including alping (figure 4m), they also appear to be more impacted by alping than the first lactation
cows as highlighted by negative Δd-values (figure 4o). The influence of pregnancy stage appears to affect
milk production during alping, especially for cows calving in autumn (figure 4p,r). Further, higher cows
and/or with steeper foot angle produce more milk both before and during alping than lower ones with
gentle foot angle (figure 4s,t,v,w). However, alping appears to negatively impact such cows, especially
higher ones (figure 4u,x).
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5. Discussion

5.1. The importance of calving season
The proposed model succeeded in quantifying the impact of alping on milk production by assuming a
Wilmink pattern for non-alped cows (figure 2; [40]). This assumption is consistent with literature findings
on the same breed [45] and was further validated with animals in our dataset that were alped at a very
late stage in their lactation cycle. However, future studies with direct comparisons of lactation curves of
alped versus non-alped cows could further corroborate this conclusion. As expected, total milk
production resulted globally higher for cows with alping occurring at the end of the lactation, since
the drop in production happens later in the cycle. Anyway, winter calving might still be financially
attractive for farmers since milk produced in the alps will have a higher economic value on the
market and productivity will be higher during alping (figure 3).

Calving season also influences the way an animal is prompt to respond to environmental stress, with
a greater impact of transhumance (i.e. greater d-parameter in absolute value) for cows calving in autumn
and, therefore, alping at the end of their lactation cycle. Increased feed intake is known to have distinct
effects on milk production depending on the lactation stage [46], and from what we observe it appears
that milk production at the end of the lactation cycle is more sensitive to environmental changes.
Similarly, when studying the effect of the considered factors, we showed that the between-group
difference in milk production during alping is almost always greater for autumn calving.
0638
5.2. Effect of the environment and climate change
Climate change requires species to adapt quickly to new and extreme climatic conditions [47]. In this
context, cattle survival and annexed services for humans are threatened because of the low adaptive
potential observed for international transboundary breeds [48]. Holstein Fresian cattle, for example,
have been shown to be quite sensitive to heat, particularly with THI values above 65 [19]. In
Switzerland, climatic conditions are becoming hotter and dryer [49], which exhorts to better
understand the effects of climate on cattle welfare and production both at lowland farms and during
transhumance. Here, we observe a sensible negative effect of precipitation in spring (figure 4e,f ),
probably because of its influence on forage growth [31]. Interestingly, heat waves (which are known to
highly affect cattle productivity [50]) were found to have minimal impact on milk production during
alping, probably because temperatures at high altitude rarely reach problematic thresholds. To further
test this hypothesis, several thresholds were tested with values spanning from 63 up to 75: the impact
of higher THI remains low (always inferior to 3%), but values obtained from high thresholds should
be taken with care, as too few observations are found in these ranges. Similarly, cold spells seem to
have an almost negligible influence (electronic supplementary material, S1). The observed effect of
biogeographic regions on production can be explained by the difference in spring precipitation
between such regions (158 versus 98 mm month−1 for the northern flank and the eastern part,
respectively). Altitude confirmed its effect on productivity [23], being intrinsically connected with
climatic conditions and vegetation type.
5.3. Effect of physiological and morphological factors
Lactation number has long been known to strongly influence milk production [51], and this also holds for
milk production during alping (figure 4m–o). Even more important, pregnancy stage was found to have a
significant impact on milk production during alping, especially when calving occurs in autumn
(figure 4p–r). In order to optimize milk yield, cows are generally inseminated a few months after
calving, to reach a time span of 1 year between lactation cycles, implying pregnancy stage not to be
considered in lactation models to avoid strong collinearity with calving season [15,16]. However,
correlation among these variables was not extreme in the present case (r2 = 0.8), most likely because of
unsuccessful inseminations leading some cows to delay pregnancy. These results must be interpreted
with care, as cows with an early pregnancy are prone to fertility problems.

Many recent research efforts focused on increasing yield in cattle, leading to augmented cattle size [52] but
disregarding important side effects such as the loss of adaptive traits through genetic erosion [53]. This
phenomenon might become deleterious for transhumance. For instance, despite showing higher productive
performances even at alping, higher cows appear to be more impacted when moved to high mountain
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pastures (figure 4s–u). As for foot angle, steep angle is associated with a smaller risk of developing hoof

diseases [54]. Cows with steeper foot angle were observed to produce more milk both in lowland farm and
during alping, but this factor appears to be have limited impact on the d-parameter (figure 4v–x).

As further analyses, it would be interesting to determine the impact of the estimated breeding value of
the animal, as it is a commonly used measure in the selection of better-performing animals [52]. This would
assess how higher ranked animals (i.e. exhibiting better performances under normal conditions) are
affected by alping and, therefore, indicate if the current selection is beneficial or damaging to alped cows.
ing.org/journal/rsos
R.Soc.Open
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5.4. Limitations
Traditionally, lactation modelling is performed on an individual basis, and usually relies on daily or
weekly milk records [55]. Here, we based our work on a database composed of monthly milk records,
which required the transformation of the data into daily averages over thousands of cows to avoid
over-parametrization in the model. This averaging might have diluted the strength of the effect we
investigated.

Moreover, the proposed approach still misses validation, which could be achieved by relying on
individual observations recorded daily or weekly and belonging to different breeds from the one used here.

Next, the amount of observations among calving months was not constant in the dataset, which
possibly made the estimates from the winter months less robust. Further, a hidden age effect—as
older cows tend to calve later in the season—could have biased the observed differences in milk
production among groups.

Last but not least, the model does not explicitly take into account cow feeding during alping, which is
likely to affect milk production [24]. Indeed, the use of concentrate feeding varies among alps and among
cows of the same alp. Particularly, differences in milk yield with different calving season could be
globally influenced by varying concentrate feeding, with cows at an early stage in the lactation
cycle—and thus producing a substantial amount of milk—potentially receiving more concentrates. In
a similar context, other studies estimate a herd effect by evaluating the difference among farms, to
consider (among other things) different management strategies (see [47,52,56]). In our case, this was
not possible, as animals are held in hundreds of farms and are then brought to hundreds of different
alps, and no distinction exists to group these farms or alps into two distinct groups as done for other
factors, where we compared the first versus the third tertile.
6. Conclusion
Transhumance is a traditional farming practice which supports the preservation of both agricultural
biodiversity and the socio-cultural heritage of human communities. Nevertheless, a loss in productivity
is typically linked with alped livestock, which might discourage farmers from pursuing transhumance
and poses its beneficial side effects on ecosystems under threat. Here, we combined biological, geo-
environmental and computer science tools to better understand the influence of environmental,
physiological and morphological factors on milk productivity during transhumance. We relied on high-
resolution meteorological data and five million georeferenced monthly milk records as collected from
over 200 000 Braunvieh cows in Switzerland. We show that both environmental and morphological
factors have limited influence on animal production, with dry conditions in spring being nevertheless
the most affecting environmental factor. This evidence suggests that animal production during
transhumance might become even more insecure in future years due to climate change, and stresses,
therefore, the urgency of devising strategies to protect this practice. However, the effects of
environmental variables are small compared with the ones of physiological factors that have long been
known to influence lactation performances (lactation number, pregnancy stage); these factors indeed
strongly impact milk production throughout the whole lactation cycle, including during the alping period.

Data accessibility. The data were provided from the Braunvieh-CH association, under the explicit conditions that they will
not be shared nor used for other studies. However, a partial dataset is available from the Dryad Digital Repository:
https://datadryad.org/stash/dataset/doi:10.5061/dryad.z612jm68g [57], with the average milk production during
alping from 20 000 cows, together with lactation information (calving date, lactation number) and environmental
data at the location of alping. Cows were chosen randomly, with equal number of animals per year, lactation
number and calving month. Furthermore, researchers interested in performing studies on these data may contact
directly the association (see contact information homepage.braunvieh.ch). Relevant code for this research work is

https://datadryad.org/stash/dataset/doi:10.5061/dryad.z612jm68g
https://datadryad.org/stash/dataset/doi:10.5061/dryad.z612jm68g
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stored in GitHub: https://github.com/SolangeD/lactModel and has been archived within the Zenodo repository

https://www.doi.org/10.5281/zenodo.3889931.
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