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Abstract 
 
The idea that the world is made of particles—little discrete, interacting objects 
that compose the material bodies of everyday experience—is a durable one. Fol-
lowing the advent of quantum theory, the idea was revised but not abandoned. 
It remains manifest in the explanatory language of physics, chemistry, and mole-
cular biology. Aside from its durability, there is good reason for the scientific 
realist to embrace the particle interpretation: such a view can account for the 
prominent epistemic fact that only limited knowledge of a portion of the ma-
terial universe is needed in order to make reliable predictions about that portion. 
Thus, particle interpretations can support an abductive argument from the epis-
temic facts in favor of a realist reading of physical theory. However, any particle 
interpretation with this property is untenable. The empirical adequacy of mod-
ern particle theories requires adoption of a postulate known as permutation in-
variance (PI)—the claim that interchanging the role of two particles of the same 
kind in a dynamical state description results in a description of the identical 
state. It is the central claim of this essay that PI is incompatible with any particle 
interpretation strong enough to account for the epistemic facts. This incompati-
bility extends across all physical theories. 
 
To frame and motivate the inconsistency argument, I begin by fixing the rele-
vant notion of particle. To single out those accounts of greatest appeal to the 
realist, I develop the logically weakest particle ontology that entails the epistemic 
fact that the world is piecewise predictable, an ontology I call ‘minimal atomism’ 
(MA). The entire series of scientific conceptions of the particle, from Newton’s 
mechanically interacting corpuscles to the ‘centers of force’ in classical field 
theories, all comport with MA. As long as PI is left out, even quantum mechan-
ics can be viewed this way. To assess the impact of PI on this picture, I present 
a framework for rigorously connecting interpretations to physical theories. In 
particular, I represent MA as a set of formal conditions on the models of physi-
cal theories, the mathematical structures taken to represent states of the world. I 
also formulate PI—originally introduced as a postulate of non-relativistic quan-
tum mechanics—in theory independent terms. With all of these pieces in hand, 
I am then able to present a proof of the inconsistency of PI and MA. 
 
In the second part of the essay, I survey responses to the inconsistency result 
open to the scientific realist. The two most plausible approaches involve aban-
doning particles in one way or another. The first alternative interpretation con-
sidered takes the property bearing objects of the world to be regions of space 
rather than particles. In this view, the properties once attributed to particles in 
quantum states are attributed instead to one or more regions of space. PI no 
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longer obtains in this case, at least not as a statement about the permutation 
symmetry of property bearers. Rather, the new interpretation naturally imposes 
an analogous constraint on quantum states.  
 
The second major approach to evading the inconsistency result is to dispense 
with objects altogether. This is the recommendation of so-called ‘Ontic Struc-
tural Realism’ (OSR). The central OSR thesis is that structure rather than enti-
ties are the basic ontological components of the world. OSR is intended to em-
brace the ‘miracle’ argument in favor of scientific realism (it would be a miracle 
if a scientific theory were predictively successful unless it were also approx-
imately true with regard to its description of reality) while avoiding the pessimis-
tic meta-induction (most predictively successful theories along with their asso-
ciated ontologies have been overturned, so we should expect the same of our 
current theories). I demonstrate that one principal motivation for OSR based on 
the under-determination of interpretations in QM is actually dissolved by the 
incompatibility result. At the same time, I suggest reasons to think that OSR 
fares no better with respect to the pessimistic meta-induction than traditional 
realism does. Thus, while PI and MA may be incompatible, object ontologies 
remain the best option for the realist. 
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Chapter 1 Introduction 
 

1.1 The claim 
An influential interpretation of modern physics consists of the following as-
sertions: 
 

(i) material objects are composed of particles;  
(ii) these particles belong to a finite number of types; 
(iii) particles of the same type are indistinguishable in every re-

spect. 
 
These assertions are manifest in the explanatory language of physics, chemi-
stry, and molecular biology. I maintain that they are mutually inconsistent. It 
is the aim of this essay to clarify, motivate, and ultimately undermine the 
worldview they espouse, a view in which material objects are made of par-
ticles. 
 

1.2 Particles are unobservable objects 
Our everyday experience is populated by objects—entities like tables and coffee 
mugs. These objects possess properties, and the properties any one object pos-
sesses through time are independent of what properties most other objects pos-
sess. The properties of my coffee mug, for instance, are more or less uninflu-
enced by the properties of my computer. Many objects like the mug and com-
puter are discrete, but even where divisions between objects are vague—where 
does the mountain end and the plain begin?—there are many ways of concep-
tually drawing the line such that whatever entities picked out persist in their 
properties without regard to one another.  
 
Furthermore, the objects of our experience have smaller objects as parts. I could 
smash my coffee mug to pieces. I could then take a hammer to each shard to 
produce a pile of grains. It is no great stretch of the imagination to suppose that 
similar, even tinier objects can be produced by continuing the demolition 
process. Specifically, we can imagine the resolution of every material object into 
a collection of discrete, unobservable objects. These are the particles, the tiny 
objects that in enormous numbers are supposed to compose the objects of ex-
perience. Particles, like tables, bear properties. They persist, they interact, and 
groups of them do so more or less independently of all the others. 
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1.3 Particles are everywhere 
The physicist Richard Feynman declared that the greatest scientific content one 
could pack into a single sentence was the claim that “all things are made of 
atoms — little particles that move around in perpetual motion, attracting each 
other when they are a little distance apart, but repelling upon being squeezed 
into one another” (Feynman, Leighton, and Sands 1963, 1.2). As we’ll see in the 
next chapter, there are good philosophical reasons for the scientific realist to 
take Feynman’s words at face value. There are also good phenomenological rea-
sons. Many phenomena cry out for a particle interpretation: the integer ratios of 
chemical reactants, the tracks in bubble chambers, the integer charges on oil 
droplets, and the striking visualization of ‘atoms’ provided by scanning-
tunneling microscopy to name but a few.  
 
Whether or not the particle view is justified, it is everywhere in scientific dis-
course. Molecular biologists speak as if atoms and molecules are the mechanical 
constituents of macromolecules. Organic chemists concern themselves with the 
‘mechanisms’ of chemical reactions, describing them in terms of the properties 
of specific atoms within a molecule, the bonds between them, and the manner 
in which constituent particles like protons and electrons are exchanged. Even in 
the relativistic quantum theories of physics, notwithstanding caveats about the 
inapplicability of classical notions, the particle view is ubiquitous. For instance, 
the computation of scattering amplitudes in quantum field theory—the principal 
way in which empirical predictions are extracted from the theory—is typically 
framed in a particle perspective: initial and final state representations are se-
lected with the explicit intention of representing incoming and outgoing spatially 
isolated particles with well-defined momenta.1 Though quantum physics has 
forced the scientific realist to abandon many classical aspects of her conception 
of particles, the particle view endures in the interpretation of physics.  
 

1.4 Particles are nowhere 
In the classical view of particles, all matter is of a kind. Particles, though they are 
discrete entities, differ only with respect to continuously varying properties such 
as mass and shape. To be compatible with modern physics, however, we have to 
admit one seemingly minor modification of this view—all particles belong to 
one of a finite number of types and every particle of a given type is indistin-
guishable from every other of that type. Of course, how many types of particle 
there are depends on the level of analysis; in chemistry the relevant types are the 
atomic elements while in particle physics they are the quarks, leptons, and bo-
sons of the Standard Model. But at any given level of analysis, the particles of a 

                                                 
1 See, e.g. (Peskin and Schroeder 1995), Section 4.5. 
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given type are presumed to be ‘indistinguishable’ in that they satisfy the follow-
ing condition: interchanging the role of two such particles in a representation of 
a physical state results in a (possibly distinct) representation of the identical 
physical state. State representations with this property are said to satisfy permuta-
tion invariance (PI). If the state representations of our best physical theories cap-
ture all there is to say about the observable properties of particles, then particles 
represented by states obeying PI are exactly indistinguishable with respect to 
every possible observable property. 
 
This apparently modest modification, however, is profoundly at odds with the 
particle view. As we will see, PI forces the scientific realist to attribute an iden-
tical set of properties to every particle of the same type. This means that such 
particles cannot bear properties independent of one another, and the central 
feature that made the particle view such a powerful explanatory apparatus must 
be abandoned. PI is forced on us by the phenomena and in turn forces us to 
abandon any substantive account of the world in terms of particles. 
 

1.5 A precis 
The first seven chapters of this essay serve to motivate, elucidate, and defend 
the incompatibility between particles and PI. I begin in the next chapter by 
showing that arguments similar to those for scientific realism in general favor 
particle interpretations in particular. In Chapter 3, I provide a rigorous state-
ment of the logically minimal particle interpretation that is supported by the ar-
gument of Chapter 2. The interpretations of interest for the remainder of the 
essay will be those which include this minimal interpretation. In Chapter 4 I 
provide a framework for connecting interpretations to the theories of mathe-
matical physics. The empirical need for the postulate of PI is taken up in Chap-
ter 5, where it is given a theory-independent formulation. Finally, in Chapter 6 
these pieces are combined to demonstrate the incompatibility between PI and 
even the logically weakest account of particles. It is shown that any theory which 
contains PI cannot be compatible with a particle interpretation. This result is 
defended from the most serious objections in Chapter 7.  
 
The remainder of the essay is concerned with the consequences of the incompa-
tibility result. In Chapter 8 I construct in some detail an alternative interpreta-
tion of non-relativistic quantum mechanics (QM). This interpretation posits spa-
tial volumes as the basic objects out of which material objects are composed, 
and can be proven to possess the same virtues favored by the realist for particle 
interpretations. This interpretation is put to work in Chapter 9 in order to dispel 
the idea that the incompatibility result forces the realist to give up on objects 
and embrace an ontology of structure. On the other hand, I suggest that the ex-



 

4 
 

istence of a viable alternative to particle interpretations does not lend any sup-
port to traditional entity realism either. The final chapter of this essay offers a 
brief consideration of a puzzle facing any realist ontology of unobservable mi-
cro-constituents: how should we conceive of the macroscopic objects that po-
pulate our experiential world? Whatever the right answer is, it won’t involve par-
ticles. 
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Chapter 2 Realism and Particle Ontologies 
 
 

2.1 Overview 
 
As I stated at the outset, the addition of PI to any physical theory rules out a 
large class of interpretations, namely those which posit an ontology of particles. 
I also claimed that the scientific realist ought to be concerned with such a result 
since particle interpretations are both ubiquitous and appealing. However, I 
have to this point offered little support for this claim. In Chapter 3, I will argue 
that particle interpretations have been and remain a principal part of the scien-
tific worldview, appearing as standard interpretations of theories of matter from 
the 17th century through the present. In each of these cases, however, the appeal 
of the associated particle ontology is a function of the details of the theory being 
interpreted. The aim of the present chapter is to give a much more general, 
theory-independent account of why the scientific realist does or at least ought to 
find particle ontologies attractive. To make this case, I’ll adapt a standard argu-
ment in favor of realism in general in order to show that some basic facts about 
our epistemic access to the world tend to favor particle ontologies in particular. 
This in turn motivates concern over the consequences of PI that are drawn out 
in later chapters. 
 
 

2.2 Theories and their interpretations 
 
Realism about particles is a species of scientific realism. At the expense of blur-
ring together many nuanced positions, one can characterize scientific realism as 
the claim that what our best scientific theories say about the unobservable enti-
ties, processes, or events in the world is approximately true.2 To be a little more 
careful, the realist is not committed to the truth of any particular scientific 
theory, but rather to the claim that insofar as one has reason to believe that a 
given theory is scientifically successful—empirically, explanatorily, or in whatev-
er way such things should be judged—then one also has reason to believe that 
its claims about the world are true. For my purposes, it is not essential to pin 

                                                 
2 For similar but more nuanced characterizations of scientific realism, see  e.g. (Boyd 1973; 
Chakravartty 2007; Laudan 1981; van Fraassen 1980). 
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down precisely what is meant by ‘success’. It is important, however, to draw an 
often overlooked distinction between a theory and its interpretations. 
 
In the most general sense, I take a theory to consist of the following parts: 3 
 

(i) a collection of syntactic objects such as statements in a formal 
language, a mathematical space (e.g. a phase space), a set of dia-
grams deemed well-formed (e.g. the structural diagrams of or-
ganic chemistry), et cetera; 

 
(ii) a deductive system  which, when provided a subset of the syn-

tactic objects in (i) known as the set of ‘boundary conditions’, 
specifies a second subset of the syntactic objects in (i). The de-
ductive system might consist of a set of differential equations 
such as those of Hamiltonian dynamics, or something less for-
mal like a system of rules for determining the oxidation number 
of atoms in a compound. 4  

 
Models of the theory are just those syntactic objects (e.g. trajectories in phase 
space or lists of oxidation numbers) that are possible outputs of the deductive 
system of the theory when coupled with a set of possible boundary conditions. 
Finally, we can say that an interpretation of a theory is a mapping from models of 
the theory to descriptions of theoretically possible worlds. These descriptions 
amount to claims about the way the world is or might be. I’ll often refer to a 
particular description of a possible world as a ‘state of affairs’. 
 
Every theory requires at least a partial interpretation if it is to entail empirical 
consequences. That is, every theory must be equipped with a means of extract-
ing claims about observables from its models if it is to have any empirical con-
tent. This much the realist and anti-realist can agree on. But it is generally possi-
ble to map models of a theory to richer descriptions of the world that contain 
assertions about more than observable states of affairs. According to the scien-

                                                 
3 I do not claim that my choice of terminology is standard or representative of the literature. 
Rather it was chosen to make explicit a number of distinctions that are too often left vague 
and implicit. 
4 As a consequence of the way I am defining theories there is no single theory of, say, Hamil-
tonian mechanics but rather one theory for every new combination of mathematical space 
and equations of motion. For example, a two-particle system requires the use of a six-
dimensional phase space where a one-particle system requires only a three-dimensional 
phase space. Similarly, the equations of motion contain more terms and derivatives with 
respect to more variables. Thus, there are distinct versions of the two theoretical compo-
nents I’ve stipulated in my definition, and therefore two distinct ‘theories’. While this is per-
haps linguistically odd, the extra precision is helpful when exploring the compatibility of 
theories and interpretations. 
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tific realist, one of these interpretations—at least for a successful theory—is 
likely to yield true claims about unobservable features of the world.  
 
Of course, the realist does not consider every assignment of states of affairs to 
models of a theory a viable interpretation. I do not want to attempt a set of ne-
cessary and sufficient conditions for viability (I doubt any exist that would ade-
quately capture what have historically been taken as serious interpretations), but 
I will suggest that the acceptable accounts of unobservables are typically those 
which explain the relations amongst observables. So for purposes of exploring 
the arguments of the scientific realist, I’ll assume that the viable interpretations 
of a theory are those for which the claims about the unobservable portions of 
the world taken by themselves would make the observable statements entailed 
by that theory probable. For instance, if there really exist chemical atoms of the 
sort Dalton imagined, then it would have to be the case that chemical reactions 
involve integer ratios of reagents. Datlon’s atomism is a viable interpretation of 
at least a portion of chemical theory. On the other hand, Thales’s supposition 
that “all is water” does not make the integer ratios found in chemical reactions 
more or less probable, and so is not a viable interpretation.5 
  
Even with the constraints imposed on viable interpretations, it is still the case 
that theories wear their interpretations loosely. While scientists nearly always 
have a preferred interpretation in mind, one can nonetheless attach many ontol-
ogies to the syntactic components6 of any given theory. This is true of qualita-
tive theories like, for instance, the chemical theory of valence bonding. Though 
there is an obvious reading suggested by the words chosen for use as theoretical 
terms (e.g. atomic orbital), a chemist is only committed to the predictions made 
by the theory concerning various chemical outcomes. The predictive claims can 
be logically separated from the story one tells about the meanings of non-
observational theoretical terms. While one might interpret a valence bond as 
referring to the overlap of two atomic orbitals, one could also interpret a va-
lence bond as referring to a pair of electrons of distinct, atom-specific varieties, 
or to a region of increased charge density, or to any number of more fanciful 
entities.  
 
The distinction I’ve drawn between a theory and its interpretation is much shar-
per for the mathematical theories of physics than for the semi-
phenomenological chemical theories considered above. In this case, theories 

                                                 
5 One is also plausibly constrained by concerns about theoretical unity – interpreting chemi-
cal reactivity in terms of Aristotelian potentia would not cohere well with the established 
interpretations of other parts of chemistry. 
6 The logical positivists would read ‘syntactic components’ as ‘theoretical terms’ since theo-
ries in that view are statements in a formal language. 
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consist of equations of constraint that pick out mathematical objects—the mod-
els—from a well-defined space of possibilities. The models of a theory of ma-
thematical physics are not nearly as suggestive about their intended referents in 
the world as are the plain-language terms used in stating the valence bond 
theory. There are in fact many prima facie plausible ways of interpreting the 
models of each such theory in terms of entities or processes in the world. For 
example, even though the formal structure of QM has been more or less settled 
since the 1930s, it continues to accrue a bewildering array of interpretations. 7 
 
Conceptually separating the formal structure of a theory from its interpretations 
is important, since only by doing so is it coherent to ask about the relative sup-
port for competing realist readings of the same formal theory (e.g. QM). The 
realist wants to know whether a particle interpretation or some more exotic al-
ternative is the best way to read QM. Obviously, this question is without con-
tent if a theory and its full interpretation are inseparable. With this distinction in 
mind it is clear that a realist is concerned primarily with the truth of the inter-
pretations of a theory, not with the truth of theories, whatever that may mean. 
Thus, one can recast scientific realism as the claim that what the favored inter-
pretations of the best scientific theories tell us about entities and processes is a 
more or less accurate description of the way the world really is.  
 
 

2.3 Justifying Scientific Realism 
 
The dominant argument in favor of scientific realism is the infamous ‘miracle’ 
argument memorably summarized by Hilary Putnam (1979): “Realism is the on-
ly philosophy of science that doesn’t make the success of science a miracle.” 
Typically, the argument is taken to appeal to some version of ‘inference to the 
best explanation’. I use this controversial term to refer loosely to the class of 
inductive inferences with the following form: 
 
Inference to the Best Explanation (IBE): 

A, B, C,… are facts. 
Hypothesis H is the best available explanation of the facts A, B, C,…  

There is reason to believe H is true. 

                                                 
7 For a brief but current survey, see (Dickson 2007), Section 5.5. The reader should note that 
Dickson’s notion of ‘interpretation’ is a little different from mine. For a dated but apropos 
review of interpretations in the sense I have used the term, see (Bunge 1956). The following 
are among the more prominent interpretations: Copenhagen (Faye 2008), Bohmian (Bohm 
and Hiley 1985), Everett (Geroch 1984), modal (Dickson and Dieks 2009), and transactional 
(Cramer 1986). 
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There have been many attempts to make this schema more explicit with the aim 
of defending such inferences in general and the miracle argument in particular. 
Alan Musgrave (2007), for instance, adds an additional premise to IBE in order 
to make inferences of this sort deductively valid: 
 

It is reasonable to believe that the best available explanation of any fact is true. 
A, B, C,… are facts. 
Hypothesis H is the best available explanation of the facts A, B, C,…  

It is reasonable to believe that H is true. 
 
Of course, one might argue that Musgrave has merely reduced the problem of 
justifying IBE to a problem previously unsolved—it is not clear why explanation 
has anything at all to do with truth.8  
 
Another way of unpacking IBE and the no-miracles argument is to appeal to the 
probability calculus (Magnus and Callender 2004). If we know A, B, C, ... to be 
true then Pr(A ^B ^ C ^ : : : ) = 1. We can then interpret the second premise 
of IBE as asserting that Pr(A ^B ^ C ^ : : :jH) À 0 and 
Pr(A ^B ^ C ^ : : :j:H) ¿ 1. It is then supposed to follow that 
Pr(HjA ^B ^ C ^ : : : ) À 0. To make the inference explicit in the case of 
scientific realism, let S(x) stand for ‘theory x is empirically successful’, and T(x) 
stand for ‘theory x is true of the world’. We then take as a premise that 
Pr(S(x)jT (x)) À 0 and that Pr(S(x)j:T (x)) ¿ 1. That is, if a theory is true 
of the world, it is overwhelmingly probable that it is empirically successful. On 
the other hand (and rather controversially) we can assume that if a theory is false 
then it is very unlikely to be successful. From these two premises and the fact 
that a given theory h is empirically successful (i.e. Pr(S(h)) À 0) it ostensibly 
follows that h is very probably true of the world (i.e. Pr(T (h)jS(h)) À 0). Of 
course, as Magnus and Callender (2004) point out, this argument is fallacious 
unless we also have a means of fixing the prior probability that a theory is true 
at some moderately high value. Without knowing the value of Pr(T (h)) we can 
say nothing about the posterior probability, Pr(T (h)jS(h)). 
 
Even if there exists some reasons for attributing a value to the prior probability 
such that the argument is no longer invalid, the remaining premises are subject 

                                                 
8 While there are many attempts in the literature to formulate just what constitutes an expla-
natory relation, they share the supposition that ‘explanation’ involves making something (an 
event, a proposition, an action, etc.) intelligible. While it might be possible to spell out some 
subject-independent notion of intelligibility, the notion is dangerously close to a psychologi-
cal one. If scientific ‘truth’ is determined by intelligibility, this would seem to invite any 
number of anti-realist readings. 
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to a number of serious objections, particularly worries about the claim that 
Pr(S(x)j:T (x)) ¿ 1. There are other ways to account for the empirical suc-
cess of a theory besides its literal truth. Bas van Fraassen (1980, 40), for in-
stance, argues that empirical success is merely an outcome of Darwinian selec-
tion—the theories that have survived are just those whose predictions line up 
with experience. Van Fraassen’s objection can be strengthened if we take into 
account the theory/interpretation distinction I emphasized above. For any one 
theory there exist multiple consistent interpretations. Let T(y) stand for ‘the in-
terpretation y is true of the world’. If h is a particular theory and ai is a compatible 
interpretation, then our old premises must be revised to read  
Pr(S(h)jT (ai)) À 0 and Pr(S(h)j:T (ai)) ¿ 1. The second premise is now 
obviously problematic for two reasons: (i) there are many alternate interpreta-
tions aj that might just as well account for theory h’s empirical success and (ii) it 
is possible that every available interpretation is false and the theory is nonethe-
less empirically successful. In either case, it may be that Pr(S(h)jT (ai)) À 0 
and simultaneously false that Pr(S(h)j:T (ai)) ¿ 1.9 
 
The difficulty we’ve encountered is related to the under-determination problem 
that complicates the use of IBE in theory choice from even a strict empiricist 
standpoint. In that case, the compatibility of indefinitely many theories with the 
same evidence means that falsifying any one theory generally fails to pick out a 
single alternate theory as the best. There is, however, one important difference. 
With respect to theory choice, it makes no sense to contrast the probability of 
the evidence given the theory with the probability of the evidence given that no 
theory accounts for it. For any finite amount of evidence there necessarily exists 
an indefinite number of theories that can reproduce it—it is not possible for all 
theories to fail empirically. On the other hand, it is conceivable that all interpre-
tations of a given theory—all attempts to map models of a theory onto possible 
worlds with a fixed ontology—yield false claims about the world. This is just 
what the anti-realist claims is the case. That means we can sensibly compare the 
probability of empirical success given that no interpretation of the theory is true 
with the probability of empirical success given the truth of various interpreta-
tions.  
 
Because it is coherent to consider the case in which all interpretations are false, 
we can avoid the suite of problems that follow from multiple interpretations by 

                                                 
9 There is another difficulty I’ve been ignoring: we don’t actually know that any given theory 
is empirically adequate since we only have a finite amount of data. So we have to either take 
S(h) to mean “as empirically adequate as we’ve had occasion to test” or set Pr(S(h)) to 
some lower value. If we attempt the latter, it is hard to see what value to use. The choice 
makes a big difference, which is in part what Magnus and Callender (2004) are getting at. 
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appealing to the Likelihood Principle (LP).10 According to LP, evidence e favors 
hypothesis h1 over hypothesis h2 just if Pr(ejh1) > Pr(ejh2). Thus, while we 
may not be able to ascertain the probability of the truth of an interpretation, we 
can nonetheless favor one interpretation over another or over the falsity of all 
interpretations on the basis of the available evidence. According to LP, the fact 
that, for a given interpretation ai, Pr(S(h)jT (ai)) À Pr(S(h)j8x:T (x)) 
means that the empirical success of theory h favors the truth of ai over the falsity 
of all compatible interpretations.11 That is, the empirical success of theory h fa-
vors realism about each compatible interpretation over anti-realism. 
 
This version of the no miracles argument is much less impressive than Putnam’s 
slogan; it only establishes that at least some interpretations are favored by the 
evidence relative to the anti-realist stance. It does not single out a globally ‘best 
explanation’. At best, the use of LP only lets one rank available interpretations 
relative to one another. There is little to guarantee convergence to the true in-
terpretation. Nonetheless, this is a defensible explication of the no-miracles ar-
gument.  
 
 

2.4 Epistemic Divisibility 
 
I am not interested in defending the miracle argument; I leave that to the scien-
tific realist. Rather, I want to bring forward a version of the argument that spe-
cifically supports realism about particle ontologies. Whatever force the miracle 
argument carries for the realist, the same will obtain for this derivative argu-
ment. The idea is to show that insofar as the realist has good reason to maintain 
that some interpretation is true, she has good reason to think that some particle 
interpretation is true. For this reason, the realist ought to be concerned about 
whether any particle interpretations are in fact compatible with physical theory. 
 
Like the miracle argument, the argument for particles rests on the observation 
of empirical success. But rather than consider all of the ways in which a particu-
lar scientific theory and an associated interpretation are empirically successful, 

                                                 
10 I don’t want to defend LP as the correct explication of IBE since it actually doesn’t say 
anything about what’s true or best, just what’s better supported. But I do take it as under-
writing the most plausible (i.e. defensible) reconstruction of the no-miracles argument. 
11 The assertion that empirical success is much more probable given the truth of a theory (or 
at least some theory)—versions of which appear in all defenses of the miracle argument—
can reasonably be argued to beg the question against the empiricist. If order amongst obser-
vables is a brute fact of nature, then the assertion is false. On the other hand, the inference 
might be supported by appeal to something like a Principle of Sufficient Reason that effec-
tively denies the possibility of irreducible order amongst observables. 
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let us consider just one simple feature of any moderately successful account of 
the world: it anticipates the future of some part of the world from a vanishingly 
small portion of facts about the current state of the world. So for instance, to 
predict the outcome of a chemical reaction a chemist need only know a few 
facts about the volume and composition of her reagents; she needn’t take ac-
count of the density of seawater off the coast of Greenland or the mean tem-
perature of Alpha Centauri, or even of the masses of the beakers holding her 
reagents. To predict where an artillery shell will land, one need only account for 
the angle of the gun barrel and the velocity of the shot as it exits the muzzle. It 
is not necessary to know the details of the shell’s manufacture or the properties 
of the air behind the muzzle. The very possibility of empirical science depends 
upon this ability to fracture the world into epistemically independent pieces. I’ll 
call the fact that the future of a part of the world can be predicted from limited 
facts about that part alone ‘Epistemic Divisibility’ (EDiv). 
 
I want to stress that EDiv is not a locality condition. Locality conditions are fre-
quently invoked in physics, and can be read as either epistemic or ontological 
assertions of the independence of space-like separated physical systems. A 
common ontological approach asserts that spatially distant systems are physical-
ly independent (or causally independent depending on your predilections). Such 
an ontological claim further entails an epistemic thesis similar to but not identic-
al with EDiv, namely that in predicting the future of some part of the world, we 
can ignore all other parts that are sufficiently distant in space (exactly how far 
will depend on the theory at hand). The epistemic form of any given locality 
condition is logically stronger than EDiv; if locality holds, so too does EDiv.  
 
However, the converse does not hold. It is possible for the world to be such 
that it divides into epistemically independent units according to something other 
than spatial separation. Were I writing in the centuries prior to Copernicus when 
astrology remained a viable science, it would be plausible to assert that vastly 
separated physical systems nonetheless exert a profound influence upon one 
another. In a world where astrology works, it would be implausible to assert a 
general locality condition since I really might need to know the position of Jupi-
ter relative to the stars in the constellation of Cancer in order to predict the out-
come of my chemical experiment. Or consider instead one of Dalton’s early 
theories in which the atoms of a gas are posited to be centers of repulsion and 
each atom exerts a repulsive force only on atoms of the same element (Nash 1950, 19-
20). Though Dalton himself did not do so, we might imagine further that each 
atom exerts a non-negligble force on every other atom of the same type irres-
pective of distance. But since there would be no interaction between atoms of 
different elements, the world would still divide into units that are independent in 
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the sense that EDiv asserts, at least if there were sufficiently many chemical 
elements. One wouldn’t need to know what state the oxygen atoms are in to 
predict the future of the carbon. The upshot is that a locality constraint is just 
one way in which EDiv might manifest, but it is not the only way.  
 
Whether a suitably framed locality condition is true of the world is controversial, 
but the fact of EDiv is not. For a theory to be empirically successful it must 
make accurate predictions about the future state of some system on the basis of 
what is necessarily finite, limited information about the system. Newtonian me-
chanics, for instance, is highly empirically successful for a broad domain of phe-
nomena in that it allows one to predict, for instance, the locations of the planets 
on the basis of a finite number of past positions. The empirical success of any 
scientific theory thus entails the fact of EDiv. Since it is not the case that all cur-
rent or conceivable theories also contain or require a spatial locality condition, 
let us take EDiv simpliciter (rather than locality) as a necessary condition for the 
empirical success of any scientific theory. 
 
 

2.5 The Appeal of Particle Ontologies 
 
It is possible to frame a stripped-down version of the miracle argument for any 
member of the special class of interpretations that entail the truth of EDiv. This 
special class of ontologies consists of all those which assert that the world is 
composed of ontologically independent entities. Roughly, ontological indepen-
dence is a modal claim: if two entities are ontologically independent then it is 
possible for either to have existed, occurred, or evolved in time as it has irres-
pective of the existence, occurrence, or evolution of the other. Such ontologies 
stand in contrast to radically holistic or monistic ontologies such as the ‘blobjec-
tivism’ defended by Horgan and Potrč (2002). 
 
To construct a version of the miracle argument, let Q designate the special class 
of interpretations that posit ontologically independent entities. Every q 2 Q en-
tails EDiv, and so Pr(EDivjT (q)) = 1. On the other hand, if no interpretation 
in Q is true of the world, then it would be a ‘miracle’ if EDiv were true. Thus, it 
must be the case that Pr(EDivj8x:T (x)) ¿ 1. So for any scientific theory h 
paired with a compatible interpretation q 2 Q we have the following: 
Pr(EDivjT (q)) À Pr(EDivj8x:T (x)). Note that I have not appealed to the 
details of the empirical success of h, only the fact that any such success entails 
the truth of EDiv. Because the inequality holds for any q 2 Q compatible with 
h, LP leads us to conclude that all of these interpretations are to be favored over 
the anti-realist stance. The same argument form used to defend realism about 
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particular theories—when supplied with only minimal facts about empirical suc-
cess—gives us a very general argument in favor of those interpretations which 
posit ontologically independent entities. 
 
We have not yet established the appeal of particle ontologies. But it is a trivial 
extension of the argument to note that what I am calling particle ontologies12—
interpretations which posit discrete entities (the particles) which bear properties 
largely independent of one another—sit squarely in Q. That is, particles just are 
discrete ontologically independent units, and so particle interpretations are in 
this special class. Of course, particle ontologies are not the only ontologies 
which can support EDiv; I’ll introduce another possibility in Chapter 8. Howev-
er, of the available scientific interpretations, particle ontologies make up the ma-
jority. 
 
The upshot of this discussion is not that scientific realism is likely to be true. 
Nor is it that the world really is made of particles. Rather, I am claiming that if 
one is a scientific realist, then one should be concerned if particle ontologies fail, 
since this class of ontologies is supported by an argument very closely related to 
the miracle argument—if one is compelling, so too is the other. Particle inter-
pretations are prime candidates for true scientific claims about unobservable 
entities. If they fail, realism loses an appealing exemplar. 
 
 
 
 
 

                                                 
12 The notion of ‘particle’ as I introduced it in Chapter 1 is, as I’ll show in Chapter 3, consis-
tent with use of the term in scientific interpretations. One may, of course, insist on a differ-
ent definition, one that makes particle interpretations no longer members of Q. But such a 
notion is no longer supported by the argument from EDiv and is alien to the particle 
worldview manifest in scientific discourse. When I refer to particle ontologies, I will just 
mean those that posit discrete, ontologically independent entities. 
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Chapter 3 A minimal particle ontology 
 
 

3.1 Overview 
In the last chapter I sketched an argument in favor of realism about particles, 
but did so by appealing to an undeveloped notion of ‘particle’. In this chapter, I 
spell out precisely what counts as a particle ontology by presenting the logically 
weakest set of assumptions such an ontology must satisfy. Two considerations 
come into play when laying out such a minimal set. The first concerns the 
meaning of the term ‘particle’. The word has been used in many ways, so I sti-
pulate which sense is relevant to my project. Second, not every ontology satisfy-
ing that sense of ‘particle’ constitutes a plausible or appealing ontology for the 
realist. In the previous chapter, we saw that the appeal of particle ontologies de-
rives from the fact that they can account for EDiv and so we will focus our at-
tention on just such ontologies. In the next section, I take up the first of these 
tasks—specifying the relevant sense of ‘particle’. In Section 3.3, I consider 
which particle ontologies in this sense can account for EDiv, and use these con-
siderations to motivate the promised minimal ontology. The assumptions of this 
minimal ontology delineate a very large class of ontologies, each produced by 
adding one or more elaborations. In Section 3.4 I argue that the various forms 
of scientific atomism from the 17th century onward fall within this class. In Sec-
tion 3.5, I show that even QM can be given an interpretation in this class as long 
as PI is omitted. 
 

3.2 What is a particle? 
While the meaning of the term ‘particle’ as it applies to matter has evolved over 
time, it has retained a stable core amounting to something like ‘a discrete consti-
tuent of some material body’. More precisely, a particle is a discrete individual 
bearing properties and which, along with other particles, may be part of a com-
posite body that also bears properties. When I say that particles are individuals I 
mean that each stands in definite identity relations with the others (each is iden-
tical only with itself and not identical with the others) and that each can be the 
value of a logical variable. This further entails that particles can be grouped into 
sets, labeled, and individually attributed properties. I mean nothing more meta-
physical than this. Without this meager notion of individuality, we could make 
no sense of the attribution of properties to particles.  
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More importantly, to say that particles are discrete entities is to say something 
about the divisibility of material objects. Roughly speaking, to say that a material 
object is composed of discrete particles is just to say that there is a fixed and 
determinate set of objects—the particles—into which the material object can be 
completely decomposed. Classically, we would further stipulate that any finite 
material object (i.e. finite mass, spatial extent, etc.) is composed of finitely many, 
spatially separable, indivisible particles. In this view, if we were to keep dividing 
the object into smaller and smaller pieces, the process would eventually bottom 
out with a finite set of particles.13 But this is much more than we need to ac-
count for EDiv and so more than we need to read into the notion of ‘particle’. I 
will not insist on these further classical stipulations, but no harm is done if the 
reader thinks in those terms. Of course, without these additional stipulations, all 
sorts of things not generally associated with particle ontologies are admitted. For 
instance, insofar as we think of an ideal fluid as an uncountable set of material 
points, each with a set of properties, then the fluid can be considered to consist 
of particles in the very general sense given above. Yet, since it would be infinite-
ly divisible, such a fluid would surely not admit a classical particle composition. I 
am willing to admit such strange cases for the sake of generality, so I will pro-
ceed on the assumption that a ‘particle’ is just one part in the determinate set of 
parts into which a material body can be divided. 
 
I should take care to note that we need not assume there are any mereological 
simples in order to assert that the material objects are finitely divisible into par-
ticles. The statement about divisibility should be understood as relative to a 
process or set of ‘fundamental’ particles. Each of these particles may in turn be 
composed of other particles. So in chemistry, for instance, the fundamental par-
ticles are the atoms of chemical elements. Insofar as we assume chemical ele-
ments to be fundamental, there is a fixed and determinate set of atoms of the 
chemical elements into which every material body can be divided without any 
material parts left over. Particle physics on the other hand recognizes the par-
ticles of the standard model as the fundamental units into which nothing can be 
further divided. Whether or not this is true is immaterial for our purposes. All 
that matters is that positing an ontology of particles means positing a set of 
components into which material things can be completely resolved at some level 
of description. 

                                                 
13 These assumptions need not be merely stipulated. They follow naturally if we embrace 
some plausible assumptions about the properties of particles and their aggregates. If, for 
instance, we insist (i) that particles bear some state-independent properties (like mass) that 
are represented by an outer measure function, (ii) that each particle has non-zero measure (a 
finite mass), and (iii) that material objects possess a value of the same property represented 
by the additive measure, then a universe of countably many objects with finite property val-
ues (countably many objects of finite mass) entails countably many particles.  
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3.3 Minimal atomism 
While the decomposability of material bodies is a necessary condition for an 
ontology to count as a particle ontology, it is insufficient for securing the epis-
temic facts. So the notion of particle developed in the last section is still too in-
clusive for my purposes. In Chapter 2, I argued that a slightly stronger notion of 
particle is needed in order for the proponent of particle realism to garner sup-
port from empirical science. Specifically, the realist needs an ontology strong 
enough to account for EDiv. I will henceforth use the term ‘particle ontology’ 
to refer just to those ontologies which posit discrete, property-bearing individu-
als that compose material bodies and which entail the truth of EDiv. I maintain that 
the following set of assumptions is the logically weakest ontology of discrete 
entities that entails EDiv, and thus the weakest such particle ontology: 
 
minimal atomism (MA): 

(i) Every material object can be decomposed into a collection of 
discrete objects called ‘particles’ each with a non-empty set of 
state-independent properties. 

(ii) Every non-empty set of particles possesses at least one state-
dependent monadic property. 

(iii) For every set S of particles and for every σ  S, it is the case 
that for most physically possible conditions, the state-dependent 
monadic properties of σ are approximately independent of the 
properties of most subsets of the complement of σ in S over a 
finite interval of time. 

 
 
These conditions require clarification on a number of points. To begin, by a 
‘state-independent’ property I mean one which remains invariant for a given 
particle within or across physically possible worlds. Conversely, by state-
dependent I mean a property which can assume different values at different 
times for a particle in a given physically possible world, or different values for 
the same particle in different physically possible worlds. A monadic property is 
one borne by a single object. On one view, these might be seen as the non-
relational properties of objects, and I will henceforth assume that this is the 
case. However, one could still be a strict relationist and assert that there are only 
relational properties without contradicting MA. To spell out MA in strictly rela-
tion terms is complex, and I will not do so here. However, the advocate of rela-
tionalism is invited to read ‘monadic’ as a shorthand for whatever properties we 
predicate of single objects, even if these properties are taken to be relational in 
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some sense. So for instance, I will speak of momentum as if it is a property pos-
sessed by a particle. However, in a relationist view of space, this property refers 
to one or more other objects in relation to which velocity is defined.  
 
Two more terms introduced in MA will be given only a short gloss here, since 
later chapters are devoted to providing a full account. The first of these is ‘phys-
ical possibility’. To say that a state of affairs is physically possible is roughly to 
say that—for whatever theory and interpretation pair we take to be true of the 
world—the given state of affairs obtains in the possible world described by one 
of the theory’s interpreted models. The second is the critical notion of the ‘ap-
proximate independence’ of properties. A full account is given in Chapter 4; for 
now, we can say that the properties of object x are approximately independent 
of the properties of object y if is physically possible for x to assume almost any 
of the properties it might have had if y did not exist and vice versa. For instance, 
the properties my coffee cup can assume within the limits of the manipulations 
I can perform in my office would be—so far as I could discern via measure-
ment—indistinguishable from what they would be if my pen were removed 
from my desk and destroyed. 
 
It remains to show that the conditions of MA are in fact sufficient to entail 

EDiv. Let S stand for the set of all particles in the universe and let σ  S stand 
for the set of particles composing a material object like my coffee cup. Since I 
have stipulated that σ (my coffee cup) is a material body, we know from MA(i) 
that σ is non-empty—it contains at least one particle. Furthermore, from MA(ii) 
we know that σ bears at least one state-dependent property. My coffee cup, for 
instance, bears the state-dependent properties of momentum, density, and tem-
perature. Now consider the complement of σ in S, denoted σC, which contains 
all of the particles in the universe except for those making up my coffee cup. 
Every material body other than my coffee cup and its parts—from my desk to 
distant galaxies—can be identified with some subset of σC. From MA(iii), we 
know that under most physically possible conditions—under most conditions in 
which we might find the universe—the properties of σ are approximately inde-
pendent of most subsets of σC. That is, the properties of the material object σ 
are approximately independent of the properties of most other material ob-
jects—whether single particles or composites. We can expect the properties of 
my coffee cup by and large to be independent of the properties of all the atoms 
in all the other objects in the universe—stars, planets, oceans, atmosphere, 
etc—with the exception of a small number of objects like my desk with which it 
strongly interacts. This means that in order to predict the future properties of σ 
we need only have knowledge of the properties of at most a minority of the 
subsets of σC. That is, to predict the future properties of my coffee cup we need 
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only know about the properties of at most a minority of the other objects in the 
universe (a vanishingly small minority in most cases). But this is precisely the 
content of EDiv. The epistemic facts follow from the assumptions of MA—if 
MA is true then so is EDiv. I should note that MA does not tell us anything 
about which subsets of σC we need to know about. That is the purview of phys-
ics. MA is not a stipulation of the correct theory of the physical world, only in 
effect a guarantee that a tractable physics is possible. Just as EDiv is weaker 
than an epistemic locality condition, so MA(iii) is weaker than an ontological 
locality condition. It may be the case that particle independence aligns with spa-
tial separation as in Newtonian physics. But it might also be the case that inde-
pendence tracks some other property—as in the example of Section 2.4—or no 
property at all. 
 
In deriving EDiv from MA, I have implicitly invoked a sort of determinism. It is 
only possible to anticipate the future from a set of facts about the past and 
present—no matter how complete—if the future is determined by the present 
state of affairs. This determination need only be in the weak sense that probabil-
ity distributions over possible observable states of affairs at t + Δt are deter-
mined by the state at t. At first glance, this assumption might appear problemat-
ic. For instance, one might object at this point that even classical mechanics 
admits various forms of indeterminism that contradict this claim. For instance, 
because it imposes no speed limit, there are models of classical mechanics that 
contain “space-invaders”, objects that arrive from spatial infinity in a finite time 
(Earman 1986). In a different vein, Newton’s Laws when coupled with certain 
problematic initial conditions present ill-posed initial-value problems. The ‘Nor-
ton Dome’—for which a ball can begin rolling away from an unstable equili-
brium at any finite time—is in this class (Norton 2008). Regardless of the specif-
ic pathology, the point is that, in some models of classical mechanics, even 
complete knowledge of the state of the world at one time is insufficient for pre-
dicting the state of the world at future times. In the space invader case, models 
in which the invader appears and in which it doesn’t are identical up through the 
time the invader arrives. For the Norton Dome, it is impossible to predict at 
time t =0 the time at which the ball will commence rolling. This seems to con-
tradict even the mild determinism we need to derive EDiv from MA. As weak 
as it is, it would thus seem that MA excludes even classical mechanics.14  
 
To draw this conclusion, however, is to require too much of MA. Recall that 
EDiv only asserts that, under most conditions, it is possible to reliably predict 
the future of most isolated bits of the world. To secure this claim, we do not 
need to require that every model of a theory be deterministic or that the future of 

                                                 
14 This concern was raised by Bryan Roberts in personal communication. 
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every region in every model be determined by its past. It merely has to be the 
case that, for any given set of particles, most models which contain them are such 
that these particles are independent of most others and have their future deter-
mined by their initial state. Space invaders are only problematic if they invade 
most regions of space in most models. Norton Domes should trouble us only if 
most initial conditions produce them. While difficult to formulate precisely, it is 
implausible to claim that the models of classical mechanics are dominated by 
indeterminism, even if we leave the set of viable initial conditions unrestricted. 
However, even if it is true that the space of classical mechanical models with 
unrestricted initial conditions is saturated with such indeterminism, theories in-
clude a specification of the class of viable boundary conditions. That is, theories 
are not merely naked dynamical equations—a class of models and thus a class of 
interpretations is only specified when the class of possible boundary conditions 
is stipulated. The initial conditions that yield Norton Domes are plausibly ex-
cluded from the class of physically possible conditions associated with the 
theory. Classical mechanics understood in this way is sufficiently deterministic 
to support the inference to EDiv, as are a great many other theories of micro-
physics.  
 
To head off the worry that MA excludes quantum theories from the outset, I 
should note that even QM generally possesses the sort of ‘determinism’ required 
for the above derivation. While specifying an observable state of affairs (i.e. sti-
pulating values of a complete set of commuting observables for a system) is in-
sufficient for fixing the outcomes of measurements made later on the system, it 
is sufficient for fixing the probability (which can be read as a propensity or dis-
position) of obtaining each possible measurable outcome. In the quantum do-
main, EDiv amounts to the claim that we can predict the probability of a mea-
surement outcome for a system on the basis of limited knowledge about that 
system alone. The relevant probabilities at future times are determined by the 
state of the world at earlier times, and so the relevant determinism obtains. To 
put it another way, the quantum state of the world evolves deterministically in 
the manner assumed in my derivation of EDiv, even if the outcomes of mea-
surements are not fixed by the quantum state. The determinism implicit in mov-
ing from MA to EDiv is a harmless background assumption that does no work 
in ruling in or out particle interpretations for the physical theories of interest, 
and so I will continue to accept it as a given. 
 
Not only does MA entail EDiv but, as suggested by the name, it is minimal—if 
we drop any of the assumptions in MA then EDiv fails to follow. Of course, if 
we drop MA(i) what’s left would not warrant the appellation of ‘particle ontolo-
gy’, at least not as I’ve explicated the notion of ‘particle’. But it is also the case 
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that without MA(i) EDiv fails to follow from the remaining propositions. This 
is because MA(i) guarantees that, if there are at least two objects in the universe, 
then there are at least two particles in the universe that can bear properties and 
one can sensibly talk about independence. Without this stipulation, it might be 
the case that the universe of material objects consists of only a single partless 
whole15 and thus MA(iii) would be trivially satisfied even though EDiv does not 
obtain. This is an exotic possibility but nevertheless one we need to rule out. 
Given MA(i) and MA(iii), EDiv fails to follow without MA(ii) because it may be 
the case that the only monadic properties particles possess are state-independent 
(e.g. mass). If this were the case, then MA(iii) would again be trivially satisfied 
but there would no longer be any sense in talking about the changing state of 
some portion of the universe. With only state-independent properties, an object 
does not change through time—there would be nothing to predict and EDiv 
would be irrelevant, though not strictly false. When I say an object with only 
state-independent monadic properties does not change in time I do not intend 
to deny that its relational properties may change. However, EDiv is an assertion 
about the features of an object in the world that can be said to change without 
reference to any other object in the world. These are just the monadic properties 
of the object in question. Finally, MA(iii) is clearly essential in establishing EDiv. 
It guarantees an ontological independence of properties amongst the parts of 
the universe (the existence of which are established by MA(i) and (ii)) that in 
turn entails the epistemic independence of EDiv. Without MA(iii), propositions 
MA(i) and (ii) are compatible with EDiv, but are not strong enough to imply the 
epistemic facts we observe.  
 

3.4 Scientific atomism 
If MA looks austere, that is by design—I want to capture the broadest class of 
theories with the virtue of accounting for EDiv. If MA looks overly metaphysi-
cal or distinct from scientific conceptions, that is an impression I wish to dispel. 
While I haven’t the space to present the rich and complex history of particle 
ideas in its entirety, I can at least point to a couple of representative theories to 
suggest that MA is consistent with each of the major particle interpretations of 
microphysics. From the 17th century onward, scientific accounts of atoms or 
particles have been elaborations of the minimal particle ontology specified by 
MA. 
 

                                                 
15 While perhaps implausible, the view that the universe is the only concrete particular and 
possess no proper parts has its defenders [e.g. (Horgan and Potrč 2000, 2002)]. 
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Two themes of conceptual development merged in the seventeenth century to 
produce the first scientific particle theories.16 On the one hand, an account of 
chemical change in terms of minimal units with chemical properties—
descendants of the Aristotelian natural minima—increasingly looked like a 
plausible approach to understanding the growing body of data on chemical and 
physical transformations. On the other hand, the ascendant mechanical philoso-
phy with its emphasis on quantitative primary qualities sought to account for the 
behavior of matter in terms of inertia, motion, and extension; this would have to 
include the particulate components of physical bodies insofar as the latter can 
be viewed as autonomous bodies bearing physical properties of their own.17 
Both approaches are synthesized for the first time in the chemical works of Ro-
bert Boyle.18 In Boyles’ view, the world is full of insensible particles that are nat-
ural minima in the sense that nature seldom if ever divides them. These tiny par-
ticles have their own “determinate bulk and shape” (Boyle 1991, 42). Moreover, 
they can bind tightly together to make composite particles that in turn comprise 
even larger units or chunks of bulk matter (Boyle 1949, 30-1). That is, they bind 
together to form what we might call molecules in modern parlance. The basic 
particles themselves, like the corpuscles of Descartes or Gassendi, have no 
chemically relevant qualities. However, the shape and topology of the composite 
particles (the molecules) constitutes what Boyle calls a “permanent texture” (van 
Melsen 1952, 103). These permanent textures determine the chemical and sensi-
ble qualities of bulk matter which is made up of such composite particles. 
 
Boyle’s ontology plainly satisfies MA(i) and MA(ii). It also satisfies MA(iii). The 
aggregation and disaggregation of particles which accounts for both chemical 
change (via formation of new molecules) and physical change like evaporation 
(via change in the motion or relative location of the molecules) is mediated by 
contact and local motion. This means that the properties of the material objects 
in any region of the universe depend only upon the properties—such as motion 
and texture—of the particles within that region and upon those particles whose 
motion carries them into that region over the time period of interest. In other 
words, the properties of the particles composing some material body are entirely 
independent of all other particles with the exception of those which enter the 

                                                 
16 For an elegant survey of the development and merger of Aristotelian and atomistic lines of 
thought, see (van Melsen 1952). For an overview of the 17th century transition, see (Chal-
mers 2009). 
17 See, e.g., (Whyte 1961). 
18 Drawing a sharp line making Boyle the first to provide a theory of physical corpuscles with 
chemical properties is a bit arbitrary and rather unfair. Boyle borrowed heavily from Sennert, 
who might plausibly receive credit as the first to combine the Aristotelian natural minima 
with atomism (Newman 1996; van Melsen 1952). However, since Boyle is usually fingered as 
providing the first ‘mechanical’ theory of chemical corpuscles [see e.g. (Levere 2001, 14-5)], I 
have deferred to precedent for ease of exposition. 
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region occupied by the body during the interval of interest. Boyle’s particles thus 
satisfy a locality condition that is actually much stronger than MA(iii).  
 
Not much of empirical value derived from Boyle’s account. It allowed him to 
offer plausible qualitative explanations but little in the way of quantitative pre-
diction. A genuinely physical particle theory had to wait until the early nine-
teenth century when Dalton carried through the synthesis of mechanical philos-
ophy with the chemical theory of minima. Dalton embraces the hypothesis that 
“…all bodies of sensible magnitude, whether liquid or solid, are constituted of a 
vast number of extremely small particles, or atoms of matter bound together by 
a force of attraction…”  (Dalton 1808, 143) and thus offers an account consis-
tent with MA(i). While broadly similar to the theory put forth by Boyle, Dalton 
endowed his particles with very specific and—at least indirectly—measurable 
properties of the sort necessary to do chemistry. In particular, he granted each a 
weight and put great emphasis on the determination of relative weights. His ac-
count thus comports with MA(ii). As with Boyle, Dalton conceived of the union 
of chemical atoms into molecules to involve simple juxtaposition—they bound 
together in space without any internal alteration (van Melsen 1952, 139). Like-
wise, physical changes in bulk matter such as change of phase or crystal forma-
tion were to be explained by the spatial rearrangement of atoms, with all interac-
tion mediated by direct contact. Thus, Dalton’s theory satisfies MA(iii) in the 
same way Boyle’s did. This view of hard, space-filling atoms interacting via di-
rect contact is carried over into the kinetic theory of gases in the mid-nineteenth 
century. Dalton’s theory is therefore representative of a broad class of physico-
chemical accounts one might call corpuscular atomism. The many versions of 
this corpuscular atomism are, like the accounts of Boyle and Dalton, 
straightforward instances of MA. 
 
Before leaving the corpuscular view, it is worth emphasizing an aspect of Dal-
ton’s theory that persists into modern particle physics. This innovation has to 
do with the properties of individual atoms and molecules. Dalton argued for the 
claim that “…the ultimate particles of all homogeneous bodies are perfectly alike in weight, 
figure, &c.” (Dalton 1808, 143) (emphasis in the original). In other words, he ar-
gued that the atoms of what we would call the chemical elements must have ex-
actly the same monadic properties. While we no longer view this as exactly cor-
rect (there are multiple isotopes of each chemical element), the supposition has 
carried over into particle physics where it is thought that there are fundamental 
particles (particles without further internal structure), these particles belong to a 
finite number of kinds, and every particle of a given kind bears exactly the same 
state-independent monadic properties. While enormously fruitful in both its 
chemical and physical contexts, this postulate is exactly what leads to PI and, 
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ultimately, to the undermining of particle ontologies. The synthesis of chemical 
minima and mechanical philosophy must ultimately be viewed as a failure.  
  
An alternate conception of material particles developed in parallel beginning in 
the 18th century, and would ultimately outlive the corpuscular view. In the mid-
18th century, Roger Boscovich realized that the corpuscularian view of atoms as 
hard, undeformable solids which make direct contact in collision leads to insur-
mountable difficulties with Newton’s mechanics. If atoms are solid volumes, 
then “…in the collision of solid bodies, either there must be compenetration, or 
the Law of Continuity must be violated by a sudden change of velocity…” 
(Boscovich 1966, 122). In other words, if atoms are perfectly elastic bodies that 
fill space and interact by direct contact, then any collision must result in an in-
stantaneous change in velocity, contrary to the differential equations of New-
ton’s mechanics. Boscovich’s solution was to reconceive atoms as point-masses 
surrounded by fields of force. As he puts it: 
 

…matter is unchangeable, and consists of points that are perfectly 
simple, indivisible, of no extent, & separated from one another; that 
each of these points has a property of inertia, & in addition a mutual 
active force depending on the distance in such a way that, if the dis-
tance is given, both the magnitude & the direction of this force are 
given; but if the distance is diminished indefinitely, the force is repul-
sive, & in fact also increases indefinitely; whilst if the distance is in-
creased, the force will be diminished, vanish, be changed to an attrac-
tive force that first of all increases, then decreases, vanishes, is again 
turned to a repulsive force, & so on many times over; until at greater 
distances it finally becomes an attractive force that decreases approx-
imately in the inverse ratio of the squares of the distances. 
(Boscovich 1966, 121) 

 
If this description reminds the reader of the passage I quoted from Richard 
Feynman in Chapter 1, this should emphasize the extraordinary prescience of 
Boscovich. Note that, though it sounds inordinately complicated, the force he 
describes aligns well with what we understand as a typical interatomic potential 
(e.g. the Leonard-Jones potential), at least if we neglect the repeated reversal of 
force direction. Whatever the merits of Boscovich’s detailed proposal, his basic 
view of particles as centers of force became an integral component of atomic 
theory following the discovery of the electron in the nineteenth century. I’ll take 
Rutherford’s model of the atom as the culmination of this classical line of 
thought. In this model, the fundamental particles are the positively charged and 
relatively massive nucleus and the negatively charged and relatively massless 
electrons. Each particle is thus a center of electromagnetic force, and this force 
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is what binds the electrons in orbits19 about the nucleus in order to make 
‘atoms’, now understood as composite objects. 
 
As with the corpuscular theory, this interpretation of the physics is also in line 
with MA. It is again the case that material objects are supposed to be divisible 
into discrete entities, in this case centers of force. Each of these entities pos-
sesses the state-independent properties of charge and mass, as well as state-
dependent properties such as momentum. So MA(i) and (ii) are again satisfied. 
MA(iii) is also satisfied, though in this case we really must speak of approximate 
independence. This is because the fields of force associated with each particle 
extend indefinitely through space. Particles arbitrarily far from one another non-
etheless exert a force and thus influence each other’s properties. However, the 
forces in the theory drop off with distance (typically as an inverse square). Thus, 
the properties of the particles in one region of space are almost but not quite 
what they would have been had the distant particles not existed. Because in 
most models of the theory particles are distributed through space with signifi-
cant separation, each material body (each composite of particles) is approx-
imately independent of most other objects (composed of distant particles). In 
this way MA(iii) obtains.  
 
Of course, Rutherford’s model is not compatible with the laws of electrodynam-
ics, as he was well aware. To pursue this difficulty and the ways in which it 
spurred the development of a new mechanics would take us too far astray. 
Skipping over intervening years of confusion and foment, we arrive at last at 
QM.20 
 

3.5 MA and QM 
As long as we leave out PI, interpretations of QM are available that are compat-
ible with MA. In particular, interpretations which attribute properties to par-
ticles can be constructed such that those properties satisfy the independence 
condition of MA(iii). To do so requires some severe departures from classical 
metaphysics, but this is unsurprising. For instance, if we adjust our notion of 
‘bearing a property’ to mean something like possessing a definite probability or 
propensity for manifesting a property, then we can treat quantum particles as 
bearing a full set of properties at all times. That is, each particle acts as a hanger 
                                                 
19 To be historically accurate, this is not quite what Rutherford says. Though he drops hints 
in his seminal paper on atomic structure that he has in mind the so-called ‘planetary model’, 
he asks the reader to “[c]onsider an atom which contains a charge §Ne at its centre sur-
rounded by a sphere of electrification containing a charge ¨Ne supposed uniformly distri-
buted throughout a sphere of radius R” (Rutherford 1966, 709).  
20 These three major particle interpretations—the corpuscular, the center-of-force, and the 
quantum—were also pointed out by Whyte (1961, 22-3). 
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for probability distributions over property values corresponding to every possi-
ble observable. This is in contrast to the classical view in which particles were 
hangers for exact property values. Having adopted this liberal notion of what it 
means to bear a property, we can then ask whether quantum particles generally 
exhibit the sort of independence with respect to their properties that MA(iii) 
requires.21  
 
Without PI, this is in fact the case. Non-interacting particles can be in ‘product 
states’ in which their properties are entirely independent.22 In general, even 
weakly-interacting particles in separable states will be approximately indepen-
dent of one another with respect to the distributions over property values they 
bear. For instance, it is possible to have a particle with a high probability of be-
ing found on one side of my desk and another with a similar distribution cen-
tered on a point on the other side of my desk and to assign to each particle al-
most any distribution over its remaining properties that we could have assigned 
had the other particle not existed. In this way, MA(iii) can be satisfied and quan-
tum particles viewed as the ontologically independent units that account for 
EDiv. Note that, unlike in the classical case, the independence of particles need 
not be a function of spatial separation. For instance, we might instead consider 
two weakly interacting particles that have very definite momenta rather than po-
sition. Such particles would be as non-localized as can be—their respective 
probability distributions over position overlap significantly. There is no sense in 
which we could say that these particles are spatially separated. Nonetheless, we 
could assign any distribution over, say, spin in the z-direction to one irrespective 
of what distribution we give the other. This would mean that it is possible to 
measure any of a wide range of property values for one particle irrespective of 
what was measured for the other. In this sense, the properties of one can be in-
dependent of the properties of the other despite spatial contiguity.  
 
Of course, for MA(iii) to obtain, it must be the case that such independence 
holds under most physically possible conditions. It will fail when the particles 
interact strongly or when states are entangled (as is generally the result after 
strong interaction). Without a precise way to quantify what fraction of quantum 
models feature strong interactions or entanglement amongst all or most particles 
                                                 
21 An account of ‘unsharp quantum properties’ very similar to notion of properties as distri-
butions over values suggested here is developed in (Busch and Jaeger 2010). 
22 Let H1 be the Hilbert space of states for each particle taken individually. Then the states of 
the two-particle system live in the outer product space H1  H1. If the states jÃii comprise a 
basis for H1, then any state in the outer product space can be expressed in the from P

ij cijjÃiijÃji. With no condition of permutation invariance imposed, possible states in-
clude ‘product states’ of the form jÃiijÃji. The joint distributions over property values for 
two particles in a product state can be factored into independent distributions for each par-
ticle separately.  
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in the universe, I cannot make an airtight case. Nonetheless, it is intuitively 
plausible that in most models, most particles are independent of one another in 
the requisite way and MA(iii) is satisfied.  
 

3.6 Previous arguments against particles in QM  
I have given only a very coarse sketch of the sort of interpretation of QM that 
one would have to adopt in order to satisfy MA. It is not my intention to pursue 
such a view in detail, especially since, as I’ll show in Chapter 6, PI precludes any 
such interpretation. The exercise would be moot. Rather, the point I wish to 
make is that there is nothing inherent in the structure of QM without the logi-
cally independent postulate of PI that precludes a particle interpretation. This 
claim is perhaps surprising given the number of authors who have already sug-
gested that QM is incompatible with a particle interpretation. But as we’ll see 
below these arguments rely on PI, posit much stronger accounts of ‘particle’ 
than MA, or both. 
 
There are myriad arguments in the literature of physics and philosophy in sup-
port of the ‘non-individuality’ of putative quantum particles. The notion of 
‘non-individuality’ is cashed out in nearly as many ways as there are distinct ar-
guments for it. However, we need only concern ourselves with those notions of 
individuality that must obtain if the entities in an interpretation are to be 
deemed particles in the sense enshrined in MA. As I mentioned in Sections 3.2 
and 3.3, MA assumes that, at any given time, there is a determinate fact of the 
matter which particle is which and what properties it bears. It assumes that par-
ticles stand in identity relations, both synchronic (one can specify which bears 
which property) and diachronic (a particle at time t is identical with one and only 
one particle at later time t’). Thus, the notions of ‘non-individuality’ with which 
we will be concerned are those which deny that putative quantum particles stand 
in any such relations. 
 
One argument for the non-individuality of quantum particles rests on the as-
sumption that individuality is determined by spacetime trajectory. In this view, 
objects are individuals just if they are associated with a unique and continuous 
trajectory through space and time. This view was most notably advanced by Er-
win Schrödinger [see e.g. (Bitbol 2007; Schrödinger 1998)], and is referred to as 
‘Space-Time Individuality’ or STI by French and Krause (2006). Under STI facts 
about identity reduce to facts about trajectory. If two events involve the same 
individual, they lie on the same spacetime trajectory. As Schrödinger and others 
have emphasized, it is in general not possible to attribute a definite spacetime 
trajectory to putative quantum particles. Thus, since individuality depends on 
trajectory, would-be quantum particles are not individuals and so cannot be par-
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ticles in the sense of MA.23 As Schrödinger himself put it: “…giving up the path 
means giving up the particle.”24 While the argument appears valid, it rests on a 
dubious premise, namely that spacetime trajectories are the only way in which 
particles might come to possess definite identities. At the very least, this premise 
is logically much stronger than MA requires. Thus, the argument from STI does 
not preclude particle interpretations in line with MA. 
 
The remaining arguments for non-individuality (in the sense of non-identity) 
each invoke PI in one way or another. Therefore, they cannot contradict the 
claim that QM and MA are compatible in the absence of PI. However, each of 
the remaining accounts also invokes one or more assumptions of greater logical 
strength than MA. Making these assumptions explicit serves to emphasize the 
much greater generality of the result presented here. We can begin with another 
time-worn argument, this time drawing on features of statistical mechanics [see 
e.g. (French 2006; French and Krause 2006)]. Very roughly, in classical statistical 
mechanics, there are four ways in which two sets of properties can be distri-
buted over two particles. That is, there are four distinct states associated with 
two particles and two different property sets. Call the particles p1 and p2 and the 
property sets M1 and M2. We’ll denote the proposition that pi possesses proper-
ties Mj by Mj(pi). The four possibilities are thus M1(p1)^ M1(p2), M1(p1)^ M2(p2), 
M2(p1)^ M1(p2), and M2(p1)^ M2(p2). It is taken as a premise that all distinct (if not 
qualitatively distinguishable) configurations of particles and properties are equi-
probable.25 From this specification of the state space and the assumption of 
equiprobability, the usual Maxwell-Boltzmann statistics follows along with the 
classical statistical mechanical reduction of thermodynamics. Quantum statistical 
mechanics—whose departure from classical statistical mechanics is a conse-
quence of PI—poses a problem. If the equiprobability assumption holds, then 
the observed statistics of putative particles of the same kind entails that we have 
miscounted distinct states. As we’ll see in Chapter 5, there are two classes of 
particle—bosons and fermions—distinguished by the statistics they obey. For 
the bosons,  M1(p1)^ M2(p2) and M2(p1)^ M1(p2) combined receive the same prob-

                                                 
23 A closely related objection to particle ontologies is made in the context of QFT, for which 
no spatially localized states of a single quantum are possible, at least none with plausible 
transformation properties under a Lorentz boost. The implicit idea is that particles are nec-
essarily individuated by spacetime location and thus the impossibility of localizing a particle 
state precludes a particle interpretation of QFT. See (Teller 1995), Chapter 4 for an introduc-
tory overview. 
24 This quote is from a letter to Henry Margenau dated April 12, 1955. The letter appears in 
the Archive for History of Quantum Physics (Microfilm 37, Section 9) at the University of 
Pittsburgh. It is reproduced in (Bitbol 2007, 86). 
25 Hans Reichenbach gives a version of the argument recounted here in (Reichenbach 1999). 
In particular, he makes this assumption explicit on p232. To be fair, Reichenbach—unlike 
many later authors to advance this argument—motivates the equiprobability claim by draw-
ing out the sorts of ‘causal anomalies’ that alternative approaches would force us to adopt. 
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ability as either M1(p1)^ M1(p2) or M2(p1)^ M2(p2), and for the fermions they re-
ceive a combined probability of 1. This suggests that for either class M1(p1)^ 
M2(p2) and M2(p1)^ M1(p2) are not in fact distinct states, and thus the putative 
particles lack identity—there is no fact of the matter as to which possesses 
which property.  
 
Even if we grant that distinct states are equiprobable—an implausibly strong a 
priori assumption—one must take care to clarify whether equiprobability per-
tains to metaphysically possible states or to contingently accessible states. In the 
strong reading implicitly adopted in the argument for non-individuality, it is as-
sumed that every distinct possible state is equiprobable. However, if one assumes 
that equiprobability applies merely to the physically accessible states, then the 
above is not an argument against the possibility of distinct permuted states. This 
is because the same statistical weights can be accounted for by denying the ac-
cessibility—though not the metaphysical possibility—of distinct permuted 
states. To explain this rebuttal in detail requires more of the apparatus of QM 
than I have yet introduced (though see Chapter 5 below). Qualitatively speaking, 
it can be shown that if a particle begins in any of a particular subset of states 
corresponding to either bosons or fermions then the dynamics of quantum me-
chanics guarantees that the future states of the particle will be in the same sub-
set—bosons cannot become fermions or vice versa and neither can come to 
occupy states outside their prescribed subset. In short, QM guarantees that cer-
tain states remain inaccessible to particles that happen to begin in bosonic or 
fermionic states. Assuming that as a contingent fact all particles began in one of 
these states, this would account for the observed statistics if accessible states are 
equiprobable. Thus, in order to conclude that quantum particles really are non-
individuals, one must adopt the strong version of equiprobability and insist that 
we can infer the set of possible states from the observed statistics.26 Such a view 
takes us beyond MA. 
 
Another argument for non-individuality that invokes PI rests upon the ‘bundle-
theory’ account of individuality. In versions of this account, an individual is uni-
quely picked out by the properties it bears. This notion is captured by Leibniz’s 
Principle of the Identity of Indiscernibles (PII), which can be stated in a second 
order language as follows: 

(PII):  8x8y (8F (F (x) $ F (y)) ! x = y)) 

                                                 
26 See (French and Krause 2006), Chapter 4 or (French 2006). 
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Here, x and y refer to individuals and the predicates F refer to properties of the 
individuals.27 The argument begins by noting that particles of the same kind sub-
ject to PI must have all of their properties in common. Nonetheless, these puta-
tive particles are not identical, since we can experimentally count them. This 
leaves us with two options. If the predicates F refer only to physical properties, 
then either Leibniz’s PII is false and particles are individuated by some non-
physical property—what Heinz Post (1963) calls a Transcendental Individuali-
ty—or PII is simply irrelevant because quantum particles are not the sorts of 
things that stand in relations of identity with one another. The former is argued 
to be distasteful on a variety of philosophical grounds (e.g. even a weak empiric-
ism), and so the latter is favored. Again, this argument rests on PI and so does 
not contradict the claim that, absent permutation invariance, QM can be given a 
particle reading. Disregarding this point it is still once again the case that the 
argument relies on much stronger metaphysical suppositions than MA requires. 
For instance, in order to argue that quantum particles are non-individuals in this 
way, we must first accept that genuine individuals obey PII and that there are no 
non-physical properties such as Transcendental Individuality requires. While 
perhaps plausible, these claims go beyond what the epistemic facts justify, and 
leave open the possibility that a more liberal particle ontology in line with MA is 
still consistent with the physics. 
 
Before considering other arguments against particle interpretations of QM, I 
would suggest that there is a general difficulty with all arguments for non-
individuality. Proponents of such arguments want to claim that, while quantum 
particles are non-individuals in the sense that they have no identities, there are 
nonetheless determinate numbers of them in various physical systems. This po-
sition is incoherent. As Lavine (1991, 260) puts it, one cannot claim that there 
are two distinct photons in a box because “…after all, ‘distinct’ means ‘having 
different identities’…” Thus, statements of cardinality for non-individuals can-
not be interpreted via the usual semantics. For a more thorough development of 
this line of criticism, see (Jantzen 2010).  
 
As I suggested above, there are other arguments against particle interpretations 
of QM that do not invoke notions of individuality or depend critically on PI. 
Massimi for instance, argues that no definite properties are attributable to indi-
vidual particles in joint states that are not ‘product states’. For this reason, 
MA(ii) is false (the particles cannot be said to bear any state-independent prop-
erties). It is further the case that, even if we attribute properties to individual 

                                                 
27 There are multiple readings of PII depending on how one restricts the range of F. I won’t 
lay out the possibilities here, but the interested reader should consult (Caulton and Butter-
field 2008; French and Redhead 1988; Saunders 2003). 
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particles when the system is not in a product state, then the state of the system 
fails to supervene on the states of the individual particles—complete informa-
tion about the properties of the particles fails to fix the state of the system. For 
either or both of these reasons, QM cannot be interpreted in terms of particles. 
This argument, however, rests on strong claims about what it means to bear a 
property and the relation between particle states and states of particle aggre-
gates. In particular, Massimi assumes the following: 
 

Given any composite system, the quantum states of the subsystems 
are ontologically separate [that is, the particles can be ascribed proper-
ties individually] iff 

1) each subsystem has definite (though possibly unknown) values for a 
complete set of compatible observables pertaining to that subsystem 
alone 

2) the afore-defined ontologically separate states of the subsystems de-
termine wholly their joint state. 
(Massimi 2001, 320-1) 

 
Massimi’s first criterion depends on a rather conservative notion of what it is for 
a particle to bear properties. According to a standard interpretation of QM, 
“…a system in the state W has a value for the observable F if and only if W as-
signs probability 1 to one of the possible values of F…” (Dickson 2007, 285). 
This principle has come to be known as the ‘eigenstate-eigevalue link’. Even 
granting the eigenstate-eigenvalue link, Massimi’s argument only goes through if 
we further assert that the only properties a particle can be said to bear are those 
which it bears with certainty (with probability 1). As I suggested above, there is 
no a priori reason we need to make this assumption—we can treat distributions 
over measureable values as perfectly sensible properties of quantum objects. To 
claim otherwise is to assert a much stronger particle ontology than MA. Fur-
thermore, Massimi’s second criteria amounts to the assertion that an object can-
not be said to have ontologically independent parts with properties of their own 
unless the properties of the composite object supervene on those of its parts. 
Again, while this may be appealing it involves a stronger metaphysical commit-
ment—in this case to a denial of emergent properties—than MA requires. If 
Massimi’s strong assumptions are dropped, both of which go beyond MA, then 
her rejection of quantum particles does not go through. 
 
There is one more argument to consider against a particle interpretation of QM. 
This argument actually applies only to relativistic quantum field theory (QFT)28, 

                                                 
28 Actually, the problem of unitarily inequivalent representations, of which this argument is 
an instance, pertains to any theory with infinite degrees of freedom, including quantum sta-
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and thus is tangential to the claim that non-relativistic QM can be given an in-
terpretation in terms of MA. Nonetheless, it is worth having the argument on 
the table. To begin with, we note that in certain cases, observers in different 
states of motion will define certain observables differently, in particular the 
number operator N which gives the total number of particles occupying a par-
ticular state. A good example is the Unruh effect. Here, an accelerating observer 
will, under certain circumstances, see thermal radiation in her rest frame while 
an inertial observer sees none. Whether one observes ‘particles’ in the world or 
not thus depends on one’s reference frame. This would seem to cast doubt on 
the existence of particles as objective entities (like observers) which persist in all 
reference frames and bear properties. I will not digress into the technical details 
here. Suffice it to say that, this is a serious objection to particles but one that 
plays equally well against other realist interpretations of QFT, specifically certain 
otherwise appealing field ontologies (Baker 2008). I will not attempt to offer a 
resolution, only suggest that effects of this sort cause trouble for particle inter-
pretations in ways distinct from PI.  
 

3.7 Conclusion 
To sum up, the notion of ‘particle’ as motivated by the argument of Chapter 2 is 
captured by MA, the logically weakest set of propositions constituting a particle 
ontology. MA is consistent with all of the major scientific particle interpreta-
tions, and even QM can be given an interpretation compatible with MA so long 
as we do not insist on PI. The latter fact is surprising on the face of it. But pre-
vious arguments against particle interpretations of QM either invoke PI or put 
much stronger conditions on particles, properties, or physically possible states 
than MA does. The question pursued in the remainder of this essay is whether 
the weakest particle ontology that can support EDiv can be maintained for quan-
tum theories or for any successor to QM that respects PI.  

                                                                                                                         
tistical mechanics. See (Baker 2008) for an overview, as well as for a concise and much more 
rigorous statement of the argument considered here. 
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Chapter 4 Connecting metaphysics with physics 
 

4.1 Overview 
In Chapter 2 I distinguished a scientific theory from its models, and the inter-
pretations of these models. In this chapter, my aim is to develop this taxonomy 
in greater detail for theories with mathematical formulations, such as those of 
mathematical physics. With this taxonomy, we can then state a formal means of 
connecting metaphysical interpretations to theories, and for extracting con-
straints on theories given a particular interpretation. Establishing this formal 
connection will let us develop with precision one necessary condition that any 
theory must satisfy in order to be compatible with MA. 
 

4.2 A taxonomy of theories and interpretations 
In the context of mathematical physics, a theory consists of two parts: 
 

(i) the specification of a mathematical space such as a phase space 
or Hilbert space; 
 

(ii) a system of equations (or ‘laws’) that, when supplemented with 
boundary conditions pick out a subset of the mathematical 
space of (i). 

 
To make this more concrete, consider the classical theory of Hamiltonian dy-
namics. According to my taxonomy, this is actually a large family of theories. 
Each theory in this family is characterized in part by a phase space (typically 6n-
dimensional for n particles) pertaining to the physical system of interest. In addi-
tion, each theory of Hamiltonian dynamics is equipped with a set of coupled 
differential equations (Hamilton’s Equations of Motion) that together with a set 
of boundary conditions (and modulo some technical caveats) determine a 
unique trajectory in phase space. While in a vague sense Hamilton’s Equations 
have the same ‘form’ for each theory (for each combination of phase space and 
equations of motion), they differ both with respect to the specific Hamiltonian 
used and in the number of conjugate variables.  
 
A model of a theory is just a mathematical structure belonging to the mathemati-
cal space of the theory and compatible with both the laws of the theory and a 
set of boundary conditions. A trajectory in phase space is a model of Hamilto-
nian mechanics. Similarly, a trajectory through rays in a Hilbert space is a model 
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of time-dependent QM. What I’m calling models of a theory are what physicists 
often call ‘solutions’.29 Aside from a mathematical space and the equations of 
motion, the determination of a model requires boundary conditions. In Hamil-
tonian Mechanics, a boundary condition is typically the specification of a single 
point in phase space taken to represent the initial positions and momenta of the 
particles. We could think of such a boundary condition as picking out the set of 
all trajectories in the mathematical space of the theory (phase space) that pass 
through the specified point. This provides an intuitive way of understanding the 
role of boundary conditions: boundary conditions in general are specifications of a 
subset of the mathematical space of a theory which is further refined by the laws 
of that theory. For a fixed theory, the laws of the theory amount to functions 
from the space of boundary conditions to the space of models. Thus, the set of 
all physically possible boundary conditions determines the set of all physically 
possible models. 
 
Interpretations of a theory are sets of property attributions over a set of objects.30 
They are supposed to be descriptions of the way the world is, or at least the way 
part of the world is. Interpretations need not be expressible in first or second 
order formal languages, but I will treat an interpretation as a collection of state-
ments about the contents of the world. For instance, the interpretation of a tra-
jectory in phase space typically amounts to the assertion of successive locations 
and momenta of a moving body such as a pendulum bob—it is a collection of 
claims like “there exists a massive bob with this position and this momentum at 
time t,” and so on. The various scientific accounts of particles and their proper-
ties discussed in the preceding chapters are also examples of interpretations. To 
simplify later discussion, it will help to introduce an additional piece of termi-
nology. I’ll call that part of an interpretation which describes the properties as-
sociated with a single particle a specification.  
 
Interpretations are connected to theories by a function on the space of models. 
This function need not be injective—multiple models might refer to the same 
state of the world. But for every model there is exactly one description of the 
way the world is according to the model. To continue our example from Hamil-
tonian dynamics, each trajectory in phase space—under a typical interpretive 
function—corresponds to the attribution of a position and momentum to a par-
                                                 
29 My use of the term ‘model’ in this case is closely related to the model-theoretic notion from 
logic and aligns with (at least some) of the ways in which proponents of the ‘semantic view’ of 
scientific theories use the term. See, e.g. (Suppe 1977, 1988; van Fraassen 1980). 
30 This stipulation rules out many ontologies such as process and event (Simons 2002). We could 
weaken the notion of interpretation to embrace these possibilities, but it is unnecessary for our 
purposes since particle ontologies are of the sort captured by this restricted notion of interpreta-
tion. Arguably, the vast majority of scientific interpretations fall within this class, no matter how 
vehemently some philosophers assert that substance-attribute ontologies are dead. 
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ticle at every moment of time over a given interval. Descriptions that differ with 
respect to where a particle is at a given time must correspond to distinct trajec-
tories. 
 
For any given theory there are indefinitely many possible interpretations—just 
as many as there are functions on the domain of models. Despite this freedom 
in selecting an interpretation, all theories come partially interpreted in the sense 
that each theory is accompanied by a mapping from its models to a limited set 
of claims about observable quantities. After all, if a theory didn’t tell us what 
measurable quantities to anticipate it would have no empirical purchase on the 
world. For instance, any theory of Hamiltonian dynamics will have to come with 
an interpretation that lets us extract anticipated forces or momentum transfers 
from its models—I have to at least interpret the phase space trajectory as indi-
cating a certain momentum at a certain time and place so that I can anticipate 
what will be measured when I stick an instrument there. I refer to these func-
tions from models to observable facts as ‘partial’ interpretations because it is 
possible to elaborate any such interpretation—we can create a ‘fuller’ interpreta-
tion by positing a more elaborate state of the world involving unobserved enti-
ties, properties, and processes as long as the posited state of the world contains 
or entails the empirical claims of our partial interpretation  With a partial inter-
pretation given, the space of viable elaborations—the space of full interpreta-
tions—is somewhat restricted. In fact, we’ll see how a partial interpretation con-
strains the choice of full interpretation in Chapter 8 below. Despite this con-
straint, however, full interpretations are still underdetermined by physical 
theory. For any given physical theory and corresponding partial interpretation, 
infinitely many full interpretations are possible.  
 
This is not to say, however, that full interpretations are inert or irrelevant. In 
fact, they serve in two significant capacities in scientific practice: (i) as guides to 
theory development and replacement and (ii) as guides for building idealizations 
and simplified models. Providing a detailed account of the first function would 
take us too far astray, but an example of what I have in mind is provided by the 
development of Kepler’s astronomy. In formulating a theory that computes ce-
lestial positions using ellipses for each planet, Kepler was guided by a particular 
interpretation of Copernicus’ work, namely that there really are massive bodies 
including the Earth that revolve around a central Sun. Practically speaking, it 
helps to have to have some idea of what your old theory is about in order to 
develop a new one. Full interpretations do not constitute necessary conditions 
for scientific change—to hit upon the use of elliptical orbits, it is not necessary 
to believe that the earth is a planet and that planets actually revolve about the 
sun. But when confronted with the enormous variety of ways one might adjust 
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the mathematical system of Copernicus in hopes of better capturing the phe-
nomena, a full interpretation can guide one’s choices in a fruitful way. 
 
The second function of full interpretations is much more mundane and easier to 
illustrate. Typically, physical theories present a set of equations that are too dif-
ficult to solve for many or most practical applications. Some sort of approxima-
tion is necessary. Sometimes, suitable approximations can be derived from ma-
thematical considerations alone given knowledge that particular (measurable) 
quantities are small relative to others. This is the case, for instance, when we 
make the ‘small angle’ approximation for pendulums. However, most of the 
time much more elaborate manipulations or modifications of the theory are re-
quired, and the partially interpreted theory offers no justification for any such 
manipulation. Consider, for example, quantum chemistry. In order to determine 
the shape, binding energy, etc. of a molecule, one must solve the time-
dependent Schrödinger equation with a complex Hamiltonian. For even the 
simplest molecules, this is an intractable problem. A standard approach is to 
make the ‘adiabatic assumption’ that the light electrons reconfigure themselves 
much faster than the heavy nuclei. This motivates solving the electronic prob-
lem for static nuclei in order to determine electronic potential energy and confi-
guration as a function of nuclear separation. This ‘effective potential’ is then 
used in turn to solve the Schrödinger equation for the nuclei. The point is that 
the adiabatic assumption is only justified if we think that terms in the Hamilto-
nian actually refer to bodies that move more or less independent of the nuclei 
which are in turn massive charged bodies. That is, the adiabatic assumption only 
makes sense given a full interpretation of the quantum mechanical theory in 
terms of massive, charged particles of the sort MA requires. The full interpreta-
tion guides development of tractable approximations to a given physical theory. 
 

4.3 Property independence as a formal constraint on theories 
In order to assess the compatibility of PI and particle interpretations, we need a 
method for ascertaining whether a given theory can sustain full interpretations 
that satisfy MA. Working backwards, such a method should let us determine 
what conditions MA places on a theory. In other words, it will let us determine 
what features a theory must have if its models are to be connected via some 
function to an interpretation in line with MA. As a first step in connecting MA 
with specific theories, we will take interpretations to be descriptions of physical-
ly possible worlds—to say that a state of affairs is physically possible is to say 
there is an interpretation of a model of the relevant physical theory that de-
scribes that state of affairs. Next, the notion of independence appearing in 
MA(iii) can be formulated in terms of physical possibility. To say that the mo-
nadic properties of one object are entirely independent of the properties of 
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another is to say that it is physically possible for each object at any one time to 
possess any of the monadic properties it could have possessed had the other 
object not existed. By extension, to say that the properties of one object are ap-
proximately independent of those of another is to say that it is physically possi-
ble at any one time for each object to possess approximately any of the proper-
ties it could have possessed had the other not existed. Given that physically 
possible worlds are described by interpretations, we can restate the condition of 
property independence this way: 
 
Approximate Property31 Independence: 

The properties of object A are independent of the properties of object 
B according to physical theory T just if there exists a non-trivial set of 
interpretations S corresponding to a set of models of T such that every 

interpretation Int  S contains specifications of objects A and B, and 
there exists a pair of non-trivial sets of interpretations S1 and S2 corres-
ponding to sets of models of T’ (the one-particle version of T) with the 

following features: (i) every Int1  S1 contains specifications of all the 
same objects as each interpretation in S except for object B, (ii) every 

Int2  S2 contains specifications of all the same objects as each interpre-
tation in S except for object A, (iii) for every pair of interpretations Int1 

 S1 and Int2  S2 there exists an Int  S such that the specification of A 
in Int is approximately the same as it is in Int1 and the specification of B 
in Int is approximately the same as it is in Int2. 

 
That is admittedly a mouthful, but it is really just the claim that the properties of 
A are (approximately) independent of those of B if the theory admits models 
containing both objects that look like combinations of models that contain each 
object by itself. For example, classical mechanics admits sets of models 
representing two gas molecules with independent properties. If the molecules 
interact only very weakly at macroscopic distances (as they do for realistic in-
termolecular potentials) then there are two-molecule models of the theory 
that—when interpreted—give descriptions nearly identical to the union of two 
one-molecule descriptions. Stated in the other direction, it is easy to write down 
a model interpreted in terms of single molecule of nitrogen flitting about to my 
left, and another model interpreted as describing a molecule in a volume to my 
right. This pair of descriptions is (almost) what we would have extracted from a 
model of the theory that incorporated both molecules. Since this holds for lots 
of configurations of each single molecule—we can make the left molecule move 
upward, and the right molecule move downward, we can put them at different 

                                                 
31 All properties referred to in this definition are taken to be monadic. 
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positions, etc. and still find a joint model with approximately the same particle 
specifications—we can say that the properties of the molecules are independent. 
Of course, independence will not obtain for all conceivable sets of models of a 
theory—it is always relative to a set of boundary conditions that demarcate a set 
of physically possible conditions. 
 
There remain two vague notions in the definition of property independence giv-
en above, that of “approximate” property equivalence and that of a “non-
trivial” set of properties. Both can be explicated with the same device—a meas-
ure of distance or difference between any two specifications. We can do this 
formally by imposing a metric on the space of all one-particle specifications. A 

metric on a set A is a function d: AA   (where  is the set of reals) with 
the following properties: 

1. (positive definiteness) d(x,y)  0 and d(x,y) = 0 iff x = y 
2. (symmetry) d(x,y) = d(y,x) 
3. (triangle inequality) d(x,z) ≤ d(x,y) + d(y,z) 

Metric functions are generalizations of the distance function familiar from coor-
dinate geometry, and are natural choices for measuring the distance between 
specifications. While we would like whatever function we use to establish the 
degree of difference between object specifications to have the properties of a 
metric, it turns out that we needn’t be any more specific than that. Whatever 
metric we choose, the incompatibility result reported in Chapter 6 obtains. 
Thus, I’ll leave the specification of a particular metric to the reader’s discretion.  
 
Once we have a metric over object specifications, we can define the approx-
imate equivalence of specifications by appealing to a threshold separation, ε. 

That is, we can stipulate some value ε   0 such that specifications that are with-
in ε of one another according to our metric are considered approximately the 
same. Obviously there is some arbitrariness in selecting such a threshold. There 
are some plausible guides we might use. Since we are ultimately concerned with 
accounting for an epistemic fact (namely EDiv) we might appeal to the degree 
of difference between two specifications which it is actually possible to meas-
ure32. But again, it makes no difference what we choose. No matter what we 
take the threshold to be, PI will be incompatible with MA. So again, I will not 
attempt to fix a determinate value. 
 
Once we have a metric and a threshold for establishing approximate specifica-
tion equivalence, we can also spell out the notion of a non-trivial set of specifi-
cations: to say that a set of specifications is non-trivial is just to say that its di-

                                                 
32 Only part of a specification is observable. 
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ameter (the greatest distance between two elements in the set according to the 
metric) is large compared to ε. Since any two specifications within ε of one 
another are approximately the same, any set of specifications that is not large 
compared to ε would contain ‘approximately’ one state, and in this sense would 
be trivial. One can think of the threshold ε as setting a natural length scale on 
the space of specifications. While the value of ε is arbitrary, the structure of the 
set of specifications for this length scale is not. 
 
With the tools laid out above, we can finally formulate a single, rigorous condi-
tion of property independence that any theory must satisfy to be compatible 
with MA. As stated, MA(iii) asserts that property independence obtains (under 
most conditions) for any set of particles S. For simplicity, I will focus on the 
simplest case in which S contains just two particles. In that case, the condition 
MA(iii) for particle interpretations can be put in terms of models of the theory 
as follows: 
 
Two-particle independence: 
 

For a theory T to be compatible with MA (iii), there must exist three 
sets of models of T—call them α, β, and γ—with the following proper-
ties:33 

(1) The models in α are interpreted as representing the proper-
ties of a single particle. Let Sα be the set of all one-particle 
specifications extracted from the interpretations corres-
ponding to the models in α. Sα is large with respect to the 
threshold ε. 

(2) The models in β are likewise interpreted as representing a 
single particle. Let Sβ be the set of all specifications in the 
interpretations of the models of β. Sβ is also large compared 
to ε. 

(3) The models in γ are interpreted as representing the proper-
ties of two particles. For every ordered pair of specifications 

in Sα  Sβ there exists an interpretation of a model in γ that 
contains approximately both of these specifications (that 

                                                 
33 To be more careful, the models in question are of T (models of which are interpreted as 
describing two particles) and of T’ (models of which are interpreted as describing single par-
ticles). T and T’ involve laws of the same form (e.g. the Schrodinger equation) but different 
mathematical spaces. I am assuming that there is a determinate method for picking T’ given 
T. 
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approximately attributes each of these specifications to one 
particle in the interpretation).34 

 
Note that two-particle independence is a necessary condition for a theory to sa-
tisfy MA, but is weaker than MA(iii) because it insists only on the approximate 
pairwise independence of particles. In Chapter 6, we’ll see that even this weak 
condition cannot be satisfied for any theory that incorporates PI. 
 
To this point, I have pursued a strategy of refinement. By examining the prin-
cipal argument for realism, one can discern the outlines of a broad class of in-
terpretations with appeal for the realist. In Chapter 3, I refined this class to pin 
down the logically weakest set of propositions that pick out the particle ontolo-
gies. In this chapter, I have shown how to convert interpretations to constraints 
on the models of a mathematical theory. Specifically, I extracted a formal condi-
tion for two-particle independence as a necessary though insufficient condition 
for a theory to be compatible with MA. In the next chapter, I work in the other 
direction to generalize the postulate of PI, converting it from an idiosyncratic 
component of QM to a theory-independent constraint on particle ontologies. 
Only with such a generalized postulate is it possible to ask whether PI always 
precludes a particle interpretation. 
 

                                                 
34 Sα and Sβ are subsets of a common set of all possible single-particle specifications. From 
the interpretation of each model in γ it is possible to extract an ordered pair of specifications, 
the elements of which are members of the same common set of single-particle specifications. 
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Chapter 5 Permutation Invariance 
 

5.1 Overview 
In Chapter 3, we saw that QM can be given a particle interpretation in the ab-
sence of PI. However, it is my central contention that, if PI is imposed on QM 
or any other theory in which it can be formulated, the resulting theory is incom-
patible with MA. Accepting PI means rejecting particles. I have dealt with the 
notion of particle in depth (see Chapter 3) but have yet to state PI very clearly. 
The present chapter is dedicated to developing an account of that principle and 
defending its empirical necessity. I’ll begin by explicating PI in the context of 
QM where it began, and sketch out a number of empirical consequences of the 
principle that are well-confirmed experimentally. I’ll then abstract away the de-
tails of QM to yield a theory-independent statement of PI using the terminology 
developed in the preceding chapter. 
 

5.2 Formulation and Consequences in QM 
The canonical statement of PI in the literature of QM appears in (Messiah and 
Greenberg 1964, 250):35 
 

(PIQM1)  “Dynamical states represented by vectors which differ only by a 
permutation of [particles of the same type] cannot be distin-
guished by any observation at any instant of time.” 

 
The “vectors” to which the authors refer are vectors in the Hilbert space used 
to represent a quantum system (more below). By itself, PIQM1 only tells us some-
thing about the connection between permutation operations and observables. 
Which sets of vectors represent distinct states is fixed by two additional post-
ulates (Hartle and Taylor 1969, 2045): 
 

(1) Two vectors representing the same state must give the same 
expectation value with respect to all observables; and 

(2) Two vectors representing distinct states must give different 
expectation values for at least one observable. 

 
                                                 
35 Greenberg and Messiah were the first to explicitly endorse the principle I’ve been calling 
PI instead of the stronger Symmetrization Postulate (SP) that had been used to resolve the 
problem of ‘exchange degeneracy’. For more on the historical development of SP and PI, see 
(French and Krause 2006). For a standard treatment of the problem of exchange degeneracy 
(which actually turns on an implicit invocation of PI) see (Messiah 1999, 582-5). 
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From these two postulates, it immediately follows that two vectors represent the 
same state if and only if they give the same expectation values for all obser-
vables. Together with PIQM1, this further entails that : (i) any permutation of the 
parts of a vector that correspond to particles must yield a vector representing 
the same state, and (ii) observables can only be represented by operators that 
commute with the operators representing permutation. 
 
What does this mean for the representation of states by vectors in a Hilbert 

space?36 Suppose that H (1) is the Hilbert space corresponding to the states of a 
single particle. For n distinguishable particles (for which PI does not apply), the 
states of the system are given by the vectors of the outer product Hilbert space 

H(n) = H(1) ÐH(1) Ð ¢ ¢ ¢ ÐH(1) (the outer product is taken n times). We can 
write a generic vector in this outer product space in the form P

®1;®2;:::;®n
c®1;®2;:::;®n

ju®1
iju®2

i ¢ ¢ ¢ ju®n
i.   

 
The permutation operators [see, e.g. (Cohen-Tannoudji, Diu, and Laloèe 1977), 

XIV.B] are operators P̂i1;i2;:::;in on the outer product space defined by the ac-
tion: 

 

P̂i1;i2;:::;in

X
®1;®2;:::;®n

c®1;®2;:::;®n
ju®1

iju®2
i ¢ ¢ ¢ ju®n

i

=
X

®1;®2;:::;®n

c®1;®2;:::;®n
ju®i1

iju®i2
i ¢ ¢ ¢ ju®in

i

(5.2.1)

 

Qualitatively, a permutation operator rearranges the kets in each outer product 
vector ju®1

iju®2
i ¢ ¢ ¢ ju®n

i. Each permutation operator is unitary and possesses 
an inverse that is also a permutation operator. They do not commute, and are 
not generally self-adjoint. The permutation operators form a group. In fact, they 
constitute a representation of the symmetric group Sn. The outer product space 

H(n) decomposes into a direct sum of subspaces, each corresponding to an irre-
ducible unitary representation37—or ‘irrep’ for short—of the symmetric group. 
Any permutation operator acting on any vector in one of those subspaces re-
sults in a vector in the same subspace. PI along with conditions (1) and (2) imply 
that each of these subspaces—the irreps of Sn—represents a single physical 
state. Put another way, each distinct state of a system of n particles of the same 

                                                 
36 The formalism sketched in this section was first developed in (Messiah and Greenberg 
1964; Hartle and Taylor 1969). 
37 Informally, a unitary representation of a group G on a Hilbert space H is a mapping f from 
G to the unitary operators on H that preserves the group structure of G. That is, 
f(u ¤ v) = f(u)f(v) for any u; v 2 G. If a subspace V ½ H is invariant under the action 
of operators representing G, then a mapping from G to the unitary operators restricted to V 
is a subrepresentation of the group. An irreducible representation of a group is a representa-
tion with no trivial subrepresentations (there are no subspaces invariant under the unitary 
operators representing the group). For an overview, see (Fulton and Harris 1991). 
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type must be represented by one and only one of the distinct subspaces of H(n) 
corresponding to an irrep of the symmetric group. Operating on one of the vec-
tors in such a subspace with a permutation operator yields a (possibly distinct) 
vector in the same subspace.38  
 

As I said, every outer product space H(n) decomposes into a direct sum of ir-
reps of the symmetric group Sn. Some of these are one-dimensional, and con-
sist of either completely symmetric or completely anti-symmetric vectors. These 
are vectors that are either invariant or change sign under the action of a permu-
tation operator. The former describe the states of so-called ‘bosons’ (e.g. pho-
tons) while the latter describe the ‘fermions’ (e.g. electrons). For n = 2, these 

one-dimensional representations exhaust the possibilities. When n  3, there are 

also higher-dimensional subspaces in the decomposition of H
(n). In principle, 

these higher-dimensional subspaces could describe the states of one or another 
type of particle. The states of such particles—called ‘paraparticles’—would ex-
hibit more complex symmetries and thus, for instance, more complicated statis-
tics when considered in large ensembles. However, only bosons and fermions 
are believed to exist. 
 
To give a more concrete illustration of the restrictions on states when PI is im-
posed, consider the case of two particles. If each particle is represented indivi-

dually by vectors in the Hilbert space H(1), then states of the joint system reside 

in the outer product space H(2) = H(1) ÐH(1). There are only two permutation 

operators on H(2), the identity operator and P̂21 and there are only one-
dimensional representations of the symmetric group S2. These come in two 
kinds. The first belong to the subspace we’ll call HS which is spanned by the 
symmetric vectors of the form jÃSi = cij (juiijuji + jujijuii) for which 

P̂21jÃSi = jÃSi. The second sort of representations fall within a subspace HA 
spanned by antisymmetric vectors of the form 

jÃAi = cij (juiijuji ¡ jujijuii).39 Note that H(2) = HS ©HA. Thus, when PI 
is imposed in the case of two particles, only two sorts of symmetry under per-
mutation are possible. If the particles are represented by vectors belonging to 
HS we call them ‘bosons’ and their states are invariant under the action of the 
permutation operator. If the particles are represented by states belonging to HA 
we call them ‘fermions’—their states change sign under action of the permuta-
tion operator. 

                                                 
38 Note that PI restricts the class of observables to operators that commute with the permu-
tation operators. 
39 Each vector in HS or HA when combined with the identity operator and P̂21 constitutes 
an irrep of S2. 



 

44 
 

 

5.3 Empirical support for PI in QM 
PI has important empirical consequences. It entails effects on the outcome of 
scattering experiments and the behavior of large aggregates of particles that di-
verge dramatically from what one would otherwise expect. It also explains the 
complex structure of atoms. These consequences are easiest to draw out in the 
case of two particles. By way of contrast, suppose a system of two distinguisha-

ble particles is represented by an asymmetric state jÁijÃi in H(2), where jÁi and 

jÃi are each vectors in H(1). Consider a single-particle property represented by 

the observable B̂(1) on H(1). Suppose that B̂(1)  has a non-degenerate spectrum 
ui with eigenvectors juii. We can then ask for the probability of measuring the 
joint two-particle system and finding the first particle to have property ui and 
the second to have uj. This is simply given by 

khuijhuj jÁijÃik
2

= khuijÁik
2
khujjÃik

2. Now, it may be the case that we do 
not care or cannot determine using some particular apparatus which of the dis-
tinguishable particles bears which property. Then we would want to know the 
probability that one of the two particles—it doesn’t matter which—yields ui 
when a measurement is made and the other manifests uj. Since the states 
juiijuji are orthogonal, this disjunctive probability is given by: 

 Pr(ui; uj) = khuijÁik
2
khujjÃik

2
+ khujjÁik

2
khuijÃik

2 (5.3.1) 
 
Now suppose that the particles are of the same type such that PI applies. This 
changes the picture in two ways. First, the vector jÁijÃi cannot represent a state 
of the system. The particles must occupy either a symmetric (boson) or anti-

symmetric (fermion) state of the form 1p
2
(jÁijÃi+ ²jÃijÁi), with ² = +1 or ² 

= -1 respectively. Second, it makes no sense to ask about the probability that a 
specific particle manifests ui and the other uj—there is no corresponding ob-
servable. Put another way, when PI is imposed, the eigenvectors of observables 
must be (anti)symmetric. We can only meaningfully ask about the probability of 

measuring the particles in the state 1p
2
(juiijuji+ ²jujijuii). This is generally 

interpreted as the probability of finding one particle (we cannot say which) to 
have ui and the second to have uj. With these adjustments made, we can com-
pute the desired probability for particles of the same type when PI applies: 
 

 
Pr(ui; uj) = khuijÁik

2
khujjÃik

2
+ khujjÁik

2
khuijÃik

2

+ 2²Re (huijÁihujjÃihÃjuiihÁjuji)
 (5.3.2) 

 



 

45 
 

The third term in Equation (5.3.2) containing ² is known as the ‘interference 
term’, and generically distinguishes distributions derived from (anti)symmetric 
states from those pertaining to asymmetric product states like jÁijÃi.  
 
Interference terms have a significant impact on the probability of scattering out-
comes. Consider a process in which two beams of particles are directed at one 
another, with a detector placed at an angle μ relative to the common axis of the 
incident beams (see Figure 5.1). One can compute the quantum mechanical dif-
ferential cross section for such a process as a function of μ.40 This differential 
cross section—which carries units of area per solid angle—is roughly a measure 
of how likely particles are to scatter into a differential solid angle centered 
around μ after they collide. If the particles are distinguishable, the quantum re-
sult matches the classical analog (Landau 1996, 59):  

 
d¾C

dÐ
(μ) =

´2

4k2

μ
1

sin4(μ=2)

¶
 (5.3.3) 

Equation (5.3.3)  is identical to the differential cross-section for the classical 
Coulomb scattering of charged particles. In this expression, k =

p
2¹E  where 

¹ is the reduced mass of a particle pair and E is the energy of each incoming 
particle. The second constant, ´, is called the “Coulomb parameter” (Landau 
1996, 58) and depends upon both k and the charges of the colliding species ³
´ = ¹Z1Z2e2

k
.́ If the particles are indistinguishable as far as our experimental 

apparatus is concerned but are nonetheless of different types, then to predict 
the measured cross-section we should make Equation (5.3.3) symmetric around 

μ = ¼=2. That is, we should consider d¾
dÐ

(μ) = d¾C

dÐ
(μ) + d¾C

dÐ
(¼ ¡ μ). This is 

because we cannot tell whether a measured particle was scattered from the beam 
on the left, or is a recoiling particle from the beam on the right (Landau 1996, 
156). Symmetrizing the equation in this way is analogous to constructing the 
disjunctive probability expressed in Equation (5.3.1). The result is an expression 
for the quantum mechanical differential cross section when PI does not apply: 

 
d¾

dÐ
(μ) =

´2

4k2

μ
1

sin4(μ=2)
+

1

cos4(μ=2)

¶
 (5.3.4) 

If PI does apply, then interference terms appear in the formulas for cross sec-
tions. For bosons, the correct expression is (Landau 1996, 159): 

 
d¾

dÐ
(μ) =

´2

4k2

μ
1

sin4(μ=2)
+

1

cos4(μ=2)
+

8 cos[2´ ln (tan(μ=2))]

sin2 μ

¶
 

  (5.3.5) 

                                                 
40 See Chapter X, Section 1 of (Messiah 1999) for an accessible overview. See Chapter 10 of 
(Landau 1996) for derivations of the analogous cross-sections for fermions and bosons. A 
completely general expression for the quantum cross-section for Coulomb scattering can be 
found in (Plattner and Sick 1981). 
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For fermions, the differential cross section is given by (Landau 1996, 160): 

 
d¾

dÐ
(μ) =

´2

4k2

μ
1

sin4(μ=2)
+

1

cos4(μ=2)
¡

4 cos[2´ ln (tan(μ=2))]

sin2 μ

¶
  

  (5.3.6) 
The third term in parentheses in both Equation (5.3.5) and Equation (5.3.6) is 
an interference term—positive for bosons and negative for fermions. Each of 
these three cross sections is plotted in Figure 5.2. The two expressions 
representing bosons and fermions diverge dramatically from what one would 
expect if PI did not apply. At μ = ¼=2, the cross section for fermions is 1/2 
that for unsymmetrized particles—those described by Equation (5.3.4)—while 
the cross section for bosons is twice as great. This dramatic difference has been 
repeatedly confirmed by experiment. Quantum scattering experiments strongly 
suggest the need for PI.  
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Figure 5.1 A simple scattering experiment in which two beams of particles are directed toward one 
another along a common axis. A detector is placed at an angle  relative to this axis, allowing one 
to count the particles scattered into a solid angle about   per unit time. 

 
 
 

 
Figure 5.2 Comparison of the differential cross-sections for collisions involving distinguishable 
He3 and He4 nuclei (solid line), pairs of indistinguishable He4 nuclei (dashed line), and pairs of 
indistinguishable He3 nuclei (dotted line). The helium nuclei have a charge of +2; He3 is a fer-
mion while He4 is a boson. The solid line is labeled ‘Coulomb’ because it is identical to the clas-
sical prediction for Coulomb scattering. All curves plotted are those predicted by QM and do not 
reflect experimental data.  
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The imposition of PI also accounts for much of the electronic structure of 
atoms and molecules. To see this qualitatively, consider the probability of find-
ing two electrons in an atom occupying the same state. Since electrons are fer-
mions (² = ¡1), Equation (5.3.2) indicates that this probability is 0. This is the 
basis for the Pauli Exclusion Principle: “two [fermions of the same type] cannot be 
in the same individual state” (Cohen-Tannoudji, Diu, and Laloèe 1977, 1389). 
We can read “individual state” in this case as a maximal set of jointly measurable 
properties. The Exclusion Principle tells us that we cannot find two electrons 
with the same energy, spin direction, and orbital angular momentum. This ex-
plains the hierarchical series of electronic ‘orbitals’ found in atoms. Roughly 
speaking, individual electron states can be characterized by three numbers:41 the 
‘principal quantum number’ n which corresponds to total energy, the ‘angular 
momentum number’ l which corresponds to the total state-dependent angular 
momentum, and the ‘magnetic quantum number’ m which corresponds to the 
direction of the intrinsic angular momentum of an electron. Since the Exclusion 
Principle precludes finding two electrons with all three of these numbers in 
common, the electrons in an atom are forced to distribute over available combi-
nations of quantum numbers. This distribution leads to the rich structure upon 
which chemistry is predicated. For instance, it guarantees that the alkali metals 
all have a single electron in the highest energy state, and this in turn can be 
shown to account for the tendency of atoms in this group to readily ionize and 
donate an electron in chemical reactions. I haven’t the space to explicate in any 
detail the central role of the Exclusion Principle—and thus PI—in quantum 
chemistry. Suffice it to say that the empirical ramifications of PI are legion for 
atomic and molecular physics. 
  
Finally, I should note that PI carries far-reaching implications for quantum sta-
tistical mechanics. Statistical mechanics depends crucially on counting states, in 
particular the number of states accessible to a system for a given range of values 
of system properties (e.g. total energy or temperature). PI reduces the number 

of states accessible to a system. For instance, suppose that H(1) is spanned by 

two basis states j0i and j1i. Consider an operator  Â  on H(2) with eigenvectors 

j0ij0i, j0ij1i, j1ij0i, and j1ij1i with eigenvalues 0, 1, 1, and 2 respectively. If  Â   
corresponds to some physical property A and we know the system to be in a 
state with A = 1, then without PI there are four states accessible to the system: 

j0ij1i, j1ij0i, 1p
2
(j0ij1i+ j1ij0i), and 1p

2
(j0ij1i ¡ j1ij0i). However, if PI ap-

plies then there is only one state accessible to systems made up of bosons  

[ 1p
2
(j0ij1i+ j1ij0i)] and only one state accessible to systems of fermions  

                                                 
41 This material is covered in any introductory chemistry textbook, e.g. (Chang 1994). 
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[ 1p
2
(j0ij1i ¡ j1ij0i)]. In general, bosons and fermions will yield vastly different 

numbers of possible states compatible with some range of observable values 
and both yield statistics that are very different from what we would expect if PI 
did not apply. A treatment of the differences between these two kinds of quan-
tum statistics is beyond the scope of this project. I refer the interested reader to 
any introductory text on quantum statistical mechanics [e.g. (Pathria 1996)]. 
 
Each of the three kinds of empirical consequences considered above—cross 
sections in collision processes, atomic structure, and divergent statistical beha-
vior—follow from PI, and each is supported by the experimental data. More 
accurately the absence of any evidence that particles of the same type can occu-
py states which violate PI weighs heavily in favor of the principle. To the extent 
that QM is experimentally verified, so too is PI. Thus, if QM is a theory of par-
ticles, then it is a theory of particles that respect PI. 
 

5.4 Generalization of PI 
Now that we’ve considered PI as it is expressed in QM, we can abstract away 
those aspects of the principle that refer specifically to the quantum formalism  
in order to arrive at a general, theory-independent statement. We can begin by 
combining PIQM1 with the two postulates concerning state representations in 
order to eliminate talk of vectors in a Hilbert space: 
 

(PIQM2) Physical states are invariant under permutations of those parts 
of the state representation which correspond to particles of the 
same type. 

 
There are a few things to note about this revised version of PI. To begin with, it 
eliminates vague talk of permuting particles in favor of permuting parts of state 
representations—precisely the action of the permutation operators in QM. 
Second, “physical states” are states of the world, not the mathematical struc-
tures used to represent them. Physical states are what interpretations describe. Fi-
nally, it is clear from this formulation of PI that the principle makes a strong 
assumption about the manner in which models of the theory (trajectories 
through sets of vectors in a Hilbert space) are mapped onto interpretations. In 
general, we need only assume that there is a function taking models of a theory 
to interpretations. PI assumes further that this interpretation function is a com-
posite of functions which map parts of a model to parts of an interpretation. 
Specifically, parts of the quantum model—a mathematical object—are taken to 
correspond directly to particle specifications in the interpretation of that model. 
The parts in question for QM are precisely those which are shuffled about by 
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the permutation operator, namely the vectors lying in the lower dimensional 
Hilbert space (the ju®i) out of which an outer product space is constructed.   
 
A couple of examples will help to illustrate this idea of piecewise interpretation. 
Consider the time independent quantum mechanical treatment of the hydrogen 
atom. The theory in this case consists of an appropriate Hamiltonian and some 
boundary conditions on wavefunctions. Models of this theory will be vectors in 
an outer product space built from kets in lower-dimensional spaces which 
represent the state of an electron and a proton. So models of the theory will 
contain parts—namely kets like jÁielectron and jÃiproton—that are mapped indi-
vidually to single particle specifications in interpretations of the theory. Impor-
tantly, it must be the case that the same electron ket maps to the same electron 
specification across all models and interpretations of this theory. Likewise for 
the proton kets.  
 
To give another example of the piecewise interpretation implicit in PI, this time 
from classical mechanics, consider the physics of pendulums. The motion of a 
single simple pendulum can be characterized by two coordinates: an angular po-
sition, and an angular momentum. The 2-D mathematical space constructed 
from these coordinates is the pendulum’s phase space, and models of Hamil-
ton’s Equations of Motion are trajectories through this phase space. The inter-
pretation of these models is trivial: one coordinate of each point in the phase 
space is taken to correspond to the momentum of the bob at a moment of time, 
and the other coordinate to its position. To construct a classical theory of two 
pendulums, we can move to a 4-D phase space built from four coordinates, 
namely the angular positions and momenta of the two bobs. Models are now 
trajectories in this 4-D phase space. Interpretations of these models contain two 
specifications, one for each pendulum, and proceed piecewise. In this case, the 
‘pieces’ in question are the 2-D phase spaces from which the 4-D space is built. 
The properties attributed to each pendulum depend only upon the projection of 
a trajectory into the 2-D space isomorphic to the phase space of that pendulum 
considered in isolation. As long as the projected trajectory for a pendulum is the 
same as the original trajectory in the 2-D phase space for an isolated pendulum 
(which it won’t be if the pendulums interact at all), then the pendulum must be 
given the same specification in the interpretation of that trajectory. PI assumes 
that a common set of parts can be extracted from the models of a theory and 
mapped individually to descriptions of objects one at a time when the model is 
interpreted. 
 
Our aim in this chapter is to ascertain a clear statement of PI divorced from the 
details of QM. It is already the case that PIQM2 has been purged of any reference 
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to the specific formalism of QM, but leaves implicit an important constraint PI 
imposes on the interpretations of a theory. With the terminology introduced in 
Chapter 4, we can make this presumed relation between parts of models and 
interpretations explicit: 
 

(PI) If the interpretation Int of a model M of a theory describes mul-
tiple particles of the same type, then permuting the parts of M 
which individually correspond to descriptions of those particles 
in Int results in a model M’ with the identical interpretation Int.  

 
This statement of PI is the theory-independent form of the principle with which 
we will be concerned for the remainder of this essay. 
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Chapter 6 Proving an inconsistency 
 

6.1 More definitions 
At the end of Chapter 5, I pointed out that PI implicitly refers to parts of the 
models of a theory. In particular, PI refers to the parts of a model which indivi-
dually correspond to specifications in interpretations of that model. I will call 
the part of a model which corresponds to the specification of one particular par-
ticle the role of that particle in the model.  
 
Some examples might help to clarify the notion. Suppose we are concerned with 
the motion of a pair of particles in a spring-like potential confined to move in 
one dimension. If the amplitude of the motion is small enough and the particles 
are uncoupled, then the relevant theory of Newtonian mechanics is a pair of 
differential equations m Äxi = ¡kxi, where i = 1; 2. Models of the theory are 
trajectories in a 4-dimensional phase space, and each particle role is a projection 
of the 4-D trajectory into a 2-D space. Each role is interpreted in terms of the 
changing position and momentum of a particle through time, with one dimen-
sion referring to the momentum and the other to the position of the particle. 
 
As a second example, consider QM. In standard approaches to time-
independent QM, models are typically taken to be vectors in an outer-product 
Hilbert space. Consider vectors of the form jv1i = jÁijÃi, 

jv2i = a1jÁijÃi+ a2jÂij»i, and jv3i = 1p
2
(jÁijÃi+ jÃijÁi). Vectors of this 

sort might constitute models of a two-particle theory of QM. A plausible set of 
particle roles for each of these vectors consists of the parts that get rearranged 
by the permutation operators defined in Section 5.2. Specifically, they are the 
sets of component ‘one-particle’ kets corresponding to just one of the subspaces 
making up the outer-product space weighted by the constant appearing in the 
term from which the ket is taken. For the vector jv1i, one of the particle roles is 
fjÁig and the other is [jÃi], while for jv2i the roles are fa1jÁi; a2jÂig and 
fa1jÃi; a2j»ig. For the third vector, which has the right form to satisfy PI, the 

roles are identical: f 1p
2
jÁi; 1p

2
jÃig. The interpretation of these roles is typically 

understood probabilistically. While the first role in jv1i corresponds to the speci-
fication of a particle bearing all the properties of the state jÁi with probability 1, 
the first role in jv2i corresponds to a specification in which a particle is attri-

buted the properties of jÁi with probability ka1k
2 and the properties of jÂi with 

probability ka2k
2. 
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Despite what the last example might suggest, the particle roles in a model 
needn’t align with the way we syntactically represent the model—they might in-
stead be extracted from models via more elaborate processes. For example, 
suppose we represent states with density operators on a Hilbert space rather 
than vectors. In a standard approach to attributing states to individual particles 
in QM, each particle is assigned a reduced density operator that is computed by 
taking a partial trace over the density operator representing the two-particle 
state. In this case, each of the resulting reduced density operators constitutes a 
particle role.  
 
Ultimately, the set of mathematical objects which counts as the relevant set of 
parts of a model—in particular the parts pertinent to PI—is determined by the 
interpretation scheme one assumes. The particle roles are whichever parts of the 
model are interpreted as individually corresponding to specifications. In the 
most general case then, we can say that, given a particular scheme for interpret-
ing models, there is a function from the space of n-particle models to n-tuples of 
mathematical objects where each object in this n-tuple corresponds to the de-
scription of a particle in the interpretation of the model from which the parts 
were extracted.  
 
In order to talk about PI, I need to make the connection between particle roles 
and specifications more precise, and to define the action of permutation on 
both. To do so, suppose we have fixed a method for interpreting models of a 
theory such that, given any model we can determine how many particles it 
represents and what the particle roles are. Let A be the set of particle roles for a 
given model M , and let n be the total number of particles represented by M . 
Let N  be the set of natural numbers f1; 2; : : : ; ng. We can then introduce a sur-
jective function f : N ! A. The function f  is an indexing function which al-
lows us to recover the roles for each particle. So, for instance, the jth particle 
role in M  is given by f(j). Note that there needn’t be as many distinct roles as 
there are particles—multiple particles may have the same role in a given model 
as in the example from QM above. 
 
Corresponding to each model M , there is an interpretation from which we can 
extract n specifications (descriptions of individual particles). In particular, each 
particle role corresponds to one specification. So let S  be the set of all one par-
ticle specifications. Then we can define another surjective function 
interp : A ! S  that maps particles roles to their respective specifications in 
the interpretation of M . Again, more than one role may correspond to the same 
specification. By nesting functions, we thus have an indexed set of particle spe-
cifications corresponding to model M . The jth specification is given by 
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interp(f(j)). It will prove helpful to bear in mind the following property of 
interpretations. Suppose M1 and M2 are models which represent the same 
number of particles, and f1 and f2 are the functions indexing the particle roles of 
each model respectively. If the models M1 and M2  have the same interpreta-
tion, then for all j, interp(f1(j)) = interp(f2(j)). The converse is not neces-
sarily true. 
 
Finally, we need to formalize the notion of permuting particle roles. A permuta-
tion of a set is a bijective mapping of the set onto itself. Let Pi : N ! N  be the 
ith permutation (there are n! of these bijective functions for a set of cardinality 
n). Then the ith permutation of particle roles for a model is just the indexed set of 
particle roles for which the jth member is f(Pi(j)). 
 

6.2 The general argument 
Suppose M  is a model which is taken to represent a collection of particles all 
of the same type.42 According to PI, if we permute the particle roles in M  
according to the ith permutation, the result is a model Mi with the identical 
interpretation. If the jth specification in the interpretation of M  is given by 
interp(f(j)), then the jth specification in the interpretation of Mi is 
interp(f(Pi(j))). Now, since Mand Mi have the same interpretation, it 
must be the case that 8j [interp(f(j)) = interp(f(Pi(j)))]. According to 
PI, this relation holds for every permutation Pi. That is:  
  
 8i;j [interp(f(j)) = interp(f(Pi(j)))] (6.2.1) 
 
Formula (6.2.1) is satisfied if and only if interp(f(j)) = constant. That is, 
if PI obtains then all particle specifications must be identical—every particle 
is attributed the same properties in the interpretation of M . 
 
The fact that all particles represented by any model M  of theory T bear the 
same specification in the interpretation of Mposes a problem if the putative 
particles are to satisfy MA. In Section 4.3, I stated three conditions T  must 
satisfy if it is to admit interpretations involving two particles that satisfy 
MA(iii). Suppose that the first two of these conditions are satisfied. That is, 
suppose that there are two sets of one-particle models of T  from which we 
can extract two sets of specifications—call them S1 and S2—each of which is 

                                                 
42 The assumption that all particles are of the same type is made for simplicity. The argument 
goes through—albeit in a more complex form—as long as at least two putative particles are 
of the same type. 
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large compared to a given threshold ².43 If the third condition is also satisfied, 
then for any pair of arbitrary specifications s1 2 S1 and s2 2 S2 we must be 
able to find a two-particle model of T  from whose interpretation we can ex-
tract a pair of specifications, one of which is within ² of s1 and one of which 
is within ² of s2. Now suppose we choose s1 and s2 such that the distance 
between them—denoted d(s1; s2)—is greater than 2². Such a pair must exist 
because both sets are large compared to the threshold, meaning that the max-
imum distance between two points in each set is much greater than ². When 
we turn to the interpretations of two-particle models, PI entails that both 
specifications are identical—we can only extract specification pairs of the 
form fs¤; s¤g. To satisfy MA, we need to find a two-particle model from 
which we can extract such a pair of specifications for which d(s¤; s1) · ² 
and d(s¤; s2) · ². That is, we need to find a model such that: 
 
 d(s¤; s1) + d(s¤; s2) · 2² (6.2.2) 
 
However, the triangle inequality for metrics guarantees that 
d(s1; s2) · d(s¤; s1) + d(s¤; s2). By supposition, 2² < d(s1; s2), and so 
 
 2² < d(s¤; s1) + d(s¤; s2) (6.2.3) 
 
But this is a contradiction. There does not exist an s¤ such that both Equa-
tions (6.2.2) and (6.2.3) are satisfied. Thus, the theory cannot be compatible 
with MA. One cannot consistently interpret a theory in terms of particles in 
the sense of MA if that theory incorporates PI. If PI holds, there are no par-
ticles. 
 

6.3 The argument for QM – version 1 
 
In the preceding section, I stated the incompatibility argument in its strongest, 
most general form. Of course, one can also show that PI and MA are incompat-
ible in the context of a particular theory and with the assumption of a particular 
metric for comparing particle specifications. A natural theory for which to do 
this is QM, the first theory to explicitly formulate and endorse PI. In this and 
the following section, I run the argument using two versions of the quantum 
formalism and two different metrics. While this is redundant in some respects, 

                                                 
43 More accurately, in order to assess whether the theory T can be interpreted as representing 
two particles in accord with MA, we need to consider a theory T’ which is effectively a one-
particle version of T. I am ignoring this complication and assuming that for any scientific 
theory, e.g. QM, it is unambiguous which set of equations and boundary conditions are sin-
gle particle theories and which are multiparticle. Cf. fn 33 in Chapter 4. 
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my intention is to illustrate both the irrelevance of one’s choice of metric and 
the inevitability of the conclusion no matter how liberally one reads the quan-
tum formalism. The reader who is satisfied with the general argument is invited 
to skip one or both of these illustrations. 
 
To see how the argument works within QM, we first need to be clear on what 
constitutes the theory and how models of the theory are to be interpreted. In 
my first approach, I will take the theory of QM to be the dynamical postulates 
which specify trajectories in a Hilbert space according to either the Schrödinger 
or Heisenberg equations of motion. For simplicity, I’ll ignore time dependence 
and focus just on time-independent solutions of the equations of motion for 
suitably specified boundary conditions. In the time-independent case, models 
are just rays in a Hilbert space. 44 
 
How should these models be interpreted? What objects are specified by the 
models and how should we assign properties to them? In the case of a single-
particle system, each ray in the Hilbert space is taken to specify one particle in 
the world along with its properties. If we adopt the conservative eigenvector-
eigenvalue link, then our interpretive function would attribute one property to 
the particle for each of the self-adjoint operators for which the ray representing 
that particle contains an eigenvector. For instance, if we are considering a sta-
tionary state of a particle in a square potential well, then (since it is stationary) its 
state representation must be an eigenvector of the Hamiltonian. In our interpre-
tation, we would attribute to the particle an energy represented by the corres-
ponding eigenvalue. However, since the state representation cannot also be an 
eigenvector of the position operator, this interpretive scheme would preclude us 
from attributing any position property to the particle in our interpretation. 
 
Assuming that particles in an interpretation are only ascribed properties for 
which the associated ray contains an eigenvector, then there is a one-one cor-
respondence between rays in the Hilbert space and descriptions in the interpre-
tations of one-particle models.45 Because models of QM (as I’ve construed it 
here) reside in projective Hilbert spaces (the set of rays of a Hilbert space), there 
is a natural choice of metric for measuring the distance between models. Specif-
ically, the distance between any two rays ri and rj in the projective Hilbert space 
is given by the Fubini-Study metric:46  

                                                 
44 This is only true if we neglect the possibility of paraparticles.  
45 This assumption rules out the standard approach of using reduced density operators to 
represent (mixed) single-particle states. In the next section, I will lift this restriction and em-
ploy a different metric. 
46 See e.g. (Bengtsson and Zyczkowski 2006), section 5.3. 
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 dFS(ri; rj) = arccos

Ãs
hÃjÁihÁjÃi

hÃjÃihÁjÁi

!
, 

where jÃi is any one of the vectors lying along ri and jÁi is any one of the vec-
tors lying along rj. Since there is a one-one correspondence between one-
particle rays and descriptions for the interpretive scheme we’ve assumed, we can 
transfer this metric onto the space of particle specifications. That is, the distance 
between any two specifications may be defined as the distance between the cor-
responding rays.  
 
If we consider the case of two-dimensional particle states, this metric makes the 
inconsistency argument easy to visualize. For instance, we might consider just 
the spin degree of freedom of a spin-½ particle. In that case, the Fubini-Study 
metric describes the geometry of the surface of a sphere embedded in Euclidean 
three-dimensional space (see Figure 6.1).47 Each point on the sphere corres-
ponds to a ray in the 2-D Hilbert space (which in turn corresponds to a particle 
specification), and the Fubini-Study metric gives the distance between two states 
(or two specifications) along a great circle of the sphere. To visualize the argu-
ment on this sphere, pick a threshold distance ² small compared to 
sup(dFS(ri; rj)). Now choose a pair of rays r1 and r2 from the space of one-
particle models such that dFS(r1; r2) > 2². According to MA(iii) we must be 
able to find a two-particle model that—when interpreted—yields two copies of 
a single-particle description corresponding to a ray r¤ that is within ² of both r1 
and r2. This means that r1 and r2 must lie within a disc of radius ² centered on 
r¤. Obviously, if this is the case then it cannot also be true that r1 and r2 are 
more than 2² apart since the diameter of the disc is 2². Thus we arrive at a con-
tradiction. Given PI and the Fubini-Study metric on the space of quantum 
models, MA(iii) is not satisfiable. 
 
 

                                                 
47 Up to a multiplicative constant, the differential form of the Fubini-Study metric is the 
metric of the ‘Bloch sphere’. For a discussion of the Bloch sphere, see, e.g. (Dickson 2007, 
Sec. 1.3.5; Nielsen and Chuang 2000). For a detailed discussion of the geometric interpreta-
tion of the density matrix in arbitrary dimensions (though they do not use the term ‘Bloch 
sphere’), see (Filippov and Man'ko 2008). 
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Figure 6.1 The argument visualized for pure states on the Bloch Sphere. The disk 
indicates a set of specifications within a distance ε of the specification r* . If QM is to 
satisfy MA, it must be possible to find two additional specifications within this disk but 
greater than 2ε apart—a clear impossibility. 

 

6.4 The argument for QM – version 2 
In the preceding section, I assumed a very conservative view of what consti-
tutes the theory of QM and how its models should be interpreted. In this 
section, I’ll run the argument again, this time taking a more catholic view. I 
will again ignore time dependence for simplicity, but to be as inclusive as 
possible, I’ll consider the space of state representations in QM to consist of 
full set of density operators on the relevant Hilbert space. This means that 
both ‘pure’ states equivalent to rays in the Hilbert space and ‘mixed’ states—
convex combinations of pure states—will count as potential models of the 
theory. The theory in this view consists of the set of density operators on a 
Hilbert space and a dynamical equation known as the von Neumann Equa-
tion: 

 i~ _½ = [½; Ĥ ] 
This equation specifies how density operators representing physical states 
evolve in time or, in the time-independent case, stipulates what states are 
compatible with a given Hamiltonian.  
 
In this construal of QM, models of the theory are just single density opera-
tors. In the case of a single-particle system, each density operator can be in-
terpreted as assigning a full set of properties to a particle in the weak sense of 
bearing properties that I introduced in Section 3.5. That is, we can drop the 
eigenvector-eigenvalue link and interpret each density operator as assigning 
to a particle a set of probability distributions over  all the values the particle 

ε 
r*
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might be measured to have for each observable. Equivalently, the density 
operator assigns to each particle a set of expectation values with respect to all 
observables, and we treat these as the vague properties of the particle. In this 
approach, even mixed states—which assign no properties to particles under 
the eigenvector-eigenvalue link—can still be interpreted in terms of a particle 
with a determinate set of properties. 
 
Of course, we can no longer use the Fubini-Study metric to assign distances 
between particle interpretations, since that metric refers to rays in the Hilbert 
space. Instead, we need a metric on density operators. To once again make 
the argument easy to visualize, I will take the distance between any two den-
sity operators ½1 and ½2 to be twice the standard ‘trace distance’48: 
 
 dTR(½i; ½j) = Tr k½i ¡ ½jk 
 
The operation indicated by Tr k ¢ k is the ‘trace-norm’.49 Once again, there is a 
one-one correspondence between models of the theory (density operators) 
and particle specifications (unique assignments of properties corresponding 
to sets of expectation values). So once again, we can define a metric on the 
space of specifications by way of the metric on state representations. In par-
ticular, the distance between two specifications is just the trace distance be-
tween the two density operators mapped to those specifications in the 
process of interpretation. 
 
If we consider the case of two-dimensional particle states (e.g. just the spin-
degree of freedom of a spin-½ particle), then this choice of metric again 
makes the argument easy to visualize. In the two-dimensional case, we can 
represent density operators as vectors in a three-dimensional Euclidean 
space. In particular, for each density operator ½ (represented as a 2£ 2 ma-
trix in the basis of eignestates of spin in the ẑ-direction) there exists a unique 
vector ~r  such that k~rk · 1 and 

 ½ =
Î + ~r ¢ ~¾

2
, 

where Î  is the identity operator and ~¾ is a vector containing the three Pauli ma-
trices (¾x = ( 0 1

1 0 ) ; ¾y = ( 0 ¡i
i 0 ) ; ¾z = ( 1 0

0 ¡1 )). Geometrically, the space of 
vectors ~r  is just the set of points of the Bloch sphere, including those of the 
interior. That is, for every point inside or on the surface of a Euclidean sphere 
of radius 1, there is corresponding vector ~r  and thus a corresponding density 
operator ½. The points on the surface of the sphere (those we considered in the 
                                                 
48 See e.g. (Nielsen and Chuang 2000), Section 9.2.1. 
49 See (Omnès 1994, 245). 
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previous example) correspond to pure states, while those interior to the sphere 
correspond to the mixed states. If we map density operators onto points of the 
Bloch sphere in this way, the trace distance turns out to be equivalent to the 
Euclidean distance k~ri ¡ ~rjk.  
 
To visualize the incompatibility result in this framework, choose a threshold dis-
tance ² ¿ 1. Now choose any two points ~r1 and ~r2 in the sphere such that 
k~r1 ¡ ~r2k > 2². If MA(iii) holds for QM, we must be able to find a two-particle 
model that—when interpreted—yields two copies of a particle specification cor-
responding to the point ~r ¤ and such that k~r ¤ ¡ ~r1k · ² and k~r ¤ ¡ ~r2k · ². 
Geometrically, this means we need to find two points that lie within a ball of 
radius ² centered at the point ~r ¤ but that are nonetheless more than 2² apart 
(see Figure 6.2). This is clearly impossible. Thus, even in this liberal reading, QM 
cannot satisfy MA(iii) if PI is imposed. 
 
 

 
Figure 6.2 The argument visualized for pure and mixed states in the Bloch 
Sphere. For QM to be compatible with MA, it must be possible to locate two specifi-
cations r1 and r2 that are within a distance ε of the specification r* (and thus within the 
shaded sphere) but that are nonetheless a distance of more than 2ε apart. This is clearly 
impossible since it requires one member of the pair to be both within and without the 
shaded sphere. 

 

ε

r1 

r2 r*
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Chapter 7 Objections 
 

7.1 Overview 
The preceding chapter concluded an argument to the effect that any theory 
which includes an assertion of PI is necessarily incompatible with MA, and thus 
cannot be interpreted in terms of particles of the sort that can account for 
EDiv. There are, of course, a number of ways one might take issue with either 
the manner in which I’ve framed the argument or with the conclusion itself. In 
this chapter, I’ll consider what I take to be the five most serious objections. 
  

7.2 Objection: QM tells us when to ignore PI 
If PI really imposes an inescapable dependence between the properties of one 
particle and the properties of every other particle of the same type, then this 
would seem to make physics intractable. If it were true, how could we success-
fully predict anything about electrons in the laboratory without knowing about 
all the electrons in the universe? Since QM is obviously a successful empirical 
science, it seems that I must be wrong about PI. This is more or less how many 
introductory texts on QM treat the implications of PI. Physicists often register a 
concern over property independence, only to promptly dismiss it with a quick 
calculation. Here, for instance, is how Messiah expresses the worry: 
 

We consider a system of n identical particles. If the particles are elec-
trons, the state of the system will be represented by an antisymmetric-
al wave function. These are not, however, the only electrons in the 
universe. To ignore the others, and to treat this system as an entity 
distinct from the rest, supposes that the dynamical properties of the n 
electrons are not affected by the presence of the others. The question 
arises whether such a hypothesis is well founded, or whether the 
symmetrization postulate, in establishing a certain correlation between 
these n electrons and the others, renders it invalid.50 

 (Messiah 1999, 600) 
 
Messiah’s response is typical of the views expressed in the physics literature: 
 

In practice, the electrons of a system are all inside a certain spatial 
domain D, and the dynamical properties in which we are interested all 

                                                 
50 By the “symmetrization postulate” (SP), Messiah is referring to a stronger principle than 
PI. SP is roughly the claim that PI holds and all states are represented by single rays in the 
Hilbert space. We’ll meet SP again in the next chapter. 
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correspond to measurements to be made inside this domain. It turns 
out to be true that the other electrons may simply be ignored so long 
as they remain outside D and so long as their interaction with the 
electrons of the system remains negligible. This is a general result and 
applies to bosons as well as fermions. 
(Messiah 1999, 600-1) 

 
The claim that electrons outside of the domain of interest can be ignored is 
backed up by the following calculation (Messiah 1999, 601-3). Consider two 
separate quantum systems. In the first system, S1, there are two fermions in a 
state jÁi with wavefunctions strictly confined to some region of space D. De-
note by jÂi any of the normalized antisymmetric states whose wavefunctions 
vanish outside D, including the state jÁi. The probability that the system S1 is 

found to occupy one of these states jÂi is just khÂjÁik2. Now suppose we con-
sider a second system, S2, made up of (N ¡ 2)  additional fermions of the same 
kind as those in S1 and occupying a state jªi. Suppose further that the joint wa-
vefunction corresponding to jªi vanishes inside D, and denote by j£i any ket 
with this property, and let j£ii denote members of a set of such vectors that 
form an orthonormal basis. By supposition jªi =

P
i cij£ii for some set of 

j£ii. If the particles were distinguishable (and thus, not fermions), the joint state 
of the combined system S1 [ S2 (assuming the electrons of one system do not 
interact with those of the other) would be represented by jÁijªi. However, 
since the fermions are all indistinguishable (they are all of the same kind), the 
state of the system must be represented by51 

 j©i =

s
N !

2!(N ¡ 2)!
ÂjÁijªi, 

where Â is the ‘antisymmetrizer’—the projector onto the antisymmetric sub-
space of the underlying Hilbert space.52 In this case, we can now ask for the 
probability of finding just the S1 subsystem “…in any one of the states 
represented by the orthonormal antisymmetric vectors” (Messiah 1999, 603): 

 jXii =

s
N !

2!(N ¡ 2)!
ÂjÂij£ii 

 
The required probability is given by  

 w =
X

i

khXij©ik
2

= khÂjÁik
2 

                                                 
51 The normalization prefactor differs from the usual 1=N ! because those permuted vectors 
which result from swapping kets in jÁi with kets in jªi are orthogonal to all kets of the form 
jÂij£i. See (Messiah 1999, 602). 
52 See, e.g., (Cohen-Tannoudji, Diu, and Laloèe 1977, 1384). 
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which is exactly the probability obtained above for finding the isolated two-
particle subsystem S1 in state jÂi. “Thus we can just ignore the existence of the 
(N ¡ 2) other fermions and still obtain the correct result” (Messiah 1999, 603).   
 
It would appear that we have a straightforward refutation of my thesis. I have 
argued that, if we take the subsystem of interest to be a single fermion, then it is 
never the case that the other fermions—whether inside D or not—can be safely 
ignored, at least as far as we are interested in the dynamical properties of the 
lone fermion. But Messiah’s calculation—like the many related calculations ap-
pearing in other textbooks—seems to suggest otherwise. The general conclusion 
is that, so long as the wavefunction attributable to a particle does not overlap 
the wavefunction of another, we can ignore all other particles. More important-
ly, there are circumstances under which we can ignore PI and still interpret QM 
in terms of independent particles. 
 
In one sense, of course, Messiah and his colleagues are exactly right. There is 
nothing wrong with the mathematics of his derivation. But what he says is also 
misleading—there is something very wrong with his implied interpretation of 
the probability w. It is no accident that he considers the properties of subsys-
tems that are themselves defined by a particular set of properties (i.e. having 
wavefunctions with spatial support in a particular domain), but eschews asking 
about the properties of any one fermion. The reason is that the only empirically 
meaningful probabilities we can calculate cannot make reference to any one particle. 
Thus, the properties of any specific particle are not observable properties. As I 
mentioned in Chapter 5, PI entails that the only physical observables are sym-
metric operators that commute with the permutation operators. The eigenstates 
of such operators are (anti)symmetric vectors53. When we summed over the vec-
tors jXii in computing w we were effectively projecting the state of the system 
onto the eigenstates of some symmetric operator. Such an operator when consi-
dered as an observable does not make reference to any one particle—it makes 
an equivalent reference to all. Put another way, the particle roles in the eigen-
states of such an observable are identical. Thus, observables never directly 
attribute properties to individual particles or to specific subsets of particles. This 
is why the probability w  is typically interpreted instead as the probability that a 
pair of particles is in state jÂi without reference to which particles are in that 
state. If we restrict ourselves to the observables allowed by PI, then it is mea-
ningless to ask for the dynamical properties of individual particles—we can only 
ask about the symmetric properties of ‘subsystems’ whose affiliation with par-
ticles is indeterminate. 

                                                 
53 Again, more complicated symmetries are possible for systems of more than two particles, 
but the same conclusions apply. 
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In his description of the problem and its resolution, Messiah writes as if elec-
trons are particles in the sense of MA. For instance, he talks about a particular 
set of electrons being excluded from a particular spatial domain and of electrons 
individually bearing dynamical properties. But the formal expressions computed 
to resolve the apparent tension between the particle view and PI tell a different 
tale. In computing w, Messiah computes the probability “…of finding the sys-
tem in any one of the states represented by the orthonormal antisymmetrical 
vectors” (Messiah 1999, 603). Though he began by worrying about the indepen-
dence of electrons, he ends up proving facts about subsystems instead. Messiah thus 
does not resolve the question at issue—he does not tell us whether the proper-
ties attributable to an individual electron depend upon the presence of others. In 
fact, he does not tell us how to attribute properties to individual electrons at all, 
in part because PI says such an assignment is not physically observable.  
 
What happens if we try to individually attribute properties? The general argu-
ment of the last section established that no matter how you try to do so—
assuming you are consistent across models—it is impossible to satisfy MA. But 
let’s take a stab at it anyway. A standard approach to assigning individual prop-
erties to electrons is to compute a reduced density operator. That is, if we 
represent the state of the overall system by a density operator ½ = j©ih©j, then 
we can attribute a state to the ‘first’ particle by tracing out over the remaining 

degrees of freedom: ½1 = Tr(2;3;:::;N) ½. This is equivalent to computing a mar-
ginal distribution from the full joint distribution over all property values. It is a 
property of (anti)symmetric states that for all i and j, ½i = ½j. That is, every re-
duced density operator is identical to every other. Thus, every fermion in a sys-
tem is assigned the identical state. If we attempt to assign states to individual 
electrons, we find that these states and thus the dynamical properties each elec-
tron may be said to bear depends upon the presence of other electrons, irrespec-
tive of interaction or distance. 
 
Whatever Messiah’s computation shows, it tells us nothing about particle proper-
ties. There are certainly conditions under which measurements predicted for 
subsystems are independent—otherwise a quantum physics would be impossi-
ble. What’s at issue is the nature of those subsystems—are they composed of 
particles that are roughly independent of one another and whose independence 
accounts for the independence of subsystems, or are they something else entire-
ly? I have argued that they must be something else entirely, and the calculations 
offered by physicists like Messiah do not speak to this claim. Insofar as we are 
interested in assigning properties to particles, PI forces us to assign identical 
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properties to all particles of a type, and thus the properties of an individual elec-
tron are inextricably linked to every other electron in existence. 
 

7.3 Objection: PI is compatible with classical physics 
I have claimed that the incompatibility between PI and MA is general—any 
theory which incorporates the former is incompatible with the latter. It might be 
objected that this assertion is refuted by the use of reduced configuration spac-
es54 in classical mechanics (CM). The use of certain reduced spaces—as de-
scribed below—is equivalent to the imposition of PI, and since CM is clearly 
compatible with a particle interpretation it must be false that PI is always in-
compatible with MA.55 
 
This objection inappropriately attributes properties of CM to the conjunction of 
CM and PI, which I’ll denote CM+PI. The implicit assumption is that every 
‘classical theory’ is compatible with MA. More explicitly, it is simply assumed 
that, because CM is compatible with MA, CM+PI also must be compatible. 
However, when CM+PI is examined in detail, it becomes clear that this mon-
strous form of CM is patently at odds with a particle interpretation. To argue for 
this claim, we first need to clarify what it means to incorporate PI in CM. With-
out loss of generality, we can restrict our attention to a pair of particles con-
strained to move in one dimension. If we ignore time-dependence, models of 
CM in this case are just points in R2 nD. (The notation “nD” just means that 
we remove the points in the ‘diagonal’ set D = f< x; y >2 R2 : x = yg. We 
do this because the particles are assumed to be impenetrable.) Each model in 
R2 nD is interpreted in a straightforward manner: one particle is said to have 
the property of being located at one of the two coordinates of the point, and the 
other particle is said to be located at a place corresponding to the remaining 
coordinate.  
 
One way we might try to impose permutation invariance on the theory of CM is 
by insisting on symmetric probability distributions over points in R2. To remain 
classical, these distributions should be interpreted either epistemically (we just 
don’t know which model applies) or in terms of ensembles of two-particle sys-
tems prepared in identical but coarse-grained states as would be the case in sta-
tistical mechanics. The resulting theory is permutation invariant in that the 
probability of the system occupying a particular state is insensitive to which par-
ticle has which properties. This is the notion of permutation invariance Bach 

                                                 
54 Or reduced phase spaces, as the case may be. 
55 This objection was suggested to me both by Chris Smeenk (in discussion) and by an ano-
nymous reviewer for Philosophy of Science. 
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(1997) defends in his monograph on indistinguishable classical particles. But this 
sort of indistinguishability is insufficient for satisfying PI as it was formulated in 
Chapter  5. While the distributions over models are permutation invariant, mod-
els (which are still points in R2 nD) are not. If we permute the parts of a model 
that are taken to refer to a single particle in the interpretation of the model, 
namely one coordinate of a pair of coordinates, then we attain a distinct model 
with a distinct interpretation.  
 
Another strategy is to identify the points in the configuration that differ only by 
a permutation of their coordinates. That is, we can simply declare that points 
which differ by a permutation are equivalent in the sense that they represent the 
same state. We can represent this equivalence by taking the quotient of the con-
figuration space R2 nD under the action of the permutation operator ¦21. The 
resulting set is denoted (R2 nD) =¦21 and is called a ‘reduced configuration 
space’.56 A version of Hamilton’s laws of motion obtain on this new space, and 
so we can be said to have a version of CM that respects PI. 
 
Using a reduced configuration space to represent a classical system in this way 
entails a radical sort of indistinguishability anathema to classical sensibilities and 
in contrast to the sort of harmless indistinguishability considered by Bach. As 
Saunders puts it, the use of a reduced phase space “…takes particle indistingui-
shability all the way down to the microscopic details of individual particle mo-
tions, whereas, according to Bach, it ought to concern only statistical descrip-
tions (probability measures)” (Saunders 2006, 197). In fact, Bach asserts that 
attempting to take indistinguishability to include every property of a particle in-
cluding its trajectory is incoherent. More accurately, he argues that if classical 
particles are indistinguishable in this sense, they cannot be said to have trajecto-
ries. I won’t go through the details of Bach’s argument [see (Bach 1997, 7-8)], 
but I will point out that it relies on a strong notion of what it is to bear a proper-
ty: a particle has a trajectory (or position in the time-independent case) only if 
there is a probability of 1 of measuring the particle to possess this property. 
While one can take issue with Bach’s particular approach, there is no escaping 
the fact that if one is to impose PI on CM and retain particles, one will have to 
be much more liberal in attributing properties to particles—it is indisputably the 
case that some part of the classical picture must yield if PI is to be added.  
 
As with QM, we can always accommodate PI in CM by loosening our notion of 
property. But even after making such an adjustment, we still encounter the same 
problems with property independence as we saw in the quantum case—while 
we can loosen our notion of ‘property’ enough to allow particles in permutation 
                                                 
56 We can construct the reduced phase space from the reduced configuration space. 
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invariant states to have them, there is just no way to respect PI and avoid attri-
buting the same properties to all particles of a type. The points of  
(R2 nD) =¦21 are sets of points in R2 of the form fhx; yi ; hy; xig. The two 
particle roles in such a pair—the parts which individually correspond to a single 
particle specification—are identical. Thus, if our interpretation function is in-
deed a function, the specifications attributed to each of the two particles must 
also be identical.  
 
How do I know what the roles are? It is implicit in PI—the reason we quo-
tiented out by the action of permutation in the first place was because PI tells us 
that this action must yield models with identical interpretations. Which points in 
the original configuration space should be identified as equivalent was deter-
mined by an implicit choice of particle role, namely projection onto one dimen-
sion or the other of the two-dimensional space. So for instance, the role of par-
ticle 1 in the model hu; vi is just u. In the quotient space, we can extend this no-
tion of projection, but the result is a pair of identical numbers for either particle. 
The role of particle 1 in fhx; yi ; hy; xig is fx; yg. So is the role of particle 2.  
 
One might be inclined to complain at this point that I’ve made a mistake in un-
derstanding the quotient space. One might think the right thing to do is to begin 
our physics with the reduced space and simply decline to interpret the original 
space from which it was constructed. This would leave us free to specify some 
other way of extracting particle roles from models (since PI would no longer fix 
the choice for us) and thus free to interpret our models as systems of particles 
with whatever properties we wish. But such a move is not open to us. There are 
only two possibilities: either the new way of extracting and interpreting particle 
roles also respects PI such that permutes of the new models will yield identical 
interpretations, or it won’t. In the former case, I can simply run my argument 
again and show that both particles must get the same specification. In the latter 
case, the theory is no longer permutation invariant and my thesis does not apply. 
 
The upshot is that it is possible to consistently impose PI on classical theories, 
provided we are willing to adopt a decidedly non-classical view of what it means 
to bear a property. However, the resulting theory of PI+CM—unlike CM 
alone—is strictly incompatible with MA.  
 

7.4 Objection: A metric is the wrong measure of distance 
In the argument for incompatibility, the triangle inequality for metrics played an 
essential role—without this property of metrics my argument does not go 
through. It might be objected then that I have not sufficiently motivated the use 
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of a metric to measure the distance between states.57 Alternatively, one might 
claim that some other distance measure—one that fails to respect the triangle 
inequality—is a more appropriate choice. My response is two-fold: (i) there are 
good reasons for supposing a full-blown metric to be the most natural choice 
for the sort of distance measure required and (ii) any alternative measure that 
allows one to circumvent the incompatibility argument will have some patholog-
ical properties that are difficult to justify.  
 
First let’s consider the positive reasons for adopting a metric as a measure of 
distance among particle specifications. Recall that specifications are supposed to 
be descriptions of the actual physical properties borne by a particle, with no 
excess formal structure or irrelevant assertions getting in the way—
specifications in some sense directly correspond to particles and their properties. 
It is an implicit premise of physics and an explicit axiom of formal measurement 
theory that physical quantities—taken one at a time—are representable by the 
real numbers.58 For instance, measurements of mass, the linear components of 
momentum, kinetic energy, volume, etc. are all represented by real numbers. 
Furthermore, the standard topology of the real number line is metrizable. Phys-
ics generally assume the standard metric, d(x; y) = jx¡ yj , for assessing the 
difference or distance between two values of a physical quantity like mass. In 
fact, values of this distance measure itself are often taken to carry ontological 
implications—the distance between two physical quantities is itself taken to 
represent a physical quantity. For instance, the difference between two potential 
energies often represents a quantity of kinetic energy. The point is that when 
taken one at a time physical quantities—the things directly referred to in specifi-
cations—are assumed to be representable by the real numbers equipped with a 
natural metric structure. This much we inherit from physics itself. So, if our spe-
cifications made reference to only a single, empirically accessible physical quanti-
ty, it would be uncontroversial to measure the distance between specifications 
by using a metric over the real numbers representing the value of the physical 
quantity to which the specification refers. When we consider multiple physical 
quantities, we have in effect a vector space, a collection of n-tuples of real num-
bers for which the operation of addition is already defined and for which there 
is an obvious choice of inner product. A vector space is also metrizable, and 
thus it seems natural to extend the use of metrics to measure the distance be-
tween bundles of physical quantities, each represented by real numbers.  
 

                                                 
57 This objection was suggested to me by Edward Dean and Ruth Poproski in private discus-
sion. 
58 For an overview, see (Falkenburg 2007), Appendix A. For more thorough treatments of 
axiomatic measurement theory, see (Narens 2007). 
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So far, I have only made reference to empirically accessible physical properties. 
Perhaps the problem is with metaphysical properties for which there is no ac-
cepted representation schema. The particle specifications I have been consider-
ing need only invoke one such property, namely the identity of each particle. 
With respect to comparing physical quantities associated with particles however, 
this seems no more problematic than asserting the identity of measurements in 
order to talk of sets of measurements. The burden is on the critic at this point to 
explain why the use of a metric is inappropriate in this case. 
 
If one does not buy the above ‘naturalness’ argument in favor of metrics, then it 
is still the case that the sort of distance measure required to defeat my argument 
is profoundly ‘unnatural’. I assume that the first two criteria for a metric are un-
objectionable for anything we might accept as a distance measure, namely that it 
be positive definite and symmetric. If we retain these criteria and look for a dis-
tance function that violates the triangle inequality in such a way that my argu-
ment fails, the only candidates are distance measures with pathological proper-
ties. To be more precise, consider a distance measure d(x; y) on a set X with 
the following properties: 

(1) d(x; y) ¸ 0 for all x; y 2 X and d(x; y) = 0 $ x = y 
(2) d(x; y) = d(y; x) for all x; y 2 X 

Such a measure is often called a ‘semi-metric’ in the literature (Ceder 1961; Wil-
son 1931). In order to defeat the argument of the preceding chapter, it must also 
be the case that: 

(3) For all x; y 2 X such that d(x; y) > 2² for any ² > 0, there exists a 
z 2 X such that d(x; z) · ² and d(y; z) · ². 

 
It is easy to show that such a distance function exists. For instance, if we let 
X = R+, then the following satisfies (1) – (3): 

 d(x; y) =

(
0 if x = y
1
xy

otherwise
 

This semi-metric induces a topology59 on R+ that has some bizarre properties. 
For one, it is not Hausdorff since for every pair of distinct points x and y , every 
neighborhood B²(x) intersects every neighborhood B±(y). This is because 

                                                 
59 It is easy to prove that a basis is provided by the open balls of d(x; y). These are the sets 
B²(x) = fy 2 S j d(x; y) < ²g for which ² > 0. Proof sketch: For each x 2 S , x 2 B²(x) 
for all ², so it only remains to show that B°(x) ½ fB®(y) \B¯(z)g. To do so, suppose 
x 2 B®(y) and x 2 B¯(z) for some ®; ¯ . This means that d(x; y) = 1

xy
< ® and 

d(x; z) = 1
xz

< ¯. Introduce a new constant ° such that 1
x2 > ° > 0, and consider the 

open ball B°(x). Then for every p 2 B°(x), it’s the case that 

d(p; y) = 1
py

=
³

x
y

´³
1
xp

´
<

¡
®x2

¢³
1
xp

´
<

¡
®x2

¢
° < ®. Similarly, d(p; z) < ¯ . Thus, 

by definition p 2 B®(y) and p 2 B¯(z). Therefore, B°(x) ½ fB®(y) \B¯(z)g. 
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property (3) entails that no matter how close to 0 we make ² and ± there is some 
point z such that d(x; z) < min(²; ±) and d(y; z) < min(²; ±). Even more bi-
zarre, for any pair of distinct points, there is a sequence that converges to 
both.60 This last property is intolerable, and will hold for any semi-metric that 
satisfies property (3). It means that there is a sequence of manipulations we 
could perform that makes the state of a particle more and more like some other 
state only to find that, when we have transformed the particle state sufficiently, 
it is indistinguishable from both the target state and from any other possible state no 
matter how different. This is, at the very least, a counter-intuitive property that 
militates against dropping the triangle inequality. 
 
In summary, a metric is the obvious choice of distance measure, and is almost 
forced upon us by the partial interpretations assumed in the practice of physics. 
The only alternative measures that can do the job are semi-metrics with some 
odd properties that lead to unacceptable consequences. Thus, the use of a me-
tric is the only viable option for measuring the distance between specifications. 
  

7.5 Objection: The result is old news 
Given that a number of authors have previously claimed that quantum ‘particles’ 
aren’t particles, it might be said that I have merely contributed a fresh argument 
in support of a foregone conclusion. To some extent, this objection was dealt 
with in Chapter 3. I am reintroducing the concern here in order to stress two 
points about the argument made in Chapter 7. First, every one of the previous 
arguments against quantum particles relies on a much stronger account than 
MA. Because many of these arguments rest on conflicting accounts of ‘particle’, 
they do not in fact establish the same conclusion. My argument concerns a very 
weak account of particle—one that captures all of the significant accounts to be 
found in physics and philosophy. In fact, the notion of particle captured by MA 
is so weak as to include within its scope a great many accounts not yet formu-
lated. All of these arguments together exhaust the resources of the realist to ac-
count for EDiv in anything remotely resembling an ontology of particles. My 

                                                 
60 Recall that a sequence p1; p2; : : : converges to x just if, corresponding to every neighbor-
hood of x (in this case, every B²(x); ² > 0) there is a positive integer N  such that 
pn 2 B²(x) for all n > N . Proof sketch: Consider the distinct points x and y . Consider the 
neighborhoods B±1

(x) and B²1(y). Let the first point in our sequence p1 be a point within 
min(±1; ²1) of both x and y . The existence of such a point is guaranteed by property (3). 
Let the next point in the series p2 be a point within min(±2; ²2) of both x and y , where 
±2 < ±1 and ²2 < ²1. We can carry out this procedure indefinitely. The result is a sequence 
p1; p2; : : : with the property that for any neighborhood B±(x) of x or B²(y) of y , there is 
some N  such that xn is within B±(x) and B²(y) for all n ¸ N . In fact, this N  is just the 
first index for which ±N · ±  and ²N · ² in our construction. 
 



 

71 
 

argument is therefore a more general condemnation of particle interpretations 
than heretofore offered. 
 
Second, my argument is not framed within any specific theory, though it can be 
cast in such a manner. While previous authors have given reason to think that 
there are no particles in one sense or another in QM or QFT, none have drawn 
out the theory-independent consequences of PI. Because my argument applies 
to any theory in which PI can be stated and is presumed true, it precludes par-
ticle interpretations for any successors to QM or QFT that retain a version of 
PI—even quantum gravity should it incorporate the principle. What’s more, in-
sofar as chemistry and molecular biology can be said to ‘reduce’ to quantum 
physics, they inherit the same difficulty. Chemistry cannot be about atoms if PI 
holds in the quantum domain. That’s not old news. 
 

7.6 Objection: MA is the wrong account of particles 
Finally, one might object that MA fails to capture the correct notion of ‘particle’. 
This, I suggest is simply beside the point. I am not interested in cataloguing the 
various ways in which the term is used or in analyzing the intended meaning in 
each such context. I have given reason to think that MA captures the sense of 
‘particle’ as it has been used in every major scientific interpretation to employ 
that term or various related terms such as ‘atom’. Even if MA fails to capture a 
few historical notions of particle, it nonetheless captures a very broad class of 
ontologies that bear special appeal for the scientific realist. This appeal derives 
from the ability to account for EDiv. Whatever term one prefers to use, if PI 
precludes all ontologies compatible with MA, then a great many ontologies of 
interest to scientists and philosophers must be abandoned. Such a result is inter-
esting in its own right. 



 

72 
 

 

Chapter 8 A viable object ontology  
 

8.1 Overview 
We have seen that particle ontologies are strictly incompatible with theories 
containing PI. In light of this negative result, the realist must seek an alternate 
ontology for QM, its plausible successors, and any theory like chemistry that 
both references particles and ostensibly reduces to QM. That QM needs a new 
interpretation is hardly a novel claim. It is novel, however, to insist that the most 
appropriate alternatives may be semi-classical object ontologies rather than radi-
cally eliminativist ones. It is my aim in this chapter to sketch one such interpre-
tation that avoids conflict with PI but nonetheless underwrites EDiv. 
 
The interpretation in question—which I’ll call the ‘Spatial Objects Interpreta-
tion’ or SOI—serves as a proof of principle. It jettisons particles while nonethe-
less retaining objects in the sense of things that bear properties, stand in identity 
relations with one another, and are sufficiently independent of one another to 
underwrite EDiv. The fact that one can construct a consistent ontology of ob-
jects for QM undercuts the motivation for radically revisionist ontologies such 
as ‘ontic structural realism’ (OSR) which purports to do away with objects alto-
gether. In the next chapter, I’ll take up the positive arguments in favor of OSR, 
and provide reasons to reject this sort of realist move. Here, I construct an in-
terpretation in terms of classical objects in order to demonstrate that a move to 
OSR is not necessitated by my incompatibility result. 
 
In outline, SOI asserts that the basic objects of which the universe is composed 
are regions of space (in the case of non-relativistic QM).61 That is, they are mea-
sureable subsets62 of  R3. Each such spatial region bears properties in the form 
of probability distributions over particular, observable property values much as 
we imagined quantum particles bearing properties in Chapter 3. Some of these 
properties are peculiar in that they always manifest definite values and are strict-

                                                 
61 W. V. O. Quine (1976) fleetingly considered such a possibility before replacing it with an 
abstract ontology of mathematical objects. In his essay, Quine correctly notes that taking 
spatial regions as objects as I do in SOI rather than spacetime regions is problematic. How-
ever, the generalization of SOI to spacetime regions appears straightforward, and so I have 
chosen the simpler, non-relativistic setting in which to lay out the approach. 
62 For our purposes, we can assume they are connected subsets such as most of us intuitively 
think of when we think of a spatial region (e.g. the computer shaped region in which my 
laptop can be found or the interior of my desk drawer). However, this restriction is unneces-
sary. 
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ly co-occurring—the value of one such special property is always associated 
with a particular value of the other properties in this special set. So, for instance, 
if a given volume possess a value of electric charge equal to -e then it must also 
possess a mass with a definite value of me (the mass of the electron). These bun-
dles of co-occurring properties are just the ‘state-independent’ properties asso-
ciated with particles in the old MA view. I’ll continue to refer to sets of co-
occurring property values as state-independent properties.  
 
The principal motivation for considering SOI is to establish the possibility of an 
object ontology that doesn’t run afoul of PI. As it turns out, SOI is not only 
compatible with PI, it actually entails a stronger restriction. Before I derive this 
important feature, however, I want to motivate SOI on grounds independent of 
our concern with PI. 
 

8.2 Privileging the wavefunction 
There is one principal reason to view wavefunctions as privileged representa-
tions of quantum systems: every actual measurement of a quantum system in-
volves some finite spatial volume. The spatial degree of freedom is always 
present, and ignoring this degree of freedom is always a strong idealization. We 
may talk about systems with only a spin degree of freedom, but to predict mea-
surement outcomes requires one to take into account the wavefunction and the 
geometry of the measuring apparatus. The idea behind SOI is simply to take this 
fact seriously—any viable representation of a quantum system must account for 
the spatial nature of that system. 
 
To get a sense for SOI, let us first consider an analogy with fluid dynamics. 
There are two basic pictures of fluids: the Lagrangian and the Eulerian (Panton 
1996, Ch 4). In the Lagrangian view, the focus is on individual particles in the 
fluid. The primary variables in terms of which fluid behavior is described are 
particle positions ri and velocities vi which are functions of time t. Fluid flow is 
conceived in terms of the paths followed by the particles comprising the fluid 
(see the left panel of Figure 8.1). In the Eulerian view, we focus instead on indi-
vidual positions in space labeled by coordinates ri and chart their changing 
properties through time. The primary variables by which fluid behavior is de-
scribed in this view are local properties of spatial locations. Thus, fluid velocity 
and pressure are functions of both position and time, e.g. v(ri; t) (see the in-
stantaneous velocity field shown on the right of Figure 8.1). 
 
  



 

74 
 

 
Figure 8.1 Contrasting views of fluid dynamics. The left panel corresponds to the 
Lagrangian view and shows the changing position of a particle at four different times as 
it moves through the fluid. The right panel corresponds to the Eulerian view, and de-
picts the value of the fluid velocity at each of four spatial locations at the same moment 
of time. 

 
The standard view of QM is akin to the Lagrangian perspective: the basic ele-
ments are particles and, though they cannot be attributed well-defined paths in 
space, kinematics is concerned with the changes in properties of these particles 
through time. In this view, the wavefunction is just one description of the state 
of a particle, and position is a property the particle can possess.63 
 
In the interpretation I am proposing, spatial regions are the fundamental ele-
ments—what I’ll identify as the objects. Kinematics is described by changing 
property distributions over each spatial region, much as in the Eulerian ap-
proach to fluid dynamics. In SOI, the wavefunction encodes the properties of 
all regions of space over time. It is akin to the Eulerian specification of fluid 
pressure and velocity at all points. 
 

8.3  Spatial regions as objects 
So far, I have only provided a vague image of SOI. To make it precise, 
I will state the postulates of QM in terms of the proposed account64, demon-
strate that these modified postulates coincide with the standard interpretation 
vis-à-vis observable predictions, and then show how SOI avoids a contradiction 
with PI. 
                                                 
63 In the standard view, position is a property in the sense that the particle bears a determi-
nate probability distribution over the possible outcomes of position measurements. 
64 In stating the postulates, I am following the presentation of (Cohen-Tannoudji, Diu, and 
Laloèe 1977). 
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First Postulate: 
At a fixed time t0 the joint physical state of every spatial region for a ‘system’ of 
n sets of state-independent property values is represented by a function 
Ã(x1;x1; : : : ; xn; t0) belonging to the space L2 of square-integrable functions 
on R3n. These functions are presumed to be normalized such thatR

dx3
1

R
dx3

2 ¢ ¢ ¢
R

dx3
n Ã¤(x1;x1; : : : ;xn; t0)Ã(x1;x1; : : : ;xn; t0) = 1. 

 
Second Postulate: 

Every measurable physical quantity A is represented by an operator Â acting on 

L2(R3). The operator Â is called an observable. State-independent properties are 
represented by operators proportional to the identity operator. 
 
Third Postulate: 
The only possible result of the measurement of a physical quantity A in a par-
ticular spatial region V is one of the eigenvalues of the corresponding observa-

ble Â. 
 
Fourth Postulate: 
Case of a discrete non-degenerate spectrum: 
When the physical quantities A1; A2; : : : ; An (not necessarily unique) are meas-
ured for (possibly overlapping) spatial regions V1;V2; : : : ;Vn respectively, the 
probability Pr(a1;i1(V1); : : : ; an;in(Vn); t) of obtaining the non-degenerate ei-

genvalues a1;i1 ; a2;i2; : : : ; an;in of the corresponding observables Â1; Â2; : : : ; Ân 
at time t is given by: 

 
Pr(a1;i1(V1); : : : ; an;in(Vn); t) =Z

V1

dx3
1

Z
V1

dx01
3
¢ ¢ ¢

Z
Vn

dxn
3

Z
Vn

dx0n
3

a¤1;i1
(x1)a1;i1(x

0
1) ¢ ¢ ¢ a¤n;in(xn)an;in(x0

n)

¢ Ã¤(x0
1; x

0
2; : : : ;x0

n; t)Ã(x1; x2; : : : ;xn; t)

  

(8.3.1) 
 

Each function aj;ij(x) is an eigenfunction of the operator Âj with eigenvalue 

aj;ij. 

 
Case of a continuous spectrum: 
When the physical quantities A1; A2; : : : ; An are measured for spatial regions 
V1;V2; : : : ;Vn respectively, the probability densityf(a1(V1); : : : ; an(Vn); t) of ob-
taining results in the intervals a1 + da1; a2 + da2; : : : ; an + dan for the corres-
ponding observables at time t is 
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f(a1(V1); : : : ; an(Vn); t) =Z
V1

dx3
1

Z
V1

dx01
3
¢ ¢ ¢

Z
Vn

dxn
3

Z
Vn

dx0n
3

a¤1(x1)a1(x
0
1) ¢ ¢ ¢ a¤n(xn)an(x0

n)

¢ Ã¤(x0
1;x0

2; : : : ;x0
n; t)Ã(x1;x2; : : : ;xn; t)

 

  (8.3.2) 
 
 
One straightforward consequence of the postulates stated in this way concerns 
the state-independent properties. As I indicated above, these include bundles of 
properties like mass and charge that co-occur with definite, fixed values. For 
instance, in some systems whenever a mass of me (the mass of an electron) is 
detected, it is always possible to simultaneously measure a charge ¡e (the charge 
of an electron). To say that there is more than one such bundle available to a 
quantum system is to say that it is possible to simultaneously measure bundles 
of physical quantities in disjoint volumes, e.g. to measure me and ¡e in one vo-
lume and mp and +e in another. According to the Second Postulate, each of 
these physical quantities like mass is represented by a scalar multiple of the iden-

tity operator Î  in L2(R3). Every wavefunction is thus an eigenfunction of each 
of these operators with an eigenvalue corresponding to one of the state-
independent property values (e.g. me). For simplicity, suppose that mass is the 
only state-independent property. Then if there are n different masses that can be 
measured simultaneously, the probability of finding m1 in V1,…,mn in Vn is 
given by: 
 

 
Pr(m1(V1); : : : ; mn(Vn); t) =Z

V1

dx3
1 ¢ ¢ ¢

Z
Vn

dx3
n Ã¤(x1; : : : ;xn; t)Ã(x1; : : : ;xn; t)

 (8.3.3) 

 
It is worth stressing a distinction. In the standard view, Equation (8.3.3) is inter-
preted as the probability that particle 1 with mass m1 is found in the region V1, 
and the particle 2 with mass m2 is found in the region V2, etc. To be more ex-
plicit, it represents the probability that the object particle 1has as properties a mass 
of m1 and a location in the region V1, and so on. According to SOI, this should 
instead be read as the probability that region V1 has a mass m1, region V2 a mass 
m2, etc. Put another way, the right-hand side (8.3.3) represents the probability 
that the objects V1;V2; : : : ;Vn are found to possess properties m1;m2; : : : ;mn 
respectively. 
  
SOI eliminates an inconsistency in the standard interpretation. In the standard 
interpretation, how we interpret the expression (8.3.3) depends on whether the 
particles are of the same type. If they are of n different types, then it represents 
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the probability of finding particle 1 to have a position in region V1, etc. If the 
particles are of the same type then PI is in play, and we are led to interpret 
(8.3.3) via such circumlocutions as “the probability that a particle has a position 
in region V1, with no fact of the matter as to which it is.” In SOI, the interpreta-
tion is uniform. If all of the bundles of state-independent properties are identic-
al, we still read (8.3.3) as representing the probability that each of the regions 
V1;V2; : : : ;Vn is found to manifest the indicated property value. It just so hap-
pens in this case that m1 = m2 = : : : mn. That is, the property values observed 
for each region are the same, rather like n coins coming up heads when flipped.  
 
It will help at this point to illustrate the differences between the standard inter-
pretation and SOI by way of a concrete example. Consider the case in which—
in the standard interpretation—there is only one particle with a one-dimensional 
wavefunction given by: 
 

 Ã(x; t) =
1q

®~(1 + it
m~®2 )

p
¼

ei(p0x¡p2
0t=2m)=~e

¡
(x¡p0t=m)2

2®2~2(1+ it
m~®2

) (8.3.4) 

 
This is a ‘Gaussian wavepacket’. In the standard interpretation, this wavefunc-
tion encodes properties—or rather distributions over property values—
pertaining to the particle. If we choose units such that ~ = c = 1 and consider 

the case when  m = 1 eV; p0 = 1 eV; ® = 1 eV¡1, then the probability density 
function for finding the particle between x and x + dx in the standard view is 
that shown in Figure 8.2. The peak of the probability density corresponds in this 
case to the expectation value of position which changes linearly with time (spe-
cifically, hxi = t). This describes a particle moving with uniform velocity (and 
thus constant mean momentum) to the right. 
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Figure 8.2 A moving particle in the standard interpretation. A plot of the 
square modulus of wave function for t = 0, 1, 2, and 3 sec. In the standard interpre-
tation, the square modulus is equivalent to the probability density for finding the 
particle between x and x + dx. The sequence shown here represents successive 
probability densities for a particle moving with constant velocity to the right. 

 
According to SOI, however, there is no particle. There is a mass property that 
can have a measured value of 0 or m for any given region, and there is a mo-
mentum property that can manifest a continuum of values at one instant of time 
for any given region. In Figure 8.3, the probability of detecting mass m as a 
function of time is shown for five contiguous spatial regions. The ‘mass proper-
ty’—really a distribution over the two possible mass property values—is differ-
ent for each of these regions, and changes in time for each. 
 

  
 
Figure 8.3 The SOI interpretation of the ‘moving’ Guassian wavepacket. Each 
frame depicts the probability as a function of time of measuring a mass m within the 
region indicated below each plot (regions are given as closed intervals on the real line). 

 
Figure 8.4 gives another way of visualizing the mass property for those same 
contiguous spatial regions. In that plot, the single spatial dimension is shown on 
the left horizontal axis (labeled ‘x ’), and time progresses to the right along the 
other horizontal axis (labeled ‘t ’). The vertical axis indicates the probability of 
detecting a mass m in a given region. The five ribbons indicate the respective 
probabilities as a function of time for each of the five regions. However it is vi-
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sualized, the fundamental feature of SOI is that properties are always and only 
attributed to spatial regions—there are no particles. 
 

 
Figure 8.4 An alternate view of the moving wavepacket. In this figure, the x 
axis represents a one-dimensional space. Each ribbon correspond to one of the spa-
tial regions shown in Figure 8.3. The height of the ribbon indicates the probability 
of detecting a mass m in the region corresponding to that ribbon. The t axis 
represents time. Notice that the peak probability occurs later and later for neighbor-
ing spatial regions as we move in the positive x-direction. 

 
I intend SOI to be an interpretation of QM, not a modification of the physics. 
While the postulates above are formally different from those given by, say von 
Neumann, I claim that SOI leads to exactly the same empirical predictions as 
the standard interpretation of QM. It differs only as to which formalism for pre-
senting QM is favored, and as to how the parts of that formalism are taken to 
refer to unobservable things in the world. Rather than attempt a systematic 
translation of SOI expressions to standard expressions, it will suffice to show 
that key standard expressions for measurable quantities can be recovered from 
SOI. To do so, it will help to make use of von Neumann’s formalism via some 
straightforward identifications. First, we define the one-place state corresponding 
to region V as follows:65 

 jÃVi ´

Z
V

dx3 Ã(x)jxi (8.3.5) 

In the standard interpretation, a one-place state is the projection of one-particle 
state onto the subspace spanned by the position eigenkets with eigenvalues in  
V.66 The square of modulus of jÃVi is given by: 

                                                 
65 In the remainder of this section, I suppress the time dependence in all expressions. 
66 Notice that if the one-place state is given for two contiguous spatial regions V1 and V2 
then the state of the overall region V1 [ V2 is fully determined. A similar property holds for 
n-place states. This is in contrast to the spacetime states posited by Wallace and Timpson 
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jhÃV jÃVij
2 =

Z
V

dx03
Z
V

dx3Ã¤(x0)Ã(x)hx0jxi

=

Z
V

dx03
Z
V

dx3Ã¤(x0)Ã(x)±(x0 ¡ x)

=

Z
V

dx3Ã¤(x)Ã(x)

 (8.3.6) 

In the standard interpretation, the right-hand side of Equation (8.3.6) is just the 
probability of finding the particle in the region V, while according to SOI it is 
the probability of finding the region V to possess mass m. According to both 
views, this one expression is used to compute the mean mass density of the giv-
en spatial region. 
 
Similarly, one can define n-place states by projecting a state vector traditionally 
identified with a many-particle system onto multiple spatial regions: 
 

 
jÃV1;V2;:::;Vni =Z
V1

dx3
1

Z
V2

dx3
2 ¢ ¢ ¢

Z
Vn

dx3
n Ã(x1;x2; : : : ;xn)jx1;x2; : : : ; xni

 (8.3.7) 

 
 
From Equations (8.3.5) and (8.3.7), one can see that the expectation values de-
rived from the distributions stipulated in the Fourth Postulate are just the stan-
dard expectation values when the spatial region of interest is taken to be all of 
space. So for instance, if the world is described by a one-place state, then the 
expectation value for a generic operator is given by:67 
 

 

hÂi =

Z
da

Z
dx0

3
Z

dx3 ahajxihxjÃihÃjx0ihx0jai

=

Z
dahajÃihÃjai

=

Z
dahÃj (ajaihaj) jÃi

=

Z
dahÃj

³
Âjaihaj

´
jÃi

= hÃjÂjÃi

 (8.3.8) 

 
Finally, the SOI approach can be expanded to incorporate additional degrees of 
freedom such as spin in the same way they are incorporated into the wavefunc-

                                                                                                                         
(2009). While their proposal is similar in theme to SOI (and unlike SOI, is properly relativis-
tic), their use of reduced density operators means that the state of the union of two space-
time regions is not determined by the states of the separate regions. 
67 This is the discrete case. The continuous case is similar. 
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tion representation in the standard approach. For instance, we can include a sin-
gle spin-1/2 property using the standard spinors, 

 Â ´

μ
®

¯

¶
,
 

 where j®j2 + j¯j2 = 1. A quantum system is represented by an overall wave-
function of the form Ã(x)Â. If we are working in a basis in which the spin op-

erator Ŝz corresponding to spin along the z-axis is diagonal, then  

 Ŝz =
~

2

μ
1 0

0 ¡1

¶
 

This operator has two eigenvectors, 

 Â(+) =

μ
1

0

¶
and

μ
0

1

¶
, 

with eigenvalues §~=2. 
 
In effect, this additional degree of freedom is accommodated by working in an 
expanded vector space. If we let E  stand for the Hilbert space of suitable wave-
functions in L2(R3) and EÂ stand for the Hilbert space of spinors, then in order 
to accommodate spin, we need to work in the outer-product space E Ð EÂ. The 
Fourth Postulate then needs to be amended as follows: 
 
Ammended Fourth Postulate: 
Case of a discrete non-degenerate spectrum: 
When the physical quantities A1; A2; : : : ; An (not necessarily unique) and spin-
quantities Q1; Q2; : : : ; Qn are measured for spatial regions V1;V2; : : : ;Vn re-
spectively, the probability of obtaining the non-degenerate eigenvalues 

a1;i1 ; a2;i2 ; : : : ; an;in of the corresponding observables Â1; Â2; : : : ; Ân and the 
non-degenerate eigenvalues q1;i1; q2;i2; : : : ; qn;in of the spin observables 

Q̂1; Q̂2; : : : ; Q̂n is 
 

Pr(a1;i1(V1) ^ q1;i1(V1); : : : ; an;in(Vn) ^ qn;in(Vn)) =Z
V1

dx3
1

Z
V1

dx01
3
¢ ¢ ¢

Z
Vn

dxn
3

Z
Vn

dx0n
3

a¤1;i1
(x1)a1;i1(x

0
1) ¢ ¢ ¢ a¤n;in

(xn)an;in(x0
n)

¢ (»¤1;i1
Â1) ¢ ¢ ¢ (»

¤
n;inÂn)Ã¤(x0

1; : : : ;x0
n)Ã(x1; : : : ;xn)

  

(8.3.9) 
 

Each function aj;ij(x) is an eigenfunction of the operator Âj with eigenvalue 

aj;ij. Each »j;ij is an eigenvector of the operator Q̂j with eigenvalue qj;ij. 

 
From the Amended Fourth Postulate we can see that the expectation value of 
spin in the ẑ-direction for an arbitrary wavefunction Ã(x)Â is thus 
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hŜzi =

Z
V

dx0
3

Z
V

dx3 (
~

2
Â(+)¤Â +

~

2
Â(¡)¤Â)Ã¤(x0)Ã(x)

=

Z
V

dx3 (
~

2
Â(+)¤Â +

~

2
Â(¡)¤Â)Ã¤(x)Ã(x)

 (8.3.10) 

 
It is worth noting that in standard quantum texts, the spatial degree of freedom 
is often ignored and spin, for instance, is taken to be the only relevant degree of 
freedom in various toy models. According to SOI, this is equivalent to taking 
the regions of interest to include all of space. In the limit where V encompasses 
all space, Equation (8.3.10) reduces to 

 hŜzi = (
~

2
Â(+)¤Â +

~

2
Â(¡)¤Â) 

which is just the standard expression for expected spin along the z-axis. 
 

8.4 A clarification: single regions and multiple values 
There is an important ambiguity to clear up at this stage, one which highlights 
the inelegance of the mathematical representation of QM I’ve chosen for for-
mulating SOI, but which does not affect the philosophical point in question. 
Suppose that mass is the only state-independent property and that just two mass 
values can manifest simultaneously (i.e. the world is described by a two-place 
state). According to Equation (8.3.3) the probability that spatial region V1 has a 
mass of m1 and V2 has mass m2 is given by R
V1

dx3
1

R
V2

dx3
2 Ã¤(x1;x2)Ã(x1;x2). Now suppose that m1 = m2 = m and 

that V1 = V2 = V . As I stated matters above, we should read the preceding ex-
pression as the probability that region V has a mass of m and a mass of m. This 
is an ambiguous statement—it might be taken to mean “the mass of V is m” or 
that “the mass of V is 2m” SOI asserts the latter. The idea is that a single region 
can manifest integral units of state-dependent properties. Thus a given region 
can have zero, one, or two units of mass m—the mass of the region might be 0, 
m, or 2m. We can extrapolate this interpretation to any physical quantity 
represented by an operator. If more than one eigenvalue is manifest for a given 
region, this is to be interpreted in an additive sense—the region bears just one 
property value equal to the sum of the two repeated values.  
 
I concede that this is not an obvious reading of the two-place wavefunction 
Ã(x1;x2). It is, however, a consistent reading. Perhaps a more elegant (and 
theoretically fruitful) approach would be to assign to each volume a distribution 
over states in an appropriate Fock space. That is, to each volume one would 
compute the probability of different sets of ‘occupancy numbers’ where these 
numbers are understood as representing integral magnitudes for discrete-valued 
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properties like energy and mass. Developing such a formalism, however, would 
take us too far astray. 
 
Ultimately, the inelegance of the reading does not affect the philosophical 
point I want to make. SOI provides a uniform and consistent way of attribut-
ing property values to distinct objects. While a formal representation might 
be constructed which, though isomorphic in some sense to that presented 
here, is more perspicuous for the purposes of SOI (and perhaps more useful 
for practical computation), the fact remains that a consistent interpretation of 
QM in terms of objects can be had despite PI. All that remains to be shown 
is that SOI is in fact compatible with this postulate. 
 

8.5 SOI and PI 
As I suggested above, SOI entails an important consequence in the case of iden-
tical bundles of co-occurring properties that is easy to draw out now that we’ve 
made these connections with the Hilbert space formalism. If 
m1 = m2 = : : : mn, then it must be the case that  
 
Pr(m1(V1); m2(V2); : : : ; mn(Vn)) = Pr(m¼(1)(V1); m¼(2)(V2); : : : ; m¼(n)(Vn)) 
  (8.4.1) 

 
where ¼ : N 7! N  is any permutation on the n indices. From the Second and 
Fourth Postulate, this means that  
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Ã¤(x0
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0
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  (8.4.2) 
 
Since the limits of integration are the same, the integrands in both integrals 
above must be equal. That is, 
 

 
Ã¤(x0

1;x0
2; : : : ; x0

n)Ã(x1;x2; : : : ;xn) =

Ã¤(x0
¼(1); x

0
¼(2); : : : ; x

0
¼(n))Ã(x¼(1);x¼(2); : : : ;x¼(n))

 

  (8.4.3) 
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For an arbitrary operator Ô ´ Â1 Ð Â2 Ð ¢ ¢ ¢ Ð Ân, we have from Equation 
(8.3.1) and the identity (8.4.3):  
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dx3
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0
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  (8.4.4) 
 
Equation (8.4.4) holds for any n regions. If we let each Vi encompass all of 
space, then Equation (8.4.4) leads to the following: 
 

 hÃjÔjÃi = hÃj¦̂yÔ¦̂jÃi (8.4.5) 
 

Here, the operator ¦̂ is the permutation operator which takes Ã(x1; : : : ; xn) to 
Ã(x¼(1); : : : ; x¼(n)).  
 
At first glance, Equation (8.4.5) is just the first condition for PI. However, in the 
postulates as stated above, I have implicitly assumed that any operator of the 

form Ô ´ Â1 Ð Â2 Ð ¢ ¢ ¢ Ð Ân where each Âi is an observable (a self-adjoint 
operator) on L2(R3) represents a genuine combination of properties that a col-
lection of spatial regions can manifest. It is thus not generally the case that the 

operator Ô commutes with the permutation operator ¦̂. In order to satisfy Eq-
uation (8.4.5) for all permutation operators, the state jÃi must therefore be inva-
riant up to a phase under permutation. That is, SOI imposes the Symmetrization 
Postulate (SP) which is stronger than PI.68 
 

8.6 SOI and EDiv 
To this point, I have shown that SOI retains objects while remaining compatible 
with PI. I have not yet shown that the resulting interpretation also underwrites 
EDiv. To do so requires the development of some new conditions. Since SOI 
does away with particles, the constraint I derived from MA(iii) is inapplicable. 
What we need is a careful statement of what it means for spatial regions to be 
largely independent of one another in such a way that knowledge of only a li-

                                                 
68 Actually, to get SP requires the further assumptions that the phase is independent of 
which permutation operator is in play and that the phase is the same for all states. Even 
without these extra assumptions, SOI imposes the requirement that permutes lie along the 
same ray, which is already a stronger constraint than PI. 
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mited region is needed to predict the future of a portion of that region. The fol-
lowing condition does the job: 
  
Spatial independence: 

For every spatial region V and for every measurable region 
º ½ V  it is the case that, for most physically possible condi-
tions, the state-dependent properties of º  are approximately in-
dependent of the properties of most elements in any given par-

tition of º{ ´ V n º  into measurable subsets over a finite inter-
val of time. 

 
Again, we can cash out ‘approximate independence’ in terms of sets of states. 
To say that one spatial region V is approximately independent of another region 
W, we can appeal to the conditions similar to those introduced in Chapter 4. 
First, we introduce a metric on the space of descriptions of spatial regions (ana-
logous to the space of particle descriptions). We also introduce a threshold ε. 
For spatial independence to obtain, we then require that there exist three physi-
cally possible sets of models of QM—call them ®, ̄ , and °—with the following 
properties: 
 

(4) The models in α are interpreted as representing the proper-
ties of region V . Let Sα be the set of all region descriptions 
extracted from the interpretations corresponding to the 
models in α. Sα is large with respect to the threshold ε. 

(5) The models in β are likewise interpreted as the properties of 
region W. Let Sβ be the set of all descriptions in the inter-
pretations of the models of β. Sβ is also large compared to ε. 

(6) The models in γ are interpreted as representing the proper-
ties of a spatial region containing as subsets regions V and 

W. For every ordered pair of descriptions in Sα  Sβ there 
exists an interpretation of a model in γ that contains ap-
proximately both of these descriptions (that approximately 
attributes each of these descriptions to the regions V and 
W in the interpretation). 

 
At this point, we face a much more difficult task in proving that SOI satisfies 
spatial independence than we did in showing that MA (or any other theory) 
cannot. To obtain a negative result we had only to show that there do not exist 
any three models satisfying the above conditions. To prove that SOI generally 
satisfies spatial independence, we first have to stipulate what conditions are 
physically possible and, for each set of physically possible conditions (e.g. a set 
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of viable Hamiltonians and some boundary conditions) we would have to work 
out the set of models which satisfy these conditions. It is not clear that this is a 
well-posed problem since there appears to be no way to fix a priori the ‘physi-
cally possible’ set of conditions. Instead, I offer here only a recipe for construct-
ing such proofs. To do so, I will assume that ‘physically possible’ conditions 
admit all solutions to the Schrodinger equation subject to the usual conditions 
of continuity and limits at spatial infinity. 
 
To show that SOI satisfies spatial independence under these conditions, consid-
er the set of possible distributions over single-unit mass properties for a given 1-
D region V, where the probability that V manifests mass m is denoted q (in the 
notation used above, Pr(m(V)) = q). I assume that for the metric and thre-
shold chosen these constitute a non-trivial set of states. Choose any Ã(x) such 

that 
R
V

dx kÃ(x)k
2

= q, and 
+1R
¡1

dx kÃ(x)k
2

= 1, and kÃ(x)k
2
¿ 1 every-

where in the complement V{ of V . We could, for instance, satisfy these condi-
tions by making Ã(x) a tall skinny Gaussian wave-packet with very long but 
very slender tails. Next, choose a wavefunction Á(x) that is whatever you like in 

V{, but which vanishes in V. Obviously, the requirement of continuity imposes 
some restrictions on Á(x), but the resulting set of possibilities can easily be 
made non-trivial. These wavefunctions encode all of the distributions pertaining 

to regions in every possible partition of V{. Note that the L2-inner product 
(Ã(x); Á(x)) ¼ 0 (the wavefunctions are almost orthogonal). 
 
All that remains to be shown is that there exists some two-place wavefunction 
ª(x1; x2) which entails approximately the same one-place distributions. Let 
ª(x1; x2) = 1p

2
(Ã(x1)Á(x2)¡ Ã(x2)Á(x1)). Consider the region V and any 

region W μ V{. Then 
 

 
Pr(m(V)) = Pr(m(V); m(W)) + Pr(m(V);:m(W))

= Pr(m(V); m(W)) + Pr(m(V); m(V)) + Pr(m(V); m(W{ n V))
 

  (8.6.1) 
 
In deriving Equation  (8.6.1) I have implicitly invoked some basic features of 
the underlying probability event space used in SOI. In particular, I have as-

sumed that Pr(x;:m(W)) = Pr(x;m(W{)) and that, if V1;V2; : : : ;Vk are 
disjoint spatial regions, Pr(x;

S
i Vi) =

P
i Pr(x;Vi). From  (8.6.1) and the 

Postulates above, we then have 
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Pr(m(V);m(W)) =
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  (8.6.2) 
 
where ® is a constant with absolute value much less than unity. Similarly, 
 
 Pr(m(V);m(V)) = ¯ (8.6.3) 
and 

 Pr(m(V);m(W{ n V)) =

μZ
V

dx3
1 kÃ(x1)k

2

¶ ÃZ
W{nV

dx3
2 kÁ(x2)k

2

!
+ ° 

  (8.6.4) 
where ¯  and ° are again constants with vanishing absolute value. 
 
Assembling these pieces, we have from Equations (8.6.2), (8.6.3), and 
 (8.6.4): 
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dx3
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¶μZ
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dx3
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¼ q

 

  (8.6.5) 
 
A similar derivation runs as follows: 
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Pr(m(W)) = Pr(m(W); m(V)) + Pr(m(W);:m(V))

= Pr(m(W); m(V)) + Pr(m(W);m(W)) + Pr(m(W); m(V{ nW))
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¶
  (8.6.6) 
Again, the constants ± and ³ are small compared to unity. 
 
Taken together, Equations (8.6.5) and (8.6.6) indicate that the two-place state 
ª(x1; x2) does in fact yield specifications for two distinct spatial regions that 
are approximately the same as any two specifications extracted from the one-
place states allowed for those regions considered separately. Thus in the case 
of a single unit of mass—even in a world containing only ‘particles’ of the 
same type—a spatial region can be independent of all others in the sense re-
levant to EDiv.69  
 

8.7 SOI and Scientific Practice 
SOI was constructed largely to demonstrate that, even after particles have been 
abandoned, an object ontology which supports EDiv is possible—there is no 
need to seek structuralist alternatives. Though it was not motivated by any par-
ticular scientific concerns, SOI is closely related to at least one interpretation in 
the chemical literature. ‘Atoms in Molecules’ or AIM is an important competitor 
of Density Functional Theory in quantum chemistry.70 Broadly speaking, AIM 
treats the electron density function ½ (the square modulus of the many-electron 
wave-function) as the primary theoretical entity from which all chemically rele-
vant properties can be derived. More specifically, atoms, molecules, and chemi-
cal bonds can all be defined in terms of geometric features of the gradient field 
on ½. ‘Atoms’, for instance, consist of the union of an attractor (a point at which 
field lines converge) and its basin (the region of space from which the conver-
gent field lines originate). 
 
                                                 
69 Note that ª(x1; x2) is exactly the sort of wavefunction Messiah considers when attempt-
ing to argue that putative particles can be independent (see Section 7.2 above). Though the 
discussion in terms of particles was incoherent, Messiah’s claims make sense if we think in 
terms of spatial regions.  
70 See (Bader 1990, 1991; Popelier 2000) 
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AIM—which its proponents refer to as an “interpretative theory” (Popelier 2000, 
xii) (emphasis in original)—and SOI share a great deal in common. To begin 
with, the wavefunction is given central place. In AIM, it is the means by which ½ 
is computed. In SOI, it is an encoding of probability distributions correspond-
ing to every spatial region. More strikingly, AIM attributes properties to atoms 
strictly via volume integrals. That is, ‘atoms’ are spatial regions—denoted by 
Ω—with properties dictated by integrals over the wavefunction. As Popelier 
puts it: “Atomic properties are then defined as volume integrals over Ω of some 
integrand which we have to specify for each property” (2000, 46).This is re-
markably similar to the view offered by SOI. 
 
Whatever the motivation for its introduction, the convergence of SOI and AIM 
suggest that such a view is not implausible from a scientific perspective. Fur-
thermore, this similarity suggests a way of accounting for particle talk in chemi-
stry and physics while simultaneously maintaining a viable, particle-free object 
ontology. In AIM, atoms are defined in terms of the properties of spatial regions. 
As in SOI, it is a spatial region that bears properties, not a particle that bears 
‘location’ as one of its properties. Understood in terms of spatial regions that 
possess particular geometric properties, ‘atoms’ no longer run afoul of PI be-
cause there is no sense to be made of permuting their properties. The upshot is 
that SOI undermines the motivation for ontic structural approaches while pro-
viding a means of re-conceptualizing the atoms and other putative particles of 
chemistry and physics. 
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Chapter 9 Against structural realism 
 

9.1 Overview 
One consequence of the incompatibility of PI with MA is that the scientific real-
ist—if he is to stay a realist—must seek an alternative interpretation for QM and 
its successors. In the preceding chapter, I sketched one such alternative that 
treats spatial volumes instead of particles as genuine physical objects. One might 
instead take the incompatibility to favor a more radical revision of realism, one 
which disposes of objects altogether. Such is the recommendation of an increa-
singly vocal group of philosophers who favor ‘Ontic Structural Realism (OSR). 
It is the aim of this chapter to demonstrate that the fact of incompatibility hind-
ers rather than helps the proponent of OSR, and to suggest ways in which both 
the incompatibility result and the construction of SOI might be used to argue 
against realism of either the traditional or OSR variety. 
 

9.2 Two routes to OSR 
In Chapter 3, I briefly rehearsed a pair of arguments to the effect that quantum 
particles are non-individuals in the sense that they are numerically distinct entities 
which do not stand in relations of identity (or nonidentity) with one another. 
Both of these arguments rest on the consequences of PI. The first is framed in 
the context of quantum statistical mechanics, and runs something like this: 

 
Argument from statistics:71 

(S1) All physically possible states accessible to a system are equi-
probable with respect to an ensemble of identically prepared 
systems. 

(S2) Because of PI, quantum states that differ by a permutation 
of the properties associated with particles of the same type 
are jointly weighted as a single state. 

(S3) From (S1) and (S2) it follows that states differing only by a 
permutation of properties amongst particles of the same 
type are not distinct physical possibilities. 

(S4) If particles were genuinely distinct from one another, then 
permuting their properties would result in distinct physical 
possibilities. 

(S5) Quantum particles are numerically distinct. 

                                                 
71 For a more thorough development of this argument, see e.g. (Belousek 2000; French and 
Krause 2006, Ch 4; French and Rickles 2003; Reichenbach 1999).  
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(S6) From (S3), (S4), and (S5) it follows that particles are non-
individuals. 

 
The second argument is closely related to the first. It explicitly assumes Leib-
niz’s Principle of the Identity of Indiscernibles (PII) (see Section 3.5) as the 
ground for identity relations amongst objects. With this assumption, the argu-
ment can be stated as follows: 
 
Argument from PII:72 

(P1) Numerically distinct quantum particles have all of their mo-
nadic73 physical properties in common. 

(P2) Because of PI, all particles of the same type have exactly the 
same monadic properties. 

(P3) From (P2) and the assumption of Leibniz’s PII, it follows 
that the identity of quantum particles cannot be grounded in 
their physical properties. 

(P4) Metaphysical ‘properties’ such as haecceity or primitive 
‘this-ness’ are not real. 

(P5) There is nothing to ground relations of identity amongst 
quantum particles [from (P3) and (P4)]. 

(P6) Quantum particles can nonetheless be counted, and are 
therefore non-individuals. 

 
There are a number of problems with both of these arguments, but critics in the 
literature have tended to focus on (S1) and (P4). With regard to (S1), it has been 
pointed out that equiprobability might apply to physically accessible states rather 
than to all physically possible states (see Chapter 3). Because the Hamiltonian is 
necessarily symmetric, if a particle begins with a state in either the fermionic or 
bosonic sector of the Hilbert space, it can never come to occupy a state from 
another sector. In particular, (anti)symmetric states can never evolve into 
asymmetric states of the sort that would yield distinct states upon permutation. 
In this way, one can account for the non-classical statistical weighting of quan-
tum states by appealing to the inaccessibility of certain initial states. The reason 

                                                 
72 There is a very large literature on PII in QM. For an overview of the debate, see (French 
and Krause 2006, Sec. 4.2.1; Saunders 2003). For early development of this argument, see 
(Barnette 1978; Cortes 1976; French 1989, 1989; French and Redhead 1988; Redhead and 
Teller 1992). For a critique of an argument combining elements of the two I have presented 
in this section, see (Morganti 2009). 
73 There are stronger or weaker versions of PII. The strongest admit only monadic proper-
ties into consideration. For a discussion of the various forms of PII (and the related issues of 
identity and individuality) when relational properties are taken into consideration, see (Caul-
ton and Butterfield 2008; Saunders 2003). For a discussion of relational forms of PII, specif-
ically in quantum mechanics, see (Muller and Saunders 2008). 
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permutes are all counted as a single state when distributing probability is that 
particles contingently occupy permutation invariant states, not because asymme-
tric states are physically impossible.  
 
In stating the argument for non-individuals, I’ve swept an uncomfortable num-
ber of difficulties under the rug, some of which are often overlooked in the lite-
rature. For one thing, it is not at all clear that there is a strong analogy between 
quantum and classical probability distributions over particle states. In the quan-
tum case, when particle roles are permuted in a state representation, the proper-
ties assigned to each particle of the same type in the interpretation are not 
changed. In the classical case, permuting particle roles corresponds to permuting 
property assignments. It is difficult to read the former in such a way as to make 
the argument from statistics work. But let us grant for sake of argument that it 
makes sense to speak of permuting property assignments for quantum particles 
in (anti)symmetric pure states and that both the argument from statistics and the 
objection to (S1) are coherent. The upshot is that the physics underdetermines 
the metaphysics. We cannot settle whether (S1) is true by appealing to physical 
theory. Likewise, (P4) in the argument from PII is left equally ambiguous by the 
physics. Steven French has repeatedly asserted that it is in accord with QM to 
assert either that (P4) is true and thus particles are non-individuals or that (P4) is 
false and particles are individuals by virtue of some non-physical property like 
‘this-ness’ (Adams 1979). 
 
Whether we consider the argument from statistics or the argument from PII, 
the physics leaves underdetermined even the broad strokes of the metaphysical 
view the realist should endorse. This underdetermination is considered by some 
to weigh heavily against any realist stance that takes quantum objects seriously. 
Ladyman, for instance, says that “[w]e need to recognize the failure of our best 
theories to determine even the most fundamental ontological characteristic of 
the purported entities they feature. It is an ersatz from of realism that recom-
mends belief in the existence of entities that have such ambiguous metaphysical 
status” (Ladyman 1998, 419-20). 
 
Ladyman (1998) takes this under-determination as a strong motivation for ab-
andoning an ontology of objects altogether. The alternative he endorses—
namely OSR—posits a world made entirely of ‘structure’.74 Just what structure is 
supposed to be remains rather vague in the OSR literature. The term is often 
used as if it refers to the set of relations that obtains in the world (without relata, 
of course). Rather more vaguely, it might be said that structure is whatever is 
captured by the equations of mathematical physics without asserting anything 

                                                 
74 See (Ladyman 2007; Ladyman et al. 2007). 
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about the natures (monadic properties, identities, etc.) of any objects ostensibly 
related by those equations. Whatever structure is, adopting an ontology that po-
sits only structure is supposed to free us from the under-determination that pla-
gues any attempt to provide a particle ontology for QM. By granting ontological 
primacy to structure, we supposedly obviate the choice between the view of par-
ticles as non-individuals or as entities with non-physical haecceities.75 
 
The second major motivation for OSR in particular and structuralism in general 
has to do with the problem of theory succession. OSR has its intellectual roots 
in an epistemic program that runs back at least as far as Poincaré (1952). Epis-
temic Structural Realism (ESR) amounts to something like the claim that all we 
can know about the world is structure. This is in contrast to the more radical 
claim of OSR that all there exists in the world is structure. Both ESR and OSR 
are attractive for the realist in part because they each offer a means of defusing 
the ‘pessimistic meta-induction’. Larry Laudan (1981) is typically cited as provid-
ing the definitive form of this argument, and so we’ll consider Laudan’s formu-
lation. As he presents it, the pessimistic meta-induction invokes a history of on-
tological discontinuity in scientific interpretations as an objection to a prominent 
realist argument that in turn is predicated on the cumulative nature of science. 
The realist argument in question is abductive and runs as follows: 
 

C1) If earlier theories in a scientific domain are successful and thereby, ac-
cording to realist principles…approximately true, then scientists 
should only accept later theories which retain appropriate portions of 
earlier theories; 

C2) As a matter of fact, scientists do adopt the strategy of (C1) and man-
age to produce new, more successful theories in the process; 

C3) The ‘fact’ that scientists succeed at retaining appropriate parts of ear-
lier theories in more successful successors shows that the earlier theo-
ries did genuinely refer and that they were approximately true. And 
thus, the strategy propounded in (C1) is sound. 
(Laudan 1981, 36) 

 
Laudan argues that C1 requires a continuity of ontology in the sense that the 
referents of at least some theoretical terms must be preserved across theory 
change. In order to satisfy (C1), each successor theory—in some suitable limit 
taken under appropriate boundary conditions and in the region of empirical 
overlap with the old theory—must contain the theory it succeeded, including its 
interpretation. That is, the successor theory must—in some suitably restricted 
fashion—make at least some of the same claims about entities, processes, and 

                                                 
75 There is a similar argument from diffeomorphism invariance in GR [see e.g. (Ladyman et 
al. 2007, Sec. 3.2; Pooley 2005; Stachel 2002)]. 
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properties that the original theory made when interpreted. Those claims that are 
invariant across theory change are precisely those which the realist argues are 
probably true. However, says Laudan, the history of science suggests that such 
ontological claims are rarely preserved. 
 
This argument against (C1) constitutes the ‘pessimistic meta-induction’, and the 
conflict between the history of theory succession and the aforementioned argu-
ment for realism is what I take to be the ‘problem of theory change’. The realist 
needs to account for the apparent lack of continuity in theory change if he is to 
preserve one of his strongest arguments in favor of realism. 
 
Structuralism—in either epistemic or ontological forms—is supposed to resolve 
the problem of theory change by making science look far more cumulative. 
While successive theories may not preserve the entities posited by their prede-
cessors, they supposedly retain the ‘structure’. Of course, to flesh out such a po-
sition requires one to take a stand on just what constitutes structure. It is not 
clear that any convincing account exists that can do what is asked of it. In the 
last section of this chapter, I’ll offer a few reasons to suspect that no such ac-
count will be forthcoming. In the next section, however, I restrict the discussion 
to the impact of the incompatibility result of Chapter 6 on the argument for 
OSR that derives from underdetermination in the interpretation of QM. 
 

9.3 Undermining Underdetermination 
At first blush, it appears that the general incompatibility between PI and MA 
weighs in favor of OSR. My argument extends to any theory which incorporates 
PI, while the original argument from under-determination applied only to QM. 
I’ve thus ruled out particle interpretations for a broad class of theories rather 
than one in particular, and this suggests a pervasive problem with object ontolo-
gies. The proponent of OSR might take this as further evidence that we ought 
to quit thinking in terms of objects and simply learn to love structure instead. 
This picture is badly mistaken. By eliminating particle interpretations , the in-
compatibility of PI and MA actually dissolves the underdetermination which 
initially motivated OSR. At the same time, it leaves open the possibility of alter-
native object ontologies—it is a mistake to take evidence against particles as 
evidence against objects altogether. 
 
First, let’s consider the support for OSR that ostensibly derives from the under-
determination of ontology by physics in the case of QM. In particular, let’s con-
sider each of the competing ‘packages’ for interpreting the theory. On the one 
hand, there is the ‘Received View’ which asserts that quantum particles are nu-
merically distinct entities that nonetheless lack identity. This package is simply 
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incoherent. As I have argued elsewhere (Jantzen 2010), cardinality (and thus 
numerical distinctness) is inseparable from identity—a collection of entities 
without identities simply has no determinate cardinality. Thus, rather than 
represent one of two equally viable particle interpretations, this first package—
were it somehow forced upon us by the physics—amounts to a reductio against a 
particle ontology. Of course, the claim that there exist numerically distinct par-
ticles is not forced on us by the physics. Any argument one might offer in favor 
of the claim that a certain number of particles have been counted in some expe-
riment can just as well be taken as evidence for the claim that a certain magni-
tude has been measured for a discrete property of some spatial volume. This is 
the SOI interpretation of the data, and SOI is just one example of an interpreta-
tion that allows us to retain our well-developed theory of cardinality when 
speaking about objects. There are likely others. Thus, the premises supporting 
the first particle package really support an argument against particle ontologies 
while at the same time suggesting ways to construct alternative object ontolo-
gies. 
 
Second, consider the package that takes particles to be individuals but supposes 
as a brute fact that certain states are inaccessible. The bulk of this essay has been 
an argument to the effect that this is not a coherent view either. If the putative 
particles have identities—as indeed they must if they are to be the sort of enti-
ties of which MA speaks—then it is still the case that PI prevents them from 
bearing properties with even approximate independence. Thus, there is no via-
ble particle interpretation for distinct particles either. Without identity, talk of 
particles is meaningless; grant the particles identities and the account is untena-
ble.  
 
At this point, it might still look as if I’ve merely strengthened the case for OSR. 
I’ve argued that the under-determination which was supposed to push us away 
from particle accounts does not actually leave the choice of particle ontology 
undetermined—there simply are no viable particle ontologies. Though the mo-
tivation provided by underdetermination has vanished, it looks like an ontology 
that eschews objects is the best remaining option. But to jump to the OSR con-
clusion is to move too quickly. This is because the incompatibility of PI and MA 
does not rule out other object ontologies compatible with the physics. In partic-
ular, SOI as it was developed in the previous chapter is proof positive that there 
are viable object ontologies. Thus, while the traditional realist cannot help him-
self to an ontology of particles, he still has available at least one ontology that 
retains objects which bear properties and stand in relations of identity. OSR is 
therefore not the last ontology standing—its acceptance requires a positive ar-
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gument for superior value. For this reason, it is not clear why OSR should be 
seen as an attractive alternative. 
 
To sum up, the two packages to which the underdetermination argument refers 
are both inviable. However, these two packages do not exhaust the possibilities. 
Object ontologies are still available—in particular SOI—and so no motivation 
for OSR is to be derived from the underdetermined interpretation of QM. In-
stead, one would need to give reasons why some specific OSR account fares 
better than SOI for QM. In the absence of such an account, we may as well re-
tain objects, albeit without particles. 
 

9.4 Theory succession, OSR, and SOI 
What of the problem of theory change, the second principal motivation for 
adopting OSR? Here I can only provide some suggestive observations. In par-
ticular, there are reasons to suspect that both the incompatibility result and the 
availability of SOI work against the realist of either stripe. The incompatibility of 
PI and MA forces the traditional realist toward an alternative such as SOI. Yet 
the way in which SOI was constructed—though it provides the realist with a 
way to avoid the incompatibility of PI and MA—suggests that the continuity of 
ontology required by the traditional realist is too cheaply purchased. The propo-
nent of OSR was right about underdetermination, but pointed to the wrong 
space of options. The manner in which SOI was constructed suggests the possi-
bility of indefinitely many alternatives that would allow one to retain features of 
any given ontology. This seriously undermines the claim that the retention of 
ontology is indicative of truth. But again, this need not push us into the arms of 
OSR. It looks like any substantive account of OSR will suffer similar problems. 
Thus, there is reason enough for both the traditional realist and the OSR pro-
ponent to be uncomfortable. 
 
To see how neither SOI nor OSR are likely to help the realist with the problem 
of theory change, let me cast the problem in the terminology of Chapter 4. 
When we speak of ‘theory change’ we are talking about replacing what I would 
call a family of theories with another. Any family of theories of mathematical 
physics (e.g. Hamiltonian mechanics) consists of a class of mathematical spaces 
(e.g. the class of n-dimensional phase spaces) along with a class of systems of 
equations (e.g. the class of Hamilton’s equations of motion, with one set of equ-
ations for each combination of Hamiltonian and specification of the degrees of 
freedom in the system). Each theory in a family is associated with a class of 
models, and each class of models maps to a class of interpretations. For the in-
terpretation of any given model, we can in principle separate the minimal por-
tion which represents only observable features of the world from the remainder 
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which—according to the realist at least—represents unobservable entities or 
processes whose existence accounts for the observable facts.76 To simplify mat-
ters, I will consider theory succession in terms of a pair of representative theo-
ries from each family of theories. 
 
If (C1) is to do any work for the realist, it must be the case that, in changing 
from one theory TO to its successor TS, parts of the interpretations of TO are 
preserved beyond the minimal claims about observables. Let I(TS) be the class 
of interpretations of TS and let I(TO) stand for the class of interpretations of 
TO. Then there must be some subclass Isub(TS) μ I(TS) with the following 
property: for most x 2 I(TO) there exists a y 2 Isub(TS) such that there is an 
approximate equivalence between x and y . Furthermore, the approximate equi-
valence must obtain between full interpretations, not merely the components of 
each interpretation that correspond to observables. 
 
A couple of examples from the history of electrodynamics might help to cut 
through the tangle of terminology. Consider first the phenomenon of refraction. 
When light passes from one medium to another with a different index of refrac-
tion the apparent ray is deflected. The angles relative to the vertical line perpen-
dicular to the interface made by the incoming ray (μin) and the outgoing ray 
(μout) are given by: 
 nin sin(μin) = nout sin(μout) (9.4.1) 
The constants nin and nout are the indices of refraction of the medium before 
and after the interface respectively. In Laplace’s corpuscular theory (circa 1800), 
light constitutes a large number of moving particles which obey some simple 
equations of motion (Frankel 1976). From these equations one can derive 
(9.4.1). If we take Equation (9.4.1) to constitute a theory in its own right (in con-
junction with an appropriate 4-D configuration space), then the models consist 
of two ordered pairs < nin; μin >;< nout; μout >. According to Laplace, the 
interpretations of these models involve descriptions of streams of particle with 
various dynamical properties.  
 
Laplace’s theory proved insufficient to account for some puzzling effects of po-
larization. Consider the transmission of light through two linear polarizers. The 
intensity of the light exiting the second polarizer, S , is a simple function of the 
angle between the transmission axes of the two polarizers: 

                                                 
76 This is not to say that we could strip away the parts of a theory that are interpreted in terms 
of unobservables. If we could, then the theory would contain a great deal of surplus struc-
ture, at least with respect to its capacity for generating empirical predictions. I am only claim-
ing that we can separate the parts of an interpretation that assert things about observables 
(e.g. propensities for measurement outcomes) from those that assert things about the exis-
tence and properties of unobservable entities (e.g. the properties of microscopic particles). 
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 S(μ) = Smax cos2(μ) (9.4.2) 
 
The constant Smax is the maximum transmitted intensity. This relation is known 
as Malus’ Law, and was discovered in the early 19th century by Étienne-Louis 
Malus, who had been working on the problem of double refraction(Frankel 
1974). Laplace’s dynamical theory lacked the resources to account for this rela-
tion. Largely for that reason, we can say it was succeeded by that of Malus him-
self, who accounted for the new phenomenon by attributing more properties to 
the corpuscles of light. It is inessential to consider the details here, but Malus’ 
theory retained the Laplacian dynamics used to derive (9.4.1). Thus, we can con-
sider Malus to have provided a new theory of polarization and a successor 
theory of refraction. Now, the models of Malus’ theory of refraction (TO) and 
Laplace’s theory (TS) are identical. For any given interpretation, there is also 
substantial overlap. Not only do the interpretations of Malus contain the same 
assertions concerning observables like the angle of refraction, but they retain all 
of Laplace’s property ascriptions. There are more properties attributed to cor-
puscles in Malus’ account, but the ontology of Laplace has been retained in full. 
So—even though I have not given an account of approximate equivalence in 
this case—it is plausible to consider every model of I(TO) to be approximately 
the same as a corresponding model in I(TS). This is the sort of continuity the 
traditional realist requires. 
 
Consider instead the succession of Malus’ theory of polarization (which we’ll 
suppose is restricted to Equation (9.4.2)) and Maxwell’s account of the same. 
Again, we needn’t concern ourselves with the details. Suffice it to say that in this 
case the equations comprising each theory are the same, as are the models. 
However, in this case, each model for Malus corresponds to claims about the 
properties of corpuscles while the interpretations of Maxwell’s theory contain 
only descriptions of the state of a disembodied electromagnetic field. Beyond 
the minimal overlap in assertions about observables, these interpretations are 
entirely different. This is the sort of succession that—if widespread—is proble-
matic for the realist. 
 
What the construction of SOI suggests is that the alignment of the unobservable 
portions of the interpretations belonging to a theory and its successor is arbi-
trary, or at least very flexible. The observable portions of interpretations must 
coincide. This much the non-realist admits. But there seems to be little con-
straint on the remainder. SOI was built by fixing the observable portion and 
then reconfiguring the rest to achieve the desired result—an object ontology 
free from conflict with PI. The problem in short is that the interpretation of a 
theory’s models in terms of unobservables is underdetermined by the models of 
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a theory. This problem is similar to, but not identical with the problem of theory 
under-determination in which the formulation of a theory is underdetermined 
by any finite set of observations. The point here is that, without both the right 
sort of relation between the successor theory and that which it replaces and 
strong constraints on plausible interpretations, the argument from the retention 
of ontology collapses. The concoction of SOI suggests that the right inter-
theory relations can be said to obtain but only because the constraints on inter-
pretations are so weak. If I can pick whatever sorts of entities I like in order to 
populate the interpretations of a scientific theory, then there is no reason to take 
those entities seriously. 
 
I have ignored quite a few responses open to the realist at this point. For in-
stance, the interpretation of one ‘theory’ as I’ve narrowly understood the term is 
constrained by other theories as well as various pragmatic concerns such as fe-
cundity. I haven’t the space to pursue these objections. I merely want to suggest 
that both the incompatibility result and the construction of an alternate interpre-
tation can be construed as weighing against the traditional realist stance.  
 
Would the switch to OSR help? Perhaps, but it doesn’t look promising. If struc-
ture is supposed to be something that appears in the interpretations of a 
theory’s models—something like the set of relations that obtain or the logical 
form of that set of relations—then it looks as if we face the same dilemma as 
above. On one horn, we can embrace whatever interpretations were historically 
adopted but then we would be forced to concede that structure is not preserved 
across episodes of theory change. Think, for instance, of the different relational 
structures that obtain in the corpuscular interpretations of Malus’ theory versus 
the field interpretations of Maxwell’s. On the other horn of the dilemma, we 
could impose novel interpretations on old theories in order to secure continuity. 
But again, the worry is that it is too easy to do so. Beyond the relations connect-
ing observables, I am free to reconfigure interpretations as I please. This in-
cludes the elements of ‘structure’. So either structure fails to be preserved across 
theory change or it is preserved but only because we can always find an interpre-
tation that does what we want—interpretations in terms of structure are under-
determined. 
 
To avoid this dilemma, we might take structure to be a property of the class of 
minimal interpretations—those parts which refer only to observables. Then it is 
plausible to suppose that structure is preserved across theory change and that it 
is strongly constrained by specification of a theory. But then realism about 
structure wouldn’t be a very strong sort of realism—it would amount to the 
claim that there really do exist empirical regularities amongst observable quanti-
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ties. Whether we reify those regularities as ‘modal relations that exist in the 
world’ or not seems to be a distinction without a difference.  
 
Of course, these are only vague and intuitive considerations. One can only pass 
judgment on specific structuralist proposals. Examining the few proposals that 
are out there would take us too far astray. I’ll settle for the following specula-
tion: any account of structure that resolves the problem of theory succession 
collapses into a very weak sort of realism about empirical regularities. OSR is 
thus no better off at the end of the day than traditional entity realism. 



 

101 
 

Chapter 10 Conclusion  
 

10.1 Recapitulation 
I have tried to convince the reader that anyone predisposed to scientific real-
ism—to the position that our theories provide true descriptions of the unob-
servable contents of the world—ought to favor particle ontologies. Those ar-
guments which support realism in general tend to favor particle ontologies in 
particular. In Chapter 2, I defended this claim with the following argument: 
 

Argument for Particles: 
(P1) EDiv is true. 
(P2) Any ontology that entails EDiv is better supported by the 

fact of EDiv than any ontology—particle or otherwise—
that does not. 

(P3) MA is the logically weakest particle ontology and it entails 
EDiv. 

(P4) Every major scientific interpretation that posits particles 
(atoms, electrons etc.) has been compatible with MA, in-
cluding QM (if PI is dropped).  

(P5) The realist should favor particle ontologies compatible with 
MA. 

 
This argument in favor of particle ontologies suffers all the deficiencies of a like-
lihood argument and is at best suggestive. But the argument, along with the 
sheer ubiquity of the particle interpretation in scientific discourse, motivates a 
consideration of whether such a view is consistent with our best physics. It is 
not. The bulk of this essay constitutes an argument for the conclusion that any 
theory containing PI is strictly incompatible with MA or any of its derivative 
interpretations. This latter incompatibility argument, completed in Chapter 6, 
can be glossed as follows: 
 

Incompatibility: 
(I1) MA requires particles to bear state-dependent properties 

approximately independent of one another (Chapter 3). 
(I2) PI requires all particles in the interpretation of a model to 

possess identical properties (Chapter 6). 
(I3) PI prevents particles from bearing properties even approx-

imately independent of one another (Chapter 6). 
(I4) If PI, then not MA and vice versa. 
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(I5) PI is empirically necessary (Chapter 5). 
(I6) MA is false—there are no particles. 

 
If the incompatibility argument is sound, then the deeply entrenched view of the 
world described in Chapter 1 is untenable. While laymen and scientists alike 
speak of atoms as composites of protons, neutrons, and electrons, statements of 
this sort cannot literally be true. Whatever the world is made of, it isn’t particles. 
Of course, this rejection of particles is predicated on the assumption that any 
empirically adequate microphysics of the future will retain PI. This may be 
false—the future may once again offer us a physics compatible with MA. But 
until such time, the scientific realist must seek alternatives. 
 
Such alternatives exist, at least if we restrict our attention to QM. In Chapter 8 I 
sketched an interpretation which I called SOI. This interpretation posits spatial 
volumes as the fundamental objects of the world. SOI avoids conflict with PI 
and entails EDiv. But it has its shortcomings. For one, it is incompatible with 
special relativity. It is also formally awkward. Whether these deficiencies can be 
corrected in a variation of this approach which takes spacetime volumes as ob-
jects along the lines of the proposal by Wallace and Timpson (2009) remains to 
be seen. Either way, it may be worth exploring the consequences of SOI for 
QM. As I stressed in Chapter 2, interpretations determine the form of approxi-
mations and guide theory extension—SOI may inspire some novel physics in 
both respects. 
 
Finally, we were led to ask whether SOI bolsters the case of the scientific realist 
or if instead the incompatibility between PI and MA should incline one to modi-
fy or reject the realist project. In the preceding chapter, I argued that, while SOI 
is not necessarily a salve for realism, the incompatibility result ought not to lead 
one into the arms of OSR. I won’t rehearse those arguments again. The upshot 
is that the two most appealing options are an abandonment of the sort of scien-
tific realism with which we have so far been concerned, or the reconfiguration 
of our scientific interpretations along lines suggested by SOI. If we choose the 
latter, then much work remains to be done. In the next section, I’ll close this 
essay by considering a puzzle that challenges any realist interpretation of micro-
physical theory: given a particular ontology of microphysics, what is the correct 
ontology for the macroscopic world? 
 
 

10.2 What are macroscopic objects? 
According to the traditional particle interpretation that still permeates the special 
sciences, macroscopic objects are conglomerates of particles. The particles mak-
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ing up an object—such as a stone or a human being—are typically distinguished 
from particles outside the object by spatial proximity, inter-particle forces of 
attraction, or some combination thereof. So for instance, the four-centimeter-
wide octagonal crystal of fluorite on my shelf is a macroscopic object. In the 
canonical scientific view, it is composed of atoms of calcium and fluoride. These 
particles—which bear properties such as charge and position independent of 
one another—are bound together via strong electromagnetic forces which act 
only between particles in the crystal and not between particles of the crystal and 
those outside of it (e.g. the air molecules that surround it). Furthermore, all of 
the particles of the crystal are contiguous. In the canonical view, a macroscopic 
object is a coherent assembly of adjacent particles.77 
 
The canonical view cannot be right if the incompatibility argument is sound. 
Our best microphysics is incompatible with a particle interpretation. Therefore, 
whatever macroscopic objects are, they cannot be conglomerates of particles.78 
So what might they be? SOI offers an answer for the realist. To see this, it will 
help to clarify what SOI says about the putative micro-objects of the particles 
view. According to this interpretation, spatial volumes are the objects out of 
which the world is made. These volumes possess certain properties with integer 
magnitudes. More accurately, they possess properties the possible values of 
which are representable by the integers. In the SOI account, ‘particles’ are not 
objects in their own right, but may be identified with bundles of co-occurring 
properties that are instantiated by spatial volumes. So for instance, in the particle 
view one might say that a fast-moving electron passed through a particular vo-
lume of space. According to SOI, this is really saying that a pair of property val-
ues for charge density and momentum flux were momentarily highly probable 
for that volume and the same values were highly probable for adjacent volumes 
just before and after the time of interest. The view being urged here is roughly 
that of an ocean wave. Waves are not objects themselves—they lack appropriate 
identities—but are rather bundles of properties instantiated by different vo-

                                                 
77 I am ignoring the metaphysical possibility of distributed objects. While ‘water’ for instance 
fails to be a single object under the account I’ve sketched, there are other notions of ‘object’ 
that would include as an instance all water in the universe no matter how dispersed. What’s 
more, depending on one’s stance concerning composition, it may be the case that every set 
of objects, no matter how unrelated, constitute an additional object [see, e.g. (Van Cleve 
2008)]. It is not my intention to take a stance on this metaphysical debate. Rather, I intend to 
offer a plausible reconstruction of the typical notion of a macroscopic object as it appears in 
scientific discourse. 
78 The ‘Received View’ of particles in QM (discussed in Chapters 3 and 9) invites the follow-
ing pseudo-problem. If particles are non-individuals but the macroscopic objects they com-
pose are individuals, why and how does this macro-individuality emerge? There is a 
straightforward answer suggested by Messiah’s discussion of independent groups of particles 
(see Chapter 7). But developing the response is irrelevant here since I have argued that the 
Received View is incoherent. 
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lumes of seawater at different times. This is how SOI forces us to envision the 
particles we previously took to be objects. 
 
How does this help us solve the problem of macroscopic objects? The idea is to 
simply scale up the revised notion of a ‘particle’. SOI commits us to the claim 
that macroscopic spatial volumes are the genuine objects that bear properties, 
but as was the case with ‘particles’  it is not to these volumes we refer when ca-
sually speaking of, say, crystals of fluorite. Just as with the putative particles, one 
could instead understand casual references to macro-objects like tables as actual-
ly referring to co-occurring bundles of properties that are instantiated at any one 
time by some spatial volume. In this view, a macro-object is some set of ma-
croscopic properties such as mass, mass distribution (i.e. shape), momentum, 
etc. For instance, when I refer to my hefty fluorite crystal, I can be understood 
as referring to a collection of properties that includes an octagonal distribution 
of mass, a propensity to transmit green light and absorb red, an aggregate mass, 
etc.  
 
Reducing macroscopic objects to bundles of properties instantiated by spatial 
volumes requires some care when talking about the parts of a macro-object. By 
the parts of a macro-object, one might mean either its spatial parts, i.e. the vari-
ous spatial volumes that instantiate the properties identified with the object at 
some instant of time, or one might mean some other bundle of co-occurring 
properties that are associated with the macro-object. That is, one might mean an 
additional macro-object that is included in or composes the first. So for in-
stance, my crystal has as parts a number of fragments—like the upper pyra-
mid—that are macro-objects in their own right in that they are bundles of co-
occurring properties such as a mass (roughly half that of the whole crystal) and 
density. There is significant overlap between these two notions of ‘part’—the 
co-occurring properties which constitute a macro-object part are always instan-
tiated by a subset of the spatial volume that instantiates the whole object. Thus, 
parts that are macro-objects are instantiated by volumes that are parts of the 
original volume.  
 
This view of macro-objects as co-occurring properties entails one interesting 
consequence: macro-objects must obey Leibniz’s PII. Because macro-objects in 
the SOI account are individuated on the basis of their properties—they just are 
bundles of properties instantiated at different times by different spatial vo-
lumes—there cannot be two distinct macro-objects with identical properties. 
This is not to say that there cannot be two distinct macroscopic spatial volumes 
with identical properties. It is just to say that, in that case, it is meaningless to 
ask which of the two is object A and which is object B—property bundles only 
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possess identity relations like objects insofar as they differ from one another in 
at least one property. 
 
It is true that this account of macroscopic objects does not comport perfectly 
with the way we casually talk about them. In our informal language, we speak of 
macro-objects as if position is a property. If we are to give an account of macro-
objects from the perspective of SOI, we must instead view position as a refer-
ence to the objects which instantiate the bundle of properties comprising an ob-
ject, not to a property. But this would seem to be a very mild modification of 
our intuitive ontology of the immediately observable world, particularly when 
compared to competitors such as eliminative structural realism. Whether or not 
this account of macro-objects accords with our common mode of speaking is 
ultimately irrelevant. The adoption of SOI was motivated by a concern for ex-
plaining EDiv, not for rationally reconstructing linguistic practices. This motiva-
tion remains even if we don’t like the modest linguistic mismatch.  
 
Of course, bending our intuitions to fit the SOI account is only necessary if we 
seek a realist reading of microphysics. The fact that a coherent account of ma-
cro-objects can be given from SOI does not mean that we should be realists 
about spatial volumes or any other entity posited by an interpretation of QM. In 
light of the discussion of the preceding chapter, one may simply wish to aban-
don or restrict the realist project altogether, obviating the problem with macro-
objects. Nothing I have said here will settle the question of realism. At best, we 
can summon the ghost of Descartes and say that perhaps, just perhaps, the 
world is made of space after all. 
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