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Abstract 

A promising recent development in molecular biology involves viewing the genome as a mini-

ecosystem, where genetic elements are compared to organisms and the surrounding cellular and 

genomic structures are regarded as the local environment. Here we critically evaluate the 

prospects of Ecological Neutral Theory (ENT), a popular model in ecology, as it applies at the 

genomic level. This assessment requires an overview of the controversy surrounding neutral 

models in community ecology. In particular, we discuss the limitations of using ENT both as an 

explanation of community dynamics and as a null hypothesis. We then analyze a case study in 

which ENT has been applied to genomic data. Our central finding is that genetic elements do not 

conform to the requirements of ENT once its assumptions and limitations are made explicit. We 

further compare this genome-level application of ENT to two other, more familiar approaches in 

genomics that rely on neutral mechanisms: Kimura’s Molecular Neutral Theory and Lynch’s 

Mutational Hazard Model. Interestingly, this comparison reveals that there are two distinct 

concepts of neutrality associated with these models which we dub ‘fitness-neutrality’ and 

‘competitive neutrality’. This distinction helps to clarify the various roles for neutral models in 

genomics, for example, in explaining the evolution of genome size.     
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1. Introduction 

There is growing enthusiasm in the fields of molecular biology and genomics for the prospect of 

an ecological perspective on the genome (Brookfield 2005; Le Rouzic et al. 2007; Venner et al. 

2009; Linquist et al. 2013). The central idea is that genomes can be viewed as ecosystems in 

miniature, where particular DNA sequences are compared to organisms and the surrounding 

genetic and cellular structures are regarded as the local environment. Concepts and models from 

ecology might then be used to document and explain differences in the abundance and 

distribution of genetic elements among genomes. This approach has been especially promising 

for understanding the dynamics of transposable elements (TEs) – sequences of DNA that are 

capable of movement and replication within genomes (Brookfield 2005, Linquist et al. 2013). 

However, it is becoming clear that this approach requires careful attention to how one applies 

ecological concepts and models at the genomic level. For instance, it is important to be explicit 

about the focal entity under investigation: which types of genetic element are being identified as 

the organism-like entity, and what are the relevant “environmental” factors with which they 

interact? It is also helpful to distinguish ecological from evolutionary influences at the genomic 

level, something that has not been done with sufficient clarity in previous studies (Linquist et al. 

2013). Detecting purely ecological influences at the genomic level involves testing whether local 

environmental factors (e.g., chromatin structure, GC content) co-vary with genetic elements of a 

given type, independent of the evolutionary relatedness of the elements in question. Elsewhere, 

we report that ecological factors do in fact influence the composition of transposable elements 

within the Bos taurus genome (Saylor et al. 2013).  It is yet to be determined whether such intra-

genomic ecological factors are operative within the genomes of other species.  

 Of particular interest in the development of ecological approaches to the genome is whether 
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neutral ecological models might be employed at the genomic level. Recent years have seen 

growing interest in neutral ecological models as they are applied to communities of whole 

organisms (Hubbell 1997, 2001; Rosindell et al. 2010, 2011, 2012). In that context, a focal point 

of controversy has involved the question of when (if ever) neutral processes can be inferred from 

neutral patterns: i.e. does conformity with the predictions of a neutral model imply that a 

community is governed primarily by neutral processes? Within ecology, there has been a 

growing sense of caution surrounding this issue (Cottenie 2005, Dornelas et al. 2006, McGill et 

al. 2006, Griffiths 2010, Clark 2012). In what follows, we review some of the arguments calling 

for a tempered use of neutral models in ecology and consider their implications for an ecological 

approach to the genome.  

Notwithstanding potential uses of ecology at the genome level, it is important to note that 

neutral models are controversial within ecology proper. As we argue, applications of neutral 

models encounter problems when they: (1) neglect known ecological differences among the 

kinds of units being investigated (e.g., species or TE family membership), (2) ignore matters of 

scale, or (3) rely on questionable assumptions about parsimony in order to infer process from 

pattern. In what follows, we illustrate how these problems emerge in a previous attempt to apply 

ecological neutral models to the genome (Serra et al. 2013). We also explore how these 

considerations may be useful for understanding some of the controversy surrounding another 

recent model of genome evolution (Lynch and Conery 2003; Lynch 2007, Lynch et al. 2011), 

even though it is not explicitly neutralist.   

 

2. Neutral Theory in Community Ecology 

The Unified Neutral Theory of Biodiversity was developed by ecologist Stephen Hubbell (1997, 
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2001) as a challenge to conventional wisdom in community ecology. Prior to this, community 

ecologists typically endeavoured to explain the relative abundance and diversity of species 

within a community in terms of their suitability to available niches (Lack 1947; MacArthur 1961; 

Mayr and Diamond 2001). In stark contrast, Hubbell’s neutral theory – also called Ecological 

Neutral Theory (ENT) – proposes that species-specific differences are irrelevant to population 

growth rates and their effect on abundance and diversity. Instead, he argued that a handful of 

“neutral” processes (including birth, death, dispersal, and speciation) are sufficient to explain 

abundance and diversity within most communities.     

At least ten different neutral ecological models have since been developed to explore 

these ideas (reviewed by McGill et al. 2006). All of them share two core assumptions. First, they 

assume that all individuals existing within the same trophic level can be assigned equal 

likelihood of reproduction and death, regardless of species membership – or, what is also 

sometimes described as “equi-probable success”. Second, these models imagine a 

metacommunity structure wherein multiple local communities are connected by dispersal. In 

addition to these two core assumptions are two auxiliary assumptions, specific to some but not 

all neutral models. Often, model-communities are assumed to have fixed carrying capacity. This 

generates a “zero-sum” dynamic in which individuals compete for a limiting resource. Hubbell 

(2001) originally took the zero-sum assumption to be an essential feature of neutral models, but 

subsequent models generate similar dynamics while allowing, for example, for constant positive 

population growth (e.g.Volkov et al. 2003). A second auxiliary assumption is that species have 

limited dispersal distances. This assumption can create spatial autocorrelation among species, a 

ubiquitous aspect of biological communities (Fortin and Dale 2005).   

 Historically, assessments of neutral ecological models have made extensive use of rank-
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abundance curves (Hubbell 2001; Rosindell et al. 2010). These graphs plot the log abundance of 

each species in a community against the rank abundance of all species within that community. 

The curvature of the resulting graph is then taken to provide a basis for comparing a model’s 

predictions with empirical data. McGill et al. (2006) noted that neutral models generate a 

hyperbolic (hollow curved) distribution known as a zero-sum multimodal distribution (ZSM). 

Most known communities approximate the ZSM. This apparent predictive success initially led 

Hubbell and colleagues to infer that neutral processes predominate in nature and that species-

specific effects are therefore comparatively weak (Hubbell 1997, 2001; Rosindell et al. 2010).   

However, this inference from pattern to process has generated considerable critical 

discussion. One set of problems stems from the use of the ZSM as a test of neutral models. Most 

notably, there is a wide range of non-neutral conditions under which a community might exhibit 

a hollow-shaped curve. Hence, this distribution does not reliably indicate that species-specific 

effects are absent. More generally, a variety of non-neutral models produce identical patterns to 

neutral models. Marquet et al. (2003) identified more than 30 such cases where non-neutral 

models generated equivalent predictions to neutral models. Importantly, these included many 

plausible ecological scenarios.   

A different problem with the usage of ZSM to test neutral-model predictions is the low 

information content present in the data. Since all that is needed are species abundances, these 

curves are relatively easy to construct. However, there are more data-intensive tests of ENT, 

such as comparing the variation explained by proxies for niche versus neutral processes in a 

multivariate context (Cottenie 2005). Using this approach in an analysis of 158 datasets, Cottenie 

(2005) found that neutral processes were only evident in 8% of the data sets. 
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In the face of these criticisms, some proponents of ENT have suggested that neutral 

models can nonetheless play an important role as null hypotheses. This is a logically weaker 

proposal than Hubbell’s original suggestion: conformity with neutral-model predictions is no 

longer taken to reveal that a community is shaped primarily by neutral processes. Instead, this 

approach assumes neutrality as the default condition, placing the burden of proof on advocates of 

niche-based models to demonstrate otherwise.  

A fundamental requirement of hypothesis testing, however, is that H1 and H0 make 

distinct (non-overlapping) predictions. The philosopher John Beatty (1987) raised this issue over 

two decades ago in the context of molecular neutral theory: since changes in allele or trait 

frequency can be explained either by selectionist or by neutral models, he argued, neutral theory 

cannot serve as an adequate null hypothesis for testing adaptationist hypotheses. Yet some 

ecologists persist in defending this process-from-pattern use of ENT despite the problem of 

overlap. Their argument is that neutral models are more parsimonious than niche-based models 

(Rosindell et al. 2011; 2012). If two competing hypotheses have equal explanatory value, it is 

argued, the simpler one should prevail.  

But this argument is problematic for several reasons. First, there is no single definition of 

parsimony: a hypothesis that seems relatively parsimonious from one perspective appears 

convoluted in other respects (Sober 1994). For example, neutral models seem parsimonious 

because they do not discriminate among species. However, they generally contain more tunable 

parameters than many niche-based models, making them relatively difficult to fit to data (Nee 

and Stone 2003). A further problem is that the parsimony argument prejudges the issue at hand.  

Placing the burden of proof on non-neutral hypotheses assumes that neutral processes are more 

influential in nature, and this is precisely what ENT aims to test.  
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In addition, it might be argued that the parsimony argument is entirely irrelevant to ENT 

because these types of models offer a poor explanation of community dynamics. Even under 

ideal circumstances, parsimony should be used only to decide among competing hypotheses that 

are otherwise equivalent in their explanatory success. Discarding a more explanatory hypothesis 

for one that is just simpler would run contrary to the basic aims of science. This raises the 

question of whether neutral models, considered as explanations, are on the same footing as their 

niche-based rivals. Some critics argue that ENT fails to describe the mechanisms driving 

community dynamics. According to Clark (2012), although ENT assumes that all species have 

the same likelihood of success, it is mathematically equivalent to a model in which species differ 

in success rates, but niches are encountered randomly by individuals. According to Clark these 

are two very different sorts of causal process and ENT fails to discriminate among them. Clark 

(2012) argues that ENT does not in fact model the absence of species differences; rather, it 

models the ignorance of species differences. When viewed in this light, perhaps ENT should not 

be lauded for its (alleged) parsimony so long as its explanatory status is in question. In our view, 

it remains a complex question as to whether neutral models are in fact explanatory and, indeed, 

whether they describe causal mechanisms at some level of abstraction (cf. Craver 2006). The 

main point is that, even if the other problems with the parsimony argument could be resolved 

(i.e. if a definition for “parsimony” could be agreed upon and the bias against niche-based 

models could be somehow compensated for), the matter would still not be settled: it remains a 

further question as to whether neutral models have the same explanatory power as their more 

mechanistically detailed rivals.  

It bears mentioning that despite these obstacles, ENT remains a popular framework 

within the discipline of ecology. In some cases, neutral models have persisted in an even weaker 
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form. For example, Wennekes et al. (2012) appeal to the philosophical doctrine of 

instrumentalism, which holds that scientific theories, generally, are mere tools for prediction and 

control of nature that cannot, in principle, explain the structure of underlying processes. This is a 

considerable concession given Hubbell’s original ambition, which was to uncover the processes 

driving species abundance and diversity in communities (Hubbell 1997, 2001). Other ecologists 

continue to use neutral models both as an approximation of observational data and as a null 

hypothesis, despite the well documented problems in doing so (see Clark 2012 for discussion). 

More constructively, McGill et al. (2006) have developed a rigorous framework for hypothesis 

testing in community ecology. They concur that neutral models are uninformative as null 

hypotheses. Instead, they propose a model-comparison framework in which realistic alternative 

models are ranked (as opposed to simply rejected or accepted) according to their degree of fit 

with data. The authors conclude that, according to this more rigorous framework, neutral models 

receive little empirical support.  

In sum, the past decade has seen steady theoretical progress surrounding the application 

of neutral models in ecology. The trend is a gradual weakening of neutral models in their logical 

status from good approximations, to useful null hypotheses, to occasional predictive devices. 

Perhaps the most important lesson to draw from this debate is that neutral-model predictions by 

themselves reveal little about the nature of ecological processes. The plausibility of a neutralist 

explanation depends not just on the predictive success of a neutral model, but also on how well 

the community conforms with the model’s assumptions. For example, if a community exhibits a 

ZSM distribution but it is known that species are very likely to be trophically different, then 

neutral-process interpretations should receive low prior probability. 

  

3. Ecological Neutral Theory at the Genomic Level 
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In a recent paper, Serra et al. (2013) made the first explicit attempt to apply ecological neutral 

models at the genomic level. In that case, distinct categories of element (retrotransposons, DNA 

transposons, satellites, simple repeats, tRNA, miRNA, RNA, and genes) were identified as 

different ‘genetic species’. Each chromosome was viewed as a local community with the nuclear 

genome at large serving as the metacommunity. Model simulations were then compared with 

whole genome data from seventeen species’ genomes. The abundances of genetic species 

exhibited the standard ZSM distribution predicted by neutral models, which Serra et al. (2013) 

then took to suggest that an underlying neutral process could be the cause:  “We are certainly 

aware that the fit of a neutral pattern does not necessarily imply the existence of a neutral process 

behind the pattern, but it does offer the simplest explanation consistent with current data” (2013 

p. 4).  

It is helpful to consider this genome-level application of ENT in light of the theoretical 

developments that have taken place within ecology. As noted, considerations of parsimony (ie. 

simplicity) alone do not licence the inference from neutral pattern to neutral process. Instead, one 

must consider whether neutral-model assumptions are biologically plausible as they pertain to 

the system under study. In this regard, it is useful to assess whether the core and auxiliary 

assumptions that are characteristic of (most) neutral ecological models are satisfied by the 

genomic ‘species’ analyzed by Serra et al. (2013).     

1. Equi-probable success among ‘species’. A particularly unrealistic assumption is that 

genetic elements have an equal likelihood of success regardless of their ‘species’ identity. 

This assumption is explicitly violated if one compares active transposons, whose copy 

rate is typically higher than average, to non-mobile elements. Even at this coarse-grained 

level, where mobile elements are lumped into a single category, it is a mistake to treat 
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them on par with non-mobile elements. Such differences continue to emerge at even finer 

levels of grain. Within the category of mobile elements there is an important functional 

distinction between DNA transposons, that employ a cut-and-paste mode of replication, 

and retrotransposons which employ a copy-and-paste strategy. Each mode of replication 

is associated with different genetic and cellular requirements that can influence an 

element’s replication rate and mobility (Havecker et al. 2004, Feschotte and Pritham 

2007, Han 2010).  Even within each of these functional categories, particular families of 

TE are known to vary, for example, in their preference for certain genomic regions or 

‘genomic habitats’ (Zou et al. 1995, Eickbush 2002, Neumann et al. 2011, Pardue and 

DeBaryshe 2011, Elliott et al. 2013, Kojima and Jurka 2013). Thus, some TEs appear to 

select genomic regions that are less vulnerable to removal by negative selection at the 

host level. Likewise among non-mobile DNA, there are differences in mutation rate 

among different regions. Protein-coding genes also experience differential magnitudes of 

positive or negative selection, especially as compared to many non-coding regions of the 

genome. It therefore seems methodologically egregious to lump these functional genes 

together in the same category with various forms of non-coding and mobile DNA, given 

that the mechanisms governing their replication and assortment within the genome are 

known to differ so substantially.  

Perhaps this point is best illustrated with an example from ecology where known 

differences among species are also sometimes ignored. Ecologists Rachata 

Muneepeerakul and colleagues (2008) developed a neutral model to predict species 

richness patterns in fishes across the entire Mississippi delta. The model, which assumed 

no differences among species in suitability to particular habitats, successfully predicted 



12 
 

abundance curves across the region. However, as the authors were careful to note: “it is 

crucial to recognize that neutral pattern does not imply neutral process” (Muneepeerakul 

et al. 2008 p. 222 ). A noteworthy limitation of this study is that different fish species are 

known not to have equivalent dispersal rates (Griffiths 2010). Species also varied in their 

modes of subsistence (piscivores, planktivores, benthivores, etc.) as well as other 

ecologically relevant factors. It is also significant that the study was conducted at a very 

coarse grain of spatial resolution, such that species-specific interactions tend to get 

overwhelmed by environmental heterogeneity (Olden et al. 2010). Our point is that such 

known differences among species undermine the accuracy and suitability of neutral 

models. The same point applies at the genomic level, where functional differences among 

genetic element ‘species’ are perhaps even more pronounced.  

2. Metacommunity structure. At first glance, it appears that chromosomes should serve as 

fairly discrete and well defined genomic communities. However, in order for multiple 

chromosomes to be viewed as a metacommunity, movement of elements within 

individual chromosomes must exceed the migration rate of elements among 

chromosomes. Some categories of element are likely to satisfy this requirement better 

than others. For instance, protein-coding genes, whose translocation depends largely on 

homologous recombination, are more mobile within than among chromosomes. 

Transposable elements are less likely to observe chromosomal boundaries, but even here 

some element families may be more highly localized than others. Such inconsistencies in 

intra- and inter-chromosomal mobility raise issues of identifying appropriate spatial 

scales for analysis. For an element with restricted dispersal ability, an individual 

chromosome might indeed qualify as the local community, but for a more nomadic type 
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of element, the community may encompass the entire genome. It would be misleading in 

such cases to use a single ecological neutral model to describe the behavior of a wide 

array of genetic elements since they do not belong to the same metacommunity.  

3. Zero sum dynamics and fixed carrying capacity. In traditional ecological communities, 

organisms at a given trophic level often compete for limited resources. Most neutral 

ecological models represent competition by imposing a fixed carrying capacity on these 

communities, such that a new individual cannot migrate until an available spot becomes 

vacant. It is questionable whether genomic communities exhibit this dynamic. In some 

species there appear to be fitness benefits associated with reduced genome size (e.g., 

hummingbirds; Gregory et al. 2009). Selection acting on the whole organism that limits 

genome size might effectively create a low carrying capacity for genomic elements. But 

this limitation is unlikely to generalize across all species – a simple fact that is 

demonstrated by the enormous diversity in genome size across animals and plants 

(Gregory 2005a; Bennett and Leitch 2005). Nor is it clear which other factor(s) besides 

physical space on the chromosome might serve as the genomic equivalent of a limiting 

resource (access to enzymes needed for transposition or availability of raw nucleotides 

may be plausible candidates).  

Moreover, some types of element (e.g. retrotransposons) actively incorporate 

themselves into a chromosome and thus increase genome size directly. Those newly 

established regions then become suitable ‘habitat’ for the colonization of additional TEs. 

This might be regarded as an interesting example of ecosystem engineering that occurs at 

the genomic level (cf. Wright & Jones 2006, Pearce 2011). Viewed from the perspective 

of ENT, however, the possibility that TEs are not resource limited in most eukaryotic 
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genomes implies that they violate yet another assumption common to most neutral 

models.  

4. Limited dispersal. The extent to which genetic elements migrate among chromosomes is 

highly dependent on the genomic ‘species’ in question. Transposable elements are much 

more mobile than other categories of genetic elements. Given the broad distribution of at 

least some elements within particular genomes, it is clear that not all TEs are limited in 

their capacity to disperse throughout a chromosomal metacommunity. Consider, for 

example, the hyper-abundant Alu element, which is present in more than 1 million copies 

in the human genome and is widely (though not uniformly) distributed across the human 

karyotype (Bolzer et al. 2005).  As noted, non-mobile elements (e.g., protein-coding 

genes) are more likely to satisfy this assumption than most transposons, but this merely 

reinforces the problems with treating elements of very different types in the same way 

within a single neutral model.    

In sum, the attempt by Serra et al. (2013) to apply ENT at the level of the genome exposes 

some challenges facing neutral models more broadly. We have argued that mere conformity with 

ENT’s broad-scale predictions (e.g. the ZSM curve) is an inadequate basis for inferring process 

from pattern. Nor is this inference justified on grounds of parsimony. Instead, one must pay close 

attention to the assumptions of ENT to determine whether they are violated by the genomic 

systems in question. This task can be especially challenging in the case of genome-level ecology, 

where the relevant entities and their environments are not well defined in comparison to those 

typically addressed by community ecologists. In this section, we have argued that the 

assumptions of ENT are often violated by the known properties of TEs. Given that transposable 

elements are a major component of most eukaryotic genomes (Gregory 2005b), it seems doubtful 



15 
 

that neutral models will serve as a useful tool for many genome-level ecologists.  

 

4. Molecular Neutral Theory 

Our finding in the previous section – that neutral ecological models may be inappropriately 

applied to entire genomes – raises important questions about other models in genetics that 

emphasize the role of neutral processes. In fact, ENT was partly inspired by the success of 

molecular neutral theory (Hubbell 2001). This raises the question of how these two theories 

differ.   

As in ecology, neutral models in molecular genetics first emerged as something of a 

challenge to prevailing orthodoxy. A common view prior to the publication of the influential 

work by Kimura (1968, 1969, 1983) held that the properties and components of genomes are 

shaped primarily by natural selection. For example, it was often assumed that alleles would be 

removed or fixed by selection even when the fitness differences between them were slight. The 

discovery that most populations contain an unexpectedly high amount of allelic diversity ran 

counter to this expectation. As a result, neutral models gained popularity among molecular 

evolutionists because they better explained these observations (Dietrich 1994). In this respect, 

the reception of neutral models within molecular biology differs markedly from the reception of 

neutral theory in ecology: in ecology there is, to date, no equivalent body of data that neutral 

models are unambiguously better able to accommodate than non-neutral models.  

 Another key distinction concerns the ways in which neutral models are employed as 

theoretical tools in the two disciplines. In molecular evolution, neutral models specify a baseline 

rate of expected allelic change given non-selective factors, including mutation rate and the 

relative influence of genetic drift as determined by population size. A significant departure from 

this baseline – involving either greater or lesser rates of change or observed variation – can be 
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taken as evidence that other evolutionary factors are at play, and often this includes natural 

selection.  

Beatty’s (1987) philosophical discussion about predictive overlap is relevant at this 

juncture. His concern was that, for a particular trait or locus, any amount of change predicted by 

a selectionist model could also be accommodated by a neutral model. This may be true if one’s 

focus is restricted to a limited number of loci. However, modern genomic methods implement 

more refined analyses that are designed to detect specific signatures of selection. This may 

involve an examination of patterns of variation at specific loci among populations, or, of 

comparisons of many loci within a single genome (e.g. Vitti et al. 2013; Berg and Coop 2014). 

Because most forms of natural selection deplete allelic variation, selectionist models often 

predict that a locus under selection will exhibit significantly less variation than other loci in the 

genome that have not been under selection. By contrast, neutral models predict much more 

consistent rates of change or amounts of standing variation across multiple, independent (i.e., 

unlinked) loci. A lack of variation across wide swaths of the genome is thus indicative of genetic 

drift via population bottlenecks or founder effects, whereas depauperate variation localized to 

particular regions is suggestive of natural selection on those (or closely linked) loci. Thus, the 

problem of predictive overlap has been overcome in molecular evolutionary biology through the 

development of more discriminating predictions associated with models of neutral processes, as 

well as increased availability of large-scale genomic data that allow investigators to test those 

predictions. The same degree of refinement is currently lacking for ENT. 

Perhaps the most important difference between the two disciplines, however, is that the 

term ‘neutral’ has a different meaning in molecular biology than it does it ecology. This can 

generate confusion, especially when applying neutral ecological models at the genomic level. In 
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the molecular sense, a genetic element is considered neutral if it has no impact on the fitness of 

the organism in which it resides. Thus, a ‘nearly-neutral’ insertion is one that has negligible 

effects on organismal survival and reproduction. Notice that this concept of neutrality is 

implicitly hierarchical, such that the neutrality of an element is determined by its impact on the 

fitness of the whole organism in which it resides. Ecologists, by contrast, use ‘neutral’ to refer to 

the absence of competitive differences among different types of entity – this was described earlier 

as ‘equi-probable success,’ a core assumption of ENT. This non-hierarchical sense of neutrality 

compares entities existing at the same level of biological organization, i.e. the same trophic level. 

For sake of clarity, we refer to the first kind of neutrality as ‘fitness-neutrality’ and to the second 

as ‘competitive-neutrality’. 

Over the past decade, models based on the differential inputs of selection versus neutral 

mechanisms have attracted renewed attention within evolutionary biology. This interest has been 

inspired to a significant extent by the work of Michael Lynch and colleagues (Lynch and Conery 

2003, Lynch 2007, Lynch et al. 2011). Their Mutational-Hazard Model offers a mechanism of 

how non-coding genetic elements (transposable elements, pseudogenes, introns, etc.) accumulate 

in some genomes. The model assumes that these elements have mildly deleterious effects on 

fitness. Because these detrimental effects are individually weak, whether or not such insertions 

are removed from populations by purifying selection depends on effective population size – that 

is, on the relative strengths of natural selection versus genetic drift. In large populations, 

selection is sufficiently strong to remove modestly deleterious elements despite small selection 

coefficients. In small populations, genetic drift is the dominant factor driving the evolutionary 

fates of such insertions, such that they may increase in number despite being slightly deleterious. 

The overall expectation of this model is that larger genomes evolve in taxa with small effective 
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population sizes.  

 Lynch (2011) maintains that the Mutational-Hazard Model is not a ‘neutral’ model 

despite the tendency for some of his critics to interpret it as such. Our distinction between 

fitness-neutrality and competitive-neutrality helps to clarify this debate over the precise status of 

Lynch’s model. Insofar as the Mutation Hazard Model assumes that non-coding insertions are 

mildly deleterious, Lynch is correct to insist that that these elements are not fitness-neutral, 

strictly speaking. It might be argued that Lynch nonetheless assumes that non-coding insertions 

are effectively fitness-neutral, at least when population size is small, since drift and mutation are 

the only factors determining genome evolution under these circumstances. But this difference 

between ‘strict’ and ‘effective’ fitness-neutrality is a fairly minor issue. A more pressing 

question concerns the relationship between population size and competitive-neutrality among 

different types of non-coding elements in Lynch’s model. As we shall now argue, the 

Mutational-Hazard Model assumes that different types of element are competitively-neutral in 

large populations. In this respect it shares a core assumption with genome-level ENT.   

A central piece of evidence offered in support of the Mutational-Hazard Model involves 

whole-genome comparisons among broad taxonomic categories –spanning phyla, kingdoms, and 

even domains (Lynch and Conery 2003; Lynch et al. 2011). These comparisons suggest that 

effective population size negatively correlates not only with genome size, but also with the 

number of transposable element copies, number and size of introns, and the retention of defunct 

gene duplicates. Hence, genome size and complexity are said to be greater in lineages with 

smaller historical effective population sizes. Perhaps the most striking pattern used to support 

this model involves a comparison among various prokaryotic and eukaryotic genomes. 

Prokaryotes, which are assumed to have population sizes that are orders of magnitude larger than 



19 
 

eukaryotes, tend to have much lower abundances of non-coding DNA. According to the 

Mutational-Hazard Model, the best explanation for this pattern is that eukaryotic genomes are 

dominated by evolutionary processes other than selection.  

 With these comparisons in mind, it seems clear that the Mutational-Hazard Model makes 

no assumption about the competitive-neutrality of different types of genetic element provided 

that effective populations are small. For example, in very small eukaryotic populations it does 

not matter whether TEs replicate at a higher rate than other types of non-coding DNA because all 

such sequences evolve as though they are effectively neutral. The point, as far as Lynch is 

concerned, is that all types of non-coding element tend to accumulate under these conditions, 

despite their negative impact on fitness. However, we argue that the model’s assumption of 

competitive-neutrality among different element types becomes relevant at large effective 

population sizes. As we have seen, Lynch and colleagues explain the relative paucity of non-

coding DNA within prokaryotes as a case of selection overpowering drift and mutation in large 

populations. This is just to assume that all types of non-coding DNA are equally subject to 

purifying selection under these circumstances. In other words, the Mutational-Hazard Model 

assumes that, as far as large effective populations are concerned, different types of non-coding 

element are competitively neutral precisely when they are no longer effectively fitness-neutral.  

This point becomes clearer when we consider some of the criticisms that have been raised 

against the Mutational-Hazard Model. As has been pointed out by Charlesworth and Barton 

(2004, 2007), even in large host populations, TEs can become established despite negative 

selection on the host provided that they exhibit a sufficiently high rate of transposition. In other 

cases, TE insertions may be significantly deleterious, either individually (e.g., if they have a 

propensity to disrupt gene function) or in the aggregate (e.g., as their repetitive nature promotes 
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illegitimate recombination) (Hedges et al. 2007, Belancio et al. 2009).  In these cases, the 

biological properties of the TEs themselves – and not simply the relative strength of genetic drift 

versus purifying selection based on host population size – would be a primary determinant of 

their rate of accumulation. Another way to put this point is that TEs are known to violate the 

assumption of competitive-neutrality, even in large populations. Thus, it is questionable whether 

their scarcity in prokaryotic genomes is explained by the Mutational-Hazard Model.  

Upon reflection, this objection to the Mutational-Hazard Model should by now seem 

familiar. The problem stems from a failure to take into account known differences among 

different types of genetic element. Recall that a core assumption of ENT is that species 

membership is irrelevant in determining individual success. As with Serra et al.’s (2013) use of 

ENT in the study of genomes, the Mutational-Hazard Model treats all non-coding DNA 

sequences as effectively identical in their (very minor) impact on organismal fitness, at least 

when population size is large. In other words, the model does not take into account -- indeed, it 

assumes the irrelevance of -- element “membership” in the same way that ENT assumes the 

irrelevance of species membership—at least as far as large populations are concerned. Thus, TE 

insertions, intron additions, gene duplicates, and other events are all assumed to respond to 

purifying selection in the same fashion. 

This observation raises the question of whether any other similarities exist between the 

Mutational-Hazard Model and ENT.  Notably, the Mutational-Hazard Model does not explicitly 

assume a meta-population structure, at least not at the level of the whole organism. However, 

viewed from the perspective of genome-level ecology, it is possible to view individual genomes 

as communities of genetic elements and the entire population of organisms as a meta-community 

of genomic elements. In this case, different patterns of gene flow among organisms can result, at 
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the genomic level, in meta-communities with potentially very different structures.  

It has been argued elsewhere that the Mutational-Hazard Model is sensitive to factors 

affecting gene flow. This includes differences in the degree of admixture within genomes 

(recombination rate), among individual organisms/genomes (sexual versus asexual reproduction, 

breeding system), and/or host populations (different rates of gene flow) – all of which can affect 

the spread of transposable elements (Charlesworth and Barton 2004). Our argument here is that 

the reasons that population structure matter for the Mutational-Hazard Model are equivalent to 

the reasons that meta-population structure matters to genome-level ENT.  In both cases, this 

factor significantly influences the accumulation of competitively-neutral entities in a 

population/meta-community.  

A further similarity between these models is revealed by reflecting on what it means for 

genomes to have a fixed ‘carrying capacity’ and how this property might impact the 

accumulation of non-coding genetic elements. As noted previously, an auxiliary assumption of 

most neutral ecological models is that the local communities have limited carrying capacity. We 

have seen that transposable elements can generate positive feedback by creating additional sites 

into which more elements can then be inserted without disrupting protein-coding genes or 

regulatory regions. This poses a problem for employing ecological neutral models to 

transposable elements because it leads to a non-fixed carrying capacity. With regard to the 

Mutational-Hazard Model, this means that not all insertions will be equally deleterious. Indeed, 

in small number and in non-essential regions of the genome, these insertions may exert very little 

fitness effect on the organism. Instead, fitness effects may result from the larger-scale 

relationships between genome size, cell size, and cell division rate – which in turn may manifest 

as links between genome size and body size, metabolic rate, developmental rate, and other 



22 
 

organismal traits (Gregory 2005a). The selective pressure on these traits differs markedly among 

taxa: for example, there may be severe constraints on metabolic rate (and therefore cell size and 

genome size) in flying vertebrates but very few constraints in groups with low metabolic rates 

and simplified development such as neotenic salamanders (e.g., Gregory 2004, 2005a). In other 

words, the carrying capacity for transposable elements can be radically different among groups 

of organisms. The result is significant variation in the limits on genome expansion through TE 

insertion. This often occurs independently of population size, and would therefore represent 

another major factor that is overlooked in the Mutational-Hazard Model. 

In sum, we have argued that the Mutational-Hazard Model shares several features with 

genome-level ENT. Indeed, criticisms of Lynch’s model, and its use to explain differences 

among eukaryotic and prokaryotic genomes, bear an uncanny resemblance to the arguments 

raised in previous sections against Serra et al. (2013). This comparison helps to shed light on the 

structure of neutral models in general as well as the empirical challenges that they face.   

 

6. Concluding Remarks 

There is great promise in thinking of genomes as ecosystems in miniature. Not only does this 

perspective stand to shed light on pressing questions about the abundance and distribution of 

genetic elements among genomes, but, in addition, genomes might serve as excellent model 

systems for testing ecological hypotheses (Linquist et al. 2013). However, applying ecological 

models at the genomic level requires careful attention to the assumptions of those models. This 

can be especially challenging when one applies ecological models to unconventional entities – 

such as genetic elements.  

 ENT would appear to stand out as a likely candidate for application at the genomic level. 
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However, as we have argued, this model suffers from the problem of predictive overlap: both 

neutral and non-neutral models make numerous identical predictions, especially regarding the 

rank abundance of species. The extent of this overlap makes it difficult to infer neutral processes 

from neutral patterns. For the same reason, neutral models, as they stand, cannot serve as 

legitimate null hypotheses for niche-based models. Nor can the inference from pattern to process 

be underwritten by appeals to parsimony, that are inherently vague, that misplace the burden of 

proof, and that arguably irrelevant even under ideal circumstances. The only way to determine 

whether a neutral model accurately describes some genomic system, we argue, is by considering 

whether that model’s assumptions are satisfied.  

 We have argued that the two core assumptions of ENT are not satisfied by genomic 

systems because (1) different types of genetic element are known to have different likelihoods of 

success, and (2) genomic systems do not obviously exhibit a metacommunity structure. We 

further suspect that transposable elements in particular violate two common auxiliary 

assumptions of neutral models: (3) by creating their own habitat through replication and 

insertion, TEs do not have limited carrying capacity in many genomes; and (4) due to their 

mobility, TEs often do not have limited dispersal throughout the genome. It should be noted that 

the failure of many genomic systems to conform with the assumptions of ENT does not 

undermine the promise of other ecological approaches to the genome. There are many non-

neutralist ecological models that can be applied at the genomic level (e.g. Venner et al. 2009, 

Abrusan and Krambeck 2006, Saylor et al. 2013). It is also important to note that our criticisms 

have focused primarily on applications of neutral models across the entire genome.  It is possible 

that some other, more restrictive application of neutral models might prove more successful. For 

example, it might be possible to apply neutral theory within just one category of non-coding 
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DNA (e.g. pseudogenes).   

Suppose, then, that ENT is inappropriately applied at the genomic level. It seems 

paradoxical that Molecular Neutral Theory has enjoyed such success in evolutionary biology. 

What explains this discrepancy? The answer becomes clear once we distinguish two different 

senses in which genetic elements can be defined as ‘neutral.’ In Kimura’s sense, a genetic 

element is considered neutral (or not) depending on whether it impacts the fitness of the 

organisms in which it occurs. This is a fairly stable definition of neutrality in the sense that there 

are no additional parameters requiring specification by the investigator. By contrast, a genetic 

element is considered neutral (or not) in the ecological sense if its membership in some 

taxonomic or functional category does not contribute to its likelihood of success. There are at 

least two open-ended parameters in this ecological definition of neutrality. Firstly, one must 

settle upon a relevant taxonomic or functional category in relation to which neutral elements are 

defined. At the level of genetic elements there is a wide range of candidates that could 

potentially serve as the genomic analogues for species. As we have seen, simply treating all 

genetic elements as belonging to the same taxonomic or functional type (as far as their ecological 

neutrality is concerned) undermines a core assumption of neutral ecological models. The second 

open-ended parameter is the physical scale over which relative ‘success’ is defined. A genome-

level ecologist has the option of measuring success intra-chromosomally, within a genome, 

among closely related genomes, among distantly related genomes, etc. Each scale of comparison 

can result in a different answer to the question of whether genetic elements belonging to the 

same taxonomic or functional type have an equal likelihood of success. This is not to say that 

ENT models cannot in principle be applied at the genomic level. However, identifying a reliable 

genomic signature for distinguishing neutral from non-neutral processes – something that will be 
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required in order to avoid the problem of predictive overlap—is bound to be even more difficult 

when definitions of “neutrality” are open ended.  
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