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Abstract

It is argued that the de Broglie wave is not the independent wave usu-
ally supposed, but the relativistically induced modulation of an underly-
ing carrier wave that moves with the velocity of the particle. In the rest
frame of the particle this underlying structure has the form of a standing
wave. De Broglie also assumed the existence of this standing wave, but it
would appear that he failed to notice its survival as a carrier wave in the
Lorentz transformed wave structure. Identified as a modulation, the de
Broglie wave acquires a physically reasonable ontology, evidencing a more
natural unity between matter and radiation than might otherwise be con-
templated, and avoiding the necessity of recovering the particle velocity
from a superposition of such waves. Because the Schrödinger and other
wave equations for massive particles were conceived as equations for the
de Broglie wave, this interpretation of the wave is also relevant to such
issues in quantum mechanics as the meaning of the wave function, the
nature of wave-particle duality, and the possibility of well-defined particle
trajectories

Keywords matter wave · wave packet · Schrödinger equation · wave-
particle duality · wave function · particle trajectories

1 Introduction

De Broglie’s intuition that solid matter might be wave-like revealed a unity in
Nature that was to play a central role in the formulation of quantum mechanics
(de Broglie [1] to [3]). It was this unity that allowed all particles, whether
massive or massless, to be treated in like manner as evolving and interfering in
accordance with associated wave characteristics.
However, it will be argued here, essentially from a reconsideration of de

Broglie’s thesis of 1924 [3], that the de Broglie or matter wave is not the inde-
pendent wave conventionally supposed, but the relativistically induced modula-
tion of an underlying carrier wave that moves with the velocity of the particle1 .

1The matters to be now considered were dealt with by de Broglie in two brief sections (I
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In the rest frame of the particle, this underlying structure has the form of a
standing wave2 .
So regarded, the de Broglie wave is not itself, strictly speaking, the matter

wave of quantum mechanics, but evidences the existence of a deeper wave struc-
ture more deserving of that title. If, consistently with special relativity, this
underlying structure were assumed to comprise influences evolving at the veloc-
ity c of light, its existence would imply a deeper and more natural unity between
matter and radiation than could be contemplated if the only wave associated
with a massive particle were its superluminal de Broglie wave.
This is not to question the significance of de Broglie’s wave or the importance

to physics of his famous thesis. Einstein remarked that de Broglie had “uncov-
ered a corner of the great veil”[9], and it was from the thesis that Schrödinger
was led to wave mechanics. The Schrödinger equation was itself conceived as
a general equation for the de Broglie wave (see Bloch [10], and Bacciagaluppi
and Valentini [11], esp. Chaps. 2 and 11).
Yet the de Broglie wave and the Schrödinger wave function have seemed

curious affairs. The de Broglie wave is not only superluminal but strangely
disassociated from the subluminal particle that it is forever overtaking but never
outruns. And despite the utility of the wave function, there has been much
debate as to what it actually means.
In his report to the Solvay Conference of 1927, Schrödinger observed that

this “ψ-function” seems to describe, not a single trajectory, but a “snapshot
.... with the camera shutter open” of all possible classical configurations (see
Bacciagaluppi and Valentini [11], p. 411). In standard quantum mechanics,
this superposition is intrinsically probabilistic, but that view has led to the
measurement problem, as well illustrated by Schrödinger’s reductio ad absurdum
of the unobserved cat that is at once dead and alive (Schrödinger [12]).
However, it has been assumed in quantum mechanics, both in its standard

form and in its many reinterpretations, as it was by de Broglie and Schrödinger,
that the de Broglie wave is a wave in its own right. How the de Broglie wave
might arise instead from the Lorentz transformation of an underlying standing
wave may be explained shortly as follows. The crests of a standing wave rise and
fall as one, each simultaneously with the next (as shown for a one-dimensional
wave in Fig. 1(a)(i) ). But according to special relativity, simultaneity is itself
relative. In an inertial frame in which the rest frame of the standing wave
is moving, the crests of the wave are observed to peak, not in unison, but in
sequence. The standing wave suffers a dephasing - a failure of simultaneity - in
the direction of travel (as suggested by Fig. 1(a)(ii) ). This dephasing, moving
through the underlying wave at superluminal velocity, is the de Broglie wave,
not a wave in its own right, but a modulation, or as it might be termed, “a
wave of simultaneity”. To an observer for whom the particle is moving at the

and III) of the opening chapter of his thesis [3], numbering only a dozen or so pages, clearly
written and rewarding to close scrutiny. For interesting discussions of the emergence of de
Broglie’s ideas, as reflected in his earlier papers, see Medicus [4] and Lochak [5].

2Several earlier such proposals were listed in Shanahan [6]; others include Mellen [7] and
Horodecki [8].
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velocity v, the standing wave will have the character of a carrier wave moving
at that same velocity v, but subject to a modulation of velocity c2/v, where c is
the speed of light in vacuum. (The significance of Fig. 1(b) will be explained
in Sect. 2.)

Fig. 1. The Lorentz transformation of two standing waves.
Standing wave (a)(i) becomes the modulated wave (a)(ii) comprising
a carrier wave of velocity v subject to a modulation of superluminal
velocity c2/v. The modulation is explained in the text as the de
Broglie wave. De Broglie too assumed that the de Broglie wave
emerges from a standing wave, but described a nodeless standing
wave of form (b)(i) that has everywhere the same amplitude. When
transformed, this wave has the form (b)(ii) in which the sinusoidal
effect evolving at velocity c2/v is again the de Broglie wave, not an
independent wave, but the modulation of a nodeless carrier wave
moving at velocity v.

That this is indeed the correct interpretation of the de Broglie wave is sug-
gested by the curious manner in which its velocity varies with particle velocity.
The velocity of the wave is not only superluminal but increases as the parti-
cle slows and becomes infinite as the particle comes to rest. This is not the
behaviour of any independent wave, not that at least of any energy-carrying
independent wave, but is precisely the behaviour of the modulation of an un-
derlying carrier wave.
As we consider de Broglie’s thesis, it will become apparent not only that

he too assumed the existence of this antecedent standing wave, but that in two
of his three demonstrations of the de Broglie wave, or as he then called it, the
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“phase wave”3 , this wave arises exactly as contended here. But in view of
the tentative nature of his proposals, and as he explained in the conclusion to
the thesis, he “left intentionally vague”(intentionnellement laissé assez vagues)
the definitions of these wave forms. In the absence of a description of the
antecedent standing wave, he seems to have assumed that it simply becomes
the superluminal de Broglie wave when Lorentz transformed. It will be shown
that this is not so.
Once the de Broglie wave is identified as a modulation, its velocity becomes

consistent with special relativity, avoiding the necessity of assimilating the ve-
locity of the particle to the group velocity of a superposition of such waves.
With even greater significance for quantum mechanics, the Schrödinger and
other equations for massive particles, including the Pauli, Klein-Gordon and
Dirac equations, which were all contrived from the wave characteristics of the
de Broglie wave (see, for example Dirac [13]), must then be in some sense equa-
tions for a modulation.
This might explain why the wave functions that emerge as solutions of these

equations have seemed incapable of defining a trajectory for the particle in
question. The existence of an underlying wave structure, moving at the velocity
of the particle, might also shed light on such issues in quantum mechanics as
the meaning of the wave function and the nature of wave-particle duality.
De Broglie’s interpretation of his wave varied over time, but it was never

the modulation proposed here. It was always a wave in its own right, or a
superposition of such waves, as described in the thesis, and it is on the thesis
that we now concentrate. It is also from the famous thesis, rather than from
de Broglie’s later writings, that it is possible to discern where and how the
existence of the underlying carrier wave came to be overlooked.

2 The “periodic phenomenon”

De Broglie saw that if the Planck-Einstein relation,

E = hν, (1)

for the photon were extended to matter and equated with Einstein’s statement,

E = mc2, (2)

of the equivalence of mass and energy, a massive particle could be associated
in its rest frame with a characteristic frequency ν0 or, when expressed as an
angular frequency,

ω0 = 2πν0 =
mc2

~
,

where m and ~ are respectively the rest mass of the particle and the reduced
Planck constant (de Broglie [3], Chap. 1, Sect I).

3Not the usual sense in which “phase wave” is used, but suggested to de Broglie by the
wave’s role in the “harmony of phases” to be discussed in Sect. 4, below.
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De Broglie rejected the possibility that this frequency could be the measure
of some wholly internal oscillation. Observing that the energy of an electron
“spreads throughout all space”, he argued that a massive particle must be sur-
rounded in its rest frame by what he referred to as a “periodic phenomenon”.
He clearly regarded this phenomenon as some form of standing wave. This

is apparent from his modelling of the phenomenon as an assemblage of springs
oscillating in unison (see Sect. 5 below) and is explicit in his depiction of the
wave in Minkowski spacetime (see Sect. 6 below). He expressly described
the phenomenon as a stationary or standing wave in his report to the Solvay
Conference of 1927 (see Bacciagaluppi and Valentini [11], p. 341), as also in
other works ([14], and [15], Chap. 3) including his Nobel lecture of 1929 [16].
Consistently with that description, he suggested elsewhere that in the rest frame
of the particle the de Broglie wave comprises a superposition of incoming and
outgoing waves [17].
But in the thesis itself, de Broglie avoided saying much at all about this

underlying structure. As mentioned above, this vagueness was intentional, the
theory being, as he also said in concluding the thesis, “not entirely precise”
(n’est pas entièrement précisé). De Broglie did state that the periodic phe-
nomenon varies sinusoidally in time and that it “is distributed throughout an
extended region of space” (de Broglie [3], Chap. 1, Sect I). But there is no
description in the thesis of the manner in which the wave varies spatially, or
any analysis in mathematical terms of how a standing wave changes under the
Lorentz transformation. Nor is consideration given to the constraints imposed
by special relativity on the form that such a wave might take.
By leaving the spatial variation of the phenomenon undefined, de Broglie

allowed the possibility that it is a standing wave with no spatial variation - a
node-free standing wave that has everywhere the same phase and amplitude (as
in Fig. 1(b)(i) ). A wave of that form would comprise counter-propagating
waves of infinite wavelength and velocity contrary to the assumptions of special
relativity. But it is nonetheless a featureless standing wave of this kind that de
Broglie seems to contemplate in the thesis, and when Lorentz transformed, this
featureless standing wave becomes (as will be seen in Sects. 5 and 6 below) a
correspondingly featureless carrier wave subject to a sinusoidal modulation (as
in Fig. 1(b)(ii) ).
In the transformed wave structure, the only “wave”that is distinguished by a

spatial variation is thus the modulation, which for a particle moving at velocity
v, evolves through the carrier wave at the superluminal velocity c2/v. It became
possible for de Broglie to conclude then (or so we surmise) that when Lorentz
transformed the standing wave simply becomes an independent superluminal
wave of velocity c2/v.
However, it will be shown in the next section that a standing wave, whatever

its form or frequency, becomes to an observer for whom the rest frame of the
wave is moving at velocity v, a carrier wave of that velocity, subject to a phase
modulation having the wave characteristics and superluminal velocity c2/v of
the de Broglie wave.
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3 The modulation

Consider a standing wave of form,

R(x, y, z) eiωt, (3)

where R(x, y, z) describes the spatial variation of the wave, and eiωt is its evo-
lution in time.
This wave thus has a well-defined sinusoidal frequency and might be expected

to vary sinusoidally in space as well as time. But for now, we will follow de
Broglie in leaving the spatial variation of the wave “intentionally vague”.
We want to know the form that this “periodic phenomenon” would take

when observed from a frame of reference in which the particle is moving with
velocity v. Assuming a boost in the x direction, and applying the Lorentz
transformation, Λx(v):

x′ = γ (x− vt) ,
y
′

= y,

z
′

= z,

t′ = γ
(
t− vx

c2

)
,

where γ is the Lorentz factor,

(1− v2

c2
)−

1
2 ,

standing wave (3) becomes the moving wave,

R(γ (x− vt) , y, z) eiωγ(t−vx/c
2). (4)

which has two wave factors. The first,

R(γ (x− vt) , y, z), (5)

is a carrier wave, which is moving at the velocity v and, as indicated by the
inclusion of the Lorentz factor γ, has suffered the contraction of length predicted
by special relativity.
The second wave factor,

eiωγ(t−vx/c
2), (6)

is a transverse plane wave, which is moving through the carrier wave (5) at the
superluminal velocity c2/v. Identifying the frequency ω with the characteristic
frequency ω0 of a massive particle, wave factor (6) can be rewritten in terms of
the Einstein frequency,

ωE = γω0, (7)

and de Broglie wave number,

κdB = γω0
v

c2
, (8)
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as,
ei(ωEt−κdBx), (9)

and is now more clearly identifiable as the de Broglie wave. However, it is not
here the independent wave supposed by de Broglie, but as we have stressed, the
modulation of the carrier wave (5), defining the dephasing of that wave (and
the failure of simultaneity) in the direction of travel.
It is the modulated wave,

R(γ (x− vt) , y, z) ei(ωEt−κdBx), (10)

rather than the de Broglie wave (9) that displays the full complement of changes
in length, time and simultaneity contemplated by special relativity. It is sug-
gested that it would be anomalous if any spatially extended phenomenon, wave
or otherwise, could be Lorentz transformed into something that did not incor-
porate all these changes. Yet, as will be seen in Sects. 4 to 6, the carrier wave
is effectively suppressed in de Broglie’s derivations.
Let us now suppose that instead of a spatially extended wave, we have the

oscillating point or point particle,

δ[x0, y0, z0] e
iω0t, (11)

where δ[x, y, z] is the Dirac delta function and the particle is located in its rest
frame at the point (x0, y0, z0). Under a boost in the x direction, oscillating
point (11) becomes,

δ[γ(x0 − vt), y0, z0] ei(ωEt−κdBx), (12)

which describes not a wave, but a moving and oscillating point.
Like a child on a pogo stick, this moving point might describe the form of

a wave, but it is not itself a wave. It is not possible for a point to become, by
Lorentz transformation, an extended wave. Under a Lorentz transformation, a
point remains a point, and a wave, although changed in form, remains a wave.
While the second factor in Eqn. (12) does have the functional form (9) of the de
Broglie wave, it is not in this case a wave, and it is not therefore the de Broglie
wave.
That this is so may be intuitively obvious, but will be of some importance

in understanding de Broglie’s analyses. De Broglie was correct in insisting that
if the moving particle is to be associated with a spatially extended waveform,
some such waveform must also exist in the rest frame of the particle. But it
will become apparent in the next section (Sect. 4) that de Broglie disregarded
this extended waveform when applying what he referred to as the theorem of
the harmony of phases. It will be seen that by confining his consideration of
phase to the phase of the particle at the position of the particle, he derived, not
the de Broglie wave, but what was in effect the variation in phase of a moving
and oscillating point.
A diffi culty of a different kind will be encountered in Sects. 5 and 6 below

when we consider de Broglie’s two further demonstrations of his wave. It is
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not every wave of the form (3) to which the Lorentz transformation can be
validly applied. It was not stipulated when defining wave (3) that it should
comprise underlying influences propagating at the velocity c of light. Yet it
is that velocity (together with relative velocity v) that determines the velocity
c2/v of the modulation. It is the Lorentz transformation itself that imposes
the velocity c, and it does so because it is assumed in special relativity that all
underlying influences develop ultimately at that velocity (see, for example, Ref.
[6], Sect. 6).
Or to put this another way, the de Broglie wave is not merely evidence of

the wave-like nature of matter, but provides confirmation through its velocity
c2/v that the wave-like influences underlying matter and its interactions evolve
ultimately at the free space velocity c of light.

Fig. 2. A model particle wave is represented: (a) as a spherical
standing wave; and (b) as a relativistically contracted carrier wave
of velocity v, subject to a modulation (a de Broglie wave) of super-
luminal velocity c2/v. The ellipses in (b) represent the ellipsoidal
maxima of the carrier wave, while the vertical lines are intended to
suggest the transverse planar wave fronts of the de Broglie modula-
tion.

The Lorentz transformation can be appropriately applied to a standing wave
formed from waves of a velocity other than c, but only if the velocity of un-
derlying influences is nonetheless c, as is so for instance in the case of counter-
propagating sound or water waves, where changes in underlying electromagnetic
fields propagate at that velocity, or counter propagating light waves of velocity
c/n in a medium of refractive index n. But the Lorentz transformation cannot
be validly applied to a standing wave of the form (3) if the spatial variation
R(x, y, z) is unphysical, as in the case of the standing wave that is entirely
without spatial variation referred to in the previous section (Sect. 2). Such a
wave would be composed from influences of infinite wavelength and thus infinite
velocity, contrary to special relativity.
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But a wave of that kind might nonetheless be simulated, at least in principle,
by an array of identical oscillators. Such a simulation will be encountered in
the second of de Broglie’s three demonstrations (to be discussed in Sect. 4),
while the unphysical wave simulated will itself be seen in the third (Sect. 5).
The relativistic transformation of such an unphysical wave was illustrated in

Fig. 1(b). The corresponding transformation of a physically reasonable stand-
ing wave comprising underlying influences of velocity c and varying sinusoidally
in space and time was as shown in Fig. 1(a). The Lorentz transformation of a
simple ansatz or model of the wave of Fig. 1(a) in three dimensions is shown in
Fig. 2 (see, also Ref. [6]).
Finally, it is instructive to apply the reverse Lorentz transformation Λx(−v)

to the de Broglie wave,
ei(ωEt−κdBx), (13)

whereupon with the aid of Eqns. (7) and (8) it becomes the oscillating point,

eiω0t,

which, as we have stressed, cannot become by Lorentz transformation, a wave.
When Lorentz transformed, it describes the track of a moving and oscillating
point.
It has thus been shown that the de Broglie wave is not an independent wave,

but the modulation of an underlying carrier wave. We now consider in the next
three sections (Sects. 4 to 6) how de Broglie came to conclude otherwise.

4 A “harmony of phases”

De Broglie’s theorem of the harmony of phases (de Broglie [3], Chap. 1, Sect I)
is essentially the requirement that relatively moving observers should agree on
the phase that a wave has at each point of space and time. Phase is a scalar
invariant and must have the same value in all inertial frames.
De Broglie concluded on the basis of this theorem that a moving particle is

accompanied by a superluminal wave of velocity c2/v. But in reaching that
conclusion he confined his harmonizing of phase to the phase of the particle at
the position of the particle. Thus what he was considering was not a wave but
the sinusoidal trace of an oscillating point as defined by Eqn. (12).
De Broglie’s argument proceeded as follows: From the standpoint of a “fixed

observer”(for whom the particle is moving at velocity v) the particle has in its
rest frame the reduced frequency,

ωred =
ω0
γ
, (14)

yet in the frame of that same observer, the moving particle has an increased
energy and correspondingly increased frequency,

ωinc = ω0γ. (15)
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But a wave can have only one phase at any point of space and time, and all
observers must agree on that phase. As de Broglie put it4 ,

The periodic phenomenon connected to a moving body whose
frequency is for the fixed observer equal to [ω0/γ] appears to him to
be constantly in phase with a wave of frequency [ω0γ] emitted in the
same direction as the moving body, and with the velocity V =[c2/v].

So far so good. De Broglie refers in this passage to the periodic phenom-
enon and appears to be contemplating the transformation of the entire spatially
extended phenomenon. But when he then proceeds to derive the velocity
V = c2/v of the resulting “wave”, he confines his consideration to a single point
within the phenomenon, that is to say, the position of the particle, which is
stationary in one frame and moving in the other, but is nonetheless a single
point developing along a single world line.
De Broglie states (correctly) that as the particle travels the distance x in

the time t (in the frame of the fixed observer), it follows from Eqn. (14) that it
is considered to experience in its own frame the change of phase,

ωred t =
ω0
γ

x

v
, (16)

whereas in the fixed observer’s frame, it follows from Eqn. (15) that the change
of phase observed by that observer is,

ωinc (t− x

V
) = ω0γ (

x

v
− x

V
). (17)

These changes of phase must be equal. Thus, equating (16) and (17),

ω0
γ

x

v
= ω0γ(

x

v
− x

V
),

from which,

V =
c2

v
.

De Broglie’s analysis thus delivers the velocity of the de Broglie wave. But
the change described by Eqn. (17) is simply the change in phase that occurs
in a point particle as it moves the distance x in the time t. In terms of the
Einstein frequency ωE and de Broglie wave number κdB , the evolution of phase
∆φ described by Eqn. (17) can be rewritten using Eqns. (7) and (8) as,

∆φ = ωE t− κdB x, (18)

from which it can be seen (compare, for instance, Eqn. (9) ) that the oscillating
point, moving at the subluminal velocity v, is maintaining consistency of phase

4 In the quoted passage, we have simplified de Broglie’s expressions for the frequencies and
avoided here as elsewhere in this paper the practice of describing the velocity of the de Broglie
wave as c/β.
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with a superluminal wave having the characteristics of the de Broglie wave,
which explains why de Broglie’s analysis was able to produce the velocity of the
de Broglie wave.
But by seizing upon the single point, and ignoring the disposition of phase

across the extended wave, de Broglie suppressed the carrier wave of velocity v,
which as shown in Sect. 3, must result from the Lorentz transformation of a
standing wave. If a wave with the characteristics of the de Broglie wave were
the only wave associated with the moving particle, harmony of phase could be
guaranteed only at the position of the particle. It is the full modulated wave
that harmonizes phase at all points for all observers.
De Broglie’s two other demonstrations did involve the transformation of an

extended wave. But from his theorem of the harmony of phases, he had already
concluded that the de Broglie wave is a wave in its own right.

5 The mechanical model

Faced with the potentially embarrassing superluminality of his wave, de Broglie
invoked a simple toy model to illustrate how a velocity greater than c might
yet be consistent with special relativity provided the actual velocity of energy
transport were less than c (de Broglie [3], Chap. 1, Sect I).

Fig. 3. De Broglie’s mechanical model shown stationary in (a),
and moving at the relativistic velocity v in (b). The sinusoidal
effect of superluminal velocity c2/v is a consequence of the failure of
simultaneity in the direction of travel. This sinusoidal "wave" is the
de Broglie wave, not an independent wave as assumed by de Broglie,
but a dephasing (a modulation) of the standing wave modelled by
the assemblage of springs.

Thus de Broglie was not seeking to derive his wave from this model, merely
to justify its superluminal velocity. Even so, the de Broglie wave emerges from
the model, not as an independent wave, but as the modulation of an underlying
carrier wave.
As described by de Broglie, and as we have imagined this model in Fig. 3, it

comprises a horizontal disk of large diameter, from which are suspended many
identical spring weights oscillating in phase and at the same amplitude, but with
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the number of springs per unit area diminishing with distance from the centre
of the disc in “very rough analogy”, as de Broglie explained, to the distribution
of energy around a particle. (But no attempt has been made to depict this
diminishing intensity in Fig. 3).
An observer in the inertial frame of the disk observes these weights to be

oscillating in unison (as in Fig. 3(a), and see also again, Fig. 1(b)(i) ). But
a second observer, for whom the disk is moving at velocity v (Figs. 3(b) and
1(b)(ii) ), observes (along with other relativistic effects) what de Broglie de-
scribed as the “dephasing of the movements of the various weights”, that is to
say, the failure of simultaneity in the direction of travel. To the first observer,
the weights define a horizontal plane moving up and down. But to the observer
for whom the disc is moving, this surface is not planar but sinusoidal, with the
crests of this sinusoidal surface moving in the same direction as the disk, but at
the superluminal velocity c2/v of the de Broglie wave.
De Broglie did not provide a separate derivation of the velocity c2/v of this

sinusoidal effect. He merely said of the moving sinusoidal surface that:

It corresponds .... to our phase wave. According to the general
theorem, the surface has a speed [c2/v] parallel to that of the disk
... With this example we see clearly (and this is our excuse for such
protracted insistence on it) how the phase wave corresponds to the
transport of the phase and not at all to that of the energy.

In other words, the sinusoidal surface defined by the moving springs is an
instance of his phase wave (the de Broglie wave), while the “general theorem”
de Broglie relies upon is his theorem of the harmony of phases.
De Broglie seems not to have noticed that the standing wave (the array of

oscillating weights) has not simply become the de Broglie wave. It has become
a structure moving at velocity v (a moving array of oscillating weights) subject
to a modulation moving at velocity c2/v. In treating the modulation as an
independent wave, de Broglie has ignored the structure that it modulates.
In its rest frame, this toy model is not strictly speaking of course a standing

wave. It is merely the simulation of a standing wave; in fact, the simulation of
a physically unreasonable nodeless standing wave that has everywhere the same
phase and amplitude. While an assemblage of synchronized oscillators would
not itself be physically unreasonable, the wave thus modelled would comprise
underlying influences of infinite velocity contrary to special velocity. But even
ignoring that diffi culty, it was shown in Sect. 3 that the application of the
Lorentz transformation to a standing wave of any form results formally, not in
an independent wave of velocity c2/v, but in a carrier wave of velocity v subject
to a modulation of velocity c2/v.
De Broglie’s model becomes under a Lorentz transformation, not the sim-

ulation of an independent de Broglie wave, but the simulation of a modulated
wave of velocity v in which the de Broglie wave is the modulation.
If de Broglie had supposed an assemblage of springs that varies sinusoidally

in space as well as time (and thus of the general form depicted in Fig. 1(a) ),
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and in which underlying influences move at velocity c, he would have had in
that model, a de Broglie wave that is physically reasonable and consistent with
special relativity. But when he sought to recover the classical velocity of the
particle from his superluminal wave, the analogy he drew was with the group
velocity of a wave packet formed from the superposition of de Broglie waves of
nearly equal frequency (see de Broglie [3], Chap 1, Sect II).
It was from that very different physical effect that the diffi cult concept of a

particle wave packet was carried into quantum mechanics.

6 In Minkowski spacetime

By representing a standing wave in a spacetime diagram, de Broglie was able to
derive the velocity of the de Broglie wave, while demonstrating in an intuitive
manner the dephasing and consequent failure of simultaneity defined by this
wave.
Referring to Fig. 4, the unprimed (x, ct) coordinates are those of the fixed

observer, while the primed (x
′
, ct

′
) coordinates define the frame of the moving

particle. The ct
′
and x

′
axes are inclined at α1 = arctan c/v and α2 =

arctan v/c, respectively, to the x axis, while the line OD defines one edge of the
light cone. The particle itself is moving to the right at the velocity v, and its
world line thus follows the primed ct

′
axis.

Fig. 4. The world line of a particle follows the ct
′
axis. Sur-

rounding the particle in its rest frame is a standing wave represented
by four parallel “equiphase planes”. A world tube enclosing the
world line of the particle has been defined by dashed lines parallel
to the ct

′
.axis. The equiphase planes are inclined at α2=arctan v/c

to the x axis, and define in the unprimed frame, a dephasing of ve-
locity c2/v. This dephasing is the de Broglie wave, considered by
de Broglie an independent wave, but revealed by the drawing to be
a modulation of the transformed standing wave. (Adapted from de
Broglie [3], Chap. 1, Sect III, Fig. 1).
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The standing wave is represented in the diagram by what de Broglie re-
ferred to as “equiphase spaces”(espaces équiphases), these being the four equally
spaced lines drawn parallel to the x

′
axis. De Broglie also referred to these as

“planes”(plans équiphases), presumably hyperplanes of three dimensions in the
four dimensions of spacetime. Each such plane defines a sub-space in which the
wave has reached a particular phase. In each inertial frame, these planes thus
repeat after a time equal to the period of oscillation in that frame.
The four equiphase planes are parallel to the x

′
axis, leaving no doubt that

it was assumed by de Broglie that in the rest frame of the particle the periodic
phenomenon comprises some form of standing wave. What we want to know is
what these planes mean in the unprimed frame of the fixed observer.
However, as they appear in the thesis (see de Broglie [3], Chap. 1, Sect. 3,

Fig. 1), these planes are depicted in a way that could be a source of confusion.
The lines representing the planes are not centred, as would be natural, on the
world line of the particle. Indeed they are so positioned that they could suggest
a wave propagating to the left of the diagram. The four planes have thus been
repositioned in Fig. 4 so that they retain the same inclination to the x axis as
in de Broglie’s drawing but are centred on the world line of the particle.

Fig. 5. As Fig. 4, but with the roles of primed and unprimed
frames interchanged. The formerly fixed observer is moving to the
right with velocity v, while the unprimed frame is now the inertial
frame of the particle. The four equiphase planes representing the
standing wave are thus parallel to the x axis.

To show how these planes would be represented from the standpoint of an
observer who is in the frame of the particle itself, the roles of primed and un-
primed frames have been interchanged in a further diagram (Fig. 5). In this,
it is the formerly fixed observer, rather than the particle, that is moving to the
right. Here again the planes are centred on the world line of the particle.
However, we concentrate now on Fig. 4. In the unprimed frame, the

equiphase planes are inclined to the x axis and thus display the asymmetry in
phase and failure of simultaneity in the direction of travel predicted by special
relativity. From this asymmetry, de Broglie calculated the velocity of the de
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Broglie wave. He first explains that as the line O1x1 represents the frame of
the fixed observer at t = 1, the distance aa0 is exactly c. He then says that at
t = 1,

The phase which at time t = 0 was at a is now at a1. For the
fixed observer it is then displaced in space by an amount a0a1 in
the x direction, during one unit of time. One can then say that the
speed is:

V = a0a1 = aa0 cotα2 =
c2

v
.

This is again the velocity of the de Broglie wave, but when de Broglie refers
in this passage to the speed at which phase has become “displaced in space ....
in the x direction”, he is describing the velocity of a dephasing, that is to say,
of a modulation.
To see that the standing wave has not simply become transformed into an

independent de Broglie wave as supposed by de Broglie, it is only necessary to
notice that the standing wave and the de Broglie wave do not have the identical
representation in the diagram. In a spacetime diagram, such as those included
here, the Lorentz transformation is a passive transformation under which an
event or world line retains its location within the diagram5 . Instead of the
event or world line changing position, its coordinates differ according to the
frame to which it is referred. Thus, if the de Broglie wave and the transformed
standing wave were the same wave they would share the same world line in the
drawings.
But that is not so. Consider the standing wave. In its rest frame, a standing

wave is, by definition, stationary. The world line of any point in that wave thus
follows the time axis of its rest frame, which in this case is the ct

′
axis of the

primed frame of Fig. 4.
Or we could consider instead some extended region within the wave, let

us say a spherical region enclosing the particle. Instead of a world line, the
passage through spacetime of such a region defines a “world tube” (see, for
example, Misner, Thorne and Wheeler [18], p. 473), which in this case, and as
shown in Fig. 4, would enclose the world line of the particle which is following
the primed ct

′
axis.

On the other hand, the superluminal velocity c2/v of the de Broglie wave
implies a world line (or tube, but it will suffi ce now to speak of a line) lying
beyond the light cone and parallel to the x

′
axis. Thus the standing wave does

not simply become the de Broglie wave, as was assumed by de Broglie.
One further feature of Fig. 4 should be noticed. The fact that the world

line of the de Broglie wave is parallel to the x
′
axis (or, in Fig. 5, the x axis)

means that in the rest frame of the particle, this wave is of infinite velocity.

5To show the Lorentz transformation as active, the diagram would include two depictions
of the equiphase planes, that shown in Fig. 4 and that shown in Fig. 5.
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That velocity would be anomalous in an independent wave, but acquires a nat-
ural explanation once the de Broglie wave is understood as a modulation. At
rest, the crests of the underlying wave are no longer peaking in sequence, but
in unison, simultaneity has been restored, alignment of phase has become in-
stantaneous, and the velocity of the modulation describing the progress of that
alignment has thus become infinite.
In effect, modulation and carrier have merged in the standing wave, and the

de Broglie wave has disappeared.

7 Discussion

There is in de Broglie’s thesis an evocative and much-cited passage that captures
the essence of his notion of wave-particle duality:

The particle glides on its wave, so that the internal vibration of
the particle remains in phase with the vibration of the wave at the
point where it finds itself (de Broglie [3], Chap. 1, Sect. 1).

And this in a sense is true. As discussed in Sect. 4 above, the particle,
considered as a subluminal moving point, changes phase (see Eqn. (18) ) as
if it were maintaining consistency of phase with a superluminal wave having
the characteristics of an independent de Broglie wave. But in referring to an
“internal vibration”de Broglie seems to deny the spatially extended standing
wave from which, as we saw in Sect 2, he commenced his analysis.
This and other references in de Broglie’s writings to the oscillation of fre-

quency ω0 being “intrinsic”or “internal”or even “fictitious”(see, for instance,
de Broglie [19]) may be explained by de Broglie’s insistence that wave and par-
ticle are ontologically distinct entities. But it has been shown here that if the
frequency ω0 is taken to be that of a standing wave, as de Broglie himself pro-
posed, the de Broglie wave arises as an immediate consequence of the failure of
simultaneity described by the Lorentz transformation.
In none of de Broglie’s demonstrations in the thesis is the de Broglie wave

the independent superluminal wave that de Broglie contemplated. In the first,
harmonizing of phases occurs only for an oscillating point within each wave
and not for the wave as a whole. The result of Lorentz transforming that
oscillating point is not a spatially extended wave, but the path described by a
moving oscillating point. In the second (the mechanical model) and the third
(the Minkowski diagram), the de Broglie wave emerges from the antecedent
standing wave, not as a wave in its own right, but as the modulation of an
underlying standing wave.
The reinterpretation of the de Broglie wave as a modulation would not affect

the formal core of quantum mechanics. The de Broglie wave or wave function
would still evolve in accordance with the wave characteristics determined by
the relevant wave equation. But much that has seemed anomalous would be
explained. The superluminal velocity of the wave would not then be that of
energy (or information) transport, consistency with special relativity would be
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achieved and there would be no need to equate the velocity of a massive particle
with the group velocity of a superposition of such waves.
Nor would it be at all mysterious that the superluminal wave does not out-

run the subluminal particle or fly off at a tangent from a particle orbit. A
modulation must remain forever coextensive with the wave it modulates. As
the particle changed direction, there would simply be a corresponding change in
the direction of dephasing and a rearrangement of phase throughout the modu-
lated wave. This rearrangement of phase would unfold not at the superluminal
velocity of the de Broglie, but at the velocity of the constituent influences of
the underlying wave, which for consistency with special relativity we assume to
be the velocity c of light.
But it is the suggestion of a deeper wave structure underlying the de Broglie

wave that could have the larger significance for quantum theory. In the mystery
of wave-particle duality, the role of wave has been played solely by the de Broglie
wave. If the de Broglie wave is the modulation of a underlying standing wave
structure, it becomes possible to speculate that this underlying wave, moving at
the velocity of the particle and following a well-defined trajectory, might explain
both the wave and the particulate properties of the particle.
And composed of influences evolving at the speed of light, the existence

of this underlying structure would imply a deeper and more natural unity in
Nature than could be guessed at if the only wave associated with a massive
particle were of superluminal velocity and unknown ontology.
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