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It is widely accepted that the violation of Bell inequalities excludes local theories
of the quantum realm. This paper presents a stronger Bell argument which even
forbids certain non-local theories. Among these excluded non-local theories are
those whose only non-local connection is a probabilistic (or functional) dependence
between the space-like separated measurement outcomes of EPR/B experiments
(a subset of outcome dependent theories). In this way, the new argument shows
that the result of the received Bell argument, which requires just any kind of non-
locality, is inappropriately weak. Positively, the remaining non-local theories, which
can violate Bell inequalities (among them quantum theory), are characterized by
the fact that at least one of the measurement outcomes in some sense probabil-
istically depends both on its local as well as on its distant measurement setting
(probabilistic Bell contextuality). Whether an additional dependence between the
outcomes holds, is irrelevant for the question whether a certain theory can violate
Bell inequalities. This new concept of quantum non-locality is considerably tighter
and more informative than the one following from the usual Bell argument. We
prove that (given usual background assumptions) the result of the stronger Bell
argument presented here is the strongest possible consequence from the violation
of Bell inequalities on a qualitative probabilistic level.
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1 Introduction

Bell’s argument (1964; 1971; 1975) establishes a mathematical no-go theorem for the-
ories of the micro-world. In its standard form, it derives that theories which are local
(and fulfill certain auxiliary assumptions) cannot have correlations of arbitrary strength
between events which are space-like separated. An upper bound for the correlations is
given by the famous Bell inequalities. Since certain experiments with entangled quantum
objects have results which violate these inequalities (EPR/B correlations), it concludes
that the quantum realm cannot be described by a local theory. Any correct theory of the
quantum realm must involve some kind of non-locality, a ‘quantum non-locality’. This
result is one of the central features of the quantum realm. It is the starting point for
extensive debates concerning the nature of quantum objects and their relation to space
and time.

Since Bell’s first proof (1964) the theorem has evolved considerably towards stronger
forms: there has been a sequence of improvements which derive the inequalities from
weaker and weaker assumptions. The main focus has been on getting rid of those
premises which are commonly regarded as auxiliary assumptions: Clauser et al. (1969)
derived the theorem without assuming perfect correlations; Bell (1971) abandoned the
assumption of determinism; Graßhoff et al. (2005) and Portmann and Wüthrich (2007)
showed that possible latent common causes do not have to be common common causes.1

What is common to all of these different derivations is that they assume one or an-
other form of locality. Locality seems to be the central assumption in deriving the Bell
inequalities—and hence it is the assumption that is assumed to fail when one finds that
the inequalities are violated.

In this paper we are going to present another strengthening of Bell’s theorem, which
relaxes the central assumption: one does not have to assume locality in order to derive

1 The debate about common common causes vs. separate common causes is to some degree still
undecided (cf. Hofer-Szabó 2008).
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2 EPR/B experiments and the standard Bell argument

the Bell inequalities. Certain forms of non-locality, which we shall call ‘weakly non-local’
suffice: an outcome may depend on the other outcome or on the distant setting—as long
as it does not depend on both settings, it still implies that the Bell inequalities hold. As
a consequence, the violation of the Bell inequalities also excludes those weakly non-local
theories. So it does not require any kind of non-locality, but a very specific one: at least
one of the outcomes must depend probabilistically on both settings. While previous
strengthenings of Bell’s theorem secured that a certain auxiliary assumption is not the
culprit, our derivation here for the first time strengthens the conclusion of the theorem.

Being at its core a mathematical theorem, its direct conclusion is stated in formal
terms as well. From the formal result that there are certain non-local probabilistic
dependences, typically far reaching conclusions about the existence of certain non-local
physical or metaphysical connections are drawn, e.g. a non-separability or non-local
causal relations. Since these latter inferences require further assumptions and are far
from being trivial (especially they cannot reliably be made en passant), in this paper we
shall constrain to establish a strengthening of Bell’s core argument on the mathematical
level (and leave an appropriate physical and metaphysical interpretation of this result
for future work).

We start by introducing an appropriate notation for the underlying experiments with
entangled photons and formulate the standard Bell argument in an explicit and clear
form (section 2). We then develop a stronger Bell argument in three steps. In section 3
we prove that an important class of non-local theories, viz. purely outcome dependent
theories (a subclass of outcome dependent theories according to which the only non-local
connection is between the outcomes), implies Bell inequalities. Subsequently, we general-
ize the proof to as many classes as possible, which requires to introduce a comprehensive
overview of all logically possible classes (section 4). We call those non-local classes which
allow a derivation ‘weakly non-local’ and elaborate their characteristics. In section 5 we
formulate the new stronger Bell argument. A second generalization extends the argu-
ment to another partition of the logically possible classes (section 6). Finally, we show
that given usual background assumptions our new stronger Bell argument provides the
strongest possible consequences from the violation of Bell inequalities on a qualitative
probabilistic level (section 7) and discuss some of its immediate consequences (section 8).

2 EPR/B experiments and the standard Bell argument

We consider a usual EPR/B setup with space-like separated polarization measurements
of an ensemble of photon pairs in an entangled quantum state ψ = ψ0 (Einstein, Podol-
sky, and Rosen 1935; Bohm 1951; Clauser and Horne 1974; see fig. 1). Possible hidden
variables of the photon pairs are called λ, so that the complete state of the particles at
the source is (ψ,λ). Since in this setup the state ψ is the same in all runs, it will not
explicitly be noted in the following (one may think of any probability being conditional
on one fixed state ψ = ψ0). We denote Alice’s and Bob’s measurement setting as a and
b, respectively, and the corresponding (binary) measurement results as α and β. On
a probabilistic level, the experiment is described by the joint probability distribution
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2 EPR/B experiments and the standard Bell argument

P (αβabλ) := P (α = α,β = β,a = a, b = b,λ = λ) of these five random variables.2

We shall consistently use bold symbols (α,β,a, . . . ) for random variables and normal
font symbols (α, β, a, . . . ) for the corresponding values of these variables. We use indices
to refer to specific values of variables, e.g. α− = − or a1 = 1, which provides useful
shorthands, e.g. P (α−β+a1b2λ) := P (α = −,β = +,a = 1, b = 2,λ = λ). Expressions
including probabilities with non-specific values of variables, e.g. P (α|a) = P (α), are
meant to hold for all values of these variables (if not otherwise stated).

–+

a b
α β
– +

ψλ

Figure 1: EPR/B setup

Containing the hidden states λ, which are by definition not measurable, the total
distribution is empirically not accessible (‘hidden level’), i.e. purely theoretical. Only
the marginal distribution which does not involve λ, P (αβab), is empirically access-
ible and is determined by the results of actual measurements in EPR/B experiments
(‘observable level’). A statistical evaluation of a series of many runs with similar pre-
paration procedures yields that the outcomes are strongly correlated given the settings
and the quantum state.3 For instance, in case the quantum state is the Bell state
ψ0 = (|+〉|+〉 + |−〉|−〉)/

√
2 (and the settings are chosen with equal probability 1

2) the
correlations read:

P (αβ|ab) = P (α|βab)P (β) =

{
cos2(a− b) · 1

2 if α = β

sin2(a− b) · 1
2 if α 6= β

(Corr)

These famous EPR/B correlations between space-like separated measurement outcomes
have first been measured by Aspect et al. (1982) and have been confirmed under strict
locality conditions (Weihs et al. 1998) as well as over large distances (Ursin et al. 2007).
All these findings are correctly predicted by quantum mechanics: involving only empir-
ically accessible variables, the quantum mechanical probability distribution essentially
agrees with the empirical one.

Since according to (Corr), one outcome depends on both the other space-like separ-

2 While the outcomes are discrete variables and the settings can be considered to be discrete (in typical
EPR/B experiments there are two possible settings on each side), the hidden state may be continuous
or discrete. In the following I assume λ to be discrete, but all considerations can be generalized to
the continuous case.

3 A correlation of the outcomes given the settings and the quantum state means that the joint probability
P (αβ|ab) is in general not equal to the product P (α|ab)P (β|ab) = 1

2
· 1
2

= 1
4
.
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2 EPR/B experiments and the standard Bell argument

ated outcome as well as on the distant (and local) setting, the observable part of the
probability distribution (or the quantum mechanical distribution, respectively) clearly is
non-local. Bell’s idea (1964) was to show that EPR/B correlations are so extraordinary
that even if one allows for hidden states λ one cannot restore locality: given EPR/B cor-
relations the theoretical probability distribution (including possible hidden states) must
be non-local as well. Hence, any possible probability distribution which might correctly
describe the experiment must be non-local.

This ‘Bell argument for quantum non-locality’, as I shall call it, proceeds by show-
ing that the empirically measured EPR/B correlations violate certain inequalities, the
famous Bell inequalities. It follows that at least one of the assumptions in the deriva-
tion of the inequalities must be false. Indeterministic generalizations (Bell 1971; Clauser
and Horne 1974; Bell 1975) of Bell’s original deterministic derivation (1964) employ two
probabilistic assumptions, ‘local factorisation’4

P (αβ|abλ) = P (α|aλ)P (β|bλ) (`F)

and ‘autonomy’
P (λ|ab) = P (λ). (A)

Another type of derivation (Wigner 1970; van Fraassen 1989; Graßhoff et al. 2005) ad-
ditionally requires the fact that there are perfect correlations (PCorr) between the out-
comes for a certain relative angle of the measurement settings (e.g. for parallel settings
given quantum state ψ0). For both types of derivation we have the dilemma that any
empirically correct probability distribution of the quantum realm must either violate
autonomy or local factorisation (or both). Since giving up autonomy seems to be ad hoc
and implausible (‘cosmic conspiracy’), most philosophers conclude that the empirical
violation of Bell inequalities implies that local factorisation fails.5 And since local fac-
torisation states the factorisation of the hidden joint probability distribution into local
terms, the failure of local factorisation indicates a certain kind of non-locality, which is
specific to the quantum realm—hence ‘quantum non-locality’.

For my following critique of this standard Bell argument it is important to have a
clear account of its logical structure. Here and in the following I shall presuppose the
Wigner-type derivation of Bell inequalities because, as we will see, it is the most powerful
one allowing to derive Bell inequalities from the widest range of probability distributions:

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr)→ ¬(BI)

4 ‘Local factorisation’ is my term. Bell calls (`F) ‘local causality’, some call it ‘Bell-locality’, but most
often it is simply called ‘factorisation’ or ‘factorisability’. Bell’s terminology already suggests a causal
interpretation, which I would like to avoid in this paper, and the latter two names are too general
since, as I shall show, there are other forms of the hidden joint probability which can be said to
factorise; hence ‘local factorisation’.

5 Though not a majority view, there are suggestions to explain the violation of Bell inequalities by a
violation of autonomy (e.g. Sutherland 1983; San Pedro 2012). Our analysis in this paper does not
apply to these cases; we shall consistently assume that autonomy holds.
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3 Bell inequalities from purely outcome dependent theories

(P3) EPR/B correlations include perfect correlations: (Corr) → (PCorr)

(P4) Bell inequalities can be derived from autonomy, perfect correlations and local
factorisation: (A) ∧ (PCorr) ∧ (`F)→ (BI)

(P5) Autonomy holds: (A)

(C1) Local factorisation fails: ¬(`F) (from P1–P5)

The core idea of my critique concerning this standard Bell argument for quantum
non-locality is that its result is considerably weaker than it could be. I do not say that
the argument is invalid (it is obviously not) nor do I say that one of its premises is not
sound, I just say that the argument can be made considerably stronger and that the
stronger conclusion will provide a tighter, more informative concept of quantum non-
locality: one can be much more precise about what EPR/B correlations imply (if we
assume that autonomy holds) than just saying that local factorisation has to fail.

Specifically, I shall show that it is premise (P4) which can be made stronger. Stating
that autonomy, perfect correlations and local factorisation imply the Bell inequalities, it
is clear that one can make (P4) the stronger the weaker one can formulate the antecedent,
i.e. the assumptions to derive the inequalities. Former improvements have concentrated
on relaxing assumptions except the locality condition. In contrast, here I shall try to
find weaker alternatives to local factorisation, which also imply that Bell inequalities
hold. Since local factorization is the weakest possible form of local distributions, it is
clear that such alternatives have to involve a kind of non-locality, i.e. what I am trying
to show in the following is that we can derive Bell inequalities from certain non-local
probability distributions. This will make the overall argument stronger for it will allow
for the conclusion that not only local theories but also those non-local ones that imply
the inequalities are ruled out. I shall now first demonstrate this for one central class
of non-local probability distributions, before in the subsequent section I consider the
general case.

3 Bell inequalities from purely outcome dependent theories

Local factorisation is a specific product form of the hidden joint probability of the out-
comes, as I shall call P (αβ|abλ).6 A prominent non-local product form of this hidden
joint probability is the following:

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (Hα
16)

(For reasons that will become clear later the product form is tagged (Hα
16).) It differs

from local factorisation in that it involves the distant outcome β in the first factor on
the right hand side, which makes it a non-local product form (at least one of the factors

6 ‘Hidden’ because the probability is conditional on the hidden state λ and thus is not empirically
accessible.
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3 Bell inequalities from purely outcome dependent theories

involves at least one variable that is space-like separated to the respective outcome).
Since product forms characterize probability distributions, which represent a whole class
of theories, (Hα

16) represents a class of non-local theories. In the debate about Bell’s
theorem such theories with a non-local dependence between the outcomes in the product
form are usually called outcome dependent. They represent physical theories according
to which the outcomes are probabilistically or functionally dependent on another. This
dependence between the space-like separated outcomes has emerged as the received view
of what the violation of Bell inequalities amounts to: adequate theories of the quantum
realm are widely believed to be correctly described as outcome dependent theories.

In this section I shall prove that theories having the product form (Hα
16) are not

consistent with the results of EPR/B experiments. In order to avoid misunderstandings,
it is important to stress three central facts already at the outset of the argument. First,
(Hα

16) is only one of several possible outcome dependent classes. So proving that (Hα
16) is

impossible does not rule out all outcome dependent theories, but only very specific ones.
For instance, the quantum mechanical distribution, which is well-known to be outcome
dependent, is not correctly described by (Hα

16), but rather has the product form

P (αβ|ab) = P (α|βab)P (β), (1)

i.e. according to quantum mechanics the outcome α additionally depends on the distant
setting b (and there is no dependence on a hidden variabel λ). In order to distinguish
(Hα

16) from such other outcome dependent classes I denote it as purely outcome depend-
ent. So when in the following we show that purely outcome dependent theories are
not consistent with results of EPR/B experiments, this does not mean that quantum
mechanics is not consistent with these results.

Second, while not ruling out well established theories, the result still has far reaching
implications, because it informs us about the role that outcome dependence plays in the
violation of Bell inequalities. Against a widely spread belief, the new result that purely
outcome dependent theories imply the Bell inequalities shows that outcome dependence
per se cannot explain the violation of the inequalities. We shall see in later sections
that some kind of dependence on the distant setting is required (but not necessarily, as
the quantum mechanical example shows, the kind of dependence that usually is called
‘parameter dependence’).

Finally, we emphasize that the claims we shall be arguing for here are exclusively
probabilistic ones: they are about probabilistic dependences (between the variables in
the setup) and not about physical or metaphysical relations. It is important to stress
the difference, because too often correlations are naively interpreted to indicate physical
interactions, causal relations or the like. But correlation is not causation, and estab-
lishing the latter by the former involves non-trivial inferences, also invoking further
assumptions. So saying that outcome dependence (which is by definition a probabilistic
dependence) cannot explain the violation of the Bell inequalities is first of all not to say
that a physical connection between the outcomes cannot explain the Bell inequalities.
And likewise, saying that a violation requires probabilistic dependence of one outcome
on both settings does not per se say that a physical connection between a setting and
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3 Bell inequalities from purely outcome dependent theories

its distant outcome is implied. Since inferring (meta-)physical relations from probabil-
istic facts requires careful discussion, in this paper we shall not have the resources to
treat that question as well. Rather we shall concentrate on deriving the probabilistic
consequences of the violation of Bell inequalities, and therefore, if not explicitly stated
otherwise, when I speak of ‘dependence’ in general or ‘outcome dependence’ in particular
in the following I always mean probabilistic dependences (correlations), and not physical
or metaphysical relations. I might at least remark, without arguing for or elaborating on,
that elsewhere I have tried to show that, given reasonable assumptions, a probabilistic
dependence between the outcomes of an EPR/B experiment should be interpreted as a
genuine (meta-)physical connection, so that a failure of the former to violate the Bell
inequalities also indicates a failure of the latter to do so (Näger 2013). That analysis
also reveals that the required probabilistic dependence on both settings most plausibly
requires a causal connection from both settings to at least one of the outcomes.

After these preliminary remarks, I now turn to my argument against (Hα
16), which

comes in two steps: I first show that if perfect correlations and perfect anti-correlations
(and autonomy) hold, (Hα

16) is straightforwardly impossible. (‘Straightforward’ here
means that the impossibility is not demonstrated via a Bell inequality, but in a more dir-
ect way.) This immediate inconsistency vanishes, when one relaxes perfect (anti-)correlations
to nearly perfect (anti-)correlations (i.e. (anti-)correlations that show small deviations
from perfectness). In this case, however, I demonstrate, second, that (Hα

16) and autonomy
imply Bell inequalities. This is the genuine strengthening of the Bell argument that I
have announced. Since the inequalities are empirically violated this also establishes an
inconsistency (though a less direct one).

Let me start by putting my first claim in a precise form:

Lemma 1: Autonomy, perfect correlations, perfect anti-correlations and
(Hα

16) are an inconsistent set: (A) ∧ (PCorr) ∧ (PAcorr)→ ¬(Hα
16)

(The proof of this lemma can be found in the appendix.)
Lemma 1 makes the surprising assertion that, given autonomy, purely outcome de-

pendent theories are logically impossible if (for certain measurement settings) perfect
correlations and (for certain other measurement settings) perfect anti-correlations hold.
As can be seen in the proof of the lemma, the conflict does not require to formulate a
Bell inequality: the inconsistency can be established in a much more direct way. Hence,
in this case it does not even make sense to try to derive a Bell inequality, since the
assumptions that would be needed for the derivation are already inconsistent. For this
reason, lemma 1 is not in a literal sense a strengthening of the Bell argument. But
since the aim of Bell’s argument is to exclude certain theories of the micro-realm one
might say that it is an amendment to the argument which strengthens its conclusion.
The strengthening consists in the fact that lemma 1 precludes certain theories, namely
purely outcome dependent ones, that usual Bell arguments do not rule out. What makes
this result so remarkable is that the excluded theories are precisely those that have long
been regarded to be the received view about quantum non-locality.

A defender of outcome dependence might try to avoid the conflict by asserting that
perfect (anti-)correlations are not empirically confirmed. In fact, real experiments fail to
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3 Bell inequalities from purely outcome dependent theories

yield the perfect (anti-)correlations that quantum theory predicts and that extrapolate
the measured cos2-behavior (or sin2-behavior, respectively; cf. (Corr)) for non-parallel
and non-perpendicular settings. Rather, the experiments show a certain deviation from
perfect (anti-)correlations, such that perfect (anti-)correlations cannot be said to be em-
pirically confirmed beyond doubt. Though it might seem reasonable to assume that
they nevertheless do hold (because the experimental deviations from perfectness might
be attributed to measurement errors and non-ideal detectors), it has become usual in
the discussion about Bell’s theorem to avoid the strong assumption of perfectness: either
one does not make any reference to the correlations at parallel (or perpendicular) set-
tings, or one assumes only nearly perfect correlations (nPCorr) (e.g. for parallel settings)
and nearly perfect anti-correlations (nPACorr) (e.g. for perpendicular settings). Here
we shall take the latter route and make the widely accepted assumption of nearly per-
fect (anti-)correlations. Relaxing the perfect (anti-)correlations, a direct inconsistency
similar to the one stated by lemma 1 does not follow any more (autonomy, nearly per-
fect correlations, nearly perfect anti-correlations and (Hα

16) are not an inconsistent set).
Instead, in this case one can prove the following claim:

Lemma 2: Given autonomy, nearly perfect correlations and nearly perfect
anti-correlations, (Hα

16) implies Bell inequalities: (A)∧(nPCorr)∧(nPACorr)∧
(Hα

16)→ (BI)

(For the proof of the lemma see the appendix.)
While this claim does not establish a straightforward inconsistency as the one given

strictly perfect (anti-)correlations (cf. lemma 1), it is clear that, via the Bell argument,
lemma 2 can be extended to argue for the inconsistency of (Hα

16) with autonomy, nearly
perfect (anti-)correlations and the empirically confirmed EPR/B correlations. In this
way, lemma 2 allows for a literal strengthening of Bell’s theorem: it allows to modify
premise (P4) of the Bell argument to say that both local as well as purely outcome
dependent theories imply Bell inequalities. As local theories, purely outcome dependent
theories do not produce correlations that are strong enough to violate Bell inequalities.
Accordingly, the conclusion of the argument changes to preclude more theories than has
been believed so far. Besides the local theories it also eliminates those non-local theories
which assume an outcome to be dependent (functionally or probabilistically) not only
on the local variables but also on the other, distant outcome.

There is a discrepancy between the original Bell argument and lemma 2, which hints
to another aspect in which the latter helps to strengthen the former: while the original ar-
gument assumes strictly perfect correlations, lemma 2 only presumes nearly perfect cor-
relations and anti-correlations. In fact, the proof of lemma 2 which shows how to derive
Bell inequalities from outcome dependent theories and nearly perfect (anti-)correlations
(and autonomy), can easily be adjusted to derive Bell inequalities from local theories
and nearly perfect (anti-)correlations (and autonomy). Then, it is clear that one can
relax premise (P3) to say that EPR/B correlations involve nearly perfect correlations as
well as nearly perfect anti-correlations (instead of strictly perfect correlations). So the
proof of lemma 2 also demonstrates the remarkable fact that one can derive a Wigner-
Bell inequality without strictly perfect correlations (which were so far regarded to be a
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necessary assumption for deriving that type of Bell inequality).
The Bell inequality that follows by this new kind of prove is a generalized Wigner-Bell

inequality,

P (α−β+|a1b3)− 2ε− ε2 ≤ P (α−β+|a1b2) + P (α−β+|a2b3)

(1− ε2)
, (2)

that differs from a usual Wigner-Bell inequality

P (α−β+|a1b3) ≤ P (α−β+|a1b2) + P (α−β+|a2b3) (3)

by certain correction terms involving a parameter 0 < ε � 1, which is a measure for
the deviation from perfect correlations and perfect anti-correlations. (Precisely, ε3 is the
maximal fraction of photons deviating from perfect correlations or anti-correlations; see
the proof of lemma 2.) It is easy to see that in the border case ε → 0 the generalized
Wigner-Bell inequality agrees with the usual one. One can further show (see the proof
of lemma 2) that the generalized inequality is violated by the usual statistics of EPR/B
experiments, if at least 99.989% of the runs with parallel settings as well as those with
perpendicular settings turn out to be perfectly correlated and perfectly anti-correlated,
respectively. This defines the above condition of nearly perfect (anti-)correlations more
precisely: only in worlds where the fraction of perfectly (anti-)correlated runs exceeds
the indicated threshold, purely outcome dependent theories are ruled out.

This quantitative limit reveals a final resort for the defender of pure outcome de-
pendence: she might hint to the fact that in actual experiments far less than 99.989%
of the entangled objects show perfect (anti-)correlations. This indeed shows that the
question whether purely outcome dependent theories can hold or not is not yet decided
empirically beyond doubt. Let me stress, however, that the main aim in this paper is not
to decide this empirical and quantitative question, but the conceptual and qualitative
one, namely whether it is possible to amend Bell’s argument for a stronger conclusion,
ruling out even certain non-local theories.

That said, I can add that I think that there are good reasons not to take the men-
tioned empirical discrepancy to undermine the argument against purely outcome de-
pendent theories. First, the derivation of the inequality (2) uses certain rather rough
estimations, which contribute to the fact that the degree of perfectness that is required
for a violation to take place is high. Improved future derivations, which include more
precise (and expectedly more complicated) estimations, might lower that degree consid-
erably. Second, the past has shown that experimental physicists have continuously been
increasing the fraction of measured perfectly (anti-)correlated pairs of entangled objects,
by using more and more sophisticated experimental techniques. So it is to be expected
that the empirically confirmed degree of perfect correlation will increase in the future as
well. Finally, quantum mechanics predicts perfect correlations and at present there is
no further, independent evidence (besides the fact that experiments do not yield strictly
perfect (anti-)correlations) to doubt that quantum mechanics is wrong; for this reason,
it seems reasonable to assume that the deviation from perfectness in experiments is due
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to experimental imperfections.
Whether these arguments against the empirical discrepancy are conclusive or not:

if my mathematical proofs are correct, the clear result of this section is that, given
autonomy, purely outcome dependent theories cannot be adequate theories of the quantum
realm if either strictly perfect (anti-)correlations or nearly perfect (anti-)correlations with
a fraction of (dis-)agreement larger than 99.989% hold.

4 Generalization: A comprehensive scheme of possible theories

Strengthening an argument it is desirable to make it as strong as possible. We shall now
generalize the stronger Bell argument that we have just presented so as to rule out all
theories that can be ruled out by this type of argument. In order to capture all theories
we shall proceed systematically and list a scheme of all logically possible theories, for
each of which we check whether it is consistent under the given assumptions, and, if it is,
whether it implies Bell inequalities or not. Note that this list will also contain theories
that do not seem physically plausible. It is important, however, to include these theories
into our investigation because in the end we aim to show that we have provided the
strongest possible argument on a qualitative level (see section 7).

As we have said in the last section, local factorization and (Hα
16) are particular product

forms of the hidden joint probability. In general, according to the product rule of prob-
ability theory, any hidden joint probability can equivalently be written as a product,

P (αβ|abλ) = P (α|βbaλ)P (β|abλ) (4)

= P (β|αabλ)P (α|baλ). (5)

Since there are two such general product forms, one whose first factor is a conditional
probability of α and one whose first factor is a conditional probability of β, for the time
being, let us restrict our considerations to the product form (4), until in the next section
we shall transfer the results to the other form (5).

We stress that the product form (4) of the hidden joint probability holds in general,
i.e. for all probability distributions. According to probability distributions with appro-
priate independences, however, the factors on the right-hand side of the equation reduce
in that certain variables in the conditionals can be left out. If, for instance, outcome
independence holds, β can disappear from the first factor, and the joint probability is
said to ‘factorise’. Local factorisation further requires that the distant settings in both
factors disappear, i.e. that so called parameter independence holds. Prima facie, any
combination of variables in the two conditionals in (4) seems to constitute a distinct
product form of the hidden joint probability. Restricting ourselves to irreducibly hidden
joint probabilities, i.e. requiring λ to appear in both factors, there are 25 = 32 combin-
atorially possible forms (for any of the three variables in the first conditional and any
of the two variables in the second conditional besides λ can or cannot appear). Table 1
shows these conceivable forms which I label by (Hα

1 ) to (Hα
32) (the superscript α is due

to the fact that we have used (4) instead of (5)).
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4 Generalization: A comprehensive scheme of possible theories

Table 1: Classes of probability distributions

I II III IV V VI VII VIII IX

(Hα
i ): P (αβ|abλ) = . . . PCorr nPCorr

i P (α| β b a λ) · P (β| a b λ) �(BI) �(BI) Notes

st
ro

n
g

n
on

-l
o
ca

li
ty
α

1 1 1 1 1 1 0 0

2 1 1 1 1 0 0 0

3 1 1 1 0 1 0 0 QMp

4 1 1 0 1 1 — 0

5 1 0 1 1 1 — 0

6 0 1 1 1 1 0 0 Bohms

7 1 1 1 0 0 0 0 QMm

8 0 1 1 1 0 0 0

9 0 1 1 0 1 0 0 Bohmβ<a

10 1 0 0 1 1 — 0

11 0 1 0 1 1 0 0

12 0 0 1 1 1 0 0 Bohmα<b

13 0 1 1 0 0 0 0

14 0 0 0 1 1 0 0

w
ea

k
n

on
-l

o
ca

li
ty
α

15 1 1 0 1 0 — 1

16 1 0 1 0 1 — 1 pure outc. dep.

17 1 0 1 1 0 — —

18 1 1 0 0 1 — —

19 1 1 0 0 0 — —

20 1 0 1 0 0 — —

21 1 0 0 1 0 — —

22 0 1 0 1 0 1 1

23 0 0 1 1 0 — —

24 1 0 0 0 1 — —

25 0 1 0 0 1 — —

26 1 0 0 0 0 — —

27 0 1 0 0 0 — —

28 0 0 0 1 0 — —

lo
ca

li
ty
α

29 0 0 1 0 1 1 1 local factoriz.

30 0 0 1 0 0 — —

31 0 0 0 0 1 — —

32 0 0 0 0 0 — —
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4 Generalization: A comprehensive scheme of possible theories

The specific product form of the hidden joint probability is an essential feature of
the probability distributions of EPR/B experiments. For, as we shall see, it not only
determines whether a probability distribution can violate Bell inequalities but also carries
unambiguous information about which variables of the experiment are probabilistically
independent of another. Therefore, it is natural to use the product form of the hidden
joint probability in order to classify the probability distributions. We can say that each
product form of the hidden joint probability constitutes a class of probability distributions
in the sense that probability distributions with the same form (but different numerical
weights of the factors) belong to the same class. In order to make the assignment of
probability distributions to classes unambiguous let us require that each probability
distribution belongs only to that class which corresponds to its simplest product form,
i.e. to the form with the minimal number of variables appearing in the conditionals
(according to the distribution in question).

This scheme of classes is comprehensive: Any probability distribution of the EPR/B
experiment must belong to one of these 32 classes. In this systematic overview, the
class constituted by local factorisation is (Hα

29), and it now also becomes clear why the
product form of purely outcome dependent theories has been tagged (Hα

16) in the last
section. Furthermore, if we allow that there might be no hidden states λ, the quantum
mechanical distribution as well as the empirical distribution (which as far as we know
coincide, but see our discussion of perfect (anti-)correlations in the last section) belong
to class (Hα

7 ) (if the photon state ψ is maximally entangled, noted by ‘QMm’) or to
(Hα

3 ), respectively (if ψ is partially entangled, noted by ‘QMp’).7 The de-Broglie-Bohm
theory falls under class (Hα

6 ), when both settings are chosen before the detector at the
respective other side has registered, i.e. t(a) < t(β) and t(b) < t(α);8 we label the
corresponding probability distribution by ‘Bohms’ (the index standing for symmetrical
time ordering). Otherwise, when the β-measurement completes before a has been set
to its final state (labelled by ‘Bohmβ<a’), the theory falls in class (Hα

9 ); and when the
α-measurement is over before b has been chosen (labelled by ‘Bohmα<b’), we have class
(Hα

12). Similarly, any other theory of the quantum realm has its unique place in one of
the classes.

One crucial advantage of such an abstract classification is that it simplifies matters
insofar we can now derive features of classes of probability distributions and can be
sure that these features hold for all members of a class, i.e. for all theories whose
probability distributions fall under the class in question. The feature that we are most
interested in is, of course, which of these classes (given autonomy) are consistent with
the empirical probability distribution of EPR/B experiments. As in the previous section

7 The typical case for EPR/B experiments is to prepare a maximally entangled quantum state (e.g.
|ψ〉 =

√
p|+〉|+〉 +

√
1− p|−〉|−〉 with p = 1

2
), because one wants to have a maximal violation of

the Bell inequalities. The slightest deviation from maximal entanglement (p 6= 1
2
), however, breaks

the symmetry of the state. The probability distribution of such partially entangled states shows
an additional probabilistic dependence on the local setting in the second factor; hence, they fall
in class (Hα

3 ). For an overview of the dependences and independences in the quantum mechanical
probability distribution of maximally and partially entangled states see Näger (2015, table 1).

8 Such temporal ordering between space-like separated events is, of course, only possible when there is
a preferred frame of reference, which Bohm’s theory presupposes.
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4 Generalization: A comprehensive scheme of possible theories

we discern two cases according to whether strictly perfect (anti-)correlations or nearly
perfect (anti-)correlations hold.

4.1 Strictly perfect (anti-)correlations

For the case of strictly perfect (anti-)correlations, the following theorems hold:

Theorem 1.1: Autonomy, perfect correlations, perfect anti-correlations and
a class of probability distributions (Hα

i ) form an inconsistent set if and only
if (i) the product form of (Hα

i ) involves at most one of the settings or (ii) the
product form of (Hα

i ) involves both settings but its first factor involves the
distant outcome and at most one setting.

Corollary 1.1: A class (Hα
i ) is consistent with autonomy, perfect correla-

tions and perfect anti-correlations if and only if (¬i) the product form of
(Hα

i ) involves both settings and (¬ii) in case the distant outcome appears
in the first factor of (Hα

i )’s product form, also both settings appear in that
factor.

Theorem 1.2: Given autonomy, perfect correlations and perfect anti-correlations
a consistent class (i.e. a class that fulfills (¬i) and (¬ii)) implies Bell inequal-
ities if and only if (iii) each factor of its product form involves at most one
setting.

Corollary 1.2: Given autonomy, perfect correlations and perfect anti-
correlations a consistent class (i.e. a class that fulfills (¬i) and (¬ii)) does not
imply Bell inequalities if and only if (¬iii) at least one factor of its product
form involves both settings.

(The proofs of these theorems can be found in the appendix.)
The consequences of these claims for the status of the different classes are represented

in column VII of table 1. The heading of the column, ‘�(BI)’, means necessarily, Bell
inequalities hold. So the column indicates whether a certain product form implies Bell
inequalities (‘1’) or does not imply them (‘0’) (according to theorem 1.2 or corollary 1.2,
respectively); it further indicates when this question does not make sense (‘—’) because
a product form is inconsistent with the background assumptions autonomy and perfect
(anti-)correlations (according to theorem 1.1). It is understood that classes that are
marked by either ‘0’ or ‘1’ are consistent with the background assumptions (cf. co-
rollary 1.1). Clearly, all classes that are marked either by ‘—’ or ‘1’ are impossible if
autonomy and perfect (anti-)correlations hold: the former yield a direct contradiction
with the background assumptions, while the latter contradict the empirical probability
distribution via the Bell argument.

The inconsistent classes (‘—’) divide into two subgroups, corresponding to which
condition for inconsistency, (i) or (ii) (cf. theorem 1.1), is fulfilled:

Inconsistency due to condition (i): {(Hα
17), ..., (Hα

32)}\{(Hα
22), (Hα

29)}

14



4 Generalization: A comprehensive scheme of possible theories

Inconsistency due to condition (ii): {(Hα
4 ), (Hα

5 ), (Hα
10), (Hα

15), (Hα
16)}

Positively, theorem 1.1 further says that all classes that are not inconsistent according
to these criteria are consistent with the background assumptions: the criterion of con-
sistency, (¬i) and (¬ii), as stated in corollary 1.1, is just the negation of the condition
for inconsistency, (i) or (ii), in theorem 1.1.

We emphasize that the consistency and inconsistency claims of classes with the back-
ground assumptions have asymmetric consequences on the level of single probability
distributions. On the one hand, a class being inconsistent with the background assump-
tions means that every probability distribution of that class forms an inconsistent set
with the assumptions. It is the general product form defining the class which is in
conflict with the assumptions, hence all members of the class are. The same, mutatis
mutandis, however, is not true of the consistent classes. A class being consistent does not
mean that every probability distribution of that class is consistent with the assumptions.
Rather, by the laws of logic, it just means that at least one probability distribution of
a class is consistent with the assumptions, showing that the general product form of
that class is not per se in conflict with them. This is what consistency of a class means
(when we define inconsistency in the natural way as just stated). This definition of
consistency is perfectly compatible with the fact that there are distributions in a con-
sistent class that are inconsistent with the assumptions due to their specific numerical
values. For instance, one can easily imagine distributions falling under class (Hα

7 ) that,
at parallel settings, involve correlations that are weaker than perfectness. These distri-
butions are obviously not consistent with the background assumptions, although their
general product form is. Hence, we have to keep in mind that being consistent with
the background assumptions on the level of classes, which is the level the present ana-
lysis proceeds on, is just a necessary condition for the distributions in that class to be
consistent.

Turning to theorem 1.2, all classes marked by ‘1’, i.e. (Hα
22) and (Hα

29), can expli-
citly be shown to imply a Bell inequality. That (Hα

29), local factorization, implies the
inequalities is well known, but that

P (αβ|abλ) = P (α|bλ)P (β|aλ), (Hα
22)

a non-local class, does, has not been observed so far. That class is the symmetrical
counterpart to local factorization, compared to which the settings are swapped, such
that each outcome depends on its distant setting. For this reason the derivation of the
Bell inequalities runs very similarly as for local factorization (just swap the settings in
the original proof).

On the other hand, the theorem also says that any consistent class that violates (iii),
can be shown not to imply the Bell inequalities. Here we have a similar asymmetry
between the level of classes and that of distributions as in the case of (in-)consistency.
Since a class implying Bell inequalities (given the background assumptions) means that
every probability distribution having the product form in question obeys the inequalities,
the claim that a class does not imply the inequalities (given the background assumptions)
denotes the fact that there is at least one probability distribution in that class that violates
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4 Generalization: A comprehensive scheme of possible theories

the inequalities. Therefore, not implying Bell inequalities emphatically does not mean
that every probability distribution in a class violates the inequalities. For this reason,
given just the product form of one of the classes violating (iii) one cannot decide whether
Bell inequalities hold; whether they do in these cases depends on the numerical features
of the probability distribution in question. In this sense, one might reasonably say that
probability distributions of these classes can violate Bell inequalities. So far for the
meaning of implying and not implying the Bell inequalities. Let us now turn to the
criterion which demarcates the two cases.

Condition (iii), that, in order to imply Bell inequalities, a consistent class may not
involve more than one setting in each factor of its product form, is the essential char-
acteristic (in terms of the product form) to tell apart classes marked by ‘1’ from those
marked by ‘0’. This criterion differs considerably from the usual message that local
theories imply Bell inequalities (and non-local ones do not). In order to understand
its content, let us partition the classes into three groups, depending on which variables
appear in their constituting product forms:

Localα classes: (Hα
29)–(Hα

32)

Each factor only contains time-like (or light-like) separated variables.

Weakly non-localα classes: (Hα
15)–(Hα

28)

At least one of the factors involves space-like separated variables, but none
of the factors involves both settings.

Strongly non-localα classes: (Hα
1 )–(Hα

14)

At least one of the factors involves both settings. (¬iii)

With these new concepts we can summarize theorems 1.1 and 1.2 as saying that given
autonomy, perfect correlations and perfect anti-correlations, every localα and weakly non-
localα class either is inconsistent with autonomy and the perfect (anti-)correlations or
(if it is consistent) obeys Bell inequalities. Certain strongly non-localα classes are incon-
sistent with autonomy and the perfect (anti-)correlations as well; however, all consistent
strongly non-localα classes do not imply, i.e. can violate, the Bell inequalities. (Strongly
non-localα classes are by definition just those classes that fulfill criterion (¬iii) not to
imply the Bell inequalities.)

What does this result mean? On the one hand, it sounds familiar that local classes
are impossible in the given situation. Local classes involve only time-like (or light-like)
separated variables in the factors of their hidden joint probability, and local factoriza-
tion, which is well-known to imply Bell inequalities, is the paradigm of product forms
constituting these classes. Theorem 1.1 just adds the further claim that given autonomy
and perfect (anti-)correlations all other local classes are directly inconsistent.

The surprising consequence of theorems 1.1 and 1.2 rather is that even certain non-
local classes are ruled out. Every class in the group of weakly non-localα classes is
forbidden. Most of the classes in that group are directly inconsistent with the assump-
tions of autonomy and perfect (anti-)correlations, including (as we have shown in the

16



4 Generalization: A comprehensive scheme of possible theories

previous section) the purely outcome dependent class (Hα
16). That purely outcome de-

pendent theories are not even available when perfect (anti-)correlations (and autonomy)
hold, is, as we have already remarked, a central result of this investigation, because it
belongs to the group of classes that has evolved as the received view of what quantum
non-locality amounts to on a probabilistic level. In fact, there is only one weakly non-
localα class, which is consistent with the background assumptions autonomy and perfect
(anti-)correlations, viz. (Hα

22). Whether this class is physically plausible or not: the fact
that it implies the inequalities proves the important insight that Bell inequalities are not
a locality condition (because there is a class obeying Bell inequalities that is non-local).

Instead of locality, the hallmark of theories implying Bell inequalities rather is, as
theorem 1.2 states, that they may not involve more than one setting in each factor of
their product form. The negation of this condition, that at least one factor contains both
settings, is exactly the defining feature of strongly non-localα classes. That is why the
above partition is so natural. However, this does not mean that all strongly non-localα

classes are allowed in the given situation; for some of them—(Hα
4 ), (Hα

5 ) and (Hα
10)—are

inconsistent with autonomy and perfect (anti-)correlations (‘—’). This demonstrates
that the criteria for being consistent with these background assumptions, (¬i) and (¬ii),
and for not implying Bell inequalities, (¬iii), which is equivalent to being strongly non-
localα, are not disjunct. A theory can be strongly non-localα and still violate (¬ii) (all
strongly non-localα classes marked by ‘—’), e.g. (Hα

4 ); and there are theories fulfilling
(¬i) and (¬ii) but fail to be strongly non-localα, e.g. (Hα

22). A successful theory must
belong to one of the classes that takes both hurdles, and those are the ones marked by ‘0’
in column VII of table 1.

4.2 Nearly perfect (anti-)correlations

Let us now relax the assumption of strictly perfect (anti-)correlations to nearly perfect
(anti-)correlations and observe how that changes the situation. In this case, the following
theorems can be proven:

Theorem 2.1: Autonomy, nearly perfect correlations, nearly perfect anti-
correlations, and a class of probability distributions (Hα

i ) form an inconsist-
ent set if and only if (i) the product form of (Hα

i ) involves at most one of
the settings.

Corollary 2.1: A class (Hα
i ) is consistent with autonomy, nearly perfect cor-

relations and nearly perfect anti-correlations if and only if (¬i) the product
form of (Hα

i ) involves both settings.

Theorem 2.2: Given autonomy, nearly perfect correlations and nearly per-
fect anti-correlations each consistent class (i.e. each class that fulfills (¬i))
implies Bell inequalities if and only if (iii) each factor of its product form
involves at most one setting.

Corollary 2.2: Given autonomy, nearly perfect correlations and nearly
perfect anti-correlations each consistent class (i.e. each class that fulfills
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4 Generalization: A comprehensive scheme of possible theories

(¬i)) does not imply Bell inequalities if and only if (¬iii) at least one factor
of its product form involves both settings.

(The proofs of the theorems can be found in the appendix.)
The consequences of these claims are represented in column VIII of table 1. Since

nearly perfect (anti-)correlations are a considerably weaker requirement than that of
strictly perfect ones, one essential change that occurs in these theorems compared to
the former is that the conditions for consistency with the background assumptions
(autonomy and nearly perfect (anti-)correlations in the new case) are considerably
weaker as well: theorem 2.1 just requires condition (¬i) but not condition (¬ii). As
a consequence, all classes that have been ruled out by condition (¬ii) (in theorem 1.1),
viz. (Hα

4 ), (Hα
5 ), (Hα

10), (Hα
15) and (Hα

16), are now consistent with the new, less strict
background assumptions.

Especially purely outcome dependent theories defined by

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (Hα
16)

cease to be directly inconsistent with the background assumptions. However, since the
criterion for implying Bell inequalities stays essentially unchanged (requirement (iii)
still holds),9 outcome dependent theories imply Bell inequalities (see our discussion in
section 3), so they are still forbidden. It is just that the reason why they are forbid-
den changes. Similar facts are true for the symmetrical counterpart to purely outcome
dependent theories,

P (αβ|abλ) = P (α|βbλ)P (β|aλ), (Hα
15)

which differs from (Hα
16) in that the settings are swapped between the factors, such

that each outcome depends on the distant (instead of on the local) setting. In effect,
also in the new situation it is still true that all localα and weakly non-localα classes are
forbidden.

Concerning the strongly non-localα classes, however, the situation changes. Formerly,
certain strongly non-localα classes, (Hα

4 ), (Hα
5 ) and (Hα

10), were forbidden because they
were inconsistent with the background assumptions. Relaxing the background assump-
tions, we have already said that they become consistent. But unlike the weakly non-
localα classes that have become consistent, (Hα

15) and (Hα
16), these strongly non-localα

classes do not imply Bell inequalities, because they clearly do not fulfill condition (iii);
by weakening the background assumptions, these classes cease to be ruled out by the
theorems. As a consequence, all strongly non-localα classes are now consistent with
the background assumptions and do not imply Bell inequalities. The reason for this
new situation is that abandoning criterion (¬ii) for consistency, the remaining criterion,
(¬i), is entailed by the criterion for not implying Bell inequalities, viz. to be strongly
non-localα (so the two criteria are not logical independent any more).

9 There is just the slight difference that now both nearly perfect correlations and nearly perfect anti-
correlations are required, whereas according to theorem 1.2 the anti-correlations were not needed for
the derivation.

18



5 Strengthening Bell’s theorem

In sum, the result is that given autonomy, nearly perfect correlations and nearly
perfect anti-correlations, every localα and weakly non-localα class either is inconsistent
with autonomy and the perfect (anti-)correlations or (if it is consistent) obeys Bell in-
equalities. In contrast, all strongly non-localα classes are consistent with autonomy and
the perfect (anti-)correlations and do not imply Bell inequalities. Unlike the case with
strictly perfect correlations, there are no forbidden strongly non-localα theories, which
amounts to a slight modification of the set of precluded classes.

The main messages, however, have not changed: as opposed to what the standard
discussion suggests, it is not true that local factorisation (and the other local product
forms) are the only product forms which are forbidden by the empirical statistics of
EPR/B experiments (if autonomy holds). Rather, we have found that 18 (21 in the case
of strictly perfect (anti-)correlations) of the 32 logically possible classes are forbidden,
among them 14 (17 in the case of strictly perfect (anti-)correlations) non-local classes.
Some of these non-local classes are forbidden because they are directly inconsistent with
the assumptions autonomy and (nearly) perfect (anti-)correlations. Others are forbidden
because they imply Bell inequalities. This latter fact has two important consequences.
First, it makes explicit that Bell inequalities are not a locality condition. Neither,
second, is locality a necessary condition for deriving Bell inequalities. The criterion to
imply the inequalities (if autonomy and (nearly) perfect anti-correlations hold) rather is
a different one, which has not to do with the locality/non-locality divide: Bell inequalities
are implied by each probability distribution whose product form involves at most one
setting in each of its factors. So according to a probability distribution the outcomes
might depend on their distant setting as well as on each other, (Hα

15), and still Bell
inequalities follow. As a consequence, if one searches for theories which conform to the
empirical fact that (nearly) perfect correlations hold and Bell inequalities are violated
they can only be among the strongly non-localα ones (which are defined to involve both
settings in at least one factor). Contrary to the view suggested by Bell’s original theorem
it cannot be a weakly non-localα class.

5 Strengthening Bell’s theorem

It is clear that each set of theorems (1.1 and 1.2 as well as 2.1 and 2.2) can be used to
strengthen Bell’s theorem. On the other hand, it is not clear which of these available new
arguments should be considered to be the strongest. (The first set results in an argument
that, compared to the argument resulting from the second set, requires the stronger
assumption of strictly perfect correlations (weakening the argument), but allows for a
stronger conclusion, because it rules out even some of the strongly non-localα classes).
Here we restrict our discussion to the argument resulting from the second set, because it
avoids the controversial assumption of strictly perfect (anti-)correlations. (The argument
from the first set can be formulated mutatis mutandis.)

(P1) There are EPR/B correlations: (Corr)

(P2) EPR/B correlations violate Bell inequalities: (Corr)→ ¬(BI)
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5 Strengthening Bell’s theorem

(P3′) EPR/B correlations include nearly perfect correlations and nearly perfect
anti-correlations: (Corr) → (nPCorr) ∧ (nPACorr)

(P6) Those localα and weakly non-localα classes that involve at most one set-
ting in their product form are inconsistent with autonomy, nearly perfect
correlations and nearly perfect anti-correlations:

(A) ∧ (nPCorr) ∧ (nPACorr)→
∧

i=17..32
\{22,29}

¬(Hα
i )

(P4′) Bell inequalities can be derived from autonomy, nearly perfect correlations,
nearly perfect anti-correlations and any localα or weakly non-localα class of
probability distributions that involves both settings in its product form:[

(A) ∧ (nPCorr) ∧ (nPACorr) ∧
( ∨
i=15,16,

22,29

(Hα
i )
)]
→ (BI)

(P5) Autonomy holds: (A)

(C1′) Both localα and weakly non-localα classes fail:

( 32∧
i=15

¬(Hα
i )
)

Compared to the original Bell argument (section 2) there are three substantial changes,
which strengthen the argument. A first change concerns the fact that everywhere in the
argument we have relaxed controversial strictly perfect correlations to uncontroversial
nearly perfect correlations (in premisses (P3) and (P4) of the original argument). This
is a strengthening in the sense that the argument makes weaker assumptions. At the
same places in the argument where nearly perfect correlations occur we have addition-
ally introduced nearly perfect (anti-)correlations. This might seem as a weakening of
the argument; in fact, however, it is a neutral move, because it is uncontroversial that
the nearly perfect anti-correlations follow from the EPR/B correlations (as the nearly
perfect correlations do; see premise (P3′)), and these EPR/B correlations have already
been assumed in the original argument (premise (P1)).

A second strengthening of the argument stems from introducing a completely new
premise (P6), which states the content of theorem 2.1, that certain classes are not com-
patible with autonomy, nearly perfect correlations and perfect anti-correlations. Given
that autonomy and perfect (anti-)correlations are assumed anyway (or derive from as-
sumptions), it is clear that these classes will be ruled out by the overall argument. In this
sense, (P6) provides a genuine strengthening of the conclusion of the theorem. Deriving
a direct contradiction between the background assumptions and certain classes without
involving a Bell inequality, premise (P6) has no counterpart in the original argument
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6 Further strengthening by a complementary partition

and rather has the status of an amendment—however, an amendment that naturally
fits in. Note that assuming the additional premise (P6) does not weaken the argument
because it can be proven mathematically (see the proof of theorem 2.1).

A third modification, indeed the central strengthening, consists in the adaption of
premise (P4) to theorem 2.2, which says that one can derive Bell inequalities not only
from local factorization but from all those localα and weakly non-localα classes that
are consistent given autonomy and perfect (anti-)correlations. Accordingly, we have
replaced local factorisation in the antecedent by the disjunction of these product forms.
This makes the antecedent of (P4′) weaker than that in (P4) and, hence, the argument
stronger. Since the overall Bell argument is a modus tollens argument to the negation
of that premise, this modification also strengthens the conclusion of the theorem.

Making these changes has a considerable effect on the overall Bell argument. Instead
of the standard conclusion (C1), that the violation implies the failure of local factorisa-
tion, by the modified argument we arrive at the essentially stronger conclusion (C1′).
While the original result, the failure of local factorisation, implied that all localα classes
fail (because the other local classes are specializations of local factorisation), the new
result additionally excludes all weakly non-localα classes.

6 Further strengthening by a complementary partition

Our considerations leading to this new result of the Bell argument rest on the fact
that we have found alternatives to local factorisation from writing the hidden joint
probability according to the product rule (4) and conceiving different possible product
forms (table 1). However, we can as well write the hidden joint probability accord-
ing to the second product rule (5), and similar arguments as above lead us to a sim-

ilar table as table 1, whose classes, (Hβ
1 )–(Hβ

32), differ to those in table 1 in that the

outcomes and the settings are swapped. For instance, class (Hβ
16) is defined by the

product form P (αβ|abλ) = P (β|αbλ)P (α|aλ) in contrast to (Hα
16), which is constituted

by P (αβ|abλ) = P (α|βaλ)P (β|bλ). Note that this new classification is a different parti-
tion of the possible probability distributions, which reasonably might be called comple-
mentary partition. Any probability distribution must fall in exactly one of the classes
(Hα

1 )–(Hα
32) and in exactly one of the classes (Hβ

1 )–(Hβ
32). Analogously to theorem 1 one

can prove for the new partition that (given autonomy and nearly perfect (anti-) correla-
tions) also each localβ and weakly non-localβ class either is inconsistent or implies Bell
inequalities, so that we can reformulate (P6) and (P4′) as:

(P6′) Those localα, weakly non-localα, localβ and weakly non-localβ classes that
involve at most one setting in their product form are inconsistent with
autonomy, nearly perfect correlations and nearly perfect anti-correlations:

(A) ∧ (nPCorr) ∧ (nPACorr)→
∧

i=17..32
\{22,29}

¬(Hα
i ) ∧

∧
i=17..32
\{22,29}

¬(Hβ
i )
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6 Further strengthening by a complementary partition

(P4′′) Bell inequalities can be derived from autonomy, nearly perfect correlations,
nearly perfect anti-correlations and any localα, weakly non-localα, localβ

or weakly non-localβ class of probability distributions that involves both
settings in its product form:[

(A) ∧ (nPCorr) ∧ (nPACorr) ∧
(∨
i=15,16,

22,29

(Hα
i ) ∨

∨
i=15,16,

22,29

(Hβ
i )
)]
→ (BI)

With these new premises we can formulate an even stronger Bell argument from (P1),
(P2), (P3′), (P6′), (P4′′) and (P5) to

(C1′′) All localα, weakly non-localα, localβ and weakly non-localβ classes fail:(
32∧
i=15

¬(Hα
i ) ∧

32∧
i=15

¬(Hβ
i )

)
This is the conclusion of the new stronger Bell argument. It takes the usual result

from any kind of non-locality (the mere failure of local factorisation) to a more specific
one (namely exclusive the weakly non-localα and weakly non-localβ classes). Stating
which classes are excluded, the result formulated here is a negative one. But it is easy
to turn it into a positive formulation: since our scheme of logically possible classes is
comprehensive, the failure of all localα and weakly non-localα classes is equivalent to
the fact that one of the strongly non-localα classes, (Hα

1 )–(Hα
14), holds. Analogously,

if a probability distribution is neither localβ nor weakly non-localβ it must be strongly
non-localβ, i.e. belong to one of the classes (Hβ

1 )–(Hβ
14). Therefore, equivalently to (C1′′)

we can say:

(C1′′′) One of the strongly non-localα classes and one of the strongly non-localβ

classes has to hold. (
14∨
i=1

(Hα
i ) ∧

14∨
i=1

(Hβ
i )

)

This is the positive conclusion of the stronger Bell argument in terms of classes.
Finally, we can formulate the same result in terms of which features the hidden joint

probability must have. Let us define the following concept:

Probabilistic Bell contextuality (PBC) holds if and only if according
to both product forms of the hidden joint probability P (αβ|abλ) at least one
of the outcomes depends probabilistically on both settings.

Then, equivalently to (C1′′) or (C1′′′), we can say:

(C1′′′′) Probabilistic Bell Contextuality holds.

(C1′′), (C1′′′) and (C1′′′′) are equivalent conclusions of the stronger Bell argument.
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7 Impossibility of stronger consequences

These conclusions of the new Bell argument are considerably stronger than those of
previous versions. Here, we would like to stress the fact that, if our considerations
have been correct and the typical background assumptions hold (autonomy and nearly
perfect (anti-)correlations), by our systematic approach we can even be sure that these
conclusions are the strongest possible consequences of the violation of Bell inequalities
on a qualitative probabilistic level. What does this mean and how can we argue for this
claim?

The claim is meant to say that it is impossible to strengthen Bell’s argument in such
a way as to rule out more classes of probability distributions than we have ruled out
here. Note that this is not to say that certain classes might not be ruled out due to other
criteria, maybe due to their incompatibility with relativity or the like. Since the classes
are defined by the probabilistic dependences and independences of the respective product
form and do not refer to any quantitative aspects of the probability distributions, we
call our result a ‘qualitative probabilistic’ one.

Our considerations in this paper have two important features that preclude future
strengthenings of the argument to rule out more classes. First, the central methodological
procedure of our argument was to consider all logically possible classes of probability
distributions. Hence, any probability distribution that conceivably might describe an
EPR/B experiment must fall under one of the classes in our systematic overview (cf.
table 1). For this reason, we can be sure that we have not overlooked any probability
distribution for the EPR/B experiment. There simply are no probability distributions
left that might bring in some surprise; we have captured them all.

A second important feature is that our argument provides sufficient and necessary
conditions for classes to imply Bell inequalities. By stating that local classes imply
Bell inequalities, former arguments typically have only provided sufficient criteria. This
left open the possibility that there are further classes implying the inequalities—and,
indeed, here we have found that many non-local classes, viz. the weakly non-local ones,
do as well. On the other hand, by explicitly showing that the remaining classes, the
strongly non-local classes, can violate the inequalities (see the proofs of theorems 1.2
and 2.2, where we have constructed explicit examples of distributions in those classes
that violate the inequalities), we have precluded that future arguments might show one
of the strongly non-local classes to imply the inequalities as well. And if this argument,
that proceeds on the qualitative probabilistic level of the classes and their product forms,
is correct, and the background assumptions we have presupposed hold, we cannot entail
a stronger claim on that level than that local and weakly non-local classes imply Bell
inequalities while strongly non-local classes can violate them.

The latter claim also reveals a certain limitation of the argument presented here. It
emphatically does not say that strongly non-local classes violate Bell inequalities; it only
says that strongly non-local classes can violate Bell inequalities, meaning that some of
the strongly non-local distributions do violate the inequalities while others do not. In
fact, one can explicitly find examples for probability distributions in each of the strongly
non-localα classes (Hα

1 )–(Hα
14) (as well as in the strongly non-localβ classes (Hβ

1 )–(Hβ
14))
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which obey Bell inequalities—and these distributions clearly could be ruled out by more
precise arguments. However, belonging to the same class, discerning strongly non-local
classes which violate the inequalities from those that obey them clearly cannot be made
on a qualitative probabilistic level. Any improvement of the argument must refer to
the specific numerical values of the probability distribution in question, so there is no
general claim that can be made on the basis of the mere product form; the product form
of any strongly non-local class alone does not determine whether Bell inequalities hold
or fail.

It follows that the consequence of my stronger Bell argument, that the quantum world
can only be described correctly by a theory falling under a strongly non-local class, is
only a necessary condition for violating Bell inequalities; it is not a sufficient one. (Note
the difference between conditions for violating Bell inequalities and conditions for not
implying them; we have provided necessary and sufficient conditions for the latter but
only necessary ones for the former.) Sufficient criteria to violate Bell inequalities would
have to involve conditions for the strength of the correlations. A common measure for
how strong a correlation is, is mutual information, so information theoretic works which
derive numerical values for how much mutual information has to be given in order to
violate Bell inequalities, provide an answer to that question (cf. Maudlin 1994, ch. 6
and Pawlowski et al. 2010). These are important works, which can further sharpen our
concept of quantum non-locality following from EPR/B experiments. Such quantitative
improvements, however, do not count against my claim here that the conclusion of my
new stronger Bell argument captures the strongest possible consequences of the violation
of Bell inequalities on a qualitative probabilistic level.

8 Discussion

In this paper we have presented a considerably stronger version of Bell’s theorem. The
new argument rests on the insight that the members of a large range of non-local theories,
which we have called weakly non-local, either are inconsistent with autonomy and nearly
perfect correlations or imply Bell inequalities (as do local theories). Consequently, the
empirical violation of the inequalities does rule out local theories (which is well known
from the original argument) and these weakly non-local ones (which is the central result
of this paper). Showing that the violation of Bell inequalities excludes more theories than
the standard Bell argument suggests, the new argument is a considerable strengthening
of the original one. It is clear that a strengthening of such a fundamental and influential
theorem as Bell’s comes with a plethora of new consequences, and, obviously we cannot
discuss all of them here. Therefore, we restrict ourselves to four rather immediate and
central consequences and one comment.

(1) The new result reveals that the usual concept of quantum non-locality, which
follows from the standard Bell argument, is inappropriately weak. For the latter states
a failure of the local factorisation condition

P (αβ|abλ) = P (α|aλ)P (β|bλ), (Hα
29)
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which suggest that one could have any non-local dependence in the product form, i.e.
either a dependence on the distant outcome (in the first factor) or on the distant setting
(in the first or second factor). Although the argument is logically correct, its conclusion
is not an appropriate characterization of quantum non-locality. Capturing all non-local
classes it includes classes which we have found to be compatible with Bell inequalities
(weakly non-local classes). For instance, neither is it possible to violate Bell inequalities
if there is a dependence on the respective distant setting in each factor, as in the product
form

P (αβ|abλ) = P (α|bλ)P (β|aλ); (Hα
22)

nor is this possible, if a dependence on the distant outcome holds as in the product form

P (αβ|abλ) = P (α|βaλ)P (β|bλ). (Hα
16)

Both constitute weakly non-local classes and imply Bell inequalities.
Concerning the former of these product forms, (Hα

22), one might take the stance that
it is not physically plausible anyway (because it does not involve a dependence on the
local settings), and, similarly, many of the logically possible classes that we have taken
into account (cf. table 1) might not be very appealing from a physical point of view.
(I mention once again that we have not investigated them because we find them all
physically plausible, but because, we have been in need of an exhaustive list of logical
possibilities, in order to prove that we have drawn the strongest possible consequences;
see (4) below.) But the same probably cannot be said of the latter product form, (Hα

16).
It involves dependences on the local settings and a non-local dependence between the
outcomes, and therefore belongs to the group of outcome dependent theories, which has
found many supporters in the discussion about the consequences of Bell’s theorem (cf.
Jarrett (1984) and Shimony (1984, 1986) who have introduced the view). Many seem to
have found the view attractive that (i) the non-locality following most plausibly from the
violation of the Bell inequalities on a probabilistic level essentially consists in a statistical
dependence between the outcomes of EPR/B measurements, and that (ii) physically the
non-locality is realized by a non-local physical connection between the outcomes (a so
called non-separability, according to most authors). Especially, it has been said that (iii)
quantum mechanics is an instance of this view.

If, however, what I have argued for in this paper, is correct, claim (i) of this position
cannot be true. For we have shown that theories from class (Hα

16), which involve a
non-local dependence between the outcomes, nevertheless imply Bell inequalities. The
inevitable conclusion is that a probabilistic dependence between the outcomes is too weak
to violate Bell inequalities. Proponents of the outcome dependence view are not right
in citing outcome dependence when it comes to the question why Bell inequalities are
violated. A dependence between the outcomes, as our treatment of (Hα

16) shows, cannot
explain the violation of Bell inequalities. This is one of the central results of this paper.

Focussing on the immediate probabilistic consequences of the Bell argument, in this
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paper we have not touched claim (ii) that the physical nature of quantum non-locality
is a relation of non-separability between the outcomes. It is true, since probabilistic
outcome dependence cannot account for a violation of the inequalities, it might seem
tempting to immediately conclude that also (ii) must be wrong. But inferring physical
or metaphysical relations from probabilistic facts requires careful analysis, since the
transition is well known to be vulnerable to fallacies (‘correlation is not causation’). For
this reason, establishing the right kind of (meta-)physical connection would have required
a further lengthy analysis—so here we have to remain tacit on this question. Having
said this, it might be interesting to remark that there seem to be good arguments that
the current result, that a probabilistic dependence between the outcomes is too weak to
explain a violation of the Bell inequalities, most plausibly entails that also a physical
connection between the outcomes is not strong enough to account for a violation (Näger
2013).

What about quantum mechanics in this new picture? Quantum mechanics is well-
known to be outcome dependent and to correctly reproduce the EPR/B correlations—
so how does this fit with the present results? An answer can be seen by realizing
that my result does not mean that all outcome dependent theories (in the probabilistic
sense) imply the inequalities; it just says that a probabilistic dependence between the
outcomes per se does not suffice to explain a violation. It follows that quantum mechanics
cannot only involve a probabilistic dependence between the outcomes, and especially it
cannot belong to class (Hα

16). Rather, the quantum mechanical product form (here: for
maximally entangled states),

P (αβ|ab) = P (α|βab)P (β) = P (β|αab)P (α) (6)

additionally involves a dependence on the distant setting in each first factor—and it is
the dependence on both settings in these factors (rather than the dependence between
the outcomes), which is crucial for violating the Bell inequalities. This is a second central
result of this paper, so let me state it in an appropriately general form:

(2) The new result also provides us with a positive characterization of quantum non-
locality, which is tighter and more informative than the original one. The necessary
condition for being able to violate Bell inequalities we have derived is that at least
one of the factors in the product form involves both settings in its conditionals, i.e. at
least one of the outcomes must depend probabilistically (or functionally, respectively) on
both settings. Without such a dependence between an outcome and both settings Bell
inequalities cannot be violated. We have called such product forms strongly non-local,
and their property of depending on both settings probabilistic Bell contextuality. It is
obvious that the quantum mechanical distribution (6) constitutes an example of such a
form, rather than of (Hα

16).
So what is crucial for being able to violate Bell inequalities is the dependence on both

settings. Apart from that, an outcome might depend on the distant outcome or not;
whether it does is irrelevant for this purpose.10 In this sense, some form of dependence

10 A dependence on the distant outcome, however, does matter when one considers not only the violation
of Bell inequalities but the exact quantitative reproduction of EPR/B correlations. Pawlowski et al.
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on the distant setting is required (though not necessarily the kind of dependence that
is usually called parameter dependence). As a consequence, one might still have a
theory that is outcome dependent, but the outcome dependence is not the critical non-
local dependence. A full list of logically possible product forms that can violate Bell
inequalities can be found in table 1 under the label ‘strongly non-local classes’ (Hα

1 –Hα
14).

Note that also this positive result is meant in a purely probabilistic sense: in this paper
we have only established that at least one of the outcomes must depend probabilistically
on both settings (but see Näger (2013) for arguments to infer causal dependences from
these probabilistic dependences).

We should mention here that there is another approach to quantum non-locality whose
result seems to converge with ours. Maudlin (1994, ch. 6; cf. also a recent refinement
by Pawlowski et al. 2010) examines the quantum non-locality not via Bell’s theorem,
but directly investigates the EPR/B correlations by information theoretic methods. He
proves that at least one of the outcomes must depend on information about both settings.
Since (Shannon mutual) information implies correlation, it seems that Maudlin’s claim
is—at least roughly—in accordance with our results. On the one hand, this is good
news because two different methods yielding the same results are good evidence for the
stability of a claim.

On the other hand, I stress that there are at least four non-trivial differences between
Maudlin’s approach and the one we have presented in this paper. First, each proposal
has its own, very different methodology. Maudlin analyses the correlations information
theoretically and does not connect his considerations to Bell’s argument. In contrast, our
approach here is in continuity with Bell’s thoughts, which have started and shaped the
discussion; it develops and strengthens the method that is most common in the debate,
viz. the access via Bell inequalities. Second, the information theoretic approaches are
stronger in that they provide the amount of information (the quantitative strength of
the correlations) that is required in order to reproduce EPR/B correlations. This is an
important result providing sufficient criteria for reproducing the correlations. In another
sense, however, third, the information theoretic considerations are also weaker than
our results in this paper. Maudlin only claims a dependence between an outcome and
both settings, whereas we have presented a detailed list of allowed classes with explicit
probabilistic expressions, which are open to further probabilistic analysis. Such analyses
are relevant in order to make a precise claim about conditional on which other variables a
dependence of an outcome on its distant setting holds. Another point, fourth, which our
argument here reveals, but Maudlin’s is tacit on, is given by the following consequence
of our approach:

(3) It is a crucial result of our analysis that we have been able to show that the
argument we have presented has the strongest possible conclusion on a qualitative level
(which only takes into account dependences and independences rather than numerical
strengths of correlations). This precludes speculations whether the argument could be

(2010) have shown that there must be information about the distant outcome and that information
can either be available by a direct correlation (as in the case of quantum mechanics) or be revealed
by a hidden variable (which, however, is not available in the case of quantum mechanics).
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made even stronger. Our argument yields the strongest possible necessary conditions
for violating Bell inequalities on a qualitative level. It has been essential for arriving at
this result to have the complete list of logically possible classes (see table 1), because in
this way we could be sure not to have neglected possible classes of theories.

(4) We should mention that our considerations also shed new light on Bell inequalities
and their meaning: our result shows that Bell inequalities are not locality conditions in
the sense that, if a probability distribution obeys a Bell inequality, it must be local.
In the discussion, Bell inequalities are so closely linked to locality that one could have
this impression. Of course, Bell’s argument never really justified that view, for the logic
of the standard Bell argument is that local factorisation (given autonomy and perfect
(anti-)correlations) is merely sufficient (and not necessary) for Bell inequalities. Maybe
the association between Bell inequalities and locality might have arisen from the fact
that up to now local factorisation has been the only product form which has been shown
to imply Bell inequalities. Given only this information, it was at least possible (though
unproven) that the holding of Bell inequalities implies locality. However, since we have
shown that some weakly non-local classes in general imply Bell inequalities and since the
simulations show that even some strongly non-local distributions can conform to Bell
inequalities, it has become explicit that this is not true. Not all probability distributions
obeying Bell inequalities are local.

(5) Finally, we may ask, why these stronger consequences of the Bell argument, that
we have derived in this paper, have been overlooked so far. Obviously, it has wrongly
been assumed that local factorisation is the only basis to derive Bell inequalities, and the
main reason for neglecting other product forms of hidden joint probabilities might have
been the fact that, originally, Bell inequalities were derived to capture consequences of
a local worldview. The question that shaped Bell’s original work clearly was Einstein’s
search for a local hidden variable theory and his main result was that such a theory is
impossible: locality has consequences which are in conflict with the quantum mechan-
ical distribution—one cannot have a local hidden variable theory which yields the same
predictions as quantum mechanics. Given this historical background, the idea to derive
Bell inequalities from non-local assumptions maybe was beyond interest because the
conflict with locality was considered to be the crucial point; or maybe it was neglected
because Bell inequalities were so tightly associated with locality that a derivation from
non-locality sounded totally implausible. Systematically, however, since today it is clear
that the quantum mechanical distribution is empirically correct and Bell inequalities are
violated, it is desirable to draw as strong consequences as possible from the argument,
which requires to check without prejudice whether some non-local classes allow a de-
rivation of Bell inequalities as well. That this is indeed the case is the result of this
paper.
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Portmann, S. and A. Wüthrich (2007). Minimal assumption derivation of a weak Clauser-
Horne inequality. Studies in History and Philosophy of Modern Physics 38, 844–862.

San Pedro, I. (2012). Causation, measurement relevance and no-conspiracy in EPR.
European Journal for Philosophy of Science 2, 137–156.

Shimony, A. (1984). Controllable and uncontrollable non-locality. In S. Kamefuchi
(Ed.), Foundations of Quantum Mechanics in the Light of New Technology, pp. 225–
230. Tokyo: The Physical Society of Japan.

Shimony, A. (1986). Events and processes in the quantum world. In R. Penrose and C. J.
Isham (Eds.), Quantum Concepts in Space and Time, pp. 182–203. Oxford: Clarendon
Press.

Sutherland, R. I. (1983). Bell’s theorem and backwards-in-time causality. International
Journal of Theoretcial Physics 22 (4), 377–384.

Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal,
M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Omer, B., Furst, M.,
Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., and Zeilinger,
Anton (2007). Entanglement-based quantum communication over 144 km. Nature
Physics 3 (7), 481–486.

van Fraassen, B. C. (1989). The charybdis of realism: Epistemological implications of
Bell’s inequality. In J. T. Cushing and E. McMullin (Eds.), Philosophical Consequences
of Quantum Theory: Reflections on Bell’s Theorem, pp. 97–113. (Reprinted with
additional comments from Synthese 52, 25–38). Notre Dame: University of Notre
Dame Press.

Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., and Zeilinger, A. (1998). Viol-
ation of Bell’s inequality under strict Einstein locality conditions. Physical Review
Letters 81 (23), 5039–5043.

Wigner, E. P. (1970). On hidden variables and quantum mechanical probabilities. Amer-
ican Journal of Physics 38, 1005–1009.

30

http://dx.doi.org/10.1007/s11229-015-0668-6


References

Appendix

Proof of lemma 1

We proceed by reductio. By autonomy and (Hα
16) we rewrite the conditions for perfect

correlations and for perfect anti-correlations:

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|biλ) (7)

P (α±β∓|ai⊥bi⊥) = 0 =
∑
λ

P (λ)P (α±|β∓ai⊥λ)P (β∓|bi⊥λ) (8)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ) (9)

P (α±β±|ai⊥bi) = 0 =
∑
λ

P (λ)P (α±|β±ai⊥λ)P (β±|biλ) (10)

Since probabilities are non-negative (and since without loss of generality we can assume
P (λ) > 0 for all λ), at least one of the two remaining factors in each summand must be
zero, i.e. for all values i and λ we must have:[

P (α+|β−aiλ) = 0 ∨ P (β−|biλ) = 0
]

(11)

∧
[

P (α−|β+aiλ) = 0 ∨ P (β+|biλ) = 0
]

(12)

∧
[

P (α+|β−ai⊥λ) = 0 ∨ P (β−|bi⊥λ) = 0
]

(13)

∧
[

P (α−|β+ai⊥λ) = 0 ∨ P (β+|bi⊥λ) = 0
]

(14)

∧
[

P (α+|β+aiλ) = 0 ∨ P (β+|bi⊥λ) = 0
]

(15)

∧
[

P (α−|β−aiλ) = 0 ∨ P (β−|bi⊥λ) = 0
]

(16)

∧
[

P (α+|β+ai⊥λ) = 0 ∨ P (β+|biλ) = 0
]

(17)

∧
[

P (α−|β−ai⊥λ) = 0 ∨ P (β−|biλ) = 0
]

(18)

From these conditions one can infer that all involved probabilities must be 0 or 1
(determinism). More precisely, for every i and λ one of the following two cases holds:
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Case 1: P (α+|β−aiλ) = 0

(CE)⇒ P (α−|β−aiλ) = 1
(16)⇒ P (β−|bi⊥λ) = 0

(CE)⇒ P (β+|bi⊥λ) = 1
(14)⇒
(15)

P (α−|β+ai⊥λ) = 0

∧ P (α+|β+aiλ) = 0

(CE)⇒ P (α+|β+ai⊥λ) = 1
(17)⇒
(12)

P (β+|biλ) = 0

∧ P (α−|β+aiλ) = 1

(CE)⇒ P (β−|biλ) = 1
(18)⇒ P (α−|β−ai⊥λ) = 0

(CE)⇒ P (α+|β−ai⊥λ) = 1

NB : (CE) stands for the following theorem of probability theory: P (A|B)+P (Ā|B) = 1.

Case 2: P (α+|β−aiλ) > 0

(11)⇒ P (β−|biλ) = 0

(CE)⇒ P (β+|biλ) = 1
(12)⇒
(17)

P (α−|β+aiλ) = 0

∧ P (α+|β+ai⊥λ) = 0

(CE)⇒ P (α+|β+aiλ) = 1
(15)⇒
(14)

P (β+|bi⊥λ) = 0

∧ P (α−|β+ai⊥λ) = 1

(CE)⇒ P (β−|bi⊥λ) = 1
(13)⇒
(16)

P (α+|β−ai⊥λ) = 0

∧ P (α−|β−aiλ) = 0

(CE)⇒ P (α−|β−ai⊥λ) = 1

∧ P (α+|β−aiλ) = 1
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Since in each case we have

P (α+|β+aiλ) = P (α+|β−aiλ) (19)

P (α−|β+aiλ) = P (α−|β−aiλ) (20)

P (α+|β+ai⊥λ) = P (α+|β−ai⊥λ) (21)

P (α−|β+ai⊥λ) = P (α−|β−ai⊥λ) (22)

it is true that

∀α, β, a, λ : P (α|βaλ) = P (α|aλ). (23)

By this statistical independence the product form (Hα
16)

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (24)

loses its dependence on the outcome β in the first factor, i.e. it reads

P (αβ|abλ) = P (α|aλ)P (β|bλ). (25)

This, however, is the well known local product form (local factorization), contradicting
the assumption that we have the non-local product form (Hα

16).
Note that this proof makes essential use of the perfect correlations and perfect antio-

correlations (7–10), i.e. the probabilities P (α±β∓|aibi), P (α±β∓|ai⊥bi⊥), P (α±β±|aibi⊥)
and P (α±β±|ai⊥bi) have to be strictly 0. If these conditions are only slightly relaxed, i.e.
if any of these probabilities takes on a positive value, even if very small, the conclusion
does not follow. q.e.d.

Proof of lemma 2

By autonomy and (Hα
16) we rewrite (some of) the conditions for nearly perfect correla-

tions and for nearly perfect anti-correlations:

P (α±β∓|aibi) = δii =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|biλ) (26)

P (α±β±|aibi⊥) = δii⊥ =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ), (27)

where δii and δii⊥ are positive and small. Since probabilities are non-negative, all sum-
mands are non-negative; so each summand must be less or equal than the total value of
the sum:

P (λ)P (α±|β∓aiλ)P (β∓|biλ) ≤ δii (28)

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ) ≤ δii⊥ (29)
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In order to facilitate the following considerations, let us define

ε := max
i=1,2,3

( 3
√
δii,

3
√
δii⊥) (30)

where i = 1, 2, 3 represent three distinct measurement directions. We can then write:

P (λ)P (α±|β∓aiλ)P (β∓|biλ) ≤ ε3 (31)

P (λ)P (α±|β±aiλ)P (β±|bi⊥λ) ≤ ε3. (32)

Since a product of three non-negative factors is never smaller than the cube root of its
smallest factor, each product must contain (at least) one factor that is less or equal
than ε, i.e. for all values i and λ we must have:[

P (λ) ≤ ε ∨ P (α+|β−aiλ) ≤ ε ∨ P (β−|biλ) ≤ ε
]

(33)

∧
[
P (λ) ≤ ε ∨ P (α−|β+aiλ) ≤ ε ∨ P (β+|biλ) ≤ ε

]
(34)

∧
[
P (λ) ≤ ε ∨ P (α+|β+aiλ) ≤ ε ∨ P (β+|bi⊥λ) ≤ ε

]
(35)

∧
[
P (λ) ≤ ε ∨ P (α−|β−aiλ) ≤ ε ∨ P (β−|bi⊥λ) ≤ ε

]
(36)

There are three cases that solve these conditions:

Case 1: P (λ) > ε ∧ P (α+|β−aiλ) ≤ ε

(CE)⇒ P (α−|β−aiλ) > 1− ε (36)⇒ P (β−|bi⊥λ) ≤ ε
(CE)⇒ P (β+|bi⊥λ) > 1− ε (35)⇒ P (α+|β+aiλ) ≤ ε
(CE)⇒ P (α−|β+aiλ) > 1− ε (34)⇒ P (β+|biλ) ≤ ε
(CE)⇒ P (β−|biλ) > 1− ε

Case 2: P (λ) > ε ∧ P (α+|β−aiλ) > ε

(33)⇒ P (β−|biλ) ≤ ε
(CE)⇒ P (β+|biλ) > 1− ε (34)⇒ P (α−|β+aiλ) ≤ ε
(CE)⇒ P (α+|β+aiλ) > 1− ε (35)⇒ P (β+|bi⊥λ) ≤ ε
(CE)⇒ P (β−|bi⊥λ) > 1− ε (36)⇒ P (α−|β−aiλ) ≤ ε
(CE)⇒ P (α+|β−aiλ) > 1− ε

Case 3: P (λ) ≤ ε

(no particular restrictions for other probabilities)

The three cases are disjunct and define a partition of the values of λ:
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Λ1(i) := {λ|P (λ) > ε ∧ P (α+|β−aiλ) ≤ ε)}

Λ2(i) := {λ|P (λ) > ε ∧ P (α+|β−aiλ) ≥ 1− ε)}

Λ3(i) := {λ|P (λ) ≤ ε} = Λ3

Note that each value i defines a different partition, but that Λ3(i) = Λ3 is independent
of i.

We can use the fact that the λ-partitions depend on just one setting i to estimate
values for the hidden joint probability P (αβ|abλ) for any choice of measurement direc-
tions aibj by forming intersections of partitions for different settings (see table 2). Note
that the table only comprises five of the nine combinatorially possible cases; the ignored
cases are empty sets (Λ1(i)∧Λ3 = ∅ because Λ1(i) requires P (λ) > ε, whereas Λ3 implies
P (λ) ≤ ε; and analogously Λ2(i) ∧ Λ3 = ∅, Λ3 ∧ Λ1(j) = ∅, Λ3 ∧ Λ2(j) = ∅). The last
column is defined as Λ3(i) ∩ Λ3(j) = Λ3, and the label ‘n.r.’ means ‘no restriction’, i.e.
the value of the hidden joint probability is not confined to any specific interval; rather,
in this set it is the case that P (λ) ≤ ε.

Table 2: Values of the hidden joint probability

λ ∈

Λ1(i) ∩ Λ1(j) Λ1(i) ∩ Λ2(j) Λ2(i) ∩ Λ1(j) Λ2(i) ∩ Λ2(j) Λ3

P (α+β+|aibjλ) ≤ ε2 ≤ ε ≤ ε > (1− ε)2 n.r.

P (α+β−|aibjλ) ≤ ε ≤ ε2 > (1− ε)2 ≤ ε n.r.

P (α−β+|aibjλ) ≤ ε > (1− ε)2 ≤ ε2 ≤ ε n.r.

P (α−β−|aibjλ) > (1− ε)2 ≤ ε ≤ ε ≤ ε2 n.r.

Given the estimations for the hidden joint probability in table 2 one can derive a
generalised Wigner-Bell inequality. Consider the inequality

P (X ∩ Z) ≤ P (X ∩ Y ) + P (Y ∩ Z), (37)

which in general holds for any events X,Y, Z of a measurable space, as can easily be
seen by rewriting the involved probabilities:

P (X ∩ Z) = P (X ∩ Y ∩ Z) + P (X ∩ Y ∩ Z) (38)

P (X ∩ Y ) = P (X ∩ Y ∩ Z) + P (X ∩ Y ∩ Z) (39)

P (Y ∩ Z) = P (X ∩ Y ∩ Z) + P (X ∩ Y ∩ Z) (40)

Assuming X = Λ1(1) ∪ Λ3, Y = Λ1(2) ∪ Λ3 and Z = Λ1(3) gives the inequality

P ([Λ1(1)∪Λ3]∩Λ1(3)) ≤ P ([Λ1(1)∪Λ3]∩ [Λ1(2) ∪ Λ3]) +P ([Λ1(2)∪Λ3]∩Λ1(3)). (41)

35



References

We calculate the sets involved in the inequality:

[Λ1(i) ∪ Λ3] ∩ Λ1(j) = [Λ1(i) ∪ Λ3] ∩ [Λ2(j) ∪ Λ3] =

= [Λ1(i) ∩ Λ2(j)] ∪ [Λ1(i) ∩ Λ3︸ ︷︷ ︸
∅

] ∪ [Λ3 ∩ Λ2(j)︸ ︷︷ ︸
∅

] ∪ [Λ3 ∩ Λ3︸ ︷︷ ︸
Λ3

]

= [Λ1(i) ∩ Λ2(j)] ∪ Λ3 (42)

[Λ1(i) ∪ Λ3] ∩ [Λ1(j) ∪ Λ3] = [Λ1(i) ∪ Λ3] ∩ Λ2(j)

= [Λ1(i) ∩ Λ2(j)] ∪ [Λ3 ∩ Λ2(j)︸ ︷︷ ︸
∅

]

= Λ1(i) ∩ Λ2(j) (43)

If we further define the shorthand

Λkl(i, j) := Λk(i) ∩ Λl(j), (44)

we can rewrite inequality (41) as

P (Λ12(1, 3) ∪ Λ3) ≤ P (Λ12(1, 2)) + P (Λ12(2, 3) ∪ Λ3). (45)

This inequality can be transformed to yield a generalized Wigner-Bell inequality. We
have to rewrite the inequality such that it only involves empirically accessible probabil-
ities, i.e. probabilities that do not involve the hidden state λ, and this can be done by
using the estimates for the hidden joint probability from table 2. Especially, we have to
find a lower estimate for the left hand side of the inequality and an upper estimate for
its right hand side. We start by deriving the former:

P (Λ12(1, 3) ∪ Λ3)
(σ-additivity)

=
∑

λ∈Λ12(1,3)∪Λ3

P (λ)

≥
∑

λ∈Λ12(1,3)∪Λ3

P (λ)P (α−β+|a1b3λ)

=
∑
λ∈Λ

P (λ)P (α−β+|a1b3λ)−
∑

λ∈Λ\[Λ12(1,3)∪Λ3]

P (λ)P (α−β+|a1b3λ)

= P (α−β+|a1b3)−
∑

λ∈Λ11(1,3)

P (λ)P (α−β+|a1b3λ)

−
∑

λ∈Λ21(1,3)

P (λ)P (α−β+|a1b3λ)−
∑

λ∈Λ22(1,3)

P (λ)P (α−β+|a1b3λ)

(table 2)

≥ P (α−β+|a1b3)− ε
∑

λ∈Λ11(1,3)

P (λ)− ε2
∑

λ∈Λ21(1,3)

P (λ)− ε
∑

λ∈Λ22(1,3)

P (λ)

≥ P (α−β+|a1b3)− 2ε− ε2 (46)
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An upper estimate for the right hand side of (45) can be calculated as follows:

P (Λ12(1, 2)) + P (Λ12(2, 3) ∪ Λ3) = (47)

(σ-additivity)
=

∑
λ∈Λ12(1,2)

P (λ) +
∑

λ∈Λ12(2,3)∪Λ3

P (λ)

≤
∑

λ∈Λ12(1,2)

P (λ)
P (α−β+|a1b2λ)

(1− ε)2
+

∑
λ∈Λ12(2,3)∪Λ3

P (λ)
P (α−β+|a2b3λ)

(1− ε)2

≤
∑
λ∈Λ

P (λ)
P (α−β+|a1b2λ)

(1− ε)2
+
∑
λ∈Λ

P (λ)
P (α−β+|a2b3λ)

(1− ε)2

=
P (α−β+|a1b2λ) + P (α−β+|a2b3λ)

(1− ε)2
(48)

The resulting inequality

P (α−β+|a1b3)− 2ε− ε2 ≤ P (α−β+|a1b2λ) + P (α−β+|a2b3λ)

(1− ε)2
(49)

is the Wigner-Bell inequality we have been looking for. It generalizes usual Wigner-Bell
inequalities such as

P (α−β+|a1b3) ≤ P (α−β+|a1b2λ) + P (α−β+|a2b3λ) (50)

in that it introduces correction terms with the parameter ε. It is an inequality of fourth
order in ε and one can check numerically that it is violated by the empirical measurement
results

P (α−β+|a1b3) = 0.375, P (α−β+|a1b2) = 0.125, P (α−β+|a2b3) = 0.125, (51)

(which are a maximal violation of the usual Wigner-Bell inequality and occur e.g. for
the measurement settings being chosen as 1 = 0◦, 2 = 30◦, 3 = 60◦ given the quantum
state ψ0), if

0 < ε < 0.048328 (52)

Hence, the maximal deviation of perfect correlations for the generalized Wigner-Bell
inequality still to be violated is

δ = (εmax)3 = 0.0483283 = 1.1280 · 10−4, (53)

i.e. at least 99.989% of the photons must be perfectly correlated and anti-correlated.
q.e.d.

Proof of theorem 1.1

We split the theorem up into three partial claims:
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Claim 1: Autonomy, perfect correlations, perfect anti-correlations and a class of prob-
ability distributions (Hα

i ) form an inconsistent set if (i) the product form of
(Hα

i ) involves at most one of the settings.

Claim 2: Autonomy, perfect correlations, perfect anti-correlations and a class of prob-
ability distributions (Hα

i ) form an inconsistent set if (ii) the product form of
(Hα

i ) involves both settings but its first factor involves the distant outcome
and at most one setting.

Claim 3: A class (Hα
i ) is consistent with autonomy, perfect correlations and perfect

anti-correlations if (¬i) the product form of (Hα
i ) involves both settings and

(¬ii) in case the distant outcome appears in the first factor of (Hα
i )’s product

form, also both settings appear in that factor.

Proof of claim 1

Condition (i), that the product form involves at most one of the settings, is fulfilled
by the classes {(Hα

17), . . . , (Hα
32)}\{(Hα

22), (Hα
29)}. Here we have to show the inconsistency

of these classes with the set of assumptions autonomy, perfect correlations and perfect
anti-correlations.

Consider, for instance,

P (αβ|abλ) = P (α|βaλ)P (β|aλ) = P (αβ|aλ), (Hα
17)

which fails to involve the setting b. It is easy to show that this product form can neither
account for the perfect correlations nor for the perfect anti-correlations. The perfect
correlations read:

P (α±β±|aibi) =
1

2
P (α±β±|aibi⊥) = 0. (54)

Now, the value of these empirical probabilities depends crucially on the value of the
setting b. However, one can demonstrate without much effort that (Hα

17)’s failure to
involve the setting b on a hidden level, extends to the empirical level, if one assumes
autonomy:

P (αβ|ab) =
∑
λ

P (λ|ab)P (αβ|abλ)
(A)
=
∑
λ

P (λ|ab′)P (αβ|abλ) =

(Hα17)
=

∑
λ

P (λ|ab′)P (αβ|ab′λ) = P (αβ|ab′) (55)

This implies that according to (Hα
17) all empirical probabilities P (αβ|ab) that only differ

by their value for the setting b must equal another—which obviously contradicts (54).
For the same reason, (Hα

17) contradicts the perfect anti-correlations

P (α±β∓|aibi⊥) =
1

2
P (α±β∓|aibi) = 0. (56)
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In the same way, all other product forms that do not involve the setting b are in
conflict with the perfect correlations (54) and perfect anti-correlations (56), and, simil-
arly, all product forms that fail to involve the setting a are in conflict with the perfect
correlations

P (α±β±|aibi) =
1

2
P (α±β±|ai⊥bi) = 0. (57)

or the perfect anti-correlations

P (α±β∓|ai⊥bi) =
1

2
P (α±β∓|aibi) = 0. (58)

Proof of claim 2

Condition (ii), that the product form involves both settings but its first factor involves
the distant outcome and at most one setting, is fulfilled by the product forms (Hα

4 ), (Hα
5 ),

(Hα
10), (Hα

15) and (Hα
16). Here we have to show the inconsistency of these classes with

the set of assumptions autonomy, perfect correlations and perfect anti-correlations.
By lemma 1 we have already proven that (Hα

16)

P (αβ|abλ) = P (α|βaλ)P (β|bλ) (59)

forms an inconsistent set with autonomy, perfect correlations and perfect anti-correlations.
Mutatis mutandis, also the classes (Hα

10) and (Hα
15) lead to a similar inconsistency. In

each case the product form looses its dependence on the distant outcome in the first
factor, i.e. (Hα

10) reduces to (Hα
14), whereas (Hα

15) reduces to (Hα
22).

The proofs against the classes (Hα
4 ) and (Hα

5 ) work in a similar way, but require a
little more care due to an additional case differentiation. Let me shortly demonstrate
this for class (Hα

5 ). As for (Hα
16) one starts with expressing the perfect (anti-)correlations

in terms of the product form,

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|β∓aiλ)P (β∓|aibiλ) (60)

P (α±β∓|ai⊥bi⊥) = 0 =
∑
λ

P (λ)P (α±|β∓ai⊥λ)P (β∓|ai⊥bi⊥λ) (61)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|β±aiλ)P (β±|aibi⊥λ) (62)

P (α±β±|ai⊥bi) = 0 =
∑
λ

P (λ)P (α±|β±ai⊥λ)P (β±|ai⊥biλ). (63)

In the case of (Hα
16) there were two cases, defined by P (α±|β∓aiλ) = 0 or P (α±|β∓aiλ) >

0, respectively, and all other probabilities followed from each of these defining probab-
ilities. In the present case, however, when, accordingly, we assume P (α±|β∓aiλ) = 0
or P (α±|β∓aiλ) > 0, respectively, only the factors of the hidden joint probabilities on
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the right hand side of equations (60) and (62) are implied, i.e. the probabilities in
(61) and (63) remain undetermined by these assumptions (due to the fact that there
are two settings in the second factor of the product form). The latter probabilities
have to be determined by further assumptions, e.g. by setting P (α±|β∓ai⊥λ) = 0 or
P (α±|β∓ai⊥λ) > 0, respectively. These assumptions introduce two new cases, that are
logically independent of the former two. In total, this makes four cases (instead of two):

P (α±|β∓aiλ) = 0 ∧ P (α±|β∓ai⊥λ) = 0 (64)

P (α±|β∓aiλ) = 0 ∧ P (α±|β∓ai⊥λ) > 0 (65)

P (α±|β∓aiλ) > 0 ∧ P (α±|β∓ai⊥λ) = 0 (66)

P (α±|β∓aiλ) > 0 ∧ P (α±|β∓ai⊥λ) > 0 (67)

While this renders the proof slightly more complex, the crucial fact to mention here is
that in all four cases we have

∀α, β, a, λ : P (α|βaλ) = P (α|aλ), (68)

i.e. (Hα
5 ) reduces to (Hα

12). Similarly, one can show that (Hα
4 ) reduces to (Hα

11).

Proof of claim 3

Condition (¬i) and (¬ii), that the product form involves both settings and in case the
distant outcome appears in the first factor, also both settings appear in that factor, is ful-
filled by the product forms {(Hα

1 ), . . . , (Hα
14)}\{(Hα

4 ), (Hα
5 ), (Hα

10)}, (Hα
22) and (Hα

29). Here
we have to show the consistency of these classes with the set of assumptions autonomy,
perfect correlations and perfect anti-correlations.

Since a class being inconsistent with certain assumptions means that every distribu-
tion of a class contradicts the assumptions, a class being consistent means that there is
at least one probability distribution in that class which is compatible with the assump-
tions. Hence, what we need for each of these classes in order to show their consistency
with the background assumptions, is one example of a probability distribution belonging
to that class that respects the background assumptions. In fact, such examples are easy
to construct. Let me demonstrate the procedure with one of the weakest classes in that
group, (Hα

29), whose product form is local factorization.
Requiring just any example we can presuppose a minimal setup, i.e. the hidden

variable as well as each setting can be assumed to have only two possible values: λ =
λ1, λ2, a = ai, ai⊥ and b = bi, bi⊥ with ai = bi and ai⊥ = bi⊥ . We start by writing down
the perfect correlations and perfect anti-correlations, and express the probabilities on
the empirical level by the probabilities on the hidden level using the product form and
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autonomy:

P (α±β∓|aibi) = 0 =
∑
λ

P (λ)P (α±|aiλ)P (β∓|biλ) (69)

P (α±β∓|ai⊥bi⊥) = 0 =
∑
λ

P (λ)P (α±|ai⊥λ)P (β∓|bi⊥λ) (70)

P (α±β±|ai⊥bi) = 0 =
∑
λ

P (λ)P (α±|ai⊥λ)P (β±|biλ) (71)

P (α±β±|aibi⊥) = 0 =
∑
λ

P (λ)P (α±|aiλ)P (β±|bi⊥λ). (72)

P (α±β±|aibi) =
1

2
=
∑
λ

P (λ)P (α±|aiλ)P (β±|biλ) (73)

P (α±β±|ai⊥bi⊥) =
1

2
=
∑
λ

P (λ)P (α±|ai⊥λ)P (β±|bi⊥λ) (74)

P (α±β∓|ai⊥bi) =
1

2
=
∑
λ

P (λ)P (α±|ai⊥λ)P (β∓|biλ) (75)

P (α±β∓|aibi⊥) =
1

2
=
∑
λ

P (λ)P (α±|aiλ)P (β∓|bi⊥λ). (76)

Then choose a value for any of the probabilities on the right hand side that does not
lead into inconsistencies, e.g.

P (α+|aiλ1) = 0. (77)

By (69)–(72) this entails the following probabilities:

(CE)⇒ P (α−|aiλ1) = 1
(69)⇒
(72)

P (β+|biλ1) = 0 (78)

∧ P (β−|bi⊥λ1) = 0 (79)

(CE)⇒ P (β−|biλ1) = 1
(71)⇒
(70)

P (α−|ai⊥λ1) = 0 (80)

∧ P (β+|bi⊥λ1) = 1 (81)

(CE)⇒ P (α+|ai⊥λ1) = 1 (82)

Similarly, choose a value for the corresponding probability conditional on λ2, e.g.

P (α+|aiλ2) = 1 (83)
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and draw the appropriate consequences:

(69)⇒
(72)

P (β−|biλ2) = 0 (84)

∧ P (β+|bi⊥λ2) = 0 (85)

(CE)⇒ P (β+|biλ2) = 1
(69),(72)⇒
(70),(71)

P (α−|aiλ2) = 0 (86)

∧ P (β−|bi⊥λ2) = 1 P (α+|ai⊥λ2) = 0 (87)

(CE)⇒ P (α−|ai⊥λ2) = 1 (88)

These probabilities determine the values of the hidden joint probabilities consistent
with equations (69)–(72). Note that we have

∀α, λ : P (α|aiλ) 6= P (α|ai⊥λ) ∀α, a : P (α|aλ1) 6= P (α|aλ2) (89)

∀β, λ : P (β|biλ) 6= P (β|bi⊥λ) ∀β, b : P (β|bλ1) 6= P (β|bλ2), (90)

which means that the product form does not reduce to any other product form (i.e. the
product form is consistent with the assumptions so far).

Inserting the determined values of the hidden joint probability into equations (73)–
(76) yields:

P (λ1) =
1

2
P (λ2) =

1

2
(91)

Finally we can freely choose, say,

P (ai) =
1

2
= P (ai⊥) P (bi) =

1

2
= P (bi⊥) (92)

such that by the formula

P (αβabλ) = P (α|aλ)P (β|bλ)P (λ)P (a)P (b) (93)

we arrive at the following probability distribution:

P (α+β+aibiλ1) = 0 P (α+β−aibiλ1) = 0 P (α−β+aibiλ1) = 0 P (α−β−aibiλ1) = 1
8

P (α+β+aibi⊥λ1) = 0 P (α+β−aibi⊥λ1) = 0 P (α−β+aibi⊥λ1) = 1
8

P (α−β−aibi⊥λ1) = 0

P (α+β+ai⊥biλ1) = 0 P (α+β−ai⊥biλ1) = 1
8

P (α−β+ai⊥biλ1) = 0 P (α−β−ai⊥biλ1) = 0

P (α+β+ai⊥bi⊥λ1) = 1
8

P (α+β−ai⊥bi⊥λ1) = 0 P (α−β+ai⊥bi⊥λ1) = 0 P (α−β−ai⊥bi⊥λ1) = 0

P (α+β+aibiλ2) = 1
8

P (α+β−aibiλ2) = 0 P (α−β+aibiλ2) = 0 P (α−β−aibiλ2) = 0

P (α+β+aibi⊥λ2) = 0 P (α+β−aibi⊥λ2) = 1
8

P (α−β+aibi⊥λ2) = 0 P (α−β−aibi⊥λ2) = 0

P (α+β+ai⊥biλ2) = 0 P (α+β−ai⊥biλ2) = 0 P (α−β+ai⊥biλ2) = 1
8

P (α−β−ai⊥biλ2) = 0

P (α+β+ai⊥bi⊥λ2) = 0 P (α+β−ai⊥bi⊥λ2) = 0 P (α−β+ai⊥bi⊥λ2) = 0 P (α−β−ai⊥bi⊥λ2) = 1
8
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This distribution is in accordance with the axioms of probability theory; by construc-
tion its hidden joint probability has the product form that is characteristic for class
(Hα

29), and it reproduces the perfect correlations and anti-correlations. This explicit
example shows that class (Hα

29) is consistent with the assumptions autonomy, perfect
correlations and perfect (anti-)correlations.

In a similar way one can construct examples of probability distributions for the other
classes fulfilling (¬i) and (¬ii). Since (Hα

22) is symmetric to (Hα
29) under interchanging

the settings, it is clear that the constructed distribution for the latter class can easily be
turned into an example for the former if in each total probability one swaps the values
of the settings. Furthermore, it is straightforward to modify the construction such that
it yields distributions for the classes {(Hα

1 ), . . . , (Hα
14)}\{(Hα

4 ), (Hα
5 ), (Hα

10)}. Note that
in these classes there are more degrees of freedom than in the presented example, so one
might freely choose more values of probabilities. This completes our proof of theorem 1.1.

q.e.d.

Proof of theorem 1.2

We split the theorem up into two partial claims:

Claim 1: Given autonomy, perfect correlations and perfect anti-correlations a consist-
ent class (i.e. a class that fulfills (¬i) and (¬ii)) implies Bell inequalities if
(iii) each factor of its product form involves at most one setting.

Claim 2: Given autonomy, perfect correlations and perfect anti-correlations a con-
sistent class (i.e. a class that fulfills (¬i) and (¬ii)) does not imply Bell
inequalities if (¬iii) at least one factor of its product form involves both
settings.

Proof of claim 1

The set of classes fulfilling (¬i), (¬ii) and (iii) consists of (H22) and (H29). Here we
have to show that, given autonomy, perfect correlations and perfect (anti-)correlations,
each of these classes implies Bell inequalities.

By usual derivations of Wigner-Bell inequalities, it is well-known that local factorisa-
tion (H29) implies Bell inequalities (given autonomy and perfect correlations; cf. premise
(P4) of the Bell argument above). Now, it is easy to see that in a very similar way one
can use (Hα

22) to derive Bell inequalities. For, as we have said, (H22) differs from local
factorisation only in that the settings in the product form are swapped: instead of a
dependence of each outcome on the local settings each factor involves a dependence on
the distant setting. Accordingly, the derivation from (H22) results from the usual one
by interchanging the settings in each expression.

Proof of claim 2
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The classes fulfilling conditions (¬i) and (¬ii) while violating (iii) are (Hα
1 )..(Hα

14)\{(Hα
4 ), (Hα

5 ), (Hα
10)}.

Here we have to show that given the background assumptions autonomy, perfect cor-
relations and perfect anti-correlations, these classes do not imply the Bell inequalities.
Since a class implying the inequalities means that all distributions of a class imply
the inequalities, demonstrating that a class does not imply the inequalities amounts to
showing that there is at least one distribution in that class that violates the inequalities.
In other words, we have to show that there is at least one distribution for each class
that fulfills autonomy, perfect correlations, perfect anti-correlations and violates the Bell
inequalities.

One way to find such examples is to look at existing hidden-variable theories that
successfully explain the statistics of EPR/B experiments. In our overview of the classes
we have seen that the de-Broglie-Bohm theory falls under different classes depending
on which temporal order the experiment has, (Hα

6 ), (Hα
9 ) or (Hα

12). For each of these
classes, the probability distribution of the theory provides an example with the desired
features. Moreover, the example for (Hα

9 ) can be turned into one for (Hα
8 ) by reversing

the dependence on the settings. And similarly, the example for (Hα
12) can be turned

into one for (Hα
11). Since (Hα

1 ), (Hα
2 ), (Hα

3 ) and (Hα
7 ) are stronger product forms (involve

more dependences) than one or several of the classes (Hα
6 ), (Hα

8 ), (Hα
9 ), (Hα

11) or (Hα
12),

by small modifications of the available examples one can construct examples for these
classes as well.

It remains to find examples for classes (Hα
13) and (Hα

14). Since there are no theor-
ies available for these classes, here the construction has to be from scratch. Let me
demonstrate how the construction works for class (Hα

14). We first of all take into account
the perfect correlations and perfect anti-correlations. This goes, mutatis mutandis, very
similar to finding a probability distribution from class (Hα

29) that is compatible with
perfect (anti-)correlations (see proof of claim 3 in the proof of theorem 1.1). By similar
equations to (69)–(72) (exchange the product form of (Hα

29) on the right hand side with
the product form of (Hα

14)), for any i and λ there are two possible cases:

Case I:

P (α+|λ) = 0 P (α−|λ) = 1 (94)

P (β+|aibiλ) = 0 P (β−|aibiλ) = 1 P (β+|ai⊥bi⊥λ) = 0 P (β−|ai⊥bi⊥λ) = 1 (95)

P (β+|aibi⊥λ) = 1 P (β−|aibi⊥λ) = 0 P (β+|ai⊥biλ) = 1 P (β−|ai⊥biλ) = 0 (96)

Case II: (replace all 0’s in case I by 1 and vice versa)

Requiring just any example we can assume a toy model with only two possible hidden
states (λ = 1, 2). Then we might, for instance, choose case I for λ1 and case II for λ2

for all i’s. Then, by equations similar to (73)–(76) it follows

P (λ1) =
1

2
P (λ2) =

1

2
(97)
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In this way we have accounted for the perfect correlations as well as for the perfect
anti-correlations.

Now it remains to reproduce the EPR/B correlations for non-parallel and non-per-
pendicular settings. A minimal set of such probabilities, which can violate the Bell
inequalities (both the usual ones as well as the Wigner-Bell inequalities), can be found
if each of the settings a and b has two possible values, e.g. a1 = 0◦, a2 = 30◦, b1 = 30◦

and b2 = 60◦. Measuring the quantum state ψ0 = (|+ +〉+ | −−〉)/
√

2 at these settings
yields the following observable probabilities:

P (α±β±|a1b1) = 3
8 P (α±β∓|a1b1) = 1

8 P (α±β±|a1b2) = 1
8 P (α±β∓|a1b2) = 3

8 (98)

P (α±β±|a2b1) = 1
2 P (α±β∓|a2b1) = 0 P (α±β±|a2b2) = 3

8 P (α±β∓|a2b2) = 1
8 (99)

These are sixteen equations, and any of the probabilities on their left hand sides can be
expressed by the product form of the hidden joint probability:

P (αβ|ab) =
∑
λ

P (λ)P (α|λ)P (β|abλ) (100)

P (λ) and P (α|λ) are already completely determined by the perfect (anti-)correlations,
P (β|abλ) partly so (namely only for the parallel settings a2 = b1):

P (λ1) = 1
2 P (λ2) = 1

2 (101)

P (α+|λ1) = 0 P (α−|λ1) = 1 P (α+|λ2) = 1 P (α−|λ2) = 0 (102)

P (β+|a2b1λ1) = 0 P (β−|a2b1λ1) = 1 P (β+|a2b1λ2) = 1 P (β−|a2b1λ2) = 0 (103)

Inserting these values in the respective equations yields the following consistent values
for the missing probabilities P (β|abλ):

P (β+|a1b1λ1) = 1
4 P (β−|a1b1λ1) = 3

4 P (β+|a1b1λ2) = 3
4 P (β−|a1b1λ2) = 1

4 (104)

P (β+|a1b2λ1) = 3
4 P (β−|a1b2λ1) = 1

4 P (β+|a1b2λ2) = 1
4 P (β−|a1b1λ2) = 3

4 (105)

P (β+|a2b2λ1) = 1
4 P (β−|a2b2λ1) = 3

4 P (β+|a2b2λ2) = 3
4 P (β−|a2b2λ2) = 1

4 (106)

Finally, choosing, say,

P (ai) =
1

2
P (ai⊥) =

1

2
P (bi) =

1

2
P (bi⊥) =

1

2
(107)

the formula

P (αβabλ) = P (α|λ)P (β|abλ)P (λ)P (a)P (b) (108)
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entails the following total probabilities, which constitute the searched for probability
distribution:

P (α+β+a1b1λ1) = 0 P (α+β−a1b1λ1) = 0 P (α−β+a1b1λ1) = 1
32

P (α−β−a1b1λ1) = 3
32

P (α+β+a1b2λ1) = 0 P (α+β−a1b2λ1) = 0 P (α−β+a1b2λ1) = 3
32

P (α−β−a1b2λ1) = 1
32

P (α+β+a2b1λ1) = 0 P (α+β−a2b1λ1) = 0 P (α−β+a2b1λ1) = 0 P (α−β−a2b1λ1) = 1
8

P (α+β+a2b2λ1) = 0 P (α+β−a2b2λ1) = 0 P (α−β+a2b2λ1) = 1
32

P (α−β−a2b2λ1) = 3
32

P (α+β+a1b1λ2) = 3
32

P (α+β−a1b1λ2) = 1
32

P (α−β+a1b1λ2) = 0 P (α−β−a1b1λ2) = 0

P (α+β+a1b2λ2) = 1
32

P (α+β−a1b2λ2) = 3
32

P (α−β+a1b2λ2) = 0 P (α−β−a1b2λ2) = 0

P (α+β+a2b1λ2) = 1
8

P (α+β−a2b1λ2) = 0 P (α−β+a2b1λ2) = 0 P (α−β−a2b1λ2) = 0

P (α+β+a2b2λ2) = 3
32

P (α+β−a2b2λ2) = 1
32

P (α−β+a2b2λ2) = 0 P (α−β−a2b2λ2) = 0

Note that here we have not explicitly noted the probabilities for parallel or perpendicular
settings, but by constructing the distribution in the indicated way we have implicitly
taken account of the perfect (anti-)correlations at these settings and it is straight forward
to extent the distribution to include these settings as well (the distribution just becomes
much longer, when for each measurement setting at one side one includes a parallel and
a perpendicular setting at the other side).

This completes our construction of a distribution from class (Hα
14) which respects,

autonomy, perfect correlations, perfect anti-correlations and violates the Bell inequalit-
ies. In a similar way, one can construct an example for class (Hα

13), which differs from
(Hα

14) just in that the dependence on both settings is not in the second but in the first
factor of its product form. q.e.d.

Proof of theorem 2.1

We split the theorem up into two partial claims:

Claim 1: Autonomy, nearly perfect correlations, nearly perfect anti-correlations, and
a class of probability distributions (Hα

i ) form an inconsistent set if (i) the
product form of (Hα

i ) involves at most one of the settings.

Claim 2: A class (Hα
i ) is consistent with autonomy, nearly perfect correlations and

nearly perfect anti-correlations if (¬i) the product form of (Hα
i ) involves

both settings.

Proof of claim 1

Condition (i), that the product form involves at most one of the settings, is fulfilled
by the classes {(Hα

17), . . . , (Hα
32)}\{(Hα

22), (Hα
29)}. Here we have to show the inconsistency

of these classes with the set of assumptions autonomy, nearly perfect correlations and
nearly perfect anti-correlations.

The proof runs very similar to our demonstration of claim 1 in the proof of the-
orem 1.1. On the one hand, the nearly perfect correlations and anti-correlations involve
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dependences on each of the settings, e.g. the nearly perfect correlations

P (α±β±|aibi) =
1

2
− δii P (α±β±|aibi⊥) = δii⊥ (109)

reveal a dependence on the setting b, while e.g. the nearly perfect correlations

P (α±β±|aibi) =
1

2
− δii P (α±β±|ai⊥bi) = δi⊥i (110)

show a dependence on the setting a. On the other hand, any hidden joint probability
that does not involve the setting b (i.e. is independent of b), cannot account for changing
values in the empirical joint probability with changing values of b (cf. (55)); so it ne-
cessarily contradicts the set of equations (109). And similarly, hidden joint probabilities
that are independent of a contradict the set of equations (110).

Note that condition (ii) from theorem 1.1 is not a criterion for inconsistency according
to theorem 2.1, because the inconsistency in question essentially relies on strictly perfect
(anti-)correlations, which are not assumed in theorem 2.1.

Proof of claim 2

The classes fulfilling criterion (¬i) to involve both settings in their product forms are
(Hα

1 )...(Hα
16), (Hα

22) and (Hα
29). Here we have to show the consistency of these classes

with the set of assumptions autonomy, nearly perfect correlations and nearly perfect
anti-correlations.

As in the proof of claim 3 in the proof of theorem 1.1 one can demonstrate the present
claim by providing an example of a probability distribution for each class that is consist-
ent with these assumptions. Since nearly perfect correlations are a weaker requirement
than strictly perfect ones, it is clear that for all classes which we have shown to be con-
sistent with the latter—viz. (Hα

1 )..(Hα
14)\{(Hα

4 ), (Hα
5 ), (Hα

10)}—are also consistent with
the former. Therefore, what still needs to be proven here is that autonomy and nearly
perfect (anti-)correlations are consistent with those classes fulfilling criterion (¬i) that
are inconsistent with the strictly perfect ones (because they fulfill (ii)). The classes in
question are (Hα

4 ), (Hα
5 ), (Hα

10), (Hα
15) and (Hα

16).
Again, the best way to find such examples is by constructing them such that the

conditions are fulfilled. Here we show how to construct a distribution for class (Hα
10).

The starting point are the equations for nearly perfect (anti-)correlations:

P (α±β∓|aibi) = δii P (α±β∓|ai⊥bi⊥) = δi⊥i⊥ P (α±β±|ai⊥bi) = δi⊥i P (α±β±|aibi⊥) = δii⊥

P (α±β±|aibi) = 1
2
− δii P (α±β±|ai⊥bi⊥) = 1

2
− δi⊥i⊥ P (α±β∓|ai⊥bi) = 1

2
− δi⊥i P (α±β∓|aibi⊥) = 1

2
− δii⊥
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Replacing the empirical probability on the left hand side of each equation by an equi-
valent expression involving hidden probabilities of the product form,

P (αβ|ab) =
∑
λ

P (λ)P (α|βλ)P (β|abλ), (111)

yields a set of equations, whose solutions determine probability distributions with the
required features.

The δ’s in these equations indicate the deviation from strictly perfect correlations.
One might use realistic empirical values for them but since the task here is a merely
conceptual one, one might as well just stipulate any small, positive values. Due to
the lacking perfectness, the resulting set of equations is more complicated than that in
theorem 1.2, and solutions are best determined by appropriate computer algorithms.
Here, we shall present a solution for the special case

δii = δi⊥i⊥ = δi⊥i = δii⊥ =: δ, (112)

which reads:

P (λ1) = 1
2

P (λ2) = 1
2

(113)

P (α+|β+λ1) = 0 P (α−|β+λ1) = 1 P (α+|β+λ2) = 1− 2δ P (α−|β+λ2) = 2δ
(114)

P (α+|β−λ1) = 2δ P (α−|β−λ1) = 1− 2δ P (α+|β−λ2) = 1 P (α−|β−λ2) = 0
(115)

P (β+|aibiλ1) = 0 P (β−|aibiλ1) = 1 P (β+|aibiλ2) = 1 P (β−|aibiλ2) = 0
(116)

P (β+|aibi⊥λ1) = 4δ−1
2δ−1

P (β−|aibi⊥λ1) = 2δ
1−2δ

P (β+|aibi⊥λ2) = 2δ
1−2δ

P (β−|aibi⊥λ2) = 4δ−1
2δ−1

(117)

P (β+|ai⊥biλ1) = 4δ−1
2δ−1

P (β−|ai⊥biλ1) = 2δ
1−2δ

P (β+|ai⊥biλ2) = 2δ
1−2δ

P (β−|ai⊥bi⊥λ2) = 4δ−1
2δ−1

(118)

P (β+|ai⊥bi⊥λ1) = 0 P (β−|ai⊥bi⊥λ1) = 1 P (β+|ai⊥bi⊥λ2) = 1 P (β−|ai⊥bi⊥λ2) = 0
(119)

Note that according to this solution all dependences of the product form (Hα
10) are

preserved, because, for instance, we have

P (α+|β+λ1) 6= P (α+|β−λ1) P (α+|β+λ1) 6= P (α+|β+λ2) (120)

P (β+|aibiλ1) 6= P (β+|ai⊥biλ1) P (β+|aibiλ1) 6= P (β+|aibi⊥λ1) (121)

P (β+|aibiλ1) 6= P (β+|aibiλ2) (122)

Finally, when we further assume, say,

P (ai) =
1

2
P (ai⊥) =

1

2
P (bi) =

1

2
P (bi⊥) =

1

2
(123)
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by the equation

P (αβabλ) = P (α|βλ)P (β|abλ)P (λ)P (a)P (b) (124)

the results so far determine the values of the total probability distribution:

P (α+β+aibiλ1) = 0 P (α−β+aibiλ1) = 0 (125)

P (α+β+aibi⊥λ1) = 0 P (α−β+aibi⊥λ1) = 1−4δ
8(1−2δ)

(126)

P (α+β+ai⊥biλ1) = 0 P (α−β+ai⊥biλ1) = 1−4δ
8(1−2δ)

(127)

P (α+β+ai⊥bi⊥λ1) = 0 P (α−β+ai⊥bi⊥λ1) = 0 (128)

P (α+β−aibiλ1) = δ
4

P (α−β−aibiλ1) = 1
8
(1− 2δ) (129)

P (α+β−aibi⊥λ1) = δ2

2(1−2δ)
P (α−β−aibi⊥λ1) = δ

4
(130)

P (α+β−ai⊥biλ1) = δ2

2(1−2δ)
P (α−β−ai⊥biλ1) = δ

4
(131)

P (α+β−ai⊥bi⊥λ1) = δ
4

P (α−β−ai⊥bi⊥λ1) = 1
8
(1− 2δ) (132)

P (α+β+aibiλ2) = 1
8
(1− 2δ) P (α−β+aibiλ2) = δ

4
(133)

P (α+β+aibi⊥λ2) = δ
4

P (α−β+aibi⊥λ2) = δ2

2(1−2δ)
(134)

P (α+β+ai⊥biλ2) = δ
4

P (α−β+ai⊥biλ2) = δ2

2(1−2δ)
(135)

P (α+β+ai⊥bi⊥λ2) = 1
8
(1− 2δ) P (α−β+ai⊥bi⊥λ2) = δ

4
(136)

P (α+β−aibiλ2) = 0 P (α−β−aibiλ2) = 0 (137)

P (α+β−aibi⊥λ2) = 1−4δ
8(1−2δ)

P (α−β−aibi⊥λ2) = 0 (138)

P (α+β−ai⊥biλ2) = 1−4δ
8(1−2δ)

P (α−β−ai⊥biλ2) = 0 (139)

P (α+β−ai⊥bi⊥λ2) = 0 P (α−β−ai⊥bi⊥λ2) = 0 (140)

By construction this distribution has the product form that is characteristic for class
(Hα

10), and it involves autonomy, nearly perfect correlations for parallel settings and
nearly perfect anti-correlations for perpendicular settings. This explicitly shows class
(Hα

14) to be consistent with these assumptions. In a similar way, one can find examples
for classes (Hα

4 ), (Hα
5 ), (Hα

15) and (Hα
16) consistent with the mentioned assumptions.

q.e.d.

Proof of theorem 2.2

We split the theorem up into two partial claims:

Claim 1: Given autonomy, nearly perfect correlations and nearly perfect anti-correlations
a consistent class (i.e. a class that fulfills (¬i)) implies Bell inequalities if
(iii) each factor of its product form involves at most one setting.

Claim 2: Given autonomy, nearly perfect correlations and nearly perfect anti-correlations
a consistent class (i.e. a class that fulfills (¬i)) does not imply Bell inequal-
ities if (¬iii) at least one factor of its product form involves both settings.
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Proof of claim 1

The set of classes fulfilling (¬i) and (iii) consists of (H15), (H16), (H22) and (H29).
It has to be shown that given autonomy, nearly perfect correlations and nearly perfect
anti-correlations, each of these class implies Bell inequalities.

In lemma 2 we have already demonstrated that under these conditions (Hα
16) implies

Bell inequalities. Since (Hα
15) only differs from (Hα

16) in that the settings are swapped
in the product form, mutatis mutandis also (Hα

15) implies the inequalities. Finally, since
local factorization (Hα

29) is a weaker product form than (Hα
16), and since (Hα

22) is a
weaker form than (Hα

15), it is clear that also these other two product forms imply the
Bell inequalities in the given circumstances.

Note that though it might seem obvious that local factorization implies the inequal-
ities, it is a non-trivial claim that it does imply the Wigner-Bell inequalities with
only nearly perfect (anti-)correlations, because usual derivations so far did have to
assume strictly perfect correlations; however, our derivation with (Hα

16) can easily be
adopted to derive the inequalities from local factorization and just the nearly perfect
(anti-)correlations. q.e.d.

Proof of claim 2

The classes fulfilling condition (¬i) while violating (iii) are (Hα
1 )...(Hα

14). Here we have
to show that given the background assumptions autonomy, nearly perfect correlations
and nearly perfect anti-correlations, these classes do not imply the Bell inequalities. This
amounts to showing that there is at least one distribution for each class that fulfills the
background assumptions and violates the Bell inequalities.

We know already from theorem 1.2 that the classes (Hα
1 )..(Hα

14)\{(Hα
4 ), (Hα

5 ), (Hα
10)}

can violate the inequalities given the assumptions of autonomy and strictly perfect cor-
relations. Since the latter are a stronger condition than nearly perfect correlations, it
is clear that these classes can violate the Bell inequalities also in the present case. It
remains to show that the classes (Hα

4 ), (Hα
5 ), (Hα

10) can violate the inequalities under the
given assumptions. Here we explicitly construct an example for class (Hα

10).
In the proof of claim 2 of theorem 2.1 we have constructed a toy example of a prob-

ability distribution for this class that is compatible with autonomy and nearly perfect
(anti-)correlations. When, for any setting i, we use the resulting probabilities (113)–
(119) we can be sure that the distribution we are about to construct is consistent with
the nearly perfect (anti-)correlations. What remains to be done is to reproduce the
EPR/B correlations for non-parallel and non-perpendicular settings. We again choose
the settings a1 = 0◦, a2 = 30◦, b1 = 30◦ and b2 = 60◦ as well as the quantum state
ψ = (|+ +〉+ | − −〉)/

√
2. Then the observable probabilities read:

P (α±β±|a1b1) = 3
8 P (α±β∓|a1b1) = 1

8 P (α±β±|a1b2) = 1
8 P (α±β∓|a1b2) = 3

8 (141)

P (α±β±|a2b1) = 1
2 − δ P (α±β∓|a2b1) = δ P (α±β±|a2b2) = 3

8 P (α±β∓|a2b2) = 1
8 (142)

(Note the difference to the probabilities with the same settings and quantum state in
(98)–(99), which involve strictly perfect anti-correlations for parallel settings a2 = b1
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(P (α±β±|a2b1) = 1
2 and P (α±β∓|a2b1) = 0) instead of nearly perfect ones (P (α±β±|a2b1) =

1
2 − δ and P (α±β∓|a2b1) = δ).
These are sixteen equations, and any of the probabilities on their left hand sides can be
expressed by the product form of the hidden joint probability:

P (αβ|ab) =
∑
λ

P (λ)P (α|βλ)P (β|abλ) (143)

P (λ) and P (α|βλ) are completely determined by the requirements of the perfect (anti-)cor-
relations (113)–(115), P (β|abλ) partly so (namely only for the parallel settings, (116)).

Inserting these predetermined probabilities into equations (141)–(142) yields the fol-
lowing consistent values for the missing probabilities P (β|abλ):

P (β+|a1b1λ1) = 1−8δ
4(1−2δ) P (β−|a1b1λ1) = 3

4(1−2δ) P (β+|a1b1λ2) = 3
4(1−2δ) P (β−|a1b1λ2) = 1−8δ

4(1−2δ)

(144)

P (β+|a1b2λ1) = 3−8δ
4(1−2δ) P (β−|a1b2λ1) = 1

4(1−2δ) P (β+|a1b2λ2) = 1
4(1−2δ) P (β−|a1b1λ2) = 3−8δ

4(1−2δ)

(145)

P (β+|a2b2λ1) = 1−8δ
4(1−2δ) P (β−|a2b2λ1) = 3

4(1−2δ) P (β+|a2b2λ2) = 3
4(1−2δ) P (β−|a2b2λ2) = 1−8δ

4(1−2δ)

(146)

Finally, choosing, say,

P (ai) =
1

2
P (ai⊥) =

1

2
P (bi) =

1

2
P (bi⊥) =

1

2
(147)

the formula

P (αβabλ) = P (α|λ)P (β|abλ)P (λ)P (a)P (b) (148)

entails the following total probabilities:

P (α+β+a1b1λ1) = 0 P (α+β−a1b1λ1) = 3δ
16(1−2δ)

P (α−β+a1b1λ1) = 1−8δ
32(1−2δ)

P (α−β−a1b1λ1) = 3
32

P (α+β+a1b2λ1) = 0 P (α+β−a1b2λ1) = δ
16(1−2δ)

P (α−β+a1b2λ1) = 3−8δ
32(1−2δ)

P (α−β−a1b2λ1) = 1
32

P (α+β+a2b1λ1) = 0 P (α+β−a2b1λ1) = δ
4

P (α−β+a2b1λ1) = 0 P (α−β−a2b1λ1) = 1−2δ
8

P (α+β+a2b2λ1) = 0 P (α+β−a2b2λ1) = 3δ
16(1−2δ)

P (α−β+a2b2λ1) = 1−8δ
32(1−2δ)

P (α−β−a2b2λ1) = 3
32

P (α+β+a1b1λ2) = 3
32

P (α+β−a1b1λ2) = 1−8δ
32(1−2δ)

P (α−β+a1b1λ2) = 3δ
16(1−2δ)

P (α−β−a1b1λ2) = 0

P (α+β+a1b2λ2) = 1
32

P (α+β−a1b2λ2) = 3−8δ
32(1−2δ)

P (α−β+a1b2λ2) = δ
16(1−2δ)

P (α−β−a1b2λ2) = 0

P (α+β+a2b1λ2) = 1−2δ
8

P (α+β−a2b1λ2) = 0 P (α−β+a2b1λ2) = δ
4

P (α−β−a2b1λ2) = 0

P (α+β+a2b2λ2) = 3
32

P (α+β−a2b2λ2) = 1−8δ
32(1−2δ)

P (α−β+a2b2λ2) = 3δ
16(1−2δ)

P (α−β−a2b2λ2) = 0

This completes our construction of a distribution from class (Hα
10) which respects, autonomy,

nearly perfect correlations, nearly perfect anti-correlations and violates the Bell inequal-
ities. Similarly, one can construct examples of distributions for class (Hα

4 ) and (Hα
5 ).

q.e.d.
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